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Abstract

Positive assortative matching refers to the tendency of individuals with similar char-
acteristics to form partnerships. Measuring the extent to which assortative matching
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sexes. We show how the use of different measures can generate different conclusions.
We provide axiomatic characterization for measures such as the odds ratio, normalized
trace, and likelihood ratio, and provide a structural economic interpretation of the odds
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1 Introduction

The study of sorting in the marriage market has recently attracted renewed attention. The

degree of homogamy in marriage—defined as people’s tendency to “marry their own”—has

important consequences for family inequalities and intergenerational transmission of human

capital. Therefore, it is surprising that various studies on this topic have not reached a

consensus on the evolution of homogamy in recent years, and even on how best to measure

homogamy (e.g., Fernández and Rogerson, 2001; Mare and Schwartz, 2005; Greenwood et al.,

2014; Siow, 2015; Chiappori, Salanié, and Weiss, 2017; Eika, Mogstad, and Zafar, 2019;

Ciscato and Weber, 2020; Gihleb and Lang, 2020; Hou et al., 2022).

The goal of this paper is to understand why different approaches to the same problem,

using similar or even the same data, can reach opposite conclusions and, more generally, to

clarify the theoretical issues underlying the choice of a particular measure of assortativeness.

Our analysis considers two populations, men and women, sorting in marriage according to

a characteristic, say education. Whenever the marginal distributions change—e.g., women’s

average education increases—matching patterns will change. The main problem faced by any

measure of assortativeness is to disentangle the mechanical effects of such variations in the

marginal distributions from deeper changes in the matching structure itself—for instance,

originating from changes in the gain generated by assortativeness along that characteristic.

The latter represents what one would call “changes in the assortativeness.” Existing studies

propose various measures—indices and rankings—to capture the assortativeness and the

changes therein. They measure assortativeness in different ways and may therefore generate

divergent conclusions.

Rather than starting with specific measures and justifying them with selected desirable

properties they satisfy, we take an axiomatic approach: We start with a set of properties that

the measures should satisfy and establish how appropriate the measures are for capturing

changes in assortative matching through the lenses of these properties.
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We consider three sets of basic axioms: (i) axioms of invariance to specify when two

matching patterns are equally assortative, (ii) axioms of monotonicity to specify when one

matching pattern is more assortative than another, and (iii) axioms of homogamy to specify

matching patterns that are most assortative.1 Namely, invariance axioms are scale invari-

ance (invariance to scaling the market), side invariance (invariance to swapping sides), and

type invariance (invariance to swapping types). The two notions of monotonicity we consider

are (i) marginal monotonicity, ranking two sets of matches of the same marginal distribu-

tions, and (ii) diagonal and off-diagonal monotonicity (assortativeness increases when more

like types match and decreases when more unlike types match). Finally, we introduce two

definitions of the most assortative matching: full homogamy (every pair in the market is

homogamous) and maximum homogamy (the maximum number of homogamous pairs is

achieved in the market, although not every pair is necessarily homogamous).

While some commonly used measures, such as the likelihood ratio, fail to satisfy one or

more of the basic axioms, the odds ratio (the ratio of college and noncollege individuals’

odds to match with the same type and with a different type), the normalized trace (the

proportion of like types), and the minimum distance (the combination of sorting patterns

under random matching and maximum positive assortative matching that best fits the em-

pirical observation) satisfy all basic axioms. Since these are genuinely different measures

rather than monotonic transformations of each other, they may point in opposite directions

when used to investigate changes in assortativeness between two matching patterns. Their

differences are empirically relevant. We show estimates of changing marital sorting patterns

in the US where one finds instances of these measures reaching opposite conclusions. To

distinguish some of these measures, we additionally define a set of characterization axioms.

In two-type markets, the complete ranking induced by the odds ratio is the unique one

that satisfies the basic axioms plus marginal independence (Edwards, 1963) (Theorem 1).

Under marginal independence, only the odds of marrying different types of spouses matter for

1In this paper, we use axioms and properties interchangeably.
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the measure of assortativeness, not the marginal distributions of the types. All indices that

are monotonic transformations of the odds ratio (e.g., Yule’s Q, Yule’s Y, and log odds ratio)

provide the same assortativeness ordering. We also provide a structural economic interpre-

tation of the odds ratio: It estimates the average gain per couple from assortative matching

compared to nonassortative matching within the Choo and Siow (2006) transferable-utilities

matching framework.

We also define decomposability axioms: The assortativeness measure for any matching in

a market is a weighted average or weighted sum of the measures for the matching patterns

in the submarkets decomposed from the market. The normalized trace—the proportion of

pairs of like types—is the unique index, up to positive affine transformation, that satisfies the

basic axioms plus population decomposability, i.e., the weight to average is population size

(Theorem 2). For comparison, we also provide an axiomatic characterization of the aggregate

likelihood ratio (used, for example, in Eika, Mogstad, and Zafar, 2019)—the excess likelihood

of like types pairing up relative to the hypothetical likelihood under random matching. It is

the unique measure, up to positive multiplication, that satisfies selected basic axioms plus

random decomposability, i.e., the weight to sum is the hypothetical proportion of pairs of

like types under random matching (Theorem 3).

For markets with more than two types, the indices such as normalized trace and like-

lihood ratio can be extended to provide measures of assortativeness.2 In practice, there

are 14 detailed education categories in the US Census, so robustness to categorization is an

additional desired property: Comparisons of assortativeness should be robust to how educa-

tion is categorized into two or several groups. We provide an impossibility result: No total

preorder satisfies marginal monotonicity (the weaker monotonicity axiom) and robustness

to categorization (Theorem 4). As a result, we must resort to partial rankings to evaluate

assortativeness of multi-type matching patterns.

The continued attention in the literature to how assortativeness on education has evolved

2They can also be modified to compare markets with singles and one-sided (e.g., homosexual) matches
(Zhang, 2024).
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in the recent past has been fueled by contradictory findings. We revisit this issue using our

axiomatic approach, studying changes in assortativeness on education in the US, across

cohorts born in the 1950s and 1970s. We contribute to that discussion by arguing that

ambiguity can sometimes be resolved by selecting indices that have desirable properties,

and by studying local (submarket) changes in assortativeness rather than global ones, which

are hard to interpret. The indices that satisfy our basic axioms consistently show that

assortativeness by education has increased at the top of the education distribution, but has

decreased at the very top, between college graduates and post graduates. We also find that

the type-specific and aggregate likelihood ratios—which fail to satisfy a number of the basic

axioms of invariance, monotonicity, and homogamy—frequently contradict the findings of

other indices and of each other.

The rest of the paper is organized as follows. Section 2 sets up the model and discusses

special matching patterns and commonly used measures. Section 3 lays out the basic axioms.

Section 4 discusses the axiomatic characterization results for the odds ratio, normalized trace,

and aggregate likelihood ratio. Section 5 discusses the structural interpretation of the odds

ratio. Section 6 discusses the theoretical results with more than two types. Section 7 provides

empirical results on marital sorting in the US, and Section 8 concludes.

2 Model, matchings, and measures

2.1 Model and objective

Each man and woman possesses a trait (e.g., college education or any other observable

psychological, biological, or socioeconomic trait). We start with the setting where a trait

is one of two types, e.g., θ1 and θ2. For expositional ease and alignment with our primary

empirical application, we refer to the two traits as college-educated and noncollege-educated.
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Consider the matching between men and women described by matrix M = (a, b, c, d):

M =

m\w θ1 (college) θ2 (noncollege)

θ1 (college) a b

θ2 (noncollege) c d

.

A cell describes the mass of pairs between a specific combination of types of men and

women. To recover the marginal distribution, i.e., mass of (matched) individuals of a specific

gender and type, we sum a column or a row. For example, there is mass a+ b of college men.

The marginal distribution for men is then described by (a+ b, c+ d) and that for women is

(a+ c, b+ d). Assume a full support of types on both sides of the market: (a+ b)(a+ c)(b+

d)(c+ d) > 0. Let |M |≡ a+ b+ c+ d denote its population size.

We define positive matching matrices M = (a, b, c, d), i.e., matrices such that each of the

entries a, b, c, and d is strictly positive.3 We denote them by M > 0, where bold 0 denotes

the zero matrix, the 2× 2 zero matrix in this context.

Objective. Our aim is to define a set of axioms that a measure of assortative matching

should reasonably satisfy and to use these to distinguish among different measures, which

often lead to contradictory results. A measure may be an indexing, a complete ranking, or

a partial ranking of all matching patterns.

Formally, let M = R4
+\{0} denote the entire collection of possible matching patterns in

two-type markets. A measure of assortativeness may be (i) an index I : M → R+; (ii) a total

preorder (i.e., a complete ranking) on M, a binary relation that satisfies totality (M ⪰ M ′ or

M ′ ⪰ M) and transitivity (M ⪰ M ′ and M ′ ⪰ M ′′ imply M ⪰ M ′′); or (iii) a preorder (i.e.,

a partial or complete ranking) on M, a binary relation that satisfies reflexivity (M ⪰ M)

and transitivity.4 Any index is associated with a total preorder, so studying the ordinal

properties of an index is akin to studying the properties of the total preorder it induces.

3Note that positive matching matrices are distinct from positive definite matrices.
4We consider preorders rather than orders (which satisfy the additional condition of antisymmetry:

M ⪰ M ′ and M ′ ⪰ M imply M = M ′) because there may be equally assortative matching patterns.
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2.2 Special matching patterns

Fully and maximally assortative matching. When a person is matched with a part-

ner of the same type with probability one, i.e., b = c = 0, we call such a matching fully

positive-assortative. However, fully positive-assortative matching is feasible only when men

and women have the same distribution of education. More generally, we call a matching

maximally positive-assortative if there is a maximum mass of pairs of like types, holding

marginal distributions fixed: bc = 0 (that is, b = 0 or c = 0 or both). Say, all individuals on

the short side of the educated category (men in our case) marry an educated partner (i.e.,

b = 0), but not every educated individual on the long side (women) does so (i.e., c > 0);

intuitively, the only reason that we observe “mixed” couples is the lack of educated men.

Every market has a unique maximally positive-assortative matching.

In the two-by-two case, we can analogously define fully negative-assortative matching as

one in which all individuals are matched with a partner of a different type with probability

one, i.e., a = d = 0; and maximally negative-assortative (or equivalently, minimally positive-

assortative) matching as one in which there is a maximal mass of pairs of unlike types (or

equivalently, in two-by-two markets, minimal mass of pairs of like types), i.e., ad = 0.

Note that fully (positive or negative) assortative matching is maximally assortative, but

maximally assortative matching is not necessarily fully assortative. Most—not all—of the

preorders in use have maximally positive-assortative matching matrices as maximum ele-

ments of M.

Positive and negative assortative matching. One way of defining positive and nega-

tive assortative matching is to compare to the random matching benchmark. We say that

matching M is a positive assortative matching (PAM) if the mass of couples with equal

education (the “diagonal” of matrix M) is strictly larger than what would obtain under ran-

dom matching. Under random matching, the mass of couples in which both spouses are
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college-educated is |M |· [(a+ b) (a+ c) /|M |2]. Then we have PAM if and only if

a (a+ b+ c+ d) > (a+ b) (a+ c) , (1)

or equivalently,

ad > bc. (2)

This inequality also implies that more noncollege individuals marry each other than would be

predicted by random matching.5 In other words, PAM arises when extra forces generate more

matches between equally educated people than would happen for random reasons. Negative

assortative matching (NAM) in two-type markets can be analogously defined: ad < bc.

2.3 Existing measures and their differences

2.3.1 Existing measures

We now review some of the most commonly used measures in the literature. Many are mea-

suring the extent to which the left-hand side is larger than the right-hand side in equations

(1) and (2).

Odds ratios. The odds ratio is probably the most widely used index:6

IO (M) =


ad

bc
if b ̸= 0 and c ̸= 0,

+∞ if bc = 0.

The index ranges from 0 to +∞. A few monotonic transformations of the odds ratio are

used in the literature. They all yield the same preorder of assortativeness. Log odds ratio is

5Mathematically, d > (d+ b)(d+ c)/|M | ⇔ d(a+b+c+d) > (d+b)(d+c) ⇔ d(a+b) > b(d+c) ⇔ ad > bc.
The inequality ad > bc also implies a+ d > [(a+ b)(a+ c) + (d+ b)(d+ c)]/(a+ b+ c+ d).

6The odds ratio is popular in the demographic literature, as it can be directly derived from the log-
linear approach; see, for instance, Mare (2001), Mare and Schwartz (2005), and Bouchet-Valat (2014). In
economics, it was used by Siow (2015) (“local odds ratio”), Chiappori, Salanié, and Weiss (2017), Chiappori
et al. (2020), and Ciscato and Weber (2020), among many others.
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Io(M) ≡ ln IO(M). Yule’s Q or coefficient of association (Yule, 1900) is IQ(M) ≡ IO(M)−1
IO(M)+1

.

This is +1 when PAM, −1 when NAM, and 0 when random matching (uncorrelated). Yule’s

Y or coefficient of colligation (Yule, 1912) is IY (M) ≡
√

IO(M)−1√
IO(M)+1

.

Likelihood ratios. Type-specific likelihood ratio, used by Eika, Mogstad, and Zafar (2019),

for instance, measures marital sorting between men and women of the same type by the ratio

of the actual probability of matching relative to what would occur at random:7

IL1(M) ≡ observed matches θ1θ1
random matching baseline

=
a

|M |

/
a+ b

|M |
a+ c

|M |
=

a(a+ b+ c+ d)

(a+ b)(a+ c)
.

The likelihood ratio for population type θ1 compares the realized mass of college-college pairs

with the benchmark of the hypothetical mass of such pairs under random matching. The

likelihood ratio for population type θ2 is analogously defined:

IL2(M) ≡ observed matches θ2θ2
random matching baseline

=
d

|M |

/
d+ b

|M |
d+ c

|M |
=

d(a+ b+ c+ d)

(d+ b)(d+ c)
.

One issue with the type-dependent likelihood ratio is that it requires the choice of a type

as a benchmark; in other words, it fails type invariance, which we will define later on.

Our empirical results show that the likelihood ratios based on different types yield opposite

conclusions on the direction of change in educational homogamy in the US.

The aggregate likelihood ratio is a weighted average of the type-specific likelihood ratios,

in which the weight on each type-specific likelihood ratio is the expected mass of pairs of

7Ciscato, Galichon, and Goussé (2020) call this the homogamy rate. It is used to study sorting on career
ambition (Almar et al., 2023) and on childhood family income percentile (Binder et al., 2023).
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like types under random matching.

IL(M) ≡ (a+ b)(a+ c)

(a+ b)(a+ c) + (d+ b)(d+ c)
IL1(M) +

(d+ b)(d+ c)

(a+ b)(a+ c) + (d+ b)(d+ c)
IL2(M)

=
observed matches θ1θ1 and θ2θ2

random matching baseline
=

a+ d

|M |

/(
a+ b

|M |
a+ c

|M |
+

d+ b

|M |
d+ c

|M |

)
.

Simplified, this is the ratio between the observed mass of couples of all like types and the

counterfactual mass of pairs if individuals were to match randomly.

Normalized trace. A simple index that turns out to have nice properties is what we call

the normalized trace.8 It equals 1 if the matching is maximum PAM, equals 0 if the matching

is minimum PAM, and equals the proportion of like types in the market otherwise:

Itr(M) =


1 if bc = 0,

a+d
a+b+c+d

∈ (0, 1) if abcd ̸= 0,

0 if ad = 0.

Minimum distance. In the minimum distance approach of Fernández and Rogerson

(2001), Abbott et al. (2019), and Wu and Zhang (2021), one constructs the convex com-

bination of two extreme cases—random matching and maximum PAM—that minimizes the

distance with the matching under consideration and defines the weight of the maximum

PAM component as the index. It coincides with the perfect-random normalization of Liu

and Lu (2006) and Shen (2020) in two-type markets and is equal to

IMD (M) =
ad− bc

(a+min{b, c})(d+min{b, c})
.

8Using the normalized trace, Cheremukhin, Restrepo-Echavarria, and Tutino (2024) study marital sorting
in the US, and Li (2024) and Li and Derdenger (2024) study matching between students and colleges.
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Correlation. Another natural index is the correlation between wife’s and husband’s edu-

cation, each considered as a Bernoulli random variable taking the value θ1 with probability

a+b
|M | (resp., a+c

|M | ) and θ2 with probability c+d
|M | (resp., b+d

|M | ):

ICorr (M) =
ad− bc√

(a+ b) (c+ d) (a+ c) (b+ d)
.

This has been used in various contributions (e.g., Greenwood, Guner, and Knowles, 2003;

Greenwood et al., 2014), either explicitly or through a linear regression framework. In our

2 × 2 case, the correlation index also coincides with Spearman’s rank correlation, which

exploits the natural ranking of education levels (i.e., college > noncollege). Equivalently,

one can consider χ2 (M) = [ICorr (M)]2.

2.3.2 Measuring changes in sorting with alternative measures: An example

As we show in the empirical section, the various measures can imply opposite results with

respect to changes in sorting, an issue that has motivated this paper. We provide a graphical

illustration of this difference by comparing the odds ratio and the aggregate likelihood ratio,

before we analyze the various measures in relation to a set of axioms.

For the purposes of our example, fix a reference matching, M = (0.2, 0.1, 0.1, 0.6) and

restrict attention to matching matrices M ′ in which |M ′|= 1 and b = c = (1− a− d)/2. The

red curve in Figure 1 illustrates what we call the iso-assortative curve of M— the collection

of matrices that are equally assortative as M—under the odds ratio. Similarly, the white

curve is the iso-assortative curve of M under the aggregate likelihood ratio.

Thus, the orange (yellow) area is the set of matching matrices where sorting is more

positive (less positive) assortative than M according to both measures. The purple areas are

the set of matrices classified as less assortative than M by the aggregate likelihood ratio,

but more assortative according to the odds ratio. Notably, the fully assortative matching

matrices—a = 1 and d = 0 or a = 0 and d = 1—and the matching matrices close to them
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Figure 1: Iso-assortative curves and conflicting region

are deemed strictly less assortative than M under the aggregate likelihood ratio. Finally, the

matrices in the green regions are more assortative than M under the aggregate likelihood

ratio, and less so under the odds ratio. These differences reflect the way that each of the

measures accounts for changes in the marginal distributions.9

3 Axioms of invariance, monotonicity, and homogamy

We introduce three sets of basic axioms/properties a measure should satisfy. They describe

(i) matching matrices that should be classified as equally assortative, (ii) matching matrices

where one must be classified as more assortative than the other, and (iii) matching matrices

that should be classified as most assortative. For generality, whenever possible, we define

axioms that a preorder should satisfy, rather than an index. We say that a total preorder

⪰ is induced by index I if for all matching matrices M and M ′, I(M) > I(M ′) ⇔ M ≻ M ′

9In general, the iso-assortative curves of a fixed matching matrix can be derived for any measure and
its upper contour set can be used to compare and contrast any pairs of measures. In addition, when we
relax the restriction of b = c, we can construct iso-assortative surfaces and upper contour sets of M in
three-dimensional planes. We illustrate the conflicts between aggregate likelihood ratio and odds ratio in
the three-dimensional space in Appendix Figure 2.
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and I(M) = I(M ′) ⇔ M ∼ M ′. Two indices I and I ′ are preorder-equivalent if the total

preorders ⪰I and ⪰I′ they induce are equivalent. An index is said to satisfy an axiom if the

total preorder induced by the index satisfies it.

3.1 Invariance axioms

We start with axioms that define two equally assortative matching matrices. First, when a

matching matrix is scaled up or down by a positive constant without changing the relative

composition, the assortativeness should be evaluated as unchanged.

Scale Invariance. For all M and λ > 0, M ∼ λ ·M .

Given scale invariance, we can transform M into a contingency table by dividing each

cell by |M |. Next, the assortativeness should not be affected if we change the sides of the

market. Effectively, we switch the masses of high-low (b) and low-high (c) pairs.

Side Invariance. The matching stays equally assortative when sides are switched:

a b

c d
∼

a c

b d
.

Neither should switching the types affect the assortativeness. Swapping the labels of the

two types is essentially swapping high-high (a) and low-low (d) pairs and swapping high-low

(b) and low-high (c) pairs.

Type Invariance. The matching stays equally assortative when types are switched:

a b

c d
∼

d c

b a
.

12



We refer to all three together as invariance axioms. These are basic axioms an appro-

priate measure should satisfy. While type-specific likelihood ratio fails type invariance, all

aforementioned measures satisfy all three axioms of invariance (see summary in Table 1).

3.2 Monotonicity axioms

Next, we define notions of monotonicity that specify when one matching matrix is more

assortative than another. We define two notions of monotonicity, one based on comparisons of

matching matrices with the same marginal distributions and the other based on comparisons

of matching matrices with different marginals.

We compare positive matching matrices (all entries are positive). They are the non-

maximally assortative matching matrices.

First, consider one notion of monotonicity that compares two matching matrices of the

same marginal distributions. Matching matrices that share the same marginal distributions

as (a, b, c, d) are of the form (a+ ϵ, b− ϵ, c− ϵ, d+ ϵ)—essentially, a one-parameter family.

Marginal Monotonicity. For any positive matching matrices M = (a, b, c, d) > 0

and M ′ = (a′, b′, c′, d′) > 0 with the same marginal distributions (i.e., a + c = a′ + c′,

a + b = a′ + b′, d + b = d′ + b′, and d + c = d′ + c′), M ≻ M ′ if and only if a > a′

(equivalently, b < b′, c < c′, or d > d′).

All aforementioned measures satisfy marginal monotonicity.

Next, we compare matching matrices that differ in marginal distributions, but differ in a

minimal way: by one cell. For matching matrices that are not maximally assortative, when

pairs of like types (i.e., the terms on the diagonal of the matrix) increase, the matching

becomes more assortative.
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Diagonal Monotonicity. For any positive matching matrix M > 0 and ϵ > 0,

a+ ϵ b

c d
≻

a b

c d
and

a b

c d+ ϵ
≻

a b

c d
.

We analogously define off-diagonal monotonicity : When pairs of unlike types (i.e., the

terms off the diagonal of the matrix) increase, the matching becomes less assortative.

Off-Diagonal Monotonicity. For any positive matching matrix M > 0 and ϵ > 0,

a b

c d
≻

a b+ ϵ

c d
and

a b

c d
≻

a b

c+ ϵ d
.

Claim 1. Diagonal and off-diagonal monotonicities imply marginal monotonicity.

Proof of Claim 1. Suppose positive matrices M = (a, b, c, d) and M ′ = (a′, b′, c′, d′) have

the same marginal distributions, and suppose a > a′. Because they share the same marginals,

a− a′ = b′ − b = c′ − c = d− d′ (derived from a+ c = a′ + c′, a+ b = a′ + b′, d+ b = d′ + b′,

and d+ c = d′ + c′). Hence, M ′ can be represented as

M ′ =
a− (a− a′) b+ (b′ − b)

c+ (c′ − c) d− (d− d′)
=

a− (a− a′) b+ (a− a′)

c+ (a− a′) d− (a− a′)
.

Then,

M ′ =
a− (a− a′) b+ (a− a′)

c+ (a− a′) d− (a− a′)
≺

a b+ (a− a′)

c+ (a− a′) d
≺

a b

c d
= M,

where the first ≺ follows from diagonal monotonicity and the second ≺ follows from off-

diagonal monotonicity.
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Conversely, however, marginal monotonicity does not necessarily imply diagonal or off-

diagonal monotonicity, because marginal monotonicity solely specifies relations for matchings

with the same marginal distributions and by itself has no implications for markets with

different marginal distributions.

Let us examine whether the aforementioned measures satisfy these monotonicity axioms.

The type-specific likelihood ratio satisfies off-diagonal monotonicity but fails diagonal mono-

tonicity: IL1(1, 1, 1, 6) = 2.25 > IL1(2, 1, 1, 6) ≈ 2.22 > IL1(6, 1, 1, 6) ≈ 1.74. To investigate

further, we can take the partial derivative of IL1 with respect to a. Diagonal monotonicity

tends to fail when one of the cells is relatively small. The aggregate likelihood ratio satisfies

off-diagonal monotonicity but fails diagonal monotonicity:

∂IL
∂a

=
(a+ d)(d− a)(b+ c)

[(a+ b)(a+ c) + (d+ b)(d+ c)]2
< 0 when a > d.

The other aforementioned measures satisfy diagonal and off-diagonal monotonicity.

3.3 Homogamy axioms

A natural requirement is that any maximally positive-assortative matching should be a max-

imal element for preorder ⪰. Following Robbins (2009), we call it the maximum homogamy

property10

Maximum Homogamy. For any M , ad > 0, and bc = 0: (a, b, c, d) ⪰ M .

A less restrictive condition suggests that fully positive-assortative matching should be

perceived as the most positive-assortative; we call this the full homogamy property.11

Full Homogamy. For any M and ad > 0: (a, 0, 0, d) ⪰ M .

10HMax in Chiappori, Costa Dias, and Meghir (2022).
11Weak HMax in Chiappori, Costa Dias, and Meghir (2022).
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Note that maximum homogamy is a stricter condition than full homogamy, because it

requires not only matrices of the form (a, 0, 0, d) to be maximal elements, but also matrices

of the form (a, 0, c, d) or (a, b, 0, d).

One can readily check that the odds ratio satisfies maximum homogamy, and hence

full homogamy, since it becomes infinite when b = 0 or c = 0. By construction, we have

IMD (M) ≤ 1 for all M and IMD (a, b, 0, d) = 1. Therefore minimum distance satisfies

maximum homogamy. The correlation index obviously satisfies full homogamy, since the

correlation is then equal to 1. However, it does not satisfy maximum homogamy. For

instance, ICorr (45, 5, 5, 45) = .8 > .41 = ICorr (40, 40, 0, 20).

Likelihood ratios fail full homogamy, and hence maximum homogamy. Compare matching

matrices M = (5, 5, 5, 85) and M ′ = (50, 0, 0, 50) corresponding, for instance, to two different

cohorts in the same economy. The distribution of education is independent of gender in both

M and M ′, but the proportion of educated people has increased from 10% in M to 50% in

M ′. Cohort M exhibits PAM in the usual sense (more people on the diagonal than would

obtain under random matching); yet, 50% of educated people marry an uneducated spouse.

Cohort M ′ displays perfect sorting, with all educated individuals marrying together. The

college-based likelihood ratio yields IL1 (M) = 5 and IL1 (M
′) = 2: Assortativeness has

decreased from M to M ′.

3.4 Summary

Table 1 summarizes whether the measures satisfy the basic invariance, monotonicity, and

homogamy axioms. The type-specific likelihood ratio does not satisfy type invariance, be-

cause relabeling the types would change the measure. The aggregate likelihood ratio fails

diagonal monotonicity, maximum homogamy, and full homogamy. The correlation index

fails maximum homogamy.

The odds ratio, normalized trace, and minimum distance satisfy all the basic axioms.

That begs the question, what would be axioms that can uniquely characterize these mea-

16



Table 1: Do the measures satisfy the invariance, monotonicity, and homogamy axioms?

Invariance axioms Monotonicity axioms Homogamy axioms

Scale Side Type Marginal Diagonal Off-diagonal Maximum Full

Odds ratio ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Type-specific likelihood ratio ✓ ✓ X ✓ X ✓ X X

Aggregate likelihood ratio ✓ ✓ ✓ ✓ X ✓ X X

Normalized trace ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Minimum distance ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Correlation ✓ ✓ ✓ ✓ ✓ ✓ X ✓

sures? For the odds ratio and the normalized trace, we answer this question next.

4 Characterization results

Table 1 shows that, except for the type-specific likelihood ratio, all the measures listed

satisfy the invariance axioms and at least one notion of monotonicity: marginal monotonicity.

Hence, the basic axioms are not sufficient to distinguish the measures and provide a definitive

answer regarding what measure to use.

We need additional axioms to distinguish and characterize the different measures. We

will introduce what we call characterization axioms, such that a measure will be the unique

one that satisfies both the basic axioms and an additional axiom, which essentially highlights

the special property of the measure.

4.1 Marginal independence and odds ratio

We first provide the characterization result regarding marginal independence (Edwards,

1963) and the odds ratio. A measure satisfies marginal independence if multiplying any

row or any column of any matching matrix does not change the assortativeness order. In-

tuitively, two matching matrices differing in the number of (say) educated women will be

equally assortative if educated women match to educated and uneducated men in the same
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proportion in both markets. This will happen, for instance, if there is an increase in the num-

ber of educated women in the market, and the sorting patterns of the additional educated

women are the same as for the initial stock.

Marginal Independence (Edwards, 1963). For any M and λ > 0,

a b

c d
∼

λa λb

c d
∼

a b

λc λd
∼

λa b

λc d
∼

a λb

c λd
.

Note that marginal independence is an ordinal property. Nonetheless, it is a strong

condition. It implies scale, side, and type invariance. In addition,

Claim 2. Marginal independence and marginal monotonicity imply diagonal monotonicity

and off-diagonal monotonicity.

In fact, more strongly, the three monotonicity properties are equivalent under marginal

independence:

Claim 3. Suppose a measure satisfies marginal independence. It satisfies diagonal mono-

tonicity if and only if it satisfies off-diagonal monotonicity if and only if it satisfies marginal

monotonicity.

Theorem 1. The odds ratio induces the unique preorder that satisfies marginal monotonicity,

marginal independence, and maximum homogamy.

Note that the sole role of maximum homogamy is to specify the maximum PAM to be

the maximal element of the preorder.

It is interesting to refer to an older statistics literature that discusses the properties of

measures of association in the case of paired attributes (i.e., in our case, husband’s and wife’s

education). The property posed by Edwards (1963) states that the association should not be

“influenced by the relative sizes of the marginal totals” (p. 110). That is, the measure should
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not change if one starts from a matching M and doubles the mass of couples in which the

man is educated (while keeping unchanged the ratio of educated versus uneducated wives of

educated men).

Edwards (1963) justifies this property by posing that the measure must only be a function

of the proportion of educated women whose husband is educated and the proportion of une-

ducated women whose husband is educated (and conversely), so that any population change

that keeps these proportions constant should not affect the index. This imposes, in partic-

ular, that global changes in the marginal distributions of the characteristic on which people

match, for instance a global increase in the mass of educated women, should not system-

atically impact the index; only changes in the odds of marrying different types of spouses

should matter. The condition was later generalized by Altham (1970) to the n× n case.

Among the indices just reviewed, only the odds ratio and its preorder-preserving trans-

formations satisfy marginal independence. It is interesting to consider how the other indices

violate this requirement. Consider matching matrices Mλ = (λa, λb, c, d) with ad > bc (PAM)

and λ ≥ 1. Suppose λ increases. The type-θ1 likelihood ratio decreases since ∂IL1/∂λ < 0,

while the type-θ2 likelihood ratio increases. All other indices may increase or decrease,

depending on parameters.

4.2 Population decomposability and normalized trace

The next set of characterization axioms will endow the measures with cardinal interpreta-

tions. Namely, the assortativeness of a matching matrix will be a weighted average or sum of

the measures of matching matrices in the submarkets decomposed from the original market.

Depending on the weights used, different decomposability axioms correspond to different

measures.

Consider the following axiom in which the weight to average is the population size of

submarkets.
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Population Decomposability. For any positive matching M > 0 and M ′ > 0,

I(M +M ′) =
|M |

|M |+|M ′|
I(M) +

|M ′|
|M |+|M ′|

I(M ′). (3)

Equivalently, for any positive matchings Mn > 0, n = 1, 2, . . . , N ,

I

(∑
n

Mn

)
=
∑
n

[
|Mn|∑
n|Mn|

I(Mn)

]
. (4)

Equivalent expressions (3) and (4) mean that for any decomposition of a market, the

assortativeness index of the matching in the entire market is a weighted average of the same

index in its decomposed submarkets.12 Practical and relevant examples of the decomposition

of marriage markets include (i) by geographic regions, (ii) by metropolitan status, such as

urban and rural marriages, or (iii) by race, such as into marriages between whites, those

between nonwhites, and interracial marriages between whites and nonwhites.

As explained above, marginal monotonicity and the invariance axioms cannot imply

diagonal monotonicity or off-diagonal monotonicity. However,

Claim 4. Marginal monotonicity and population decomposability, together with scale invari-

ance and type invariance, imply diagonal monotonicity and off-diagonal monotonicity.

We show in the theorem below that population decomposability is a characterization

axiom for normalized trace. That is, the normalized trace is the unique index, up to positive
12Expressions (3) and (4) are equivalent for the following reasons. It is straightforward that expression (4)

implies expression (3), because expression (4) when n = 2 is expression (3). Expression (3) implies expression
(4) by induction; below is the step to show that (3) implies (4) for n = 3: For matching M decomposed into
three positive matchings M1, M2, M3,

I(M) =
|M1|

|M1|+|M2 +M3|
I(M1) +

|M2 +M3|
|M1|+|M2 +M3|

I(M2 +M3)

=
|M1|

|M1|+|M2|+|M3|
I(M1) +

|M2 +M3|
|M1|+|M2|+|M3|

[
|M2|

|M2|+|M3|
I(M2) +

|M3|
|M2|+|M3|

I(M3)

]
=

|M1|
|M1|+|M2|+|M3|

I(M1) +
|M2|

|M1|+|M2|+|M3|
I(M2) +

|M3|
|M1|+|M2|+|M3|

I(M3).
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affine transformation, that satisfies population decomposability and the basic invariance and

monotonicity axioms. Under population decomposability, Claims 1 and 4 combine to imply

the equivalence of the two notions of monotonicity—diagonal and off-diagonal monotonicity

and marginal monotonicity—and so the characterization result holds for both notions of

monotonicity.

Theorem 2. An index satisfies the basic axioms (i.e., of invariance, monotonicity, and

homogamy) and population decomposability if and only if it is a positive affine transformation

of normalized trace.

Equivalently, the normalized trace is the unique index, up to positive affine transforma-

tion, that satisfies the three invariance axioms, marginal monotonicity, maximum homogamy,

and population decomposability. Or alternatively, it is the unique index, up to positive affine

transformation, that satisfies the three invariance axioms, diagonal monotonicity, off-diagonal

monotonicity, maximum homogamy, and population decomposability.

In addition, because of uniqueness up to a positive affine transformation, the index sat-

isfying all basic axioms and population decomposability is uniquely determined if the range

is specified. For example, when the range is [0, 1], the unique index is the normalized trace.

Maximum homogamy is used to pin down the boundary cases of maximally but not fully

positive-assortative matchings, i.e., (a, b, c, d) when b = 0 or c = 0 (but not both). We re-

stricted the normalized trace of a matching of form (a, b, 0, d), where abd > 0, to be 1. If we

drop maximum homogamy as a criterion, then the normalized trace without this restriction—

namely, I(a, b, c, d) = (a+d)/(a+b+c+d) for any matching matrix (a, b, c, d)—also satisfies

the other aforementioned properties.

4.3 Random decomposability and aggregate likelihood ratio

The aggregate likelihood ratio is characterized by a decomposability axiom in which the

summation weights are the expected mass of pairs of like types under random matching.
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Random Decomposability. For any positive matching matrices M and M ′,

I(M +M ′) =
r(M)

r(M +M ′)
I(M) +

r(M ′)

r(M +M ′)
I(M ′),

where r(M) indicates the expected mass of pairs of like types under random matching

in market M :

r(M) ≡ a+ b

|M |
a+ c

|M |
|M |+d+ b

|M |
d+ c

|M |
|M |= (a+ b)(a+ c) + (d+ b)(d+ c)

a+ b+ c+ d
.

Equivalently, for any positive Mn, n = 1, 2, . . . , N ,

I

(∑
n

Mn

)
=
∑
n

[
r(Mn)

r (
∑

nMn)
I(Mn)

]
.

Theorem 3. An index satisfies the three invariance axioms, marginal monotonicity, and

random decomposability if and only if it is a positive multiple of aggregate likelihood ratio.

We make two comments. First, note that the aggregate likelihood ratio does not sat-

isfy maximum homogamy, diagonal monotonicity, or off-diagonal monotonicity, so we do not

have a characterization result that connects those axioms and the aggregate likelihood ratio.

Second, note that the class of measures that satisfy the axioms in Theorem 3 must be a pos-

itive multiple—i.e., a positive affine transformation without an intercept—of the aggregate

likelihood ratio. This is because the weights r(M)/r(M + M ′) and r(M ′)/r(M + M ′) do

not necessarily add up to be 1. Nonetheless, this characterization result gives the aggregate

likelihood ratio a cardinal interpretation.

To address the observation that the weights do not necessarily add up to one, consider

an axiom that involves weighted averages that add up to one and compares markets with

proportional marginal distributions.
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Marginal Random Decomposability. For all M > 0 and M ′ > 0 such that M/|M |

and M ′/|M ′| have the same marginal distributions,

I(M +M ′) =
r(M)

r(M) + r(M ′)
I(M) +

r(M ′)

r(M) + r(M ′)
I(M ′).

Aggregate likelihood ratio satisfies this axiom, but it is not the unique measure that does

so. For example, the normalized trace—and as a result, any linear combination of aggregate

likelihood ratio and normalized trace—also satisfies this axiom.

5 Structural interpretation of the odds ratio

It is important to note that among the various indices, the odds ratio has a known struc-

tural interpretation. Specifically, assume that the observed matching behavior constitutes

the stable equilibrium of a frictionless matching model under transferable utility. Assume,

furthermore, that the surplus generated by a match between woman x belonging to category

θi and man y belonging to category θj takes the separable form

s (x, y) = Zθiθj + αθj
x + βθi

y , (5)

where Z is a deterministic component depending only on individual educations and the α’s

and β’s are random shocks reflecting unobserved heterogeneity among individuals.13 It is

now well known (Graham, 2011; Chiappori, 2017) that, keeping constant the distribution

of the shocks, assortativeness is related to the supermodularity of the matrix Zθiθj , i.e., in

the two-type case, to the sign of the supermodular core Zθ1θ1 + Zθ2θ2 − Zθ1θ2 − Zθ2θ1 . More

importantly, if, following the seminal contribution by Choo and Siow (2006), one assumes

that the random shocks follow type-1 extreme value distributions—the so-called Separable

Extreme Value model—then the supermodular core equals twice the odds ratio. Hence, the

13Transferable-utility models satisfying condition (5) are referred to as separable models in the literature.

23



odds ratio represents the average gain per couple from positive-assortative matching over

negative-assortative matching.

This structural interpretation is especially useful for disentangling possible changes in

the value of different matches from the mechanical effect of variations in the marginal dis-

tributions of education among individuals. “Structural changes,” here, can only affect either

the matrix Z or the distributions of random shocks. It is also useful for constructing coun-

terfactual simulations, since the same structure can be applied to different distributions of

education by genders, using standard techniques to solve for the stable equilibrium of the

corresponding matching game.14

We make two remarks at this point. First, as clearly pointed out by Choo and Siow (2006)

as well as by the subsequent literature (Galichon and Salanié, 2022; Chiappori and Salanié,

2016), this structural model can be identified (in the econometric sense) from matching pat-

terns, but only under strong parametric restrictions. For instance, the initial Choo and Siow

(2006) framework, which generates the odds ratio as an estimator of the supermodularity

of the surplus, is exactly identified under the assumption that the random shocks α’s and

β’s follow type-1 extreme value distributions. Indeed, the consensus is that, to be identified

from the sole observation of matching patterns, any structural model would require strong

parametric assumptions regarding the distribution of random preference shocks. It follows

that, in general, the ranking (in terms of assortativeness, i.e., supermodularity of the deter-

ministic surplus) may vary with the specific assumptions made on the distribution of the

stochastic factors.

Several routes can be followed to overcome this limitation. Following Chiappori, Salanié,

and Weiss (2017), one may consider repeated cross sections and impose restrictions on how

the structural components change over time. Alternatively, Chiappori, Costa Dias, and

Meghir (2018) argue that direct observation of post-marital behavior provides additional

information on the surplus (since the latter, under transferable utility, is simply the sum

14See Chiappori et al. (2020) and Chiappori, Costa Dias, and Meghir (2020) for applications.

24



of individual utilities and can be estimated from the observation of the demand functions);

this information can be used in particular to relax parametric assumptions made on the

stochastic components of the model. In a recent contribution, Gualdani and Sinha (2023)

also show how partial (i.e., set) identification may obtain using general assumptions on the

distribution of stochastic shocks (for instance, independence of taste shocks from covariates

and quantile, or symmetry restrictions).

Second and more importantly, while robust examples can be given where an assortative-

ness ranking is reversed when the assumptions regarding stochastic distributions are changed,

one can nevertheless define conditions under which the ranking will be the same for any sepa-

rable transferable utility model, irrespective of the stochastic distribution, provided the latter

satisfy some basic properties (such as independence). Specifically, Chiappori, Costa Dias,

and Meghir (2020) show that if two PAM M and M ′ are such that:

a

a+ b
≥ a′

a′ + b′
,

a

a+ c
≥ a′

a′ + c′
,

d

b+ d
≥ d′

b′ + d′
and

d

c+ d
≥ d′

c′ + d′
, (6)

then irrespective of the stochastic distributions of α and β (provided they are independent

from each other and from the observed characteristics), the deterministic surplus correspond-

ing to M will be more supermodular than M ′; this is the Generalized Separable (GS) criterion

in Chiappori, Costa Dias, and Meghir (2020). As a result, for any stochastic distributions of

α’s and β’s, while the numerical value of the supermodular cores will depend on the choice of

distributions, the structural model will always rank M above M ′ in terms of assortativeness.

In other words, one can define a preorder that is totally robust to changes in distributional

assumptions. The price to pay for this generalization, however, is that the preorder is

no longer complete: If some inequalities in (6) are satisfied while others are violated, the

matching matrices simply cannot be compared.
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6 Multiple types

There are 14 different education categories in the census, for example. It is worthwhile to

consider how to compare the assortativeness of matching matrices of more than two types

(if we must compare). Consider matching M = (µij)i,j∈{1,···,n} for n ≥ 3.

6.1 Extensions from two types

The aggregate likelihood ratio and normalized trace can be naturally extended to multi-type

markets, but the odds ratio does not have a natural extension. The normalized trace for

multi-type markets is

Itr(M) =


1 if µijµji = 0 ∀i and j ̸= i

0 if tr(M) ≡
∑n

i=1 µii = 0

tr(M)/|M | otherwise.

The aggregate likelihood ratio for multi-type markets is

IL(M) ≡ tr(M)/|M |∑n
i=1

(∑n
j=1 µij

|M |

)(∑n
j=1 µji

|M |

) =
|M |(

∑n
i=1 µii)∑n

i=1(
∑n

j=1 µij)(
∑n

j=1 µji)
.

Theorems 2 and 3 can be naturally extended so that normalized trace and the aggregate

likelihood ratio are the unique indices that satisfy the sets of axioms (appropriately modified)

in those theorems. Hence, normalized trace and the aggregate likelihood ratio can still be

used to measure the assortativeness of multi-type markets. In addition, we can extend the

measures to measure assortativeness in (i) markets with unmarried and (ii) one-sided (e.g.,

homosexual) matching markets. See Zhang (2024) for more detailed theoretical discussions

and empirical analyses of these markets.
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6.2 Robustness to categorization

Consider three types θi, θj, and θk. When two types θi and θj merge so that the three

categories are partitioned to π = {{θi, θj}, {θk}}, the matching given this categorization

becomes

Mπ =

µii + µij + µji + µjj µik + µjk

µki + µkj µkk

 .

We say that M1 is more assortative than M2 if and only if Mπ
1 is more assortative than

Mπ
2 for all partitions π. For example, with normalized trace, for M and M ′ such that

|M |= |M ′| and tr(M) = tr(M ′), M is more assortative than M ′ if and only if µ12 + µ21 ≥

µ′
12 + µ′

21, µ13 + µ31 ≥ µ′
13 + µ′

31, and µ23 + µ32 ≥ µ′
23 + µ′

32. Formally, we define robustness

to categorization as follows.

Robustness to Categorization. Let categorization Π denote the set of partitions

of types to be considered. Let Mπ denote the matching under partition π ∈ Π. A

preorder ⪰ is robust to categorization Π when for all matrices M1 and M2, M1 ⪰ M2 if

and only if Mπ
1 ⪰ Mπ

2 for any partition π ∈ Π, and M1 ≻ M2 if and only if Mπ
1 ≻ Mπ

2

for any partition π ∈ Π.

Theorem 4. Let Π be a nondegenerate categorization. No total preorder satisfies marginal

monotonicity and robustness to categorization Π.

A counterexample suffices for the claim. Although the counterexample is one of three-

type matching matrices, it suffices for the claim to be valid for matching matrices with more

than three types.
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Proof of Theorem 4. Consider matrices M and Mϵ of three types θ1, θ2, and θ3,

M =

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

and Mϵ =

1/9− ϵ 1/9 + ϵ 1/9

1/9 + ϵ 1/9 1/9− ϵ

1/9 1/9− ϵ 1/9 + ϵ

= M +

−ϵ +ϵ 0

+ϵ 0 −ϵ

0 −ϵ +ϵ

.

Under partition π12 = {{θ1, θ2}, {θ3}}, we group θ1 and θ2,

Mπ12 =
4/9 2/9

2/9 1/9
and Mπ12

ϵ =
4/9 + ϵ 2/9− ϵ

2/9− ϵ 1/9 + ϵ
= Mπ12 +

+ϵ −ϵ

−ϵ +ϵ
.

Under partition π23 = {θ1, {θ2, θ3}}, we group θ2 and θ3,

Mπ23 =
1/9 2/9

2/9 4/9
and Mπ23

ϵ =
1/9− ϵ 2/9 + ϵ

2/9 + ϵ 4/9− ϵ
= Mπ23 +

−ϵ +ϵ

+ϵ −ϵ
.

By marginal monotonicity,

Mπ12 ≺ Mπ12
ϵ and Mπ23 ≻ Mπ23

ϵ .

Hence, there does not exist a total preorder that satisfies marginal monotonicity and robust-

ness to categorization.

The impossibility result suggests that we must resort to partial rankings to satisfy some

notion of monotonicity and robustness to categorization. Existing partial rankings such as

supermodular stochastic order (Meyer and Strulovici, 2012, 2015) and positive quadrant

dependence order (Anderson and Smith, 2024) are natural candidates. However, they only

compare matching matrices of the same marginals. Hence, further investigations to compare

matching matrices of differential marginal distributions are needed.
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7 Educational homogamy in the US

Our paper was in part motivated by the conflicting results on how educational homogamy

has changed in the US. We now consider its evolution for recent cohorts, through the lens

of our discussion. Our goal is to compare and contrast the answers given by various indices

to the same basic question: Did educational homogamy increase between different cohorts?

Gihleb and Lang (2020) consider this issue, using a variety of indices (correlation, rank

correlation, Goodman and Kruskal’s γ, Kendall’s τ adjusted and not adjusted for ties). A

difference from our approach is that they consider changes affecting the entire distribution

of education and many classes, whereas we in addition consider how assortativeness changed

locally at the top of the education distribution using our 2× 2 framework.

We use the March extract of the US Current Population Survey, from where we select

the subsample of married individuals (including legal marriage and cohabitation) observed

when aged 35-44 and belonging to the 1950s or the 1970s cohorts.15 This is an interesting

comparison to make because just after the 50’s cohort educational attainment of women

accelerated and overtook that of men, which also increased but less so.(Chiappori, Iyigun,

and Weiss, 2009; Zhang, 2021). Relatedly, the returns to investments in human capital

increased substantially during the 1980s and later (Katz and Murphy, 1992). Educational

and marital choices by the older 1950s generation were mostly made before that period;

in contrast, individuals born in the 1970s, when choosing both their education level and

their spouse, were fully aware of the new context. Consequently, it has been argued that

homogamy should have increased between these two cohorts (for instance, Chiappori, 2017;

Chiappori, Salanié, and Weiss, 2017), which is what we reconsider here. Specifically, we

define the 1950s cohort as married couples where at least one partner was born in the 1950-

59 period and similarly for the 1970s cohort.

Following Gihleb and Lang (2020), who highlight the sensitivity of empirical changes

15In Appendix Table 5 we present comparisons of the 70’s with other cohorts, which also show interesting
patterns.
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in assortativeness to separating college graduates and post-graduates over this period, we

consider 5 education groups: high-school dropouts (HSD), high-school graduates (HS), some

college education but no degree (SC), 4-year college degree (C) and post-graduate degree

(meaning more than bachelor’s degree, PG).

Table 2: Marginal distributions of education and matching in the 1950s and the 1970s cohorts

Category HSD HS SC C PG Marg Dist:
Men

1950s Cohort
Men Women

HSD 4.7 3.9 1.1 0.2 0.0 9.9
HS 3.1 20.0 7.1 2.4 0.6 33.2
SC 0.9 9.1 10.8 3.8 1.0 25.6
C 0.2 3.9 5.8 7.8 2.0 19.6
PG 0.1 1.1 2.4 4.4 3.7 11.6
Marg Dist:
Women 8.9 37.9 27.2 18.6 7.4

1970s Cohort
Men Women

HSD 4.5 2.4 1.2 0.4 0.1 8.6
HS 2.0 13.5 7.8 3.8 1.3 28.4
SC 0.6 4.9 11.5 5.9 2.4 25.3
C 0.2 2.0 4.8 11.6 4.9 23.4
PG 0.1 0.5 1.8 5.3 6.6 14.3
Marg Dist:
Women 7.3 23.4 27.0 27.0 15.3

Educational categories: HSD: High School dropout, HS: High School, SC: Some
College, C: College, PG: Post-graduate. Numbers represent cell percentages.

Table 2 shows the marginal distributions of education for men and women and the re-

sulting matching patterns. Both panels show evidence of positive sorting, with most of the

mass concentrated on the main diagonal. They also show how women with college or more

education increased dramatically between these two cohorts, making this group larger than

the corresponding one for men, which also increased but not by nearly as much. These

changes in the marginal distributions are at the heart of the contradictory results of the
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various measures. The question is whether sorting became more positive between the two

cohorts.

Table 3 presents the results. For each index and each matching (sub)matrix, we present

its change across the two cohorts, with a positive number indicating an increase in positive

sorting. Since we are testing differences across many indices and many matching matrices,

we adjust our p-values for multiple testing using the Romano-Wolf stepdown approach (Ro-

mano and Wolf, 2005). The table presents two sets of p-values: in round brackets are the

most conservative, allowing for all 30 estimates; in square brackets are p-values adjusted for

multiple testing within each submarket only.

Table 3: Marital assortativeness – comparing cohorts born between 1950-59 and 1970-75

Submarkets Global indices
C&PG vs SC PG vs C C vs SC C&PG vs others 5 educ levels

(1) (2) (3) (4) (5)

(1) Odds ratio 1.173 -0.400 0.920 0.639
(.00) [.00] (.04) [.01] (.00) [.00] (.11) [.02]

(2) L1 ratio (high ed) -0.046 -0.074 -0.025 -0.421
(.00) [.00] (.00) [.00] (.10) [.02] (.00) [.00]

(3) L2 ratio (low ed) 0.246 0.011 0.113 0.155
(.00) [.00] (.32) [.21] (.00) [.00] (.00) [.00]

(4) Weighted L ratio -0.013 -0.003 0.058 0.149 0.223
(.17) [.09] (.95) [.78] (.00) [.00] (.00) [.00] (.00) [.00]

(5) Normalized trace 0.041 -0.004 0.024 -0.017 0.007
(.00) [.00] (.76) [.55] (.00) [.00] (.00) [.00] (.07) [.01]

(6) χ2 0.029 -0.008 0.035 0.040
(.00) [.00] (.31) [.20] (.00) [.00] (.00) [.00]

(7) Minimum distance 0.001 -0.099 0.028 0.026
(.88) [.88] (.00) [.00] (.04) [.01] (.00) [.00]

Notes: Education attainment in 5 groups: post-graduate degrees (PG, more than 4-years college), 4-years college degrees (C),
some college education but no degree (SC), high school qualifications (HS), and no qualifications (HSD). First column refers
to matching matrices between graduates (graduates and post-graduates taken together) and those with some college education
but not a degree; column 2: post-graduates and 4-year college graduates; column 3: college graduates and some college; column
4: college graduates and everyone else together; column 5: all 5 education groups separate. For each index, the top row
shows estimates of the difference in the respective index between the latest and earliest cohort; the number in round brackets
shows p-values for 2-sided significance testing adjusted for multiple hypothesis using the stepdown method jointly for all the
30 measures on the table (Romano and Wolf, 2005; Romano, Shaikh, and Wolf, 2008; Romano and Wolf, 2016); the number
in square brackets shows stepdown p-values but for each market (column) separately. Data source: March extract of the US
Current Population Survey, subsample of legally married and cohabiting individuals observed when aged 35-44 and born in
1950-59 and 1970-75.
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Looking first at estimates in column 5 for the whole disaggregated 5× 5 sorting matrix,

both the normalized trace and the aggregate likelihood ratio (the two indices that are de-

signed for such a comparison) imply an overall increase in PAM, highly significant in the

case of the likelihood ratio but only marginally so at conventional significance levels for the

normalized trace. The change in the normalized trace is also close to zero, pointing to an

increase of 0.7 percentage points in the mass of homogamous marriages across the two co-

horts.16 On the basis of these two measures, sorting increased or remained the same between

these two cohorts.

Column 4 also displays estimates for the entire population of couples, but aggregating ed-

ucation in two larger groups: college-educated (graduates and post-graduates), and all those

who did not gain college qualifications, so that the comparison is between two 2×2 matrices.

Under this aggregation, the aggregate likelihood ratio still shows a strongly significant in-

crease in assortativeness, while the normalized trace shows a strongly significant drop. The

latter confirms the conclusion in Gihleb and Lang (2020) that aggregation matters. Taken

together, even measures satisfying the basic axioms (of invariance, monotonicity, homogamy)

may point in opposite directions when comparing assortativeness in two matching matrices.

In some instances, the ambiguity can be resolved by requiring that measures satisfy some

characterization axiom, such as marginal independence, which leaves the odds ratio as the

uniquely acceptable index. However, the impossibility result in Theorem 4 points to the

limitations.

Consider now the likelihood ratios. In all columns 1-4 involving comparisons of 2 × 2

matrices, the two type-specific likelihood ratio indices differ by whether the basis for its

construction is the matching of the high education types with each other (L1 in row 2, type θ1)

or the low education types with each other (L2 in row 3, type θ2). These conflicting findings

16Note that the different indices vary in scale, so comparing the size of their changes is not meaningful.
Most indices, including the odds ratio, lack a cardinal interpretation, and hence comparing how much they
change across different markets is also not meaningful. However, the normalized trace stands out for having
a cardinal interpretation, implied by its population decomposability property, and hence the size of changes
in this measure across markets can be interpreted and compared.
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between the two type-specific likelihood ratios are possible because they do not satisfy the

basic axiom of type invariance. The aggregate likelihood ratio is a weighted average of

the two, and depending on the relative mass associated with each, it can sometimes be

positive or negative. Moreover, none of the likelihood ratios satisfies diagonal monotonicity

or the homogamy axioms. This implies that in cases where there is a natural ranking of

assortativeness revealed unambiguously by all other indices we examined (such as when one

of the markets is fully homogamous, or when two markets differ by the mass in a single cell),

it is possible that the likelihood ratios will show contrary findings. More generally, failure

to satisfy these properties can result in the likelihood ratios frequently finding changes in

assortativeness in the opposite direction of other measures that do satisfy them.

Submarket comparisons. Assortativeness can change differently, even in opposite direc-

tions, for different parts of the education distribution, making the overall indices difficult

to interpret. Local differences in how much PAM changes across two matching matrices

may also contribute to ambiguity in findings related to whole markets, as different measures

weigh the various margins differently. Given the stark differences in university graduation

rates across the two cohorts, we now focus on sorting at the top of the education distribu-

tion, between college-educated and those who attend for some time but drop out of college

without a degree.

Column 1 considers the submarket of those with some college degree (C or PG) to those

with some college attendance, but no 4-year degree (SC). Setting aside the likelihood ratios,

all indices in column 1 show either a significant increase in sorting or no (significant) change

at all (minimum distance). As we noted above, the direction of the type-specific likelihood

ratios depends on how it is computed (L1 or L2), while the aggregate likelihood ratio points

to a reduction in assortativeness but is not statistically significant at conventional levels.

To gain further insight, we separate those with a college degree by whether or not they

obtained post-graduate degrees. Columns 2 and 3 show results for PG versus C and for
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C versus SC respectively. While the indices consistently point to a significant increase in

assortativeness between college graduates and some college (column 3), assortativeness may

actually have decreased among graduates and post-graduates (column 2), though estimates

are only statistically significant for the odds ratio and the minimum distance. The opposing

changes in these two submarkets can help explain the ambiguous results in the literature,

which most refer to as global measures of assortativeness.

Table 4: Testing for assortativeness based on the structural model with no distributional
assumptions, cohorts 1970s versus 1950s

Submarkets Global index
C&PG vs SC PG vs C C vs SC C&PG vs others

(1) (2) (3) (4)

(1) ∆ a
a+b

0.126 -0.097 -0.077 0.181
(.00) [.00] (.00) [.00] (.00) [.00] (.00) [.00]

(2) ∆ a
a+c

-0.013 0.045 0.056 -0.018
(.00) [.00] (.00) [.00] (.00) [.00] (.00) [.00]

(3) ∆ d
d+b

0.069 -0.078 -0.010 0.020
(.00) [.00] (.00) [.00] (.14) [.14] (.00) [.00]

(4) ∆ d
d+c

-0.109 0.097 0.133 -0.105
(.00) [.00] (.00) [.00] (.00) [.00] (.00) [.00]

Notes: ∆ signifies change from the 1950s to the 1970s cohort. Education attainment separates post-graduate
degrees (PG more than 4-years college), 4-years college degrees (C), some college education but no degree
(SC), and all others (high school qualifications HS, and no qualifications HSD). For each index, the top row
shows estimates of the difference in the respective index between the latest and earliest cohort; the number
in round brackets shows p-values for 2-sided significance testing adjusted for multiple hypothesis using the
stepdown method jointly for all the 16 measures on the table (Romano and Wolf, 2005; Romano, Shaikh, and
Wolf, 2008; Romano and Wolf, 2016); the number in square brackets shows stepdown p-values but for each
market (column) separately. Data source: March extract of the US Current Population Survey, subsample
of legally married and cohabiting individuals observed when aged 35-44 and born in 1950-59 and 1970-75.

Identifying changes in sorting based on a distribution-free structural approach.

We can apply our generalized separable conditions (6) to examine whether sorting increased

or not. Table 4 shows estimates of the differences in the respective ratios. Identifying

unambiguous changes in assortativeness across two markets requires that all differences in a
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column have the same sign: positive for an increase in PAM, and negative for a reduction.

As shown in the table, the conditions for increased sorting under this criterion are not all

simultaneously satisfied for any of the markets considered. This implies that, for the markets

studied here, one can always find specific distributions for random preference terms in the

separable transferable utility model such that the ranking would be reversed, a conclusion

similar to that of Gualdani and Sinha (2023). While imposing marginal independence is

attractive, we note that the odds ratio is not decomposable, while the normalized trace is

(but does not satisfy marginal independence).

Discussion. Setting aside the likelihood ratios, all other indices point to an increase in

assortativeness at the top of the education distribution with the exception of the very top, in

the submarket involving those with post-graduate degrees matching with those with just 4-

year college (bachelor’s degree). The single exception is that of the normalized trace, which

shows a drop in assortativeness when the entire market is aggregated in two big classes,

contradicting its own predictions when assortativeness at the top is investigated at a more

local level.

In other settings, however, there could be more ambiguity than we observe here, even be-

tween indices that satisfy all the basic axioms. In such cases, it will be especially important

to consider the additional characterization properties that could help resolve the ambiguity.

When comparing the markets for the two cohorts (1950s and 1970s), large changes in the

marginal distributions stand out, especially for women for whom college attainment increased

substantially. In cases such as this one, imposing marginal independence seems especially

relevant: Changes in assortativeness relate to how the additional 1970s college women match

with high versus low educated men in proportions similar or different to those for the college

women in the 1950s. Imposing marginal independence means adopting the odds ratio, which

under the Separable Extreme Value model admits an economic interpretation based on op-

timal partner choice and marriage market equilibrium. However, a question that remains
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open and in need of further investigation is the characterization of the complete class of

structural economic models that satisfy the basic axioms and marginal independence. Dis-

covering this, which is beyond the scope of this paper, will provide the complete link between

the axiomatic approach and one based on optimizing economic behavior and the equilibrium

in the marriage market.

8 Concluding Remarks

It is relatively simple to estimate whether there is positive assortative matching in a stochas-

tic marriage market along the dimensions of a characteristic such as education. However,

measuring the extent to which such assortative matching differs between two economies or

between two points in time for the same economy is challenging when the marginal distri-

butions of the characteristics also change.

In this paper, we show that different measures may generate different conclusions regard-

ing the evolution of educational homogamy over time. We first take an axiomatic approach

to better understand the underlying properties of commonly used measures. Namely, we

axiomatize the odds ratio, highlighting the marginal independence property. We discuss

a structural interpretation of the odds ratio. In addition, we also discuss the difficulties

of comparing assortativeness for markets with more than two types. We then revisit the

changes in assortative matching in the US between the 50’s and the 70’s cohort, between

which there were large changes in the educational attainment of men and even more so for

women. The odds ratio points to an increase in sorting with the exception of the very top

of the education distribution that involves post-graduate degrees.
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A Online Appendix

A.1 Omitted proofs for characterization results

Proof of Claim 2. Suppose M = (a, b, c, d) and M ′ = (a′, b′, c′, d′) have the same marginal

distributions and M ≻ M ′. By marginal independence,

(a, b, c, d) ∼ (a, b, c
c′

c
, d

c′

c
) ∼ (a, b

c

c′
d′

d
, c′, d

c′

c

c

c′
d′

d
) ∼ (a

b′

b

c′

c

d

d′
, b
b′

b

c′

c

d

d′
c

c′
d′

d
, c′, d′)

∼ (a′
a

a′
b′

b

c′

c

d

d′
, b′, c′, d′).

Let δ ≡ a
a′

b′

b
c′

c
d
d′

. By marginal monotonicity, a > a′, b < b′, c > c′, and d > d′. Hence, δ > 1.

The relations (aδ, b′, c′, d′) ∼ (a′, b′/δ, c′, d′) ∼ (a′, b′, c′/δ, d′) ∼ (a′, b′, c′, d′δ) ≻ (a′, b′, c′, d′)

for all a′, b′, c′, and d′ imply diagonal monotonicity and off-diagonal monotonicity.

Proof of Claim 3. Suppose preorder ⪰ satisfies marginal monotonicity. Then we have for

any δ,

(a, b, c, d) ≻ (a− δ, b+ δ, c+ δ, d+ δ).

By (repeatedly applying) marginal independence,

(a− δ, b+ δ, c+ δ, d+ δ) ∼ (a, b+ δ, (c+ δ)
a

a− δ
, d− δ)

∼ (a, b, (c+ δ)
a

a− δ
, (d− δ)

b

b+ δ
)

∼ (a, b, c, d
a− δ

a

b

b+ δ

c

c+ δ

d− δ

d
) ≡ (a, b, c, dλ(δ)),

where λ(δ) is strictly smaller than 1 for any δ > 0 and is continuously decreasing in δ. With

similar transformations, we have

(a− δ, b+ δ, c+ δ, d+ δ)

∼ (a, b, c, dλ(δ)) ∼ (aλ(δ), b, c, d) ∼ (a, b/λ(δ), c, d) ∼ (a, b, c/λ(δ), d).
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Hence, for any δ > 0, diagonal monotonicity holds:

(a, b, c, d) ≻ (a, b, c, dλ(δ)) ∼ (λ(δ)a, b, c, d),

and off-diagonal monotonicity holds:

(a, b, c, d) ≻ (a, b/λ(δ), c, d) ∼ (a, b, c/λ(δ), d).

Reversely,

(a, b, c, d) ≻ (a, b, c, dλ(δ)) ∼ (λ(δ)a, b, c, d)

for any δ implies

(a, b, c, d) ≻ (a, b/λ(δ), c, d) ∼ (a, b, c/λ(δ), d)

for any δ, and

(a, b, c, d) ≻ I(a− δ, b+ δ, c+ δ, d− δ)

for any δ, where marginal independence is repeatedly used again.

Proof of Theorem 1. It is straightforward to check that the preorder induced by the odds

ratio satisfies marginal monotonicity, maximum homogamy, and marginal independence.

It remains to show that there does not exist an index I (or equivalently in the current

context, a preorder induced by index I) that satisfies these axioms but is not preorder-

equivalent to the odds ratio. Suppose by way of contradiction that such an index exists.

Then, we must have for some M = (a, b, c, d) and M ′ = (a′, b′, c′, d′). One of the following four

cases occurs: (i) I(M) > I(M ′) and Q(M) < Q(M ′), (ii) I(M) < I(M ′) and Q(M) > Q(M ′),

(iii) I(M) = I(M ′) and Q(M) ̸= Q(M ′), and (iv) I(M) ̸= I(M ′) and Q(M) = Q(M ′).

First, suppose that case (i) I(M) > I(M ′) and Q(M) < Q(M ′) occurs. Because I(M) >

I(M ′), by the implication of DM, ad ̸= 0, and by the implication of ODM, b′c′ ̸= 0, and

because Q(M) < Q(M ′), similarly, bc ̸= 0 and a′d′ ̸= 0. For each of the following steps, we
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invoke a part of marginal independence:

I(a, b, c, d) = I(
b′

b
a,

b′

b
b, c, d)

= I(
b′

b
a
a′

a

b

b′
, b′, c

a′

a

b

b′
, d)

= I(a′, b′, c
a′

a

b
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· c

′

c
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b
, d · c
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c

a

a′
b′

b

d′

d′
)

= I(a′, b′, c′, d′ · ad
bc

/
a′d′

b′c′
).

By premise,

I(a′, b′, c′, d′ · ad
bc

/
a′d′

b′c′
) > I(a′, b′, c′, d′).

By diagonal monotonicity, this implies

ad

bc
>

a′d′

b′c′
.

However, this implies Q(M) > Q(M ′), which contradicts the premise that Q(M) < Q(M ′).

For each of the four possibilities, using the same logic as above, a contradiction can be

derived for any positive matchings M and M ′.

Suppose there is a cell that is zero. Suppose I(M) = I(M ′). If bc = 0, then I(M) =

I(a, 0, 0, d) = I(M ′), then b′c′ = 0. In this case, by DM, Q(M) = Q(M ′). If ad = 0 instead,

then I(M) = I(0, b, c, 0) = I(M ′) implies a′d′ = 0. In this case, by ODM, Q(M) = Q(M ′).

Hence, whenever there is a cell with zero in one of the matrices, I(M) = I(M ′) and Q(M) =

Q(M ′), which prevents all four cases from happening.

Proof of Claim 4. Consider M = (a, b, c, d) > 0 and M ′ = (a′, b, c, d) > 0, where a′ > a.

We want to show that I(M ′) > I(M). By type invariance,

I(a, b, c, d) = I(d, c, b, a).
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By population decomposability,

1

2
I(a, b, c, d) +

1

2
I(d, c, b, a) = I

(
1

2
(a+ d),

1

2
(b+ c),

1

2
(b+ c),

1

2
(a+ d)

)
.

By scale invariance,

I(a, b, c, d) = I

(
a+ d

a+ b+ c+ d
,

b+ c

a+ b+ c+ d
,

b+ c

a+ b+ c+ d
,

a+ d

a+ b+ c+ d

)
.

By the same sequence of arguments by population decomposability, scale invariance, and

type invariance,

I(a′, b, c, d) = I

(
a′ + d

a′ + b+ c+ d
,

b+ c

a′ + b+ c+ d
,

b+ c

a′ + b+ c+ d
,

a′ + d

a′ + b+ c+ d

)
.

Note that the two matrices on the right-hand side of the two equations above have the same

marginals (each row or column sums to 1). By marginal monotonicity, a′ > a implies

I(M) = I(a′, b, c, d) > I(M ′) = I(a, b, c, d).

Hence, diagonal monotonicity is proved. Off-diagonal monotonicity can be shown analo-

gously.

Proof of Theorem 2. We first show that any index I that satisfies scale, side and type

invariance, as well as diagonal and off-diagonal monotonicity, and population decomposabil-

ity is order-equivalent to—i.e., a monotonic transformation of—normalized trace. Consider

M = (a, b, c, d) > 0 and M ′ = (a′, b′, c′, d′) > 0. Here, we prove a lemma.

Lemma 1. Any index that satisfies scale, side and type invariance, as well as diagonal and

off-diagonal monotonicity, and population decomposability is an increasing function of a+ d

and a decreasing function of b+ c.

Proof of Lemma 1. Consider M = (a, x, x, d), and consider M1 = (a/2, x− λ/2, λ/2, d/2)
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and M2 = (a/2, λ/2, x − λ/2, d/2) for some λ ∈ (0, 2x). Note that M1 +M2 = M and M1

and M2 have the same total mass. Hence, by population decomposability,

I(M) =
1

2
I(M1) +

1

2
(M2).

By side invariance, I(M1) = I(M2). Hence, I(M) = I(M1) = I(M2). By scale invariance,

I(M1) = I(2M1) = I(a, 2x− λ, λ, d).

Hence, for all λ ∈ (0, 2x),

I(a, 2x− λ, λ, d) = I(a, x, x, d).

Hence, we have shown that I(a, b, c, d) = I(a, b′, c′, d) whenever b + c = b′ + c′. By the

same logic, and by side invariance and type invariance, I(a, b, c, d) = I(a′, b, c, d′) whenever

a+ d = a′ + d′. I, by diagonal monotonicity, is strictly increasing in a+ d whenever bc ̸= 0,

and, by off-diagonal monotonicity, is strictly decreasing in b+ c whenever ad ̸= 0.

If (i) a + d > a′ + d′ and b + c ≤ b′ + c′ or (ii) a + d ≤ a′ + d′ and b + c > b′ + c′, then,

by Lemma 1, (i) I(M) > I(M ′) or (ii) I(M) < I(M ′), respectively. Suppose a+ d > a′ + d′

and b+ c > b′ + c′. Define

M ′′ = (a′′, b′′, c′′, d′′) = M ′ · (b+ c)/(b′ + c′).

By definition of M ′′, b′′ + c′′ = b + c, and a′′ + d′′ = (a′ + d′) · (b + c)/(b′ + c′). By scale

invariance of I, I(M ′′) = I(M ′). The comparison of a+ d and a′′ + d′′ pins down the ordinal

assortativeness relation between M and M ′. That is,

a+ d

a′′ + d′′
=

a+ d

b+ c

/
a′ + d′

b′ + c′
> 1 ⇔ I(M) > I(M ′).

When a+d < a′+d′ and b+c < b′+c′, we can similarly pin down the ordinal assortativeness
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relation between M and M ′. Note that for any M = (a, b, c, d) > 0,

Itr(M) =
(a+ d)

(a+ b) + (c+ d)
=

a+ d

b+ c

/(
a+ d

b+ c
+ 1

)
.

Hence, I(M) > I(M ′) if and only if Itr(M) > Itr(M
′).

Any nonlinear transformation of normalized trace would violate population decompos-

ability, so any index that satisfies the stated axioms must be not only a monotonic transfor-

mation but also a positive affine transformation of normalized trace.

Proof of Theorem 3. It is straightforward to check that the aggregate likelihood ratio

satisfies the axioms, so it remains to show the other direction. We first show that any index

I that satisfies all three invariance axioms, as well as marginal monotonicity, and random

decomposability is proportional to the aggregate likelihood ratio. Consider M = (a, b, c, d).

By type invariance,

I(M) = I

a b

c d

 = I

d c

b a

 . (7)

Recall

r(M) ≡ a+ b

|M |
+

a+ c

|M |
+

d+ b

|M |
d+ c

|M |
|M |= (a+ b)(a+ c) + (d+ b)(d+ c)

a+ b+ c+ d
.

By random decomposability,

I

a+ d b+ c

b+ c a+ d

 · r

a+ d b+ c

b+ c a+ d

 = I

a b

c d

 · r

a b

c d

+ I

d c

b a

 · r

d c

b a

 ,

which, by (7), is simplified to

I

a+ d b+ c

b+ c a+ d

 |M |2+|M |2

2|M |
= 2I(M)r(M) ⇒ I(M) =

1

2

|M |
r(M)

I

a+ d b+ c

b+ c a+ d

 . (8)
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Because for any ϵ < min{a+ d, b+ c},

a+ d b+ c

b+ c a+ d

 =

a+ d− ϵ ϵ

ϵ a+ d− ϵ

+

 ϵ b+ c− ϵ

b+ c− ϵ ϵ

 ,

by random decomposability, for any ϵ < min{a+ d, b+ c},

|M |I

a+ d b+ c

b+ c a+ d

 = (a+d)I

a+ d− ϵ ϵ

ϵ a+ d− ϵ

 +(b+c)I

 ϵ b+ c− ϵ

b+ c− ϵ ϵ

 .

Plugging in the expression of I(M) in (8), we get, for any ϵ < min{a+ d, b+ c},

I(M) =
1

2r(M)

(a+ d) · I

a+ d− ϵ ϵ

ϵ a+ d− ϵ

+ (b+ c) · I

 ϵ b+ c− ϵ

b+ c− ϵ ϵ


 .

Take ϵ → 0+ and by scale invariance and I(0, 1, 1, 0) = 0, we have

I(M) =
1

2

a+ d

r(M)
I

1 0

0 1

 .

Hence, any index that satisfies the above axioms is proportional to (a+ d)/r(M), the aggre-

gate likelihood ratio.

A.2 Iso-assortative surfaces

Fix a reference matching, M = (0.3, 0.1, 0.1, 0.5) and consider markets with a unit mass of

couples, |M ′|= 1. Figure 2a shows what we call iso-assortative surfaces in the (a, b, d) three-

dimensional space: The red iso-assortative surface collects the matching matrices (a, b, 1 −

a−b−d, d) that are equally assortative to M according to the aggregate likelihood ratio, and

the blue iso-assortative surface collects the matching matrices that are equally assortative

to M according to the odds ratio. Because the iso-assortative surfaces are different, the
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Figure 2: Iso-assortative surfaces and conflicting conclusions

(a) Iso-assortative surface (b) Conflicting region

matching matrices that are judged to be more assortative than M by the two measures

will differ. The orange region in Figure 2b consists of the matching matrices that are more

assortative than M under the aggregate likelihood ratio but are less assortative than M under

the odds ratio. Figure 1 illustrates iso-assortative curves and conflicting regions between

the aggregate likelihood ratio and the odds ratio in a plane, by restricting the attention to

matching matrices in which b = c. Mathematically speaking, Figure 1 illustrates the sliced

plane of b = (1− a− d)/2 in the (a, b, d) space of Figures 2a and 2b.

A.3 Supplementary empirical results
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Table 5: Marital assortativeness: comparing cohort born 1970-75 with earlier cohorts

Submarkets Global indices
C&PG vs SC PG vs C C vs SC C&PG vs others 5 educ levels

(1) (2) (3) (4) (5)

Panel A: Cohorts 1970s vs 1930s
Odds ratio 2.681 -1.965 1.912 -6.252

(.00) [.00] (.00) [.00] (.00) [.00] (.00) [.00]
L1 ratio (high ed) 0.071 -0.290 0.163 -1.889

(.00) [.00] (.00) [.00] (.00) [.00] (.00) [.00]
L2 ratio (low ed) 0.299 0.063 0.092 0.268

(.00) [.00] (.00) [.00] (.00) [.00] (.00) [.00]
Weighted L ratio 0.116 0.043 0.133 0.327 0.383

(.00) [.00] (.00) [.00] (.00) [.00] (.00) [.00] (.00) [.00]
Normalized trace 0.102 0.011 0.084 -0.083 -0.028

(.00) [.00] (.23) [.14] (.00) [.00] (.00) [.00] (.00) [.00]
χ2 0.097 -0.010 0.080 0.060

(.00) [.00] (.13) [.13] (.00) [.00] (.00) [.00]
Minimum distance 0.022 -0.300 0.044 -0.080

(.20) [.10] (.00) [.00] (.01) [.00] (.00) [.00]
Panel B: Cohorts 1970s vs 1940s

Odds ratio 1.972 -0.852 1.597 -2.384
(.00) [.00] (.00) [.00] (.00) [.00] (.00) [.00]

L1 ratio (high ed) 0.048 -0.075 0.109 -0.765
(.00) [.00] (.00) [.00] (.00) [.00] (.00) [.00]

L2 ratio (low ed) 0.198 0.000 0.091 0.189
(.00) [.00] (.98) [.98] (.00) [.00] (.00) [.00]

Weighted L ratio 0.078 -0.014 0.100 0.195 0.256
(.00) [.00] (.32) [.20] (.00) [.00] (.00) [.00] (.00) [.00]

Normalized trace 0.063 0.016 0.062 -0.037 0.005
(.00) [.00] (.01) [.00] (.00) [.00] (.00) [.00] (.24) [.08]

χ2 0.070 -0.013 0.064 0.028
(.00) [.00] (.06) [.03] (.00) [.00] (.00) [.00]

Minimum distance 0.003 -0.191 0.035 -0.059
(.93) [.77] (.00) [.00] (.01) [.00] (.00) [.00]

Panel C: Cohorts 1970s vs 1960s
Odds ratio 0.277 -0.170 0.236 0.279

(.48) [.16] (.48) [.18] (.53) [.20] (.69) [.27]
L1 ratio (high ed) -0.054 -0.078 -0.042 -0.270

(.00) [.00] (.00) [.00] (.00) [.00] (.00) [.00]
L2 ratio (low ed) 0.152 0.026 0.058 0.105

(.00) [.00] (.00) [.00] (.00) [.00] (.00) [.00]
Weighted L ratio -0.039 0.013 0.014 0.087 0.130

(.00) [.00] (.49) [.17] (.32) [.10] (.00) [.00] (.00) [.00]
Normalized trace 0.015 -0.012 0.003 -0.015 -0.002

(.00) [.00] (.05) [.01] (.79) [.39] (.00) [.00] (.87) [.52]
χ2 -0.001 -0.002 0.008 0.016

(.88) [.88] (.87) [.65] (.52) [.20] (.01) [.00]
Minimum distance 0.012 -0.042 0.026 0.068

(.49) [.20] (.00) [.00] (.05) [.02] (.00) [.00]

Notes: Education in 5 groups: post-graduate degrees (PG), 4-years college degrees (C), some college (SC), high school qualifi-
cations (HS), no qualifications (HSD). Column 1 refers to matching matrices between PG and C together and SC; column 2:
PG and C; column 3: C and SC; column 4: PG and C together versus others; column 5: all 5 groups separate. For each index,
top row shows estimates of the difference between the latest and earliest cohorts; the number in round brackets shows p-values
for 2-sided significance testing adjusted for multiple hypothesis using the stepdown method jointly for the 30 measures on the
panel (Romano and Wolf, 2005; Romano, Shaikh, and Wolf, 2008; Romano and Wolf, 2016); the number in square brackets
shows stepdown p-values but for each market (column) separately. Data source: March extract of the US CPS, subsample of
legally married and cohabiting individuals observed aged 35-44 in birth cohorts 1930-39, 1940-49, 1950-59, 1960-69 and 1970-75.
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