
A STRATEGIC TOPOLOGY ON INFORMATION 
STRUCTURES

By 

Dirk Bergemann, Stephen Morris, and Rafael Veiel 

November 2024

COWLES FOUNDATION DISCUSSION PAPER NO. 2413

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 

YALE UNIVERSITY  

Box 208281  

New Haven, Connecticut 06520-8281 

http://cowles.yale.edu/ 

http://cowles.yale.edu/


A Strategic Topology on Information Structures∗

Dirk Bergemann† Stephen Morris‡ Rafael Veiel§

November 7, 2024

Abstract

Two information structures are said to be close if, with high probability, there is approxi-

mate common knowledge that interim beliefs are close under the two information structures.

We define an “almost common knowledge topology” reflecting this notion of closeness. We

show that it is the coarsest topology generating continuity of equilibrium outcomes. An

information structure is said to be simple if each player has a finite set of types and each

type has a distinct first-order belief about payoff states. We show that simple information

structures are dense in the almost common knowledge topology and thus it is without loss

to restrict attention to simple information structures in information design problems.
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1 Introduction

1.1 Motivation and Results

Players make choices in a game where payoffs depend on some unknown state of the world.

Optimal strategic behavior will then depend on players’ beliefs about the states, their beliefs

about others’ beliefs, and so on. The (common prior) information structure of the players

is then a probability distribution over the players’ beliefs and higher-order beliefs about the

state. We are interested in how the information structure impacts equilibrium outcomes in

such a game. It is known that equilibrium outcomes are sensitive to the infinite tails of

higher-order beliefs (Rubinstein (1989) and Carlsson and Van Damme (1993)). Our main

result is a characterization of the coarsest topology on information structures generating

continuity of equilibrium outcomes.

Following Monderer and Samet (1989), an event is said to be common p-belief if everyone

believes it with probability at least p, everybody believes with probability at least p that

everyone believes it with probability at least p, and so on. An event is said to be approximate

common knowledge if it is common p-belief with p close to 1. Now two information structures

are close in the almost common knowledge topology if, with high ex ante probability, there

is approximate common knowledge that their higher-order beliefs are close (in the product

topology). Our main result (Theorem 1 in Section 1) establishes that the almost common

knowledge topology is the coarsest topology generating continuity of equilibrium outcomes.

Our definition of information structures excludes any (payoff-irrelevant) correlating de-

vices that players might have access to. In the language of Mertens and Zamir (1985), we

restrict attention to non-redundant information structures. However, our main result allows

the correlating device to appear within the equilibrium solution concept: we study belief-

invariant Bayes correlated equilibria where players’ action choices can be correlated but only

when the correlation does not alter players’ beliefs and higher-order beliefs about the state.

While we think our notions of information structures and equilibrium are the most natural
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for our main exercise, we also spell out (in Section 4) how our results change if we allow

more general information structures with redundancies and Bayes Nash Equilibrium (which

rules out correlation in the solution concept).

We say that an information structure is simple if its support is finite and each type of

a player has a distinct first-order belief. We show that simple information structures are

dense. One implication is that it is without loss to focus on simple information structures

in solving such information design problems.

1.2 Alternative Topologies and Related Literature

Monderer and Samet (1996) and Kajii and Morris (1998), building on Monderer and Samet

(1989), identified topologies on information structures that generated continuity of equi-

librium outcomes. And the topologies identified both have the same flavor as the almost

common knowledge topology. The key difference is that both papers fix (different) sets of

information structures with the restriction that each profile of types gives rise to a distinct

state, and is not associated with higher-order beliefs. This makes the topology hard to in-

terpret. It also makes both directions of the proof easier than in our problem. We describe,

following our main result (Theorem 1 in Section 1), which steps of our proof relate to this

early work and which are novel to this paper. We discuss the join measurability condition

implicit in Monderer and Samet (1996) and Kajii and Morris (1998) in Section 6.3. Other

differences are that the earlier work focuses on Bayes Nash equilibrium and restricts attention

to countable information structures to ensure existence; we allow uncountable information

structures (sets of the universal type space) and we ensure equilibrium existence by incor-

porating redundancies in our solution concept. But we also show how our results apply to

Bayes Nash equilibrium and general information structures in Section 4. The earlier work

measures closeness of equilibrium outcomes by players’ expected payoffs in equilibrium; we

note in Section 6.2 that our results would be unchanged if we used this approach.
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Dekel et al. (2006) defined an interim strategic topology on hierarchies of beliefs under

the solution concept of interim correlated rationalizability (ICR). Two belief hierarchies were

said to be close in the interim strategic topology if, in any game, an action that was ICR

at one hierarchy was approximately ICR at the other hierarchy. It is well-known (e.g., from

the work of Rubinstein (1989), Carlsson and van Damme (1993) and Weinstein and Yildiz

(2007)) that closeness in the product topology is not sufficient for close strategic behavior.

Chen et al. (2017) characterized the interim strategic topology of Dekel et al. (2006) and

showed that it requires closeness of beliefs about some tail events (“frames”). However,

the connection to approximate common knowledge has been unclear. We show that two

information structures are close in our almost common knowledge topology if and only if

there is a high ex ante probability that hierarchies are close in the interim strategic topology.

2 Model

This section will introduce the model used in our main analysis, with four main ingredients.

1. We will hold fixed a finite set of players, a finite set of (payoff-relevant) states and a

probability distribution over the states.

2. We define a base game to consist of players’ possible actions and their payoff functions;

i.e., how each player’s payoff depends on the action profile chosen and the state.

3. An information structure will consist of a probability distribution over the state and

players’ beliefs and higher-order beliefs about the state, with the appropriate marginal

over states.

4. The equilibrium solution concept will be the belief-invariant Bayes correlated equi-

librium (BIBCE), see Definition 8 in Bergemann and Morris (2016). This is a joint

distribution over the information structure and the players’ actions such that players’
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actions are best responses and measurable with respect to players’ beliefs and higher-

order beliefs about the state, but allowing payoff-irrelevant correlation of actions.

Our model of an information structure is restrictive in that it rules out players observing

multiple signals giving rise to the same beliefs and higher-order beliefs. Equivalently, it rules

out what Mertens and Zamir (1985) labelled redundant types, i.e., players observing payoff-

irrelevant signals through which they can correlate their behavior. On the other hand, our

equilibrium solution concept allows players to observe payoff-irrelevant correlating devices

in choosing actions. Thus we have made a modelling choice to put correlation devices in the

solution concept rather than the information structure.

In order to relate our work to the literature and to applications, we will later discuss (in

Section 4) how our results easily translate to a setting with general information structures

(allowing redundancies) and the more relaxed solution concept of Bayes Nash equilibrium,

i.e., if we move correlation possibilities from the solution concept to the information structure.

2.1 Setting and Base Game

There is a finite set of players I and a finite set of (payoff) states Θ. Throughout the paper,

we will fix a prior µ ∈ ∆(Θ). Without loss, we will maintain the assumption that µ has full

support.

A base game then describes players’ actions and payoffs: thus a base game is a tuple

G = ((Ai)i∈I , (ui)i∈I), where Ai is a finite set of actions for player i and ui : Ai×A−i×Θ→

[−M,M ] is a payoff function for player i, where A−i :=
∏

j 6=iAj and M > 0 is an exogenous

payoff bound.
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2.2 Information Structures

We follow Harsanyi (1967-68) and Mertens and Zamir (1985) in identifying signals or types

with players’ beliefs and higher-order beliefs, or hierarchies of beliefs. We first formally define

the set of hierarchies of beliefs.

Definition 1. (Hierarchies of Beliefs) The profile of players’ hierarchies of beliefs, (Ti)i∈I is

defined recursively as follows: For every i, let T 0
i := {∗} be a singleton and let T 1

i := ∆(Θ).

Given profiles (T m−1
i )i∈I for m > 1, define for every i,

T mi :=
{((

τ 1
i , . . . , τ

m−1
i

)
, τmi

)
∈ T m−1

i ×∆(T m−1
−i ×Θ) : margΘ×T m−2

−i
(τmi ) = τm−1

i

}
.

Let Ti denote the set of sequences τi = (τmi )m so that for every m ∈ N, the truncated

sequence (τmi )m≤m belongs to T mi .

For simplicity, we will follow Mertens and Zamir (1985) in imposing the product topology

on hierarchies Ti. Let dΠ be a metric on Ω := Θ × T inducing the product topology on

T :=
∏

i∈I Ti and the discrete topology on Θ.1 However, we later discuss (Section 6.1) why

the use of the product topology on hierarchies is just for convenience and not important for

our arguments. Mertens and Zamir (1985) show that for every (τ = (τi)i∈I , θ) ∈ Ω and every

i ∈ I there is a unique belief τ ∗i ∈ ∆(T−i×Θ) so that for all m ∈ N, τmi = margT m−1
−i ×Θ (τ ∗i ),

where τ 7→ τ ∗ = (τ ∗i )i∈I is a homeomorphism. Let B denote the Borel sigma-algebra on Ω.

We will refer to Ω as the “universal state space”, with typical element ω = (τ, θ), where

τ ∈ T . Now an information structure is just a probability distribution on the universal state

space that respects the prior on states and the labelling of hierarchies.

Definition 2. (Information Structure). An information structure P is a Borel probability

measure on Ω that satisfies two conditions: (i) [consistency] the marginal of P on Θ is µ;
1The product topology on T is the coarsest topology so that projections projT m : T → T m are continuous,

where for every m, T m is endowed with the weak topology. Dekel et al. (2006) provide a metric that induces
the product topology on T , which for any discount factor η ∈ (0, 1) can be described by dΠ((θ, τ), (θ̂, τ̂)) =
1θ 6=θ̂ +

∑∞
n=1 η

nmaxi d
n
w(τ

n
i , τ̂

n
i ), where dnw is a product metric inducing the weak topology on T ni .
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(ii) [labelling] for every player i, there is a version of the conditional probability Pi : Ti →

∆(Θ× T−i) of P so that

τ ∗i = Pi(τi), P -a.s.

We will write P ⊆ ∆(Ω) for the set of (common prior) information structures. We will

sometimes describe these as non-redundant information structures because we do not allow

multiple types or signals of a player giving rise to the same hierarchies of beliefs. This is to

contrast them with the more general redundant information structures discussed in Section

4.

An information structure is finite if it has finite support. A hierarchy τi ∈ Ti is finite if

it is in the support of a finite information structure. The set of finite types in Ti is denoted

by T 0
i and the set of finite states Ω0 ⊆ Ω is given by

Ω0 :=
{

(τ, θ) ∈ Ω : ∀ i, τ ∗i ∈ T 0
i

}
.

2.3 Solution Concept:

Belief-Invariant Bayes Correlated Equilibrium

Together, a base game G and an information structure P define a game of incomplete infor-

mation (G, P ). Now we define our main equilibrium solution concept. We will be allowing

players’ action choices to be correlated. So players’ action choices will be described by a

decision rule, mapping states and hierarchies to action profiles; thus for any incomplete

information game (G, P ), a decision rule is a measurable map σ : Θ × T → ∆(A), where

A :=
∏

i∈I Ai and ∆(A) is endowed with the Euclidean topology.

An information structure P and decision rule σ jointly induce a measure σ ◦ P ∈ ∆(A×

Θ×T ) in the natural way. We will be interested in outcomes specifying a joint distribution

over actions and states ν ∈ ∆(A × Θ). Decision rule σ induces outcome νσ if νσ is the

marginal of σ ◦P on A×Θ. For every player i, a decision rule σ and hierarchy τi ∈ Ti induce
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a belief σ ◦ τi ∈ ∆(A × Θ × T−i), which for every measurable set E ⊆ Θ × T−i and action

profile a ∈ A satisfies σ ◦ τi({a} × E) =
´
E
σ(a|θ, τ−i, τi) dσ ◦ τ ∗i .

Our notion of equilibrium will be (one version of) incomplete information correlated

equilibrium. Two properties will be key.

Definition 3. A decision rule σ is ε-obedient if for every player i, action ai and deviation

a′i, ˆ ∑
a−i∈A−i

(ui(ai, a−i, θ)− ui(a′i, a−i, θ)) dσ ◦ τi(ai, a−i, τ−i, θ) > −ε, a.s.

Thus if we interpret the decision rule σ : Θ × T → ∆(A) as a recommendation rule

for a mediator in the game, ε-obedience requires that players will not lose more than ε by

following the recommendation.

Importantly, this is an interim version of ε-obedience: we are requiring that the decision

rule is almost always approximately optimal.2

Definition 4. A decision rule σ is belief-invariant if, for every ai ∈ Ai, the marginal proba-

bility σ(ai × A−i|(τi, τ−i), θ) = σi(ai|τi) does not depend on (τ−i, θ).3

Definition 5. A decision rule σ is an ε-belief-invariant Bayes correlated equilibrium (ε- BIBCE)

of (G, P ) if it satisfies ε-obedience and belief invariance.

We will say that a decision rule is a BIBCE if it is a 0-BIBCE.
2An ex-ante notion of ε-obedience would require interim ε-obedience only with probability 1−ε, and thus

allows players to choose actions that are not ε best responses with probability 1 − ε. The ex-ante notion
of ε-obedience is much more permissive: Engl (1995) has established the lower hemi-continuity of ex ante
ε-Bayes Nash equilibrium in games of incomplete information with respect to weak convergence of priors on
a fixed type space.

3Lehrer et al. (2010) and Forges (2006) introduced the notion of belief-invariance to the study of in-
complete information correlated equilibrium: Forges (1993) (implicitly) and Lehrer et al. (2010) and Forges
(2006) (explicitly) imposed the restriction in their definitions of the belief-invariant Bayesian solution. This
latter solution imposes (implicitly or explicitly) join feasibility, so that the decision rule depends on the prolile
of players’ signals. Liu (2015) showed that a subjective version of BIBCE is equivalent to interim correlated
rationalizability. A belief-invariant decision rule can be interpreted as a payoff-irrelevant correlating device
(where player i observes private signal ai). Now BIBCE is equivalent to Bayes Nash equilibria if players are
allowed to observe a correlated device.
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3 Main Result

In this section, we first define an “approximate common knowledge” topology on informa-

tion structures and then show it is the coarsest topology to generate continuity of BIBCE

outcomes (our main result).

3.1 The Approximate Common Knowledge Topology

In words, we will say that two information structures are close if each assigns high ex ante

probability to the event that there is approximate common knowledge that their interim be-

liefs are close. An event is “approximate common knowledge”, if for some p close to 1, every-

one believes the event with probability at least p, everyone believes with probability at least p

that everyone believes the event with probability at least p, and so on.... (Monderer and

Samet (1989)). The subtlety in formalizing this definition is how we define the event that

interim beliefs are close.

We first define ε-neighborhoods, the set of universal states ε-close to a given universal

state ω ∈ Ω.

Definition 6. For every ε > 0 and ω ∈ Ω, the ε-neighborhood of ω is given by

Nε(ω) := {ω′ ∈ Ω : dΠ(ω, ω′) < ε} .

For any ε > 0, we define the ε-support of P ∈ P , to be the ε-neighborhoods of universal

states whose ε-neighborhoods are assigned positive probability by P :

suppε(P ) :=
⋃

ω∈Ω:P (Nε(ω))>0

Nε(ω).

Thus suppε(P ) is an ε-expansion of the support of P . For any two priors P, P ′, we define

the intersection of their ε-supports:
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supp(P ′)

suppε(P ′) suppε(P )

supp(P )

T̂ε(P, P
′)

Figure 1: Sets T̂ε(P, P ′) and ε-supports of P and P ′.

T̂ε(P, P
′) := suppε(P ) ∩ suppε(P

′).

This is the set of universal states where interim beliefs are close to interim beliefs in the

support of both priors. Following Monderer and Samet (1989), for every probability p ∈ [0, 1]

and event E ∈ B, we define Bp(E) to be the set of universal states where all players assign

probability at least p to the event E. Thus

Bp(E) := {(τ, θ) ∈ E : ∀i, τ ∗i (E−i) ≥ p}

where E−i := projΘ×T−i(E). For every m ∈ N, let [Bp]m (E) := Bp ◦ · · · ◦ Bp(E) denote the

m-fold application of Bp; [Bp]m (E) := Bp ◦ · · · ◦ Bp(E) is the set of universal states where

all players assign probability at least p to all players assigning at least probability p.... (m

times) to event E being true. Now an event is said to be common p-belief if this is true for

all m.
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Definition 7. (Common p-Belief) For any event E ∈ B, the event that E is common

p-belief, Cp(E), is defined as

Cp(E) :=
⋂
m∈N

[Bp]m (E).

An event is said to be approximate common knowledge if it is common p-belief for p close

to 1. We can now define the approximate common knowledge (ACK) distance4 between any

two priors, P, P ′ ∈ P .

Definition 8. (Approximate Common Knowledge Distance) For every P, P ′ ∈ P , let

dACK (P, P ′) := inf

ε ≥ 0 :
P
(
C1−ε

(
T̂ε(P, P

′)
))
≥ 1− ε

P ′
(
C1−ε

(
T̂ε(P, P

′)
))
≥ 1− ε

 .

Thus two priors are close if, under both priors, there is high probability that there is

approximate common knowledge that their interim beliefs are close.

Definition 9. (Approximate Common Knowledge Topology) The approximate common

knowledge (ACK) topology is the topology generated by open sets
{
P ′ ∈ P : dACK (P, P ′) < ε

}
P∈P .

While dACK fails the triangle inequality, the topology is metrizable.

Proposition 1. The ACK topology is metrizable.

The proof (in the Appendix) constructs a metric that generates the same topology. Be-

cause the topology is metrizable, it is characterized by the convergent sequences.

Definition 10. A sequence (P k)k in P ACK-converges to P if and only if dACK
(
P k, P

)
→ 0.

It is useful to consider what the topology looks like in some special cases. If there is only

one payoff relevant state (i.e., |Θ| = 1), then there is a unique universal state, where there is

common knowledge of the state. If there is only one player, then an information structure is

given by a distribution over common first order beliefs about Θ, and the topology reduces to
4A distance is a map d : P × P → [0,∞) which is zero on the diagonal.
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the weak topology on ∆ (∆ (Θ)). Similarly, if there are many players but types are perfectly

correlated. If types are independent, then a canonical information structure is given by a

distribution in ∆(∆(Θ)I), and the topology again reduces to the weak topology. If we restrict

to information structures with a fixed, finite supports, then an information structure is a

probability distribution on a finite set and the topology reduces to the weak topology. So in

order for the ACK topology to be interesting, there must be at least two states, at least two

players, an unbounded number of types and neither independence or perfect correlation.

3.2 Continuity of Equilibrium Outcomes

We now define continuity of equilibrium outcomes (for BIBCE). For every ε > 0 and (G, P ),

let Bε(G, P ) denote the collection of all ε-BIBCE under (G, P ). Define the set of outcomes

(i.e., elements of ∆ (A×Θ)) that are induced by a ε-BIBCE of (G, P )

Oε(G, P ) := {νσ : σ ∈ Bε(G, P )} .

We write Oε (G, P ) for the set of outcomes that are within ε of outcomes induced by an

ε-BIBCE of (G, P ), so

Oε (G, P ) := {v ∈ ∆ (A×Θ) : ∃ σ ∈ Bε(G, P ) s.t. ||v − vσ||2 < ε} ,

where || · ||2 is the Euclidean norm on outcomes. Now we will say that two information

structures are strategically close for base game G if the sets of BIBCE outcomes are close.

Definition 11. (Strategic Distance) For every P, P ′ ∈ P and base game G, let

d∗ (P, P ′|G) := inf

ε ≥ 0 :
O0(G, P ) ⊆ Oε(G, P ′)

O0(G, P ′) ⊆ Oε(G, P )

 .
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A topology on P generates continuity of equilibrium outcomes if for every ε > 0, every

base game G and every P ∈ P , the set {P ′ ∈ P : d∗ (P, P ′|G) < ε} is open.

3.3 Main Result

The following is our main result.

Theorem 1. The approximate common knowledge topology is the coarsest topology on P

that gives rise to continuity of equilibrium outcomes.

We will first sketch the main ideas in the proof, distinguishing between steps that are

inherited from earlier work, and how, and which steps are and must be novel. To establish

that approximate common knowledge convergence implies strategic convergence (i.e. that

the ACK topology generates continuity of strategic outcomes), one must show that if two

information structures are close enough in the approximate common knowledge topology,

then in any game, the set of ε-BIBCE outcomes will be close. This builds on the arguments

in Monderer and Samet (1996) and Kajii and Morris (1998) (which in turn build on an

argument in Monderer and Samet (1989)). These two papers fix an equilibrium strategy

profile under one information structure and show that there is an approximate equilibrium

in any nearby information structure where the strategy profile is unchanged on the event

where there is approximate common knowledge that interim beliefs are close, but can vary

arbitrarily elsewhere. This proof strategy relies on a well-defined notion of holding the

strategy profile fixed on the approximate common knowledge event. In our context, there

is no well-defined notion of holding the strategy profile fixed on the approximate common

knowledge event. In particular, if the two information structures are minimal (they do not

have common knowledge subsets), the supports of distinct information structures will be

disjoint, as illustrated in Figure 2. So instead we will continuously extend the equilibrium

decision rule σ under one information structure P to its ε-support suppε(P ) and thus to the

event:

T̂ε(P, P
′) := suppε(P ) ∩ suppε(P

′),
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supp(P ′)

suppε(P ′) suppε(P )

supp(P )

T̂ε(P, P
′)

suppε(P ′) suppε(P )

T̂ε(P, P
′)

C1−ε(T̂ε(P, P
′))

Figure 2: Sets T̂ε(P, P ′),C1−ε(T̂ε(P, P
′)) and ε-supports of P and P ′.

and thus the approximate common knowledge event:

C1−ε
(
T̂ε(P, P

′)
)
⊆ T̂ε(P, P

′).

This is one place where we are exploiting properties of the product topology on types to

show that the extended decision rule allows us to find an approximate equilibrium under P ′

where the continuous extension of σ on C1−ε
(
T̂ε(P, P

′)
)
is held fixed. This argument goes

through with any refinement of the product topology as we will discuss later.

To establish that strategic convergence implies approximate common knowledge conver-

gence, it is enough to show that, for any two information structures that are not close in the

approximate common knowledge topology, one can construct a game where an equilibrium

outcome under one information structure is not close to any approximate equilibrium under

the other information structure. Monderer and Samet (1996) and Kajii and Morris (1998)

do this by showing that if two information structures P and P ′ are not close, there is an

“infecting” event D0 under one of the information structures, say P , such that there is no ap-

proximate common knowledge event on the complement of C1−ε
(
T̂ε(P, P

′)
)
. One can then
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construct a binary coordination game in the spirit of the email game of Rubinstein (1989)

where there is a unique equilibrium under P because there is a dominant strategy on the

“infecting” event, but there are multiple equilibria under P ′. This strategy is not available

to us because we cannot assume that there is a dominant strategy on the “infecting” event

because payoffs must be measurable with respect to the payoff states Θ.

Instead, we show that if two information structures are not close, there exists an “infect-

ing” event Dm that is measurable with respect to m-order beliefs. For m large enough, this

event has the property that some types in the support of P that are not in T̂ε(P, P
′) are

closer to any element in Dm than to any element in T̂ε(P, P ′). Hence, for m large enough,

some types can be excluded from C1−ε
(
T̂ε(P, P

′)
)

based on their beliefs on a m-order-

measurable event. From event D0
ε = Dm we obtain a cover (Dn

ε )n∈N of the complement of

C1−ε
(
T̂ε(P, P

′)
)
recursively, where

Dn
ε = supp(P ) \B1−ε(Dn−1

ε ),

for all n ≥ 1. Now we can construct a first game where players are incentivized to announce

their approximatem-th order beliefs on a finite grid, (form large enough chosen as a function

of ε) and build an email game style binary action coordination game on top of that. For

the first component of the game, we can construct a game with an iterated scoring rule with

the property that it is ε-rationalizable for players to truthfully report finite-order beliefs,

from a finite grid which are closest in dΠ. This scoring rule is also used in Dekel et al.

(2006) and Gossner and Mertens (2020). This game alone cannot be used to induce different

outcomes in P and P ′ since on the set T̂ε(P, P ′), reporting the same approximate finite-

order beliefs is an ε-BIBCE for the types in both priors. As we cannot a priori rule out

the possibility of T̂ε(P, P ′) containing the support of P ′ the scoring rule is not suitable for

separating outcomes. Players therefore also choose an additional action: Either action zero

or action one. No matter what additional action is chosen by the opponent, action one is the
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suppε(P ′) suppε(P )

T̂ε(P, P
′)

C1−ε(T̂ε(P, P
′))

D0
ε

suppε(P ′) suppε(P )

T̂ε(P, P
′)

C1−ε(T̂ε(P, P
′))

D0
ε

Actions in
Scoring Rule

Figure 3: Infection argument.

unique, strict best-reply for players who reported themselves to be in D0
ε . All other types

will match action one if they believe with probability at least ε that their opponent also

chose action one. Hence iterative deletion of dominated strategies implies that action one

is played on Dn
ε . Figure 3 illustrates the region D0

ε and the role of the scoring rule. Type

profiles in the red region will play action one and an action represented by a circle in the

right panel of the Figure. No type in the support of P ′ will play an action corresponding to

a type in D0
ε . Action one will infect all type profiles in the orange shaded region who are

also in the support of P but will not infect types in the support of P ′.

Hence, in every ε-BIBCE the types in orange and red shaded regions who are in the

support of P will play action 1. There is a ε-BIBCE where all types play action 0 under P ′.

This establishes that the sets of outcomes of the priors are at least ε apart. In this second

part of the proof, we exploit properties of the product topology to ensure that we can cover

the red region D0
ε with a finite grid and there is a finite game where players find it ε-optimal

to report the closest element in the grid.

We now report two Lemmas before proceeding with the formal proof. Let Nδ(E) :=⋃
ω̂∈E {ω ∈ Θ× T : dΠ(ω̂, ω) < δ} denote the δ-ball around an event E ∈ B.
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Lemma 1. For every ε > 0 and any event E ∈ B, there is a finite event Gε ⊆ Ω \ Nε(E)

so that for every ω ∈ Ω,

min
ωg∈Gε

dΠ(ω, ωg) < ε =⇒ ω ∈ Ω \ E

and

ω ∈ Ω \ Nε(E) =⇒ min
ωg∈Gε

dΠ(ω, ωg) < ε.

Lemma 1 implies that no type in the support of P ′ will be ε-close (in the product topology)

to a grid element in the red shaded region D0
ε and every type in the support of P that is

also in the red shaded region is ε-close (in the product topology) to a grid element in the red

shaded region D0
ε . Lemma 2 below then establishes that there exists a finite game, where it

is uniquely ε-rationalizable for every type to report the closest grid element (which is also

less than ε-close).

Lemma 2. For every ε > 0, there is a finite set of action profiles A ⊆ T and payoffs

uεi : A×Θ→ R for every player i, so that for every information structure P , every ε-obedient

decision rule σ satisfies

σ(a|θ, τ) > 0 =⇒ a ∈ arg min
a∈A

dΠ((θ, τ) , (θ, a)) and dΠ((θ, τ) , (θ, a)) < ε.

We now state two known results which we also use in our proof. The existence of BIBCE

was established by Stinchcombe (2011), who also established it for general information struc-

tures, with redundancies as we later report in Proposition 7.

Proposition 2. (Existence of BIBCE) There exists a BIBCE for every (G, P ).

Theorem A in Stinchcombe (2011) has established the existence of a more demanding

notion of incomplete information correlated equilibrium, when one looks at correlated equi-

librium of the agent normal form of the game of incomplete information. Forges (1993) called

these “agent normal form correlated equilibria.” Since every agent normal form correlated
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equilibrium induces an outcome equivalent BIBCE, existence of equilibria is guaranteed. We

first establish that ACK-convergence is sufficient for continuity of equilibrium outcomes.

Proposition 3. The set Ω0 ⊆ Ω is dense in the product topology on Ω.

Proof. Lipman (2003) shows that finite common prior types are dense in the product topology

on Ω.

Proposition 4. For every base game G and every ε > 0, there is δ > 0 so that if dACK(P, P ′) <

δ then d∗(P, P ′|G) < ε.

Proof. Let ΩP := ∩ε>0suppε(P ), ΩP ′ := ∩ε>0suppε(P ′) and Ω̂δ := C1−δ(T̂δ(P, P
′)). It is

without loss of generality to assume that ΩP ∩ΩP ′ = ∅. Fix a base game with payoffs given

by ui : A×Θ→ [−M,M ] for each player i. Suppose dACK(P, P ′) < δ = ε
6M(u)

, whereM(u) :=

max {M, |A×Θ|} <∞ and recall that game 2M ≥ maxi supai,a′i,a−i,θ |ui(ai, a−i, θ)−ui(a
′
i, a−i, θ)|.

By Lemma 1, there is a finite set Gδ so that Ω̂δ ⊆ Nε(Gδ) and so for every ω ∈ Ω̂δ,

ming∈Gδ dΠ(ω, g) ≤ δ. Let ζδ : Ω̂δ → Gδ be any map satisfying dΠ(ω, ζδ(ω)) ≤ δ, ∀ ω ∈ Ω̂δ.

We show that every decision rule which is obedient under P , admits a decision rule arbi-

trarily close to it which is 6Mδ-obedient under P ′. Consider a decision rule σ : ΩP → ∆(A)

satisfying for every τi and for every a′i ∈ Ai,

ˆ
ΩP

∑
a∈A

∆ui(a, a
′
i, ωθ)σ(a|ω)P (dω|τi) ≥ 0,

where ∆ui(a, a
′
i, θ) = ui(a, θ)−ui(a′i, a−i, θ) and ωθ = projΘ(ω). We have existence of such a

decision rule from Proposition 2. We now extend σ to Ω̂P as follows: For every ω ∈ Ω̂δ ∪ΩP ,

define the δ-extension

σδ(ω) :=


´
σ(ω′) P (dω′|ζδ(ω)) if ω ∈ Ω̂δ,

σ(ω) if ω /∈ Ω̂δ.
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For all i and τ ∈ projT (ΩP ),

∣∣∣∣ˆ
Ω̂δ∪ΩP

∑
a∈A

∆ui(a, a
′
i, ωθ) (σδ(a|ω)− σ(a|ω)) τi(dω)

∣∣∣∣
≤

∑
g∈Gδ,a∈A

∆ui(a, a
′
i, ωθ))∣∣∣∣ (ˆ (ˆ σ(a|ω′) P (dω′|ζ−1

δ (g), τ ′i)

)
P (dτ ′i |ζ−1

δ (g))

)
−
ˆ
σ(a|ω′) τi(dω|ζ−1

δ (g))

∣∣∣∣τi(ζ−1
δ (g)

=
∑

g∈Gδ,a∈A

∆ui(a, a
′
i, ωθ)

∣∣∣∣ ˆ (ˆ σ(a|ω′)
(
τ ′i(dω

′|ζ−1
δ (g))− τi(dω′|ζ−1

δ (g))
))

P (dτ ′i |ζ−1
δ (g))

∣∣∣∣P (ζ−1
δ (g)|τi)

≤ 2Mδ.

Since σ is obedient, we conclude that σδ is 2Mδ-obedient. By construction, for every (θ′, τ ′) ∈

Ω̂δ ∩ΩP ′ there exists (θ, τ) ∈ ΩP so that ζδ(θ′, τ ′) = ζδ(θ, τ) and dΠ((θ′, τ ′), (θ, τ)) < δ. Since

σδ is ζδ-measurable (hence finite valued) we have that

ˆ
Ω̂δ∪ΩP

∑
a∈A

∆ui(a, a
′
i, ωθ)σδ(a|ω) ( dP (ω|τi)− dP ′(ω|τ ′i)) < 2Mδ.

2Mδ-obedience of σδ thus implies that

´
Ω̂δ

∑
a∈A ∆ui(a, a

′
i, ωθ)σδ(a|ω) dP ′(ω|τ ′i) ≥ −4Mδ .

Moreover, (θ′, τ ′) ∈ Ω̂δ implies that for any measurable σ̂ : ΩP ′ \ Ω̂δ → ∆(A), we have
´

ΩP ′\Ω̂δ

∑
a∈A ∆ui(a, a

′
i, ωθ)σ̂(a|ω) P ′(dω|τ ′i) ≥ −2Mδ and so

ˆ
ΩP ′

∑
a∈A

∆ui(a, a
′
i, ωθ)σδ(a|ω) P ′(dω|τ ′i) ≥ −6Mδ. (1)

So σδ satisfies 6Mδ-obedience under P ′ if restricted to type profiles in Ω̂δ. We now argue

that there exists a 6Mδ-obedient decision rule under P ′ that agrees with the extension σδ

19



on Ω̂δ. For every player i, let Di :=
{
τ ∈ T : τi(Ω̂δ) ≤ 1− δ

}
and note that if P ′(Ω̂δ) < 1

then P ′(
⋃
i∈I Di) > 0.

Consider the auxiliary payoffs ũ : Ω×A→ RI , defined for every (θ, τ) ∈ Ω and a ∈ A as

follows

ũi((θ, τ), a) :=


ui(θ, a−i, ai), if τi

(
Ω̂δ

)
≤ 1− δ

1σδ(a|θ,τ)>0, otherwise.

By Proposition 2 we deduce that the incomplete information game (ũ, P ′) admits an obedient

decision rule σ̄ that coincides with σδ on Ω̂δ. This induces a 6Mδ-obedient decision of (u, P ′)

defined on all of ΩP ′ : Indeed, by obedience of σ̄ for every player i and (θ, τ ′) ∈ ΩP ′ so that

τ ′i(Ω̂δ) ≤ 1− δ,

ˆ
ΩP ′

∑
a∈A

∆ũi(a, a
′
i, ω)σ̄(a|ω) P ′(dω|τ ′i) =

ˆ
ΩP ′

∑
a∈A

∆ui(a, a
′
i, ωθ)σ̄(a|ω) P ′(dω|τ ′i) ≥ 0. (2)

Moreover, for every (θ, τ ′) ∈ ΩP ′ so that τ ′i(Ω̂δ) > 1− δ, there is τ̃ ′ ∈ Ω̂δ so that τ̃ ′i = τ ′i. So

consider the combined decision rule,

σ′(ω) :=


σδ(ω) , if ω ∈ Ω̂δ

σ̄(ω) , if ω ∈ ΩP ′ \ Ω̂δ.

Combining (1) and (2) we deduce that for every τ

ˆ
ΩP ′

∑
a∈A

∆ui(a, a
′
i, ωθ)σ

′(a|ω) P ′(dω|τ ′i) ≥ −6Mδ

We will now show that νP ′,σ′ is close to νP,σ. For any (a, θ) ∈ A×Θ,
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|νP,σ(a, θ)− νP ′,σ′(a, θ)|

≤
∣∣∣∣ ∑
g∈Gδ

(ˆ
σ(a|τ ′, θ) P (θ, dτ ′|g)

)
(P (θ, dτ)− P ′(θ, dτ))

∣∣∣∣
+ |P ′(Ω̂δ|θ)− P (Ω̂δ|θ)| ≤ 2δ.

Hence
∑

a,θ |νP,σ(a, θ)− νP ′,σ̂(a, θ)|2 < |Θ× A|4δ2 and so du(P, P ′) < 6M(u)δ.

We now establish that failure of ACK-convergence implies a failure of convergence of

equilibrium outcomes.

Proposition 5. For every ε > 0, if dACK(P, P ′) ≥ ε then there is a game G so that

d∗(P, P ′|G) ≥ ε.

Proof. We now establish that for all ε ∈ (0, 1/2) so that for all P, P ′ satisfy dACK(P, P ′) ≥ ε,

we also have d∗(P, P ′|Ĝ) ≥ ε for some game Ĝ: If convergence fails in our metric, then there

must be some game on which ex-ante strategic convergence fails. Then we must find such a

game Ĝ. The condition dACK(P, P ′) ≥ ε means that P
(

Ω̂ε

)
≤ 1 − ε, P ′

(
Ω̂ε

)
≤ 1 − ε or

both. Suppose that P (Ω̂ε) ≤ 1 − ε and P ′(Ω̂ε) > 1 − ε. First, note that P (T̂ε(P, P
′)) < 1.

Indeed, if P (T̂ε(P, P
′)) = 1, we also have that P (Ω̂ε) = 1, which is a contradiction. Let

Dε,P := suppε(P ) \ T̂ε(P, P ′) and D{
ε,P := Ω \ Nε(Dε,P ). From Lemmas 1 and 2 we conclude

that there is m and z, an associated game Ĝ = (Am,z, (um,zi )i) where the finite collection

of action profiles takes the form Am,z = D̂ε,P ∪ D̂{
ε,P , with D̂ε,P ⊆ Dε,P a finite ε-grid,

D̂{
ε,P ⊆ D{

ε,P a finite ε-grid, and so that for every ε-BIBCE, σ̂′ ∈ Bε(Ĝ, P ′) and every

ω ∈ ΩP ′ , σ̂′(D̂ε,P |ω) = 0. Moreover, for every ω ∈ Dε,P and every ε-BIBCE, σ̂ ∈ Bε(Ĝ, P ),

σ̂(D̂ε,P |ω) = 1.
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ΩP

D̂ε,P

D̂{
ε,P

Dε,P

ΩP ′suppε(P ′) suppε(P )

Nε(Dε,P )

Figure 4: Domain of Grid Game.

Figure 4 above illustrates the sets we just defined. The area enclosed by the two bold

circles represent the supports of P and P ′ respectively. The red shaded area represents the

set Dε,P where the dots on top of the red shaded area represents D̂ε,P , the actions chosen

by type profiles in Dε,P . The green shaded area represents Nε(Dε,P ) \Dε,P , which contains

no action in Am,z. Finally, the dots with white background represent the remaining actions,

i.e. the set D̂{
ε,P . Every type in ΩP ′ will pick an action from that set.Let

Dm
P :=

{
ω ∈ ΩP : ∃ σ̂ ∈ Bε(Ĝ, P ) s.t. σ̂(D̂ε,P |ω) = 1

}
.

For every player i, let Dm
P,i := {τi : ∃ (θ, τ̂) ∈ supp(P ), (θ, (τi, τ̂−i)) ∈ Dm

P }. Define the sets

Dm
P ′ and Dm

P ′,i for prior P ′ analogously. Define the sequence (Dm+n
P )n∈N, recursively for every

n ≥ 1,

Dm+n
P,i := ΩP \B1−ε

i (Dm+n−1
P ), Dm+n

P :=
∏
i∈I

Dm+n
P,i .
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Let D̂P,i :=
{
τi : ∃ (θ, τ−i) ∈ Θ× T−i s.t. (θ, τ) ∈ D̂ε,P

}
. Consider the action set A∗i :=

{a∗, a∗∗}I × Am,z and let payoffs of Ĝ∗ be given by

ûi(a
0, d, θ) =


ε1a0i=a∗ + um,zi (d, θ) if di ∈ D̂P,i

1a0i=a∗ + um,zi (d, θ) if di /∈ D̂P,i and ∃ j 6= i s.t. a0
j = a∗

In this game, playing di ∈ D̂P,i and a∗ is a dominant action for every type in Dm
P,i. Under

payoffs um,z and prior P ′, reporting a grid element in Dm
P has cost at least ε > 0. Hence

every type under prior P ′ rationalizes both a∗∗ and a∗ while no type under prior P in the

set Dm
P,i rationalizes a∗∗. Now consider τi ∈ Dm+1

P,i . Again, playing a0
i = a∗ is uniquely

ε-rationalizable since all types in Dm
P,i play a∗: Indeed, for every τi ∈ Dm+1

P,i , there is a player

i so that τi(Dm
P,−i) ≥ ε. For every n ∈ N, there is a player in so that Dm+n

P,in
6= ∅. Proceeding

inductively we obtain that a0
i = a∗ remains the unique ε-best-reply for some player at type

profiles in ΩP \ Ω̂ε. Deduce that there is a ε-BIBCE where all types of all players play a∗∗

under P ′ while for all ε-BIBCE under P , P assigns at least probability ε to type profiles

where some player’s type plays a∗. Hence d∗(P, P ′|Ĝ∗) ≥ ε. A symmetric argument shows

that whenever 1) P (Ω̂ε) > 1− ε and P ′(Ω̂ε) ≤ 1− ε or 2) P (Ω̂ε) > 1− ε and P ′(Ω̂ε) > 1− ε

implies that outcomes are ε apart under a similarly constructed game. Note that under

P (Ω̂ε) > 1 − ε and P ′(Ω̂ε) > 1 − ε, the game with payoffs um,z is enough to separate the

outcomes of P and P ′.

The grid game alone would not work for our proof: Indeed, we could construct a sequence

of priors P k for any prior P so that dACK(P k, P ) > ε for all k but where P k(Tε(P
k, P )) ↑ 1,

i.e. the infecting event has diminishing ex-ante probability. If we used the grid game only,

we would have that d∗(P, P ′|Ĝ) ↓ 0. Based on this game alone, the ACK topology would be

too strong.

Now Theorem 1 follows immediately from Propositions 4 and 5.
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We will conclude this section by discussing a key property of ACK topology (denseness)

and an extension of our main result (so we have continuity of exact BIBCE). Both will be

important for our applications.

3.4 Denseness of Simple Types

An information structure P is finite if the support of P is finite. A finite information

structure P is a first-order belief information structure if each type has a distinct first-order

belief. An information structure P is simple if it is both a finite and a first-order belief

information structure. We denote the collection of simple information structures

P∗ :=
{
P ∈ P : |supp(P )| <∞, ∀ (θ, τ), (θ̂, τ̂) ∈ supp(P ),∀ i, τi 6= τ̂i =⇒ τ 1

i 6= τ̂ 1
i

}

It is often convenient to work with simple information structures. We have:

Proposition 6. Simple information structures are dense in P under the ACK topology.

Proof. Fix any information structure P . For any δ > 0 we construct a finite informa-

tion structure Pδ so that d∗(P, Pδ) < δ. To do so, we construct a finite grid Gδ of state

and type pairs whose δ-neighborhood covers ΩP , i.e. ΩP ⊆ Nδ(Gδ) and for all ω ∈ ΩP ,

ming∈Gε dΠ(ω, g) ≤ δ. Consider any partition on ΩP given by the pre-image of any map

ζ : ΩP → Gδ, where for all ω ∈ ΩP , we have that dΠ(ω, ζ(ω)) ≤ δ. Consider the information

structure Pδ given by P ◦ ζ−1. This information structure is finite and has the property that

for any τ ∈ supp(P δ) there exists τ ′ ∈ supp(P ) so that dΠ(τ, τ ′) < δ and vice versa; for all

τ ′ ∈ supp(P ) there is τ ∈ supp(Pδ) so that dΠ(τ, τ ′) < δ. Indeed, for every player i and

ω ∈ ΩP and (θ, τ) = ζ(ω), beliefs of any measurable event E ∈ B at τi are given by,

P ◦ ζ−1(E|τi) =

ˆ
ζ−1
i (τi)

P (E|τ̂i)P (dτ̂i|ζ−1
i (τi)),
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where ζ−1
i (τi) :=

⋃
(θ̂,τ̂)∈Gδ:τ̂i=τi

{
τ̃i : ∃ (θ̃, τ̃−i) s.t. (θ̃, τ̃) ∈ ζ−1(θ̂, τ̂)

}
. First order beliefs of

P◦ζ−1 take the form P◦ζ−1(θ|τi) =
´
ζ−1
i (τi)

P (θ|τ̂i)P (dτ̂i|ζ−1
i (τi)) and so for every τ̃i ∈ ζ−1

i (τi),

first-order beliefs of P ◦ ζ−1(·|τi) and P (·|τ̃i) are no more than δ apart in the Euclidean

topology on ∆(Θ). Deduce that P ◦ ζ−1(·|τi) and P (·|τ̃i) have δ-close hierarchies of beliefs

in the product topology on Ti. Hence T̂δ(P, Pδ) = suppδ(P ) and so dACK (P, Pδ) < δ. For δ

small enough, there is ζ̂ : T → T ,so that our choice of ζ above satisfies ζ(θ, τ) = (θ, ζ̂(τ)) and

so the marginal of P ◦ζ−1 on Θ coincides with that of P . Hence finite, canonical information

structures are dense in P under the strategic topology. It remains to show that Pδ is close

to a simple canonical information structure. Let Ωi,Pδ(τi) := {τ̂i : Pδ(τ̂i) > 0, τ̂ 1
i = τ 1

i }. For

any ε > 0 let ρi,ε : Θ × Ti → ∆({0, 1}) have the property that ρi,ε(θ, τ̂i) = ρi,ε(θ
′, τ̂i) for

all θ, θ′ ∈ Θ and all τ̂i in the support of Pδ satisfying |Ωi,Pδ(τ̂i)| = 1. For any τ̂i in the

support of Pδ satisfying |Ωi,Pδ(τ̂i)| > 1 let ||ρi,ε(θ, τ̂i)−ρi,ε(θ′, τ̂i)||2 < ε so that for all distinct

τ̃i, τ̄i ∈ Ωi,Pδ(τi) and si, s′i ∈ {0, 1},

ρi,ε(si|θ, τ̃i)Pδ(θ|τ̃i)∑
θ̂ ρi,ε(si|θ̂, τ̃i)Pδ(θ̂|τ̃i)

6= ρi,ε(s
′
i|θ, τ̄i)Pδ(θ|τ̄i)∑

θ̂ ρi,ε(s
′
i|θ̂, τ̄i)Pδ(θ̂|τ̄i)

.

The prior P̂δ(θ, τ, s) = Pδ(θ, τ)
∏

i ρi,ε(si|θ, τ) induces information structure P̃δ so that dACK(P, P̃δ) <

δ + ε. Deduce that simple information structures are dense in P .

4 General Information Structures

and Bayes Nash Equilibrium

Our main approach in this paper is to remove correlating devices from the information

structure (and thus work with non-redundant information structures) and put correlating

devices in the solution concept (BIBCE). However, to relate our work to the literature and

discuss applications it is useful to discuss how our results apply when we allow correlating

devices in the information structure (and thus allow for general redundant information struc-
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tures) but remove correlating devices from the solution concept (and work with Bayes Nash

equilibrium).

4.1 General Information Structures

A (common prior) general information structure describes a set of signals for each player and

a joint distribution over states and profiles of signals: thus a general information structure

is a tuple S = ((Si)i∈I , Q), where each Si is a measurable space of signals5 for player i and

Q is a probability measure6 in ∆(Θ× S) whose marginal on Θ is given by µ.

We dub this object a general information structure. Liu (2015) describes how one can

always decompose a general information structure into a (non-redundant) information struc-

ture and a correlation device. While a general information structure is described by a signal

space and a probability measure, we will adopt the convention of describing non-redundant

information structures as just a measure, leaving it understood that the player’s signal space

is the universal space of hierarchies.

Every redundant information structure and can be naturally mapped to its non-redundant

information structure by essentially integrating out redundant types. In particular, we map

information structure S = ((Si)i∈I , Q) to a (non-redundant) information structure P as

follows. For every i, and version of the conditional probability Qi, first-order beliefs can be

obtained for any player i, τ 1
i (si) = margΘ(Qi(si)) for every si ∈ Si. For every m > 1 and

m− 1-order beliefs representation τm−1
j : Sj → T m−1

j , for every j, obtain the m-order belief

representation of player i, τmi (si) = Qi(si) ◦ (id× τm−1
−i )−1, where id is the identity on Θ and

τ̄m−1
−i : s−i 7→ (τ̄m−1

j (sj))j 6=i. The representation of si in Ti is then given by τ i(si) = (τmi (si))m.

For every s ∈ S let τ(s) := (τ i(si))i∈I and we write PS for the information structure thus

induced by redundant information structure S.
5We adopt the convention of referring to “signals” rather than “types” when describing general information

structures in this section. We reserve the terminology “type” for hierarchies of beliefs, introduced in the next
section.

6The product of measurable spaces is always endowed with the product sigma algebra.
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4.2 Solution Concepts

Now we will say that a base game and a redundant information structure (G,S) together

define a Bayesian game.

Belief-invariant Bayes correlated equilibrium will be defined as before for general infor-

mation structures and Bayesian games. For completeness, we will spell out the definition

allowing for general information structures, and also define Bayes Nash Equilibrium.

For any Bayesian game (G,S), a decision rule is a measurable map σ : Θ × S → ∆(A),

where A :=
∏

i∈I Ai and ∆(A) is endowed with the Euclidean topology. A general infor-

mation structure S and decision rule σ jointly induce a measure σ ◦ Q ∈ ∆(A × Θ × S)

in the natural way. We will be interested in outcomes specifying a joint distribution over

actions and states ν ∈ ∆(A× Θ). Decision rule σ induces outcome νσ if νσ is the marginal

of σ ◦ Q on A × Θ. For every player i, a decision rule σ and a version of the condi-

tional probability Qi : Si → ∆(Θ × S−i) of Q induce a belief for every signal si ∈ Si,

σ ◦Qi : Si → ∆(A× Θ× S−i), which for every measurable set E ⊆ A× Θ× S−i and every

signal si ∈ Si satisfies σ ◦Qi(E|si) =
´
E
σ(a|θ, s−i, si) dQi(θ, s−i|si).

Now we have:

Definition 12. A decision rule σ is ε-obedient if, for every player i , there is a version of

the conditional probability Qi : Si → ∆(Θ× S−i) so that every action ai ∈ Ai and deviation

a′i, ˆ
S×Θ

∑
a−i∈A−i

(ui(ai, a−i, θ)− ui(a′i, a−i, θ)) dσ ◦Qi(ai, a−i, s−i, θ|si) > −ε, a.s.

Definition 13. A decision rule σ is belief-invariant if, for every ai ∈ Ai, the marginal

probability σ(ai × A−i|(si, s−i), θ) = σi(ai|si) does not depend on (s−i, θ).

Definition 14. A decision rule σ is an ε-belief-invariant Bayes correlated equilibrium (ε- BIBCE)

of (G,S) if it satisfies ε-obedience and belief invariance.

If we have a (non-redundant) information structure, these definitions reduce to those

introduced earlier.
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Now a decision rule σ is conditionally independent if σ(a|(si, s−i), θ) =
∏

i∈I σi(ai|si), for

every (a, s, θ) ∈ A× S ×Θ. Conditional independence requires that any randomization in a

player’s actions depends on their type only and is conditionally independent of others’ types

and the state. If a decision rule is conditionally independent, it gives a behavioral strategy

for each player in the incomplete information game.

Definition 15. A decision rule σ is an ε-Bayes Nash equilibrium (ε-BNE) of (G,S) if it

satisfies obedience (ε-obedience), belief-invariance and conditional independence.

We will say that a decision rule is a BIBCE or BNE if it is a 0-BIBCE or 0-BNE respec-

tively. We will write B(G,S) and BBNE(G,S) for the set of BIBCE and BNE decision rules,

and νσ for the outcome in ∆ (A×Θ)induced by decision rule σ; we will write O (G,S) for

the set of BIBCE outcomes

O (G,S) := {νσ ∈ ∆ (A×Θ) : σ ∈ B(G,S)}

and OBNE (G,S) for the set BNE outcomes:

OBNE (G,S) :=
{
νσ ∈ ∆ (A×Θ) : σ ∈ BBNE(G,S)

}

4.3 Existence of Equilibria

We have existence of BIBCE.

Proposition 7. (Existence of BIBCE) There exists a BIBCE for every (G,S).

This was already established for (non-redundant) information structures in Section 2.

For a redundant information structure, it is enough to find a BIBCE for its non-redundant

version and extend the BIBCE to have players ignore redundancies.

However, strong conditions are required to ensure the existence of BNE, and this has been

one obstacle to constructing topologies on information for BNE. Milgrom and Weber (1985)
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and Balder (1988) are apparently the best available (even if we restrict attention to finite

action games). Two sufficient conditions from Milgrom and Weber (1985) are important.

First, existence is guaranteed if information structures have countable support. Second,

existence is guaranteed if the measure on signals is absolutely continuous with respect to the

product of the marginal measures on individual player’s signals. Monderer and Samet (1996)

and Kajii and Morris (1998) therefore restricted attention countable information structures.

However, existence of BNE or even ε-BNE fails when these properties fail: see Simon (2003),

Hellman (2014) and Simon and Tomkowicz (2017) for examples. In particular, existence is

not guaranteed on (non-redundant) information structures.7 In the Appendix, we report

an example from Hellman (2014) where BNE fails to exist and report a BIBCE for that

example.

4.4 Varying Solution Concepts and Information Structures

We first discuss the connection between BNE and BIBCE outcomes. The next proposition

states that the set of BIBCE outcomes depends only on the non-redundant information

structure:

Proposition 8. For any base game G and general information structure S, O (G,S) =

O (G, PS).

This is true because any need for redundancies / correlating devices is built into the

solution concept. This observation parallels the observation of Dekel et al. (2007) that

interim correlated rationalizability depends only on hierarchies of beliefs; Liu (2015) showed

that (a subjective version of) BIBCE is equilibrium analogue of ICR and thus provides a

proof. 8 For completeness, we give a proof in our notation in the Appendix. It is immediate

from the definitions that BNE outcomes are BIBCE outcomes for any information structure.

7van Zandt (2010) establishes existence of BNE on the universal type space for supermodular games.
8See also Bergemann and Morris (2017) for a discussion of these issues.
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Proposition 9. For any game G and general information structure S, OBNE (G,S) ⊆

O (G,S).

Now define the strategic distance between a pair of general information structures S and

S ′ to be the strategic distance between their non-redundant representations, so d∗∗ (S,S ′) :=

d∗ (PS , PS′).

4.5 Correlation and Non-Redundant Information Structures

On general information structures, players’ ability to correlate their actions (using redun-

dant correlating devices) matters for the set of BNE. However, non-redundant information

structures, as long as there are at least two states, are very rich objects and, intuitively, there

will be plenty of opportunity to approximate arbitrary correlating devices within them.

Our use of BIBCE as a solution concept allowed us to focus attention on (non-redundant)

information structures and ensured existence of equilibrium. Thus we obtained cleaner re-

sults with this solution concept. But suppose one is interested in Bayes Nash equilibrium.

In this case, redundant types / correlating devices potentially matter for equilibrium. And

we potentially have problems with equilibrium existence. In this section, we will argue that

there is a natural approach to dealing with these difficulties (maintaining BNE as the pre-

ferred solution concept) and that the same almost common knowledge topology is relevant

for continuity of equilibrium outcomes.

Our main observation observation is that, since the universal type space is rich (as long

as there at least two states), any correlating device can be embedded in a (non-redundant)

information structure by perturbing types’ first-order beliefs. The following proposition

establishes that any BIBCE on any finite information structure can be approximated by an

approximate BNE of some nearby simple information structure.

Proposition 10. Let |Θ| ≥ 2. For any finite, general information structure S, any σ ∈

B (G,S) and any ε > 0, there exists (i) a simple information structure S ′ such that d∗∗ (S,S ′) ≤
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ε ; (ii) a decision rule σ′ such that (a) σ′ is a ε-BNE of (G,S ′) and (b) the outcome induced

by S ′ ◦ σ′ is ε-close to the outcome induced by S ◦ σ.

Proof. Let Q ◦ σ ∈ ∆ (A× T ×Θ) be the extended outcome corresponding to σ ∈ B(G,S).

Consider the (non-canonical) information structure where each player’s signal space was

Si = Ai×Ti and the prior wasQ◦σ. Note that since σ is an arbitrary BIBCE, this information

structure will in general have redundancies. But under this information structure, there is a

pure strategy BNE σ′ where each player sets his action equal to his “recommendation” (i.e.,

the action component of his signal): σ′(ai|ai, τi) = 1ai and so

∑
θ,τ

∆ui(a, a
′
i, θ)

∏
i

σ′i(ai|ai, τi)σ(a|θ, τ)Q(θ, τ−i|τi) =
∑
θ,τ

∆ui(a, a
′
i, θ)σ(a|θ, τ)Q(θ, τ−i|τi) ≥ 0.

We now apply the same pertubation as in the proof of Proposition 6: Let Ωi,Q◦σ(τi, ai) :=

{(τ̂i, âi) : P ◦ σ(τ̂i, âi) > 0, τ̂ 1
i = τ 1

i }. Let ρi,ε : Θ × Ti → ∆({0, 1}) have the property that

ρi,ε(θ, τ̂i, âi) = ρi,ε(θ
′, τ̂i, âi) for all θ, θ′ ∈ Θ and all τ̂i, âi in the support of Q ◦ σ satisfying

|Ωi,P◦σ(τ̂i, âi)| = 1. For any τ̂i, âi in the support of Q ◦ σ satisfying |Ωi,Q◦σ(τ̂i, âi)| > 1 let

||ρi,ε(θ, τ̂i, âi) − ρi,ε(θ′, τ̂i, âi)||2 < ε so that for all distinct (τ̃i, ãi) , (τ̄i, āi) ∈ Ωi,Pδ(τi, ai) and

si, s
′
i ∈ {0, 1},

ρi,ε(si|θ, τ̃i, ãi)Q ◦ σ(θ|τ̃i, ãi)∑
θ̂ ρi,ε(si|θ̂, τ̃i, ãi)Q ◦ σ(θ̂|τ̃i, ãi)

6= ρi,ε(s
′
i|θ, τ̄i, āi)Q ◦ σ(θ|τ̄i, āi)∑

θ̂ ρi,ε(s
′
i|θ̂, τ̄i, āi)Q ◦ σ(θ̂|τ̄i, āi)

.

The prior Q̂(θ, τ, a, s) = Q◦σ(θ, τ, a)
∏

i ρi,ε(si|θ, τ, a) induces canonical prior Q′ ∈ P so that

dACK(P, P ′) < ε and σ′ induces an outcome equivalent ε-BNE on P ′.

Proposition 10 shows that that any correlation device required for a BIBCE can be

embedded in the universal state space at the expense of ε-slack in the obedience constraint.

Notice that under complete information (i.e., if there was a single state), it would not be

possible to do so. Now the denseness of simple information structures implies the immediate

corollary that this is true for all information structures (not just canonical ones).
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Corollary 1. Let |Θ| ≥ 2. For any information structure P ∈ P, any BIBCE σ ∈ B (G, P )

and any ε > 0, there exists (i) a simple information structure P ′ ∈ P∗ such that d∗ (P, P ′) ≤ ε

; and (ii) a decision rule σ’ such that (a) σ’ is a ε-BNE of (G, P ′) and (b) the outcome

induced by P ′ ◦ σ′ is ε-close to the outcome induced by P ◦ σ.

Proof. The denseness of simple information structures implies that there exists a simple

information structure P ′′ with d∗ (P, P”) ≤ ε. Now the corollary follows from applying

Proposition 10 to P ′′.

Corollary 1 implies that if we extend the notion of approximate BNE to allow not only

only slack in the obedience constraints but also to allow nearby (in the ACK topology)

information structures, we can first establish the existence of approximate BNE and then

establish continuity of (approximate) BNE outcomes with respect to the ACK topology.

We first define an extended notion of ε-BNE outcomes:

OBNE∗ε (G, P ) =
{
ν ∈ ∆ (A×Θ) : ∃ P ′ with d∗ (P, P ′) ≤ ε, σ ∈ BBNEε (G, P ) s.t. ||v − vσ|| < ε

}
Now we have existence:

Corollary 2. For every game G, prior P ∈ P and ε > 0, OBNEε (G, P ) 6= ∅.

Proof. This result follows from Corollary 1 and the fact that OBNE(G, P ) 6= ∅ for all finite

P ∈ P .

We now introduce a “richness” property of a base game.

Definition 16. (richness) A base game G is rich if for every action profile a ∈ A, there

exists θa ∈ Θ such that for every player i, every ai ∈ Ai and every a′i 6= ai,

ui(ai, a−i, θa)− ui(a′i, a−i, θa) > 0.
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With richness, we have continuity of approximate BNE outcomes:

Proposition 11. Let |Θ| ≥ 2. Then for every rich base game G and any information

structure P ∈ P,

lim
ε↓0

⋃
P̂∈P∗:dACK(P,P̂ )≤ε

OBNE(G, P̂ ) = O(G, P ).

Proof. Let P̂ ∈ P∗ satisfy dACK(P, P̂ ) ≤ ε. Then by Corollary 1, for every ν ∈ O(G, P )

there exists a pure strategy ε-BNE, σ, of (G, P̂ ), so that ||νσ − ν||2 ≤ ε. For every τ denote

the associated action recommendation by α(θ, τ) = (αi(τi))i, where σ(α(θ, τ)|θ, τ) = 1. For

any choice δ > 0, define the stochastic map ρδ : Θ× T → ∆(A)

ρδ(a|θ, τ) =


1− δ if a = α(θ, τ)

δ if θ = θa

0 otherwise.

For every (θ, τ, a) ∈ Θ × T × A, let Pδ(θ, τ, a) := P̂ (θ, τ)ρδ(a|θ, τ) and note that Pδ has a

canonical representation P̂δ ∈ P . Let JG := mini,a,a′ ui(ai, a−i, θa)− ui(a′i, a−i, θa). Then for

every i and type τi in the support of P̂ , and any deviation a′i,

∑
θ,τ,a

∆ui(αi(τi), α−i(τ−i), a
′
i, θ)P̂δ(θ, τ−i|τi) > −ε(1− δ) + δ

∑
θ,τ,a

∆ui(αi(τi), α−i(τ−i), a
′
i, θα(θ,τ))P̂δ(θ, τ−i|τi)

≥ −ε(1− δ) + δJG

Letting δ = ε
JG+ε

implies that σ ∈ BBNE(G, P̂δ).Moreover, dACK(P̂ , P̂δ) ≤ δ and so

lim
ε↓0

⋃
P̂∈P∗∩P:dACK(P,P̂ )≤ε

OBNE(G, P̂ ) ⊇ O(G, P ).
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The property of upper hemi-continuity established in Proposition 18 readily extends to the

priors in the subset P and so we also have that

lim
ε↓0

⋃
P̂∈P∗∩P:dACK(P,P̂ )≤ε

OBNE(G, P̂ ) ⊆ lim
ε↓0

⋃
P̂∈P∗∩P:dACK(P,P̂ )≤ε

O(G, P̂ ) ⊆ O(G, P ),

and so the result follows.

4.6 Discussion

We conclude this section by discussing related literature about correlating devices and BNE.

A number of papers have highlighted the importance of redundant types, or correlating

devices, for BNE, see for example Liu (2009) and Sadzik (2019). Our approach in this section

is to observe that such correlation devices can be embedded in the universal state space in

an almost payoff-irrelevant way, so it is natural to work with (non-redundant) information

structures even if one is interested in BNE. Ely and Peski (2011) propose an alternative to

the standard universal type space that embeds some correlation devices.

In the context of complete information games, Brandenburger and Friedenberg (2008)

(see also Du (2012)) asked if correlation devices (supporting correlated equilibrium) could

reflect higher-order strategic uncertainty (in this case, they said there is intrinsic correlation)

or if extrinsic correlation is required. Their answer is that most correlated equilibria can be

explained by intrinsic correlation alone. An analogous question (in an incomplete informa-

tion context) to ask is which BIBCE could reflect higher-order uncertainty about strategic

uncertainty and payoffs. The spirit of our results is that most BIBCE can be justified this

way.

Gossner (2000) provided a partial order on correlating devices (for complete information

games) capturing which correlating devices would support a larger set of correlated equi-

libria all games. A natural exercise would be to define a topology on correlating devices

(generating continuity of the set of correlated equilibria) although as far as we know that
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has not been done. We could imagine decomposing a general information structure into a

canonical information structure and a correlating device and defining a topology on canoni-

cal information structure / correlating device pairs that was sufficient for continuity of BNE

outcomes. We have not pursued this approach.

5 Information Design

When studying information design problems, there will typically be many equilibria. In

formulating information design problems, one must decide which equilibrium will be played.

Two standard choices are to assume (i) the best equilibrium for the designer is played; or

(ii) the worst equilibrium for the designer is played. In this section, we propose a formula-

tion of information design problems that includes both those cases, but also allows for any

continuous selection of equilibrium.

We will consider the following class of information design problems. A designer has a

continuous (in the Hausdorff topology) objective function on sets of outcomes

V : 2∆(A×Θ) \ ∅ → R.

Recall that P∗ ⊆ P denotes the collection of simple (i.e., finite and first-order) information

structures. Now we have:

Proposition 12. For any rich G and any open set P ′ ⊆ P,

sup
S:PS∈P ′

V (OBNE(G,S)) = sup
P∈P ′∩P∗

V (OBNE(G, P )) = sup
P∈P ′∩P∗

V (O(G, P )).

Thus to choose the optimal information structure within an open set, it is enough to

focus on either BNE or BIBCE with simple information structures.
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We will first describe how the information design problems described above fit within

this class, and then describe how the result follows from denseness reported in Section 3.4

and the BNE results reported in Section 4.

5.1 Applications

Our assumption is that the designer cares about a set of outcomes. We are thinking that

the designer cares about the outcomes consistent with a solution concept. This sub-section

spells out the leading examples of designer objectives where the designer is interested in the

best, or the worst, or some continuous selection from the equilibrium outcomes.

Suppose that the designer evaluates outcomes with utility function u : A×Θ→ R.

The usual approach in information design is to assume that the designer can choose which

equilibrium is played. In this case, if O ⊆ ∆(A×Θ) is the set of equilibrium outcomes, the

designer’s utility will be:

VMAX (O) = sup
ν∈O

∑
a,θ

ν (a, θ)u (a, θ)

This objective is continuous and Proposition 12 applies. However, the revelation principle

applies to this problem, so we already know that we can restrict attention to finite information

structures, without appeal to Proposition 12 and the machinary behind it.

An alternative assumption in information design is that there is “adversarial equilibrium

selection,” i.e., the designer expects the worst possible equilibrium (for her) to be played. In

this case the designer’s utility over sets of outcomes will be

VMIN (O) = inf
ν∈O

∑
a,θ

ν (a, θ)u (a, θ) .

A few papers have studied this problem is recent years (Mathevet et al. (2020), Inostroza and

Pavan (2023), Morris et al. (2024) and Li et al. (2023)). It is well known that the maximum
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is typically not attained in this design problem. However, while it is clear in the particular

settings of these papers that the supremum can be approached using simple information

structures, there is no existing general statement of this property. Thus Proposition 12 is a

useful tool for this literature.

More generally, we could let the designer’s objective correspond to an arbitrary continuous

selection from BIBCE, so there exists f : 2∆(A×Θ)\∅ → ∆(A×Θ) with the following property:

for every O′ ⊆ O ⊆ ∆(A×Θ),

f(O) ∈ O′ =⇒ f(O′) = f(O), (3)

such that

Vf (O) =
∑
a,θ

f(a, θ|O)u(a, θ).

5.2 Proof of Proposition 12

Our denseness result implies:

Lemma 3. For every rich game G and every information structure P , there exists ε > 0

and a simple information structure P ε ∈ P∗ so that dACK(P, P ε) < ε and

|V (O(P,G))− V (OBNE(P ε,G))| < ε.

Proof. Suppose σ ∈ B(G, P ) satisfies VG(O(G, P )) =
∑

a,θ νσ (a, θ)u (a, θ). Then there are

sequences (P k, εk)kwith P k ∈ P∗ for all k and εk ↓ 0 so that dACK(P, P k) < εk for all

k. Moreover, by upper hemi-continuity established in Proposition 18, there is a subset

O∞(G, P ) ⊆ O(P,G) so that the sequence satisfies limk↑∞ dH,G(OBNE(G, P k),O∞(G, P )) =

0. Moreover, by the arguments in Proposition 11 we can pick the sequence so that νσ ∈

O∞(G, P ) and so by property (3) and continuity of V we have that limk↑∞ V (OBNE(P k,G)) =

V (O(P,G)) and so the result follows.
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Now the proof of Proposition 12 is completed as follows. By Lemma 3, we have that

sup
P∈P ′∩P∗

VG(OBNE(G, P )) = sup
P∈P ′

VG(O(G, P )).

Since P∗ ∩ P ′ ⊆ P ′, we have that

sup
P∈P ′∩P∗

VG(OBNE(G, P )) ≤ sup
P∈P ′

VG(OBNE(G, P )).

Moreover, by property (3) and the fact that OBNE(G, P ) ⊆ O(G, P ), we have that

sup
P∈P ′

VG(OBNE(G, P )) ≤ sup
P∈P ′

VG(O(G, P ))

and so
sup

P∈P ′∩P∗
VG(OBNE(G, P )) ≤ sup

P∈P ′
VG(OBNE(G, P ))

≤ sup
P∈P ′

VG(O(G, P ))

= sup
P∈P ′∩P∗

VG(OBNE(G, P )).

6 Alternative Formulations and Related Literature

In this section, we will discuss a number of alternative topologies characterizing convergence

of strategic outcomes. One purpose in doing so is that it will allow us to formally relate our

work to the relevant related literatures.

6.1 Interim Topologies

We have defined and characterize an (ex ante) strategic topology on (common prior) infor-

mation structures under an equilibrium solution concept (BIBCE). By contrast, Dekel et al.

(2006) defined an interim strategic topology on hierarchies of beliefs under the solution con-

cept of interim correlated rationalizability (ICR). Two belief hierarchies were said to be close
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in the interim strategic topology if, in any game, an action that was ICR at one hierarchy

was approximately ICR at the other hierarchy. Chen et al. (2017) provide a characterization

of the interim strategic topology in terms of belief hierarchies. Crucially, the interim strate-

gic topology imposes restrictions on the tails of hierarchies of beliefs, unlike the product

topology. We provide a formal statement of the characterization of Chen et al. (2017) in the

Appendix.

Our definition of the almost common knowledge topology used the product topology in

defining the event that interim beliefs were close. But we noted that the use of the product

topology was not essential. A first purpose of this section is to record what properties the

interim topology must satisfy in order to induce our almost common knowledge topology: it

is enough that it is induced by a “nice” metric that (1) refines the product topology; and (2)

has a countable dense subset.

The interim strategic topology satisfies these properties. But we also establish that if

we had used the interim strategic topology as our initial interim topology, we could have

dispensed with the requirement of approximate common knowledge in our definition of the

ex ante topology. Intuitively, this is because interim strategic topology imposes enough

restrictions on the tails of hierarchies of beliefs to generate the required approximate common

knowledge.

Definition 17. (Nice Interim Metric) A metric d on Ω is nice if (1) its induced topology

refines the product topology; (2) there is a countable subset of Ω0 which is dense in Ω.

A topology on Ω is nice if it is induced by a nice metric. Our ACK topology would be

the same if we replace the product interim topology with any nice interim topology in the

definition. We used the product topology. We could have used total variation as a metric

on interim beliefs, as Kajii and Morris (1998) do. But we could also have substituted the

interim strategic topology as defined by Dekel et al. (2006) and characterized by Chen et al.

(2017). Importantly, that topology (unlike the product topology) also imposes restrictions
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on infinite tails of hierarchies of beliefs which has implications for approximate common

knowledge. In particular, the interim strategic topology the following property.

Definition 18. (Common Belief Invariance) A metric dCB on Ω satisfies common belief

invariance if for all events E,E ′ ⊆ Ω and every ε > 0,

C1−ε (NdCB ,ε(E) ∩NdCB ,ε(E ′)) = NdCB ,ε(E) ∩NdCB ,ε(E ′),

where NdCB ,ε(E) is the union of ε-neighborhoods around the points in E using metric dCB.

For any metric d : Ω×Ω→ [0,∞), ε > 0 and P ∈ P , let suppd,ε(P ) :=
⋃
ω∈Ω:P (Nd,ε(ω))Nd,ε(ω).

Now we can consider the simplest and weakest natural way of translating an interim distance

into an ex ante distance

Definition 19. The weak ex-ante distance induced by an interim distance d is defined as

d′(P, P ′) = inf

ε ≥ 0 :
P
(
T̂d,ε(P, P

′)
)
> 1− ε

P ′
(
T̂d,ε(P, P

′)
)
> 1− ε

 ,

where T̂d,ε(P, P ′) := suppd,ε(P ) ∩ suppd,ε(P ′).

Proposition 13. The weak ex ante distance induced by any nice interim metric satisfying

common belief invariance induces the ACK topology.

Proof. Appendix.

Here, we have the special property that approximate common knowledge is for free.

Proposition 14. The interim strategic topology is nice and common belief invariant.

Proof. Follows from Propositions 16 and 17 in the Appendix.

For example, Kajii and Morris (1998) define a topology on ex ante information structures

(discussed below) but use total variation as a metric on interim beliefs.
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6.2 Value-Based Topology

We could alternatively define our topology in terms of convergence of the ex ante expected

equilibrium payoffs rather than equilibrium outcomes. This was the approach of Monderer

and Samet (1996) and Kajii and Morris (1998) and also the recent work of Gensbittel et al.

(2022) for zero sum games. This distinction is not important for our results.

Let V (G,P ) be the set of ex ante utilities of players (in Rn) that can arise from some

BIBCE of (G,P ), and let Vε(G,P ) be the set of ex ante utilities of players (in Rn) that are

within ε of some ε-BIBCE of (G,P ). We can say that P, P ′ are ε-value close in game G if

V (G, P ) ⊆ Vε(G,P
′) and V (G, P ′) ⊆ Vε(G,P ).

Definition 20. Let dV (P, P ′|G) be the infimum of the set of ε such that P and P ′ are ε-value

close in game G.

Lemma 4. Now d∗(P k, P |G)→ P if and only if dV (P k, P |G)→ 0 for all G.

Proof. One direction is immediate, because convergence of outcomes implies converges of val-

ues. In the other direction, it is enough to change payoffs so differences in outcome translate

into large differences in payoffs. Consider two outcomes ν, ν ′ of P and P ′ respectively so that

Vi(ν) = Vi(ν
′) but ν 6= ν ′. Consider the augmented payoffs ui(a, θ)+hi(a−i, θ) and associated

values V h
i (ν) = Vi(ν) +

∑
a,θ ν(a, θ)hi(a−i, θ) and V h

i (ν ′) = Vi(ν
′) +

∑
a,θ ν

′(a, θ)hi(a−i, θ).

Hence

V h
i (ν)− V h

i (ν ′) =
∑
a,θ

hi(a−i, θ)(v(a, θ)− v′(a, θ))

Consider the choice hi(a−i, θ) = 1{(a−i,θ):∃ ai∈Ai s.t. v(a,θ)>v′(a,θ)}−1{(a−i,θ):∃ ai∈Ai s.t. v(a,θ)<v′(a,θ)}

and so V h
i (ν)− V h

i (ν ′) > 0.

Thus there is little difference working with outcome-based strategic topologies and value-

based strategic topologies.

However, in the case of zero-sum games, the value is uniquely defined although many

outcomes might give rise to the same value. So it is convenient and natural to work with
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value-based strategic topologies in that case. Peski (2008) and Gossner and Mertens (2020)

characterize changes in information structure that increase one player’s payoff in all zero sum

games. Gensbittel et al. (2022) study essentially the value-based strategic topology defined

above but restricted to zero-sum games.

6.3 Join Measurability

Our approach in this paper has been to fix a set of payoff-relevant states Θ, and look at

common prior information structures that describe beliefs and higher-order beliefs about

those states. Then we characterize the coarsest topology under which equilibrium outcomes

converge for any game where payoffs are measurable with respect to Θ. In particular, we do

not allow games to depend in an arbitrary way on players’ types (or signals).

An alternative approach would be to allow any game where payoffs were measurable with

respect to the join of players’ types. Equivalently, we could restrict attention to information

structures where each payoff-relevant state could arise under only one profile of types; we call

this a “join measurability” restriction on information structures. It was implicitly maintained

in the works of Monderer and Samet (1996) and Kajii and Morris (1998). This restriction

greatly simplifies the arguments. In particular, in the proofs of sufficiency analogous to

Proposition 4 the join measurability approach allows a straightforward mapping of a strategy

profile on one information structure to another. We were not able to do that, and required

a continuous extension exploiting the structure of the universal type space. In the proofs of

necessity analogous to Proposition 5, the join measurability approach requires only an email

game like component where an infection argument operates and not also an iterated scoring

rule to reveal finite levels of beliefs, as in this paper.

This is the most important difference between the work of Monderer and Samet (1996)

and Kajii and Morris (1998), and this work. There are number of other differences that are

less important. First, the earlier papers focused on BNE as a solution concept, while we focus

on BIBCE. Second, they focused on countable information structures (to ensure existence of

42



BNE), whereas we do not impose that restriction. Third, their topologies were value-based

whereas our topology is outcome-based (a difference that we argued was not important in

the previous section) . Fourth, we restrict ourselves to a finite set of payoff-relevant states,

but these papers must allow for countable payoff relevant states.

The set of information structures considered in Monderer and Samet (1996) and Kajii

and Morris (1998), while both satisfying join measurability, were modelled differently. Mon-

derer and Samet (1996) fixed a state space and prior probability. An information structure

was then a profile of (countable) partitions of the state space. And payoffs could depend

in arbitrary ways on the state space. On the other hand, Kajii and Morris (1998) fixed a

countable set of “types” (or labels) for each player and allowed arbitrary probability distri-

butions on the types space. The exact connection between the similar topologies defined on

different classes of information structures was not known until recently, when Kambhampati

(2023) showed an equivalence between the results.

6.4 Improper Priors and Completeness

In this paper, we have focused on common prior information structures. Our results imply

that equilibrium outcomes converge along Cauchy sequences in the ACK topology. However,

in general, Cauchy sequences may not have well-defined limits within the space of information

structures. In this section, we show that if we enrich the class of information structures to

include “improper” common prior information structures, and extend the ACK topology to

this class of information structures, then all Cauchy sequences do converge to a well defined

limit. This result is of independent interest, in the light of the importance of improper

common prior limits in the literature on higher-order beliefs in games (discussed below).

An improper prior on the universal type space is simply a measure with perhaps infinite

mass such that there is a conditional probability consistent with the interim beliefs on the

universal type space. Formally, we have:
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Definition 21. (Improper Prior) A measure on Ω, Q : B → [0,∞], is an improper prior if

for every player i there is a measurable map Qi : Ti → ∆(Ω) so that

τ ∗i = margΘ×T−i (Qi(τi)) , Q-a.e.

and for every measurable E ∈ B,

ˆ
projTi (E)

Qi(E|τi)Q(dτi) = Q(E).

Let P̄ denote the set of improper priors and note that P ⊆ P̄ . The approximate common

knowledge topology extends in a natural way to P̄ :

Definition 22. (Approximate Common Knowledge Distance) For every P, P ′ ∈ P̄ , let

dACK (P, P ′) := inf

ε ≥ 0 :
P
(

Ω \ C1−ε
(
T̂ε(P, P

′)
))

< εP
(
C1−ε

(
T̂ε(P, P

′)
))

P ′
(

Ω \ C1−ε
(
T̂ε(P, P

′)
))

< εP ′
(
C1−ε

(
T̂ε(P, P

′)
))

 .

Notice that this Definition coincides with the earlier Definition 8 when applied to proper

priors.

A decision rule σ is a BIBCE of an improper prior Q ∈ Q, if σ is belief invariant and

obedience holds almost everywhere. For any ε > 0, let the collection of ε-BIBCE on an

improper prior Q be denoted by Bε(G, Q).

Proposition 15. The extended approximate common knowledge topology on P is complete.

Proof. Let S ⊆ B be a semi-ring so that the sigma algebra it generates equals B. Let

(P k)k be a Cauchy sequence in P and (εk)k a sequence so that for every k,

εk ≤ sup
h>k

dACK(P k, P h).
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Define a limit pre-measure on S , which on any event E ∈ S takes the form

ξ0(E) := lim
k↑∞

P k(Nεk(En)),

where we set Nε(∅) = ∅. We now show that ξ0 is a pre-measure on S . Indeed, ξ0(∅) = 0.

Since each P k is a measure, they are all finitely additive and so for any finite, disjoint

(En)n≤N , the limit and sum can be exchanged so that

ξ0

(⋃
n≤N

En

)
= lim

k↑∞

∑
n≤N

P k(Nεk(En))

=
∑
n≤N

ξ0(En)

Finally, countable monotonicity follows from Reverse Fatou’s lemma (each P k is bounded

and non-negative):

ξ0

(⋃
n∈N

En

)
= lim

k↑∞

∑
n∈N

P k(Nεk(En))

≤
∑
n∈N

ξ0(En).

By Caratheodory-Hahn’s Extension Theorem, ξ0 extends to a measure ξ on the sigma algebra

generated by S . It remains to show that ξ0 is a Canonical Improper Prior. We need to

prove that ξ0 satisfies the consistency condition. For every event E ∈ B, we have that

|P k(E)− ξ(E)| =
∣∣∣∣ˆ
Ti
τi(Nε(E))P k(dτi)− lim

k↑∞

ˆ
Ti
τi(Nεk(E))P k(dτi)

∣∣∣∣
≤ ε.

Hence ξ0 ∈ P . Deduce that P is a complete metric space.
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7 Appendix

7.1 Proof of Proposition 2

In the set-up of Stinchcombe (2011) a prior is a countably additive probability P ∈ ∆(
∏

i Ωi),

where each Ωi is endowed with a sigma algebra Fi and P is defined on a sigma algebra

containing the product sigma algebra. Payoffs are given by Ui :
∏

i Ωi → RA. It is assumed

that
´

Ω
||Ui(ω)||∞dP (ω) <∞. A behavior strategy is a Fi-measurable map bi : Ωi → ∆(Ai).

Let Bi be the set of behavior strategies and let B :=
∏

i Bi. A measure ν ∈ ∆(
∏

i Bi) is a

correlated equilibrium9 if for every i and measurable deviation γi : Ωi ×∆ (Ai)→ ∆ (Ai),

ˆ
B

ˆ
Ω

(∑
a∈A

Ui(ω)(a)
∏
i

bi(a|ω)−
∑
a∈A

Ui(ω)(a) · γi(ω, bi(a|ω)) ·
∏
j 6=i

bj(a|ω)

)
dP (ω)dν(b) ≥ 0.

We show that for every correlated equilibrium (P, ν) there is an outcome equivalent equi-

librium (P, σ). We now translate this set-up into ours for any choice of general information

structure S: Ωi must correspond to Θ×Ti, where Fi is generated by the projection of Θ×Ti

onto Ti . Payoffs translate into our set-up by setting Ui(θ, τ)(a) = ui(θ, a). The condition

that
´

Ω
||Ui(ω)||∞dP (ω) < ∞ is then satisfied since Θ is finite and payoffs depend Θ and

not T . A behavior strategy corresponds to a marginal decision rule, σ(ai|ti).It remains to

show that a distribution ν over profiles of marginal decision rules as in Stinchcombe (2011)

is equivalent to a belief invariant decision rule. First, note that every measure ν ∈ ∆(
∏

i Bi)

induces a belief invariant decision rule σν where for every measurable event E ⊆ A

σν(a|ω) =

ˆ
B

∏
i

bi(τi)(ai) dν(b).

Indeed, the resulting marginal probability σν(ai|ω) =
´
Bi
bi(τi)(ai) dν(bi) verifies belief in-

variance.
9In Stinchcombe (2011) this corresponds to a variation Strategy Correlated Equilibrium where deviation

strategies depend action recommendations at realized types only.
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7.2 Proof of Proposition 8

Let (G, P ) be base game and an information structure, i.e. so that P ∈ P . Consider an

information structure Ŝ = ((Si, P̂i)i∈I , P̂ ) satisfying P = PŜ and let σ′ be a BIBCE of (G, Ŝ).

We construct an outcome equivalent BIBCE σ of (G, Ŝ). For every θ ∈ Θ and P -almost every

τ ∈ T , let

σ(a|θ, τ) =

ˆ
τ−1(τ)

σ′(a|θ, s′) dP̂ (s′|θ, τ−1(τ)),

where τ 7→ P̂ (·|θ, τ−1(τ)) ∈ ∆(τ−1(τ)) is a conditional probability on S. Then obedience

constraints for any P -almost every type τi ∈ Ti are satisfied

∑
θ,a−i

(ui(a, θ)− ui(a′i, a−i, θ))
ˆ
S−i

σ(a|θ, τ) dP (τ−i, θ|τi) =

∑
θ,a−i

(ui(a, θ)− ui(a′i, a−i, θ))
ˆ
S−i

ˆ
τ−1(τ)

σ′(a|θ, s′) dP̂ (s′|θ, τ−1(τ)) dP (τ−i, θ|τi).

Noting that

ˆ
T−i

ˆ
τ−1(τ)

σ′(a|θ, s′) dP̂ (s′|θ, τ−1(τ)) dP (τ−i, θ|τi) =

ˆ
S−i

σ′(a|θ, s′) dP̂ (s′−i, θ|si),

we conclude that σ is a BIBCE of (G, P ). Conversely, note that every BIBCE σ of (G, P )

induces a id×τ -measurable decision rule σ′, where for every action profile a ∈ A, state θ ∈ Θ

and P̂ -almost every s′ ∈ S,

σ′(a|θ, s′) = σ(a|θ, τ(s′)).

Performing a change of variables

ˆ
S−i

σ′(a|θ, s′) dP̂ (s′−i, θ|si) =

ˆ
T−i

ˆ
τ−1(τ)

σ′(a|θ, s′) dP̂ (s′|θ, τ−1(τ)) dP (τ−i, θ|τi)

=

ˆ
T−i

σ(a|θ, τ) dP (τ−i, θ|τi).
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and so obedience follows.

7.3 Proof of Proposition 9

Let (σi : Si → ∆(Ai))i∈I be a BNE under (G,S). Consider the following representation

of S: Define the graph of τ , φτ : s 7→ (τ(s), s) and consider the push forward probability

P ∗ := P ◦ (id× φτ )−1. Let σR : Θ× T → ∆(S) denote a (id× τ)-conditional probability of

P ∗ so that for any measurable E ⊆ S and state θ ∈ Θ in the support of P ,

P (E|θ) =

ˆ
T
σR(E|θ, τ)dP ∗(τ |θ).

We now construct a BIBCE σ∗ on margΩP
∗ as follows:

σ∗(a|θ, τ) =

ˆ
S

∏
i∈I

σi(a|si) dσR(s|θ, τ).

Since σ satisfies obedience, so does σ∗:

∑
θ,a−i

(ui(a, θ)− ui(a′i, a−i, θ))
ˆ
T−i

σ∗(a|θ, τ) dmargΩP
∗(θ, τ−i|τi)

=
∑
θ,a−i

(ui(a, θ)− ui(a′i, a−i, θ))
ˆ
S

∏
i∈I

σi(a|si) dP (θ, s−i|si).

7.4 Proof of Proposition 1

The ACK topology is metrizable by the metric

df,g(P, P ′) = inf

ε ≥ 0 :
P
(
C1−g(ε)

(
T̂g(ε)(P, P

′)
))

> f(ε)

P ′
(
C1−g(ε)

(
T̂g(ε)(P, P

′)
))

> f(ε)

 .

where g(ε) := ε2 and f(ε) := 1− 1
2
ε(ε+ 1).
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Proof. First note that df,g(P, P ) = 0 and df,g(P, P ′) = df,g(P ′, P ) are both immediate.

Suppose now that df,g(P, P ′) = 0. Then we have that supp(P ) = supp(P ′), which by the

definition of P means that P = P ′. It remains to show that df,g satisfies the triangle inequal-

ity. Let P 1, P 2, P 3 ∈ P satisfy df,g(P 1, P 2) < ε1,2 and df,g(P 3, P 2) < ε3,2, for ε1,2, ε3,2 ∈ [0, 1].

Note that for every ω ∈ T̂g(ε1,2)(P
1, P 2) ∩ T̂g(ε2,3)(P

2, P 3) ⊆ suppg(ε1,2)(P
1) ∩ suppg(ε3,2)(P

3)

there is ω′ ∈ supp(P 2) so that

dΠ(ω, ω′) ≤ ε := min {g(ε1,2), g(ε3,2)} .

Moreover, P 2(F ) > 1− (1− f(ε1,2) + 1− f(ε3,2)), where

F := C1−g(ε1,2)
(
T̂g(ε1,2)(P

1, P 2)
)
∩C1−g(ε3,2)

(
T̂g(ε2,3)(P

2, P 3)
)
⊆ C1−g(ε1,2+ε3,2)

(
T̂g(ε1,2+ε3,2)(P

1, P 3)
)
,

and the last containment is due to the fact that g(ε1,2)+g(ε3,2) = ε2
1,2 +ε2

3,2 ≤ (ε1,2 +ε3,2)2 =

g(ε1,2 + ε3,2). Consider a P 1, P 3 and P 2 measurable, surjective map φ : F → F ∩ supp(P 2)

so that for all ω ∈ F , dΠ(φ(ω), ω) < ε. Letting Fi := projTi(F ),

|P k(F )− P 2(F )| =
∣∣∣∣ ˆ

Fi

τi(F )P k(dτi)−
ˆ
Fi

τi(F )P 2(dτi)
∣∣∣∣

≤ ε

.

Hence P k(F ) ≥ f(ε1,2) + f(ε3,2)− 1− ε. Then for any ε1,2, ε3,2 ∈ [0, 1],

P k
(
C1−g(ε1,2+ε3,2)

(
T̂g(ε1,2+ε3,2)(P

1, P 3)
))
≥ f(ε1,2) + f(ε3,2)− 1− ε .
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Given g(ε) = ε2 and f(ε) = 1− 1
2
ε(ε+ 1). Then we have

f(ε1,2) + f(ε3,2)− ε− 1 ≥ f(ε1,2 + ε3,2)

1− 1

2
ε1,2(ε1,2 + 1) + 1− 1

2
ε3,2(ε3,2 + 1)− ε− 1 ≥ 1− 1

2
(ε1,2 + ε3,2) (ε1,2 + ε3,2 + 1)

−1

2
ε1,2(ε1,2 + 1)− 1

2
ε3,2(ε3,2 + 1)− ε ≥ −1

2
(ε1,2 + ε3,2) (ε1,2 + ε3,2 + 1)

(ε2
1,2 + ε2

3,2 + ε1,2 + ε3,2) + 2ε ≤
(
(ε1,2 + ε3,2)2 + ε1,2 + ε3,2

)
(ε2

1,2 + ε2
3,2 + ε1,2 + ε3,2) + 2ε ≤

(
ε2

1,2 + ε2
3,2 + ε1,2 + ε3,2

)
+ 2ε1,2ε3,2

min
k∈{1,3}

ε2
k,2 ≤ ε1,2ε3,2

min
k∈{1,3}

εk,2 ≤ max
k∈{1,3}

εk,2.

Hence df,g(P 1, P 3) < ε1,2 + ε3,2 and so df,g satisfies the triangle inequality.

7.5 Proof of Lemma 1

Proof. For every precision z ∈ N define a finite grid approximation recursively: Consider the

grid on first order beliefs, given by

A1,z
i :=

{
a ∈ RΘ : aθ ∈

{n
z

: 0 ≤ n ≤ z
}
,
∑
θ

aθ = 1

}

for any player i. Given a finite set Am−1,z
i ⊆ T m−1

i for every i, define

Am,zi :=

a ∈ R
∏
n<m An,z−i ×Θ :

aa1,...,am−1,θ ∈
{
n
z

: 0 ≤ n ≤ z
}
,∑

a1,...,am−1,θ aa1,...,am−1,θ = 1

 . (4)

Then for any m ∈ N, and any tm ∈ T m,there is am ∈
∏

i∈I A
m,z
i so that dmWeak(t

m, am) < 1/z.

Then there is m, z large enough so that for every, θ ∈ Θ, every g ∈ T satisfying (g1, . . . gm) =
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am and τ ∈ T satisfying (τ 1, . . . , τm) = tm,

dΠ((θ, τ) , (θ, g)) =
∞∑
n=1

ηndnWeak(τ
1, . . . , τn, g1, . . . , gn)

=
η

z

1− ηm+1

1− η
+ ηm

1

1− η

<ε.

Let Gε :=
∏

i∈I A
m,z
i ∩ (Ω \ Nε(E)). Suppose that dΠ(ω, ωg) < ε for some ω ∈ Ω and

ωg ∈ Gε.Then clearly, it must be that ω /∈ E, since the opposite would imply that ωg ∈

Nε(E)∩Gε. Suppose now that ω ∈ Ω \ Nε(E) and so by the above there is ωg ∈ Gε so that

dΠ(ω′, ωg) < ε.

7.6 Proof of Lemma 2 (Iterative Scoring Rule)

Proof. Fix m, z. and let Am,z be defined as in 4. Following Dekel et al. (2006), for every

profile (a1, . . . , am, θ) ∈ Am,z ×Θ we define

umi
(
a1, . . . , am, θ

)
:= 2a1

i (θ)−
∑
θ̂

(
a1
i (θ̂)

)2

+
m∑
n=2

2ani (a1, . . . , an−1, θ)−
∑

â1,...,ân−1,θ̂

(
ani (â1, . . . , ân−1, θ̂)

)2

 .

Dekel et al. (2006) show that the game where payoffs are given by umi , the uniquely interim

(correlated) rationalizable action profile of τ is the profile a1, . . . , am which is 1/z-close to τ

in terms of distance dmWeak on T m. The result then follows from Claim 1.
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7.7 Open Set Definition of Strategic Topology

Definition 23. (Strategic Distance) A function dP : P ×P → [0,∞) is a strategic distance

if,

1. for every game G and ε > 0, there exists δε,G > 0 so that for all P, P ′ ∈ P satisfying

dP(P, P ′) < δε,u, we have that du(P, P ′) < ε,

2. for every ε > 0 and P, P ′ ∈ P satisfying supu d
u(P, P ′) < ε, we also have dP(P, P ′) < ε.

7.8 Proof of Proposition 13

Proof. Let d induce a nice, common belief invariant topology on Ω which is a stronger topol-

ogy than the one induced by dΠ and we have that T̂d,ε(P, P ′) ⊆ T̂ε(P, P
′). By Proposition

17 we deduce that T̂d,ε(P, P ′) = C1−ε
(
T̂d,ε(P, P

′)
)
⊆ C1−ε

(
T̂ε(P, P

′)
)
and so

min
{
P (T̂d,ε(P, P

′)), P (T̂d,ε(P, P
′))
}
> 1− ε =⇒ dACK(P, P ′) < ε

=⇒ ∀ G, ∃ N > 0 s.t. d∗(P, P ′|G) < Nε.

We now show that for every ε > 0 there is δ > 0 so that P (C1−δ
(
T̂δ(P, P

′)
)

) > 1− δ =⇒

P (T̂d,ε(P, P
′)) > 1−ε. Suppose that supp(P ) 6= supp(P ′) (otherwise the condition is trivially

satisfied). There is a countable subset Ω0
d ⊆ Ω0 which is dense under d. Suppose that for

every ε > 0 there is a finite grid Gd,ε whose ε-neighborhood covers a subset Hε ⊆ T̂d,ε(P, P
′)

with P (Hε) > 1 − ε. Since Ω is Hausdorff under the product topology, there is a δ so that

ming,g′∈Gd,ε:g 6=g′ dΠ(g, g′) > δ and so the result follows. It remains to prove the existence of

such a grid. We show that for any nice metric d, Ω is Polish. To establish that Ω is Polish

it is enough to show that it is complete under d. Let (ωk)k be Cauchy. Since d refines

the product topology, the sequence (ωk)k is Cauchy under the product topology. Since Ω is
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Polish under the product topology (see Mertens et al. (2015)), we deduce that Ω is Polish

under d. Then P is regular and so every set, in particular the set T̂d,ε(P, P ′), admits a

compact approximation Hε from below. By compactness, Hε admits such a grid.

7.9 Interim Strategic Topology

We follow Chen et al. (2017) in describing the interim strategic topology.

Definition 24. (Frame) A frame is a profile of maps (πi)i∈I where for every i ∈ I, πi : Ti →

Fi, Fi is a finite set and for every prior P ∈ P and all types τi, τ ′i ∈ Ti,

P (·, ·|τi) ◦ (id× π−i)−1 = P (·, ·|τ ′i) ◦ (id× π−i)−1 =⇒ πi(τi) = πi(τ
′
i).

For any set E ⊆ Ω and any player i , let Ei ⊆ Ti denote the projection of E on Ti. Let

F denote the collection of events that are measurable with respect to a frame.

F =
{
E ∈ B : ∃ π ∈ Π, τ ∈ E s.t. ∀ i ∈ I, π−1

i (πi(τ)) = Ei
}
.

The formal definition is recursive:

Definition 25. (Uniform Weak Distance on Frames) For all pairs ω = (θ, τ), ω̂ = (θ̂, τ̂) ∈ Ω,

define the Uniform Prokohorov Distance on Frames by dF (ω, ω̂) := supm d
m(ω, ω̂), where

the sequence of functions (dm)m on Ω× Ω is defined recursively from a metric representing

the weak* topology on profiles of first order beliefs d1(ω, ω̂) = d∆(Θ)I (τ
1, τ̂ 1), and for every

m > 1,

dm(ω, ω̂) := dΘ(θ, θ̂) + inf{δ > 0 : ∀ i, τi(E) ≤ τ̂i(Ndm−1,δ(E)) + δ, ∀ E ∈ F}.

Definition 26. (Interim Strategic Topology) Define the uniform weak topology on frames

as the topology on Ω generated by the sets
{
ω′ ∈ Ω : dF (ω, ω′) < ε

}
for ω ∈ Ω and ε > 0.
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Proposition 16. (Niceness) The interim strategic topology is nice.

Proof. Dekel et al. (2006) show that a countable set of finite states is dense in Ω in the

interim strategic topology. The interim strategic topology is a stronger topology than the

product topology and is metrizable (see Dekel et al. (2006)).

Proposition 17. (Common Belief Invariance) For every canonical P, P ′ ∈ P and ε > 0,

C1−ε

(
T̂dF ,ε(P, P

′)
)

= T̂dF ,ε(P, P
′).

Proof. Consider ω = (θ, τ) ∈ ΩP and ω̂ = (θ̂, τ̂) ∈ ΩP ′ with dF (ω, ω̂) < ε. Then it must be

that ω, ω̂ ∈ T̂dF ,ε(P, P
′). Since ΩP ∈ F , the fact that dF (ω, ω̂) < ε implies that

τ ∗i (ΩP ) ≤ τ̂ ∗i (NdF ,ε(ΩP )) + ε.

Since τ ∗i (ΩP ) = 1 and τ̂ ∗i (ΩP ′) = 1 we have

τ̂ ∗i (T̂dF ,ε(P, P
′)) = τ̂ ∗i (NdF ,ε(ΩP )) ≥ 1− ε.

A symmetric argument implies that τ ∗i (T̂dF ,ε(P, P
′)) ≥ 1 − ε and so T̂dF ,ε(P, P

′) =

B1−ε(T̂dF ,ε(P, P
′)), which establishes the result.

7.10 Continuity of Exact BIBCE in Rich Games

Our main result established that the ACK topology is the coarsest topology generating

continuity in approximate BIBCE outcomes. For many applications of interest, we would

like to make statements about continuity of exact BIBCE outcomes. We can extend our

results to exact BIBCE if we allow for sufficiently rich games.

We introduce a “strong richness” property of a base game.
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Definition 27. (strong richness) A base game G satisfies strong richness if there exists

θ∗ ∈ Θ such that for every player i and every ai ∈ Ai, there exists a−i ∈ A−i such that

(ai, a−i) is a strict Nash Equilibrium of (uj(·, ·, θ∗))j∈I .

Richness requires that the set of possible payoffs is sufficiently rich. It is in the spirit of but

stronger than richness properties in the literature, e.g., Weinstein and Yildiz (2007). Recall

that it is a maintained assumption that every state θ ∈ Θ is assigned positive probability.

Lemma 5. For every base game G satisfying strong richness, ε > 0; and simple information

structure P ∈ P, there exists a simple information structure P+ ∈ P so that dACK(P, P+) <

ε and

dH(Oε(G, P ),O(G, P+)) < 2M |A×Θ|ε,

where dH(X, Y ) is the Hausdorff distance between X, Y ⊆ ∆(A×Θ).

Proof. By richness part (2), for any player i and any action ai ∈ Ai there is α−i(ai) ∈ A−i so

that (ai, α−i(ai)) is a strict NE in the game with payoffs (uj(·, ·) := uj(·, ·, θ∗))j∈I . We first

perturb P so that every type assigns probability at least δ > 0 to θ∗ by adding a new profile

of types tτi = (tτij )j∈I for every player i and every type τi ∈ Ti := {τi : τ ∈ supp(P )}. Define

the extended prior P+ with support given by

T+ := supp(P ) ∪

(⋃
i∈I

(
T i ∪ T̄ i

))
,

where T i :=
{

(θ∗, τi, t
τi
−i) : τ ∈ supp(P )

}
and T̄ i := {(θ∗, tτi) : τi ∈ Ti}. For every (θ, τ) ∈ T+

and any given choices δ, η ∈ [0, 1), define

P+(θ, τ̂) :=


(1− η)(1− δ)P (θ, τ̂) if (θ, τ̂) ∈ supp(P ),

(1− η)δ/|I|
∑

i∈I 1(θ,τ̂)∈T iP (τ̂i)µ(θ) if (θ, τ̂) ∈ ∪i∈IT i,

η/|I|
∑

i∈I 1(θ,τ̂)∈T̄ i
∑

τi
1τ̂=tτiP (τi)µ(θ) if (θ, τ̂) ∈ ∪i∈I T̄ i.
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For every σ ∈ Bε(G, P ) we construct an associated BIBCE σ+ ∈ B(G, P+) as follows:

σ+(a|θ, τ̂) =


∑

i∈I 1(θ,τ̂)∈T i∪T i1a=(ai,α−i(ai))σ(ai|τ̂i) if (θ, τ̂) ∈ ∪i∈I
(
T i ∪ T̄ i

)
,

σ(a|θ, τ) otherwise.

We first verify that σ+is belief invariant:

∑
a−i

σ+(a|θ, τ̂−i, τ̂i) =


σ(ai|τ̂i) if (θ, τ̂) ∈ supp(P ),

σ(ai|τ̂i) if (θ, τ̂) ∈ T i ∪ T̄ i,∑
j 1(θ,τ̂)∈T j∪T̄ jσ(ai|τ̂j) if (θ, τ̂) ∈ ∪j 6=iT j ∪ T̄ j,

and so (θ, τ̂) 7→ σ(ai|θ, τ̂) is measurable with respect to the projection (θ, τ̂) 7→ τ̂i for all

ai ∈ Ai. This decision rule increases the expected payoff of σ for every type in the support

of P : Let JG := minai,âi∈Ai,i∈I (ūi(ai, α−i(ai))− ūi(âi, α−i(ai))) > 0 and define δ := ε
JG+ε

< ε.

Consider any τi ∈ Ti and deviation a′i

∑
θ,τ

∑
a

∆ui(a, a
′
i, θ)P

+ ◦ σ+(a, θ, τ−i|τi) > −ε(1− δ) + δ
∑
ai

∆ūi(ai, α−i(ai), a
′
i) σ(ai|τi)

≥ −ε(1− δ) + JGδ = 0.

It remains to check if obedience also holds for each type tτji of player i and any associated

τj ∈ Tj of player j:

∑
θ,τ

∑
a

∆ui(a, a
′
i, θ) P

+ ◦ σ+(a, θ, τ−i|t
τj
i ) =

∑
aj

∆ūi(aj, α−j(aj), a
′
i) σ(aj|τj)

≥ JG > 0.

Hence σ+ ∈ B(G, P+) and outcomes νσ ∈ Oε(G, P ) and νσ+ ∈ O(G, P+) satisfy ||νσ −

ν ′||2 ≤ 2M ε
JG+ε

< 2Mε . Let gi(τ) := τ i (P
+(·, ·|τi)) denote the new canonical type/belief
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hierarchy of player i, for each τ ∈ supp(P ). Then for every event E ⊆ supp(P ) and

any player i, |gi(τ)(E) − τi(E)| ≤ δ. Since the total variation norm is stronger than the

product topology, we conclude that dΠ(g(τ), τ) ≤ δ < ε. Hence P+ (Nε(supp(P ))) > 1 − ε

and so dACK(P, P+) < ε. Hence for every ν ′ ∈ O(G, P+) there is ν ∈ Oε(G, P ) so that

||ν − ν ′||2 ≤ 2M |A×Θ|ε.

Proposition 18. For every base game G and any information structure P ∈ P there

is a sequence (P̂ k)k of simple information structures ACK-converging to P and a subset

O∞(G, P ) ⊆ O(G, P ) so that limk↑∞ dH(O(G, P̂ k),O∞(G, P )) = 0. If G satisfies strong rich-

ness, then

lim
k↑∞

dH(O(G, P̂ k),O(G, P )) = 0.

Proof. By Proposition 6 there is a sequence of simple priors P k converging strategically

to P and a sequence of positive (εk)k converging monotonically to 0 so that for every k,

d∗(P k, P ) < εk. We first prove upper hemi-continuity of BIBCE with respect to strategic

convergence. Let (σk)k be a sequence of BIBCE so that for every k ∈ N, σk ∈ B0(G, P k) and

the induced sequence of outcomes (νσk)k converges to some outcome ν∞, i.e. limk↑∞ ||νσk −

ν∞||2 = 0. We have shown that for every k there is a εk-BIBCE σε
k ∈ Bεk(G, P ) so that

||νσk−νσεk ||2 ≤ 4M |A×Θ|εk. Our construction in the proof of Proposition 4 has the feature

that the sequence
(
σε

k
)
k
converges almost surely to an obedient decision rule (as it was

constructed from a conditional expectation) and so there is a BIBCE σ∞ ∈ B(G, P ) so that

νσ∞ = ν∞, which establishes upper hemi-continuity: There is a subset O∞(G, P ) ⊆ O(G, P )

so that

lim
k↑∞

dH,G(O(G, P k),O∞(G, P )) = 0.

Lower hemi-continuity is a consequence of Lemma 5 and richness part (2) of G. Indeed, for

every BIBCE σ ∈ B(G, P ) and every k ∈ N, d∗(P, P k) < εk implies that there is σεk,k ∈

Bεk(G, P k) so that ||ν
σεk,k
− νσ||2 < εk. Hence, there is a superset O∞(G, P ) ⊇ O(G, P ) so

that limk↑∞ dH,G(Oε
k
(G, P k),O∞(G, P )) = 0. From the construction in the proof of Lemma
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5 there is simple P̂ k ∈ P so that d∗(P k, P̂ k) < εk so that dH,G(Oε
k
(G, P k),O(G, P̂ k)) <

2M(u)εk. By the triangle inequality, the sequence (P̂ k)k also converges strategically to P .

By upper hemi-continuity established earlier and the triangle inequality there is a subset

O∞(G, P ) ⊆ O(G, P ) so that limk↑∞ dH,G(Oε
k
(G, P k),O∞(G, P )) = 0. But then we have that

O∞(G, P ) = O∞(G, P ) = O(G, P ) and so the result follows.

Focusing attention on BIBCE as a solution concept, we have:

Lemma 6. For any game G and any open P∗ ⊆ P,

sup
P∈P∗∩PSIMPLE

V (O(G, P )) ≤ sup
P∈P∗

V (O(G, P )).

Moreover, if G satisfies strong richness,

sup
P∈P∗∩PSIMPLE

V (O(G, P )) = sup
P∈P∗

V (O(G, P )).

The first statement follows from our denseness result (6) while the second statement

follows from our exact continuity results (Propositions 5and 18)

7.11 Example Existence of BIBCE

We consider the game by Hellman (2014) where BNE fails to exist and yet construct a

straightforward BIBCE of this game. There are two players A and B and two actions L,R

(see Hellman (2014) for the payoff matrix)

σ(y, θ) =


1
2
(L,L), 1

2
(R,R) , if θ ∈ {(A, 1), (B, 1)}

1
2
(R,L), 1

2
(L,R) , if θ ∈ {(A,−1), (B,−1)}
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This decision rule is independent of the type space and satisfies belief invariance: For

any ai ∈ {L,R} and any θ ∈ {(A, 1), (B, 1), (A,−1), (B,−1)}

∑
a−i∈{L,R}

σ(ai, a−i|y, θ) = σ(ai, L|y, θ) + σ(ai, R|y, θ) =
1

2
.

We do not need to report the full information structure considered in Hellman (2014),

to verify obedience as σ is independent of types. Each player i ∈ {A,B} has one of two

first-order beliefs Pi(·|y) indexed by y ∈ {−1, 1}

PA(θ|y) =



1
2

if θ = (A, y)

1
4

if θ = (B, 1)

1
4

if θ = (B,−1)

, PB(θ|y) =



1
2

if θ = (B, y)

1
4

if θ = (A, 1)

1
4

if θ = (A,−1)

.

So if recommended ai ∈ {L,R} player i’s payoff increment from playing a different action

a′i 6= ai is given by when i = A :

For the case where y = 1 and aA = L

1

2
(uA(L,L, (A, 1))− uA(R,L, (A, 1))) +

1

4
(uA(L,L, (B, 1))− uA(R,L, (B, 1)))

+
1

4
(uA(L,R, (B,−1))− uA(R,R, (B,−1))) = 0.35 > 0.

For the case where y = 1 and aA = R

1

2
(uA(R,R, (A, 1))− uA(L,R, (A, 1))) +

1

4
(uA(R,R, (B, 1))− uA(L,R, (B, 1)))

+
1

4
(uA(R,L, (B,−1))− uA(L,L, (B,−1))) = 0.15 > 0.

For the case y = −1 and aA = L,
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1

2
(uA(L,R, (A,−1))− uA(R,R, (A,−1))) +

1

4
(uA(L,R, (B,−1))− uA(R,R, (B,−1)))

+
1

4
(uA(L,L, (B, 1))− uA(R,L, (B, 1))) = 0.35 > 0.

For the case y = −1 and aA = R,

1

2
(uA(R,L, (A,−1))− uA(L,L, (A,−1))) +

1

4
(uA(R,L, (B,−1))− uA(L,L, (B,−1)))

+
1

4
(uA(R,R, (B, 1))− uA(L,R, (B, 1))) = 0.15 > 0.

Similarly for player i = B:

For the case where y = 1 and aB = L

1

2
(uB(L,L, (B, 1))− uB(L,R, (B, 1))) +

1

4
(uB(L,L, (A, 1))− uB(L,R, (A, 1)))

+
1

4
(uB(R,L, (A,−1))− uB(R,R, (A,−1))) = 0.35 > 0.

For the case where y = 1 and aB = R

1

2
(uB(R,R, (B, 1))− uB(R,L, (B, 1))) +

1

4
(uB(R,R, (A, 1))− uB(R,L, (A, 1)))

+
1

4
(uB(L,R, (A,−1))− uB(L,L, (A,−1))) = 0.15 > 0.

For the case y = −1 and aB = L,

1

2
(uB(R,L, (B,−1))− uB(R,R, (B,−1))) +

1

4
(uB(R,L, (A,−1))− uB(R,R, (A,−1)))

+
1

4
(uB(L,L, (A, 1))− uB(L,R, (A, 1))) = 0.35 > 0.

60



For the case y = −1 and aB = R,

1

2
(uB(L,R, (B,−1))− uB(L,L, (B,−1))) +

1

4
(uB(L,R, (A,−1))− uB(L,L, (A,−1)))

+
1

4
(uB(R,R, (B, 1))− uA(L,R, (B, 1))) = 0.15 > 0,

and thus all the obedience conditions for a BIBCE are satisfied.
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