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Abstract

This paper develops a welfare accounting decomposition that identifies and quantifies the origins
of welfare gains and losses in general economies with heterogeneous individuals and disaggregated
production. The decomposition — exclusively based on preferences and technologies — first
separates efficiency from redistribution considerations. Efficiency comprises i) exchange efficiency,
which captures allocative efficiency gains due to reallocating consumption and factor supply
across individuals, and ii) production efficiency, which captures allocative efficiency gains
due to adjusting intermediate inputs and factors, as well as technical efficiency gains from
primitive changes in technologies, good endowments, and factor endowments. Leveraging the
decomposition, we provide a new characterization of efficiency conditions in disaggregated
production economies with heterogeneous individuals that carefully accounts for non-interior
solutions, extending classic efficiency results in Lange (1942) or Mas-Colell et al. (1995). In
competitive economies, prices (and wedges) are directly informative about the welfare-relevant
statistics that shape the welfare accounting decomposition, which allows us to characterize a
generalized Hulten’s theorem and a new converse Hulten’s theorem. We present several minimal
examples and four applications to workhorse models in macroeconomics: i) the Armington model,
ii) the Diamond-Mortensen-Pissarides model, iii) the Hsieh-Klenow model, and iv) the New
Keynesian model.
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1 Introduction

Identifying the sources of welfare gains and losses is critical to assess the impact of shocks and
the desirability of policy interventions. This is a challenging task, however, especially in realistic
economies where different individuals have different preferences, consumption baskets, and factor
supply patterns, and where production technologies may rely on multiple factors and a complex
network of intermediate inputs.

In light of these complexities, this paper introduces a decomposition of welfare assessments that
applies to general economies with heterogeneous individuals and disaggregated production. This
approach — which we refer to as welfare accounting — is useful to i) identify and quantify the
ultimate origins of welfare gains and losses induced by changes in allocations, technologies, and
goods or factor endowments and ii) characterize efficiency conditions.

We consider a static environment in which heterogeneous individuals consume different goods
and supply different factors, and goods can be produced using other goods and factors. Our results
allow for elastic and fixed factors and make no assumptions about the homotheticity of utility
and production technologies. Critically and in contrast to existing work, the welfare accounting
decomposition is exclusively based on preferences and technologies, and does not rely on assumptions
about the (optimizing) behavior of agents, firm objectives, individual budget constraints, prices, or
the notion of equilibrium.

Welfare Accounting Decomposition. The welfare accounting decomposition applies to welfare
assessments under general social welfare functions. First, we separate welfare assessments into
efficiency and redistribution components.1 A central property of this decomposition is that the
efficiency component does not depend on the choice of social welfare function — only redistribution
does. For that reason, we study aggregate efficiency in Sections 3 through 5, and redistribution in
Section 6.

Aggregate efficiency consists of exchange efficiency and production efficiency. Exchange efficiency
captures efficiency welfare gains and losses due to the reallocation of consumption and factor supply
among individuals. Theorem 1 decomposes exchange efficiency into two components. First, cross-
sectional consumption efficiency measures welfare gains associated with reallocating consumption
of a good from individuals who value it less to individuals who value it more, for a given level of
aggregate consumption of the good. Second, cross-sectional factor supply efficiency measures welfare
gains from reallocating the supply of a factor from individuals for whom supplying it is more costly
to individuals for whom supplying it is less costly, for a given level of aggregate supply of the factor.

Production efficiency captures efficiency welfare gains and losses associated with the economy’s
1The efficiency/redistribution decomposition leverages the results of Dávila and Schaab (2022). While that paper

takes the mapping between allocations and policies or shocks as given and focuses on how different planners trade
off different normative considerations in dynamic stochastic economies, this paper exploits resource constraints and
production technologies to identify the ultimate origins of welfare gains and losses.
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production side. It comprises allocative efficiency gains due to adjusting intermediate inputs
and factors as well as technical efficiency gains from primitive changes in technologies and
endowments. Theorem 2 decomposes production efficiency into seven components. First, cross-
sectional intermediate input efficiency measures the welfare gains from reallocating intermediate
inputs from less to more socially desirable uses, for a given level of aggregate intermediate use.
Second, aggregate intermediate input efficiency measures the welfare gains from adjusting the share
of good supply that is consumed instead of used in production, for a given level of aggregate good
supply. Third, cross-sectional factor efficiency measures the welfare gains from reallocating factors
from less to more socially desirable uses, for a given level of aggregate factor use. Fourth, aggregate
factor efficiency measures the welfare gains from adjusting the supply of factors. Finally, the
technology change, good endowment change, and factor endowment change components measure
the direct welfare gains from primitive changes in technologies or endowments.

A central contribution of the welfare accounting decomposition is to identify the precise welfare-
relevant statistics that translate physical changes in allocations, technologies, and endowments into
welfare changes. These statistics are i) marginal rates of substitution (MRS), which measure
the value of increases in individual consumption or factor supply; ii) aggregate marginal rates of
substitution (AMRS), which measure the social value of changes in aggregate consumption or factor
supply; iii) marginal welfare products (MWP ), which measure the value of increasing the use of an
input or factor in production; iv) aggregate marginal welfare products (AMWP ), which measure the
social value of changes in aggregate intermediate use or factor use; and v) marginal social values of
goods (MSV ), which measure the social value of having an additional unit of a particular good (either
as an endowment or through a change in technology). When combined with changes in allocations
or primitives, these statistics are sufficient to compute the welfare impact of any perturbation. The
MSV of goods is a central object for welfare accounting because it is the sole determinant of the
efficiency gains from pure technological change, and it governs marginal welfare products, which in
turn determine each component of production efficiency.

Efficiency Conditions. In Section 4, we leverage the welfare accounting decomposition to
characterize efficiency conditions, generalizing the classic efficiency conditions in Lange (1942),
Samuelson (1947), and Mas-Colell et al. (1995). This is, to our knowledge, the first general
characterization of efficiency conditions for disaggregated production economies with heterogeneous
individuals.

Theorems 3 and 4 summarize the necessary conditions for exchange and production efficiency.
Exchange efficiency requires the equalization of marginal rates of substitution for all individuals who
consume a good or supply a factor, allowing individuals who do not consume a good (or supply a
factor) to have lower (higher) marginal rates of substitution. Cross-sectional intermediate input and
factor efficiency require the equalization of MWP across all uses of an input or a factor, allowing
for potentially lower MWP when a good or factor is not used to produce another. Aggregate
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intermediate input efficiency requires the equalization of AMWP with AMRS for all mixed goods.
For pure final goods, the AMRS must be higher than the highest MWP of using the good in
production. For pure intermediate goods, the AMWP must be higher than the highest individual
MRS when consuming it. Finally, aggregate factor efficiency requires the equalization of AMWP

with AMRS for all factors in positive elastic supply.
A central message of this paper is that properly accounting for the non-negativity constraints

that define feasible allocations is critical to characterize efficiency conditions and trace the origins of
welfare gains and losses. This is particularly important when production is disaggregated — since
disaggregated production networks are typically sparse — and when individuals are heterogeneous
and consume different (disjoint) consumption bundles. In particular, we show that the classic
efficiency conditions apply to interior links between mixed goods and/or elastic factors, but fail
to hold otherwise, in particular when pure intermediate goods are involved. In general, we show that
MWP andMRS are the appropriate objects to characterize efficiency conditions, rather thanMRS

and MRT (marginal rates of transformation), as in the classic approach.
After identifying the conditions for allocative efficiency, Theorem 5 characterizes the MSV of

goods — which determines the technology change component of the welfare accounting decomposition
— at an efficient allocation. Since efficiency ensures that the value of a good must be the same
whether it is consumed or used as an input, we show that MSV exactly corresponds to AMRS for
final goods, to AMWP for intermediate goods, and to both for mixed goods.

Competitive Economies. Our results until Section 5 require no assumptions about the
(optimizing) behavior of agents, individual budget constraints, prices, or notions of equilibrium. It
is nonetheless valuable to specialize the welfare accounting decomposition to competitive economies,
which we do in Section 5, since prices are directly informative about the welfare-relevant statistics.
Starting from our baseline environment, we assume that individuals maximize utility and technologies
are operated by firms that minimize costs. To allow for distortions, we saturate all choice margins
with wedges.

Theorem 6 characterizes the MSV of goods in competitive economies with wedges: It equals the
competitive price augmented by an aggregate goods wedge term that captures average distortions
in consumption and intermediate input use. Intuitively, the presence of aggregate consumption and
intermediate input wedges implies that there are over- or under-produced goods. Hence, theMSV of
goods that ultimately increase the supply of under-produced (over-produced) goods is higher (lower)
than the price. Theorem 6 provides a converse result to Hulten’s theorem that has been missing
from the existing literature: The condition that ensures that prices equal the MSV of a good is that
aggregate goods wedges are zero.

We provide a new general Hulten’s theorem, which applies to frictionless competitive economies
with heterogeneous individuals, elastic and fixed factors, arbitrary preferences and technologies,
and arbitrary social welfare functions. Its generality allows us to systematically discuss the many
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qualifications associated with this result. In particular, we show that Hulten’s theorem applies to
frictionless competitive economies and efficient interior economies, but need not hold in efficient
non-interior economies. Moreover, we show that Hulten’s theorem is fundamentally a result about
aggregate efficiency, not about final output or welfare.

Theorems 7 and 8 specialize the allocative efficiency components of the welfare accounting
decomposition to competitive economies with wedges. A central takeaway from this analysis is
that equalization of marginal revenue products is not sufficient for cross-sectional intermediate input
or factor efficiency: Efficiency requires the equalization of marginal welfare products across uses of
an intermediate input or a factor, while competition — when intermediate input or factor use wedges
are zero — only enforces the equalization of marginal revenue products across uses.

Redistribution and Applications. Our analysis up to Section 5 focuses on efficiency. However,
perturbations with identical efficiency implications may have different distributional implications.
Theorem 9 in Section 6 decomposes redistribution gains or losses into four components: Cross-
sectional consumption and factor supply redistribution capture redistribution gains due to the
reallocation of consumption and factor supply shares, for given aggregate levels of consumption and
factor supply. And aggregate consumption and factor supply redistribution capture redistribution
gains due to changes in aggregate consumption and factor supply, for given shares. Critically, the
choice of social welfare function will directly impact the welfare gains from redistribution and its
components.

Finally, we illustrate how the welfare accounting decomposition introduced in this paper can be
used to identify the origins of welfare gains and losses in four workhorse models in macroeconomics
and trade. Our first application shows how an increase in tariffs contributes negatively to exchange
efficiency via cross-sectional consumption efficiency in the simplest endowment economy (Armington,
1969). This application also illustrates subtle patterns in cross-sectional consumption redistribution.
Our second application shows how the aggregate efficiency gain induced by an improvement in a
matching technology in a Diamond-Mortensen-Pissarides (DMP) model is due to cross-sectional
factor efficiency gains large enough to compensate for aggregate intermediate input efficiency losses
due to increased vacancy postings. This application illustrates how to use the welfare accounting
decomposition in a random search economy, which differs substantially from competitive economies.
Our third application illustrates how an increase in markup dispersion generates cross-sectional factor
efficiency losses in Hsieh and Klenow (2009) economy. Our final application shows how to use the
welfare accounting decomposition to identify the welfare gains from optimal monetary stabilization
policy in a macroeconomic model with household and sectoral heterogeneity. We compute the optimal
monetary policy response to a technology shock in a static, multi-sector heterogeneous-agent New
Keynesian model with a rich input-output production structure. We contrast the aggregate efficiency
welfare gains from stabilization policy with its impact on redistribution and decompose the former
into its allocative efficiency components.
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Related Literature. Our results are most closely related to classic studies of efficiency — see
Lange (1942), Samuelson (1947) or, for a modern treatment, Section 16.F of Mas-Colell et al.
(1995). This work proves the welfare theorems by first characterizing conditions for efficiency in
a planned economy and then showing that allocations in frictionless competitive economies satisfy
these conditions.2 While the classic approach to efficiency assumes that all goods are final or mixed,
our general results show that allowing for pure intermediate goods substantially changes the nature of
efficiency conditions.3 Moreover, while Lange (1942) characterizes efficiency conditions, neither that
paper nor subsequent literature presents welfare decompositions of the form introduced in Theorems
1 and 2.

The welfare accounting decomposition introduced in this paper is also related to the vast literature
on growth accounting and productivity measurement that follows Solow (1957) and includes Hall
(1990), Basu (1995), Basu and Fernald (1997, 2002), Basu et al. (2006), Basu et al. (2022), and
Baqaee and Farhi (2020), among many others. At times and to different degrees, this body of work
draws connections between output growth and welfare gains — see for instance Basu and Fernald
(2002), Basu et al. (2022), or Baqaee and Burstein (2022a).4 A common challenge for this literature
is to aggregate among heterogeneous individuals. By using the approach introduced in Dávila and
Schaab (2022), we are able to make aggregate welfare assessments and to separate efficiency from
redistribution considerations without relying on prices. This in turn allows us to characterize the
welfare accounting decomposition exclusively in terms of preferences and technologies, making no
assumptions about the (optimizing) behavior or budget constraints of agents, prices, or notions of
equilibrium. This contrasts our results from Baqaee and Farhi (2020), whose decomposition is based
on markups, prices, and cost minimization, as well as Baqaee and Burstein (2022b), whose welfare
results also rely on prices. More broadly, our paper continues an agenda that seeks to understand
the origins of welfare gains in general economies.

Our results build on the literature on multi-sector production networks.5 A central result of
this literature is Hulten’s theorem (Hulten, 1978), which characterizes the aggregate impact of
technological change in terms of prices (Domar weights). Instead of imposing a competitive structure,
we provide a characterization of the impact of technological change exclusively based on preferences
and technologies, identifying theMSV of goods as the relevant object. Liu (2019) presents a statistic

2While the classic proofs of the first welfare theorem provide useful insights into the relation between competition
and efficiency, they are not the most general — see instead Arrow (1951) and Debreu (1951). Our approach is subject
to the same advantages and disadvantages as the classic approach — see Geanakoplos (1989) for a discussion.

3By emphasizing the critical role played by pure intermediate goods, our results connect to the recent work on
global value chains — see Antràs and Chor (2022) for a recent survey.

4In Section C.5 of the Online Appendix, we discuss the relation between welfare accounting, as developed in this
paper, and growth accounting. Growth accounting measures the contribution of different inputs to final output,
indirectly computing technological growth as a residual. Instead, welfare accounting attributes aggregate welfare
gains to different sources. We also show how one could use the welfare accounting decomposition to conduct growth
accounting.

5This literature includes, among many others, Gabaix (2011), Jones (2011), Acemoglu et al. (2012), Bigio and La’O
(2020), Liu (2019), Baqaee and Farhi (2018, 2020), Acemoglu and Azar (2020), and Kopytov et al. (2022). See Carvalho
and Tahbaz-Salehi (2019) and Baqaee and Rubbo (2022) for recent surveys.
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that summarizes the social value of subsidizing inputs and factors. While related, our characterization
of MSV differs because it i) makes no assumptions about optimizing behavior, budget constraints,
or prices, and ii) considers a perturbation in the level of output rather than price subsidies. By
specializing the MSV of goods to competitive environments, we provide the most general Hulten-
style result to date. We show that Hulten’s theorem is fundamentally a result about aggregate
efficiency — not about final output or welfare — that applies to frictionless competitive economies
or interior efficient economies — not efficient economies. Bigio and La’O (2020) show that Hulten’s
theorem is valid for production efficiency, rather than output, in an environment with a single
individual and elastic factor supply.

Finally, our results also relate to the work that defines measures of changes in living standards,
potentially refining popular notions like GDP. See Nordhaus and Tobin (1973) for an earlier account
of these ideas and Fleurbaey (2009), Jones and Klenow (2016), and Basu et al. (2022) for modern
treatments. The welfare accounting decomposition can be used to show that GDP changes only
correspond to welfare changes in very specific scenarios since welfare assessments must also account
for exchange efficiency, factor supply costs, and redistribution.

2 Environment and Social Welfare

We first introduce preferences, technologies, and resource constraints, and then define feasible
allocations and perturbations. We conclude this section by describing how to separate efficiency
from redistribution considerations when making welfare assessments.

2.1 Preferences, Technologies, and Resource Constraints

We consider a static economy populated by a finite number I ≥ 1 of individuals, indexed by
i ∈ I = {1, . . . , I}.6 There are J ≥ 1 goods, indexed by j, ` ∈ J = {1, . . . , J} and F ≥ 0 factors,
indexed by f ∈ F = {1, . . . , F}. Goods are produced using goods and factors as inputs, while
factors are directly supplied by individuals. Goods and factors may also appear as (predetermined)
endowments.

An individual i derives utility from consuming goods and (dis)utility from supplying factors,
according to the utility function

(Preferences) V i = ui
({
cij
}
j∈J

,
{
nif,s

}
f∈F

)
, (1)

where cij denotes individual i’s final consumption of good j and nif,s denotes individual i’s supply
6In the body of the paper, we exclusively consider static economies with a finite number of individuals, goods and

factors. Section C.1 of the Online Appendix extends our results to dynamic stochastic economies without accumulation
technologies. In ongoing work (Dávila and Schaab, 2024b), we extend the approach of this paper to economies with
accumulation technologies, which opens a new set of nontrivial considerations. Our results straightforwardly generalize
to economies with a continuum of individuals, goods, and factors.

6



of factor f (the superscript s stands for supply).
Goods are produced using technologies that take goods and factors as inputs. The production

technology for good j, denoted by Gj (·) ≥ 0, is given by

(Technologies) yj,s = Gj
({
xj`
}
`∈J

,
{
njf,d

}
f∈F

; θ
)
, (2)

where yj,s denotes the amount produced (output) of good j, xj` denotes the amount of good ` used
in the production of good j, and njf,d denotes the amount of factor f used in the production of
good j (the superscript d stands for demand). We use the index ` ∈ J to refer to goods used as
intermediates. For clarity, we typically use L to denote the number of intermediate inputs, although
L = J . We parametrize Gj (·; θ) by θ to consider perturbations to technology, as described below.

The resource constraint for good j is

(Resource Constraints: Goods) yj,s + ȳj,s (θ) = cj + xj , (3)

where cj =
∑
i c
ij represents the total amount of good j consumed (aggregate consumption),

xj =
∑
` x

`j represents the amount of good j used as an intermediate input in production (aggregate
intermediate use), and ȳj,s (θ) =

∑
i ȳ
ij,s (θ) represents the aggregate endowment of good j, where

ȳij,s (θ) denotes individual i’s endowment of good j. We parametrize ȳj,s (θ) and ȳij,s (θ) by θ to
consider perturbations to good endowments. When needed, we denote the aggregate supply of good
j by yj = yj,s + ȳj,s (θ).

The resource constraint for factor f is

(Resource Constraints: Factors) nf,s + n̄f,s (θ) = nf,d, (4)

where nf,s =
∑
i n

if,s and nf,d =
∑
j n

jf,d respectively represent the aggregate elastic supply and
the aggregate factor use of factor f , and n̄f,s (θ) =

∑
i n̄

if,s (θ) represents the aggregate endowment
of factor f , where n̄if,s (θ) denotes individual i’s endowment of factor f . We parametrize n̄f.s (θ)
and n̄if,s (θ) by θ to consider perturbations to factor endowments. When needed, we denote the
aggregate supply of factor f by nf = nf,s + n̄f,s (θ).

2.2 Feasible Allocations and Perturbations

Definition 1 describes a feasible allocation. Binding non-negativity constraints play a central role in
our analysis.

Definition 1. (Feasible allocation). An allocation
{
cij , nif,s, xj`, njf,d, yj,s

}
is feasible if equations

(2) through (4) hold and the non-negativity constraints cij ≥ 0, nif,s ≥ 0, xj` ≥ 0, njf,d ≥ 0, and
yj,s ≥ 0 are satisfied.

We assume that preferences and technologies are differentiable and that all variables are smooth
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functions of a perturbation parameter θ ∈ [0, 1], so derivatives such as dcij

dθ , dxj`dθ , or dnjf,d

dθ are well-
defined.7 Feasible perturbations dθ have a dual interpretation. First, a perturbation may capture
exogenous changes in technologies or endowments, but also changes in policies (e.g., taxes, subsidies,
transfers, etc.) or any other primitive of a fully specified model (e.g., trade costs, markups, bargaining
power, etc.). Under this interpretation, the mapping between allocations and θ emerges endogenously
and accounts for equilibrium effects. Second, a perturbation may alternatively capture changes in
feasible allocations directly chosen by a planner. This second interpretation is useful to characterize
the set of efficient allocations, as we explain in Section 4.

2.3 Social Welfare: Efficiency vs. Redistribution

We consider welfare assessments for welfarist planners, that is, planners with a social welfare function
W (·) given by

(Social Welfare Function) W =W
(
V 1, . . . , V i, . . . , V I

)
, (5)

where ∂W
∂V i

> 0, ∀i, and where individual utilities V i are defined in (1).8

We leverage the welfare decomposition introduced in Dávila and Schaab (2022) to separate
efficiency from redistribution considerations. Hence, a welfare assessment can be expressed as

dW

dθ
=
∑
i

∂W
∂V i

dV i

dθ
=
∑
i

∂W
∂V i

λi
dV i

dθ

λi
, (6)

where λi is an individual normalizing factor that allows us to express individual welfare gains
or losses in units of a common welfare numeraire. In particular, since the units of λi are
dim

(
λi
)

= utils of individual i
units of numeraire , individual welfare gains or losses dV i

dθ /λ
i are measured in units of the

common welfare numeraire, with dim
(
dV i

dθ /λ
i
)

= units of numeraire
units of θ , ∀i. The only restriction when

choosing the welfare numeraire is that λi must be strictly positive for all individuals.9

Lemma 1 derives Dávila and Schaab (2022)’s efficiency/redistribution decomposition in our
environment. This is the unique decomposition in which a normalized welfare assessment can be
expressed as Kaldor-Hicks efficiency and its complement.

7To simplify the exposition, we assume throughout that i) consumption is (weakly) desirable but supplying factors
is not, i.e., ∂ui

∂cij
≥ 0 and ∂ui

∂nif,s
≤ 0; ii) the marginal products of using intermediates and factors are (weakly) positive,

i.e., ∂Gj

∂xj`
≥ 0 and ∂Gj

∂njf,d
≥ 0; and iii) the no-free-lunch property holds, i.e., Gj (·) = 0 if xj` = 0, ∀`, and njf,d = 0, ∀f .

Many of our results, including the welfare accounting decomposition, do not require such restrictions.
8As in Boadway and Bruce (1984), Kaplow (2011), or Saez and Stantcheva (2016), we refer to the use of social welfare

functions — typically traced back to Bergson (1938) and Samuelson (1947) — as the welfarist approach. This approach
is widely used because it is Paretian, that is, it concludes that every Pareto-improving perturbation is desirable, with
the converse being true under minimal assumptions (Kaplow and Shavell, 2001).

9While we derive our results for a general normalizing factor λi, the nominal unit (e.g., dollars) is the most natural
welfare numeraire. In that case, λi is measured in utils of individual i

dollars and dV i

dθ
/λi is measured in dollars

units of θ . Alternative
goods or bundles may be useful numeraires in particular applications. For instance, if good 1 is chosen as welfare
numeraire, then λi = ∂ui

∂ci1 , ∀i.
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Lemma 1. (Efficiency/Redistribution Decomposition) A normalized welfare assessment for a
welfarist planner can be decomposed into efficiency and redistribution components, ΞE and ΞRD,
as follows:

dW λ

dθ︸ ︷︷ ︸
Welfare

Assessment

=
dW
dθ

1
I

∑
i
∂W
∂V i

λi
=
∑
i

ωi
dV i

dθ

λi
=

∑
i

dV i

dθ

λi︸ ︷︷ ︸
ΞE (Efficiency)

+ CovΣ
i

[
ωi,

dV i

dθ

λi

]
︸ ︷︷ ︸

ΞRD (Redistribution)

, (7)

where ωi =
∂W
∂V i

λi

1
I

∑
i
∂W
∂V i

λi
and where CovΣ

i [·, ·] = I · CovΣ
i [·, ·] denotes a cross-sectional covariance-sum

among all individuals.

The efficiency component ΞE corresponds to Kaldor-Hicks efficiency, that is, it is the unweighted
sum of individual willingness-to-pay for the perturbation in units of the welfare numeraire. Hence,
perturbations in which ΞE > 0 can be turned into Pareto improvements if transfers are feasible and
costless. The redistribution component ΞRD captures the equity concerns embedded in a particular
social welfare function: ΞRD is positive when the individuals relatively favored in a perturbation are
those relatively preferred by the planner, that is, have a higher ωi.

The decomposition of Lemma 1 satisfies several properties. Three are worth highlighting for
our purposes. First, the efficiency component is invariant to i) the choice of social welfare function
and ii) preference-preserving utility transformations. This property motivates the structure of our
analysis, first studying efficiency and then redistribution. Second, efficient allocations feature a
weakly negative efficiency component (ΞE ≤ 0) for any feasible perturbation given endowments and
technologies. This property allows us to use the efficiency component ΞE to characterize the set
of efficient allocations, as we do in Section 4. Finally, since our economy is static, the efficiency
component ΞE is exclusive driven by aggregate efficiency ΞAE , so going forward we use the fact that

ΞE = ΞAE .

In Section C.1 of the Online Appendix, we show that the decomposition of aggregate efficiency into
exchange and production efficiency that we present next also applies to dynamic stochastic economies.

3 Welfare Accounting: Efficiency

This section develops the main welfare accounting result: a decomposition that identifies and
quantifies the origins of efficiency welfare gains and losses. The aggregate efficiency component of a
welfare assessment, ΞAE , can be decomposed into exchange and production efficiency components,
ΞAE,X and ΞAE,P , as follows:

ΞAE = ΞAE,X + ΞAE,P , (8)
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where both components can be further decomposed, as illustrated in Figure 1 and explained in detail
in the remainder of this paper. We study exchange efficiency in Section 3.1 and production efficiency
in Section 3.2. We explore broader insights from the welfare accounting decomposition in Section
3.3 and illustrate each of its components with minimal examples in Section 3.4.

3.1 Exchange Efficiency

3.1.1 Allocation Shares: Consumption and Factor Supply

To study exchange efficiency, we first introduce consumption and factor supply allocations shares.
Working with shares, instead of directly with levels, allows us to distinguish welfare gains and losses
due to reallocation from those due to changes in aggregates.10

Formally, we define individual i’s consumption share of good j, χijc , and individual i’s factor
supply share of factor f , χif,sn , as

χijc :=



cij

cj
if cj > 0

dcij

dθ
dcj

dθ

if cj = 0 and dcj

dθ > 0

0 if cj = 0 and dcj

dθ = 0

and χif,sn :=



nif,s

nf,s
if nf,s > 0

dnif,s

dθ
dnf,s

dθ

if nf,s = 0 and dnf,s

dθ > 0

0 if nf,s = 0 and dnf,s

dθ = 0.

(9)

Individual consumption shares χijc represent either the share of aggregate consumption cj consumed
by individual i, when cj > 0, or the share of the change in aggregate consumption dcj/dθ consumed
by individual i, when cj = 0 and dcj/dθ > 0. Individual factor supply shares χif,sn are defined
analogously. The definitions of shares in equation (9) ensure that changes in individual consumption
and factor supply can be expressed as

dcij

dθ
= dχijc

dθ
cj + χijc

dcj

dθ
and dnif,s

dθ
= dχif,sn

dθ
nf,s + χif,sn

dnf,s

dθ
, (10)

even when cj = 0 or nf,s = 0.

3.1.2 Exchange Efficiency Decomposition

Exchange efficiency captures efficiency welfare gains and losses associated with the reallocation of
consumption and factor supply among individuals.

Theorem 1. (Exchange Efficiency) The exchange efficiency component of aggregate efficiency,
ΞAE,X , can be decomposed into i) cross-sectional consumption efficiency and ii) cross-sectional factor

10The fact that reformulating the model in terms of shares is useful is a consequence of the linearity of the resource
constraints, as explained in Dávila and Schaab (2024a).
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supply efficiency, as

ΞAE,X =
∑
j

CovΣ
i

[
MRSijc ,

dχijc
dθ

]
cj

︸ ︷︷ ︸
Cross-Sectional

Consumption Efficiency

−
∑
f

CovΣ
i

[
MRSifn ,

dχif,sn

dθ

]
nf,s

︸ ︷︷ ︸
Cross-Sectional

Factor Supply Efficiency

where individual i’s marginal rates of substitution between good j and the numeraire, MRSijc , and
between factor f and the numeraire, MRSifn , are given by

MRSijc =
∂ui

∂cij

λi
and MRSifn = −

∂ui

∂nif,s

λi
, (11)

and where CovΣ
i [·, ·] = I ·CovΣ

i [·, ·] denotes a cross-sectional covariance-sum among all individuals.

Cross-sectional consumption efficiency measures the contribution to (Kaldor-Hicks) efficiency due
to reallocating consumption of good j from individuals who value it less (with a lower MRSijc ) to
individuals who value it more (with a higher MRSijc ), for a given level of aggregate consumption
cj .11 Analogously, cross-sectional factor supply efficiency measures the contribution to (Kaldor-
Hicks) efficiency due to reallocating the supply of factor f from individuals for whom increasing
factor supply is more costly (with a higher MRSifn ) to individuals for whom increasing factor supply
is less costly (with a lower MRSifn ), for a given aggregate (elastic) supply of factor f , nf,s.

Corollary 1 presents several properties of practical relevance that exchange efficiency satisfies.

Corollary 1. (Properties of Exchange Efficiency)

(a) (Single Individual) In economies with a single individual (I = 1), exchange efficiency is zero.

(b) (No Elastic Factor Supply) In economies in which factors are not elastically supplied, so
nf,s = 0 for all factors, cross-sectional factor supply efficiency is zero.

(c) (Equalized MRSijc or MRSifn ) If marginal rates of substitution for good j (factor f) are
identical across individuals for all goods (factors) with cj > 0 (nf,s > 0), then cross-sectional
consumption (factor supply) efficiency is zero.

Since exchange efficiency welfare gains arise by reallocating consumption and factor supply across
individuals, exchange efficiency must be zero in single individual economies.12 Relatedly, in economies
in which individuals do not derive (dis)utility from factor supply, cross-sectional factor supply
efficiency is zero. Lastly, only when individuals value consuming the same good or supplying the
same factor differently is there scope to find welfare gains from reallocating either.

11The marginal rate of substitution MRSijc measures individual i’s valuation in units of the welfare numeraire of a
marginal increase in good j’s consumption. Analogously, MRSifn measures individual i’s cost in units of the welfare
numeraire of a marginal increase in factor f ’s supply.

12Exchange efficiency and redistribution are completely different notions, even though both require individual
heterogeneity. In particular, the choice of social welfare function does not affect exchange efficiency but it directly
impacts redistribution.
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3.2 Production Efficiency

3.2.1 Allocation Shares: Intermediate Input and Factor Use

To study production efficiency, we first introduce allocation shares for intermediate input and factor
use. Once again, working with shares allows us to distinguish welfare gains and losses due to
reallocation from those due to changes in aggregates.

Formally, we define good `’s intermediate share, φ`x, and the intermediate-use share of good `

used to produce good j, χj`x , as

φ`x :=



x`

y`
if y` > 0

dx`

dθ
dy`

dθ

if y` = 0 and dy`

dθ > 0

0 if y` = 0 and dy`

dθ = 0

and χj`x :=


xj`

x`
if x` > 0

dxj`

dx`
if x` = 0 and dx`

dθ > 0

0 if x` = 0 and dx`

dθ = 0.

(12)

Good `’s intermediate share, φ`x, represents either the share of good `’s aggregate supply y` devoted
to production, when y` > 0, or the share of the change in good `’s aggregate supply dy`

dθ devoted
to production, when y` = 0 and dy`

dθ > 0. Its complement defines the aggregate consumption share
φ`c = 1 − φ`x. The intermediate-use share of good `, χj`x , represents either the share of good `’s
aggregate intermediate use devoted to the production of good j, when x` > 0, or its counterpart in
changes when x` = 0 and dx`

dθ > 0.13

Finally, we also define the intermediate-supply share of good ` by ξj` = χj`x φ
`
x, which corresponds

to xj`

y`
when y` > 0 or to its counterpart in changes when y` = 0 and dy`

dθ > 0. These definitions of
shares ensure that changes in intermediate use can be expressed as

dxj`

dθ
= dξj`

dθ
y` + ξj`

dy`

dθ
, where dξj`

dθ
= dχj`x

dθ
φ`x + χj`x

dφ`x
dθ

, (13)

even when y` = 0 and x` = 0. Expression (13) initially decomposes level changes in the use xj`

of good ` in the production of good j into two terms. First, changes in the intermediate-supply
share dξj`

dθ change xj` in proportion to good `’s aggregate supply y`. Second, changes in good `’s
aggregate supply dy`

dθ change xj` in proportion to the intermediate-supply share ξj`. In turn, changes
in the intermediate-supply share dξj`

dθ can occur either due to reallocation of good ` across different
intermediate uses — a change in the intermediate-use share χj`x — or due to reallocation from
consumption to production — a change in the intermediate share φ`x.

13Depending on φ`x, good ` can be i) pure final, when φ`x = 0; ii) pure intermediate, when φ`x = 1; or iii) mixed, when
φ`x ∈ (0, 1). Equivalently, good ` can be i) final when φ`x ∈ [0, 1) or ii) intermediate, when φ`x ∈ (0, 1], with mixed
goods being simultaneously final and intermediate. These categorizations are only meaningful when y` > 0 or dy`

dθ
> 0.

Depending on χj`x , an intermediate input ` is i) specialized, when χj`x = 1 for some j; or diversified, when χj`x ∈ (0, 1)
for some j.
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At last, we define the factor use share of factor f used to produce good j, χjf,dn , as

χjf,dn :=



njf,d

nf,d
if nf,d > 0

dnjf,d

dθ
dnf,d

dθ

if nf,d = 0 and dnf,d

dθ > 0

0 if nf,d = 0 and dnf,d

dθ = 0.

(14)

The factor use share χjf,dn represents the share of factor f ’s aggregate use nf,d devoted to the
production of good j, or its counterpart in changes when nf,d = 0 and dnf,d

dθ > 0.14 In this case,
equation (13) ensures that changes in factor use can be expressed as

dnjf,d

dθ
= dχjfn

dθ
nf,d + χjf,dn

dnf,d

dθ
, (15)

even when njf,d = 0. Equation (15) decomposes level changes in the use njf,d of factor f in the
production of good j into a change in the factor use share, dx

jf
n
dθ , and a change in the aggregate factor

use, d
f,d
n
dθ .

3.2.2 Network Propagation: Goods Inverse Matrix

To study production efficiency it is necessary to understand how perturbations propagate through the
production network of goods. Lemma 2 introduces the goods inverse matrix Ψy, which characterizes
the ultimate change in the aggregate supply of goods induced by unit impulses in the supply of
goods.15

Lemma 2. (Goods Inverse Matrix). Changes in good j’s aggregate supply dyj

dθ can be expressed in
terms of changes in intermediate-supply shares dξj`

dθ , changes in factor use dnjf,d

dθ , changes in the good
endowment dȳj,s

dθ , and changes in technology ∂Gj

∂θ , as

dyj

dθ
=
∑
`

∂Gj

∂xj`
ξj`

dy`

dθ︸ ︷︷ ︸
Propagation

+
∑
`

∂Gj

∂xj`
dξj`

dθ
y` +

∑
f

∂Gj

∂njf,d
dnjf,d

dθ
+ dȳj,s

dθ
+ ∂Gj

∂θ︸ ︷︷ ︸
Impulse

. (16)

Equivalently, in matrix form,

dy

dθ
= Ψy︸︷︷︸

Propagation

(
Gx

dξ

dθ
y +Gn

dn̊d

dθ
+ dȳs

dθ
+Gθ

)
︸ ︷︷ ︸

Impulse

where Ψy = (IJ −Gxξ)−1︸ ︷︷ ︸
Goods Inverse

, (17)

14A factor f is i) specialized, when χjf,dn = 1 for some j; or diversified, when χjf,dn ∈ (0, 1) for some j.
15In Appendix C.3, we introduce two related propagation matrices: the intermediate inverse matrix Ψx, which

characterizes network propagation for changes in the level of intermediates; and the proportional goods inverse matrix
Ψ̃y = ŷ−1Ψyŷ, where ŷ = diag(y), which characterizes network propagation for proportional impulses in the supply of
goods. To simplify the exposition, we exclusively use the goods inverse matrix in the body of the paper, but all three
matrices are useful to understand network propagation, as explained in the Appendix.
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where dy
dθ and dȳs

dθ respectively denote the J × 1 vectors of dyj

dθ and dȳj,s

dθ , and Ψy = (IJ −Gxξ)−1

defines the J × J goods inverse matrix. The remaining matrices are defined in Appendix A.

Lemma 2 characterizes how the aggregate supply of goods ultimately changes in response to changes
in intermediate-supply shares, factor use, goods endowments, and technology, accounting for network
propagation. Consider the four “impulse” terms of equation (16), which represent the first-round
impact of the perturbation on the supply of goods. First, a perturbation that changes intermediate-
supply shares by dξj`

dθ raises at impact the amount of good ` used as input for good j in proportion
to y`, which in turn increases output at impact by ∂Gj

∂xj`
. Similarly, a perturbation that changes the

use of factor f in the production of good j by dnjf,d

dθ increases output at impact by ∂Gj

∂njf,d
. Changes

in the endowment or the technology used to produce good j simply increase aggregate supply at
impact by dȳj,s

dθ or ∂Gj

∂θ , respectively.
Such first-round changes in the level of aggregate supply in turn induce further changes in the

level of intermediate inputs, which in turn induce further changes in aggregate supply. These knock-
on effects through the production network are captured by the goods inverse matrix Ψy. Under
minimal regularity conditions — described in Section C.3 of the Online Appendix — Ψy admits the
series representation

Ψy = (IJ −Gxξ)−1 = IJ +Gxξ + (Gxξ)2 + (Gxξ)3 + . . . . (18)

The first term in the expansion, IJ , represents the first round of aggregate supply changes we just
described. As aggregate supply adjusts, the level of intermediate inputs xj` changes in proportion to
the intermediate-supply share ξj`, or ξ in matrix form. In turn, changes in the level of intermediate
inputs translate into a second round of changes in aggregate supply in proportion to the marginal
products of each input ∂Gj

∂xj`
, or Gx in matrix form. This explains the second term Gxξ in (18), which

generates knock-on effects in proportion to (Gxξ)2 and so on. We refer to the conclusion of this
fixed point of network propagation as the ultimate change in the aggregate supply of goods induced
by the perturbation. We conclude with the following remark.

Remark 1. (Goods Inverse Matrix is Purely Technological) While propagation matrices abound in
the study of models with rich production structures — see e.g. Carvalho and Tahbaz-Salehi (2019)
— the goods inverse matrix introduced in Lemma 2 is distinct in the sense that it is purely a
technological object. That is, Ψy is exclusively based on production technologies, regardless of
preferences, equilibrium assumptions, etc. This is important because Ψy will be a key input when
characterizing efficiency conditions in Section 4. In competitive economies, the goods inverse matrix
Ψy will be related to Leontief-style inverses, which depend on prices (and wedges), as explained in
Section 5.
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3.2.3 Welfare-Relevant Statistics

In order to characterize production efficiency, we must first introduce three sets of welfare-relevant
statistics. These objects represent the welfare impact — through efficiency— of specific perturbations
in the consumption, factor supply, goods supply, intermediate use, and factor use. First, we introduce
aggregate marginal rates of substitution (AMRS).

Definition 2. (Aggregate Marginal Rate of Substitution). We define the aggregate marginal rate of
substitution (AMRS) between good j and the numeraire and between factor f and the numeraire as

AMRSjc =
∑
i

χijc MRSijc and AMRSfn =
∑
i

χif,sn MRSif,sn , (19)

where consumption and factor supply shares χijc and χif,sn are defined in (9) and individual marginal
rates of substitution MRSijc and MRSif,sn are defined in (11). We denote the 1×J and 1×F vectors
of AMRSjc and AMRSfn by AMRSc and AMRSn.

Aggregate marginal rates of substitution for goods and factors are cross-sectional weighted averages
of individual marginal rates of substitution. For goods with cj > 0 or dcj

dθ > 0, AMRSjc corresponds
to the welfare gain associated with increasing aggregate consumption of good j by a unit, making
individuals consume in proportion to their consumption shares. For factors with nf,s > 0 or dnf,sdθ > 0,
AMRSfn corresponds to the welfare cost associated with increasing the aggregate supply of factor f
by a unit, making individuals supply the factor in proportion to their factor supply shares.

Second, we introduce the marginal social value of goods (MSV ).

Definition 3. (Marginal Social Value of Goods). We define the marginal social value of good j,
MSV j

y , as the j’th element of the 1× J vector MSV y, given by

MSVy = AMRScφcΨy, (20)

where AMRSc is defined in (19), φc is the J × J diagonal matrix of aggregate consumption shares
defined in Appendix A, and Ψy is the J × J goods inverse matrix defined in (17).16

The marginal social value of good j captures the efficiency gain associated with having an additional
unit of that good in the economy. As just described in Section 3.2.2, a unit impulse in the supply
of goods generates an ultimate increase in the aggregate supply of goods given by the goods inverse
matrix Ψy. However, a fraction of the aggregate supply of goods is used in the production of other
goods, so only the aggregate consumption share φc is consumed by individuals. And the AMRSc

captures the welfare gain associated with increasing aggregate consumption, so the marginal social
16When cj = dcj

dθ
= 0 or nf,s = dnf,s

dθ
= 0, the definition of shares in (9) implies that AMRSjc = 0 and AMRSfn = 0,

so these AMRS cannot correspond to the welfare gain or loss associated with changing aggregate consumption or factor
supply. This is purely a notational convention to simplify the exposition: we will show that the production efficiency
decomposition does not depend on the values of AMRSjc and AMRSfn in those cases.
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value of an impulse in the supply of goods is the product of these three objects. The definition of
MSV highlights that the social value of a good emanates from the final consumption — potentially
of other goods — it ultimately generates.

Third, we introduce marginal welfare products (MWP ).

Definition 4. (Marginal Welfare Product). We define the marginal welfare products (MWP ) of
input ` and factor f for technology j as

MWP j`x = MSV j
y

∂Gj

∂xj`
and MWP jfn = MSV j

y

∂Gj

∂njf,d
, (21)

where the marginal social value of good j, MSV j
y , is defined in (20).

Marginal welfare products correspond to the welfare gain associated with increasing the use of an
input or factor in the production of a good. Marginal increases in xj` or njf,d increase output at
impact by their physical marginal products, ∂Gj

∂xj`
and ∂Gj

∂njf,d
. As just described, the social value of

a unit impulse in the supply of goods is summarized by the marginal social value of goods, MSV j
y .

Hence, marginal welfare products of inputs and factors are given by the product of physical marginal
products and the marginal social value of the goods produced.

Finally, we introduce aggregate marginal welfare products (AMWP ).

Definition 5. (Aggregate Marginal Welfare Product). We define the aggregate marginal welfare
product (AMWP ) of good j and factor f , respectively, as

AMWP `x =
∑
j

χj`xMWP j`x and AMWP fn =
∑
j

χjf,dn MWP jfn , (22)

where intermediate input use and factor use shares χj`x and χjf,dn are defined in (12) and (14) and
marginal welfare products in (21).

The aggregate marginal welfare product of an input or factor is a cross-sectional weighted average
of marginal welfare products. For inputs with x` > 0 or dx`

dθ > 0, it corresponds to the welfare gain
associated with increasing the aggregate intermediate use of good ` in proportion to the intermediate
use shares. For factors with nf,d > 0 or dnf,d

dθ > 0, it corresponds to the welfare gain associated with
increasing the factor use of factor f in proportion to the factor use shares.17

At last, note that the marginal social value of a good can be expressed in terms of aggregate
marginal rates of substitution and aggregate marginal welfare products as

MSV j
y = φjcAMRSjc + φjxAMWP jx . (23)

17When x` = dxj`

dθ
= 0 or nf,d = dnf,d

dθ
= 0, AMWP ’s as defined here do not correspond to the welfare gain or loss

associated with changing aggregate intermediate or factor use. This is inconsequential, since the welfare accounting
decomposition does not depend on the values of AMWP `x and AMWP fn in those cases.
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This equation, which provides an alternative definition for MSV j
y , shows that the value of a good

corresponds to the value of consuming its aggregate consumption share φjc and using its aggregate
intermediate use share φjx in production. This definition is recursive since AMWP jx is a function of
the marginal social value of all goods.

3.2.4 Production Efficiency Decomposition

Production efficiency captures efficiency welfare gains associated with the economy’s production
side. It comprises i) allocative efficiency gains due to adjusting inputs and factors and ii) technical
efficiency gains from primitive changes in technologies and endowments.18

Theorem 2. (Production Efficiency). Production efficiency ΞAE,P can be decomposed into i) cross-
sectional intermediate input efficiency, ii) aggregate intermediate input efficiency, iii) cross-sectional
factor efficiency, iv) aggregate factor efficiency, v) technology change, vi) good endowment change,
and vii) factor endowment change, as

ΞAE,P =

Intermediate Input Efficiency︷ ︸︸ ︷∑
`

CovΣ
j

[
MWP j`x ,

dχj`x
dθ

]
x`︸ ︷︷ ︸

Cross-Sectional
Intermediate Input Efficiency

+
∑
`

(
AMWP `x −AMRS`c

) dφ`x
dθ

y`︸ ︷︷ ︸
Aggregate

Intermediate Input Efficiency

+

Factor Efficiency︷ ︸︸ ︷∑
f

CovΣ
j

[
MWP jfn ,

dχjf,dn

dθ

]
nf,d

︸ ︷︷ ︸
Cross-Sectional
Factor Efficiency

+
∑
f

(
AMWP fn −AMRSfn

) dnf,s
dθ︸ ︷︷ ︸

Aggregate
Factor Efficiency

+
∑
j

MSV j
y

∂Gj

∂θ︸ ︷︷ ︸
Technology
Change

+
∑
j

MSV j
y

dȳj,s

dθ︸ ︷︷ ︸
Good Endowment

Change

+
∑
f

AMWP fn
dn̄f,s

dθ︸ ︷︷ ︸
Factor Endowment

Change

,

where marginal welfare products, MWP j`x and MWP jfn , aggregate marginal rates of substitution,
AMRS`c and AMRSfn, aggregate marginal welfare products, AMWP `x and AMWP fn , and the
marginal social value of goods, MSV j

y , are defined in Section 3.2.3.
18Production efficiency gains ultimately correspond to higher aggregate consumption and lower aggregate factor

supply. In fact, ΞAE,P is given by

ΞAE,P =
∑
j

AMRSjc
dcj

dθ
−
∑
f

AMRSfn
dnf,s

dθ
.

This formulation shows that production efficiency can be interpreted as higher aggregate consumption/value added
after appropriately netting the cost of supplying factors — see Nordhaus and Tobin (1973) for the importance of
subtracting the cost of supplying factors to connect aggregate consumption/value added/GDP and welfare. In that
sense, part of the contribution of Theorem 2 is to express changes in aggregate consumption net of factor supply costs
in terms of changes in the allocation of intermediates and factors, and primitive changes in production technologies
and endowments.

18



First, cross-sectional intermediate input efficiency measures welfare gains from reallocating
intermediate inputs from low to high marginal welfare product uses, for a given level of aggregate
intermediate use. Hence, for good ` it corresponds to the covariance across uses betweenMWP j`x and
the change in the intermediate use shares, dx

j`
x
dθ , in proportion to the good’s aggregate intermediate

use, x`.
Second, aggregate intermediate input efficiency measures the welfare gains from adjusting the

share of aggregate goods supply devoted to final consumption relative to production, for a given
level of aggregate goods supply. Hence, for good ` it corresponds to the difference between AMWP `x

and AMRS`c , which captures the net welfare impact of reducing consumption of good ` and using
it in production, multiplied by the change in the intermediate use share, dφ`x

dθ , in proportion to the
aggregate supply of the good, y`.

Third, cross-sectional factor efficiency measures the welfare gains from reallocating factors from
low to high marginal welfare product uses, for a given level of aggregate factor use. Hence, for factor
f it corresponds to the covariance across uses between MWP jfn and the change in the factor use
shares, dχ

jf,d
n
dθ , in proportion to the aggregate use of the factor, nf,d.

Fourth, aggregate factor efficiency measures the welfare gains from adjusting the (elastic) supply
of factors. Hence, for factor f it corresponds to the difference between AMWP fn and AMRSfn , which
captures the net welfare impact of supplying an additional unit of factor f and putting it to use,
multiplied by the change in factor supply, dnf,sdθ .19

The final three components of the production efficiency decomposition measure welfare gains due
to primitive changes in technology and endowments. The technology change component measures
the welfare gains from having more supply of goods (at no cost) for given allocation shares and
elastic factor supplies. Hence, for good j it corresponds to the output change induced by the change
in technology, ∂Gj∂θ , valued at its marginal social value MSV j

y . A change in the technology used to
produce good j is identical to a change in the endowment of the good (at no cost), which is also
valued at its marginal social valueMSV j

y , defining the good endowment change component. Finally,
the factor endowment change component measures the welfare gains from having more factors (at
no cost) for given allocation shares and elastic factor supplies. Hence, for factor f it corresponds
to the change in the supply of factor f , dn̄f,s

dθ valued at the welfare gain associated with increasing
factor use, AMWP fn .

Corollary 2 shows that production efficiency satisfies several desirable properties. These
properties are helpful to quickly analyze particular economies, as we do in Section 3.4.

Corollary 2. (Properties of Production Efficiency).

(a) (Single Good Economies) In economies with a single good (J = 1), cross-sectional intermediate
input efficiency and cross-sectional factor efficiency are zero.

19In general, aggregate factor efficiency must be expressed in terms aggregate factor supply and not factor use. If
the endowment of an elastically supplied factor is zero or does not change in a given perturbation, then dnf,s

dθ
= dnf,d

dθ
.
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(b) (No Intermediate Input Economies) In economies with no intermediate goods (xj` = ξj` = 0),
cross-sectional and aggregate intermediate input efficiency are zero.

(c) (Fixed Factor Supply Economies) In economies in which all factors are in fixed supply
(dnf,sdθ = 0), aggregate factor efficiency is zero.

(d) (Specialized Intermediate/Factor Economies) In economies in which all intermediate inputs
(factors) are specialized with χj`x = 1 (χjfn = 1) for some j, cross-sectional intermediate input
(factor use) efficiency is zero.

(e) (Equalized MWP j`x or MWP jfn ) If marginal welfare products for good ` (factor f) are identical
across uses for all goods (factors) with x` > 0 (nf,d > 0), then cross-sectional intermediate
(factor) efficiency is zero.

Since both cross-sectional intermediate input and factor efficiency rely on reallocating intermediate
inputs and factors towards different uses in production, it is necessary to have at least two goods that
can be produced. Relatedly, economies with no intermediate inputs cannot feature cross-sectional
or aggregate intermediate input efficiency gains, since dxj`x

dθ = 0 and dφ`x
dθ = 0, while economies with

factors in fixed supply, cannot feature aggregate factor efficiency gains, since dnf,s

dθ = 0. Finally,
cross-sectional intermediate input (factor) use efficiency must be zero when i) intermediate inputs
(factors) are specialized, since there is no scope for reallocating intermediate input (factor) shares
towards alternative uses, or ii) the social value of using a good (factor) is identical across uses, since
there is no scope to find welfare gains from reallocating goods (factors).

3.3 Insights from Welfare Accounting Decomposition

We present several of the insights that emerge from the welfare accounting decomposition in a series
of remarks.

Remark 2. (Technological and preference origins of welfare gains and losses). Theorems 1 and 2
trace the origins of efficiency gains and losses under any perturbation to the reallocation of resources
and to primitive changes in technology and endowments. Their main conceptual contribution is to
characterize the welfare-relevant social valuations for each of these changes. In fact, Theorems 1 and 2
identify a small set of variables — MRS, MWP , AMRS, AMWP and MSV — that are sufficient
to translate physical changes in allocations, technologies, and endowments into welfare gains and
losses. Importantly, this decomposition is written purely in terms of preferences and technologies,
and makes no reference to prices, individual budget constraints, or notions of equilibrium. It therefore
directly applies not only to competitive environments, but also to, for instance, bargaining, search,
or imperfectly competitive environments, as we highlight in our applications.

Remark 3. (Social Value of Technology). Theorem 2 identifies the efficiency gains from pure
technological change with the marginal social value of goods, MSV j

y , without making assumptions
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about the (optimizing) behavior or budget constraints of individuals, prices, or equilibrium notions.
In fact, sinceMSV j

y can be computed at the original allocation, Theorem 2 characterizes the efficiency
gains from technology changes without the need to specify, compute, or measure a perturbation.20

The technology change component of the welfare accounting decomposition is always positive if
technology improves sinceMSV j

y > 0. However, a technological improvement may decrease aggregate
efficiency overall if its impact on allocative efficiency is sufficiently negative, which can only happen
at inefficient allocations — see Section 4.

Remark 4. (Allocative vs. Technical Efficiency; Efficiency vs. Misallocation). We refer to the welfare
gains due to exchange efficiency and the first four components of production efficiency as allocative
efficiency gains, because these involve changes in allocations (allocation shares and factor supplies).
We could have alternatively used the term misallocation. That is, a perturbation that increases, say,
cross-sectional or aggregate factor efficiency can be described as reducing cross-sectional or aggregate
factor misallocation. In fact, the factor efficiency components are the marginal counterpart of the
notions of misallocation in Hsieh and Klenow (2009), as shown in Section 7. Since the welfare gains
associated with technology and endowment changes do not involve changes in allocations but instead
capture the pure effect of changes in primitives, we refer to these as technical efficiency gains.

Remark 5. (Shares, Efficiency Conditions, and Planning Problem). By design, the allocative
efficiency components of the welfare accounting decomposition — with the exception of aggregate
factor efficiency — are written in terms of changes in allocation shares. Working with shares
allows us to separate changes due to reallocation (holding consumption, factor supply, goods supply,
intermediate input use, or factor use fixed) from changes in aggregates (aggregate factor supply,
technology, or endowments).21 Moreover, each allocative efficiency component maps directly into a
particular optimality condition of the planning problem for this economy, whose solution we formally
characterize in Section C.2 of the Online Appendix. This occurs because at an efficient allocation,
reallocating resources cannot generate efficiency gains. We characterize these efficiency conditions
next in Section 4.

Remark 6. (Informational Requirements). What are the informational requirements to implement
the welfare accounting decomposition, either by computing it in a structural model or by empirically
measuring its components? To compute exchange efficiency, it is sufficient to know i) aggregate
consumption and factor supply, ii) changes in individual consumption and factor supply shares, and
iii) individual marginal rates of substitution. Conditional on these objects, the economy’s production
structure does not independently determine exchange efficiency. To compute production efficiency,
it is sufficient to know i) total aggregate supply, intermediate use, and factor use; ii) changes in

20By contrast, computing the welfare gains from exchange, intermediate input, and factor efficiency requires
knowledge of changes in allocations, which must be computed within a model or measured empirically.

21This separation is not possible working with levels, since perturbations that change the level of aggregate supply
necessarily change consumption and/or intermediate input use levels, via (3), while perturbations that change the
level of factor supply necessarily change factor use levels, via (4). Our results can be seen as an application of the
non-envelope theorem result in Dávila and Schaab (2024a) that exploits the linearity of resource constraints.
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intermediate use, and factor use shares, and changes in aggregate factor supply, technology, and
endowments; iii) marginal welfare products; iv) aggregate marginal welfare products and marginal
rates of substitution; and v) the marginal social value of goods. Conditional on these objects,
the distribution of consumption and factor supply does not independently determine production
efficiency. In Section 5, we show how prices can be used to infer these objects.

3.4 Examples: Minimal Welfare Accounting Economy

We conclude this section by applying Theorems 1 and 2 to simple economies. This is helpful to
illustrate the economic forces that underlie each of the components of the decomposition. Figure 2
summarizes the minimal welfare accounting economy, which is the simplest economy in which each
component of the welfare accounting decomposition can take non-zero values. In Appendix D, we
present seven special cases of this economy in which particular components of the welfare accounting
decomposition are non-zero. Table 1 summarizes these special cases.

4 Efficiency Conditions

In this section, we leverage the welfare accounting decomposition to characterize and study efficient
allocations. This is, to our knowledge, the first general characterization of efficiency conditions for
disaggregated production economies with heterogeneous individuals.

4.1 Exchange Efficiency

We adopt the conventional definition of (Pareto) efficiency: an allocation is efficient when there is
no perturbation that makes every individual (weakly) better off. Equivalently, given Theorems 1
and 2, an allocation is efficient if there is no feasible perturbation for which any of the allocative
efficiency components are positive. Theorems 3 and 4 respectively provide the necessary conditions
for exchange and production efficiency.22

Theorem 3. (Efficiency Conditions: Exchange Efficiency). An efficient allocation must satisfy the
following exchange efficiency conditions:

(a) (Cross-sectional consumption efficiency) For goods with cj > 0, it must be that

MRSijc =

= AMRSjc ∀i s.t. χijc > 0

≤ AMRSjc ∀i s.t. χijc = 0.
(24)

22To simplify the exposition, we assume in the body of the paper that yj > 0 and nf,d > 0. We allow efficient
allocations to feature yj = 0 and nf,d = 0 in the Appendix.
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Figure 2: Minimal Welfare Accounting Economy

Note: This figure illustrates the minimal economy in which all components of the welfare accounting decomposition
can take non-zero values. We summarize special cases of this economy in Table 1 and study them in Appendix D.

Exchange Efficiency Production Efficiency

Cross-Sectional
Consumption
Efficiency

Cross-Sectional
Factor Supply
Efficiency

Cross-Sectional
Intermediate

Input
Efficiency

Aggregate
Intermediate

Input
Efficiency

Cross-Sectional
Factor

Efficiency

Aggregate
Factor

Efficiency

Vertical × × × × × ×

Robinson
Crusoe

× × × × × X

Horizontal × × × × X ×

Roundabout × × × X × ×

Diversified
Intermediate

× × X X × ×

Multiple
Factor

Suppliers

× X × × × X

Edgeworth
Box

X × × × × ×

Table 1: Summary of Minimal Welfare Accounting Special Cases

Note: This table illustrates the components of the welfare accounting decomposition that can be non-zero in special
cases of the minimal welfare accounting economy introduced in Figure 2. All economies are formally defined in Appendix
D.
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(b) (Cross-sectional factor supply efficiency) For factors with nf,s > 0, it must be that

MRSifn =

= AMRSfn ∀i s.t. χif,sn > 0

≥ AMRSfn ∀i s.t. χif,sn = 0.
(25)

Efficiency requires the equalization ofMRSijc across all consumers of good j, withMRSijc potentially
lower for individuals for whom cij = 0. Otherwise, it is feasible and welfare-improving to reallocate
consumption from low to high MRSijc individuals, for given aggregate consumption cj . At the
corner where individual i does not consume good j, it is not feasible to reallocate consumption away
from individual i, even though marginal rates of substitution are not equalized. Similarly, efficiency
requires the equalization ofMRSifn across all suppliers of factor f , withMRSifn potentially lower for
individuals for whom nif,s = 0. Otherwise, it is feasible and welfare-improving to reallocate factor
supply from high to low MRSif

n individuals, for given aggregate factor supply nf,s. At the corner
where individual i does not supply factor f , it is not feasible to reallocate factor supply away from
individual i, even though marginal rates of substitution are not equalized.

4.2 Production Efficiency

While the exchange efficiency conditions in Theorem 3 are arguably standard (see e.g. Mas-Colell
et al. (1995)), the production efficiency conditions in Theorem 4 are novel.

Theorem 4. (Efficiency Conditions: Production Efficiency). An efficient allocation must satisfy
the following production efficiency conditions:

(a) (Cross-sectional intermediate input efficiency) For goods with x` > 0, it must be that

MWP j`x =

= AMWP `x ∀j s.t. χj`x > 0

≤ AMWP `x ∀j s.t. χj`x = 0.
(26)

(b) (Aggregate intermediate input efficiency) For goods with y` > 0, it must be that

max
j

{
MWP j`x

}
≤ AMRS`c ∀` s.t. φ`x = 0.

AMWP `x = AMRS`c ∀` s.t. φ`x ∈ (0, 1) (27)

AMWP `x ≥ max
i

{
MRSi`c

}
∀` s.t. φ`x = 1.

(c) (Cross-sectional factor efficiency) For factors with nf,d > 0, it must be that

MWP jfn =

= AMWP fn ∀j s.t. χjfn > 0

≤ AMWP fn ∀j s.t. χjfn = 0.
(28)
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(d) (Aggregate factor efficiency) For factors with nf,d > 0, it must be that

AMWP fn = AMRSfn ∀f s.t. nf,s > 0 (29)

AMWP fn ≤ min
i

{
MRSifn

}
∀f s.t. nf,s = 0.

While the formal statement of the conditions for production efficiency is somewhat involved, the
underlying economics are simple. First, cross-sectional intermediate input efficiency requires the
equalization of MWP j`x across all uses of good ` in production. Otherwise, it is feasible and welfare-
improving to reallocate intermediate inputs from low to high MWP j`x uses, for given aggregate
intermediate input use x`. When good ` is not used to produce good j, MWP j`x must be weakly
lower.

Second, aggregate intermediate input efficiency for mixed goods with φ`x ∈ (0, 1) requires the
equalization of the marginal rate of substitution from consuming good ` with its marginal welfare
product as an input. For pure final goods with φ`x = 0, the marginal rate of substitution from
consuming good ` must be higher than its highest marginal welfare product if used as an input. For
pure intermediate goods with φ`x = 1, the marginal welfare product of good ` must be higher than its
highest marginal rate of substitution if consumed. If these conditions are not satisfied, it is feasible
and welfare-improving to reallocate good ` from final consumption to intermediate input use, or vice
versa, for a given level of aggregate supply y`.

A similar logic applies to factors. Third, cross-sectional factor efficiency requires the equalization
of MWP jfn across all uses of factor f , with MWP jfn potentially lower when factor f is not used to
produce good j. Otherwise, it is feasible and welfare-improving to reallocate factors from low to high
MWP jfn uses, for a given level of fixed aggregate factor use nf,d.

Finally, aggregate factor efficiency requires the equalization of the marginal welfare product of
elastic factor f with its marginal rate of substitution, which captures the utility cost of supplying
the factor. When factor f is not elastically supplied, its marginal welfare product must be weakly
lower than the lowest marginal rate of substitution, which captures the cheapest cost of supplying
the factor.

Theorems 3 and 4 highlight that carefully incorporating non-negativity constraints is critical
to characterize the conditions for allocative efficiency in disaggregated economies. These issues
become more relevant at finer levels of disaggregation, since heterogeneous individuals typically do
not consume most goods and production networks with heterogeneous producers become increasingly
sparse. We elaborate on these issues in subsections 4.5 and 4.6.

4.3 MSV under Efficiency

The marginal social value of goods is a central object for welfare accounting. It is a key
determinant of marginal welfare products and thus governs each component of production efficiency.
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It is furthermore the single determinant of the technology change (and good endowment change)
component of the welfare accounting decomposition. Theorem 5 characterizes the marginal social
value of goods at efficient allocations.23

Theorem 5. (MSV under Efficiency). At an allocation that satisfies aggregate intermediate input
efficiency, the marginal social value of good j is given by

MSV j
y =

AMRSjc if φjc > 0

AMWP jx if φjx > 0.
(30)

At an allocation that additionally satisfies cross-sectional consumption and cross-sectional
intermediate input efficiency, the marginal social value of good j is given by

MSV j
y =

MRSijc ∀i s.t. χijc > 0 if φjc > 0

MWP `jx ∀` s.t. χ`jx > 0 if φjx > 0.
(31)

The marginal social value of a good derives from its consumption value when the good is final and
from its production value when the good is used as an input. Aggregate intermediate input efficiency
guarantees that these are equalized for mixed goods, i.e., AMRSjc = AMWP jx for j mixed. When j
is a final good with φjc > 0, therefore, its marginal social value equals its consumption value AMRSjc .
When j is an intermediate good with φjx > 0, its marginal social value equals its production value
AMWP jx . And when good j is mixed with φjc > 0 and φjx > 0, consumption and production value
must be equalized, so MSV j

y = AMRSjc = AMWP jx .
Conversely, the marginal social value of a pure final (pure intermediate) good is not equal to

its production (consumption) value. As long as aggregate intermediate input efficiency is satisfied,
MSV j

y > AMRSjc when j is a pure intermediate with φjx = 1 and MSV j
y > AMWP jx when j is a

pure final good with φjc = 1.
Cross-sectional consumption efficiency furthermore guarantees that MRSijc = AMRSjc are

equalized across all individuals i that consume good j (χijc > 0). The MSV of a final good must
therefore coincide with the valuation of each individual. Similarly, cross-sectional intermediate input
efficiency guarantees that MWP `jx = AMWP jx are equalized for good j across all its intermediate
uses ` (χ`jx > 0). The MSV of goods used as intermediate inputs must then coincide with the
marginal welfare product of each use. More broadly, efficiency requires that the value of using a
good must be equalized across all uses and coincide with the MSV of the good.

23Characterizing the factor endowment change component under efficiency is straightforward. When nf,d > 0,
efficiency requires that AMWP fn = MWP jfn , ∀j with χjf,dn > 0.
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4.4 Planning Problem, Lagrange Multipliers, and Socialist Calculation Debate

We have emphasized that the welfare accounting decomposition can be leveraged to derive efficiency
conditions directly. An equivalent alternative approach is to set up the planning problem.

Definition 6. (Planning Problem). The planning problem — formally stated in Appendix C.2 —
maximizes the social welfare function in (5), with preferences V i defined in (1), subject to technologies
and resource constraints, defined in (2), (3) and (4), as well as non-negativity constraints.

There are two reasons why studying the planning problem is useful. First, it provides an equivalent
characterization of the efficiency conditions in Theorems 3 and 4. As we show in the Appendix,
the restriction to feasible perturbations that underlies our characterization of efficiency conditions is
implied by the Kuhn-Tucker multipliers on the constraints of the planning problem. Second, and more
importantly for this paper, the planning problem provides a justification for the welfare accounting
decomposition. As we show in the Appendix, each of the components of the decomposition can be
interpreted as a particular perturbation of the planning problem.

Two implications of our new characterization of efficiency conditions are worth highlighting.

Remark 7. (MSV j
y and AMWP fn as Lagrange Multipliers on Resource Constraints). The planning

problem provides an interpretation of the technology change (and good endowment change) and factor
endowment change components of the welfare accounting decomposition in terms of the Lagrange
multipliers on goods and factors resource constraints: ζjy and ζfn , since ζjy = MSV j

y when yj 6= 0 and
ζfn = AMWP fn when nf,d 6= 0. To our knowledge, our results provide the first characterization of
the Lagrange multipliers of the planning problem in general disaggregated economies.24

Remark 8. (Socialist Calculation Debate with Intermediate Goods). Our characterization of efficiency
conditions directly speaks to the socialist calculation debate, which discusses the feasibility of
central planning — see e.g. Lange (1936), Lerner (1944), or Hayek (1945). Our results illustrate
how computing efficiency conditions in production economies is significantly harder than efficiently
allocating goods across individuals, especially in economies that feature pure intermediates. In
particular, our results imply that computing MSV j

y for pure intermediates requires knowledge of
the entire production network — to compute the goods inverse matrix Ψy — while computing
MSV j

y for mixed or pure final goods only requires knowledge of aggregate individual valuations via
marginal rates of substitution. Intuitively, the value of goods that are consumed by individuals can
be ascertained from individual valuations, even when these goods also used to produce, while pure
intermediates only derive value once eventually consumed. This observation can be used to support
the hypothesis that the losses associated with planning increase with the complexity of production
networks, in particular when these feature pure intermediate goods.25

24As we explain in Section 5, these multipliers can be expressed in terms of prices and wedges in competitive
economies.

25It is thus not a a surprise that Friedman and Friedman (1980) chose a pencil — a good with a complex production
structure that relies on pure intermediates — as the example to praise the virtues of competitive markets. See also
Read (1958).

27



4.5 Interior Economies: Revisiting Lange (1942) and Mas-Colell et al. (1995)

The classic approach to characterizing efficiency conditions is typically traced back to Lange (1942)
— see also Samuelson (1947) — and is summarized in a modern treatment in Section 16.F of Mas-
Colell et al. (1995). A central contribution of our paper is to show that Theorems 3 and 4 generalize
these classic conditions to general environments with disaggregated production.

Definition 7. (Classic Efficiency Conditions). The classic (production) efficiency conditions for an
intermediate link j` and a factor link jf hold if

MRSijc
∂Gj

∂xj`
= MRSi`c and MRSijc

∂Gj

∂njf,d
= MRSifn . (32)

Critically, the classic approach exclusively studies interior production economies, in which every
good is mixed and used in the production of every other good, i.e., χj`x ∈ (0, 1) and φ`x ∈ (0, 1) .26 In
that case, the classic efficiency conditions in (32) imply i) equalized marginal rates of substitution
across individuals, ii) equalized marginal rates of transformation (MRT ) across goods, and iii) the
equalization of MRS with MRT .27 In Corollary 3, we show that the classic efficiency conditions
emerge as a special case of Theorems 3 and 4 in interior economies. We then show in subsection 4.6
that the classic efficiency conditions are typically invalid in disaggregated production economies that
are not interior.

Corollary 3. (Revisiting Lange (1942)/Mas-Colell et al. (1995)). In interior economies, the
efficiency conditions of Theorems 3 and 4 collapse to those in Section 16.F of Mas-Colell et al.
(1995).

By construction, all (production) non-negativity constraints are slack in interior economies. Since
χj`x ∈ (0, 1) and φ`x ∈ (0, 1), it follows directly from Theorems 3 and 4 (conditions (26) and (27)) that

26The classic approach typically allows for consumption or factor supply to be zero for some (but not all) individuals.
For that reason, our contribution is to study non-interior economies in the production sense. Mas-Colell et al. (1995)
justify their restriction to interior production economies as follows:

“(..) every commodity is both an input and an output of the production process. Because this is
unrealistic, we emphasize that no more than expositional ease is involved here. Recall that for expositional
ease we are not imposing any boundary constraints on the vectors of inputs/outputs.”

Our results show that exclusively considering interior economies is insufficient to properly understand efficiency
conditions in disaggregated economies.

27Recall that we define marginal rates of substitution in units of the numeraire in this paper, i.e., MRSijc = ∂ui

∂cij
/λi.

If condition (32) holds, then MRSi`c /MRSijc = ∂Gj

∂xj`
must be equal across individuals since marginal products do not

depend on i. This implies that two individuals’ valuation of good `, expressed in units of good j, is equalized. Since
(32) applies for all j and `, it also implies the equalization of MRS in units of the welfare numeraire. To derive the
equalization of MRT , notice that (32) can be rewritten as

MRSijc
∂Gj

∂xj`
= MRSij

′
c
∂Gj

′

∂xj′`
=⇒ MRSijc /MRSij

′
c = ∂Gj

′

∂xj′`
/
∂Gj

∂xj`
≡MRT jj

′,`

where the RHS defines the marginal rate of transformation (MRT ). Condition (32) therefore implies both
MRS = MRT (after a change of units) and the equalization of MRT across uses since the LHS does not depend
on `. A similar argument applies to factor use.
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MWP j`x = MRSi`c , ∀i, j for every good `. Similarly for factors, conditions (28) and (29) imply that
MRSifn = MWP jfx , ∀i, j for every factor f . Both sets of conditions imply that the classic efficiency
conditions in equation (32) are satisfied for all links.

4.6 Non-Interior Economies

What then distinguishes the conditions for production efficiency in economies that are not interior,
and why do the classic conditions not apply to these environments?

Consider increasing xj`, the use of good ` in the production of good j. Assuming this is a feasible
perturbation, efficiency requires that its social cost — the marginal social value of good ` — is
equalized with its social benefit — the marginal social value of good j multiplied by the marginal
product ∂Gj

∂xj`
. The classic efficiency conditions (32) use marginal rates of substitution to measure

the social benefit (32 LHS) and cost (32 RHS). This is appropriate for interior efficient economies
where all goods are mixed, since MSV = MRS for final goods as we showed above. When j or ` is
a pure intermediate, however, marginal rates of substitution no longer represent the good’s marginal
social value, even at an efficient allocation (Theorem 5). Since pure intermediates are not consumed,
efficiency requires their MRS to be lower than their MSV . The marginal social value of a pure
intermediate instead derives from the consumption value it eventually generates downstream as it is
used in the production of other goods throughout the network.

There is a second, more mechanical reason why the classic efficiency conditions do not extend to
non-interior economies. If good ` is not used in the production of good j, the associated efficiency
condition is determined by the inequality in (26): efficiency at the j` link then requires thatMWP j`x

be lower than the marginal social value of good `.
We summarize the implications of Theorems 3 and 4 for non-interior economies in two corollaries.

Corollary 4 concludes that the classic efficiency conditions still hold at the level of an intermediate
input link, as long as that link itself is interior.

Corollary 4. (Classic Efficiency Conditions Hold for Interior Links). The classic efficiency
conditions hold for the j` and jf links when

(a) a mixed good ` is used to produce a mixed (or a pure final) good j
(b) an elastically supplied factor f is used to produce a mixed (or a pure final) good j.

Intuitively, the classic efficiency conditions (32) extend to all interior links j` and jf because the
MSV of mixed goods coincides with their MRS, even when there are non-interior links elsewhere
in the network. Corollary 5 characterizes the scenarios in which the classic conditions fail to hold.

Corollary 5. (Scenarios in which Classic Efficiency Conditions Do Not Hold). The classic efficiency
conditions generically28 fail to hold for links j` and jf that feature pure intermediate goods, i.e.,

28The qualifier generically captures that it is always possible to find production structures for which these results
hold.
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(a) Example 1

f = 1

fixed

j = 3

j = 1

j = 2

i = 1

(b) Example 2

Figure 3: Scenarios in which Classic Efficiency Conditions Do Not Hold

Note: This figure illustrates Corollary 5 in two simple scenarios. The left panel shows a mixed good (good 3) used to
produce a pure intermediate (good 2), as well as a a pure intermediate (good 2) used to produce a final good (good 1).
The right panel shows a factor used to produce both a pure intermediate (good 3) and a final good (good 1).

(a) a mixed good ` is used to produce a pure intermediate good j
(b) a pure intermediate good ` is used to produce any good j
(c) a factor f is used to produce a pure intermediate good j.

Trivially, the classic conditions also fail to hold for links j` and jf when good ` and factor f are not
used in the production of good j.

The first and third items of Corollary 5 highlight that the classic efficiency conditions may fail at
links in which the efficiency conditions take the form of an equality, as long as an intermediate good is
produced. This observation implies that properly characterizing production efficiency is more subtle
than simply considering a set of inequalities, as in the case of exchange efficiency.

We illustrate Corollary 5 in two simple examples — see also Figure 3.

Example 1. (Pure Intermediates). Example 1 features a single individual (I = 1), three goods (J =
3), and a single factor in fixed supply (F = 1). The individual’s preferences are V 1 = u1 (c11, c13),
which implies that MRS12 = 0. Technologies for each of the goods are y1 = G1 (x12), y2 = G2 (x23),
and y3 = G3

(
n31,d

)
, which already imposes that many marginal products are zero, e.g., ∂G1

∂x13 = 0.

The welfare accounting decomposition for this economy only features aggregate intermediate
input efficiency: exchange efficiency is zero since I = 1, cross-sectional intermediate input and factor
efficiency are zero since all inputs and factors are specialized, and aggregate factor efficiency is zero
since the single factor is in fixed supply.29 Plugging into Theorem 2,

ΞAE = ΞAE,P =
∑
`

(
AMWP `x −AMRS`c

) dφ`x
dθ

y` =

MRS11
c

∂G1

∂x12
∂G2

∂x23︸ ︷︷ ︸
AMWP 3

x

−MRS13
c︸ ︷︷ ︸

AMRS3
c

 dφ3
x

dθ
y3.

29Formally, we assume here that the efficient production structure is as in Figure 3a. The full set of efficiency
conditions also features inequalities to ensure that, for example, it is not efficient to consume good 2 or use it in the
production of good 3.
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For the mixed good 3 with φ3
x ∈ (0, 1), aggregate intermediate input efficiency requires that

AMWP 3
x = AMRS3

c , or equivalently MRS11
c

∂G1

∂x12
∂G2

∂x23 = MRS13
c . The classic efficiency condition

would instead require MRS12
c

∂G2

∂x23 = MRS13
c , which is invalid since good 2 is a pure intermediate

and MRS11
c

∂G1

∂x12 > MRS12
c = 0. At the efficient allocation, the classic condition would lead one to

conclude good 3’s intermediate use is inefficiently high. This illustrates Corollary 5a.
This example also illustrates Corollary 5b since it features a pure intermediate (good 2) that

is used in the production of another good. Since φ2
x = 1, aggregate intermediate input efficiency

requires that MRS11
c

∂G1

∂x12 > MRS12 = 0, i.e., the consumption value of good 2 must be lower
than its production value. The classic efficiency condition MRS11

c
∂G1

∂x12 = MRS12
c would lead one to

conclude that, at the efficient allocation, MSV 2
y = AMWP 2

x = AMRS2
c , which would be incorrect.

Example 2. (Factor Used to Produce Pure Intermediate). Example 2 features one individual (I = 1),
three goods (J = 3), and one factor in fixed supply (F = 1). Preferences are V 1 = u1 (c11, c12) and
technologies for each of the goods are y1 = G1

(
n11,d

)
, y2 = G2 (x23), and y3 = G3

(
n31,d

)
.

The welfare accounting decomposition for this economy only features cross-sectional factor
efficiency: exchange efficiency is zero since I = 1, cross-sectional intermediate input efficiency is zero
since all inputs are specialized, aggregate factor efficiency is zero since the single factor is in fixed
supply, and aggregate intermediate input efficiency is zero since φ1

c = φ2
x = φ3

x = 1 by construction.
Therefore,

ΞAE = ΞAE,P = CovΣ
j

[
MWP j1n ,

dχj1,dn

dθ

]
n1,d =

(
MSV 1

y

∂G1

∂n11,d
dχ11,d

n

dθ
+MSV 3

y

∂G3

∂n31,d
dχ31,d

n

dθ

)
n1,d

where MSV 1
y = MRS11

c and MSV 3
y = MRS12

c
∂G2

∂x23 . Since labor is in fixed supply but used in the
production of two goods, a feasible perturbation is dχ11,d

n
dθ = −dχ31,d

n
dθ . Cross-sectional factor efficiency

therefore requires that MRS11
c

∂G1

∂n11,d = MRS12
c

∂G2

∂x23
∂G3

∂n11,d . The classic efficiency condition would
instead associate the marginal social value of pure intermediate good 3 with its MRS and require
MRS11

c
∂G1

∂n11,d = MRS13
c

∂G3

∂n31,d . SinceMRS12
c

∂G2

∂x23 > MRS13
c = 0 at the efficient allocation, the classic

condition would lead one to conclude the use of labor in the production of good 3 is inefficiently
high, illustrating Corollary 5c.

We conclude the study of non-interior economies with a remark that highlights the importance
of characterizing efficiency conditions in terms of MWP and MRS instead of MRS and MRT .

Remark 9. (MWP R MRS generalizes MRS R MRT ). One central takeaway from this section is
that MWP and MRS are the appropriate objects to characterize efficiency conditions, rather than
MRS and MRT , as in the classic approach. For instance, when good ` is mixed or factor f is in
elastic supply, efficiency requires that

MWP j`x = MRSi`c and MWP jfn = MRSifn , (33)

31



for all i such that χijc > 0 and for all j such that χj`x > 0, but the classic efficiency conditions in
(32) would not be valid if j is a pure intermediate. More generally, the correct inequalities that
characterize production efficiency — see Theorem 2 — can be written in terms of MWP and MRS,
but not MRS and MRT . This insight is useful to understand the distinction between marginal
revenue products and marginal welfare products in Section 5.3.

5 Competitive Economies

Our results so far have made no assumptions about the (optimizing) behavior of agents, individual
budget constraints, prices, or notions of equilibrium. In this section, we specialize the welfare
accounting decomposition to competitive economies with and without wedges. This provides new
insights by shedding light on the relation between efficiency and competition and by relating prices
to the welfare-relevant statistics we have identified in this paper.

5.1 Competitive Equilibrium with Wedges

Starting from the physical environment described in Section 2, we now assume that individuals
maximize utility and technologies are operated with the objective of minimizing costs and maximizing
profits. To allow for distortions, we saturate all choices with wedges, which we take as primitives.
For simplicity, we set ȳj,s = 0.

Individual i faces a budget constraint of the form

∑
j

pj
(
1 + τ ijc

)
cij =

∑
f

wf
(
1 + τ if,sn

) (
nif,s + n̄if,s

)
+
∑
j

νijπj + T ij , (34)

where pj denotes the price of good j, wf denotes factor f ’s compensation per unit supplied, νijπj

denotes the profit associated with the operation of technology j received by individual i, and T ij is
a lump-sum transfer that rebates wedges back to individuals. Individual i faces individual-specific
consumption and factor supply wedges τ ijc and τ if,sn .

Firms operate technologies to minimize costs, which defines the cost functions

Cj
(
yj ;
{
wf
}
f
,
{
p`
}
`

)
= min

njf,d,xj`

∑
f

wf
(
1 + τ jf,dn

)
njf,d +

∑
`

p`
(
1 + τ j`x

)
xj`, (35)

subject to equation (2), facing technology-specific factor wedges τ jf,dn and technology-specific
intermediate input wedges τ j`x . We assume that the supply of good j can be expressed as the
solution to a profit maximization problem given by

πj = max
yj

pj
(
1 + τ jy

)
yj − Cj

(
yj ;
{
wf
}
f
,
{
p`
}
`

)
(36)

where τ jy denotes a markup wedge for technology j.
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Definition 8. (Competitive Equilibrium with Wedges). A competitive equilibrium with wedges
comprises a feasible allocation

{
cij , nif,s, xj`, njf,d, yj,s

}
and prices

{
pj , wf

}
that satisfy resource

constraints (3) and (4), such that individuals optimize,

MRSijc ≤ pj
(
1 + τ ijc

)
, ∀i,∀j and MRSifn ≥ wf

(
1 + τ if,sn

)
, ∀i,∀f,

where the equations hold with equality when cij > 0 and nif,s > 0, respectively, and firms minimize
costs and maximize profits,

pj
∂Gj

∂xj`
≤ p` 1 + τ j`x

1 + τ jy
, ∀j,∀` and pj

∂Gj

∂njf,d
≤ wf 1 + τ jf,dn

1 + τ jy
, ∀j,∀f,

where the equations hold with equality when xj` > 0 and njf,d > 0, respectively.30

In a competitive equilibrium, individuals equalize marginal rates of substitution with prices or wages
cum wedges, while firms equalize marginal revenue products with marginal costs cum wedges.31 We
can compactly represent the optimality conditions in matrix form as

MRSc ≤ p (1c + τc)
MRSn ≥ w (1ns + τns)

and
pGx ≤ p (1x + τx)
pGn ≤ w (1nd + τnd) ,

(37)

where all matrices are defined in Appendix A. The matrices τ x and τnd include markup wedges τ jy
in addition to intermediate input use wedges τ j`x and factor use wedges τ jf,dn . We refer to economies
with no wedges (τ ijc = τ if,sn = τ j`x = τ jf,dn = τ jy = 0) as frictionless competitive economies. In these
economies, the First Welfare Theorem holds, so any competitive equilibrium allocation is efficient.32

Prices and wages (cum wedges) are helpful to recover the welfare-relevant statistics in competitive
economies. Conditions (37) link prices to marginal rates of substitution and (physical) marginal
products, an insight that we exploit repeatedly in this section.

5.2 Marginal Social Value of Output in Competitive Economies

5.2.1 Competitive Economies with Wedges

Characterizing the marginal social value of goods in competitive economies with wedges is critical
because it directly determines the efficiency gains from technology change as well as marginal welfare
products, which in turn govern all production efficiency components.

30In this section, we implicitly choose the nominal numeraire (i.e. the unit in which prices, wages, and profits are
defined) to be the welfare numeraire. This is without loss of generality since we can always renormalize MRS.

31In parallel to the definition of marginal welfare products, we define marginal revenue products as MRP j`x = pj ∂G
j

∂xj`

and MRP jfn = pj ∂Gj

∂njf,d
. In matrix form, MRPx = pGx and MRPn = pGn.

32While the general proofs of the First Welfare Theorem by Arrow (1951) and Debreu (1951) apply to the economy
considered here, our results provide an alternative constructive proof. Under standard convexity assumptions, a Second
Welfare Theorem also holds.
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Theorem 6. (MSV in Competitive Economies with Wedges). In competitive economies with wedges,
the marginal social value of goods, defined via a 1× J matrix MSV y, is given by

MSVy = p+ pτ̄yΨy where τ̄y = φxτ̄x + φcτ̄c, (38)

where p denotes the 1 × J vector of prices, τ̄x and τ̄c denote J × J diagonal matrices of aggregate
intermediate input and consumption wedges, with elements given by τ̄ jx =

∑
` χ

`j
x τ

`j
x and τ̄ jc =∑

i χ
ij
c τ

ij
c , φx and φc are J × J diagonal matrices of aggregate intermediate use and consumption

shares, τ̄ y defines the aggregate goods wedge, and Ψy is the goods inverse matrix defined in (17).33

Equation (38) shows that the marginal social value of goods equals the vector of prices augmented
by a term that captures the average of the aggregate wedges in consumption and intermediate input
use. Aggregate consumption and intermediate input use wedges are weighted averages of individual
consumption wedges, τ̄ jc =

∑
i χ

ij
c τ

ij
c , and intermediate input use wedges, τ̄ jx =

∑
` χ

`j
x τ

`j
x . The

aggregate goods wedge is in turn a weighted average of the two.
In order to understand whyMSVy takes this form in competitive economies, it is useful to start

from its definition, MSVy = AMRScφcΨy, and proceed gradually. First, using the optimality
conditions for individual consumption, MSVy can be written as

MSVy = pφcΨy + (AMRSc − p)︸ ︷︷ ︸
pτ̄c

φcΨy. (39)

Intuitively, a unit impulse in aggregate supply ultimately increases aggregate consumption by φcΨy,
for given allocation shares and factor supplies. The social value of this change in aggregate
consumption can be split into its market value and the deviation between the true social value,
given by AMRSc, and the market value. This difference is precisely determined the aggregate
consumption wedge, τ̄c.

Next, the market value of the change in aggregate consumption, can be expressed as

pφcΨy = p+ (pGxχx − p)︸ ︷︷ ︸
pτ̄x

φxΨy. (40)

Intuitively, the ultimate change in aggregate consumption induced by a unit impulse in aggregate
supply, φcΨy, can be expressed as the ultimate change in aggregate supply net of aggregate
intermediate use.34 Hence, the ultimate market value of a unit impulse in aggregate supply
corresponds to the sum of the market value of the impulse, given by p, and the market value of

33In sum form, we can express an element of MSVy as MSV `y = p` +
∑

j
pj τ̄ jyψ

j`
y , where τ̄ jy = φjcτ̄

j
c + φjxτ̄

j
x.

34Formally, (40) uses the following physical identity, which follows from (18):

φcΨy = Ψy − φxΨy = IJ +GxξΨy − φxΨy = IJ + (Gxχx − IJ)φxΨy,

where the ultimate change in aggregate supply, Ψy, is decomposed into the unit impulse, IJ , and knock-on effects,
GxξΨy.
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the knock-on effects net of aggregate intermediate use, given by pGxχx − p. This difference is
precisely determined by the aggregate intermediate input wedge, τ̄ x.

Combining (39) and (40), we can reformulate (38) as

MSVy = p+ (pGxχx − p)︸ ︷︷ ︸
=pτ̄x

φxΨy + (AMRSc − p)︸ ︷︷ ︸
=pτ̄c

φcΨy.

This expression illustrates that aggregate consumption (intermediate input use) of good j is too low
when τ̄ jc > 0 (τ̄ jx > 0), and aggregate supply of good j is too low when τ̄ jy = φjcτ̄

j
c + φjxτ̄

j
x > 0.

Hence, the marginal social value of goods that ultimately increase the aggregate supply of goods
with positive aggregate goods wedges is higher than the price.

Given Theorem 6, the technology change component of the welfare accounting decomposition is
simply given by

MSVyGθ =
∑
j

MSV j
y

∂Gj

∂θ
=
∑
j

(
pj +

∑
`

p`τ̄ `yψ
`j
y

)
∂Gj

∂θ
.

The following remarks discuss insights that emerge from Theorem 6 for competitive economies with
wedges. We then revisit its implications for frictionless competitive economies in Section 5.2.2.

Remark 10. (Condition for MSVy = p: Converse Hulten’s Theorem). Prices capture the social
value of technology change in frictionless competitive economies — see Corollary 6 below. Theorem
6 implies a converse result that has been missing from the existing literature: The condition that
ensures MSVy = p is that aggregate goods wedges are zero, that is,

τ̄y = φcτ̄c + φxτ̄x = 0. (41)

While frictionless competition guarantees that (41) is satisfied, this condition may also hold otherwise,
possibly at inefficient allocations. For instance, prices will capture the marginal social value of goods
as long as aggregate goods wedges are zero, even when intermediate input and consumption wedges
are non-zero (τx 6= 0 and τc 6= 0) and the competitive equilibrium is inefficient.35

Remark 11. (Invariance of MSVy to Factor Wedges). Theorem 6 also implies that the marginal
social value of goods does not depend directly on factor supply or factor use wedges. This result
underscores the asymmetry between consumption and intermediate input distortions on the one
hand and factor supply and use distortions on the other. Because MSVy enters in the definition of
marginal welfare products, all production efficiency components are non-zero when τ̄ y 6= 0, but only
factor efficiency components directly depend on factor wedges, as we show in Theorem 7 below.

Remark 12. (MSVy and Network Propagation). Theorem 6 has two important implications for
35Aggregate goods wedges can be zero when aggregate consumption and intermediate use wedges cancel out, or when

both are zero. In turn, aggregate consumption and intermediate use wedges can be zero when its elements cancel out,
or when all its constituents are zero. For cancellations to occur, it must be that some wedges are positive and other
negative.
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network propagation. First, when τ̄ y = 0, the marginal social value of goods can be read exclusively
off prices and does not require knowledge of the entire production network. This observation is
made at times in frictionless competitive economies — see Corollary 6 — which Theorem 6 shows
applies more generally. Second, when τ̄ y = 0, the goods inverse matrix Ψy contains the necessary
information on network propagation to determineMSVy. While it is possible to characterize Ψy in
terms of prices, allocations, and intermediate input wedges — as we do in Appendix C.3 — this is
only relevant insofar as it captures ultimate changes in aggregate supply.36

Remark 13. (Relation to Cost-Based Domar Weights). A central result of Baqaee and Farhi (2020)
is that cost-based Domar weights summarize the impact of pure technological change on final output
in an environment with a single individual, factors in fixed supply, and markup wedges. Their result
is a special case of Theorem 6. Formally, under the assumptions in that paper,

1∑
j p

jcj︸ ︷︷ ︸
Normalization

MSVyGθ︸ ︷︷ ︸
Technology Change

Component

= 1∑
j p

jcj
pĉ︸ ︷︷ ︸

Final Expenditure
Share

Ψ̃y︸︷︷︸
Cost-Based

Leontief Inverse

, (42)

where ĉ = diag(c) and Ψ̃y is the proportional goods inverse, which in turn maps to the intermediate
input block of the cost-based Leontief inverse defined in Baqaee and Farhi (2020) — see Appendix C.3.
Relative to equation (42), Theorem 6 illustrates how competitive forces guarantee that MSV j

y = pj

when τ̄ y = 0. Crucially, away from the assumptions in Baqaee and Farhi (2020), Theorem 6 highlights
that cost-based Domar weights cease to capture the efficiency gains from pure technological change,
for instance in the presence of aggregate consumption wedges.

5.2.2 Frictionless Competitive Economies: Hulten’s Theorem Revisited

Theorem 6 allows us to revisit the impact of technology changes in the frictionless competitive case.
This is the widely studied Hulten’s theorem (Hulten, 1978), a result that has played a prominent role
in the study of the macroeconomic impact of microeconomic shocks and growth accounting (Gabaix,
2011; Acemoglu et al., 2012; Baqaee and Farhi, 2020; Bigio and La’O, 2020).37

Corollary 6. (Hulten’s Theorem Revisited). In frictionless competitive economies, the aggregate
efficiency impact of a proportional Hicks-neutral technology change j is

1∑
j p

jcj
ΞAE = pjyj∑

j p
jcj︸ ︷︷ ︸

Sales Share

, (43)

36Only intermediate input wedges directly enter Ψy, which echoes existing insights highlighting the outsized role
that intermediate input distortions play in production — see e.g. Ciccone (2002) or Jones (2011).

37Hulten’s theorem is typically stated as ”for efficient economies and under minimal assumptions, the impact on
aggregate TFP of a microeconomic TFP shock is equal to the shocked producer’s sales as a share of GDP (Domar
weight)” (Baqaee and Farhi, 2019).
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where pjyj∑
j
pjcj

is the Domar weight or sales share of good j in
∑
j p

jcj.

Corollary 6 provides, to our knowledge, the most general Hulten-style result to date, which applies to
frictionless competitive economies with heterogeneous individuals, elastic factor supplies, arbitrary
preferences and technologies, and arbitrary social welfare functions. Its generality allows us to
systematically discuss the many qualifications associated with this result in the following remarks.

Remark 14. (Welfare vs. Aggregate Efficiency vs. Production Efficiency vs. Output). Hulten’s
theorem is typically formulated in terms of final output (often via TFP). This is in contrast to
Corollary 6, which highlights that Hulten’s theorem is at its core a result about aggregate efficiency
(via production efficiency) and neither about final output nor welfare. Why is this the case? In
economies with a single individual (I = 1) and in which supplying factors causes no disutility
(∂ui/∂nif,s = 0), changes in final output, production efficiency, aggregate efficiency, and welfare
coincide, which has justified the use of Hulten’s theorem as a result about final output. In economies
with a single individual, redistribution and exchange efficiency are zero, so aggregate efficiency and
welfare coincide and are exclusively determined by production efficiency. And when supplying factors
causes no disutility, there is no need to subtract the social cost of supplying factors to transform
final output changes into welfare changes, so production efficiency exclusively captures changes in
final output (i.e. aggregate consumption).38 Corollary 6 highlights that, in frictionless competitive
economies, sales shares capture the impact of technology on aggregate efficiency, not final output or
overall welfare.39

Remark 15. (Efficient vs. Frictionless Competitive vs. Efficient Interior Economies). Note that
stating that Hulten’s theorem applies to efficient economies would be incorrect. Corollary 6 shows
instead that Hulten’s theorem applies to frictionless competitive economies, which is a subset of
efficient economies.40 Why is this the case? When an allocation is efficient, all allocative efficiency
components are necessarily zero, which guarantees that aggregate efficiency is exclusively due to
technology and endowment changes. But efficiency is not enough to guarantee that MSVy = p:

38It is common to state that Hulten’s theorem does not apply to economies with elastic factor supplies. For instance,
Baqaee and Farhi (2018) state that “Hulten’s theorem fails when factors supplies are elastic”. While this is true when
Hulten’s theorem is formulated in terms of final output, Corollary 6 highlights that Hulten’s theorem does apply to
economies with elastic factors when formulated in terms of aggregate efficiency. Bigio and La’O (2020) already show
that Hulten’s theorem is valid for aggregate efficiency in an environment with a single individual and elastic labor
supply; see also Basu and Fernald (2002).

39Away from frictionless competition, Hulten’s Theorem applies to production efficiency (i.e. sales shares capture
the production efficiency impact of a proportional Hicks-neutral technology change) if i) all production wedges and
aggregate consumption wedges are zero and ii) aggregate goods wedges are zero at an allocation that satisfies production
efficiency. Away from frictionless competition, Hulten’s theorem applies to production efficiency (i.e. sales shares
capture the production efficiency impact of a proportional Hicks-neutral technology change) if i) all production wedges
and aggregate consumption wedges are zero and ii) aggregate goods wedges are zero at an allocation that satisfies
production efficiency.

40This logic applies regardless of whether Hulten’s theorem is expressed in terms of aggregate efficiency or final output.
The fact that frictionless competition is a more stringent condition than efficiency is well understood (Edgeworth, 1881;
Debreu and Scarf, 1963). One reason that explains possible imprecisions about the scope of Hulten’s theorem is that
prior to the results in Section 4 there had been no characterization of efficiency conditions for general disaggregated
production economies with heterogeneous individuals.
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Corollary 6 shows this occurs when τ̄ y = 0, a condition that holds in frictionless competitive
economies. That is, there may exist efficient non-interior allocations in which τ̄ y 6= 0 and
Hulten’s theorem does not hold. This occurs because in efficient non-interior allocations input
prices need not reflect marginal welfare products. Therefore, while Hulten’s theorem applies to i)
frictionless competitive economies and ii) efficient interior allocations, it can fail in efficient non-
interior allocations.41 This result further underscores the importance of carefully dealing with non-
interior allocations when studying disaggregated economies.

Example 3. (Failure of Hulten’s Theorem in an Efficient Equilibrium). We consider the same
environment as in Example 1, and focus on a technology change for good 2, so ∂G2

∂θ 6= 0. For
simplicity, we set all wedges to zero, with the exception of τ12

x 6= 0. The competitive equilibrium of
this economy is efficient, with the relevant efficiency condition here being MRS11

c
∂G1

∂x12 > 0. In this
case, competition ensures that p1 ∂G1

∂x12 = p2 (1 + τ12
x

)
. But note that

MSV 2
y = MRS11

c

∂G1

∂x12 = p1 ∂G
1

∂x12 = p2
(
1 + τ12

x

)
6= p2,

so prices do not capture the marginal social value of goods and Hulten’s theorem fails in this efficient
economy. This example illustrates that τ̄2

y = τ̄2
x = τ12

x = 0 is the condition that ensures MSV 2
y = p2,

not efficiency.

Remark 16. (Normalizations behind Domar Weights). Comparing Theorem 6 and Corollary 6
highlights why Hulten’s theorem is typically stated in terms of Domar weights. First, considering
proportional Hicks-neutral technology shocks implies that ∂Gj

∂θ = yj , which ensures that the
numerator of the Domar weight in (43) is pjyj . Second, Hulten’s theorem is typically stated using
nominal GDP as numeraire, which ensures that the denominator of the Domar weight in (43) is∑
j p

jcj . These are arbitrary normalizations; in fact, normalizing by the aggregate value of aggregate
supply

∑
j p

jyj would define alternative weights that add up to one.

5.3 Allocative Efficiency in Competitive Economies

In this subsection, we specialize the allocative efficiency components of the welfare accounting
decomposition to competitive economies with wedges.

Theorem 7. (Production Efficiency in Competitive Economies). In competitive economies with
41Baqaee and Farhi (2020) provide an example — analogous to our Example 3 — of an efficient (non-interior)

allocation in which Hulten’s theorem fails, because “revenue-based and cost-based Domar weights are not equal”. Our
results show that the failure of Hulten’s theorem at an efficient allocation is possible only because the economy studied
is not competitive and non-interior.
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wedges, in the absence of technology and endowment changes, production efficiency is given by

ΞAE,P =
∑
`

CovΣ
j

[
τ j`x ,

dχj`x
dθ

]
p`x` +

∑
`

CovΣ
j

[(
MSV j

y − pj
) ∂Gj
∂xj`

,
dχj`x
dθ

]
x`︸ ︷︷ ︸

Cross-Sectional Intermediate Input Efficiency

+
∑
`

p` (τ̄ `x − τ̄ `c)+
∑
j

(
MSV j

y − pj
) ∂Gj
∂xj`

χj`x

 dφ`x
dθ

y`

︸ ︷︷ ︸
Aggregate Intermediate Input Efficiency

+
∑
f

CovΣ
j

[
τ jf
nd
,
dχjf,dn

dθ

]
wfnf,d +

∑
f

CovΣ
j

[(
MSV j

y − pj
) ∂Gj

∂njf,d
,
dχjf,dn

dθ

]
nf,d

︸ ︷︷ ︸
Cross-Sectional Factor Efficiency

+
∑
f

wf (τ̄ fns − τ̄ fnd)+
∑
j

(
MSV j

y − pj
) ∂Gj

∂njf,d
χjf,dn

 dnf,s

dθ︸ ︷︷ ︸
Aggregate Factor Efficiency

.

Theorem 7 follows from imposing the equilibrium conditions in (37) into the production efficiency
decomposition in Theorem 2. In line with Remark 15, Theorem 7 further underscores the asymmetry
between aggregate goods wedges, which directly impact all production efficiency components (via
the terms that contain MSV j

y − pj , since MSVy − p = pτ̄yΨy) and other wedges. Hence, any
changes in inputs or factors that increase the supply of goods with high aggregate goods wedges have
a separate impact on the aggregate efficiency components. Since these effects are identical across all
components, we focus on describing the remaining terms.

First, cross-sectional intermediate input efficiency directly depends on the dispersion in
intermediate input use wedges. Intuitively, reallocating intermediate inputs towards uses with
higher wedges is valuable since the competitive equilibrium features too little of those input uses.
Second, aggregate intermediate input efficiency directly depends on the difference between aggregate
intermediate input and consumption wedges. Intuitively, if τ̄ `x > (<) τ̄ `c , the aggregate intermediate
use of good ` is inefficiently high relative to its consumption use. Third, cross-sectional factor
efficiency directly depends on the dispersion in factor use wedges. Intuitively, reallocating factors
towards uses with higher wedges is valuable since the competitive equilibrium features too little of
those factor uses. Finally, aggregate factor efficiency directly depends on the difference between
aggregate factor supply and factor use wedges. Intuitively, if τ̄ fns > (<) τ̄ f

nd
, the aggregate supply

of factor f is inefficiently low (high) relative to its use. In the Appendix, we characterize the factor
endowment change component.

Remark 17. (Equalization of Marginal Revenue Products Does Not Ensure Cross-Sectional Factor
Efficiency). In frictionless competitive economies, marginal revenue products are equalized across all
uses and the cross-sectional factor efficiency component is zero. However, equalization of marginal
revenue products is not sufficient to ensure that the cross-sectional factor efficiency component is zero
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in competitive economies with wedges, even when factor use wedges are zero. A similar logic applies
to cross-sectional input efficiency. Why is this the case? As explained in Section 4, efficiency requires
the equalization of marginal welfare products across uses of a factor, while competition when factor
use wedges are zero ensures the equalization of marginal revenue products across uses. IfMSV j

y 6= pj

for some goods that use a particular factor, the marginal welfare products of that factor won’t be
equalized across uses, allowing for cross-sectional factor efficiency to be non-zero. We illustrate this
possibility in Example 4.

Example 4. (Marginal Welfare Product vs. Marginal Revenue Product). We consider the same
environment as in Example 2. All wedges are zero except τ23

x 6= 0. In this case, competition ensures
thatMRS11

c = p1 andMRS12
c = p2, as well as p1 ∂G1

∂n11,d = w1 and p3 ∂G3

∂n31,d = w1. The only equilibrium
condition with a wedge is p2 ∂G2

∂x23 =
(
1 + τ23

x

)
p3. Consequently, competition implies that marginal

revenue products are equalized across uses, so MRP 11
n = MRP 31

n . Therefore,

p1 ∂G1

∂n11,d = p3 ∂G3

∂n31,d =⇒ p1 ∂G1

∂n11,d = 1
1 + τ23

x

p2 ∂G
2

∂x23
∂G3

∂n31,d .

However, this condition is inconsistent with cross-sectional factor efficiency,

p1 ∂G1

∂n11,d = p2 ∂G
2

∂x23
∂G3

∂n31,d ,

which requires the equalization of marginal welfare products. This discrepancy is due to the fact
that marginal social value of good 3 does not equal its price, since τ̄3

y = τ23
x > 0.

Theorem 8. (Exchange Efficiency in Competitive Economies). In competitive economies with
wedges, exchange efficiency is given by

ΞAE,X =
∑
j

CovΣ
i

[
τ ijc ,

dχijc
dθ

]
pjcj

︸ ︷︷ ︸
Cross-Sectional

Consumption Efficiency

−
∑
f

CovΣ
i

[
τ if,sn ,

dχif,sn

dθ

]
wfnf,s

︸ ︷︷ ︸
Cross-Sectional

Factor Supply Efficiency

. (44)

Equation (44) highlights that cross-sectional dispersion in consumption and factor supply wedges
is necessary for exchange efficiency to be non-zero. Intuitively, reallocating consumption towards
individuals with higher consumption wedges is valuable since these individuals consume too little
in equilibrium. Similarly, reallocating factor supply towards individuals with lower factor supply
wedges is valuable since these individuals’ factor supply is too high in equilibrium. Finally, note
that intermediate input wedges, factor use wedges, or the aggregate levels of consumption and factor
supply wedges do not determine exchange efficiency directly.
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6 Welfare Accounting: Redistribution

Our analysis has so far focused on aggregate efficiency, which is invariant to the choice of a social
welfare function, as explained in Section 2.3. However, two different perturbations with identical
efficiency implications may have completely different distributional implications, as we explain next.
Theorem 9 presents a decomposition of the redistribution component of the welfare accounting
decomposition using the definitions of allocation shares for consumption and factor supply. Figure
OA-2 in the Online Appendix, illustrates this decomposition, which complements Figure 1.

Theorem 9. (Redistribution Decomposition). The redistribution component of the welfare
accounting decomposition, ΞRD, can be decomposed into

ΞRD =

Cross-Sectional
Consumption Redistribution︷ ︸︸ ︷∑

j

CovΣ
i

[
ωi,MRSijc

dχijc
dθ

]
cj +

Aggregate
Consumption Redistribution︷ ︸︸ ︷∑

j

CovΣ
i

[
ωi,MRSijc χ

ij
c

] dcj
dθ

−
∑
f

CovΣ
i

[
ωi,MRSifn

dχif,sn

dθ

]
nf,s

︸ ︷︷ ︸
Cross-Sectional

Factor Supply Redistribution

−
∑
f

CovΣ
i

[
ωi,MRSifn χ

if,s
n

] dnf,s
dθ︸ ︷︷ ︸

Aggregate
Factor Supply Redistribution

.

The cross-sectional terms capture redistribution gains or losses due to the reallocation of consumption
and factor supply, for given cj and nf,s. In particular, cross-sectional consumption redistribution is
positive for good j when individuals with high normalized individual weight ωi — those relatively
favored by the planner — see their consumption shares increase;MRSijc captures potentially different
marginal consumption values. The aggregate terms capture redistribution gains due to changes in
aggregates, for given allocation shares. In particular, aggregate consumption redistribution is positive
for good j when aggregate consumption increases and individuals with high ωi consume a relatively
larger share of the good. The logic is parallel for factor supply redistribution.

The cross-sectional terms parallel exchange efficiency since they are driven by changes in
consumption or factor supply shares given aggregates, while the aggregate terms parallel production
efficiency since they are driven by changes in aggregates consumption and factor supply. While
it is possible to further decompose the aggregate terms, this is not particularly useful. Instead, in
Theorem 10 in Appendix C.4 we provide an alternative decomposition in competitive economies with
wedges based on distributive pecuniary effects and individual distortions.

7 Applications

In this section, we illustrate how the welfare accounting decomposition can be used to identify
the origins of welfare gains and losses in four workhorse models in macroeconomics and trade.
Our first application shows how an increase in tariffs contributes negatively to exchange efficiency
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via cross-sectional consumption efficiency in the simplest endowment economy (Armington, 1969).
This application also illustrates subtle patterns in cross-sectional consumption redistribution. Our
second application shows how the aggregate efficiency gain induced by an improvement in a
matching technology in a Diamond-Mortensen-Pissarides (DMP) model is due to cross-sectional
factor efficiency gains that are large enough to compensate for aggregate intermediate input efficiency
losses due to an increase in vacancy postings. This application illustrates how to use the welfare
accounting decomposition in economies that are not competitive. Our third application illustrates
how an increase in markup dispersion generates cross-sectional factor efficiency losses in a Hsieh and
Klenow (2009) economy. Our final application shows how to use the welfare accounting decomposition
to identify the welfare gains from optimal monetary stabilization policy in a macroeconomic model
with household and sectoral heterogeneity.

7.1 Armington (1969) Model

Environment. We consider the simplest Armington (1969) economy, which has I = 2 individuals
(here representing countries), J = 2 goods, and F = 2 inelastically supplied factors.42 Each country
produces a single good with their domestic factor — normalized so that n̄if,s = 1 — but consumes
both goods. Country i has preferences given by

V i =

∑
j

(
cij
)σ−1

σ

 σ
σ−1

,

and faces the budget constraint

∑
j

pj
(
1 + τ ij

)
cij = wif +

∑
j

T ij , where T ij = pjτ ijcij . (45)

Since the iceberg costs τ ij are rebated they should be interpreted as tariffs rather than physical costs,
although it is straightforward to consider the alternative case. Goods are competitively produced
according to constant returns to scale technologies — which justifies the absence of profits in (45)
— given by

y1 = A1n11,d and y2 = A2n22,d,

so each country uses the domestic factor to exclusively produce the domestic good. An equilibrium is
characterized by allocations cij , prices pj , and wages wif such that both countries choose consumption
optimally, countries produce competitively, and all markets clear. Resource constraints in this
economy are given by

∑
i c
ij = yj , ∀j, and nf,d = n̄f,s = 1, ∀f .

Our parameterization assumes that σ = 2, A1 = 1, A2 = 50, τ ii = 0, and τ ij = τ ji = τ . We use
aggregate world consumption as welfare numeraire, and assume that the planner has a social welfare

42As we show in the Online Appendix, this economy is isomorphic to an economy without factors in which each
country has a predetermined endowment of their home good.
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(c) Hsieh-Klenow Model

Figure 4: Welfare Accounting Decomposition: Applications

Note: This figure illustrates the welfare accounting decomposition for the first three applications. The top panel shows
that an increase in tariffs decreases exchange efficiency through cross-sectional consumption efficiency in an Armington
model. It also show that cross-sectional consumption redistribution is positive, since the tariff increase hurts more
the country with lower consumption. The bottom left panel shows that the aggregate efficiency gain induced by an
improvement in a matching technology in a DMP model is due to cross-sectional factor efficiency gains that are large
enough to compensate for aggregate intermediate input efficiency losses due to increase vacancy postings. The bottom
right panel shows that all welfare losses due to the increase in the dispersion of wedges/markups — typically referred
to as misallocation — are attributed to production efficiency via cross-sectional factor efficiency in Hsieh and Klenow
(2009) economy.
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function given by
∑
i

(
V i
)σ−1

σ .

Results. The top panel in Figure 4 illustrates the welfare impact of a multilateral increase in tariffs
τ — see also Figure OA-4. The welfare accounting decomposition yields insights for both efficiency
and redistribution.

First, a multilateral increase in tariffs always features a negative exchange efficiency component,
due to cross-sectional consumption efficiency. This occurs because the increase in tariffs reallocates
consumption toward each country’s domestic good, which is the one with a relatively lower MRSijc

as long as τ > 0. Note that ΞAE,X = 0 at τ = 0, since this economy is efficient in the absence of
tariffs.

Second, an increase in tariffs eventually makes both countries worse off, but initially benefits
country 2, because p2/p1 increases in equilibrium. Since country 2 is more productive and consumes
more of both goods than country 1 in equilibrium, the planner attaches a lower individual weight
to country 2, so ω1 > ω2. Hence, initially, the increase in tariffs benefits the country relatively less
preferred by the planner and harms redistribution, with ΞRD < 0. However, once tariffs are large
enough, further increases in tariffs make both countries worse off. Around τ ≈ 1.2, the marginal
increase in τ hurts country 2 disproportionately more. From this level of tariffs onwards, ΞRD > 0,
since country 1 — the relatively preferred by the planner — is hurt by less.

7.2 DMP Model

Environment. We consider a stylized version of the textbook labor search model, as in e.g.
Pissarides (2000). We consider a two date economy, t ∈ {0, 1}, populated by a single/representative
individual (I = 1) endowed with a unit supply of labor (F = 1), which can be used in technology j = 1
(unemployment) or j = 2 (employment). Each of these technologies produces perfectly substitutable
goods (or equivalently, a single final good), so the preferences of the representative individual can be
written as

V = c0 + βc1, where ct = c1
t + c2

t , (46)

where cjt denotes consumption of the good produced by technology j at date t. Both technologies
have constant returns to scale and are given by

y1
t = G1

t

(
n1
t

)
= z1n1

t = z1χ1
t,n and y2

t = G2
t

(
n2
t

)
= z2n2

t = z2χ2
t,n, (47)

where χ1
t,n and χ2

t,n respectively denote the employment and unemployment rates, and where z2 > z1.
Moreover, there exists a third “vacancy-generating” technology (J = 3) at date 0 that takes the

final good and generates vacancies, as follows

y3
t = vt = G3

t (xt) = 1
κt
xt, (48)
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where κt captures the marginal cost of vacancy posting. Vacancies can be interpreted as a good that
no individual desires to consume, which means that in a first-best environment vacancies should be
zero. Hence, the resource constraints in this model can be expressed as

y1
t + y2

t = ct + xt and χ1
t,n + χ2

t,n = 1. (49)

Equation (46) through (49) are sufficient to characterize the efficiency conditions for this economy.
Since z2 > z1, efficiency requires full employment, with χ1

t,n = 0 and χ2
t,n = 1, as well as, vt = 0.

However, we consider a standard random search equilibrium in which employment only adjusts
according to

χ1
t+1,n − χ1

t,n = ϕ
(
1− χ1

t,n

)
−m

(
χ1
t,n, vt

)
,

where ϕ denotes the job destruction rate and the matching function m (·) is given by

m
(
χ1
t,n, vt

)
= µ

(
χ1
t,n

)α
(vt)1−α .

As usual in this class of models, labor market tightness is defined as θt = vt
χ1
t,n

. We formally describe
the (standard) characterization of the equilibrium in the Online Appendix and describe the welfare
impact of a change in the matching technology µ. Our parameterization assumes that β = 0.99,
z1 = 0, z2 = 1, η = 0.5, α = 0.7, ϕ = 0.036, b0 = b1 = 0, κ0 = 0.1, with χ1

0,n = 0.037.

Results We consider a standard search equilibrium in this economy — see Online Appendix —
and explore the welfare implications of improvements in the matching technology µ. The effects are
illustrated in the bottom left panel in Figure 4 — see also Figure OA-5. Several insights emerge.

First, the technology change component of the welfare accounting decomposition is zero even
though the matching technology improves. This occurs because the matching technology does not
change the production frontier of the economy, and it is simply a mechanism to determine how
factors of production are allocated. Second, as the matching technology improves, firms post more
vacancies at date 0, which translates into higher employment at date 1. The increase in employment
drives the positive cross-sectional factor efficiency component — as discussed above, at the first-
best, unemployment should be zero. However, the additional vacancies posted make the aggregate
intermediate input efficiency component negative. This occurs because posting vacancies entails
using a technology that produces no final output, and it only contributes to reallocating factors,
something that could be done freely in the absence of search frictions. Hence, even though the
improvement in the matching technology generates welfare efficiency gains, the welfare accounting
decomposition shows that these gains combine positive and negative effects. More generally, this
application illustrates how adjustment cost functions will typically generate a negative aggregate
intermediate input efficiency component.
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7.3 Hsieh and Klenow (2009) Model

Environment. We consider a simplified version of the Hsieh and Klenow (2009) economy, with a
representative individual (I = 1) — whose index we drop — and a single final good, which we index
by j = 1. Individual preferences are given by

V = u
(
c1
)
,

where the final good is produced according to the technology

y1 =

 J∑
j=2

(
x1j
) ε−1

ε

 ε
ε−1

where ε denotes the elasticity of substitution between the J − 1 intermediate inputs. Each
intermediate input j ≥ 2 is produced according to the technology

yj = Ajnj1,d,

where a single factor not elastically supplied (F = 1) — whose index we also drop — can be used to
produce the different intermediates. Formally, resource constraints in this economy can be written
as

c1 = y1, yj = x1j , ∀j ≥ 2, and
J∑
j=2

χj,dn = 1.

If the final good is produced competitively, and the intermediate inputs are chosen under monopolistic
competition subject to wedges τ j (which can be interpreted as markups) the equilibrium factor use
shares χj,dn , can be expressed as

χj,dn =
(
Aj
)ε−1 (

τ j
)−ε∑J

j=2 (Aj)ε−1 (τ j)−ε
,

Our parameterization — designed to mimic Hsieh and Klenow (2009) — assumes that(
logAj , log τ j

)
∼ N

(
µA, µτ , σ

2
A, σ

2
τ , στA

)
, where µA = 0.5, µτ = 1.1, σA = 0.95, στ = 0.63,

στA = 0.36, J = 211, 304, and ε = 3. We explore the welfare implications of an increase in markup
dispersion through στ .

Results. The bottom left panel in Figure 4 illustrates the welfare impact of a change in markup
dispersion — typically referred to as misallocation. Since all intermediate inputs in this economy are
fully specialized and there is a single final good, no welfare changes are attributed to intermediate
input efficiency. And since the single factor is fixed, aggregate factor efficiency is also zero. Hence, all
welfare losses due to the increase in the dispersion of markups are attributed to production efficiency
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via cross-sectional factor efficiency. Given our calibration of the model, chosen to mimic Hsieh and
Klenow (2009), these effects are quantitatively large. Since there is a single representative individual,
both exchange efficiency and redistribution are zero.

7.4 New Keynesian Model

This application shows how the welfare accounting decomposition can be used to identify the welfare
gains from optimal monetary stabilization policy. To that end, we develop a static, multi-sector
heterogeneous agent New Keynesian model with an input-output production network — a static
“HANK-IO” model (Schaab and Tan, 2023). This model builds on La’O and Tahbaz-Salehi (2022)
and Rubbo (2023) but allows for household heterogeneity in addition to sectoral heterogeneity.

Environment. There are I (types of) households indexed by i. Each has mass µi, with
∑
i µ

i = 1.
There are N production sectors indexed by j. Each comprises a continuum of firms indexed by
` ∈ [0, 1]. Each firm produces a distinct good, indexed by j`.

The preferences of household i are given by

V i = 1
1− γ (ci)1−γ − 1

1 + ϕ
(ni)1+ϕ , where (50)

ci =

∑
j

(Γijc )
1
ηc (cij)

ηc−1
ηc


ηc
ηc−1

and cij =
(∫ 1

0
(cij`)

εj−1
εj d`

) εj

εj−1
,

where ci denotes a final consumption aggregator, cij denotes a sectoral consumption aggregator,
and cij` is household i ’s consumption of good j`. Each household is endowed with a unique labor
factor and ni denotes hours of work. The household budget constraint is given by

∑
j

∫ 1
0 p

j`cij`d` =
W ini + T i, where pj` is the price of good j`, W i is the wage paid to factor i, and T i is a lump-sum
transfer that accounts for profits. Household optimization implies

(
ni
)ϕ (

ci
)γ = W i/P i.

Firm ` in sector j produces according to the nested CES production technology

yj` = Aj
(

(1− ϑj)
1
η (nj`)

η−1
η + (ϑj)

1
η (xj`)

η−1
η

) η
η−1

, where nj` =
(∑

i

(Γjiw)
1
ηw (nj`i)

ηw−1
ηw

) ηw
ηw−1

, (51)

xj` =
(∑

`

(Γj`x )
1
ηx (xj``)

ηx−1
ηx

) ηx
ηx−1

and xj`` =
(∫ 1

0
(xj```′)

ε`−1
ε` d`′

) ε`

ε`−1
.

We denote by Aj a sector-specific, Hicks-neutral technology shifter, ϑj governs sector j′’s intermediate
input share, and η is the elasticity of substitution between labor and inputs. Firm ` in sector j uses
a bundle of labor ηj` that is itself a CES aggregate of its use of labor factors i, ηj`i. It also uses a
bundle of intermediate inputs xj`, which is a CES aggregate of sectoral bundles xj``, where xj```′

denotes firm j` ’s use of good ``′ in production.
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Firms are monopolistically competitive. They choose labor and inputs to minimize costs, and
prices to maximize profits. Each firm ` is small and takes as given aggregate and sectoral variables.
Profits are Πj` =

(
1− τ j

)
pj`yj` −

∑
`

∫ 1
0 p

``′xj```
′
d`′ −

∑
iW

inj`i =
(
1− τ j

)
pj`yj` −mcjyj`, where

τ j is a revenue tax. Marginal cost mcj is uniform across firms in each sector as we show in Appendix
E.4.1. If prices are flexible, firms set prices as a markup over marginal cost, pj` = pj = εj

εj−1
1

1−τ jmc
j .

To introduce nominal rigidities, we assume that only a fraction δj ∈ [0, 1] of firms in sector j can
reset their prices in response to a shock. Otherwise, prices remain fixed at some initial level p̄j , which
we specify in the Appendix. The sectoral price distribution is thus given by

pj` =


εj

εj−1
1

1−τ jmc
j for ` ∈

[
0, δj

]
p̄j for ` ∈

(
δj , 1

]
.

(52)

We model monetary policy by assuming that aggregate nominal expenditures are constrained by
a cash-in-advance constraint of the form

∑
j

∫ 1
0 p

j`yj`d` ≤ M , where M is the monetary policy
instrument. Finally, the markets for goods and labor factors have to clear, requiring

yj` =
∑
i

µic
ij` +

∑
`

∫ 1

0
x``
′j`d`′ and µini =

∑
j

∫ 1

0
nj`id`. (53)

We formally define competitive equilibrium in Appendix E.4.2.

Calibration. We calibrate a model withN = 66 sectors and I = 10 household types, corresponding
to deciles of the income distribution, as in Schaab and Tan (2023). We use data from the Consumer
Expenditure Survey to calibrate Γijc so the model matches consumption expenditure shares. Similarly,
we use data from the American Community Survey and the BEA’s I-O and GDP tables to calibrate
ϑj , Γj`x , and Γjiw so the model matches sectoral input-output data and payroll shares. We calibrate εj

to match sectoral markup data from Baqaee and Farhi (2020) and δj to match Pasten et al. (2017)’s
data on sectoral price rigidities. We allow revenue taxes τ j to offset initial markups and study the
case with τ j = 0 in Appendix E.4.4. Finally, we assume an equal-weighted utilitarian social welfare
function. Appendix E.4.3 presents a detailed discussion of our calibration.

Results. We study monetary policy in response to a 2% technology shock that is uniform across
sectors. When households and sectors are symmetric, Divine Coincidence holds and there exists
an optimal monetary policy M∗ that closes output and inflation gaps. Through the lens of the
welfare accounting decomposition, Divine Coincidence implies that each allocative efficiency term of
Theorems 1 and 2 is zero. We discuss this case in Appendix E.4.4.

When households and sectors are heterogeneous, Divine Coincidence fails. Figure 5 plots the
welfare accounting decomposition, treating M as the perturbation parameter (θ). The left panel
decomposes welfare gains (yellow) into gains from aggregate efficiency (blue) and redistribution
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Figure 5: Welfare Accounting Decomposition: New Keynesian Model

Note: This figure illustrates the welfare accounting decomposition for the New Keynesian application when varying
monetary policy in response to an unanticipated positive technology shock.

(green). The blue line intersects 0 at around MAE = 0.974, which is the policy that maximizes
aggregate efficiency. Redistribution is negative at this point, indicating that the redistribution motive
of the utilitarian social welfare function calls for a more contractionary policy (lower M).

The right panel decomposes aggregate efficiency into its four allocative efficiency components:
cross-sectional and aggregate factor and intermediate input efficiency. Several additional insights
emerge. First, factor and input efficiency are both quantitatively important determinants of the
production efficiency gains from monetary policy. Second, at MAE = 0.974, aggregate (light
blue) and cross-sectional (green) input efficiency are negative. These two motives call for more
contractionary policy. Third, aggregate (yellow) and cross-sectional (red) factor efficiency are positive
at MAE = 0.974, calling for more expansionary policy. The policy that maximizes efficiency trades
off and balances these considerations.43 Lastly, Appendix E.4.4 illustrates the role of revenue taxes.
When they are not available to offset initial markup distortions, aggregate input and factor efficiency
become quantitatively more important and call for expansionary policy.

8 Conclusion

This paper introduces a welfare accounting decomposition that is useful to identify and quantify the
ultimate origins of welfare gains and losses induced by changes in allocations or primitive changes in

43It is well understood that stabilizing inflation (which maps to cross sectional factor efficiency) is more important
than stabilizing the output gap (which maps to aggregate factor efficiency) for welfare in standard calibrations of the
New Keynesian model (Rotemberg and Woodford, 1997; Woodford, 2003). Our results preserve this conclusion and
also show that the cross-sectional component also dominates the aggregate component for intermediate input efficiency.
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technologies or endowments. Importantly, this decomposition is written purely in terms of preferences
and technologies, and makes no reference to prices, individual budget constraints, or notions of
equilibrium. For that reason, it is also useful to characterize efficiency conditions, which allows
us to provide a new characterization of efficiency conditions in disaggregated production economies
with heterogeneous individuals that carefully accounts for non-interior solutions, extending classic
efficiency results. In competitive economies, prices and wedges can be used to recover the welfare-
relevant statistics required to implement the welfare accounting decomposition. We illustrate the use
of the welfare accounting decomposition through several minimal examples and four applications to
workhorse models in macroeconomics and trade.
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Online Appendix
A Matrix Definitions
This section defines all matrices used in the body of the paper and in this Appendix. To simplify the exposition,
we represent all matrices for the I = 2, J = 3, F = 2 case, although we define matrix dimensions for the
general case.

Allocations. We collect consumption allocations, cij , and individual endowments of goods, ȳij,s, in the
IJ × 1 vectors c̊ and ˚̄ys, as well as intermediate uses, xj`, in the JL× 1 vector x̊, given by

c̊ =



c11

c21

c12

c22

c13

c23


IJ×1

, ˚̄ys =



ȳ11,s

ȳ21,s

ȳ12,s

ȳ22,s

ȳ13,s

ȳ23,s


IJ×1

, x̊ =



x11

x21

x31

x12

x22

x32

x13

x23

x33


JL×1

.

Similarly, we collect factor uses, njf,d, in the JF×1 vector n̊d, and elastic factor supplies, nif,s, and individual
endowments of factors, n̄if,s, in the IF × 1 vectors n̊s and ˚̄ns, given by

n̊d =



n11,d

n21,d

n31,d

n12,d

n22,d

n32,d


JF×1

, n̊s =


n11,s

n21,s

n12,s

n22,s


IF×1

, ˚̄ns =


n̄11,s

n̄21,s

n̄12,s

n̄22,s


IF×1

.

Aggregate Allocations. We collect aggregate consumption, cj , aggregate intermediate use, xj , aggregate
produced supply, yj,s, aggregate endowment, ȳj,s, and aggregate supply, yj , of goods in J × 1 vectors c, x,
ys, ȳs, and y given by

c =

 c1

c2

c3


J×1

, x =

 x1

x2

x3


J×1

, ys =

 y1,s

y2,s

y3,s


J×1

, ȳs =

 ȳ1,s

ȳ2,s

ȳ3,s


J×1

, y =

 y1

y2

y3


J×1

.

Similarly, we collect aggregate use, nf,d, aggregate elastic supply nf,s, aggregate endowment, n̄f,s, and
aggregate supply, nf , of factors in F × 1 vectors nd, ns, n̄s, and n given by

nd =
(
n1,d

n2,d

)
F×1

, ns =
(
n1,s

n2,s

)
F×1

, n̄s =
(
n̄1,s

n̄2,s

)
F×1

, n =
(
n1

n2

)
F×1

.

Aggregates satisfy

c = 1c̊c, x = 1xx̊, ys = 1ys ẙs, ȳs = 1ȳs˚̄ys, nd = 1ndn̊d ns = 1nsn̊s, n̄s = 1n̄s˚̄ns,
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where we define the following matrices of zeros and ones:

1c = 1ys = 1ȳs =

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1


J×IJ

, 1x =

 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1


J×JL

1nd =
(

1 1 1 0 0 0
0 0 0 1 1 1

)
F×JF

, 1ns = 1n̄s =
(

1 1 0 0
0 0 1 1

)
F×IF

.

We can thus write resource constraints (3) and (4) as

y = c+ x and n = nd, where y = ys + ȳs and n = ns + n̄s.

Allocation shares. We collect consumption shares, χijc , in a IJ × J matrix χc, factor use shares, χjf,dn ,
in a JF × F matrix χnd , and factor supply shares, χif,sn , in a IF × F matrix, χns , given by

χc =



χ11
c 0 0
χ21
c 0 0
0 χ12

c 0
0 χ22

c 0
0 0 χ13

c

0 0 χ23
c


IJ×J

, χnd =



χ11,d
n 0
χ21,d
n 0
χ31,d
n 0
0 χ12,d

n

0 χ22,d
n

0 χ32,d
n


JF×F

, χns =


χ11,s
n 0
χ21,s
n 0
0 χ12,s

n

0 χ22,s
n


IF×F

.

We collect intermediate-use shares, χj`x , and intermediate-supply shares, ξj`, in JL × J matrices χx and ξ,
given by

χx =



χ11
x 0 0
χ21
x 0 0
χ31
x 0 0
0 χ12

x 0
0 χ22

x 0
0 χ32

x 0
0 0 χ13

x

0 0 χ23
x

0 0 χ33
x


JL×J

, ξ =



ξ11 0 0
ξ21 0 0
ξ31 0 0
0 ξ12 0
0 ξ22 0
0 ξ32 0
0 0 ξ13

0 0 ξ23

0 0 ξ33


JL×J

.

We collect aggregate consumption and aggregate intermediate shares, φjc and φjx, in J × J diagonal matrices,
φc and φx, given by

φc =

 φ1
c 0 0

0 φ2
c 0

0 0 φ3
c


J×J

, φx =

 φ1
x 0 0

0 φ2
x 0

0 0 φ3
x


J×J

,

where φc + φx = IJ , and
c = φcy and x = φxy.

We can thus write

c̊ = χcc, n̊d = χndn
d, n̊s=χnsns, x̊ = χxx = ξy, ξ = χxφx.
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Note that
1cχc = IJ , 1nsχns = IF , 1ndχnd = IF , 1xχx = IJ , 1xξ = φx,

where IJ and IF denote identity matrices of dimensions J and F respectively.

Marginal products/technology change. We collect marginal products of intermediates in a J × JL
matrix Gx, marginal products of factors in a J × JF matrix Gn, and technology changes in a J × 1 vector
Gθ, given by

Gx =

 ∂G1

∂x11 0 0 ∂G1

∂x12 0 0 ∂G1

∂x13 0 0
0 ∂G2

∂x21 0 0 ∂G2

∂x22 0 0 ∂G2

∂x23 0
0 0 ∂G3

∂x31 0 0 ∂G3

∂x32 0 0 ∂G3

∂x33


J×JL

Gn =

 ∂G1

∂n11,d 0 0 ∂G1

∂n12,d 0 0
0 ∂G2

∂n21,d 0 0 ∂G2

∂n22,d 0
0 0 ∂G3

∂n31,d 0 0 ∂G3

∂n32,d


J×JF

, Gθ =

 ∂G1

∂θ
∂G2

∂θ
∂G3

∂θ


J×1

.

Marginal rates of substitution. We collect marginal rates of substitution in 1×IJ and 1×IF vectors
MRSc and MRSn, given by

MRSc =
(
MRS11

c MRS21
c MRS12

c MRS22
c MRS13

c MRS23
c

)
1×IJ

MRSn =
(
MRS11

n MRS21
n MRS12

n MRS22
n

)
1×IF

.

The 1 × J and 1 × F vectors of aggregate marginal rates of substitution, AMRSc and AMRSn, can be
written as

AMRSc = MRScχc and AMRSn = MRSnχns .

Marginal social value of goods. We collect the marginal social value of goods in 1×J vectorMSVy,
given by

MSVy =
(
MSV 1

y MSV 2
y MSV 3

y

)
1×J

, where MSVy = AMRScφcΨy.

Marginal welfare products. We collect marginal welfare products in 1×JL and 1×JF vectorsMWPx
and MWPn, given by

MWPx = MSVyGx, and MWPn = MSVyGn.

The 1×J and 1×F vectors of aggregate marginal welfare products, AMWPx and AMWPn, can be written
as

AMWPx = MWPxχx and AMWPn = MWPnχnd .

Goods inverse matrix. We define the elements of the J × J goods inverse Ψy as follows:

Ψy =

 ψ11
y ψ12

y ψ13
y

ψ21
y ψ22

y ψ23
y

ψ31
y ψ32

y ψ33
y


J×J

, where Ψy = (IJ −Gxξ)−1
.
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Competitive economies. In competitive economies, we collect prices pj in the 1×J vector p and wages
wf in 1× F vector w, given by

p =
(
p1 p2 p3

)
1×J

, w =
(
w1 w2

)
1×F

.

We also collect consumption wedges in a J × IJ vector, τc, factor supply wedges in a F × IF vector, τns ,
intermediate use wedges in a J × JL vector, τx, and factor demand wedges in a F × JF , τnd , given by

τc =

 τ11
c τ21

c 0 0 0 0
0 0 τ12

c τ22
c 0 0

0 0 0 0 τ13
c τ23

c


J×IJ

, τns =
(
τ11,s
n τ21,s

n 0 0
0 0 τ12,s

n τ22,s
n

)
F×IF

,

τx =


τ11
x −τ

1
y

1+τ1
y

τ21
x −τ

2
y

1+τ2
y

τ31
x −τ

3
y

1+τ3
y

0 0 0 0 0 0

0 0 0 τ12
x −τ

1
y

1+τ1
y

τ22
x −τ

2
y

1+τ2
y

τ32
x −τ

3
y

1+τ3
y

0 0 0

0 0 0 0 0 0 τ13
x −τ

1
y

1+τ1
y

τ23
x −τ

2
y

1+τ2
y

τ33
x −τ

3
y

1+τ3
y


J×JL

,

τnd =


τ11,d
n −τ1

y

1+τ1
y

τ12,d
n −τ1

y

1+τ1
y

0 0 0 0

0 0 τ21,d
n −τ2

y

1+τ2
y

τ22,d
n −τ2

y

1+τ2
y

0 0

0 0 0 0 τ31,d
n −τ3

y

1+τ3
y

τ32,d
n −τ3

y

1+τ3
y


F×JF

.

We use Ic and Ix to denote the following J × J indicator matrices:

Ic =

 1
[
c1 > 0

]
0 0

0 1
[
c2 > 0

]
0

0 0 1
[
c3 > 0

]

J×J

, Ix =

 1
[
x1 > 0

]
0 0

0 1
[
x2 > 0

]
0

0 0 1
[
x3 > 0

]

J×J

.

We use and Ins to denote the following F × F indicator matrix:

Ins =
(

1
[
n1,s > 0

]
0

0 1
[
n2,s > 0

] )
F×F

.

We collect aggregate supply, aggregate consumption, and prices in J × J diagonal matrices ŷ, ĉ, and p̂, given
by

ŷ = diag (y) =

 y1 0 0
0 y2 0
0 0 y3


J×J

, ĉ = diag (c) =

 c1 0 0
0 c2 0
0 0 c3


J×J

, p̂ = diag (p) =

 p1 0 0
0 p2 0
0 0 p3


J×J

.

B Proofs and Derivations

B.1 Section 2
Proof of Lemma 1. (Efficiency/Redistribution Decomposition)

Proof. For any welfarist planner with social welfare function W (·), we can express dW
dθ as

dW

dθ
=
∑
i

∂W
∂V i

dV i

dθ
=
∑
i

∂W
∂V i

λi
dV i

dθ

λi
,
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where λi is an individual normalizing factor with units dim
(
λi
)

= utils of individual i
units of numeraire that allows us to express

individual welfare assessments into a common unit/numeraire. We can therefore write

dWλ

dθ
=

dW
dθ

1
I

∑
i
∂W
∂V iλ

i
=
∑
i

ωi
dV i

dθ

λi
= 1
I

∑
i

ωi︸ ︷︷ ︸
=1

∑
i

dV i

dθ

λi
+ ICovΣ

i

[
ωi,

dV i

dθ

λi

]
=
∑
i

dV i

dθ

λi︸ ︷︷ ︸
=ΞE

+CovΣ
i

[
ωi,

dV i

dθ

λi

]
︸ ︷︷ ︸

=ΞRD

,

where ωi =
∂W
∂V i

λi

1
I

∑
i

∂W
∂V i

λi
, which implies that 1

I

∑
i ω

i = 1. Since this economy is static, ΞE = ΞAE , as shown in
Dávila and Schaab (2022).

B.2 Section 3
Proof of Theorem 1. (Exchange Efficiency)

Proof. Given the definition of V i in equation (1), we can express
dV i

dθ

λi as

dV i

dθ

λi
=
∑
j

∂ui

∂cij

λi
dcij

dθ
+
∑
f

∂ui

∂nif,s

λi
dnif,s

dθ
=
∑
j

MRSijc
dcij

dθ
−
∑
f

MRSifn
dnif,s

dθ
.

Hence, from Lemma 1, it follows that

ΞE = ΞAE =
∑
i

dV i

dθ

λi
=
∑
j

∑
i

MRSijc
dcij

dθ
−
∑
f

∑
i

MRSifn
dnif,s

dθ
.

Given (10), we can write

∑
i

MRSijc
dcij

dθ
= CovΣ

i

[
MRSijc ,

dχijc
dθ

]
cj +AMRSjc

dcj

dθ
,

where AMRSjc is defined in (19). Similarly, we can write

∑
i

MRSif,sn

dnif,s

dθ
= CovΣ

i

[
MRSif,sn ,

dχif,sn

dθ

]
nf,s +AMRSfn

dnf,s

dθ
,

where AMRSfn is also defined in (19). Hence, exchange efficiency, ΞAE,X , can be expressed as

ΞAE,X = CovΣ
i

[
MRSijc ,

dχijc
dθ

]
cj︸ ︷︷ ︸

Cross-Sectional
Consumption Efficiency

−CovΣ
i

[
MRSif,sn ,

dχif,sn

dθ

]
nf,s︸ ︷︷ ︸

Cross-Sectional
Factor Supply Efficiency

,

while production efficiency corresponds to

ΞAE,P =
∑
j

AMRSjc
dcj

dθ
−
∑
f

AMRSfn
dnf,s

dθ
.

Alternatively, in matrix form, we can write

ΞE = ΞAE =
∑
i

dV i

dθ

λi
= MRSc

d̊c

dθ
−MRSn

dn̊s

dθ
,
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where (10) can be expressed as

d̊c

dθ
= dχc

dθ
c+ χc

dc

dθ
and dn̊s

dθ
= dχns

dθ
ns + χns

dns

dθ
.

Hence,

MRSc
d̊c

dθ
= MRSc

dχc
dθ
c+AMRSc

dc

dθ
and MRSn

dn̊s

dθ
= MRSn

dχns

dθ
ns +AMRSn

dns

dθ
,

where AMRSc = MRScχc and AMRSn = MRSnχns . We can thus write

ΞAE = MRSc
dχc
dθ
c︸ ︷︷ ︸

Cross-Sectional
Consumption Efficiency

−MRSn
dχns

dθ
ns︸ ︷︷ ︸

Cross-Sectional
Factor Supply Efficiency︸ ︷︷ ︸

ΞAE,X (Exchange Efficiency)

+AMRSc
dc

dθ
−AMRSn

dns

dθ︸ ︷︷ ︸
ΞAE,P (Production Efficiency)

Proof of Corollary 1. (Properties of Exchange Efficiency)

Proof. Proceeding item-by-item:

(a) When I = 1, CovΣ
i

[
MRSijc ,

dcij

dθ

]
= CovΣ

i

[
MRSif,sn , dn

if,s

dθ

]
= 0, ∀j and ∀f .

(b) When nf,s = 0, CovΣ
i

[
MRSif,sn ,

dχif,sn

dθ

]
nf,s = 0, ∀f .

(c) When MRSijc is identical for all i, CovΣ
i

[
MRSijc ,

deij

dθ

]
= 0. When MRSifn is identical for all f ,

CovΣ
i

[
MRSifn ,

dnif,s

dθ

]
= 0.

Proof of Lemma 2. (Goods Inverse Matrix)

Proof. Given (13) and (16) we can write dyj

dθ and dxj`

dθ in matrix form, as

dys

dθ
= Gx

dx̊

dθ
+Gn

dn̊d

dθ
+Gθ and dx̊

dθ
= dξ

dθ
y + ξdy

dθ
, (OA1)

where
dy

dθ
= dys

dθ
+ dȳs

dθ
.

Combining these expressions, we can express dys

dθ as

dys

dθ
= Gx

(
dξ

dθ
y + ξ

(
dys

dθ
+ dȳs

dθ

))
+Gn

dn̊d

dθ
+Gθ

= Ψy

(
Gx

dξ

dθ
y +Gn

dn̊d

dθ
+Gxξ

dȳs

dθ
+Gθ

)
,

where Ψy = (IJ −Gxξ)−1. Finally, we use the fact that Ψy = IJ + ΨyGxξ, so that we can express dy
dθ as

dy

dθ
= dys

dθ
+ dȳs

dθ
= Ψy

(
Gx

dξ

dθ
y +Gn

dn̊d

dθ
+ dȳs

dθ
+Gθ

)
,

OA-6



which corresponds to equation (17) in the text.

Proof of Theorem 2. (Production Efficiency)

Proof. As shown above, we can express ΞAE,P in matrix form as

ΞAE,P = AMRSc
dc

dθ
−AMRSn

dns

dθ
.

First, note that we can express the change in aggregate consumption, dcdθ , as

dc

dθ
= dy

dθ
− dx

dθ
= dy

dθ
−
(
φx

dy

dθ
+ dφx

dθ
y

)
= φc

dy

dθ
− dφx

dθ
y,

where we use the fact that dx
dθ = φx

dy
dθ + dφx

dθ y and φc = IJ − φx.
Next, note that dy

dθ can be written as

dy

dθ
= Ψy

(
Gx

dχx
dθ
x+Gxχx

dφx
dθ
y +Gn

dχnd

dθ
nd +Gnχnd

dnd

dθ
+ dȳ

dθ
+Gθ

)
,

where we use the fact that

dξ

dθ
= dχx

dθ
x+ χx

dφx
dθ
y and dn̊d

dθ
= dχnd

dθ
nd + χnd

dnd

dθ
.

This result allows us to express dc
dθ as

dc

dθ
= φcΨyGx

dχx
dθ
x+(φcΨyGxχx − IJ) dφx

dθ
y+φcΨyGn

dχnd

dθ
nd+φcΨyGnχnd

dnd

dθ
+φcΨy

(
dȳs

dθ
+Gθ

)
Hence, combining this expression for dc

dθ with the resource constraint for factors, which implies that dnd

dθ =
dns

dθ + dn̄s

dθ , we can express production efficiency exactly as in text, as follows:

ΞAE,P = MWP x
dχx
dθ
x︸ ︷︷ ︸

Cross-Sectional
Intermediate Input Efficiency

+ (AMWP x −AMRSc)
dφx
dθ
y︸ ︷︷ ︸

Aggregate
Intermediate Input Efficiency

+MWP n
dχnd

dθ
nd︸ ︷︷ ︸

Cross-Sectional
Factor Efficiency

+ (AMWP n −AMRSn) dn
s

dθ︸ ︷︷ ︸
Aggregate

Factor Efficiency

+MSV y
dȳs

dθ︸ ︷︷ ︸
Technology
Change

+ MSV yGθ︸ ︷︷ ︸
Good Endowment

Change

+ AMRSn
dn̄s

dθ︸ ︷︷ ︸
Factor Endowment

Change

,

where
MWPx = MSVyGx, MWPn = MSVyGn, MSVy = AMRScφcΨy.

Proof of Corollary 2. (Properties of Production Efficiency Decomposition)

Proof. Proceeding item-by-item:
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(a) When J = 1, CovΣ
j

[
MWP j`x ,

dχj`x
dθ

]
= 0, ∀`.

(b) With no intermediate goods, x` = dφ`x
dθ = 0, ∀`.

(c) If all factors are in fixed supply, dn
f,s

dθ = 0, ∀s.

(d) If all intermediate inputs are specialized: dxj`x
dθ = 0, ∀j, ∀`. If all factors are specialized, dx

jf,d
n

dθ = 0, ∀j,
∀f .

(e) When marginal welfare products are equalized for intermediates: CovΣ
j

[
MWP j`x ,

dχj`x
dθ

]
= 0, ∀`; for

factors: CovΣ
j

[
MWP jfn ,

dχjf,dn

dθ

]
= 0, ∀f .

B.3 Section 4
Proof of Theorem 3. (Efficiency Conditions: Exchange Efficiency)

Proof. If MRSijc is different across any two individuals with χijc > 0 for good j with cj > 0, then there exists
a perturbation of consumption shares in which cross-sectional consumption efficiency is positive. If MRSijc is
less than AMRSjc when χijc = 0, then there is no feasible perturbation that reduces the share of consumption
for individual i. The same logic applies to cross-sectional factor supply efficiency.

Proof of Theorem 4. (Efficiency Conditions: Production Efficiency)

Proof. If MWP j`x is different across any two intermediate uses of good ` two individuals with χj`x > 0, then
there exists a perturbation of intermediate use shares in which cross-sectional intermediate input efficiency is
positive. The same logic applies to cross-sectional factor use efficiency.

When φ`x ∈ (0, 1), then there exists a perturbation of φ`x such that aggregate intermediate input efficiency
is positive unless AMWP `x = AMRS`c . If φ`x = 0, it must be that AMWP `x ≤ AMRS`c for the best possible
combination of intermediate use shares, which is the one that allocates good ` to its highest marginal welfare
product intermediate use. If φ`x = 1, it must be that AMWP `x ≥ AMRS`c for the possible combinations of
consumption shares, which is the one that allocates the consumption of good j to the individual with the
highest MRSi`c .

When nf,s > 0 (and nf,d > 0), then there exists a perturbation of nf,s such that aggregate factor
supply efficiency is positive unless AMWP fn = AMRSfn. If nf,s = 0, it must be that AMWP fn ≤ AMRSfn
for the best possible combination of factor supply shares, which is the one that allocates the consumption
of good j to the individual with the lowest MRSifn . If nf,s = nf,d = 0, then it must be that the most
costly way of supplying a factor is higher than the highest marginal welfare product of doing so, formally:
maxj

{
MWP jfn

}
≤ mini

{
MRSifn

}
.44

Proof of Theorem 5. (MSV under Efficiency)

Proof. In matrix form, it follows from Equation (23) that

MSVy = AMRScφc +MSVyGxξ = AMRScφc +AMWPxφx,

where ξ = χxφx and AMWPx = MSVyGxχx. Therefore, equation (30) follows immediately when
aggregate intermediate input efficiency holds. Equation (31) follows directly from the cross-sectional efficiency
conditions.

44When nf,d = 0, the value of a marginal unit of endowment of factor f is simply maxj
{
MWP jfn

}
.
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Proof of Corollary 3. (Revisiting Lange (1942) and Mas-Colell et al. (1995))

Proof. Follows from derivations in footnote 27.

Proof of Corollary 4. (Classic Efficiency Conditions Hold for Interior Links)

Proof. Proceeding item-by-item:

(a) At an interior link, Theorems 4 and 5 imply that both equations in (32) hold.

(b) The result follows then from the same logic as in Corollary 3.

Proof of Corollary 5. (Scenarios in which Classic Efficiency Conditions Do Not Hold)

Proof. Proceeding item-by-item:

(a) If good j is a pure intermediate, then MSV jy 6= AMRSjc , which implies that the classic efficiency
conditions cannot hold, since efficiency requires that MSV jy

∂Gj

∂xj`
= MRSijc .

(b) If good ` is a pure intermediate, then last condition of equation (27) already implies that the classic
efficiency conditions cannot hold.

(c) As in (a), MSV jy 6= AMRSjc , which implies that the classic efficiency conditions cannot hold, since
efficiency requires that MSV jy

∂Gj

∂njf,d
= MRSifn .

B.4 Section 5
Proof of Theorem 6. (MSV in Competitive Economies with Wedges)

Proof. In a competitive equilibrium with wedges, we can express aggregate marginal rates of substitution as

AMRSc = MRScχc = p (Ic + τ̄c) ,

where Ic is J × J diagonal matrix in which the j’th element is 1 when cj > 0 and 0 if cj = 0, and where we
define a J × J matrix of aggregate consumption wedges as τ̄c = τ cχc. It is also the case that

pGxχx = p (Ix + τxχx) = p (Ix + τ̄x) ,

where Ix is J × J diagonal matrix in which the j’th element is 1 when xj > 0 and 0 if xj = 0, and where we
define a J×J matrix of aggregate intermediate use wedges as τ̄x = τxχx. Hence, we can express the marginal
social value of goods as

MSVy = AMRScφcΨy = p (Ic + τ̄c)φcΨy = pφcΨy + pτ̄cφcΨy

= p+ p (τ̄xφx + τ̄cφc) Ψy,

where we use the fact that Icφc = φc and that

pφcΨy = p ((Gx − 1x) ξΨy + IJ) = (pGx − p1x)χxφxΨy + p
= (pGxχx − p)φxΨy + p = (p (Ix + τ̄x)− p)φxΨy + p = pτ̄xφxΨy + p.
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Proof of Corollary 6. (Hulten’s Theorem Revisited)

Proof. Since frictionless competitive economies are efficient, ΞAE simply equals technology change. When
τ̄c = τ̄x = 0, it follows from Theorem 6 that MSV jy = pj . Hence, ΞAE = pj ∂G

j

∂θ = pjyj , where we use the fact
that ∂Gj

∂θ = yj for proportional Hicks-neutral technology changes. Simply dividing by
∑
j p

jcj yields equation
(38) in the text.

Proof of Theorem 7. (Production Efficiency in Competitive Economies)

Proof. It follows from the optimality conditions for production and the definition of ΞAE,P .

Proof of Theorem 8. (Exchange Efficiency in Competitive Economies)

Proof. It follows from the individual optimality conditions for consumption and factor supply and the definition
of ΞAE,X .

B.5 Section 6
Proof of Theorem 9. (Redistribution Decomposition)

Proof. Note that

ΞRD = CovΣ
i

[
ωi,

dV i

dθ

λi

]
,

where
dV i

dθ

λi
=
∑
j

MRSijc
dcij

dθ
−
∑
f

MRSifn
dnif,s

dθ
.

Hence, using the fact that

dcij

dθ
= dχijc

dθ
cj + χijc

dcj

dθ
and dnif,s

dθ
= dχif,sn

dθ
nf,s + χif,sn

dnf,s

dθ
,

we can express ΞRD as

ΞRD =

Cross-Sectional
Consumption Redistribution︷ ︸︸ ︷∑

j

CovΣ
i

[
ωi,MRSijc

dχijc
dθ

]
cj +

Aggregate
Consumption Redistribution︷ ︸︸ ︷∑

j

CovΣ
i

[
ωi,MRSijc χ

ij
c

] dcj
dθ

−
∑
f

CovΣ
i

[
ωi,MRSifn

dχif,sn

dθ

]
nf,s︸ ︷︷ ︸

Cross-Sectional
Factor Supply Redistribution

−
∑
f

CovΣ
i

[
ωi,MRSifn χ

if,s
n

] dnf,s
dθ︸ ︷︷ ︸

Aggregate
Factor Supply Redistribution

.

Note that, in economies that satisfy exchange efficiency, Theorem 9 simplifies to

ΞRD =
∑
j

AMRSjc

(
CovΣ

i

[
ωi,

dχijc
dθ

]
cj + CovΣ

i

[
ωi, χijc

] dcj
dθ

)

+
∑
f

AMRSfn

(
CovΣ

i

[
ωi,

dχif,sn

dθ

]
nf,s + CovΣ

i

[
ωi, χif,sn

] dnf,s
dθ

)
,
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where AMRSjc = MRSijc and AMRSfn = MRSifn , ∀i.

C Additional Results

C.1 Dynamic Stochastic Environment
Here we consider a general dynamic stochastic economy in which individuals have preferences of the form

V i =
∑
t

(
βi
)t∑

st

πt
(
st
)
uit

({
cijt
(
st
)}

j∈J
,
{
nif,st

(
st
)}

f∈F
; st
)
,

and in which the production structure introduced in Section 2 repeats history by history. Figure OA-1
illustrates the results

For any welfarist planner with social welfare function W
(
V 1, . . . , V i, . . . , V I

)
, we can express dW

dθ as

dW

dθ
=
∑
i

∂W
∂V i

dV i

dθ
=
∑
i

∂W
∂V i

λi
dV i

dθ

λi
,

where λi is an individual normalizing factor that allows us to express individual welfare assessments into a
common unit/numeraire. We can therefore write

dWλ

dθ
=

dW
dθ∑
i
αiλi

I

=
∑
i

ωi
dV i

dθ

λi
=
∑
i ω

i

I︸ ︷︷ ︸
=1

∑
i

dV i

dθ

λi
+ ICovΣ

i

[
ωi,

dV i

dθ

λi

]
=
∑
i

dV i

dθ

λi︸ ︷︷ ︸
=ΞE

+CovΣ
i

[
ωi,

dV i

dθ

λi

]
︸ ︷︷ ︸

=ΞRD

,

where ωi = αiλi

1
I

∑
i
αiλi

, which implies that 1
I

∑
i ω

i = 1.
We can express individual i’s lifetime welfare gains in units of the lifetime welfare numeraire as

dV i|λ

dθ
=

dV i

dθ

λi
=
∑
t

λit
λi

∑
st

(
βi
)t
πt (st)λit (st)
λit

dV
i|λ
t (st)
dθ

=
∑
t

ωit
∑
st

ωit
(
st
) dV i|λt (st)

dθ
,

where λi and λit (st) are normalizing factors to express welfare gains at particular dates or histories across
individuals in a common unit. In this case, ωit = λit

λi and ωit (st) = (βi)tπt(st)λit(st)
λit

, where

dV
i|λ
t (st)
dθ

=
∑
j

∂uit(st)
∂cijt

λit (st)
dcijt (st)
dθ

+
∑
f

∂uit(st)
∂nif,st

λit (st)
dnif,st (st)

dθ
,

=
∑
j

MRSijt,c
(
st
) dcijt (st)

dθ
−
∑
f

MRSift,n
(
st
) dnif,st (st)

dθ

where MRSijt,c (st) =
∂ui
t(st)
∂c
ij
t

λit(st)
and MRSift,n (st) = −

∂ui
t(st)

∂n
if,s
t

λit(st)
.

Following Dávila and Schaab (2022), note that the efficiency component can be decomposed into aggregate
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efficiency, risk-sharing, and intertemporal-sharing:

ΞE =
∑
i

dV i

dθ

λi
=
∑
t

ωt
∑
st

ωt
(
st
)∑

i

dV
i|λ
t (st)
dθ︸ ︷︷ ︸

ΞAE

+
∑
t

ωt
∑
st

ωt
(
st
)
CovΣ

i

[
ωit (st)
ωt (st) ,

dV
i|λ
t (st)
dθ

]
︸ ︷︷ ︸

ΞRS

,

+
∑
t

ωtCovΣ
i

[
ωit
ωt
,
dV

i|λ
t

dθ

]
︸ ︷︷ ︸

ΞIS

,

where ΞAE =
∑
t ωt

∑
st ωt (st) ΞAEt (st), with

ΞAEt
(
st
)

=
∑
i

dV
i|λ
t (st)
dθ

=
∑
j

∑
i

MRSijt,c
(
st
) dcijt (st)

dθ
−
∑
f

∑
i

MRSift,n
(
st
) dnif,st (st)

dθ
,

Hence, it follows that

∑
i

MRSijt,c
(
st
) dcijt (st)

dθ
= CovΣ

i

[
MRSijt,c

(
st
)
,
dχijc (st)
dθ

]
cjt
(
st
)

+AMRSjt,c
(
st
) dcjt (st)

dθ∑
i

MRSift,n
(
st
) dnif,st (st)

dθ
= CovΣ

i

[
MRSift,n

(
st
)
,
dχif,sn (st)

dθ

]
nf,st

(
st
)

+AMRSft,n
(
st
) dnf,st (st)

dθ
,

so from this stage onwards it is possible to follow the steps in the proof of Theorems 1 and 2.

C.2 Planning Problem
The Lagrangian of the planning problem can be expressed as

L =W
(
V1, . . . , V

i, . . . , V I
)

−
∑
j

ζjy

(∑
i

cij +
∑
`

x`j −Gj
({
xj`
}
`
,
{
njf,d

}
f

))
−
∑
f

ζfn

∑
j

njf,d −
∑
i

nif,s −
∑
i

n̄if,s


+
∑
i

∑
j

κijc c
ij +

∑
i

∑
f

κif,sn nif,s +
∑
j

∑
`

κj`x x
j` +

∑
j

∑
f

κjf,dn njf,d,

where V i is defined in (1). Hence, the first-order conditions can be derived from a perturbation of the form

dL =
∑
j

∑
i

(
αi
∂ui

∂cij
− ζjy + κijc

)
dcij +

∑
i

∑
f

(
αi

∂ui

∂nif,s
+ ζfn + κif,sn

)
dnif,s

+
∑
j

∑
`

(
ζjy
∂Gj

∂xj`
− ζ`y + κj`x

)
dxj` +

∑
j

∑
f

(
ζjy

∂Gj

∂njf,d
− ζfn + κjf,dn

)
dnjf,d,

where we take good j′ as numeraire, which allows us to substitute αi for αi ∂u
i

∂cij′
= ζj

′

y ⇒ αi =
(

∂ui

∂c′

ζj
′
y

)−1
, and

where we define MWP j`x = ζjy
∂Gj

∂xj`
and MWP jfn = ζjy

∂Gj

∂njf,d
. Formally, the Kuhn-Tucker conditions are

i) κijc cij = 0⇒
(
ζjy −MRSijc

)
cij = 0, with generically one of the two terms > 0;

ii) κif,sn nif,s = 0⇒
(
ζfn +MRSijn

)
nif,s = 0, with generically one of the two terms > 0;
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iii) κj`x xj` = 0⇒
(
ζ`y −MWP j`x

)
xj` = 0, with generically one of the two terms > 0;

iv) κif,dn njf,d = 0⇒
(
ζfn −MWP jfn

)
njf,d = 0, with generically one of the two terms > 0.

By adding up the consumption optimality conditions for all individuals for good j :∑
i

(
ζjy −MRSijc

)
cij = 0⇒

∑
i

MRSijc c
ij − ζjy

∑
i

cij ⇒
∑
i

MRSijc c
ij = ζjyc

j .

If cj > 0 (as long as one agent is consuming the good, so good j is final):

ζjy =
∑
i

MRSijc
cij∑
i c
ij

=
∑
i

χijc MRSijc = AMRS`c .

If cj = 0, we must have ζjy > MRSijc , for all i, which means that ζjy > maxi
{
MRSijc

}
. By adding up the

intermediate good optimality conditions for all uses j of good `:∑
j

(
MWP j`x − ζ`y

)
xj` = 0⇒

∑
j

MWP j`x x
j` − ζ`y

∑
j

xj` ⇒
∑
j

MWP j`x x
j` = ζ`yx

`.

If x` > 0 (as long as one good j uses good ` as input, so good ` is intermediate):

ζ`y =
∑
j

MWP j`x
xj`∑
j x

j`
=
∑
j

χj`x MWP j`x = AMWP `x.

If x` = 0, we must have ζ`y > MWP j`x , for all j, which means that ζ`y > maxj
{
MWP j`x

}
. Combining

consumption and intermediate good optimality:∑
i

MRSijc c
i` +

∑
j

MWP j`x x
j` = ζ`yy

`,

so if y` > 0, it must be that ζ`y = AMRS`cφ
`
c +

∑
j ζ

j
y
∂Gj

∂xj`
ξj`, which can be written in matrix form as

ζy = AMRScφcΨy, where Ψy = (IJ −Gxξ)−1
.

Similarly, for factors, if nf,s > 0 (as long as one agent is supplying factor f ):

ζfn =
∑
i

nif,s

nf,s
MRSijn =

∑
i

χif,sn MRSijn = AMRSfn

If nf,s = 0, we must have ζfn < MRSijn , for all i, which means that ζfn < maxi
{
MRSijn

}
. If njf,d > 0 (as long

as factor f is used to produce a good j):

ζfn =
∑
j

MWP jfn
njf,d

nf,d
=
∑
j

MWP jfn χjf,dn = AMWP jfn

If njf,d = 0, we must have ζfn >
∑
jMWP jfn χjf,dn , for all j, which means that ζfn > maxj

{
MWP jfn

}
.

If nf,s > 0 and nf,d > 0 : AMWP fn = AMRSfn. If nf,s = 0, it must be that ζfn < MRSifn , or
ζfn < mini

{
MRSifn

}
. If nf,d = 0, it must be that MWP jfn < ζfn , or maxj

{
MWP jfn

}
< ζfn . Hence, for

nf,s = 0 = nf,d, we must have that maxj
{
MWP jfn

}
< mini

{
MRSifn

}
. Finally, for yj = 0 to be optimal,

it must be that cj = x`j = 0 on the use side and xj` = njf,d = 0 on the input side. This condition can be
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written as

max
{

max
i

{
∂ui

∂cij

}
,max

`

{
ζ`y
∂G`

∂x`j

}}
< ζjy < min

{
min
f

{(
∂Gj

∂njf,d

)−1

ζfn

}
,min

`

{(
∂Gj

∂xj`

)−1

ζ`y

}}
.

C.3 Propagation Matrices
Intermediate inverse matrix. Following similar steps as in the Proof of Lemma 2, we can express
changes in intermediate input use as follows. Using both equations in (OA1), we can instead solve for dx

dθ as
follows

dx

dθ
= dξ

dθ
y + ξ

(
Gx

dx̊

dθ
+Gn

dn̊d

dθ
+ dȳs

dθ
+Gθ

)
,

so we can define a JL× JL propagation matrix in the space of intermediate links Ψx:

dx

dθ
= Ψx︸︷︷︸

Propagation

(
dξ

dθ
y + ξ

(
Gn

dn̊d

dθ
+ dȳs

dθ
+Gθ

))
︸ ︷︷ ︸

Impulse

, where Ψx = (IJL − ξGx)−1
. (OA2)

Propagation in the space of goods and the space of intermediate links is connected. In particular, Woodbury’s
identity implies that

Ψx = IJL + ξΨyGx,

and it is also the case that
Ψxξ = ξΨy,

connecting propagation in the space of goods and the space of intermediate links. Leveraging (OA2), it is
possible to solve for changes in consumption as

dc

dθ
= dy

dθ
− dx

dθ
= Gx

dx

dθ
+Gn

dn̊d

dθ
+Gθ −

dx

dθ

= (Gx − 1x) Ψx
dξ

dθ
y + ((Gx − 1x) Ψxξ + IJ)Gn

dn̊d

dθ
+ ((Gx − 1x) Ψxξ + IJ)Gθ.

Proportional goods inverse matrix. While the goods inverse is expressed in levels, at times, it may
be useful to work with proportional propagation matrix. Starting from the definition of dydθ , it follows that

ŷ−1 dy

dθ
= ŷ−1Ψyŷ

(
ŷ−1Gx

dξ

dθ
y + ŷ−1Gn

dn̊d

dθ
+ ŷ−1Gθ

)

= Ψ̃y

(
ŷ−1Gx

dξ

dθ
y + ŷ−1Gn

dnd

dθ
+ ŷ−1Gθ

)
,

where
Ψ̃y = ŷ−1Ψyŷ.

In the competitive case, Ψy = ŷ (p̂ŷ − (Ix + τ̃x) p̌x̌)−1
p̂ and Ψ̃y = (p̂ŷ − (Ix + τ̃x) p̌x̌)−1

p̂ŷ, where we
define a JL× JL matrix of prices as p̌ = p̂⊗ IJ , where τ̃x is a J × JL matrix analogous to τ̄x, but with the
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same ordering as the J × JL matrix Ix, given by

Ix =

 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1


J×JL

,

and where we define an alternative JL× J matrix of intermediates uses x̌, given by

x̌ =



x11 0 0
x21 0 0
x31 0 0
0 x12 0
0 x22 0
0 x32 0
0 0 x13

0 0 x23

0 0 x33


JL×J

.

Regularity conditions for goods inverse matrix. In order to provide conditions under which the
inversion step to define the goods inverse is valid, we can appeal to the Perron–Frobenius theory of non-
negative matrices. If production functions have constant returns to scale, then by the homogeneous function
theorem, we have that

yj,s =
∑
k

∂Gj

∂xjk
xjk +

∑
f

∂Gj

∂njf,d
njf,d ⇒ 1 =

∑
k

∂ logGj

∂ log xjk +
∑
f

∂ logGj

∂ lognjf,d .

This implies that the matrix (here represented for J = 2 case)

ŷ−1Gxξŷ =
(

∂ logG1

∂ log x11
∂ logG1

∂ log x12

∂ logG2

∂ log x21
∂ logG2

∂ log x22

)
,

features rows whose sum can be written as

rj =
∑
k

∂ logGj

∂ log xjk < 1.

Hence, this result implies that the spectral radius (maximum of the absolute value of eigenvalues) of ŷ−1Gxξŷ

is less than 1, so the Neumann series lemma concludes that the proportional goods inverse is well defined
(Meyer, 2023). It is possible to derive bounds of convergence, so that the sectors with lowest and highest
intermediate shares drive the speed of convergence. Convergence of the proportional goods inverse is sufficient
for convergence of the the goods inverse. Hence, the goods inverse exists in economies with constant or
decreasing returns to scale.

C.4 Alternative Redistribution Decomposition
Theorem 10. (Redistribution Decomposition in Competitive Economies). In competitive economies with
wedges, the redistribution component of the welfare accounting decomposition, ΞRD, can be decomposed into
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distributive pecuniary and distortionary redistribution components, given by

ΞRD =

Distributive Pecuniary Redistribution︷ ︸︸ ︷
CovΣ

i

ωi,−∑
j

dpj

dθ
cij +

∑
f

dwf

dθ

(
nif,s + n̄if,s

)
+
∑
j

νij
dπj

dθ


+ CovΣ

i

ωi,∑
j

pjτ ijc
dcij

dθ
−
∑
f

wfτ if,sn

(
dnif,s

dθ
+ dn̄if,s

dθ

)
︸ ︷︷ ︸

Distortionary Redistribution

.

The distributive pecuniary redistribution component captures the differential impact of changes in prices and
profits on individual welfare - these are the distributive pecuniary effects present in any competitive economy.
Intuitively, if a perturbation reduces the prices of goods consumed or increases the income earned by individuals
with high ωi, the distributive pecuniary redistribution component will be positive. Importantly, in the absence
of technology and endowment changes, the sum across individuals of distributive pecuniary effects is zero (see
e.g. Dávila and Korinek, 2018).

The distortionary redistribution component captures the differential impact on individual welfare of
changes in the allocation of goods and factors that are distorted by individual wedges. This component is
positive if a perturbation reallocates consumption (factor supply) towards individuals with higher consumption
(lower factor supply) wedges. When τ ijc > 0, for instance, individual i consumes too little of good j. An
increase in cij when individual i is relatively favored by the planner contributes positively to the distortionary
redistribution component. In contrast to the distributive effects, the sum across individuals of distortionary
redistribution effects will typically not be zero.

Welfare
Assessment

dWλ

dθ

Aggregate
Efficiency

ΞAE

Redistribution

ΞRD

I > 1

Consumption Factor Supply

Cross-Sectional
Consumption
Redistribution

∑

j

CovΣi

[
ωi,MRSijc

dχijc

dθ

]
cj

Aggregate
Consumption
Redistribution

∑

j

CovΣi
[
ωi,MRSijc χ

ij
c

] dcj
dθ

Cross-Sectional
Factor Supply
Redistribution

∑

f

CovΣi

[
ωi,MRSifn

dχif,sn

dθ

]
nf,s

Aggregate
Factor Supply
Redistribution

∑

f

CovΣi
[
ωi,MRSifn χ

if,s
n

] dnf,s
dθ

Invariant
to SWF

Sensitive
to SWF

Figure OA-2: Welfare Accounting Decomposition: Redistribution

C.5 Welfare Accounting vs. Growth Accounting
Here we discuss the relation between welfare accounting, as developed in this paper, and the well-established
approach of growth accounting. Growth accounting measures the contribution of different inputs to final
output (i.e. aggregate consumption), indirectly computing technological growth as a residual. Instead, welfare
accounting attributes aggregate welfare gains to different sources, which brings it closer to the “beyond GDP”
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literature (Fleurbaey, 2009; Jones and Klenow, 2016).
Heuristically, the welfare accounting decomposition can be expressed as

Welfare = Exchange Efficiency + Final Output− Factor Supply Cost︸ ︷︷ ︸
Production Efficiency

+Redistribution,

where the goal is to compute welfare changes by computing or measuring all right-hand side elements. Instead,
growth accounting abstracts from exchange efficiency, factor supply costs, and redistribution, and exploits a
relation of the form

Final Output = Intermediate Inputs + Factors + Technology, (OA3)

where the goal is to measure both final output (left-hand side) and the intermediate input and factor
components (part of the right-hand side) to back out the technology component. These are distinct exercises
which are nonetheless related. For instance, when I = 1, exchange efficiency and redistribution are zero, and
when factors are not supplied by individuals, the welfare cost of factor supply is also zero. In that case, welfare
and final output are identical.

Moreover, when directly measuring the components of the welfare accounting decomposition, growth
accounting can be used to measure technology growth. Through the lens of the welfare accounting
decomposition, the adequate counterpart of the growth accounting relation in (OA3), solving for the technology
change component, is

MSVyGθ︸ ︷︷ ︸
Technology Change

= AMRSc
dc

dθ︸ ︷︷ ︸
Final Output

− (AMWPx −AMRSc)
dφx
dθ
y︸ ︷︷ ︸

Intermediate Input Use

−MWPn
dnd

dθ︸ ︷︷ ︸
Factor Use

, (OA4)

where AMRSc
dc
dθ becomes the welfare-relevant change in final output, which is a welfare-analog of GDP.

Equation (OA4) is stated exclusively in terms of preferences and technologies. Additional assumptions about
market structure would make it possible to conduct a growth accounting exercise by measuring all right-hand
side components of (OA4), a task we leave for future work.
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D Minimal Welfare Accounting Economy: Special Cases
For simplicity we assume that good endowments are zero.

D.1 Minimal Welfare Accounting Economy
The minimal welfare accounting economy features two individuals, two goods, and single factor in elastic
supply: I = 2, J = 2, and F = 1. Individual preferences take the form V 1 = u1 (c11, c12, n11,s) and V 2 =
u2 (c21, c22, n21,s) and technologies are given by y1 = G1 (x11, x12, n11,d; θ

)
and y2 = G2 (x21, x22, n21,d; θ

)
.

Finally, resource constraints are simply given by y1 = c11 + c21 + x11 + x21 and y2 = c12 + c22 + x12 + x22 and
n11,s + n21,s + n̄11,s + n̄21,s = n11,d + n21,d. In this economy, all of the components of aggregate efficiency can
be non-zero, as we illustrate in a series of special cases.45

D.2 Vertical Economy
This minimal vertical economy is a special case of the minimal welfare accounting economy. In this economy,
there is a single individual who consumes a final good produced using an intermediate good, which is in turn
produced by a single factor in fixed supply, so I = 1, J = 2, and F = 1. This is the simplest economy that
illustrates the role played by pure intermediate goods. In this economy, individual preferences are given by
V 1 = u1 (c11), technologies by y1 = G1 (x12; θ

)
and y2 = G2 (n21,d; θ

)
, and resource constraints by y1 = c11,

y2 = x12, and n̄1,s = n21,d. By construction, all allocative efficiency components of the welfare accounting
decomposition are zero, so this economy exclusively features technology and endowment change components.

Aggregate and production efficiency are given by

ΞAE = ΞAE,P = MSV 1
y

G1

∂θ
+MSV 2

y

G2

∂θ
+MSV 1

y

∂G1

∂n11,d
dn̄1,s

dθ
,

where MSV 1
y = MRS11

c and MSV 2
y = MRS11

c
∂G1

∂x12 . In this economy, an efficient allocation must satisfy
MRS11

c > 0 and MRS11
c

∂G1

∂x12 > 0.

D.3 Robinson Crusoe Economy
One-producer one-consumer economies (i.e., Robinson Crusoe economies) are the simplest to study production
- see Section 15.C of Mas-Colell et al. (1995). In these economies, a single individual consumes a single good
and elastically supplies a single factor of production. A single production technology uses the supplied factor
to produce the good, so I = 1, J = 1, and F = 1. Formally, preferences, technology, and resource constraints
are respectively given by V 1 = u1 (c11, n11,s), y1 = G1 (n11,d; θ

)
, y1 = c11, and n11,s = n11,d. This economy

exclusively features aggregate factor efficiency and technology change components.
The production efficiency decomposition takes the form

ΞAE,P =

MSV 1
y

∂G1

∂n11,d︸ ︷︷ ︸
AMWP 1

n

−MRS11
n︸ ︷︷ ︸

AMRS1
n

 dn1,s

dθ
+MSV 1

y

∂G1

∂θ
,

where the marginal social value of good 1 is given byMSV 1
y = MRS11

c . In this economy, an efficient allocation
must satisfy MSV 1

y
∂G1

∂n11,d = MRS11
n .

45At times, it is necessary to have J = 3 goods to represent some phenomena in production networks. For instance,
three goods are necessary to have a pure intermediate good being used to produce another pure intermediate good.
This is a relevant case in which classic efficiency conditions do not apply, as illustrated in examples 1 and 2.
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i = 1 j = 1

j = 2

f = 1
c11

x12

n21,d

(a) Minimal Vertical

i = 1 j = 1 f = 1
c11 n11,d

n11,s

(b) Robinson Crusoe

i = 1 j = 1

j = 2

f = 1
c11

c12

n11,d

n21,d

(c) Minimal Horizontal

i = 1 j = 1 f = 1
c11

x11

n11,d

(d) Minimal Roundabout

i = 1 j = 1

j = 2

f = 1
c11

x12

x22

n21,d

(e) Minimal Diversified Intermediate

i = 1

i = 2

j = 1 f = 1
c11

c21

n11,d

n11,s

n21,s

(f) Minimal Multiple Factor Suppliers

i = 1

i = 2

j = 1

j = 2

c11

c21

c12

c22

(g) Edgeworth Box

i = 1

i = 2

j = 1

j = 2

f = 1
c11

c21

c12

c22

n11,d

n21,d

(h) Edgeworth Box (alternative)

Figure OA-3: Minimal Welfare Accounting Economy: Special Cases
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D.4 Horizontal Economy
This minimal horizontal economy is the simplest to illustrate the role played by the possibility of reallocating
factors across different uses. This economy generalizes to many well-known frameworks, including Heckscher-
Ohlin, Armington (1969), and Hsieh and Klenow (2009). In this economy, a single individual consumes two
different goods that can be produced using the same factor, which we assume to be in fixed supply, so I = 1,
J = 2, and F = 1. Formally, preferences, technology, and resource constraints are given by V 1 = u1 (c11, c12),
y1 = G1 (n11,d; θ

)
, y2 = G2 (n21,d; θ

)
, y1 = c11, y2 = c12, and n̄1,s = n11,d + n21,d. This economy exclusively

features cross-sectional factor efficiency and technology and endowment change components
The production efficiency decomposition takes the form

ΞAE,P = CovΣ
j

MSV jy
∂Gj

∂nj1,d︸ ︷︷ ︸
MWP j1

n

,
dχj1,dn

dθ

n1,d +MSV 1
y

∂G1

∂θ
+MSV 2

y

∂G2

∂θ
+AMWP 1

n

dn̄1,s

dθ
,

where AMWP 1
n = χ11,d

n MSV 1
y

∂G1

∂n11,d +χ21,d
n MSV 2

y
∂G2

∂n21,d , and where MSV 1
y = MRS11

c and MSV 2
y = MRS12

c

. In this economy, an efficient allocation must satisfy MSV 1
y

∂G1

∂n11,d = MSV 2
y

∂G2

∂n21,d .

D.5 Minimal Roundabout Economy
Roundabout economies have been used to illustrate the impact of intermediate goods on production—see e.g.,
Jones (2011). The minimal roundabout economy is the simplest economy in which aggregate intermediate
input efficiency can exist. In this economy a single individual consumes a single mixed good, which is at the
same time final and intermediate to itself, so I = 1, J = 1, and F = 1. Formally, preferences, technology,
and resource constraints are given by V 1 = u1 (c11), y1 = G1 (x11, n11,d; θ

)
, y1 = c11 + x11, and n̄1,s = n11,d.

This economy only features aggregate intermediate input efficiency, and technology and endowment change
components.

The production efficiency decomposition takes the following form

ΞAE,P =

MSV 1
y

∂G1

∂x11︸ ︷︷ ︸
AMWP 1

x

−MRS11
c︸ ︷︷ ︸

AMRS1
c

 dφ1
x

dθ
y1 +MSV 1

y

∂G1

∂θ
+AMWP 1

n

dn̄1,s

dθ
,

where AMWP 1
n = MSV 1

y
∂G1

∂n11,d and MSV 1
y = MRS11

c

1−ξ11 ∂G1
∂x11

. In this economy, an efficient allocation must satisfy

MSV 1
y = MSV 1

y
∂G1

∂x11 = MRS11
c .

D.6 Diversified Intermediate
This minimal diversified intermediate economy is the simplest economy in which cross-sectional intermediate
input efficiency can exist. In this economy, a single individual consumes a final good, which is exclusively
produced by a pure intermediate that can be also used for roundabout production. This pure intermediate is
produced using a single factor in fixed supply, so I = 1, J = 2, and F = 1. Formally, preferences, technology,
and resource constraints are given by V 1 = u1 (c11), y1 = G1 (x12; θ

)
, y2 = G2 (x22, n21,d; θ

)
, y1 = c11,

y2 = c12 + x12 + x22, and n̄1,s = n21,d. This economy features cross-sectional intermediate input efficiency,
aggregate intermediate input efficiency, and technology and endowment change components.
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The production efficiency decomposition takes the form

ΞAE,P =CovΣ
j

MSV j
∂Gj

∂xj2︸ ︷︷ ︸
MWP j2

x

,
dχj2n
dθ

x2 +
(
χ12
x MSV 1

y

∂G1

∂x12 + χ22
x MSV 2

y

∂G2

∂x22

)
︸ ︷︷ ︸

AMWP 2
x

dφ2
x

dθ
y2

+MSV 1
y

∂G1

∂θ
+MSV 2

y

∂G2

∂θ
+
(
MSV 2

y

∂G2

∂n21,d

)
︸ ︷︷ ︸

AMWP 1
n

dn̄1,s

dθ
,

where MSV 1
y = MRS11

c and MSV 2
y = MRS11

c

∂G1
∂x12 ξ

12

1−ξ22 ∂G2
∂x22

.

D.7 Two Factor Supplier Economy
This minimal two factor supplier economy (we could also call it Robinson Crusoe and Friday economy)
is the simplest economy in which cross-sectional factor supply efficiency can exist. In this economy, we
assume that two individuals have identical linear preferences for consumption of a single produced good,
which we use as numeraire. This eliminates potential gains from cross-sectional consumption efficiency, since
MRS11

c = MRS21
c = 1. We also assume that there is a single production technology that uses a single factor

that can be supplied either of the two individuals, with in principle different disutility, so I = 2, J = 1,
and F = 1. Formally, preferences, technology, and resource constraints are given by V 1 = c11 + u1 (n11,s),
V 2 = c21 + u2 (n21,s), y1 = G1 (n11,d; θ

)
, y1 = c11 + c21, and n11,s + n21,s = n31,d. This economy features

cross-sectional factor supply efficiency, aggregate factor efficiency, and technology change components.
The exchange efficiency decomposition takes the form

ΞAE,X = −CovΣ
i

[
MRSi1n ,

dχi1,sn

dθ

]
n1,s.

The production efficiency decomposition takes the form

ΞAE,P =

MSV 1
y

∂G1

∂n11,d︸ ︷︷ ︸
AMWP 1

n

−
(
χ11,s
n MRS11

n + χ21,s
n MRS21

n

)︸ ︷︷ ︸
AMRS1

n

 dn1,s

dθ
+MSV 1

y

∂G1

∂θ
+AMWP 1

n

dn̄1,s

dθ
,

where AMWP 1
n = MSV 1

y
∂G1

∂n11,d where the marginal social value of good 1 is

MSV 1
y = χ11

c MRS11
c + χ21

c MRS21
c = 1.

D.8 Edgeworth Box Economy
Pure exchange economies (i.e., Edgeworth Box economies) are the simplest to study most phenomena in general
equilibrium and welfare economics. In this economy, two individuals consume two different goods, which appear
as endowments. It is possible to formalize endowments by assuming that there is a single factor in fixed supply
and that factor uses are predetermined, so I = 2, J = 2, and F = 1. Formally, preferences, technologies,
and resource constraints are respectively given by V 1 = u1 (c11, c12), V 2 = u2 (c21, c22), y1 = G1 (n11,d; θ

)
,

y2 = G2 (n21,d; θ
)
, y1 = c11 + c21, y2 = c12 + c22, and n̄1,s = n11,d + n12,d. This economy features cross-

sectional consumption efficiency, and technology and endowment change components, where the last two can
be interpreted as changes in endowments. Alternatively, we could simply model endowments of the goods.
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The exchange efficiency component takes the form

ΞAE,X = CovΣ
i

[
MRSi1c ,

dχi1c
dθ

]
c1 + CovΣ

i

[
MRSi2c ,

dχi2c
dθ

]
c2.

The production efficiency component takes the form

ΞAE,P = MSV 1
y

∂G1

∂θ
+MSV 2

y

∂G2

∂θ
+AMWP 1

n

dn̄1,s

dθ
+AMWP 2

n

dn̄2,s

dθ
.

where the marginal social value of goods is

MSVy =
(
χ11
c MRS11

c + χ21
c MRS21

c χ12
c MRS12

c + χ22
c MRS22

c

)
.
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E Applications

E.1 Armington (1969) Model
Model Solution. First, note that country profits are given by πj =

(
pjAj − wj

)
njj,s, where we already

impose that j = f . Hence, profit maximization requires that pj = wj

Aj . Without loss of generality, we normalize
p1 = 1, so w1 = A1. We also assume that τ ii = 0 and τ ij = τ ji = τ .

Hence, exploiting Walras’ law, an equilibrium of the model can be expressed as the solution to the system

c11

c12 =
(

1
p2 (1 + τ)

)−σ
and c21

c22 =
(

1 + τ

p2

)−σ
A1 = c11 + c21 and A2 = c12 + c22

p2A2 = c21 + p2c22,

for
{
c11, c12, c21, c22, p2}. If instead we had assumed that countries have endowments of goods, then their

budget constraints take the form ∑
j

pj
(
1 + τ ij

)
cij = piȳi,s +

∑
j

T ij ,

which is equivalent to the formulation in the text when Ai = ȳi,s. Hence, our parameterization implies that
country 2’s good is 50 times more abundant than country 1’s.

Welfare Accounting Decomposition. Country i’s welfare gains induced by a perturbation take the
form

dV i|λ

dτ
=

dV i

dτ

λi
=
∑
j

∂V i

∂cij

λi
dcij

dτ
=
∑
j

MRSijc
dcij

dτ
=
∑
j

MRSijc
dχijc
dτ

cj ,

where MRSijc = ∂V i

∂cij /λ
i , dc

ij

dτ = dχijc
dτ c

j + χijc
dcj

dτ , and
dcj

dτ = 0.
We can therefore expresses the normalized welfare gain as

dWλ

dτ
=

dW
dτ

1
I

∑
i
∂W
∂V iλ

i
=
∑
i

ωi
∑
j

MRSijc
dχijc
dτ

cj

=
∑
j

CovΣ
i

[
MRSijc ,

dχijc
dτ

]
cj︸ ︷︷ ︸

Cross-Sectional Consumption Efficiency

+
∑
j

CovΣ
i

[
ωi,MRSijc

dχijc
dτ

]
cj︸ ︷︷ ︸

Cross-Sectional Consumption Redistribution

,

where ωi = λi ∂W
∂V i

1
I

∑
i
λi ∂W
∂V i

. We choose aggregate world consumption as welfare numeraire, which implies that

λi =
∑
j
∂V i

∂cij c
j . Similar results obtain if we choose unit world consumption, which implies that λi =

∑
j
∂V i

∂cij .
Even though country 2’s consumption is substantially higher than country 1 in the absence of tariffs, as
shown in the middle plots in Figure OA-4, the linear homogeneity of the preferences imply that ∂V 1

∂c11 = ∂V 2

∂c21

and ∂V 1

∂c12 = ∂V 2

∂c22 . Hence, to ensure that the planner attaches a higher weight to the country that consumes
less (country 1), we use a social welfare function of the form W

(
V 1, V 2) =

∑
i

(
V i
)σ−1

σ , which implies that

ωi = λi(V i)−
1
σ

1
I

∑
i
λi(V i)−

1
σ
. This is equivalent to expressing country preferences as V i =

∑
j

(
cij
)σ−1

σ and assuming

a utilitarian social welfare function. The bottom two plots in Figure OA-4 illustrate the equilibrium values of
ωi and λi.
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E.2 DMP Model
Model Solution. We consider the standard search equilibrium definition (Pissarides, 2000), whose
notation we mostly follow. Job-filling and job-finding rates, respectively denoted by q0 (θ0) and p0 (θ0), are
given by

q0 (θ0) =
m
(
χ1

0,n, v0
)

v0
= µθ−α0 and p0 (θ0) = θ0q0 (θ0) =

m
(
χ1

0,n, v0
)

χ1
0,n

= µθ1−α
0 .

The value of an occupied job, denoted by J0, is given by

J0 = z2 − w0 + β [(1− ϕ) J1 + ϕV1] and J1 = z2 − w1,

where wt denotes the wage. The value of a vacant job is given by

V0 = −κ0 + β [q0 (θ0) J1 + (1− qt (θt))V1] and V1 = 0.

At an equilibrium with free-entry, V0 = 0, so

J1 = κ0

βq0 (θ0) and J0 = z2 − w0 + (1− ϕ) κ0

q0 (θ0) .

The value of employed and unemployed workers, respectively denoted by Et and Ut, are given by

E0 = w0 + β [ϕU1 + (1− ϕ)E1] and E1 = w1

U0 = b0 + β [pt (θt)E1 + (1− pt (θt))U1] and U1 = b1.

The wage is determined by Nash bargaining, with

wt = arg max
wt

(Et − Ut)η (Jt − Vt)1−η
.

The solution to this problem is

Et − Ut = η (Et − Ut + Jt − Vt) and Jt − Vt = (1− η) (Et − Ut + Jt − Vt) .

Given our parametrization, we have that U1 = V1 = 0, which means that w1 = E1 = η (E1 + J1) = ηz2 and
that J1 = (1− η) z2.

Hence, the condition
(1− η) z2 = κ0

βq0 (θ0)

pins down equilibrium tightness θ0. Given θ0 and χ1
0,n, we can compute equilibrium vacancies, which is

sufficient to compute the welfare accounting decomposition. Figure OA-5 illustrates how an improvement in
the matching technology translates in higher vacancies posted at date 0, which in turn translates into lower
unemployment at date 1.

Welfare Accounting. The welfare gain of a marginal change in µ can be written as

dW

dµ
= dc0

dµ
+ β

dc1
dµ
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Using unit perpetual consumption as lifetime welfare numeraire, we can express the normalized welfare gain
as

dWλ

dµ
=

dW
dµ

λ
= ω0

dc0
dµ

+ ω1
dc1
dµ

,

where λ = 1 + β and where ω0 = 1
1+β and ω1 = β

1+β . Note that

dc0
dµ

= φ0,c

(
dy1

0
dµ

+ dy2
0

dµ

)
− dφx,0

dµ

(
y1

0 + y2
0
)

dc1
dµ

= dy1
1

dµ
+ dy2

1
dµ

,

where dyjt
dµ = zj

dχt,n
dµ , which allows us to write

dWλ

dµ
= ω1

∑
j

φ1,cz
j
dχj1,n
dµ

− ω0
dφx,0
dµ

(
y1

0 + y2
0
)

= ω1CovΣ
j

[
MWP j1,n,

dχj1,n
dµ

]
︸ ︷︷ ︸
Cross-Sectional Factor Efficiency

− ω0
dφx,0
dµ

(
y1

0 + y2
0
)

︸ ︷︷ ︸
Aggregate Intermediate Input Efficiency

,

where marginal welfare products are given by MWP j1,n = φ1,cz
j .

E.3 Hsieh and Klenow (2009) Model
Welfare Accounting. Since the solution of the model is completely standard, we exclusively describe
here how to characterize the welfare accounting decomposition. We consider a perturbation in στ , which is
associated with a welfare change given by

dW

dστ
= ∂u

∂c1
dc1

dστ

Using good 1 as numeraire, λ = ∂u
∂c1 , so

dWλ

dστ
= dy1

dστ
=

J∑
j=2

∂y1

∂yj
Aj
dχj,dn
dστ

=
J∑
j=2

MWP jn
dχj,dn
dστ

= CovΣ
j

[
MWP jn,

dχj,dn
dστ

]
︸ ︷︷ ︸

Cross-Sectional Factor Efficiency

,

where the marginal welfare product of factor use χj,dn is MWP jn = ∂y1

∂yjA
j and where ∂y1

∂yj =
(
yj

y1

)− 1
ε .

E.4 New Keynesian Model
This Appendix presents additional model details in E.4.1, competitive equilibrium in E.4.2, a self-contained
quantitative calibration in E.4.3, and additional numerical results in E.4.4.

E.4.1 Additional Model Details

Households.
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Household preferences (50) give rise to the usual CES demand functions

cij = Γijc

(
pj

P i

)−ηc
ci and cij` =

(
pj`

pj

)−εj
cij .

Under homothetic CES consumption preferences, each household i faces an ideal price index

P i =

∑
j

Γijc (pj)1−ηc

 1
1−ηc

.

Production. The production function (51) features three nests of CES aggregates. Taking as given prices
and wages, firms choose inputs to minimize cost

Cj` = min
{xj```′}``′ , {nj`i}i

∑
`

∫ 1

0
p``
′
xj```

′
d`′ +

∑
i

W inj`i,

subject to the CES production structure in (51). This problem gives rise to labor demand

nj` = (Aj)η−1(1− ϑj)
(
W j`

mcj

)−η
yj` and nj`i = Γjiw

(
W i

W j`

)−ηw
nj`

and intermediate input demand

xj` = (Aj)η−1ϑj
(
pj`x
mcj

)−η
yj` , xj`` = Γj`x

(
p`

pj`x

)−ηx
xj` and xj```

′
=
(
p``
′

p`

)−ε`
xj``.

Nominal marginal cost is given by

mcj = 1
Aj

[(
1− ϑj

) (
W j
)1−η + ϑj

(
pjx
)1−η] 1

1−η
,

which is symmetric across firms ` in sector j. Marginal cost is not affected by the revenue tax, which is the
only wedge in this application. Finally, the cost indices are given by

W j =
[∑

`

Γjiw (W i)1−ηw
] 1

1−ηw

and pjx =
[∑

`

Γj`x (p`)1−ηx
] 1

1−ηx

.

Since production functions are homogeneous of degree one, total cost is given by Cj` = mcjyj`.
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Sectoral aggregation. Firms set prices according to (52). Aggregating to the sectoral level, the price of
sector j ’s good is

pj =
(∫ 1

0
(pj`)1−εjd`

) 1
1−εj

=
[ ∫ δj

0

(
εj

εj − 1
1

1− τ jmc
j

)1−εj

d`+
∫ 1

δj
(p̄j)1−εjd`

] 1
1−εj

=
[
δj
(

εj

εj − 1
1

1− τ jmc
j

)1−εj

+ (1− δj)(p̄j)1−εj
] 1

1−εj

= εj

εj − 1
1

1− τ j

[
δj(mcj)1−εj + (1− δj)(m̄cj)1−εj

] 1
1−εj

,

where the very first equality follows since

pjcij =
∫ 1

0
pj`cij`d` =

∫ 1

0
pj`
(
pj`

pj

)−εj
cijd` =⇒ pj =

(∫ 1

0
(pj`)1−εjd`

) 1
1−εj

.

Aggregating the goods market clearing condition, we have

pjyj ≡
∫ 1

0
pj`yj`d` =

∑
i

µi
∫ 1

0
pj`cij`d`+

∑
`

∫ 1

0

∫ 1

0
pj`x``

′j`d`′d`,

where
∫ 1

0 p
j`yj`d` denotes total nominal expenditures on sectoral good j. This also implies a resource constraint

at the sectoral level, given by yj =
∑
i µ

icij +
∑
`

∫ 1
0 x

``jd`. All this relies on our assumption that all agents
buying in sector j share the same homothetic demand aggregators over varieties `. In particular, it implies
that we also have

yj` =
(
pj`

pj

)−εj
yj and yj =

(∫ 1

0
(yj`)

εj−1
εj d`

) εj

εj−1
.

Fiscal rebates. In the absence of fiscal policy, the rebate T i that household i receives simply corresponds
to total corporate profits plus the proceeds from the revenue tax. That is,

∑
i

µiT i =
∑
j

∫ 1

0
Πj`d`+

∑
j

∫ 1

0
τ jpj`yj`d` =

∑
j

∫ 1

0

(
pj` −mcj

)
yj`d`

Assuming a uniform rebate, we simply have T i =
∑
j

∫ 1
0
(
pj −mcj

)
yj`d`.

E.4.2 Equilibrium

Definition 9. (Competitive Equilibrium). Taking as given an initial price distribution
{
p̄j`
}
j`
, a realization of

technology shocks
{
Aj
}
j
, revenue taxes

{
τ j
}
j
, and monetary policy M , a competitive equilibrium comprises

an allocation
{
cij`, ni, xi```

′
, yj`

}
i,j`,``′

and prices
{
pj`,W i

}
i,j`

such that (i) households optimize consumption

and labor supply, (ii) firms ` ∈
[
0, δj

)
in sector j reset their prices optimally, and (iii) markets for goods and

factors clear
yj` =

∑
i

µicij` +
∑
`

∫ 1

0
x``
′j`d`′ and µini =

∑
j

∫ 1

0
nj`id`.

Notice that each sector features two representative firms ex post since all firms are symmetric ex ante
and those firms that reset prices all choose the same reset price. At the sector level, there is consequently a
representative price-adjusting firm and a representative fixed-price firm.
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Computing competitive equilibrium requires an initial price distribution
{
p̄j`
}
j`
. We assume that initial

prices are given by

p̄j` = p̄j = εj

εj − 1
1

1− τ j m̄c
j = εj

εj − 1
1

1− τ jmc
j
(

1,
{
p̄``
′
}
``′
,
{
W̄ i
}
i

)
.

That is, p̄j corresponds to the price firms in sector j would set if all technologies remain at their default level
Aj = Āj . This initialization is heuristically consistent with the zero-inflation steady state of a dynamic New
Keynesian model. In the absence of technology shocks, therefore, no firm faces an incentive to adjust prices.
If Aj 6= Āj , a fraction δj of firms in each sector reset their price.

Numeraire. We take as our numeraire total nominal expenditures in the absence of shocks, i.e., M̄ =∑
j p

jyj = 1. Therefore, M̄ = 1 provides a benchmark stance for monetary policy. In the absence of
technology shocks, setting M = M̄ = 1 implies production efficiency and therefore aggregate efficiency since
all firms are symmetric.

Macro block. To compute this model, it is particularly convenient to characterize a macro block by
aggregating to the sectoral level. To that end, we aggregate several key equilibrium conditions. The aggregate
labor market clearing condition (aggregated to the level of household type) is

µini =
∑
j

∫ 1

0
nj`id` =

∑
j

∫ 1

0
Γjiw
(
W i

W j

)−ηw
nj`d`

=
∑
j

Γjiw
(
W i

W j

)−ηw
(Aj)η−1(1− ϑj)

(
W j

mcj

)−η ∫ 1

0
yj`d`

=
∑
j

Γjiw
(
W i

W j

)−ηw
(Aj)η−1(1− ϑj)

(
W j

mcj

)−η
Djyj ,

where Dj =
∫ 1

0

(
pj`

pj

)−εj
d` is a measure of sectoral price dispersion. Aggregating the goods market clearing

condition yields

yj` =
∑
i

µicij` +
(
pj`

pj

)−εj∑
`

Γ`jx
(
pj

p`x

)−ηx ∫ 1

0
(A`)η−1ϑ`

(
p`x
mc`

)−η
y``
′
d`′.

And plugging in for CES demand functions implies

yj =
∑
i

µicij +
∑
`

Γ`jx
(
pj

p`x

)−ηx
(A`)η−1ϑ`

(
p`x
mc`

)−η
y`D`,

yielding sectoral goods market clearing conditions written as a fixed point in yj .
Finally, the budget constraint can be written as

P ici = W ini +
∑
j

(pj −Djmcj)yj .

Computationally, it is now easiest to solve the macro block as a separate system of equations. Firm-level
allocations can then be obtained from CES demand functions.
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E.4.3 Calibration

Our calibration broadly follows Schaab and Tan (2023) and is summarized in Table OA-1. It is based on
66 production sectors and 10 household types, which we associate with deciles of the household income
distribution.

For household preferences, we set the coefficient of relative risk aversion to γ = 2 and the inverse Frisch
elasticity to ϕ = 2. We use an elasticity of substitution of ηc = 1, so the consumption aggregator is Cobb-
Douglas, and we calibrate the consumption weights Γijc to match consumption expenditure shares across
household types in the CEX.

Parameters Value / Target Source
Household preferences

γ Relative risk aversion 2 Standard
ϕ Inverse Frisch elasticity 2 Standard
ηc Elasticity of substitution across goods 1 Cobb-Douglas
Γijc CES consumption weights Consumption expenditure shares CEX

Production and nominal rigidities
η Elasticity of substitution across inputs and labor 1 Cobb-Douglas
ϑj CES input bundle weight Sectoral input share BEA
ηx Elasticity of substitution across inputs 1 Cobb-Douglas
ηw Elasticity of substitution across factors 1 Cobb-Douglas
Γijx CES input use weights Input-output network BEA I-O
Γijw CES factor use weights Payroll shares ACS
εj Elasticities of substitution across varieties Sectoral markups Baqaee and Farhi (2020)
δj Sectoral price adjustment probabilities Price adjustment frequencies Pasten et al. (2017)

Table OA-1: List of Calibrated Parameters

On the production side, we set the elasticity of substitution between the labor and intermediate input
bundles to η = 1. Therefore, ϑj and 1−ϑj correspond respectively to the input and labor shares in production,
which we obtain from the BEA GDP-by-Industry data. We compute the input share ϑj as input expenditures
relative to gross output, averaged between 1997 and 2015, and treat the labor share as its complement. We
set the elasticities of substitution across intermediate inputs and factors to ηx = ηw = 1. We calibrate Γijx and
Γijw to match data on input-output linkages and payroll shares. For the former, we use data from the BEA
Input Output “Use” Table to compute input shares as a sector j’s expenditures on goods from sector ` as a
share of j’s total expenditures on inputs, averaged between 1997 and 2015. We obtain payroll shares from a
linked ACS-IO dataset as type i ’s earnings from sector j as a share of total earnings, averaged between 1997
and 2015.

We use data from Baqaee and Farhi (2020) on sectoral markups to calibrate the elasticity of substitution
across sectoral varieties εj . Sectoral markups are computed as µj = εj

εj−1 .
Finally, we use data from Pasten et al. (2017) on price adjustment frequencies to calibrate δj . They

estimate monthly price adjustment frequencies using the data underlying the Bureau of Labor Statistics’
Producer Price Index for 754 industries from 2005 to 2011. First, we link these estimates to the 66 sectors
in our data. Second, we obtain quarterly adjustment probabilities as 1 −

(
1− monthly adjustment frequency

100

)3
.

Finally, we bin these estimates into quintiles. This allows us to solve our model assuming that each of the 66
sectors consists of 5 firms.
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E.4.4 Additional Results

In this subsection, we present additional numerical results that are referenced in the main text.

Divine coincidence. Consider an alternative calibration where households and sectors are symmetric, so
there exist a representative household and a representative sector. Our model then collapses to the standard,
one-sector New Keynesian model, albeit with roundabout production.

Divine Coincidence holds in this model. That is, the optimal monetary policy response to an aggregate
technology shock closes both output and inflation gaps.

Figure OA-6 illustrates this benchmark from the perspective of our welfare accounting decomposition.
In that context, Divine Coincidence implies that each allocative efficiency component is 0, indicating that
optimal policy can attain an efficient allocation. Moreover, since households are symmetric, there is no scope
for redistribution gains, so welfare and aggregate efficiency coincide.

Importance of markup distortions. Figure 5 in the main text corresponds to a calibration of
the model that assumes revenue taxes are available to eliminate initial markups. We reproduce our main
experiment in Figure OA-7 below, assuming that revenue taxes are not available.

It is well known from the New Keynesian literature that monopolistic competition implies inefficiently low
steady state employment. In that context, optimal monetary policy under discretion, which is heuristically
comparable to the static optimization problem we consider, seeks to raise employment via expansionary
monetary policy. We revisit this result from the perspective of our welfare accounting decomposition. Figure
OA-7 demonstrates that, in the presence of initial markup distortions, aggregate factor and input use efficiency
considerations push optimal monetary policy towards a more expansionary stance. In the one-sector New
Keynesian model (without roundabout production), aggregate factor efficiency corresponds to the standard
labor wedge. In this multi-sector variant, aggregate factor and input use efficiency formally capture that
aggregate employment and aggregate activity are inefficiently low.

Cross-sectional factor and input use efficiency, on the other hand, push monetary policy towards a relatively
more contractionary stance. Optimal policy therefore trades off the gains from stimulating aggregate activity
in the presence of markup distortions against the cost of creating misallocation in the form of price dispersion,
captured by cross-sectional factor and input use efficiency.
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Figure OA-4: Armington Model
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Figure OA-6: Optimal Monetary Policy under Divine Coincidence
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Figure OA-7: Optimal Monetary Policy with Markup Distortions
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