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Abstract

This note shows that the mixed normal asymptotic limit of the trend IV estimator with a

fixed number of deterministic instruments (fTIV) holds in both singular (multicointegrated)

and nonsingular cointegration systems, thereby relaxing the exogeneity condition in (Phillips

and Kheifets, 2024, Theorem 1(ii)). The mixed normality of the limiting distribution of fTIV

allows for asymptotically pivotal F tests about the cointegration parameters and for simple

efficiency comparisons of the estimators for different numbers K of instruments, as well as

comparisons with the trend IV estimator when K → ∞ with the sample size.

Keywords: Asymptotic F test, Cointegration, Fixed-K asymptotics, Long-run variance, Mul-
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1 Asymptotic Mixed Normality and Asymptotic F Test

Phillips and Kheifets (2024, hereafter, PK(2024)) recently developed a high-dimensional approach

to estimating cointegrated systems in the presence of multicointegration. That approach allowed

the number of deterministic instruments K to pass to infinity with the sample size n, as in

earlier work on cointegration (Phillips, 2014). We complement that study by establishing similar

asymptotics for estimation and inference with a fixed number of instruments, which can deliver

more reliable inference in practical applications, as shown in other related work (Hwang and Sun,

2017; Müller and Watson, 2018).
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Applied work often focuses on estimating cointegration coefficients through the following

standard cointegrating equation:

yt = x′ta0 + u0t, ∆xt = uxt, for t = 1, . . . , n, (1)

where xt ∈ Rdx for some dx ∈ Z+ and ut := (u0t, u
′
xt)

′ are weakly dependent with long-run

variance matrix

Ω =
[
Ω00 Ω0x
Ωx0 Ωxx

]
∈ R(dx+1)×(dx+1). (2)

This note is concerned with estimating the cointegrating vector a0 in the presence of endogeneity.

For this purpose, an augmented form of (1) is useful, as in equation (9) of PK(2024),

yt = x′ta0 +∆x′tf0 + u0·x,t, u0·x,t = u0t − Ω0xΩ
−1
xxuxt, (3)

with f0 = Ω−1
xxΩx0 and conditional long-run variance Ω00·x = Ω00−Ω0xΩ

−1
xxΩx0 ≥ 0.We consider

both the standard cointegration case where Ω00·x > 0 and the multicointegration case where

Ω00·x = 0; however, our primary focus is on the latter. In this case, we write u0·x,t = ∆et,

thereby assuring the presence of multicointegration, where et has both positive variance and

long-run variance. To simplify the exposition, we assume the initial condition e0 = 0. In

practice, the initial condition can be accommodated by including an intercept in the regression,

as discussed in PK(2024).

Denote Brownian motion with variance (matrix) V by BM(V), let “⇝” signify weak conver-

gence in the relevant probability space, and make the following assumption.

Assumption 1 (Functional Central Limit Theorem (FCLT))

(a) For the nonsingular case with Ω00·x > 0, the following joint FCLT holds

1√
n

⌊n·⌋∑
t=1

(
u0t
uxt

)
⇝

(
B0(·)
Bx(·)

)
≡ BM(Ω) ,

where Ω, given in (2), is positive definite.

(b) For the singular case with Ω00·x = 0, the following joint FCLT holds

1√
n

⌊n·⌋∑
t=1

(
et
uxt

)
⇝

(
Be (·)
Bx (·)

)
≡ BM

([
ωee ωex
ωxe Ωxx

])
,

where the variance matrix of the above Brownian motion is positive definite.

Define

e0·x,t = et − ωexΩ
−1
xxuxt and ωee·x = ωee − ωexΩ

−1
xxωxe.

Under Assumption 1, for the case Ω00·x > 0, we have

1√
n

⌊n·⌋∑
t=1

(
u0·x,t
uxt

)
⇝

(
B0·x(·)
Bx(·)

)
≡ BM

([
Ω00·x 0′

0 Ωxx

])
;
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and for the case Ω00·x = 0,

1√
n

⌊n·⌋∑
t=1

(
e0·x,t
uxt

)
⇝

(
Be·x(·)
Bx(·)

)
≡ BM

([
ωee·x 0′

0 Ωxx

])
,

where 0 is a dx-vector of zeros, with B0·x := B0 − Ω0xΩ
−1
xxBx and Be·x := Be − ωexΩ

−1
xxBx

independent of Bx.

Using capitals to signify partial summation, we write Yt =
∑t

s=1 ys, Xt =
∑t

s=1 xs, U0·x,t =∑t
s=1 u0·x,s. Define

e+0·x,t = U0·x,t · 1 {Ω00·x > 0}+ e0·x,t · 1 {Ω00·x = 0} ,

g0 = Ω−1
xxωxe · 1 {Ω00·x = 0} ,

where 1 {·} is the indicator function. In matrix form we have the doubly augmented model

Y = [X,C] γ0 + e+, for γ′0 := (a′0, f
′
0, g

′
0) := (a′0, ℓ

′
0), (4)

where

Y = [Y1, . . . , Yn]
′
, X = [X1, . . . , Xn]

′
,

C :=
[

x1 · · · xn
∆x1 · · · ∆xn

]′
=

[
x′

∆x′

]′
,

and

e+ =
[
e+0·x,1, . . . , e

+
0·x,n

]′
.

PK(2024) estimated the above cointegrating model using deterministic instrumental variables

{φj (t/n)}Kj=1, where {φj (r)}∞j=1 is a complete set of basis functions of L2 [0, 1]. In what follows,

we let

φ̃K (r) = (φ1 (r) , . . . , φK (r))
′
, φ̃K,t = φ̃K

(
t

n

)
=

[
φ1

(
t

n

)
, . . . , φK

(
t

n

)]′
,

and so

ΦK = [φ̃K,1, . . . , φ̃K,n]
′

is the observation matrix of the instruments. The projection matrix that projects onto the column

space of ΦK is given by PΦK
= ΦK (Φ′

KΦK)
−1

Φ′
K .

Based on the K instrumental variables φ̃K,t, the trend IV (TIV) estimator of a0 is defined

as:

âTIV = argmin
a

(Y −Xa)
′
RK (Y −Xa) = (X ′RKX)

−1
(X ′RKY ), (5)

where

RK = PΦK
− PΦK

C (C ′PΦK
C)

−1
C ′PΦK

. (6)

Alternatively, and equivalently,

(âTIV, ℓ̂TIV) = argmin
(a,ℓ)

(Y −Xa− Cℓ)
′
PΦK

(Y −Xa− Cℓ) .
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If
∥∥n−1Φ′

KΦK − IK
∥∥
2
= o (1) so that

∥∥PΦK
− n−1ΦKΦ′

K

∥∥
2
= o (1) under an asymptotic

specification of K (either fixed or growing with n), then the TIV is asymptotically equivalent to

OLS applied to the transformed and augmented system

VY = VXa0 + Vxf0 + V∆xg0 + Ve+ = VXa0 + VCℓ0 + Ve+ , (7)

where we employ the notation VZ = Φ′
KZ for an observation matrix Z. Transformations to VZ

were used, for example, in Hwang and Sun (2018). Standard partitioned least squares regression

on (7) leads to the following estimator of a0 :

âfTIV = (V ′
XQVC

VX)
−1
V ′
XQVC

VY ,

where, for an observation matrix Z with dZ rows, QZ = IdZ
− PZ for PZ = Z (Z ′Z)

−1
Z ′. The

estimator âfTIV is the same as âTIV but with PΦK
replaced by n−1ΦKΦ′

K in the definitions of

âTIV and RK in (5) and (6). A similar construction gives estimators f̂fTIV and ĝfTIV of f0 and

g0 as

(f̂ ′fTIV, ĝ
′
fTIV)

′ = (V ′
CQVX

VC)
−1
V ′
CQVX

VY .

The estimators âfTIV, f̂fTIV, and ĝfTIV are the fixed-K Trend IV (fTIV) estimators in PK(2024),

which may also be referred to as the transformed and augmented OLS (TA-OLS), following

Hwang and Sun (2018). In this note, we use the same notation and terminology as in PK(2024).

We focus on âfTIV, for which the estimation error is given by

âfTIV − a0 = (V ′
XQVC

VX)
−1
V ′
XQVC

Ve+ . (8)

Unless stated otherwise, throughout this note âfTIV is the transformed and augmented OLS based

on a fixed number of basis functions (i.e., K is fixed), while âTIV is the trend IV estimator based

on an increasing number of instruments (i.e., the high-dimensional trend IV estimator that lets

K approach infinity as the sample n size grows). Nevertheless, both estimators can be analyzed

under both types of asymptotics.

To establish fixed-K asymptotics we make the following assumption about the basis functions:

Assumption 2 {φj(·)}Kj=1 are continuously differentiable basis functions on L2[0, 1].

For ease of comparison, we use the same definitions as in PK(2024) given below:

BX (r) =

∫ r

0

Bx (s) ds, µK =

∫ 1

0

φ̃K (r)B′
X (r) dr, ηK =

∫ 1

0

φ̃K (r)Bx (r)
′
dr,

ξK =

∫ 1

0

φ̃K (r) dBx (r)
′
; ψ0·x,K =

∫ 1

0

φ̃K (r)B0·x (r) dr;

ψe·x,K =

∫ 1

0

φ̃K (r) dBe·x (r) =

∫ 1

0

φ̃K (r) dBe (r)− ξKΩ−1
xxωxe;

QξK = IK − ξK(ξ′KξK)−1ξ′K ;

JK = QξK −QξKηK (η′KQξKηK)
−1
η′KQξK ; and SK = JKµK (µ′

KJKµK)
−1
.

4



Note that µK , ηK and ξK are K × dx matrices, ψ0·x,K and ψe·x,K are K-vectors, and JK =

Q[ξK ,ηK ], which projects onto the orthogonal complement of the space spanned by [ξK , ηK ].

Theorem 1 (Asymptotic Mixed Normality of fTIV) Let Assumptions 1 and 2 hold.

(a) When Ω00·x > 0 we have, for fixed K as n→ ∞,

n (âfTIV − a0)⇝ S′
Kψ0·x,K ≡ MN

(
0,Ω00·xS

′
K

(∫ 1

0

∫ 1

0

(r ∧ s) φ̃K (r) φ̃K (s)
′
drds

)
SK

)
.

(9)

(b) When Ω00·x = 0 we have, for fixed K as n→ ∞,

n2 (âfTIV − a0)⇝ S′
Kψe·x,K ≡ MN

(
0, ωee·xS

′
K

(∫ 1

0

φ̃K (r) φ̃′
K (r) dr

)
SK

)
. (10)

Proof of Theorem 1. By virtue of summation by parts, integration by parts, and the

continuous mapping theorem, the following weak convergence results hold:

(a) n−1/2Ve+ ⇝ ψe·x,K when Ω00·x = 0 and n−3/2Ve+ ⇝ ψ0·x,K when Ω00·x > 0;

(b) n−1/2V∆x ⇝ ξK ;

(c) n−3/2Vx ⇝ ηK ;

(d) n−5/2VX ⇝ µK .

Then, for Part (a),

n (âfTIV − a0) =
(
n−5V ′

XQVC
VX

)−1
n−4V ′

XQVC
Ve+ ⇝ (µ′

KJKµK)
−1

(µ′
KJKψ0·x,K) = S′

Kψ0·x,K .

Since the randomness of (µK , ηK , ξK) is fully driven by Bx (·) , which is uncorrelated with and

hence independent of B0·x (·) , it follows that ψ0·x,K =
∫ 1

0
φ̃K (r)B0·x (r) dr is independent of

(µK , ηK , ξK) . Therefore, conditional on (µK , ηK , ξK) , ψ0·x,K follows the normal distribution

N
(
0,Ω00·x

(∫ 1

0

∫ 1

0
(r ∧ s) φ̃K (r) φ̃K (s)

′
drds

))
. Consequently, the limit distribution is mixed

normal:

n (âfTIV − a0)⇝ S′
Kψ0·x,K ≡ MN

(
0,Ω00·xS

′
K

(∫ 1

0

∫ 1

0

(r ∧ s) φ̃K (r) φ̃K (s)
′
drds

)
SK

)
.

For Part (b),

n2 (âfTIV − a0) =
(
n−5V ′

XQVC
VX

)−1
n−3V ′

XQVC
Ve+

⇝ (µ′
KJKµK)

−1
(µ′

KJKψe·x,K) = S′
Kψe·x,K .

Since (µK , ηK , ξK) depends only on Bx (·) , which is uncorrelated with and hence indepen-

dent of Be·x (·) , ψe·x,K =
∫ 1

0
φ̃K (r) dBe·x (r) is independent of (µK , ηK , ξK) . Conditional on
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(µK , ηK , ξK) , ψe·x,K follows the normal distribution N (0, ωee·x
∫ 1

0
φ̃K (r) φ̃′

K (r) dr). Therefore,

the limit distribution is mixed normal:

n2 (âfTIV − a0)⇝ S′
Kψe·x,K ≡ MN

(
0, ωee·xS

′
K

(∫ 1

0

φ̃K (r) φ̃′
K (r) dr

)
SK

)
.

In both the singular and nonsingular cases, the limiting distribution is mixed normal with

a zero mean. Unlike the use of OLS applied directly to (3), the fTIV estimator has no second-

order endogeneity bias. This bias is removed simply by using an IV approach that involves

deterministic instruments.

The asymptotic mixed normality in the multicointegration case was shown in PK(2024) under

the exogeneity assumption that ωxe = 0 (i.e., g0 = 0), indicating that the multicointegration error

{et} has no long-run correlation with the integrated process {xt} . Theorem 1(b) establishes

the asymptotic mixed normality without the exogeneity assumption. Also, unlike the result

in PK(2024), Theorem 1 provides the asymptotic distribution of the fTIV estimator for any

continuously differentiable basis functions. Flexibility in the choice of the basis gives an additional

advantage as we discuss next.

The conditional asymptotic variance of the fTIV depends on the basis functions used. When

Ω00·x > 0, we may choose {φj (·)}Kj=1 such that∫ 1

0

∫ 1

0

(r ∧ s) φ̃K (r) φ̃K (s)
′
drds = IK , (11)

in which case we have

n (âfTIV − a0)⇝MN (0,Ω00·xS
′
KSK) = MN (0,Ω00·x (µ

′
KJKµK)

−1
).

Similarly, when Ω00·x = 0, we may choose {φj (·)}Kj=1 such that∫ 1

0

φ̃K (r) φ̃′
K (r) dr = IK ,

that is, {φj (·)}Kj=1 are orthonormal basis functions of L2[0, 1]. Then

n2 (âfTIV − a0)⇝MN (0, ωee·xS
′
KSK) = MN (0, ωee·x (µ

′
KJKµK)

−1
). (12)

In both cases, the conditional variance matrix in the mixed normal distribution, which takes a

sandwich product form in general, collapses to a single matrix component.

The zero-mean mixed normal asymptotic distribution enables the construction of asymptoti-

cally pivotal tests about cointegration parameters. Consider, for example, the case of multicoin-

tegration using the fTIV based on orthonormal basis functions. To test H0 : Ha = h against

H1 : Ha ̸= h for some restriction matrix H ∈ Rp×dx and vector h ∈ Rp×1, we first obtain the

OLS residual vector:

V̂e+ = VY − VX âfTIV − Vxf̂fTIV − V∆xĝfTIV,

6



and then construct the long-run variance estimator:

ω̂ee·x =
1

K

∥∥∥V̂e+∥∥∥2 ,
where ∥·∥ denotes the Euclidean norm. Based on ω̂ee·x, we calculate the Wald statistic in the

usual way:

WfTIV =
1

ω̂ee·x
[HâfTIV − h]

′
[
H (V ′

XQVC
VX)

−1
H ′

]−1

[HâfTIV − h] /p. (13)

Theorem 2 (Asymptotic F test with fTIV) Let Assumptions 1 and 2 hold. In the case of

multicointegration with Ω00·x = 0 and K > 3dx, if {φj (·)}Kj=1 are orthonormal basis functions of

L2[0, 1], and H has full row rank p, then

W∗
fTIV :=

K − 3dx
K

WfTIV ⇝ Fp,K−3dx
, (14)

for fixed K as n → ∞, where Fp,K−3dx
is the standard F distribution with degrees of freedom p

and K − 3dx.

Proof of Theorem 2. Since V̂e+ = Q[VX ,VC ]Ve+ , we have

ω̂ee·x = V ′
e+Q[VX ,VC ]Ve+/K.

Using this and Theorem 1, we obtain:

WfTIV =
[HâfTIV − h]

′
[
H (V ′

XQVC
VX)

−1
H ′

]−1

[HâfTIV − h] /p

V ′
e+Q[VX ,VC ]Ve+/K

=
[âfTIV − a0]

′
H ′

[
H (V ′

XQVC
VX)

−1
H ′

]−1

H [âfTIV − a0] /p

V ′
e+Q[VX ,VC ]Ve+/K

⇝
ψ′
e·x,KSKH

′
[
H (µ′

KJKµK)
−1
H ′

]−1

HS′
Kψe·x,K/p

ψ′
e·x,KQ[µK ,ηK ,ξK ]ψe·x,K/K

=

∥∥P[SKH′]ψe·x,K
∥∥2 /p∥∥Q[µK ,ηK ,ξK ]ψe·x,K
∥∥2 /K . (15)

Under the assumption that {φj (·)}Kj=1 are orthonormal, ψe·x,K follows the normal distribution

N (0, ωee·xIK). Hence, conditional on (µK , ηK , ξK) ,∥∥P[SKH′]ψe·x,K
∥∥2 /ωee·x =d χ2

p,∥∥Q[µK ,ηK ,ξK ]ψe·x,K
∥∥2 /ωee·x =d χ2

K−3dx
,

where =d denotes distributional equivalence. The two chi-square variates above are condi-

tionally independent, as they are based on two conditionally independent normals, namely
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Q[µK ,ξK ,ηK ]ψe·x,K and S′
Kψe·x,K . The conditional independence between these two normals holds

because, conditional on (µK , ηK , ξK), we have

cov(Q[µK ,ηK ,ξK ]ψe·x,K , S
′
Kψe·x,K)

= ωee·xQ[µK ,ηK ,ξK ]SK = ωee·xQ[µK ,ηK ,ξK ]Q[ξK ,ηK ]µK (µ′
KJKµK)

−1

= ωee·x

{
Q[ξK ,ηK ] − P[Q[ξK,ηK ]µK ]

}
Q[ξK ,ηK ]µK (µ′

KJKµK)
−1

= ωee·xQ[ξK ,ηK ]µK (µ′
KJKµK)

−1 − ωee·xQ[ξK ,ηK ]µK (µ′
KJKµK)

−1

= 0.

Therefore, conditional on (µK , ηK , ξK) ,∥∥P[SKH′]ψe·x,K
∥∥2 /p∥∥Q[µK ,ηK ,ξK ]ψe·x,K
∥∥2 /K =d

χ2
p/p

χ2
K−3dx

/K
,

and
K − 3dx

K

∥∥P[SKH′]ψe·x,K
∥∥2 /p∥∥Q[µK ,ηK ,ξK ]ψe·x,K
∥∥2 /K =d

χ2
p/p

χ2
K−3dx

/ (K − 3dx)
=d Fp,K−3dx .

The conditional distribution does not depend on the conditioning variables (µK , ηK , ξK), and

hence it is also the unconditional distribution. We have therefore shown that:

W∗
fTIV =

K − 3dx
K

WfTIV ⇝
χ2
p/p

χ2
K−3dx

/ (K − 3dx)
=d Fp,K−3dx

.

Theorem 2 is new and extends the corresponding result in Hwang and Sun (2018), which rules

out multicointegration, to the case of multicointegration. An asymptotic F test based on âfTIV

can also be developed for the usual nonsingular cointegration case if the basis functions satisfy

(11). For example, we can use the eigenfunctions of the covariance kernel operator r ∧ s as the

basis functions. We omit the details here. If the null hypothesis involves a single restriction (i.e.,

p = 1), then it can be shown that the t-statistic based on OLS applied to (7) is asymptotically

t-distributed. The asymptotic F and t approximations are not only convenient to use but also

more accurate, as the F and t distributions capture the estimation errors in estimating f0, g0,

and ωee·x (or Ω00·x), which are often ignored by the fully modified methodology. For the F and

t asymptotic theory in other nonstationary and stationary settings, the reader is referred to Sun

(2023), Hwang and Sun (2017), and the references therein.

In practical work when the doubly augmented model (4) is modified to include an intercept

and the basis functions do not integrate to zero, we have, in place of (14),

W∗
fTIV :=

K − 3dx − 1

K
WfTIV ⇝ Fp,K−3dx−1,

provided that K > 3dx + 1. This adjustment occurs because there is an additional regressor in

the transformed and augmented model in (7), resulting in a loss of one degree of freedom. No
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adjustment is needed so that (14) still holds if the basis functions integrate to zero (
∫ 1

0
φj (r) dr =

0 for j = 1, ...,K). Deterministic trends can also be included in (4), and the asymptotic F limit

theory remains valid, albeit with a different multiplicative adjustment factor and different degrees

of freedom for the F distribution.

2 Asymptotic Relative Efficiency

We now compare the asymptotic distributions of the fTIV and TIV estimators under Assumptions

1 and 2. For the large-K asymptotic results in this section, we impose the stronger assumption

that {φj (·)}∞j=1 is a complete set of twice continuously differentiable and orthonormal basis

functions of L2 [0, 1]. For example, we can take φj (r) =
√
2 sin((j − 1/2)πr) for j = 1, 2, . . . ,K.

Theorem 2 of PK(2024) showed in the cointegration case with Ω00·x > 0 under joint large-K

asymptotics where both K → ∞ and n→ ∞, but K = o
(
n4/5−δ

)
, that for some δ > 0

n (âTIV − a0)⇝ A−1
X·x

∫ 1

0

−−−→
BX·x (r) dB0·x (r) ≡ MN

(
0,Ω00·xA−1

X·x

∫ 1

0

−−−→
BX·x (r)

−−−→
BX·x (r)

′
drA−1

X·x

)
,

where AX·x =
∫ 1

0
BX·x (r)B

′
X·x (r) dr,

−−−→
BX·x (r) =

∫ 1

r
BX·x (s) ds, and

BX·x (r) = BX (r)−
(∫ 1

0

BX (s)B′
x (s) ds

)(∫ 1

0

Bx (s)B
′
x (s) ds

)−1

Bx (r) .

The asymptotic result can be equivalently presented as

n (âTIV − a0) ⇝ A−1
X·x

(∫ 1

0

BX·x (r)B0·x (r) dr

)
≡ MN

(
0,Ω00·xA−1

X·x

∫ 1

0

∫ 1

0

(r ∧ s)BX·x (r)BX·x (s)
′
drdsA−1

X·x

)
. (16)

The above representation takes a form similar to that given in Theorem 1(a), as both contain

the covariance kernel (i.e., (r ∧ s)) of standard Brownian motion. PK(2024) also showed in their

Theorem 2 that in the multicointegration case with Ω00·x = 0,

n2 (âTIV − a0)⇝ A−1
X·x

(∫ 1

0

BX·x (r) dBe·x (r)

)
≡ MN

(
0, ωee·xA−1

X·x
)

(17)

under the joint large-K asymptotics specified above.

Following arguments similar to those in PK(2024), we can show that if trigonometric or-

thonormal polynomials are used as the basis functions, âfTIV and âTIV share the same large-K

asymptotic distributions, as given in (16) and (17), respectively, for the cointegration and mul-

ticointegration cases.

Under multicointegration, it turns out that when K grows with n to infinity, the trend IV

method provides asymptotically jointly efficient estimators of the cointegrating coefficient a0 and

the multicointegrating coefficient f0. The joint mixed normal limit distribution of a trend IV

estimator corresponds to that in a multicointegrated, correctly specified parametric VAR model
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with iid Gaussian innovations, as shown in Kheifets and Phillips (2024). The reason is that the

trend IV method not only fully removes endogeneity effects by reducing the error process asymp-

totically to Be·x but also fully captures the path of the regressors, reproducing BX , Bx, and

BX·x in the limit as K → ∞. This asymptotic efficiency result extends that in Phillips (1991),

which considered only the nonsingular cointegration case and dealt only with optimal estimation

of cointegrating coefficients. Moreover, the result shows that precise VAR specification (with as-

sumed iid errors) is unnecessary for optimal estimation provided that efficient methods like the

trend IV method with a growing number of instruments are employed. It is particularly notewor-

thy that this observation applies to the regression coefficient that is effectively nonparametric,

as the multicointegrating coefficient f0 is a nonparametric long-run regression coefficient.

It can be shown that when we let K → ∞, the fixed-K asymptotic distributions in (9)

and (10) of Theorem 1 converge to the joint large-K asymptotic distributions in (16) and (17),

respectively. From a theoretical perspective, the large-K asymptotic distributions of the fTIV

estimator can be obtained using a two-step sequential limit, where we first hold K fixed and let

n → ∞, followed by letting K → ∞. Given this, it is of interest to compare the asymptotic

distributions of fTIV for different numbers of instruments, including those of TIV (where K → ∞
at a certain rate). Because the asymptotic distributions are all mixed normal, it is simplest to

compare variances or standard deviations. To this end, we compute the ratio of the (asymptotic

and random) standard derivation of the fTIV to that of the TIV. For the cointegration case with

Ω00·x > 0, the ratio is√√√√√ S′
K

(∫ 1

0

∫ 1

0
(r ∧ s) φ̃K (r) φ̃K (s)

′
drds

)
SK

A−1
X·x

(∫ 1

0

∫ 1

0
(r ∧ s)BX·x (r)BX·x (s)

′
drds

)
A−1

X·x

.

For the multicointegration case with Ω00·x = 0, the ratio is√
AX·x

µ′
KJKµK .

We simulate these ratios for the case when dx = 1, so that Bx (·) is one-dimensional Brownian

motion. In this case, the ratios do not depend on the variance of Bx (·), so it can be replaced

by standard Brownian motion. We simulate standard Brownian motion by {
∑[nr]

t=1 ux,t/
√
n : r ∈

[0, 1]}, where ux,t ∼ iidN (0, 1). We set n = 10, 000, and the number of simulation replications is

also 10,000. The results are presented in Table 1. Under cointegration with Ω00·x > 0, in 75% of

the cases, the standard deviation of the fTIV is no more than 1.18 times as large as that of the

TIV for K = 7 and 1.08 times as large for K = 12. Under multicointegration with Ω00·x = 0, in

75% of the cases, the standard deviation of fTIV is no more than 1.34 times as large as that of

TIV for K = 7 and 1.16 times as large for K = 12. This shows that the fTIV with a moderately

large K becomes nearly as efficient as the TIV.

Table 2 reports the ratios of the confidence interval lengths based on the fTIV and the

TIV estimators. Confidence intervals for the cointegration parameter a0 are defined as [â −

10



q/nι, â+ q/nι], where â is either the fTIV or TIV estimator, q is the quantile of the asymptotic

distribution given in (9), (10), (16) or (17), and ι = 2 in the case of multicointegration and 1

otherwise. These confidence intervals are infeasible because they depend on unknown conditional

variances. However, the ratio of the lengths of the confidence intervals is the ratio of the quantiles,

which is nuisance-parameter free and can be easily simulated. For example, in the case of

multicointegration, the ratio of the lengths of the 95% confidence intervals is qfTIV/qTIV where

qfTIV and qTIV are the 95% quantiles of MN (0, (µ′
KJKµK)

−1
) and MN

(
0,A−1

X·x
)
, respectively.

Simulations show that 95% confidence intervals based on the fTIV are 25% and 35% larger for

K = 7 than those based on the TIV in the cointegration and multicointegration cases. For

K = 12, they are 13% larger in both cases. Note that for the construction of feasible confidence

intervals, the length comparisons will depend on the efficiency of estimating both a0 and the

quantiles of the asymptotic distributions.

Table 1: Descriptive statistics of the ratio of the (asymptotic) standard deviations of the fTIV

with K = 7 and K = 12 to that of the TIV (K → ∞).

Model Cointegration Multicointegration

K 7 12 7 12

mean 1.171463 1.070536 1.282318 1.129075
std 0.359790 0.134466 0.329768 0.118773
min 0.584240 0.681827 1.004457 1.003903
25% 1.028656 1.014433 1.097037 1.052504
50% 1.073846 1.035775 1.182339 1.094366
75% 1.183864 1.083237 1.344061 1.163552
max 9.037757 3.874641 6.453239 3.049757

Table 2: Descriptive statistics of ratios of the confidence interval lengths based on the fTIV with

K = 7 and K = 12 to that based on the TIV (K → ∞).

Model Cointegration Multicointegration

K 7 12 7 12
Coverage

0.99 1.273595 1.122713 1.493161 1.174461
0.95 1.243763 1.128659 1.347902 1.134481
0.90 1.186814 1.093507 1.326981 1.145040

3 Final Remarks

The primary advantage of the high-dimensional trend IV method is its joint asymptotic efficiency

in estimating the cointegrating and multicointegrating parameters, while treating the system

innovations nonparametrically. The gains in efficiency and confidence region precision from high-

dimensional trend IV are evident in simulations but are by no means excessive compared to fTIV

11



with a moderate number of instruments. In practical work, a finite number of instruments is

always employed, and the asymptotics that hold the number of instruments fixed may provide

more reliable distributional approximations. Under this type of asymptotics, fTIV delivers an

asymptotically valid, easy-to-use, and more accurate F test that avoids the use of any additional

tuning parameters while retaining the nonparametric advantage of TIV.
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