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Abstract

This paper builds on methodology that corrects for irregular spacing between realizations

of unevenly spaced time series and provides appropriately corrected estimates of autoregres-

sive model parameters. Using these methods for dealing with missing data, we develop time

series tools for forecasting and estimation of autoregressions with cyclically varying param-

eters in which periodicity is assumed. To illustrate the robustness and flexibility of the

methodology, an application is conducted to model daily temperature data. The approach

helps to uncover cyclical (daily as well as annual) patterns in the data without imposing

restrictive assumptions. Using the Central England Temperature (CET) time series (1772

- present) we find with a high level of accuracy that temperature intra-year averages and

persistence have increased in the later sample 1850-2020 compared to 1772 - 1850, espe-

cially for the winter months, whereas the estimated variance of the random shocks in the

autoregression seems to have decreased over time.

JEL Classification: C01, C13, C22, C51, Q54
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1 Introduction

Climate change is defined as a long-term change in the average weather patterns that have come

to define Earth’s local, regional and global climates. There is now general scientific acceptance

that changes observed in Earth’s climate since the beginning of the 20th century are primarily

driven by human activity, especially from fossil fuel burning, methane emissions in agriculture,

industrialization, and global commercial activity, all leading to a growing accumulation of at-

mospheric greenhouse gases. Carbon dioxide levels in the atmosphere have risen over 50% and

methane over 150% since the start of the Industrial Revolution, raising heat retention capacity

and in turn Earth’s average surface temperature. Natural processes themselves, including the

carbon cycle linking the atmosphere, oceans and continents, can be influenced by human ac-

tivities and further contribute to changes in climate. Various external forces such as volcanic

activity, fluctuations in energy output from the sun, and longer term orbital variations also effect

changes in climate.

To monitor and study these phenomena climate scientists use terrestrial, atmospheric, oceanic,

and satelite data in modeling to capture evidence of climate change indicators in land and ocean

temperatures, rising sea levels, glacial and polar ice loss. Other data is also employed, including

the frequency and severity of extreme weather such as hurricanes, heatwaves, wildfires, droughts,

floods, and precipitation, as well as global changes in vegetation cover. This paper focuses on

aspects of climate change that relate to the rising global mean surface temperature since the

pre-industrial period (between 1850 and 1900)1 and changes in temperature variability that are

more regionally dependent. It is less clear whether these changes include the degree of persis-

tence in surface temperature. Persistence is important because the lasting effects of weather on

ecosystems and society can depend on the duration, intensity and regularity of extreme weather

events.

In the scientific literature there is growing recognition that, for climate variables and events,

statistical properties beyond the mean play significant roles in the various impacts of climate

change on natural ecosystems (Di Cecco and Gouhier, 2018). Present evidence shows that

climate system responses to rising atmospheric greenhouse gases involve distributional shape, not

just shifts in mean temperature (Rivas and Gonzalo, 2020). Increases in the mean temperature

alter the likelihood of temperature events by shifting the probability distribution towards higher

values, whereas changes in temperature variance and skewness alter shape in ways that influence

the incidence of temperature extremes. Both are essential in understanding the full effects of

climate change. Present evidence shows warming of at least 1.5◦C is inevitable within the next

two decades (IPCC, 2021). Evidence supporting other distributional changes is less extensive,

although there are good scientific reasons for natural consequences (Li and Thompson, 2021).

1Earth’s average surface temperature has risen about 2◦F since the late 19th century, a change largely driven
by increased greenhouse gas emissions according to scientific consensus (Lenssen et al., 2019).
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An example is provided by rapid arctic warming which raises persistence of weather patterns

in the Northern Hemisphere, prolonging and repeating weather events such as droughts, heat

waves, polar fronts, and cyclones (Francis and Vavrus, 2015).

As such, persistence can play a key role in understanding longer term climate impact. Tem-

perature and in turn weather persistence is linked to sea surface temperatures, soil-moisture

content and large-scale circulation patterns and factors that can alter past and future climate

change (Pfleiderer and Coumou, 2018). Extended weather events accumulate negative shocks

but also produce an overall impact that exceeds the sum of its parts. For instance, lengthy heat-

waves magnify human mortality compared with intermittent individual hot days (Gasparrini

and Armstrong, 2011), and multi-year droughts magnify the agricultural, economic, human and

social impact compared with intermittent individual years of drought (Lenton et al. (2017)).

Few studies in the literature have explored the role persistence has played in global warm-

ing and how it may have changed over time. Existing work assessing temperature persistence

suggests that inter-annual temporal variability has increased in some regions but decreased in

others. Trends in the persistence of temperature variability, as measured by lag 1 autocorrela-

tion, are generally less well studied in time series econometric modeling. Lenton et al. (2017) is

an important exception, finding an increase in autocorrelation and variance in the PDO (Pacific

Decadal Oscillation)2 and AMO (Atlantic Multidecadal Oscillation.)3 indexes of surface tem-

peratures in the mid-latitude Pacific Ocean and North Atlantic Ocean. In other regions, such as

Siberian Russia, the results are consistent with a decrease in both autocorrelation and variance.

These findings indicate that trends in autocorrelation and variance are not globally related in a

systematic way that is presently understood. Similarly, Graham et al. (2017) found evidence of

a positive trend in the overall duration of winter warming events for both the North Pole region

and the Pacific Central Arctic. The most rapid Arctic warming has been recorded during winter

months.

Beyond these findings there are only scattered results in the literature concerning persistence,

including how it can be characterized, e.g., in terms of lag 1 autocorrelations, or in Francis

et al. (2018) as conditions that persist for at least four consecutive days, a threshold that was

selected based on the observed distribution of duration lengths. Li and Thompson (2021), for

instance, estimate surface temperature persistence using lag 10-day autocorrelations of daily

mean temperatures. Changes in persistence under climate change conditions are estimated as

the percent changes in persistence between two periods of 30 years: the ‘historical’ period (1970 -

1999) and ‘future’ period 2070-2099. This study found widespread increases in persistence across

the middle and high altitudes of the Northern Hemisphere. Such changes might derive from a

seemingly broad array of physical factors. In other work Pfleiderer and Coumou (2018) present a

2The Pacific Decadal Oscillation (PDO) is often described as a long-lived El Niño-like pattern that affects
Pacific climate variability (Mantua et al., 1997).

3AMO is an index of variability in sea surface temperature (SST) of the North Atlantic Ocean measured on
the timescale of several decades (McCarthy et al., 2015)
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systematic analysis of temperature persistence for the northern hemisphere land area and define

persistence as the length of consecutive warm or cold days. A warm (cold) day is defined as a

day with a temperature above (below) the seasonal and grid point specific median temperature.

The sample employed data from 1954 to 2014. This study showed that the probability of a

hot or cold period persisting increases for longer periods, implying a potentially important role

for memory in the physical system. The results reported above are mainly produced using

simulation exercises with global climate models, for which there is considerable regional and

inter-model variability concerning the role of extreme events and the definition of persistence.

Some of the assumptions and implications involved in these simulations may not be reproducible

in theoretical research or in an observational study. The present paper is concerned to provide

such a study.

The goal of our empirical work is to develop a time series model with cyclically varying

parameters suited to climate data that can shed light on several key issues on climate change.

We seek to address three main questions: (1) Is it possible to estimate the yearly cycle of

temperature persistence using a simple time series model and a standard definition of time

dependency as persistence? (2) What is the historical path of temperature persistence under

climate change conditions? (3) Can we statistically test whether there has been a significant

change in the temperature persistence over time?

To answer these questions we fit the model described in Section 3 to a time series of daily

Central England Temperatures from 1772 to the present. The model allows for cyclical time

variation in all its parameters. Once estimated the fitted model allows us to extract estimates of

parameter cycles that may be present over the course of a year. Daily changes in the intra-year

behaviour of the intercept and autoregressive persistence in the temperature data are estimated.

Overall, the findings indicate that a first order autoregression fits the data well, persistence in

temperature is generally high and is higher during the winter and autumn months than in

summer, and the cycle of persistence has significantly increased after the industrial revolution,

especially during winter and autumn.

The paper is structured as follows: Section 2 describes the data employed and gives a

selective survey of the literature. Section 3 outlines the methodology and proposes the time series

model used in the empirical study. Section 4 reports estimation results and Section 5 explores

implications of the main findings with a simulation study. Section 6 concludes. Additional

computational details and graphics displaying the evolution of the parameter estimates based

on different window widths are included in Appendix A.

2 Data

In the following analysis, we utilize the daily Central England Temperature (CET) time series to

assess the applicability and effectiveness of our time series model in capturing cyclical variations,
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particularly annual and monthly changes, in model parameters. The CET data, sourced from the

European Climate Assessment & Dataset of the World Meteorological Organization, provides a

comprehensive historical record for this analysis.

Figure 1: Daily Central England Temperatures.
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Note: Data from the European Climate Assessment& Dataset of the World Meteorological Organization, covering
the years 1772-2020, 1989-2020, and 01/01/1980-31/12/1980, with daily observations.

The Central England Temperature (CET) time series is renowned for its extensive duration,

starting in 1772 and extending to the present day.4 This long-term dataset, initially compiled

by Manley (1974) for the period 1659-1973 and subsequently revised by Parker et al. (1992),

enables an in-depth examination of climate patterns across both annual and seasonal scales.

Previous research has employed various methodologies to analyze this dataset. For instance,

Harvey and Mills (2003) aggregated the data to an annual level, observing no significant warm-

ing trend between 1723 and 1999. In contrast, Rho and Vogelsang (2019) used an autoregressive

model with a linear trend and trend-break, identifying a positive trend from October to April,

though no such trend was observed during the summer months. More recently, Proietti and

Hillebrand (2017) applied a structural time series model to decompose the CET data into per-

manent and transitory components, finding that the deterministic trend was most pronounced

in the winter months, while the stochastic trend was more significant in the summer months

and during April and May. Similarly, He et al. (2019) developed a Seasonal Shifting Mean Au-

toregressive model (SSM-AR) and found an increase in temperatures from July to March, with

the most substantial warming occurring in the winter months.

4Data available at https://hadleyserver.metoffice.gov.uk/hadcet/data/download.html
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Our approach brings two notable advances to the existing body of work. In terms of method-

ology, we introduce a model that is tailored for periodically correlated time series and enables

robust inference concerning cyclical parameters. In terms of data analysis with this model, tem-

perature persistence may directly be estimated to reveal how persistence has evolved over time,

while not compromising the accuracy of estimating the cyclical means in daily temperatures.

Application of this modeling framework to the CET data provides new insights into the cyclical

patterns of temperature changes and their implications in understanding climate variability and

trends.

3 Methodology

This section employs methodology for estimation and inference with a first order Periodic Au-

toregression (PAR(1)) where the observed data may be unevenly spaced, effectively leading to

missing data. The PAR framework is constructed to model dataXi, where the index i = 1, . . . , N

takes the form i = jT + t to capture P cycles indexed by j = 0, . . . , P − 1 with the period T ,

giving N = PT observations in total. Specifically, the model is defined as follows In this section,

we consider estimation of a Periodic Autoregressive (PAR(1)) time series denoted by xi, where

i = 1, . . . , N , with a period of T . The model is defined as follows:

xjT+t = αt + ϕtxjT+t−1 + εjT+t, t = 1, . . . , T, j = 1, . . . , P. (1)

Here, P represents the number of cycles, N = PT is the total number of observations, and αt

and ϕt, t = 1, ..., T are time-varying parameters that change periodically with period T . The

data {x1, ..., xN} is divided into P cycles

{xjT+1, ..., xjT+T }, j = 0, ..., P − 1,

organized as displayed in Figure 2. To estimate the parameters αt, ϕt of the model at time points

t = 1, ..., T , we use a rolling window approach introduced in Giraitis et al. (2024) for estimation

of cyclical time-varying parameters in a PAR(p) model. Estimation of αt, ϕt at time t is based

on the block of data xi, i ∈ Jt,w where the block

Jt,w = {i = jT + s : j = 0, ..., P − 1, s = 1, ..., T, |s− t| ≤ w/2},

is centred at time t and has a fixed width w. To allow for unevenly spaced observations in each

block Jt,w, t = 1, ..., T , we include in the observed data specification a missing data indicator
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Figure 2: Rolling window estimation.

hi, i = 1, ..., N defined as follows

hi ≡ hi,tw =

1 for i ∈ Jt,w,

0 for i /∈ Jt,w,
(2)

giving a partially observed time series

yi = hixi, i = 1, ..., N. (3)

To employ an asymptotic theory of estimation and inference in our empirical work we assume

that xi within the block Jt,w follows a stationary AR(1) model,

xi = αt + ϕtxi−1 + εi for i ∈ Jt,w (4)

with parameters αt, ϕt. The parameters αt, ϕt are then estimated using the following formulae

ϕ̂t =

∑N
j=2 hjhj−1(yj − ȳt)(yj−1 − ȳt)∑N

j=2(yj−1 − ȳt)2hjhj−1

, ȳt = (

N∑
j=1

hj)
−1

N∑
j=1

yj , (5)

α̂t = N−1
2

N∑
j=2

hjhj−1(yj − ϕ̂tyj−1), N2 =
N∑
j=2

hjhj−1.

As the number of observations in the block grows, specifically as the number of operational

observations for AR(1) regression N2 → ∞, the following asymptotic results established in
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Giraitis et al. (2024) hold√
N2

1− ϕ2
(ϕ̂t − ϕt) → N (0, 1),

√
N2

1− ϕ2

(α̂t − αt)√
Ex2t

→ N (0, 1), (6)

(
N∑
j=1

hj)
−1

N∑
j=1

y2j = Ex2t + op(1). (7)

These results allow us to construct precise confidence intervals for the estimates of αt, ϕt, t =

1, ...., T . The missing data indicators {hi = hi,tw, i = 1, ..., N} in (5) and (6) depend on {t, w}
and need to be recomputed for each t. Further details and proofs of (6) and (7) are provided in

Giraitis et al. (2024).

To apply this methodology to the Central England Temperature (CET) dataset, which spans

248 years of daily temperature observations from 1772 to 2020, we first define the cycles of

interest. Annual cycles are the focus here, with each cycle consisting of 365 daily observations

(excluding leap years). So the cycle length is T = 365 and the total number of cycles is P = 248,

giving a total of N = 90,520 possible observations.

In our rolling window analysis, we consider neighboring years (e.g., 20 or 40 years) as repli-

cations of the same cycle. This allows us to fit the model to data blocks where the assumption of

local stationarity is reasonable. By grouping consecutive years where temperature parameters

are assumed to be stable, we estimate the annual variations of the parameters by applying the

model to these blocks and shifting the estimation window across all time points t = 1, . . . , 365.

While our primary focus is on the annual variation of the mean temperature (with higher

temperatures expected during summer months and lower temperatures during winter), we must

account for the long-term trend in temperature increases over the years. The global temperature

has been rising steadily, which affects the mean temperature across different years (IPCC, 2021).

This rising trend means that the assumption that each year is a perfect replication of the same

cycle does not hold uniformly across the entire dataset. As temperatures have increased, the

trend and cycle characteristics of the data may have shifted, especially in more recent years.

To address this issue, we divide the data into smaller groups of years where we assume the

change in temperature is minimal within each group. This approach helps mitigate the impact

of the long-term trend on our estimates. The exact behavior of the temperature changes over

time is not fully known, but we understand that the rate of change has accelerated in recent

years. Consequently, for more recent data, we use smaller groups to ensure that the assumption

of minimal change within each group remains valid.

For each chosen group of years P , where each cycle contains T = 365 daily observations, we

apply the AR(1) model as specified in equation (3) to blocks J of width w = 7, 15, or 30 days.

These window widths correspond to smoothing over periods of one week, two weeks, and one

month, respectively. Throughout this process, we do not impose a specific model for the type of
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Figure 3: Estimation results for AR(1) parameter ϕt.
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Note: Years 1980-2020, w=30; 95% confidence interval for parameter ϕt.

change involved in parameter evolution. Instead, our goal is to analyze the intra-year variations

in the parameters αt, ϕt, the mean µt =
αt

1−ϕt
, and the variance of the residuals σ2

ε,t.

The model is fitted for various window widths (w = 7, 15, 30) to capture changes over one

week, two weeks, and one month. Our primary focus remains on exploring the intra-year behavior

of the parameter sequences αt, ϕt, µt =
αt

1−ϕt
, and the innovation variances σ2

ε,t.

4 Empirical Results

By leveraging data from multiple neighboring years as repetitions of the same annual cycle, the

model outlined in Section 3 enables us to estimate cyclical patterns in the model parameters

with a high degree of precision. Specifically, the procedure yields not only parameter estimates

but also corresponding confidence intervals for the following key quantities: (1) the first-order

autoregressive coefficient ϕ̂t, which captures the persistence of temperature fluctuations; (2) the

intra-year mean µ̂t; (3) the intercept α̂t; and (4) the variance of the residuals σ̂2
εt . Findings based

on the most recent 40-year period from January 1980 to December 2020 are presented in Figures

3 - 6. For this analysis, the total number of cycles, P , is set to 40, and parameter estimation is

performed using a window width of 30 days, resulting in 40× 30 = 1200 observations overall.5

Closer examination of the estimated ϕt values, depicted in Figure 3, reveals several insights.

First, it is evident that the autoregressive coefficient ϕ is consistently estimated with high pre-

cision throughout the year, with all values being significantly different from zero and generally

high, ranging from 0.6 to just over 0.87. This indicates a strong degree of persistence in daily

temperature fluctuations. Moreover, the persistence parameter exhibits considerable seasonal

5Results for different window widths w are provided in Appendix A.3.
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Figure 4: Estimation results for the local mean µt.
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variation. The highest persistence is observed during the winter months, with peaks in Decem-

ber (0.86) and February (0.84). In contrast, persistence declines steadily during the summer,

reaching its lowest point in early September (0.66), before increasing again with the onset of

autumn.

Overall, these results provide strong evidence that temperatures during the colder months

exhibit higher persistence. Given that persistence is consistently high at every point t in the

cycle, t = 1, . . . , 365, this has significant implications for the model’s capacity to accurately

estimate the 95% confidence intervals around the annual mean temperature. The results for the

mean, as shown in Figure 4, follow the expected seasonal pattern: the average temperature is

lower during the winter months, gradually rising and reaching its peak in the summer, specifically

around the beginning of August. However, the confidence bands surrounding the estimated mean

are quite large. This wide interval is directly related to the high level of persistence in the data.

Specifically, as ϕt increases, the confidence bands for the mean widen, making it challenging

to draw precise conclusions about the behavior and variation of the mean temperature across

different times of the year.

Figure 5 presents the estimated annual pattern of the intercept parameter αt. The model is

capable of producing relatively precise confidence intervals for αt. The parameter estimates are

statistically significant, consistently differing from zero across all points in the cycle. The estima-

tion suggests that αt increases during the spring months, though with some degree of volatility,

before peaking around mid-September. After this peak, there is a sharp decline in αt as the

year progresses into the autumn months. The observed pattern in αt corresponds with seasonal

temperature variations, where intercept values rise in response to increasing temperatures in

spring and summer and then fall as temperatures decrease in autumn.
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Figure 5: Estimation results for the intercept αt.
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Once the model is fitted to the data, we can compute the residuals6 ε̂t for each day t of the

year and subsequently estimate the variance of these residuals, σ2
ε,t. This allows us to examine

the changes in the volatility of exogenous shocks to temperature across the annual cycle. The

results, depicted in Figure 6, align with findings in the climate literature, confirming that the

variance of the residuals also exhibits cyclical variation throughout the year. Specifically, we

observe that the estimated variance σ̂2
ε,t is particularly high during the winter months, peaking

in December with values just below 3.5. In contrast, the variance decreases during the summer

months, reaching 2.

To evaluate the adequacy of the fitted AR(1) model, defined by equations (1 - 3), we con-

ducted several diagnostic checks on the residuals ε̂t. The first two panels of Figure 7 offer a

visual examination of the residuals: the first panel displays the histogram of the residuals, while

the second panel presents a Q–Q (quantile-quantile) plot. Together, these plots suggest that the

residuals approximate a normal distribution. The Q–Q plot specifically compares the quantiles

of the residuals with those of a standard normal distribution, revealing that the residuals closely

align with normality. This visual evidence, combined with the findings from Figure 6, which

highlights the local changes in residual variance across seasons, indicates that the residuals are

normally distributed but exhibit changing variance.

Interestingly, this result contradicts the intuitive expectation that global warming might in-

duce greater randomness into the model’s exogenous component, leading to heavy-tailed resid-

uals. However, the diagnostic checks suggest that the distribution of the exogenous shocks does

not have heavy tails. This observation provides partial evidence that the observed changes in

6For details on the computation of residuals, refer to Section A.1. In the following discussion, we present
results for the global residuals scaled by their variance.
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Figure 6: Estimation results for the variance σ2
ε,t.
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temperature, including extreme events like heatwaves or cold spells, are primarily driven by

changes in the model’s parameters, such as persistence, rather than by a rise in randomness.

The lower two panels of Figure 7 further investigate the presence of autocorrelation in the

residuals at different lags. The third panel displays the correlogram of the residuals, focusing

on the year 2000 as a representative case, although similar results are observed across the entire

40-year sample. The correlogram shows that the residuals exhibit no significant autocorrelation

at any lag, suggesting a good fit of the model.

To systematically test for autocorrelation across all residuals and lags, we applied the Ljung-

Box Q-test on consecutive groups of residuals, each containing 100 observations. The results,

shown in the fourth panel of Figure 7, display the p-values of the test across the 150 samples,

alongside the 5% significance level. The null hypothesis—that the residuals are uncorrelated

from lag 1 to lag 20—is rejected only when the p-value is below 0.05. In this case, the test

rejects the null hypothesis in only 16% of the samples, confirming that the residuals are mostly

uncorrelated at these lags. Overall, these findings indicate that the AR(1) model provides a

satisfactory fit to the data.

12



Figure 7: Testing for normality and autocorrelation in the residuals ε̂t

Fitted Normal Density

-4 -3 -2 -1 0 1 2 3

Residuals

0

50

100

150

200

250

300

350

400

450

D
en

si
ty

-4 -3 -2 -1 0 1 2 3 4

Standard Normal Quantiles

-5

-4

-3

-2

-1

0

1

2

3

4

5

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Residuals versus Standard Normal

-0.2

0

0.2

0.4

0.6

0.8

1

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function

0 2 4 6 8 10 12 14 16 18 20

Lag

Ljung-Box test

H0 rejection rate: 0.16

0 50 100 150

Sample

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p-
va

lu
es

Note: The upper two panels present the histogram and Q-Q plot of the residuals respectively, while the lower
two panels present the sample autocorrelation function of the residuals together with the Lijung-Box test for the
entire sample. Years 1980-2020, w=30.

4.1 The change in the cycle over the years

The previous section showed the methodology is effective in estimating cyclically varying param-

eter, giving well-resolved parameter estimates with normally distributed, uncorrelated residuals.

Building on this approach we turn to examine how the parameters have evolved over time,

seeking to answer two key questions: (i) how have the model parameters, which vary over the

year, changed over the past two centuries? and (ii) have there been significant changes in these

parameters across different seasons?

To address these questions we utilize our complete dataset to estimate parameter changes

over the past 200 years. By comparing parameter estimates from different time periods we can

assess whether significant changes have occurred in the model parameters, such as the mean or

persistence. These comparisons help to determine whether the underlying temperature model

has shifted over time.

Figure 8 displays the main results of this analysis7. The model parameters were estimated

and compared for two distinct periods: the first 40 years (1780-1820) and the most recent 40

years (1980-2020). This comparison provides the means to evaluate whether there have been

significant changes in temperature parameters from the 18th century to recent times.

7Detailed results for different window widths, w = 7, 15, are provided in Appendix A.3
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Figure 8: Comparing past and present of parameters ϕt, αt, µt, σ
2
ε,t.
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The analysis reveals several key findings. First, there is substantial evidence of a significant

change in the persistence coefficient ϕt. The data indicates that the shape of the cycle for

this parameter has evolved over time, particularly in colder months such as January, February,

November, and December, where the estimates from the two periods are significantly different

at the 95% confidence level. In contrast, persistence in summer months, such as June and

July, shows some variation, though it is not statistically significant. Spring and autumn months

exhibit stability in persistence, with overlapping confidence bands suggesting minimal change.

Second, the intercept parameter αt shows a similar seasonal pattern. While changes in αt

are influenced by both persistence and average temperature, the results suggest an increase

in the average temperature, especially in winter months. However, the large confidence bands

and limited data availability make it challenging to draw definitive conclusions about statistical

significance. Finally, the sample variances of the residuals σ̂2
ε,t, as depicted in the lower-right

panel of Figure 8, has decreased significantly in winter months from the early period (1780-1820)

to the recent period (1980-2020). In contrast, the variance in summer months has remained

relatively stable.

In summary, our findings suggest a complex evolution in temperature parameters over time.

During spring and early autumn, the temperature model appears to have remained relatively

stable. However, significant changes are evident in late fall and winter, where both average

temperatures and persistence have increased. This increased persistence implies that recent
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Figure 9: Progressive change of the mean µt over time: from 1772 to 2020.

Note: Years 1772-2020, w = 30. The lines show estimation of µt for consecutive groups of 40 years: 1780-1920,. . .
,1980-2020.

temperatures with significant deviations from the mean are slower to revert to the average com-

pared to those from two centuries ago. Additionally, the decrease in residual variation indicates

reduced overall volatility in temperatures. These changes suggest a trend towards higher, less

volatile, and more persistent temperatures, particularly evident in winter. Consequently, there

is an increased likelihood of observing prolonged temperature extremes such as heatwaves or

cold spells in recent years compared to the past.

Building on the same approach we now explore progressive changes in the model parameters

using the entire dataset. The model is now estimated using consecutive 40-year intervals (viz.,

1780-1820, 1820-1860, ..., 1980-2020) and parameter estimates are plotted, documenting param-

eter evolution over the past two centuries. Figures 9 and 10 illustrate the results for the mean

µt and the persistence parameter ϕt. Each panel in these figures represents a different month,

with colors indicating estimates from the consecutive time periods: from blue (representing the

earliest period 1780-1800) through to red (representing the most recent years 2000-2020).

Analysis of transitions in the mean parameter µt reveals several key trends: (1) For the

months of January, February, November, and December, the change in the mean temperature

over time is more pronounced compared to other months. (2) January exhibits a gradual increase

in mean temperature, while for summer months like July and August, the average temperatures

15



Figure 10: Progressive change of AR(1) parameter ϕt over time: from 1772 to 2020.

Note: Years 1780-2020, w = 30. The lines show estimation of ϕt for consecutive groups of 40 years: 1780-1920,...,
1980-2020.

have risen notably in recent years. (3) For spring months such as April, May, and June, the data

suggests that there has been little to no change in the intra-year cycle of average temperatures.

Turning to the persistence parameter ϕt, Figure 10 shows that significant changes are ob-

served in January, February, November, and December. For these months, persistence appears

to have changed early on, as indicated by the shift from light shaded grey lines (representing

earlier periods) towards the black lines (representing the most recent years). In contrast, while

there is evidence of increased persistence in summer months, this change does not follow a lin-

ear trajectory. Some of the dark shaded lines fall below the light shaded lines, suggesting that

persistence initially decreased before rising above earlier levels. Figure 11 zooms into the daily

variation of parameters for January, April and August.

Overall, these figures provide a detailed view of how both mean temperature and persistence

parameters have evolved across different seasons and decades, highlighting significant changes

in colder months and varying trends in warmer months.

In previous analyses a window width of w = 30 was used to estimate the parameters. To

illustrate how the choice of window width affects results, we examined two specific months

(February and May) where cycles in the parameters ϕt and µt exhibit distinct changes. Figure

12 provides a detailed comparison of these changes, showing results with different sample sizes
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Figure 11: Zooming in: progressive change for parameters ϕt and µt for selected months.
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Note: Years 1772-2020. The figure reports for each selected month (January, April and August) estimation of ϕt

and µt for window width w=30. Estimates are calculated over consecutive groups of 40 years.

and window widths. Group sizes of 20 years are shown in panels (a) and (b) and 40 years in

panel (c). Within each horizontal panel the window width is varied so that w = 7 in panel

(a), w = 15 in panel (b), and w = 30 in panel (c). The lines in the figures are color-coded to

represent different time periods, with cooler colors indicating earlier samples (e.g., dark blue

starting in 1772) and warmer colors representing more recent samples (e.g., dark red ending in

2020).

The figure illustrates how the choice of window width and sample size affects the estimates.

Smaller windows (w = 7 and w = 15) lead to more variability in the estimates, resulting

in curves that are less smooth. This increased variability arises because smaller windows use

fewer data points, making the estimation results more stochastic. The larger windows instead

(w = 30) provide smoother estimates due to the increased sample size. Smoothness comes

at the cost of reduced precision, as the estimates become less sensitive to short-term changes.

In sum, selecting an appropriate window width depends on a trade-off between accuracy and

smoothness in estimation. The choice should be guided by measures of goodness of fit and

the specific temporal resolution of interest. whether the focus is on monthly, weekly, or daily

changes.

5 Simulating daily temperatures with the fitted cyclical model

Using the empirical findings and diagnostics a simulation study was designed and conducted

to further explore certain aspects of temperature dynamics. The study aimed to: (1) analyze

changes in the distributions of maximum and minimum temperatures; (2) project these changes

into the future; and (3) assess the prevalence of cold spells and heat waves. To achieve these

objectives, we employed the fitted parameters from two distinct historical periods: 1780-1820

and 1980-2020, as shown in Figure 8. By simulating data from models parameterized for these

periods we investigated how temperature distributions might have evolved and project future

trends.

1,000 replications of daily temperature cycles (365 days) were obtained using the following
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Figure 12: February and May: progressive change for parameters ϕt and µt over time for different
window widths w.
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Note: Years 1772-2020. The figure reports for each month (February and May) estimation of ϕt and µt for window
widths: w = 7 in panel (a), w = 15 in panel (b) and w=30 in panel (c). Estimates in (a) and (b) are calculated
over consecutive groups of 20 years, while for (c) over groups of 40 years

models for the two historical periods:

1. XjT+t = α̂(t)1780−1820 +
∑p

k=1 ϕ̂(t)1780−1820XjT+t−k + εjT+t, j = 0, . . . , N ,

2. XjT+t = α̂(t)1980−2020 +
∑p

k=1 ϕ̂(t)1980−2020XjT+t−k + ε∗jT+t, j = 0, . . . , N ,

where α̂(t) and ϕ̂(t) are the parameter estimates from Figure 8, and N = 1000 represents the

number of cycle replications. The Gaussian errors εjT+t and ε∗jT+t have variances matching

those estimated for the respective periods. For each replication, we extract information such

as average temperature and distributions of maximum and minimum temperatures by month.

Performing this exercise across all simulations, we estimated empirical distributions of these

temperature metrics.

Further, to create possible future scenarios we projected the estimated parameter trends

forwards to the next 40 years. This involved extending the parameters linearly from the past

trends, resulting in:

3. XjT+t = α̂(t)2020−2060 +
∑p

k=1 ϕ̂(t)2020−2060XjT+t−k + εjT+t, j = 0, . . . , N ,

where the projected parameters α̂(t)2020−2060 and ϕ̂(t)2020−2060 are computed by extrapolating

the differences between the 1780-1820 and 1980-2020 periods.
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Figure 13: Projected change in the parameters αt, ϕt, σ
2
ε,t for Model 1 - 3.
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Figure 13 shows the projected parameter cycles for the future model, represented by the

yellow lines. For simplicity, we use the error variance estimated for the 1980-2020 period in

the future simulations. This approach provides one mechanism for exploring potential future

changes. Actual developments in the future may, of course, differ considerably amd exhibit

characteristics such as non-linear trends or external temperature drivers not considered in this

exercise. Here we focus simply on showing how a model of this type, based on observational

data, can be utilized for simulating projections, rather than directly forecasting future parameter

changes or climate evolution.

The distributions of observed temperatures for the periods 1770-1820 and 1980-2022, along

with the simulated temperatures for 2040-2060, are depicted in Figure 14. The empirical dis-

tributions are estimated by fitting kernel probability density functions to the data, using the

Epanechnikov kernel smoother for nonparametric density estimation. The first panel of the

figure illustrates the seasonal temperature density with two prominent peaks. The second and
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Figure 14: Probability densities of real temperatures for years 1770-1820, 1980-2022 and simu-
lated temperatures for 2040-2060. A comparison of the upper (1%, 5%) and lower (95%, 99%)
quantiles.
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Note: Results based on 1,000 replications of yearly temperatures from AR(1) model with parameters estimated
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Figure 15: Simulated average temperatures for a single day.
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Note: Results based on 1,000 replications of yearly temperatures from the fitted AR(1) model with parameters
estimated in years 1780-1820 (in blue), 1980-2020 (in red) and projected change in 40 years (in yellow).

third panels provide a closer look at the quantiles: the lower quantiles (1% and 5%) in the second

panel and the upper quantiles (95% and 99%) in the third panel. In panel two, we observe that

the density associated with lower temperatures decreases when comparing recent and future

distributions to those of the past. Conversely, panel three shows an increase in the probability

of higher temperatures, with the red and yellow lines indicating a shift towards warmer tem-

peratures. Overall, the distribution has shifted to the right, indicating a higher likelihood of

warmer temperatures.

Figure 15 examines the temperature distributions for two specific days: July 15th (a warm

day) and December 15th (a cold day). This figure confirms the previous results, showing that

the distribution of daily average temperatures has shifted to the right for both days, with a

more pronounced increase for the cold day in December.

In a further analysis we focus on the distributions of maximum and minimum temperatures,

which are critical for understanding extreme weather events such as heatwaves and cold spells.

Figure 16 displays the simulated distributions of minimum and maximum temperatures, using
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Figure 16: Distributions of minimum and maximum annual temperatures: past and present.

Note: Based on 1,000 replications of yearly temperatures from AR(1) model with parameters estimated in years
1780-1820 (in blue), 1980-2020 (in red).

1,000 replications based on Model 1 and Model 2. Figure 17 compares simulations from Models

1, 2, and 3, with the yellow line representing the projected changes for 2040-2060.

We selected January, April, and August for detailed analysis due to their expected variation

in temperature distribution patterns. The vertical lines in the figures denote the medians of these

distributions. Notably, the median of minimum temperatures in January has risen by almost 3

degrees (2.88◦C), while maximum temperatures in January have increased by approximately 1

degree. This finding aligns with earlier results indicating that winter temperatures have risen

significantly, with minimum temperatures experiencing the largest increase. For April, minimum

temperatures have also risen substantially, but maximum temperatures show a smaller increase

of less than half a degree.

In contrast, for August, maximum temperatures have increased the most, with a median

increase of nearly 1 degree. When projecting future changes (see Figure 17), the largest increases

in median temperatures are observed in January (∆ = 0.36◦C) and August (∆ = 0.25◦C). The

distribution of minimum temperatures has also shifted to the right, with the most significant
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Figure 17: Distributions of minimum and maximum annual temperatures: past, present and
future.

Note: 1000 replications of yearly temperatures from AR(1) model with parameters estimated in years 1780-1820
(in blue), 1980-2020 (in red) and projected change in 40 years (in yellow).

change occurring in January. In summary, high-temperature events are becoming more frequent

at higher temperatures, particularly in winter, while low-temperature events are becoming less

severe overall.

Overall, the simulation study reveals the following key findings: (1) The distribution of

average temperatures has shifted to the right, increasing the likelihood of higher temperatures.

(2) This shift is not uniform; it is more pronounced in colder months. (3) The maximum monthly

temperatures projected by the three models show a higher probability of being warmer.

These findings align with results from the estimation phase, which demonstrated that tem-

perature persistence has generally increased (particularly during winter months) and that the

variability of the error term has decreased, becoming more uniform across seasons. Given these

changes, we expect an increase in both the frequency and duration of heatwaves due to higher

temperatures, a greater likelihood of warmer maximum temperatures, increased persistence, and

reduced variability.
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To corroborate this expectation, we analyzed the frequency of cold spells and heatwaves using

simulated distributions from the three models, segmented by season. We defined a heatwave

(or cold spell) based on the reference period from 1900-1940. We then compared the number of

days in a row (1, 2, 5, 7, or 10) with temperatures exceeding the 90%, 95%, and 99% quantiles

(or falling below the 10%, 5%, and 1% quantiles for cold spells) of the 1900-1940 reference

distribution.

Tables 1 and 2 present the results for heatwaves and cold spells, respectively. These tables

are organized by season and by period (1870-1820, 1980-2022, and 2020-2060), and show the

frequency of heatwaves (or cold spells) by duration and intensity. The quantiles of the reference

period are provided at the end of both tables.

The results indicate that, using a threshold such as q90, the frequency of heatwaves has

increased across all seasons and durations, with both 1-day and 10-day heatwaves becoming

more common. Generally, the more recent years show a higher frequency of heatwaves, with

autumn months projected to experience an increased number of such events.

In terms of intensity, measured as the frequency of temperatures exceeding the 99% per-

centile, the model based on years 1780-1820 shows minimal heatwave activity at the q99 thresh-

old, with only a small probability of 1-day or 2-day heatwaves. In contrast, intensity increases

for the 1980-2020 period, and the frequency of heatwaves at the q99 level is even higher for simu-

lations based on 2020-2060. This trend is evident in the frequency of 1-day and 2-day heatwaves

across all seasons, with up to 5-day heatwaves in autumn and 7-day heatwaves in winter.
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Table 1: Frequency of heatwaves by season and duration (1, 2, 5, 7, 10 days).

Spring Summer

Years Quantiles 1 2 5 7 10 1 2 5 7 10

1780-1820 > q90 6.2 4.1 1.3 0.6 0.2 4.2 2.3 0.5 0.2 0.0
> q95 2.7 1.5 0.3 0.1 0.0 1.6 0.7 0.1 0.0 0.0
> q99 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1980-2020 > q90 7.4 5.2 1.9 1.0 0.4 9.5 6.4 2.2 1.2 0.5
> q95 3.3 2.0 0.5 0.2 0.1 4.5 2.7 0.7 0.3 0.1
> q99 0.3 0.2 0.0 0.0 0.0 0.3 0.1 0.0 0.0 0.0

2020-2060 > q90 7.8 5.6 2.3 1.2 0.5 10.9 7.6 2.9 1.6 0.7
> q95 3.5 2.3 0.7 0.3 0.1 5.5 3.5 1.0 0.5 0.2
> q99 0.4 0.2 0.0 0.0 0.0 0.5 0.2 0.0 0.0 0.0

Autumn Winter

1 2 5 7 10 1 2 5 7 10

1780-1820 > q90 5.1 3.4 1.0 0.5 0.1 3.4 1.9 0.4 0.1 0.0
> q95 2.0 1.1 0.2 0.1 0.0 1.9 1.0 0.2 0.0 0.0
> q99 0.2 0.1 0.0 0.0 0.0 0.6 0.3 0.0 0.0 0.0

1980-2020 > q90 10.8 8.0 3.5 2.1 0.9 7.8 5.3 1.9 1.0 0.4
> q95 4.8 3.1 1.0 0.5 0.1 4.6 2.9 0.8 0.4 0.1
> q99 0.7 0.3 0.0 0.0 0.0 1.5 0.9 0.2 0.1 0.0

2020-2060 > q90 12.8 9.6 4.5 2.7 1.3 10.0 7.1 2.9 1.6 0.7
> q95 6.0 4.0 1.3 0.7 0.2 6.1 4.1 1.4 0.7 0.3
> q99 0.8 0.4 0.1 0.0 0.0 2.2 1.3 0.3 0.1 0.0

Quantiles q1 q5 q10 q90 q95 q99
Temperature reference period 1900-1940 -1.6 1.1 2.6 16.1 17.4 19.7
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Table 2: Frequency of coldspells by season and duration (1, 2, 5, 7, 10) days.

Spring Summer

Years Quantiles 1 2 5 7 10 1 2 5 7 10

1780-1820 < q10 7.5 5.5 2.4 1.4 0.6 5.1 3.2 0.8 0.4 0.1
< q5 4.0 2.7 0.9 0.5 0.1 2.4 1.4 0.3 0.1 0.0
< q1 0.9 0.5 0.1 0.0 0.0 0.5 0.2 0.0 0.0 0.0

1980-2020 < q10 3.5 2.2 0.7 0.3 0.1 2.8 1.5 0.3 0.1 0.0
< q5 1.4 0.8 0.2 0.1 0.0 1.1 0.5 0.1 0.0 0.0
< q1 0.1 0.1 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0

2020-2060 < q10 2.9 1.8 0.5 0.2 0.1 2.4 1.3 0.2 0.1 0.0
< q5 1.1 0.6 0.1 0.0 0.0 1.0 0.4 0.1 0.0 0.0
< q1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0

Autumn Winter

1 2 5 7 10 1 2 5 7 10

1780-1820 < q10 7.6 5.0 1.6 0.8 0.3 11.8 8.2 3.1 1.7 0.7
< q5 3.8 2.3 0.5 0.2 0.1 8.4 5.5 1.8 0.9 0.3
< q1 0.8 0.4 0.1 0.0 0.0 1.1 0.5 0.1 0.0 0.0

1980-2020 < q10 3.6 2.4 0.8 0.4 0.2 4.7 3.1 1.0 0.5 0.2
< q5 1.6 1.0 0.3 0.1 0.0 2.9 1.8 0.5 0.2 0.1
< q1 0.2 0.1 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0

2020-2060 < q10 2.5 1.7 0.5 0.3 0.1 3.3 2.2 0.7 0.3 0.1
< q5 1.0 0.6 0.2 0.1 0.0 1.9 1.2 0.3 0.2 0.0
< q1 0.2 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0

Quantiles q1 q5 q10 q90 q95 q99
Temperature reference period 1900-1940 -1.6 1.1 2.6 16.1 17.4 19.7
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6 Conclusions

This paper introduces a novel approach to analyze data using a periodic autoregression that has

the capability to capture cyclical changes in parameters in a time varying manner. Empirical

application of this modeling framework to Central England Temperature (CET) data showcases

how the evolution of both intercept and autoregressive coefficients in a periodic AR(1) model can

be captured to reveal new insights on daily temperature changes over long periods of time. The

analysis spans daily average temperatures over 1772 to 2020 and yields several notable findings.

First, the AR(1) model provides a robust fit for data segments up to 40 years in duration

with residuals that exhibit uncorrelated, normally distributed behavior, indicating that the

underlying temporal structure of the temperature data are well captured within these periods.

Second, significant cyclical variations in the model parameters are revealed in the regression

results, pointing to changes in the persistence parameter (ϕ) and the residual variance over

time. The findings indicate a statistically significant increase in temperature persistence, the

most pronounced changes occurring during the winter and autumn months. This increase in

persistence implies that temperature anomalies are more likely to persist over longer periods,

particularly in these seasons. Conversely, the residual variance manifests a declining trend,

especially in the winter months, suggesting that the amplitude of temperature fluctuations has

lessened over time.

These findings helped guide a simulation study aimed at exploring broader implications of

our results. The simulation design focused on learning how the estimated cyclical changes in

temperature persistence and residual variation impact temperature distributions, considering

average temperatures as well as maximum and minimum temperatures. This approach enabled

an assessment of the frequency of extreme weather events, such as heatwaves and episodes of

extreme cold weather, using the observed trends in temperature persistence. The simulation

results therefore provide insights into how such extremes might evolve under prevailing and

possible future climatic conditions.

In sum, this paper contributes to climate analysis with observational data using econometric

methods for periodically correlated time series that provide a framework for capturing cycli-

cal patterns in temperature data and their implications for understanding climate variability.

In addition, simulations with the fitted model provide a view of how changes in temperature

persistence and variability can influence various aspects of climate, from daily temperature dis-

tributions to the frequency and severity of extreme weather events.
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He, C., Kang, J., Teräsvirta, T., and Zhang, S. (2019). The shifting seasonal mean autoregres-

sive model and seasonality in the Central England monthly temperature series, 1772–2016.

Econometrics and Statistics, 12:1–24.

IPCC (2021). Summary for policymakers. Climate Change 2021: The Physical Science Basis.

Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental

Panel on Climate Change.

Lenssen, N. J., Schmidt, G. A., Hansen, J. E., Menne, M. J., Persin, A., Ruedy, R., and Zyss, D.

(2019). Improvements in the GISTEMP uncertainty model. Journal of Geophysical Research:

Atmospheres, 124(12):6307–6326.

Lenton, T. M., Dakos, V., Bathiany, S., and Scheffer, M. (2017). Observed trends in the

magnitude and persistence of monthly temperature variability. Scientific Reports, 7(1):1–10.

Li, J. and Thompson, D. W. (2021). Widespread changes in surface temperature persistence

under climate change. Nature, 599(7885):425–430.

Manley, G. (1974). Central England temperatures: monthly means 1659 to 1973. Quarterly

Journal of the Royal Meteorological Society, 100(425):389–405.

27



Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C. (1997). A Pacific

interdecadal climate oscillation with impacts on salmon production. Bulletin of the American

Meteorological Society, 78(6):1069–1080.

McCarthy, G. D., Haigh, I. D., Hirschi, J. J.-M., Grist, J. P., and Smeed, D. A. (2015). Ocean

impact on decadal Atlantic climate variability revealed by sea-level observations. Nature,

521(7553):508–510.

Parker, D. E., Legg, T. P., and Folland, C. K. (1992). A new daily central England temperature

series, 1772–1991. International Journal of Climatology, 12(4):317–342.

Pfleiderer, P. and Coumou, D. (2018). Quantification of temperature persistence over the North-

ern hemisphere land-area. Climate Dynamics, 51(1):627–637.

Proietti, T. and Hillebrand, E. (2017). Seasonal changes in Central England temperatures.

Journal of the Royal Statistical Society: Series A (Statistics in Society), 180(3):769–791.

Rho, S.-H. and Vogelsang, T. J. (2019). Heteroskedasticity autocorrelation robust inference

in time series regressions with missing data. Econometric Theory, Cambridge Vol 35, Iss.

3:601–629.

Rivas, M. D. G. and Gonzalo, J. (2020). Trends in distributional characteristics: Existence of

global warming. Journal of Econometrics, 214(1):153–174.

28



A Appendix

A.1 Computation of residuals

Local residuals. Section 3 outlines the methodology for estimating the cyclical parameters

αt, ϕt, t = 1, ...., T of the periodic autogregressive time series PAR(1) xi given in (1). The

estimators α̂t and ϕ̂t in (5) are based on the block of data xi, i ∈ Jt,w. The ‘local’ residuals are

also computed by block. For every block Jt,w around t and of width w, we define them as the

residuals of the fitted local AR(1) model

ε̂t,i = (yi − α̂t − ϕ̂tyi−1)hihi−1

= (xi − α̂t − ϕ̂txi−1)hihi−1, i = 1, ..., N.

Suppose that the variance Eε2i of εi in the PAR(1) model (1) is also a cyclical parameter, i.e.,

Eε2jT+t = σ2
t , t = 1, . . . , T, j = 0, . . . , P − 1.

Then σ2
t = Eε2t , t = 1, ..., T can be estimated using local residuals as

σ̂2
t = (

N∑
i=1

hi)
−1

N∑
i=1

ε̂2t,i.

Recall that the missing data indicator hi = hi,tw above is given in (2) and depends on t.

Global residuals. Let xi, i = 1, . . . , N , be a Periodic Autoregressive PAR(1) time series as

described in equation (1). The global residuals ε̃i of the PAR(1) model are computed as follows:

ε̃jT+t = xjT+t − α̂t − ϕ̂txjT+t−1, j = 1, . . . , P, t = 1, . . . , T,

where N = PT . Here α̂t and ϕ̂t, t = 1, . . . , T , are fitted time-varying periodic parameters and

T is the length of the cycle.
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A.2 Monte Carlo experiment

This section reports the findings of a Monte Carlo experiment to evaluate the performance of

the estimators α̂t and ϕ̂t for the cyclically varying parameters αt and ϕt in PAR(1) model (1).

The goal is to assess how well the estimation procedure captures the cyclical nature of the data,

ensuring that the estimators of parameters are unbiased and that the normal approximation

performs well in finite samples.

The model in Eq.(1) was simulated to produce 2, 000 samples. Each simulation generated data

for N = P ×T observations, where P = 100 represents the number of cycles, and T = 500 is the

number of observations per cycle. In each cycle the following periodic behavior was assumed for

the mean µt = αt/(1− ϕt) and the autoregressive parameter ϕt:

µt = 4 sin

(
2π

t

365

)
, ϕt = 0.8 sin

(
2π

t

365

)
, t = 1, ...., 500. (9)

The periodicity of the mean and autoregressive parameters was set to reflect the cyclic behavior

observed for the actual temperatures data. To illustrate the PAR(1) estimation method we use

three different window widths: w = 2, 6, 10. The results of the estimation for a single sample

are reported Figure A.1. This depicts the true values of the parameters ϕt, and αt (red line)

and the estimates of ϕ̂t, and α̂t (black line) along with the 95% confidence bands for different

window widths, w = 2, 6, 10 respectively.

Three key findings emerge from these simulations. First, estimation of ϕt is highly accurate

even when ϕt varies smoothly over time. The estimator ϕ̂t captures the periodic nature of both

the mean and autoregressive parameters well, with the true parameter values ϕt consistently

falling within the 95% confidence bands. Second, when both the mean µt and the autoregressive

parameter ϕt change smoothly, the rolling window estimator effectively tracks these changes.

The estimator for αt remains highly accurate, with the confidence bands remaining reasonably

tight. Third, the results are robust across different window widths. Using a fixed rolling window

width of w = 10 strikes a balance between capturing smooth periodic changes in the parameters

and maintaining precise estimates.

In the second experiment, simulations were conducted to evaluate the bias and coverage proba-

bilities of the rolling window estimators of the AR(1) parameters, α̂t and ϕ̂t. 2, 000 samples were

generated with P = 100 cycles, each with T = 500 observations per cycle. The rolling window

widths were w = 2, 6, 10. The results are presented in Figure A.2, which reports the true value

of the cycles for αt and ϕt along with sample average estimates over the 2,000 simulations (Êα̂t

and Êϕ̂t). The second row of the plots shows empirical coverage probabilities for nominal 95%

confidence intervals based on the standard normal approximation (6).

The new simulations confirm the results observed in the previous simulation for one sample.

Both the intercept and the autoregressive parameter are estimated with high accuracy. The
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estimates for α̂t and ϕ̂t closely follow the true periodic patterns. The empirical coverage rate

overall is close to the nominal 95% coverage. The normal approximation defined in Eq.6 - 7

holds well overall, providing further evidence that the proposed method satisfactorily captures

periodic patterns in the data.

As expected, coverage rates start to be distorted only at those points where sharp changes

in the real parameters occur. Estimating with a larger window width helps the accuracy of

the estimation at time t but this happens at the expenses of the accurate detection of a sharp

change, for which a smaller window width is naturally betted suited. These results highlight the

effectiveness of the rolling window estimator in accurately capturing smooth changes in periodic

parameters. Overall, the simulations confirm that the approach is reliable in analyzing periodic

time series with fixed cycle lengths and autoregressive patterns.

Figure A.1: Estimation results for periodic parameters µt and ϕt for one sample. Model (9).
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Note: µt and ϕt as in model (9), P = 100 cycles, T = 500 observations per cycle, window width w = 2, 6, 10. The
blue dotted line represents the 95% confidence bands.
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Figure A.2: Monte Carlo results for periodic parameters µt and ϕt. Model (9).
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confidence intervals for αt and ϕt, each reported for window widths w = 2, 6, 10. P = 100 cycles, T = 500
observations per cycle, and 2, 000 replications.
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A.3 Further figures

Figure A.3: Estimation results of parameters ϕt, αt, µt, σ
2
ε,t
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Figure A.4: Estimation results of parameters ϕt, αt, µt, σ
2
ε,t
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Figure A.5: Comparing parameters ϕt, αt, µt, σ2
ε,t, in the past and present: 1780-1820 and

1980-2020.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0.4

0.5

0.6

0.7

0.8

0.9

1

?̂t;1780!1820 95%CI ?̂t;1980!2020 95%CI

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2

4

6

8

10

12

14

16

18

7̂t;1780!1820 7̂t;1980!2020

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1

2

3

4

5

6

7

<̂t;1780!1820 <̂t;1980!2020

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
-1

0

1

2

3

4

5

6

7

8

,̂t;1780!1820 95%CI ,̂t;1980!2020 95%CI

Note: Years 1780-1820 and 1980-2020, groups of 40 years, w=7.

35



Figure A.6: Comparing parameters ϕ, α, µ, σ2
ε,t, in the past and present: 1780-1820 and 1980-

2020.
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