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Abstract

A new self-weighted least squares (LS) estimation theory is developed for local unit root
(LUR) autoregression with heteroskedasticity. The proposed estimator has a mixed Gaussian
limit distribution and the corresponding studentized statistic converges to a standard normal
distribution free of the unknown localizing coefficient which is not consistently estimable. The
estimator is super consistent with a convergence rate slightly below the OP (n) rate of LS
estimation. The asymptotic theory relies on a new framework of convergence to the local
time of a Gaussian process, allowing for the sample moments generated from martingales
and many other integrated dependent sequences. A new unit root (UR) test in augmented
autoregression is developed using self-weighted estimation and the methods are employed
in predictive regression, providing an alternative approach to IVX regression. Simulation
results showing good finite sample performance of these methods are reported together with
a small empirical application.
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1 Introduction

Consider the local unit root (LUR) autoregression

yk = αyk−1 + uk, α = 1 + τ/n, k = 1, 2, ..., n (1.1)

*Phillips acknowledges research support of a Kelly fellowship at the University of Auckland. Address corre-

spondence to Qiying Wang, School of Mathematics and Statistics, The University of Sydney, NSW 2006, Australia;

e-mail: qiying.wang@sydney.edu.au.
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with initialization y0 = OP (1), innovations {uk}k≥1 and constant localizing coefficient τ ∈ R.

Let α̂n =
∑n

k=1 yk−1yk∑n
k=1 y

2
k−1

be the least squares (LS) estimator of α. When uk ∼iid (0, σ2 > 0) it is

well-known (????) that

n (α̂n − α) →D

[ ∫ 1

0
(Jτ (r))

2 dr
]−1

∫ 1

0
Jτ (r)dBr, (1.2)

where Jτ = {Jτ (t) =
∫ t
0 e

(t−s)τdBs}t≥0 (here and below) is a linear diffusion (Ornstein-Uhlenbeck)

process satisfying dJτ (t) = τ Jτ (t)dt+dBt, with Jτ (0) = 0 and B = {Bt}t≥0 is a standard Brow-

nian motion.

In spite of the super consistency of (1.2) the limit distributions of α̂n and the corresponding

studentized statistic are non-pivotal and depend on the unknown localizing coefficient τ , which

is identified but not consistently estimable, as is clear from the original limit theory and much

later commentary and analysis (?????). To assist in resolving this difficulty, many different

approaches have been introduced in the literature. The first-difference method in ? has virtually

no finite sample bias, is insensitive to initial conditions, and Gaussian limit theory applies

continuously as α passes through unity, but with a uniform
√
n convergence rate. This rate of

convergence can be improved by aggregating moment conditions in differences, as in ?, leading

to an estimator that has a limiting normal distribution uniformly over stationary and unit root

cases with a rate of convergence within a slowly varying factor of n when α = 1.

In addition to this work, several instrumental variable (IV) estimators have appeared in

the literature as alternatives to standard LS. In particular, ? suggested the use of the Cauchy

estimator, using the sign function as an IV. ? generalized that approach by considering weighted

estimation in model (1.1). An interesting feature of ? is that the studentized statistic based on

the weighted LS estimator in model (1.1) has a normal limit distribution free of the parameter

τ , enabling feasible inference concerning α. But overweighting in that approach loses the super

consistency of LS estimation in LUR regression. Using a different methodology altogether, ?

introduced the IVX approach, which was developed further in later work by ?. The IVX method,

named for its use of instruments that are constructed endogenously, utilizes linear filtering of

the regressors that mildly attenuates their signal to produce new instrumental variables which

enable IV estimation with a mixed Gaussian limit theory and a student t statistic with a standard

normal limit distribution, thereby facilitating inference. For recent work on the IVX method,

we refer to ?, ?, ?, ?? and ?.

The present paper proposes a new estimator that has a mixed Gaussian limit by using self-

weighted estimation in (1.1). Noting that yn/
√
n = OP (1), the key idea in our approach is

that the function I(|yk−1| ≤ bn
√
n), where bn → 0, can be used as a weight to reduce the
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signal in ordinary LS estimation theory so that Wang’s extended martingale limit theorem (?;

?, Theorem 3.13) applies to establish the asymptotics. More explicitly, this paper investigates

the self-weighted LS estimator α̂1n of α defined by

α̂1n = argmin
α

n∑
k=1

(yk − αyk−1)
2 I(|yk−1| ≤ bn

√
n), (1.3)

for some positive numerical sequence bn → 0. We show that α̂1n has a mixed Gaussian limit

and the corresponding studentized statistic converges to a normal limit free of the parameter τ .

This new estimator α̂1n retains superconsistency although the convergence rate is slightly slower

than n. The reduction in the convergence rate depends on the rate at which bn → 0. Indeed,

noting that y⌊nt⌋/
√
nσ ⇒ Jτ (t) on D[0, 1], the limit behaviour of α̂1n, when bn = b > 0, is

similar to that of α̂n, so standard normal limit theory no longer applies.

A major obstacle in deriving asymptotics for α̂1n is the development of limit theory for

sample moments of the form

V 2
n :=

1

n2b3n

n∑
k=1

y2k−1I(|yk−1| ≤ bn
√
n) =

cn
n

n∑
k=1

f(cnynk),

where ynk = yk−1/
√
n, cn = b−1

n and f(x) = x2I(|x| ≤ 1). When ynk is a martingale array as

here, new asymptotics are required for the sample moment V 2
n since previous results, such as

those in Theorem 2.1 of ? are unsuitable, as explained in Section 2. Another contribution of

this paper is to establish convergence of V 2
n under an alternative used in ?. The new condition

imposed on ynk is easy to verify for martingales and many other integrated dependent sequences

by using well-developed strong approximation theory. There is a trade off between our new

general condition on ynk and the numerical sequence cn required in V 2
n . Compared with ? the

restriction on cn is stronger, but it is sufficient for the purposes of this paper, as explained in

Section 2.

The paper proceeds as follows. Section 2 explores convergence to local time of a Gaussian

process, giving a significant extension of ? by allowing for martingales and many other integrated

dependent sequences. Self-weighted LS estimation theory for near unit root autoregression

with heteroskedasticity is developed in Section 3, providing a new unit root test. The use of

self-weighted instrumentation in predictive regression is developed in Section 4. Simulations

and a brief empirical application are reported in Section 5. Proofs are collected in Section

7. Throughout the paper, we use C,C1, C2, ... for constants, which may be different at each

appearance.
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2 Convergence to local time by strong approximation

This section establishes convergence to the local time process of a Gaussian process by using

strong approximation techniques. The result is of independent interest and this section may

be read separately. The notation therefore differs slightly from other sections to allow for more

general applications.

2.1 Preliminaries

LetX = {Xt}t≥0 be a real-valued stochastic process. A measurable process LX = {LX(t, x)}t≥0,x∈R

is said to be a local time of X if it satisfies∫ t

0
h(Xs)ds =

∫ ∞

−∞
h(x)LX(t, x)dx,

for all positive (or bounded) Borel functions h : R → R. For a zero mean Gaussian process X

with covariance kernel r(u, v) = E
(
XuXv

)
satisfying for all T > 0∫ T

0

∫ T

0
[r(u, u)r(v, v)− r2(u, v)]−1/2dudv <∞, (2.1)

X has a local time LX which can be represented as

LX(t, x) =
1

2π

∫ ∞

−∞
e−i ux

∫ t

0
eiuXsds du,

where the right-hand side is understood in the framework of L2-theory, i.e., as a limit of LN (t, x)

in the sense that

lim
N→∞

E |LN (t, x)− LX(t, x)|2 = 0,

where

LN (t, x) =
1

2π

∫ N

−N
e−i ux

∫ t

0
eiuXsds du.

With this convention, for any bounded Borel function f(t) on [0, 1],
∫ 1
0 f(u)LX(du, x) is well

defined and ∫ 1

0
f(u)LN (du, x) =

1

2π

∫ N

−N
e−i tx

∫ 1

0
f(u)eitXudu dt

→
∫ 1

0
f(u)LX(du, x), (2.2)

in probability, as N → ∞. Furthermore, if g(t, x) is a Borel function on [0, 1] × R satisfying∫∞
−∞ sup0≤s≤1 |g(s, x)|dx <∞ and LX(t, x) is continuous, we have

cn

∫ 1

0
g(t, cnXt)dt =

∫ 1

0

∫ ∞

−∞
g(t, x)LX(dt, x/cn)dx

→
∫ 1

0
G(t)LX(dt, 0), a.s., (2.3)
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for any 0 < cn → ∞, where G(t) =
∫∞
−∞ g(t, x)dx. See, e.g. ?? and also Chapter 2 of ?.

The linear diffusion Jτ = {Jτ (t) =
∫ t
0 e

(t−s)τdBs}t≥0 in (1.2) is a Gaussian process that

satisfies (2.1). Another Gaussian process satisfying (2.1) is fractional Brownian motion BH =

{BH(t)}t≥0 defined by

BH(t) = κH

∫ t

−∞

[
((t− u)+)

H−1/2 − ((−u)+)H−1/2
]
dBu,

where a+ = max{a, 0}, 0 < H < 1, and κH > 0 is a constant such that EB2
H(1) = 1. Both Jτ

and BH have local time processes satisfying (2.3).

2.2 Convergence to local time

Let {Xnk}n≥1,k≥1 be an arbitrary random array defined on {Ω,F , P} for which Xn,⌊nt⌋ ⇒ Xt

on D[0, 1]. Note that

Sn :=
cn
n

n∑
k=1

g
(k
n
, cnXnk

)
=

∫ 1

0
cng(⌊nt⌋/n, cnXn,⌊nt⌋)dt+ oP (1),

for any cn/n → 0 and bounded function g(t, x). Similar to (2.3), in applications it is often

desirable to establish that

Sn →D

∫ 1

0
G(t)LX(dt, 0),

for certain 0 < cn → ∞. In this regard, a framework was given in ?, allowing for the array

ynk to have a certain structure depending on conditional arguments (see, also, Chapter 2.3 of

?). Theorem 2.1 of ? is quite general, so that the main results given by ?, ?, ? and ? are

all covered, but it is difficult to verify their Assumption 2.3 in applications. To see this, let

d2nkj = Var(ynk − ynj) and Fnk = σ(yn1, ..., ynk). In addition to some regularity conditions on

dnkj , Assumption 2.3 of ? imposed the following condition on the array ynk:

ynk is adapted to Fnk and, conditional on Fnj , (ynk−ynj)/dnkj has a density hnkj(x)

which is uniformly bounded by a constant K.

Except for explicit arrays ynk of special structure such as standardized partial sums of linear

processes with i.i.d. innovations, the existence of a conditional density can hardly be checked

directly or is simply impossible to verify where ynk is a martingale array of the type considered

in the present paper.

This section provides an alternative to Assumption 2.3 of ?. The new condition imposed

on Xnk is easy to verify for martingales and many other dependent sequences by using well-

developed strong approximation theory. We have the following explicit result.
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Theorem 2.1. Suppose that

(a) on a richer probability space, there exists a Gaussian process X satisfying (2.1) and a

random array {X∗
nk} 1≤k≤n

n≥1
such that, for each n ≥ 1, {Xn1, ..., Xnn} =d {X∗

n1, ..., X
∗
nn}

and

sup
0≤t≤1

|X∗
n,⌊nt⌋ −Xt| = oP (c

−2
n ), (2.4)

where 0 < cn → ∞ is a sequence of constants satisfying cn/n→ 0;

(b) for any small δ > 0, there exists two continuous functions giδ(s, x), i = 1, 2, on [0, 1] × R

satisfying sup0≤s≤1 |giδ(s, x)| ≤ Cδ/(1+ |x|1+b) for some b > 0 and Cδ > 0 depending only

on δ such that g1δ(s, x) ≤ g(s, x) ≤ g2δ(s, x) and∫ ∞

−∞
sup

0≤s≤1
|giδ(s, x)− g(s, x)|dx ≤ δ.

Then, on DR2 [0, 1], we have

(
Xn,⌊nt⌋, Sn

)
⇒

(
Xt,

∫ 1

0
G(s)LX(ds, 0)

)
, (2.5)

where G(s) =
∫∞
−∞ g(s, x)dx.

Remark 2.1. The approximation condition (2.4) can be established using a Skorohod embed-

ding (together with some minor modifications) for various dependent random arrays including

martingales, partial sums of mixing sequences and nonlinear causal time series. Examples will

be given in the following sections. It should be mentioned that ? and Theorem 2.19 of ? es-

tablished versions of (2.5) suited to nonparametric cointegrating regression for any 0 < cn → ∞

satisfying cn/n → 0. For the condition imposed on Xnk to be usesful in applications there is

a trade off on cn depending on (2.4) in Theorem 2.1. To provide an illustration, we assume

Xnk = 1√
n

∑k
j=1 uk where uk ∼ N (0, 1) are i.i.d. random variables. In this case, there exists a

standard Brownian motion B = {Bt}t≥0 so that {Xn1, ..., Xnn} =d { 1√
n
B1, , ...,

1√
n
Bn} for each

n ≥ 1. Hence, by noting that
√
n sup0≤t≤1 |Bt − B[nt]/

√
n
∣∣∣ →P ∞, to ensure (2.4) true with

Xt being replaced by B(t), we have
√
nc−2

n → ∞, and so we require cn/n
1/4 → 0 and cn → ∞.

Such a rate requirement on cn is insufficient for nonparametric cointegrating regression, as seen

in ?? and related papers, but it is sufficient for our purpose in this paper.

Remark 2.2. Without loss of generality, we may assume in applications that X∗
nk given in

condition (a) is the array Xnk itself. A simple modification to the proof shows that (2.5) still

holds in case X is replaced by B if, instead of (a), the following condition (a)* is used:
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(a)* on a richer probability space, there exists a standard Brownian motion B = {Bt}t≥0 so

that

max
1≤k≤n

∣∣∣Xnk −Bk/
√
n
∣∣∣ = oP (c

−2
n ), (2.6)

where 0 < cn → ∞ is a sequence of constants satisfying cn/n→ 0.

Result (2.6) is widely studied in probability theory and the convergence in probability given

in (2.6) can be strengthened to almost sure convergence in various situations when additional

conditions such as finite higher moment requirements are included, as in Lemma 3.1 of ?.

Remark 2.3. Condition (b) is usually satisfied if g(s, x) is Riemann integrable on the space

[0, 1] × R. If no additional smoothness condition on Xnk is imposed, the requirement that

sup0≤s≤1 |g(s, x)| ≤ C/(1 + |x|1+b) cannot be materially improved. An example similar to

Example IV. 2.3 of ? can be constructed to show this in the present case.

2.3 Extension to more general settings

We now consider an extension of (2.5) that can be used for many different purposes. Let vk be

a sequence of arbitrary positive random variables and define the sample covariance

S1n =
cn
n

n∑
k=1

g
(k
n
, cnXnk

)
vk.

We have the following result for the asymptotics of S1n.

Theorem 2.2. In addition to the conditions of Theorem 2.1, suppose the following hold:

(i) X is a Gaussian process satisfying

sup
|s−t|≤∆
0≤t≤1

|Xt −Xs| = OP (∆
η), for some 0 < η ≤ 1;

(ii) supk≥1Evk <∞ and there exist A0 ∈ R and 0 < m := mn → ∞ satisfying m = o(nc
−2/η
n )

where η is given in (i) so that

max
0≤j≤n−m

E
∣∣∣ 1
m

j+m∑
k=j+1

vk −A0

∣∣∣ = o(c−1
n );

(iii) |g(s, x)−g(s′, x)| ≤ C |s−s′|/(1+ |x|1+b) on [0, 1]×R, where b > 0 is given as in condition

(b) of Theorem 2.1.
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Then, for any constant sequence 0 < cn → ∞ satisfying cn/n→ 0, we have

S1n = A0 Sn + oP (1). (2.7)

Consequently, on DR2 [0, 1], we have

(
Xn,⌊nt⌋, S1n

)
⇒

(
Xt, A0

∫ 1

0
G(s)LX(ds, 0)

)
,

where G(s) =
∫∞
−∞ g(s, x)dx.

Remark 2.4. For a version of (2.7) with cn = 1, we refer to ?, where the additional condition

(i) is not required. When cn = 1, we have

Sn =
1

n

n∑
k=1

g

(
k

n
, Xnk

)
→D

∫ 1

0
g(t,Xt)dt,

providing a different limit distribution from (2.5).

Remark 2.5. Let wk be a sequence of arbitrary random variables and write wk = w+
k − w−

k ,

where w+
k = wkI(wk ≥ 0) and w−

k = wkI(wk < 0). If the condition (ii) of Theorem 2.2 is

replaced by the following (ii)′, the conclusion of Theorem 2.2 still holds with A0 = A+
0 − A−

0

when vk is replaced by wk.

(ii)′ supk≥1E|wk| <∞ and there exist A+
0 and A−

0 so that

max
m≤j≤n−m

E
∣∣∣ 1
m

j+m∑
k=j+1

w+
k −A+

0

∣∣∣ = o(c−1
n ), max

m≤j≤n−m
E
∣∣∣ 1
m

j+m∑
k=j+1

w−
k −A−

0

∣∣∣ = o(c−1
n ),

where 0 < m := mn → ∞ satisfying m = o(nc
−2/η
n ) with η being given in (i).

In applications, we usually have A+
0 = limn→∞

1
n

∑n
j=1Ew

+
j and A−

0 = limn→∞
1
n

∑n
j=1Ew

−
j so

that A0 = limn→∞
1
n

∑n
j=1Ewj .

2.4 Strong approximation for martingales

This section shows that (2.4) can be verified for a martingale sequence under certain regularity

conditions. Let {uk,Fk}k≥1 be a martingale difference sequence with supk≥1E|uk|p < ∞ for

some 2 < p ≤ 4. Let Sn =
∑n

j=1 uj , d
2
n =

∑n
j=1Eu

2
j , V

2
n =

∑n
j=1E

(
u2j |Fj−1

)
and Lnp =

d−p
n
∑n

j=1E|uj |p.

Proposition 2.1. Suppose that, for some sequence 0 < δn → 0,

max
1≤k≤n

|V 2
k /d

2
n − k/n| = OP (δn). (2.8)
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Then, on a richer probability space, there exist a standard Brownian motion B = {Bt}t≥0 and

a random arrry {S∗
nk, k = 1, 2, · · · , n, n ≥ 1} such that {S∗

nk, k = 1, 2, · · · , n} =d {Sk, k =

1, 2, · · · , n} for all n ≥ 1, and

sup
0≤t≤1

∣∣ 1
dn

S∗
n,⌊nt⌋ −Bt

∣∣ = OP

[
(δ1/2n + L1/p

np ) log1/2 n
]
. (2.9)

The following result is an immediate consequence of Proposition 2.1.

Corollary 2.1. Suppose that Eu2j = σ2 and supk≥1E|uk|2+δ < ∞ for some 0 < δ ≤ 2. If

1
n max1≤k≤n

∣∣V 2
k − kσ2

∣∣ = OP (n
−δ/(2+δ)), then, on a richer probability space, there exist a stan-

dard Brownian motion B = {Bt}t≥0 and a random array {S∗
nk, k = 1, 2, · · · , n, n ≥ 1} such that

{S∗
nk, k = 1, 2, · · · , n} =d {Sk, k = 1, 2, · · · , n} for all n ≥ 1, and

sup
0≤t≤1

∣∣ 1√
nσ

S∗
n,⌊nt⌋ −Bt

∣∣ = OP

(
n−δ/(4+2δ) log1/2 n

)
. (2.10)

Remark 2.6. The convergence rate in (2.9) depends on the conditional variance V 2
k , matching

the martingale weak convergence theory discussed in Chapter 4 of ?. There is a simple sufficient

condition to ensure (2.8). In fact, if d2n/n → σ2 for some σ2 > 0, n|ηn| is an eventually

increasing sequence and V 2
n /n = σ2 +O(|ηn|), a.s., then (2.8) holds with δn = |ηn|+1/n, where

ηn = d2n/n−σ2. Further, if uk is a sequence of stationary martingale differences, it automatically

holds that ηn = 0 (so that δn = 1/n) and Lnp = O(n1−p/2), providing the optimal convergence

rate. There are other strong approximation results for martingales, such as those in ?, ? and ?.

We may establish (2.9) by using martingale embedding methods. The proof of Proposition 2.1

is given in Section 7.1.

2.5 Other examples satisfying (2.6)

The strong approximation result (2.6) can be verified for various mixing sequences such as

α-mixing sequences and causal time series. The following examples are well-studied in the

literature.

Example 2.1. Let {ui}i≥0 be a sequence of stationary α-mixing random variables1 with mean

zero and coefficients α(n) satisfying the following conditions: for r > p and 2 < p ≤ 4,

sup
x>0

xrP (|u0| ≥ x) <∞ and
∞∑
n=1

np−2 α(r−p)/r(n) <∞.

1A sequence {ζk, k ≥ 1} is said to be α-mixing if

α(n) := sup
k≥1

sup{|P (AB)− P (A)P (B)| : A ∈ F∞
n+k, B ∈ Fk

1 }

converges to zero as n → ∞, where Fm
l = σ{ζl, ζl+1, . . . , ζm} denotes the σ-algebra generated by ζl, ζl+1, . . . , ζm

with l ≤ m.

9



Then, on a richer probability space, there exists a standard Brownian motion B = {Bt}t≥0 such

that

max
1≤k≤n

∣∣∣ 1√
nσ

k∑
j=1

uj −
1√
n
Bk

∣∣∣ = OP (n
1/p−1/2 log1/2−1/p n), (2.11)

where σ2 = Eu20 + 2
∑

k≥1E(u0uk).

For a proof of (2.11), we refer to ? and ?.

Example 2.2. Let (ηi)i∈Z be a sequence of i.i.d. random variables. A stationary causal process

(uk)k∈Z is defined by uk = F (..., ηk−1, ηk), where F is a measurable function such that uk are well-

defined stationary random variables with Eu0 = 0 and Eu20 ∈ (0,∞). Write Fk = σ(ui, i ≤ k),

δi,p =
∣∣∣∣ui − u

′
i

∣∣∣∣
p

and Θj,p =
∞∑
i=j

δi,p,

where u
′
k = F (..., η−1, η

∗
0, η1, ..., ηk), and {η∗k}k∈Z is an independent copy of {ηk}k∈Z. Suppose

that E|u0|p <∞ for some 2 < p ≤ 4 and

(a) Θj,p = O(j−1 log−1/p j) when 2 < p < 4;

(b) Θj,p = O(j−1 log−A j) with A > 3/2 when p = 4.

Then, on a richer probability space, there exists a standard Brownian motion B = {Bt}t≥0 such

that

max
1≤k≤n

∣∣ 1√
nσ

k∑
j=1

uj −
1√
n
Bk

∣∣ = OP (n
1/p−1/2), (2.12)

where σ2 = Eu20 + 2
∑

k≥1E(u0uk).

For a proof of (2.12), we refer to ? and ?. We mention that many popular models in statistics

and econometrics satisfy the two conditions (a) and (b) including the following examples:

� TAR model: uk = ϕ1max(uk−1, 0) + ϕ2max(−uk−1, 0) + ηk, where max(|ϕ1|, |ϕ2|) < 1;

� Bilinear model: uk = (α1 + β1ηk−1)uk−1 + ηk, where α1 and β1 are real parameters

satisfying E|α1 + β1η0|q < 1 for some q > 0;

� GARCH model:

uk = σkηk, with σ2k = γ0 +
m∑
i=1

γiu
2
k−i +

l∑
j=1

βjσ
2
k−j , (2.13)

where γ0 > 0, γi ≥ 0 for 1 ≤ i ≤ m, βj ≥ 0 for 1 ≤ j ≤ l and
m∑
i=1

γi +
l∑

j=1
βj < 1.

For more examples, we refer to ?.
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3 Self-weighted near unit root estimation

We consider model (1.1) with innovations {uk}k≥1 having the following form:

uk = σk ϵk, (3.1)

where {ϵk,Fk}k≥1 is a martingale difference with E(ϵ2k|Fk−1) = 1 (F0 = σ(∅,Ω) is the trivial

σ-field), and σk is a positive stationary α-mixing random variables sequence so that σk ∈ Fk−1

and 0 < σ2 = Eu2k = Eσ21 < ∞ for all k ≥ 1. Such an innovation sequence allows for GARCH

models of the form defined by (2.13) (e.g., ?). Furthermore, σk allows for nonlinear processes

such as TAR and Bilinear models or, more generally, stationary causal processes defined by

σk = l(ηk, ηk−1, · · · ), where {ηk}k∈Z is a sequence of i.i.d. random variables so that σk ∈ Fk−1

and l(·, ·, · · · ) is a nonnegative real measurable function of its components.

Define α̂1n as in (1.3). The asymptotic theory for α̂1n is given by the following result under

mild additional moment conditions on σk and ϵk.

Theorem 3.1. Suppose that for some δ > 0,

(a) supk≥1E(|ϵk|2+δ|Fk−1) ≤ C <∞ and Eσ2+δ
1 < ∞;

(b) the mixing coefficients α(n) of {σk}k≥1 satisfy α(n) ≤ Cn−(1+δ).

Then, for any bn > 0 satisfying bn → 0 and bn log
K n→ ∞ for some K > 0, we have

n b3/2n

(
α̂1n − α

)
→D σ3/2

[2
3
LJτ (1, 0)

]−1/2
N, (3.2)

where N is a standard normal variate independent of the local time process LJτ (t, x) of the linear

diffusion Jτ = {Jτ (t)}t≥0 defined in (1.2), and

[ n∑
k=1

y2k−1I(|yk−1| ≤ bn
√
n)
]1/2 (

α̂1n − α
)

→D N (0, σ2). (3.3)

Remark 3.1. Since σ2 = Eu2k = Eu21, under the given conditions a natural consistent estimator

σ̂21n of σ2 is σ̂21n = 1
n

∑n
k=1

(
yk − α̂1nyk−1

)2
or σ̂21n = 1

n

∑n
k=1

(
yk − α̂nyk−1

)2
where α̂n is the LS

estimator of α. Consequently, result (3.3) can be re-written as

σ̂−1
1n

[ n∑
k=1

y2k−1I(|yk−1| ≤ bn
√
n)
]1/2 (

α̂1n − α
)

→D N (0, 1), (3.4)

with a pivotal standard normal limit which is therefore convenient for inference and an advantage

in applications.

11



Remark 3.2. In comparison with the usual LS estimator α̂n, the self-weighted LS estimator

α̂1n has a slightly slower consistency rate. This reduction in the convergence rate is needed to

achieve the standard normal limit theory. Indeed, since y⌊nt⌋/
√
nσ ⇒ Jτ (t) on D[0, 1], the limit

behaviour of α̂1n, when bn = b > 0, is similar to that of α̂n. In principle, the rate bn → 0 can be

chosen so that the self-weighted estimator α̂1n has a higher consistency rate, although for finite

n the quality of the approximation provided by the limit theory may suffer. The restriction

bn log
K n→ ∞ for some K > 0 is imposed for technical reasons and in applications we may take

bn = C0 log−1 n for simplicity and convenience, where C0 is a positive constant. Both results

(3.3) and (3.4) hold for all C0 ∈ R+, but the choice of C0 can have a significant impact in finite

sample performance. Roughly speaking, in finite sample simulations, a balanced C0 is required

so that bn is small (close to 0) while bn log
K n is relatively large for some K ≥ 2. This will be

explored in simulations of Section 5.

Remark 3.3. Theorem 3.1 implies that, upon normalization, α̂1n can serve as a test statistic

for the unit root null hypothesis H0 : α = 1 against the alternative H1 : α < 1. Further, model

(1.1) with innovations (3.1) can be extended to ADF form as

yk = αyk−1 +

p−1∑
j=1

θj(yk−j − yk−j−1) + uk, (3.5)

where α ∈ R,
∑p−1

j=1 |θj | < 1 and y−k = 0 for k ≥ 0. Similarly to α̂1n, α and θ = (θ1, ..., θp−1)
′

can be estimated by using solving the weighted score equations

n∑
k=1

[
yk − αyk−1 −

p−1∑
j=1

θj
(
yk−j − yk−j−1

)]
yk−1 I(|yk−1| ≤ bn

√
n) = 0,

n∑
k=1

[
yk − αyk−1 −

p−1∑
j=1

θj
(
yk−j − yk−j−1

)] (
yk−l − yk−l−1

)
= 0, l = 1, ..., p− 1.

Let zk =
(
yk−1 − yk−2, ..., yk−p+1 − yk−p

)
and ỹk = ykI(|yk| ≤ bn

√
n). Simple calculations show

that the resulting estimator (α̂2n, θ̂n) of (α, θ) is given by(
α̂2n

θ̂n

)
=

(∑n
k=1 yk−1ỹk−1

∑n
k=1 zk ỹk−1∑n

k=1 z
′
k yk−1

∑n
k=1 z

′
kzk

)−1 (∑n
k=1 ykỹk−1∑n
k=1 z

′
kyk

)
.

It is routine to show that θ̂n − θ = OP (n
−1/2) if α = 1 and the following theorem holds for α̂2n,

providing a new result in testing the unit root for the augmented Dickey-Fuller model (3.5).

Theorem 3.2. Suppose that

(a) model (3.5) holds with uk satisfying (3.1);

12



(b) supk≥1E(|ϵk|2+δ|Fk−1) <∞ and Eσ2+δ
1 < ∞ for some δ > 0;

(c) the mixing coefficients α(n) of the sequence {σk}k≥1 satisfy that α(n) ≤ Cn−(1+δ).

Under the null hypothesis H0 : α = 1, for any bn > 0 satisfying bn → 0 and bn log
K n → ∞ for

some K > 0, we have[ n∑
k=1

y2k−1I(|yk−1| ≤ bn
√
n)
]1/2 (

α̂2n − α
)

→D N (0, σ2), (3.6)

and

σ̂−1
2n

[ n∑
k=1

y2k−1I(|yk−1| ≤ bn
√
n)
]1/2 (

α̂2n − α
)

→D N (0, 1), (3.7)

where σ̂22n = 1
n

∑n
k=1

(
yk − α̂2nyk−1 − zk θ̂n

)2
.2

Remark 3.4. Since the original work of ? which employed iid normal errors with no central

limit theory, there has been extensive research on testing for a unit root in models with general

error structures using functional central limit theory. The resulting limit theory of the tests

is typically nonstandard and is expressed as functionals of Brownian motion, with nuisance

parameters eliminated by both parametric and nonparametric methods. Reviews of earlier

contributions appear in ? and ?. In recent years, the instrumental variables (IV) approach has

been introduced in unit root tests. An advantage of IV unit root tests is that their asymptotics

are standard normal, free of nuisance parameters – see ?, ??, ?, ?, ? and the references therein. A

feature for our approach is that it has desirable properties beyond standard normal asymptotics

with a super consistency rate slightly below O(n) which has some advantage in finite samples, as

demonstrated in the partially aggregated differences estimation approach of ?. Simulations show

that when the truncation parameter C0 in the truction rate bn = C0 log−1 n and lag parameter

p are appropriately chosen, the empirical size can be controlled well around the nominal level

across all the chosen sample sizes n. Moreover, the size performance of our new unit root test is

also robust to the distribution of the innovation uk. Furthermore, the power performance of our

unit root test is comparable to that of the ADF test. In certain cases, our test has correct size

control and outperforms the ADF test regarding power performance, showing its superiority in

reducing the Type II error and corroborating its usefulness in specifying unit root behaviors.

2It is routine to see that σ̂2
2n is a natural consistent estimator of σ2 = Eu2

1 under model (3.5). We may estimate

σ2 by using σ̃2
2n = 1

n

∑n
k=1

(
yk − α̃nyk−1 − zk θ̃n

)2
, where (α̃, θ̃′n) is the LS estimator of (α, θ′) in model (3.5).
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4 Predictive regression

Self-weighted estimation can also be used in nonlinear cointegrating regression. In this regard,

a general model was considered recently in ? using strong smoothing conditions, which are

difficult to verify for some dependent sequences, including martingale differences, as explained

earlier in Section 2. The new local time limit theory of this paper avoids the use of strong

smoothing conditions in the innovations and in doing so enables applications of self-weighted

estimation to nonlinear nonparametric cointegrating regression. For brevity, that application is

omitted here and the following analysis focuses on the predictive regression model

yk = α f(xk−1) + uk,

xk = βxk−1 + ξk, β = 1 + τ/n, k = 1, ..., n, (4.1)

where x0 = 0, f(x) is a given real function, (ηk, uk,Fk)k≥1 forms a martingale difference and

ξk =
∑∞

j=0 ϕjηk−j with Φ :=
∑∞

j=0 ϕj ̸= 0 and
∑∞

j=0 j|ϕj | < ∞. The self-weighted estimator

α̂3n of α is defined as

α̂3n = argmin
α

n∑
k=1

[
yk − α f(xk−1)

]2
I(|xk−1| ≤ bn

√
n)

=

∑n
k=1 ykf(xk−1) I(|xk−1| ≤ bn

√
n)∑n

k=1 f
2(xk−1)I(|xk−1| ≤ bn

√
n)

,

where bn → 0 is a seqeunce of positive constants. To explore the asymptotics of α̂3n we use the

following assumptions:

A1 uk = σ1k ϵ1k, ηk = σ2k ϵ2k, and ϵk = (ϵ1k, ϵ1k)
′, where

(a) {ϵk,Fk}k≥1 is a martingale difference sequence with natural filtration Fk, E(ϵ21k|Fk−1) =

E(ϵ22k|Fk−1) = 1 and, for some δ > 0,

sup
k≥1

[
E(|ϵ1k|2+δ|Fk−1) + E(|ϵ2k|2+δ|Fk−1)

]
<∞;

(b) {σ1k}k≥0 and {σ2k}k≥0 are adapted to Fk−1 and both are positive stationary α-mixing

random processes with coefficients α(n) ≤ Cn−(1+δ) and Eσ2+δ
11 + Eσ2+δ

21 < ∞ for

some C > 0 and δ > 0.

A2 There exists a continuous real function H(x) and a real function π(λ) : (0,∞) → (0,∞)

such that

f(λx) = π(λ)H(x) +R(λ, x)

where |R(λ, x)| ≤ a(λ) (1 + |x|δ) for some δ > 0 and a(λ)/π(λ) → 0, as λ→ ∞.
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Condition A1 allows for heteroskedasticity in both the regressor and the errors, which is useful

in empirical work. Unlike ?, no strong smoothness condition is required on the regressor xk. A2

indicates that f(x) is a real homogeneous function, a form that is widely used in the literature.

The following result provides the asymptotics of α̂3n.

Theorem 4.1. Suppose A1 and A2 hold. Then, for any bn > 0 satisfying bn → 0 and

bn log
K n→ ∞ for some K > 0, we have

√
n bnπ(bn

√
n )
(
α̂3n − α

)
→D σ1 (σ2Φ)

1/2
(∫

|x|≤1
H2(x)dx

)−1/2
L
−1/2
Jτ

(1, 0)N, (4.2)

where σ21 = Eσ211 = Eu2k and σ22 = Eσ221 = Eη2k for k ≥ 1, N is a standard normal variate

independent of the local time LJτ (t, x) of the linear diffusion Jτ = {Jτ (t)}t≥0, and[ n∑
k=1

f2(xk−1)I(|xk−1| ≤ bn
√
n)
]1/2 (

α̂3n − α
)

→D N (0, σ21). (4.3)

We further have

σ̂−1
3n

[ n∑
k=1

f2(xk−1)I(|xk−1| ≤ bn
√
n)
]1/2 (

α̂3n − α
)

→D N (0, 1), (4.4)

where σ̂23n = 1
n

∑n
k=1

[
yk − α̃nf(xk−1)

]2
with α̃n =

∑n
k=1 ykf(xk−1)∑n
k=1 f

2(xk−1)
. 3

Remark 4.1. Theorem 4.1 provides pivotal limit theory free of β (in turn τ) and other unknown

parameters associated with (ξk, uk). For other IV estimation procedures used in predictive

regression, we refer to ?, ?, ? and ?. In the latter paper, a chronologically trimmed LS method

was developed which also has a standard normal asymptotics.

Theorem 4.1 requires a martingale structure in model (4.1). If endogenity is imposed in the

model, as in other IVX estimation, Theorem 4.1 fails and a bias corrected estimator is required

for a mixed normal limit. To illustrate, we conisder the following simple cointegrated predictive

regression model:

yk = αxk−1 + vk,

xk = βxk−1 + ξk, β = 1 + τ/n,(
vk
ξk

)
=

∞∑
j=0

Dj ζk−j , (4.5)

3We may take σ̂2
3n = 1

n

∑n
k=1

[
yk − α̂3nf(xk−1)

]2
. Since α̃n is the LS estimator of α in model (4.1) having a

faster consistency rate in comparison with α̂3n, result (4.4) usually has a better finite sample performance.
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where x0 = 0, ζj ∼iid (0, σ2) and the coefficients Dj =

(
ψj

ϕj

)
satisfy that Ψ :=

∑∞
j=0 ψj ̸= 0,

Φ :=
∑∞

j=0 ϕj ̸= 0 and
∑∞

j=0 j(|ψj |+|ϕj |) <∞. For this model, the bias corrected-IVX estimator

is α̂bIV X =
(∑n

k=1 ykz̃ − nΛ̂ξv

) /∑n
k=1 xk−1z̃ where z̃ is the usual IVX instrument and

Λ̂ξv =

M∑
j=1

k
(
j/M

) 1
n

∑
1≤k,k+j≤n

ξ̂kv̂k+j

is the usual lag kernel estimate of the one sided long run covariance Λξv = E(ξ1v1) based on the

residuals v̂k+j = yk+j − α̂xk+j−1 and ξ̂k = xk − β̂xk−1 with OLS estimates α̂ and β̂. For such

OLS estimators, it is well-known that

|α̂− α|+ |β̂ − β| = OP (n
−1). (4.6)

In present paper, we consider the bias corrected SW estimator

α̂bSW =

(
n∑

k=1

x2k−1I(|xk−1| ≤ bn
√
n)

)−1( n∑
k=1

ykxk−1I(|xk−1| ≤ bn
√
n)− Λ̃ξv

)
(4.7)

where

Λ̃ξv =

M∑
j=1

n−j∑
k=1

v̂k+j

[
xkI(|xk| ≤ bn

√
n)− xk−1I(|xk−1| ≤ bn

√
n)
]
.

The following theorem shows that the scaled α̂bSW has a standard normal limit when

LM :=M + n
( ∞∑
j=M

ψ2
j

)1/2
= o
[
(nbn)

1/2]. (4.8)

If ψj = 0 for j ≥M0 > 0, it is routine to see that (4.8) holds with M =M0 as nbn → ∞.

Theorem 4.2. Suppose E|ζ1|3 < ∞ and (4.8) holds. For any bn > 0 satisfying bn → 0 and

bn log
K n→ ∞ for some K > 0, we have

nb3/2n

(
α̂bSW − α

)
→D (3σΦ/2)1/2Ψ1 L

−1/2
Jτ

(1, 0)N, (4.9)

where Ψ2
1 = Ev21 = σ2

∑∞
j=0 ψ

2
j , N is a standard normal variate independent of the local time

LJτ (t, x) of the linear diffusion Jτ = {Jτ (t)}t≥0, and[ n∑
k=1

x2k−1 I(|xk−1| ≤ bn
√
n)
]1/2 (

α̂bSW − α
)

→D N (0,Ψ2
1). (4.10)

We further have

Ψ̂−1
1n

[ n∑
k=1

x2k−1 I(|xk−1| ≤ bn
√
n)
]1/2 (

α̂bSW − α
)

→D N (0, 1), (4.11)

where Ψ̂2
1n is a consistency estimator of Ψ2

1.
4

4In simulations, it is found that the two-sided long run variance (LRV) estimator Ψ̂2
1n of Ψ2

1 = Ev21 has a

better finite sample performance. In this case, Ψ̂2
1n = 1

n

∑n
k=1 ṽ

2
k + 2

n

∑M
j=1 K( j

M
)
∑n−j

k=1 ṽkṽk+j , where M → ∞,
K(x) = 1− |x| for |x| ≤ 1 and ṽk = yk − α̃xk−1 with α̃ being the LS estimator.
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Remark 4.2. The idea of self-weighted estaimation in present paper is simple and the method-

ology can be easily extended to general nonlinear regression function as shown in Theorem 4.1.

See, also, Jin and Wang (2022). However, due to the restrication in multiple local time theory,

there is a technical difficulty for this new method to be used in multi-regression with nonstation-

ary times, as much of the research dealing with the IVX approach (e.g., ?, ? and ?). Allowing for

multiple regressors xt is an important advantage of IVX compared with the self-weighted meth-

ods of predictive regression preesented in this paper. An additional line of research commenced

by ? deals with semiparametric regression in which the function f(xt−1) = g( t
n)

′xt−1 in the

predictive regression equation of (4.1) has time-varying coefficients g( t
n) which are estimated

by a sieve version of IVX regression, again allowing for linear process errors ηt and multiple

regressors xt.

5 Simulations

Simulations were conducted to explore the finite sample properties of the self-weighted estimator,

IVX estimators and first difference estimators in relation to usual LS estimation in near unit

root regression and in unit root testing. Comparisons with the IVX procedure in predictive

regression are also reported.

PCB: I have done word by word revisions of the text up to here.

We may take bn = C0 log
−1 n, where C0 = 1/10, 1, 5, 10, etc. For different C0 values, we

may further consider the impact of C0 in finite sample simulations. It would be interested in to

consider the optimal C0, but this seems to be difficult.

This section examines the finite-sample performance of the proposed self-weighted least

squares (LS) estimator and its corresponding inference procedure, which attains pivotal null

limit theory for testing the unit root and predictability of persistent regressors.

5.1 Simulation for local-to-unity autoregression

We conduct numerical simulations for the general null hypothesis in the near unit root autore-

gression model:

yk = αyk−1 + uk

with α = 1 + τ/n and k = 1, ..., n. Values of localizing parameter τ are considered as τ ∈

{0,−1,−5,−10}. The sample size n ∈ {50, 100, 200, 500} and initial value y0 = 0. For each

k = 1, ..., n, the innovation uk admits a GARCH (1,1) representation:

uk = σkϵk, σ2k = φ0 + φ1u
2
0,k−1 + φ2σk−1, (5.1)
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where ϵk
i.i.d.∼ N (0, 1), φ0 = 1, φ1 = 0.2 and φ2 = 0.3. The number of repetitions is 10, 000 for

each data-generating process (DGP).

The null hypothesis is H0: α = α0 where α0 is the true value of parameter. Equivalently,

we are testing H0 : τ = τ0 where τ0 is the true localizing parameter used in the DGPs. To

calculate the self-weighted estimator, we take the truncation rate bn = C0 log
−1(n) in which

C0 ∈ {1, 2, 3, 4, 5, 10, 20}. The nominal size is set as 5%. The size performance of the self-

normalized statistic defined in (3.4) of the main paper is provided in Table 1.

[Insert Table 1 here]

The simulation results of Table 1 show that the test that relies on the self-weighted estimator

can control size performance well around the nominal level free of the localizing parameter τ .

It is well evident that when the truncation parameter C0 is as small as 3, oversized phenomena

can seldom be observed around all the chosen sample sizes n and localizing parameter τ . Even

when C0 is chosen as 20, the size performance can be substantially improved when the sample

size is as large as 200. These observations corroborate the usefulness of our testing procedure in

obtaining the unified Gaussian null limit theory by trimming extremely large observations. With

the numerical evidence provided in Table 1, we suggest the choice of C0 as any value between 1

and 3 in testing the autoregressive model with local-to-unity regressors.

5.2 Simulation for new unit root test

We examine the empirical size and power performance of the new unit root test statistic α̂2n

defined in the main paper. As in Section 3, we consider the unit root model:

yk = αyk−1 + θ(yk−1 − yk−2) + uk (5.2)

where α = 1, θ ∈ {0,−0.5}, and uk is an GARCH (1,1) process given in (5.1) with ϵk being

specified in the following two cases:

Case I: ϵk
i.i.d.∼ N (0, 1); Case II: ϵk

i.i.d.∼ U
(
−
√
3,
√
3
)
.

We set the sample size n ∈ {50, 100, 200, 500} and the number of repetitions 10, 000. The

considered null hypothesis is H0: α = 1 against the alternative H1: α < 1. To compute our

new unit root test statistic for the augmented autoregression model, we take the truncation

rate bn = C0 log
−1 n in which C0 ∈ {1, 2, 3, 4, 5, 10} and the number of lag terms in augmented

autoregression p ∈ {0, 1, 2}. We evaluate the size performance of our new unit root testing

statistic α̂2n and the classical ADF unit root test with the nominal size set as 5% in the simulation
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study. The present paper also examines the power performance of the unit root test under the

following sequence of local alternative hypotheses H1n: α = 1 − δ/n where δ ∈ [0, 30]. The

empirical size and power performance of the self-normalized statistic defined in (3.7) of the

main paper and the classical ADF test are provided in Tables 2–3 and Figure 1.

[Insert Tables 2–3 and Figure 1 here]

Table 2 and 3 examine the cases that yk follows a AR(1) process by letting θ = 0 and a

AR(2) process by letting θ = −0.5 in equation (5.2). Both tables discuss the cases in which

the underlying error process ϵk follows a Gaussian distribution N (0, 1) and uniform distribution

U(−
√
3,
√
3). The results show that when the truncation parameter C0 and lag parameter p are

appropriately chosen, the empirical size can be controlled well around the nominal level across

all the chosen sample sizes n. Moreover, the size performance of our new unit root test is also

robust to the distribution of the innovation ϵk considered.

Figure 1 further plots the local power of the proposed unit root test and ADF test with

sample size n = 200. We set the lag parameter p = 0 for the cases of the yk is an AR(1) process

and p = 1 for the cases of the yk is an AR(2) process. It is well evident that δ = 0 implies α = 1,

corresponding to the model under the null hypothesis, while δ ̸= 0 represents the model under

various local alternatives. Generally speaking, the power performance of our unit root test is

comparable to that of the ADF test. In several cases, especially when yk ∼AR(2), our test with

C0 = 5 has correct size control and outperforms the ADF test regarding power performance,

showing its superiority in reducing the Type II error and corroborating its usefulness in specifying

unit root behaviors.

5.3 Simulations for predictive regression

We consider the univariate regression model:

yk = αxk−1 + vk,

xk = βxk−1 + ξk, β = 1 + τ/n,

vk = ϕvvk−1 + ζk, ξk = ϕξξk−1 + ζk, (5.3)

where both yk and xk are scalars, the initial value x0 = 0 and the noise component ζk ∼

i.i.d. N (0, 1). The numerical simulations are constructed by using 10, 000 repetitions for pa-

rameter settings τ ∈ {0,−1,−5,−10}, ϕv ∈ {0, 0.5}, ϕξ ∈ {0, 0.5}, and sample size n ∈

{50, 100, 200, 500}.
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To test null hypothesis H0: α = α0 against the alternative H1: α ̸= α0, we utilize the self-

weighted (SW) estimator α̂3n with f(x) = x in Theorem 4.1 in the case of predictive regression

(i.e., ϕv = 0), and the bias-corrected self-weighted (BC-SW) estimator α̂bSW in Theorem 4.2

with serially correlated error vk (i.e., ϕv ̸= 0). In both statistics, we take the truncation rate

bn = C0 log
−1 n in which C0 ∈ {1, 2, 3, 4, 5, 10} and the Bartlett kernel with the bandwidth

M := ⌊n0.33⌋ is used in constructing the LRV estimator Ψ̂1n given in (4.11).

For comparisons, we also apply the test statistic that depends on the IVX-based test for the

slope coefficient α. In particular, the IVX instrument is given by

z̃k = Rnz z̃k−1 +∆xk with Rnz = In + Cz/n
γ , (5.4)

in which we set the distancing parameter Cz = −1 and rate parameter γ ∈ {0.6, 0.7, 0.8, 0.9}.

Under the null hypothesis H0: α = α0, we consider two IVX-based test statistics, namely the

IVX and BC-IVX tests (??) as

tIV X =
α̂IV X − α0√
Var(α̂IV X)

, (IVX test) (5.5)

tbIV X =
α̃IV X − α0√
Var(α̃IV X)

, (BC-IVX test) (5.6)

in which the IVX estimator α̂IV X = (
∑n

k=1 z̃k−1xk−1)
−1(
∑n

k=1 z̃k−1yk) and the bias-corrected

IVX estimator α̃IV X = (
∑n

k=1 z̃k−1xk−1)
−1(
∑n

k=1 z̃k−1yk − nΛvξ). The bias correction term

Λ̂vξ =
∑M

j=1 k
(

j
M

)
1
n

∑
1≤k,k+j≤n ξ̃kṽk+j is based on the OLS residuals ṽk and ξ̃k, the Bartlett

kernel function, and the choice of bandwidth M = ⌊n0.33⌋.

[Insert Tables 4–6 here]

We report the size performance of the SW, BC-SW, IVX, and BC-IVX tests in Tables 4–

6. To be specific, Tables 4–5 show the empirical size performance of the SW and IVX tests

when the prediction error component vk has no serial correlations. As the errors of predictive

regression models accommodate no serial correlations, no bias correction terms are requested.

By mechanisms of SW and IVX tests, both tests reduce the degrees of persistence in regressors,

generating limiting Gaussian distributions that facilitate pivotal test procedures. It is well

evident that in Tables 4–5, both tests control size performances reasonably well when the tuning

parameters C0 and γ are appropriately chosen. Also, similar patterns can be observed in both

SW and IVX tests: when the tuning parameters C0 and γ get larger, the degrees of persistence

in regressors can be less reduced. Accordingly, we find that the oversizing phenomenon becomes

more severe in such cases. Therefore, these simulated results show that a suitable choice of C0

is 3 to 5, with which value the SW estimator performs reasonably well in finite samples.

20



Table 6 examines the empirical size performance of the SW, BC-SW, IVX, and BC-IVX

tests when the prediction error vk allows serial correlations. As vk follows an AR(1) process,

an additional bias-correction term is requested; otherwise, terribly behaved size performances

can be observed. Table 6 clearly shows that the self-weighted test without a bias-correction

term can be highly conservative, while the IVX test can also be severely oversized without bias-

correction. This fact calls upon bias-corrected inference procedures, including those relying on

the BC-SW and BC-IVX test statistics. Generally, both bias-corrected inference procedures can

control the finite-sample size performance reasonably well around the nominal level when the

prediction error vk is serially correlated. Their performances are comparable, though moderate

under-sizing phenomena can be observed for the self-weighted types of test statistics. Similar to

serially uncorrelated cases of Tables 4–5, tuning parameters C0 and γ determine the magnitude

of persistence reduction in regressors. Typically, with a larger value of C0 and γ, the regressors

become more persistent and present challenges to control sizes. All these simulated results show

that a suitable choice of C0 is 3 to 5, with which value the BC-SW performs reasonably well in

finite samples.

[Insert Figures 2–4 here]

This paper also examines the local power performance of SW, BC-SW tests under the fol-

lowing sequence of local alternative hypotheses H2n: α = α0 + δ/n where δ ∈ [0, 50]. Figures

2–4 present the local power performance of our SW related test statistics. For comparison, we

also plot the local power function for the IVX and BC-IVX tests. In particular, Figure 2 and 3

are concerned with the self-weighted estimator with the iid error term, while Figures 4 focuses

on the BC-SW estimator with a serially correlated error term. It is evident that when the

tuning parameter C0 is set as 3 or 5, the SW, BC-SW test statistics are consistent with power

functions approaching unity. Another pattern that can be observed is that as C0 increases, the

local power performances for all the self-weighted tests are improved. When C0 is selected as 5,

the self-weighted test has power performances comparable to those of the IVX-based test.

6 Empirical Illustration

This section applies the self-weighted test statistic to examine the predictability of market

fundamentals on the S&P 500 excess returns. Specifically, we apply the widely used financial

dataset of ?, ranging from January 1952 to December 2022. In the discussion of predictability

testing, we mainly consider monthly and quarterly data.
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Based on ?, the present paper computes the excess return as

Excess Returnt = log (1 + Pt)− log (1 + Rfreet−1) ,

where Pt is the S&P 500 value-weighted return and Rfreet−1 denotes the risk-free interest rate.

Based on ?, we employ the following persistent predictors: book-to-market value ratio (b/m),

dividend payout ratio (d/e), default yield spread (dfy), dividend-price ratio (d/p), dividend

yield (d/y), earnings-price ratio (e/p), inflation rate (infl), long-term yield (lty), net equity

expansion (nits), T-bill rate (tbl) and term spread (tms). ? also showed that nearly all these

regressors have roots that are close to unity, indicating the necessity of introducing testing pro-

cedures that stay robust to the nonstandard null distribution generated by persistent regressors.

In terms of this concern, they proposed the IVX instrumentation to reduce the degree of per-

sistence in regressors and further obtained empirical findings in which the chance of spurious

statistical significance is greatly reduced.

Our self-weighted test statistic can also obtain a robust null limit theory in the presence

of unit root regressors. Though our mechanism attains the Gaussian asymptotic theory by

trimming extreme values, which is different from the idea of the IVX method, the Gaussian

critical values can still be applied to our analysis. In the following discussions, we intend to

apply our self-weighted predictability test to the data of ? and investigate the predictability of

the aforementioned economic fundamentals in both monthly and quarterly frequencies.

For the self-weighted estimators, we choose the indicator weight function with the truncation

rate bn = C0 log
−1(n) for the standardized variables. We set C0 = 1/2 in our empirical study.

For the IVX estimator, we set the parameter γ = 0.9. The empirical results are presented in

Tables 7 and 8.

[Insert Tables 7–8 here]

Table 7 examines the predictability of regressors using monthly data. In this case, we rely on

the univariate predictive regression model along with testing procedures that use OLS, SW, and

IVX estimators. It is evident that both SW and IVX tests can help reduce the fake significance

of regressors. For instance, the least squares test statistic detects the predictive power of the

long-term yield (lty) on the 10% significance level, while both our SW test and IVX statistic

cannot reject the null hypothesis of no predictability. Similar observations can also be found for

the predictor, T-bill rate (tbl), whose predictability can be detected by both the OLS and IVX

tests on the 5% percent level but not by the SW test statistic. All these findings corroborate
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the validity of applying the robust inference procedure to eliminate the fake predictability phe-

nomenon. Moreover, the results of the T-bill rate (tbl) show that our newly proposed testing

method performs better than the IVX test in controlling over-rejection. Table 7 shows that our

SW testing procedure is able to reduce over-rejections in finding predictive phenomena in the

empirical analysis of monthly data.

Table 8 discusses the case of quarterly data and presents the results of all three tests. Simi-

lar to the main results of monthly data, the SW test statistic manages to reduce the statistical

significance of inflation rate (infl) and T-bill rate (tbl). In particular, both the OLS and IVX

tests find inflation rate (infl) and T-bill rate (tbl) regressors can forecast the excess return on

the 10% level while our SW test fails to the evidence of predictability. Basically, the proposed

test statistic of the present paper detects no predictive ability in terms of quarterly data. Sim-

ilar observations of diminishing predictability are also provided in ?. One possible economic

explanation for the diminishing predictability in the quarterly data is the loss of information

in the low-frequency sampling, which further generates the low noise-signal ratio for long-term

forecasting of stock returns. Our discussion of quarterly data also differs significantly from the

case of long-run predictability in the literature, in which the sampling data of higher frequency

is used for long-term prediction testing (?). This difference further explains why the long-run

forecasting relationship is always statistically significant while our low-frequency testing is in-

significant.

7 Proofs

7.1 Proof of Proposition 2.1

As in ?, page 269, on a richer probability space, there exists a Brownian motion B and non-

negative random variables τ1, τ2, ... such that {Sk, k ≥ 1} =d {S∗
k = BTk

, k ≥ 1}, and for k ≥ 1,

E(τk|F∗
k−1) = E(u2k|Fk−1) and

E(τ
p/2
k |F∗

k−1) ≤ CpE(|uk|p|Fk−1),

where F∗
k is generated by S∗

1 , ..., S
∗
k , Tk =

∑k
j=1 τj is F∗

k -measurable and Cp is a constant

depending only on p. Result (2.9) will follow if we prove:

∆n := sup
0≤t≤1

∣∣BT⌊nt⌋ −Bd2nt

∣∣ = OP

[
dn(δ

1/2
n + L1/p

np ) log1/2 n
]
. (7.1)

In fact, {Bn
t := Bd2nt

/dn}t≥0 is a Brownian motion and there exists a random array {S∗
nk, k =

1, 2, · · · , n, n ≥ 1} such that (see e.g. Theorem 6.10 in ?)

({Bt}t≥0, S
∗
n1, · · · , S∗

nn) =d ({Bn
t }t≥0, S

∗
1 , · · · , S∗

n}).
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Hence

sup
0≤t≤1

∣∣ 1
dn

S∗
n,⌊nt⌋ −Bt

∣∣ =d
∆n

dn
= OP

[
(δ1/2n + L1/p

np ) log1/2 n
]
.

This proves (2.9).

We now prove (7.1). By using Kolmogorov’s inequality for martingales, we have

P
(
max
1≤k≤n

|Tk − V 2
k | ≥ ∆

)
= P

(
max
1≤k≤n

∣∣∣ k∑
j=1

[
τj − E(τj |F∗

j−1)
]∣∣∣ ≥ ∆

)
≤ ∆−p/2E

∣∣∣ n∑
j=1

[
τj − E(τj |F∗

j−1)
]∣∣∣p/2

≤ Cp∆
−p/2

n∑
j=1

E|uj |p

for any ∆ > 0 and 2 < p ≤ 4, where Cp depends only on p. This, together with (2.8), yields

that, for any η > 0, there exists an A > 0 so that, whenever ∆ ≥ 4A (δn + L2/p
np ) and n ≥ A,

P ( sup
0≤t≤1

|T⌊nt⌋ − d2nt| ≥ d2n∆)

≤ P
(
max
1≤k≤n

|Tk − V 2
k | ≥ d2n∆/2

)
+ P

(
max
1≤k≤n

|V 2
k /d

2
n − k/n| ≥ ∆/2− 1/n

)
≤ Cp (∆/2)

−p/2 Lnp + P
(
max
1≤k≤n

|V 2
k /d

2
n − k/n| ≥ Aδn

)
≤ (2A)−p/2Cp + η ≤ 2η, (7.2)

where we have used the fact that L2/p
np ≥ n−1+2/p since by Hölder’s inequality,

d2n =

n∑
j=1

Eu2j ≤ n1−2/p
( n∑

j=1

E|uj |p
)2/p

= n1−2/pd2nL2/p
np .

On the other hand, it is well-known (e.g., ?, (4.32)) that, for any ϵ > 0 and ∆ > 0,

P
(

sup
|s−t|≤d2n∆

0≤t≤d2n

|Bt −Bs| ≥ dnϵ
)

= P
(

sup
|s−t|≤∆
0≤t≤1

|Bt −Bs| ≥ ϵ
)

≤ 14 ϵ−1∆−1/2 exp(−ϵ2/(18∆)). (7.3)

By using (7.2) and (7.3) and taking ∆ = 4A (δn+L2/p
np ) and ϵ = 6(∆ log n)1/2, simple calculations

yield, for any η > 0, there exists an A > 0 so that, whenever n ≥ A,

P
(
∆n ≥ 12A1/2 dn (δ

1/2
n + L1/p

np ) log1/2 n
)
≤ P

(
∆n ≥ dnϵ

)
≤ P

(
sup

|s−t|≤d2n∆

0≤t≤d2n

|Bt −Bs| ≥ dnϵ
)
+ P

(
sup

0≤t≤1
|T⌊nt⌋ − d2nt| ≥ d2n∆

)
≤ C n−2∆−1 log−1/2 n+ 2η ≤ 3η,

yielding (7.1).
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7.2 Proof of Theorem 2.1

Without loss of generality, assume that 0 < b < 1 and Xnk = X∗
nk for each n ≥ 1 and 1 ≤ k ≤ n.

In step 1, we show (2.5) when g(s, x) is continuous on [0, 1] × R satisfying |g(s, x)| ≤ C0/(1 +

|x|1+b). We start with an additional condition:

Con: there exists an a > 0 such that ĝ(s, x) = 0 for all 0 ≤ s ≤ 1 and |x| ≥ a, where

ĝ(s, x) =
∫∞
−∞ eixtg(s, t)dt.

This additional Con will be removed later. Let g̃(t) = sup0≤s≤1 |g(s, t)|. Since the Con implies

that g(s, x) = 1
2π

∫ a
−a e

itxĝ(s,−t)dt and |ĝ(s, x)| ≤
∫∞
−∞ g̃(t)dt < ∞ uniformly on [0, 1]× R, it is

readily seen from (2.4) that, for any A > 0,

cn
n

n∑
k=1

g
(k
n
, cnXnk

)
=

1

2πn

n∑
k=1

∫ acn

−acn

ĝ
(k
n
, − t

cn

)
eitXnkdt

=
1

2π

∫ acn

−acn

∫ 1

0
ĝ
( [nu]
n
, − t

cn

)
eitXn,[nu]du dt+ oP(1)

=
1

2π

∫ acn

−acn

∫ 1

0
ĝ
( [nu]
n
, − t

cn

)
eitXudu dt+ oP(1)

= R1n(A) +R1n(A), (7.4)

where

R1n(A) =
1

2π

∫
|t|≤A

∫ 1

0
ĝ
( [nu]
n
, − t

cn

)
eitXudu dt,

R2n(A) =
1

2π

∫
A<|t|≤acn

∫ 1

0
ĝ
( [nu]
n
, − t

cn

)
eitXudu dt.

Note that, for any A > 0, as n→ ∞,

sup
0≤u≤1

sup
|t|≤A

|ĝ([nu]/n,−t/cn)− ĝ(u, 0)| → 0.

It follows that, for any A > 0, as n→ ∞,(
Xn,⌊nt⌋, R1n(A)

)
⇒
(
Xt,

1

2π

∫
|t|≤A

∫ 1

0
ĝ(u, 0)eisXudu ds

)
, (7.5)

on DR2 [0, 1]. As ĝ(u, 0) = G(u) and by recalling (2.2), the result (2.5) under the Con will follow

if we prove

E|R2n(A)|2 → 0, (7.6)

as n→ ∞ first and then A→ ∞. In fact, for a Gaussian process X satisfying (2.1), we have∫ ∞

−∞

∫ ∞

−∞

∫ T

0

∫ T

0

∣∣EeitXu−isXv)
∣∣du dv dt ds <∞, for any T > 0.
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Thus, by recalling |ĝ(s, x)| ≤
∫∞
−∞ g̃(t)dt <∞ uniformly on [0, 1]× R, it follows that

E|R2n(A)|2 ≤ C

∫
|t|>A

∫
|t|>A

∫ 1

0

∫ 1

0
ĝ
( [nu]
n
, − t

cn

)
ĝ
( [nv]
n
,
s

cn

)
EeitXu−isXvdu dv dt ds

≤ C

∫
|t|>A

∫
|t|>A

∫ 1

0

∫ 1

0

∣∣EeitXu−isXv
∣∣ du dv dt ds

→ 0,

as n→ ∞ first and then A→ ∞. This proves (7.6) and also completes the proof of (2.5) when

g(s, x) is continuous by imposing the additional Con.

We next remove the additional Con when g(s, x) is continuous on [0, 1] × R satisfying

|g(s, x)| ≤ C/(1 + |x|1+b). This is essentially the same as in the proof of Theorem IV 2.1

in ? (see also ?), and so we only provide an outline. Write, for 0 < b < 1,

f(x) =
∞∑
n=1

n−1−b/2 sin
2(x− n)

(x− n)2

and, for δ > 0 (sin y/y ≡ 1 if y = 0),

gδ(s, x) =
1

π

∫ ∞

−∞

sin2 y

y2
g(s, x+ δy)dy.

Simple calculation shows that, for some constants c1 > 0 and c2 > 0,

c1 /(1 + |x|1+b/2) ≤ f(x) ≤ c2 /(1 + |x|1+b/2). (7.7)

Furthermore, for any ϵ > 0, there exists δ0 > 0 such that, whenever 0 < δ ≤ δ0,

sup
0≤s≤1
x∈R

|gδ(s, x)− g(s, x)|

≤ 1

π

∫ ∞

−∞

sin2 y

y2
sup
0≤s≤1
x∈R

∣∣g(s, x+ δy)− g(s, x)
∣∣dy ≤ ϵ, (7.8)

∫ ∞

−∞
sup

0≤s≤1
|gδ(s, x)− g(s, x)|dx

≤ 1

π

∫ ∞

−∞

sin2 y

y2

∫ ∞

−∞
sup

0≤s≤1

∣∣g(s, x+ δy)− g(s, x)
∣∣dxdy ≤ ϵ, (7.9)

where we have used the facts that
∫∞
−∞

sin2 x
x2 dx = π and g(s, x) is uniformly continuous on

[0, 1]× [−A,A] for any A ∈ R satisfying
∫∞
−∞ sup0≤s≤1

∣∣g(s, x)∣∣dx <∞.

It follows from (7.7)-(7.9) that, for small ϵ > 0, there exists an δ > 0 such that

g(s, x) ≤ g+(s, x) := gδ(s, x) + c−1
1 ϵf(x)

≤ g(s, x) + 2c−1
1 ϵf(x) ≤ g(s, x) + 2c−1

1 c2 ϵ (1 + |x|−1−b),

g(s, x) ≥ g−(s, x) := gδ(s, x)− c−1
2 ϵf(x)

≥ g(s, x)− 2c−1
2 ϵf(x) ≥ g(s, x)− 2c−1

2 c1 ϵ (1 + |x|−1−b).
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Now, to show (2.5), it suffices to verify that

both g+(s, x) and g−(s, x) satisfy the Con. (7.10)

Indeed, in terms of (7.10), it follows from the result proved above that

cn
n

n∑
k=1

g
(k
n
, cnXnk

)
≤ cn

n

n∑
k=1

g+
(k
n
, cnXnk

)
→D

∫ 1

0
G+(t)LX(dt, 0),

cn
n

n∑
k=1

g
(k
n
, cnXnk

)
≥ cn

n

n∑
k=1

g−
(k
n
, cnXnk

)
→D

∫ 1

0
G−(t)LX(dt, 0)

where G±(t) =
∫∞
−∞ g±(t, x)dx. Since G+(t)−G−(t) = ϵ (c−1+c−1

2 )
∫∞
−∞ f(x)dx, the result (2.5)

is established due to the arbitrary of ϵ.

The verification of (7.10) is simple. In fact, it is trivial to see that g+(s, x) is continuous

satisfying
∫∞
−∞ sup0≤s≤1 |g+(s, x)|dx <∞. On the other hand, by noting that∫ ∞

−∞

sin2 t

t2
eitxdt =

{
π(1− |x|/2), if |x| < 2,
0, otherise,

we have

ĝ+(s, x) =

∫ ∞

−∞
eitxg+(s, t)dt,

=
1

π

∫ ∞

−∞
g(s, t)eitxdt

∫ ∞

−∞

sin2 y

y2
eiδx ydy

+c−1
1 ϵ

∞∑
n=1

n−1−b/2eixn
∫ ∞

−∞

sin2 y

y2
eiy xdy

= 0,

for all 0 ≤ s ≤ 1 and min{|x|, |x|δ} ≥ 2. Hence g+(s, x) satisfies the Con. The verification for

g−(s, x) is similar and the details are omitted.

We finally show that (2.5) still holds when g(s, x) satisfies (b) without the assumption of

continuity. In fact, since g2δ(s, x) is continuous on [0, 1]×R satisfying |g2δ(s, x)| ≤ C/(1+|x|1+b),

it follows from the result in step 1 that, for any δ > 0,

cn
n

n∑
k=1

g
(k
n
, cnXnk

)
≤ cn

n

n∑
k=1

g2δ

(k
n
, cnXnk

)
→D

∫ 1

0
G2δ(t)LX(dt, 0),

where G2δ(t) =
∫∞
−∞ g2δ(t, x)dx. Similarly, for any δ > 0, we have

cn
n

n∑
k=1

g
(k
n
, cnXnk

)
≥ cn

n

n∑
k=1

g1δ

(k
n
, cnXnk

)
→D

∫ 1

0
G1δ(t)LX(dt, 0),

where G1δ(t) =
∫∞
−∞ g1δ(t, x)dx. Since, for i = 1 and 2,

sup
0≤t≤1

∣∣∣Giδ(t)−
∫ ∞

−∞
g(t, x)dx

∣∣∣ ≤
∫ ∞

−∞
sup

0≤s≤1
|giδ(s, x)− g(s, x)|dx ≤ δ,

the result (2.5) follows by taking δ → 0. The proof of Theorem 2.1 is now complete. 2
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7.3 Proof of Theorem 2.2

We only prove (2.7) when g(s, x) is continuous on [0, 1]×R satisfying the additional Con. Since

vk is positive, the remaining proof is similar to that of Theorem 2.1 with minor modification.

We omit the details.

As in the proof of Theorem 2.1, similarly to (7.4), we may write

cn
n

n∑
k=1

g
(k
n
, cnXnk

)
vk = A0

cn
n

n∑
k=1

g
(k
n
, cnXnk

)
+

1

2π

∫ acn

−acn

An(t)dt, (7.11)

whereAn(t) =
1
n

∑n
k=1 ĝ

(
k
n , −

t
cn

)
eitXnk ṽk and ṽk = vk−A0. Recall that |ĝ(s, x)| ≤

∫∞
−∞ g̃(t)dt :=

C1 <∞ and note that, under condition (iii),

|ĝ(s, x)− ĝ(s′, x)| ≤ Ĉ |s− s′|,

uniformly on [0, 1] × R, where Ĉ = C
∫∞
−∞

1
1+|x|1+bdx. By letting Tn = [n/m] and using

supk≥1Evk <∞, we have

|An(t)| ≤ 1

n

Tn∑
j=0

∣∣∣ (j+1)m∑
k=jm+1

ĝ
(k
n
, − t

cn

)
eitXnk ṽk

∣∣∣+ C1

n

n∑
k=mTn+1

| ṽk
∣∣

≤ 1

n

Tn∑
j=0

∣∣∣ (j+1)m∑
k=jm+1

ĝ
(k
n
, − t

cn

)
ṽk

∣∣∣+ C1

n

n∑
k=mTn+1

|ṽk
∣∣

+C|t| max
0≤j≤Tn

max
jm<k≤(j+1)m

|Xnk −Xn,jm| 1
n

n∑
k=1

|ṽk|

≤ C1

n

Tn∑
j=0

∣∣∣ (j+1)m∑
k=jm+1

ṽk

∣∣∣+OP (|t|) sup
0≤u≤1

sup
|u−v|≤m/n

|Xn,[nu] −Xn,[nv]|

+OP

( |n−mTn|+m

n

)
. (7.12)

Since m/n = o(c
−2/η
n ), under (2.4) and condition (i), we have

sup
0≤u≤1

sup
|u−v|≤m/n

|Xn,[nu] −Xn,[nv]|

≤ sup
0≤u≤1

sup
|u−v|≤m/n

|Xu −Xv|+ oP (c
−2
n )

= OP (1)(m/n)
η + oP (c

−2
n ) = oP (c

−2
n ).

This, together with condition (ii) and (7.12), yields sup|t|≤acn |An(t)| = oP (c
−1
n ). Taking this

estimate into (7.11), the required (2.7) is proved. 2
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7.4 Proof of Theorem 3.1

Write

Sn =
1√
n2b3n

n∑
k=1

uk yk−1I(|yk−1| ≤ bn
√
n),

V 2
n =

1

n2b3n

n∑
k=1

y2k−1I(|yk−1| ≤ bn
√
n).

It suffices to show that, as n→ ∞,

(
Sn, V

2
n

)
→D

([
σ

∫
|x|≤1

x2dxLJτ (1, 0)
]1/2

N, σ−1

∫
|x|≤1

x2dxLJτ (1, 0)
)
. (7.13)

Indeed, by noting that

α̂1n − α =

∑n
k=1 uk yk−1I(|yk−1| ≤ bn

√
n)∑n

k=1 y
2
k−1I(|yk−1| ≤ bn

√
n)

, (7.14)

the required results follow from a simple algebra by using (7.13),
∫
|x|≤1 x

2dx = 2/3 and the

continuous mapping theorem.

To prove (7.13), we start with some preliminaries. Let zk =
∑k

i=1 ui and z0 = 0. Recall that

{uk,Fk}k≥1 forms a martingale difference with

σ2 = Eu2k and supk≥1E|uk|2+δ <∞, (7.15)

for some δ > 0. Since σk,A := σ2kI(σ
2
k ≥ A), for each A ≥ 0, keeps a stationary α-mixing random

sequence with Eσ
1+δ/2
1,A ≤ Eσ2+δ

1 <∞ and coefficients α(n) ≤ Cn−(1+δ), it follows from Lemma

2 of ? with a simple algebra that there exists a positive constant K depending only on δ such

that

P
(

max
1≤m≤n

∣∣ m∑
k=1

(
σk,A − Eσk,A

)∣∣ ≥ x
)

≤ C K nx−1−δ/(4+3δ), (7.16)

for every x ≥ Kn1/2 log n. Let Yn = max1≤m≤n

∣∣∑m
k=1

(
σk,A − Eσk,A

)∣∣. It follows from (7.16)

that, when n is sufficiently large,

EYn =

∫ ∞

0
P (Yn ≥ y)dy ≤ n1−δ/4(1+δ) + C Kn

∫ ∞

n1−δ/4(1+δ)

x−1−δ/(4+3δ)dx

≤ Cδ n
1−δ/4(1+δ)

for some constant Cδ depending only on δ. This, together with the stationarity of σk,A and the

fact that σk,0 = σ2k = E(u2k|Fk−1), implies that

max
1≤m≤n

∣∣∣ m∑
k=1

E(u2k|Fk−1)−mσ2
∣∣∣ = OP (n

1−δ/4(1+δ)) (7.17)
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and, for each A ≥ 0 and m = mn → ∞ satisfying m/n→ 0,

max
0≤j≤n−m

E
∣∣∣ 1
m

j+m∑
k=j+1

σk,A − Eσ1,A

∣∣∣ = O(m−δ/4(1+δ)). (7.18)

Due to (7.15) and (7.17), the strong approximation result from Proposition 2.1 shows that, on

a richer probability space, there exists a Brownian motion B = {Bt}t≥0 and a random array

{z∗nk, n ≥ 1, k = 1, 2, · · · , n} such that {z∗nk, k = 1, 2, · · · , n} =d {zk, k = 1, 2, · · · , n} for all

n ≥ 1 and

sup
0≤t≤1

∣∣ 1√
nσ

z∗n,⌊nt⌋ −Bt

∣∣ = OP (n
−η), (7.19)

where η > 0 is a constant depending only on δ. On the other hand, by noting that

yk =

k∑
i=1

(
1 +

τ

n

)k−i
ui +

(
1 +

τ

n

)k
y0

=
k∑

i=1

(
1 +

τ

n

)k−i
(zi − zi−1) +

(
1 +

τ

n

)k
y0

= zk +
τ

n

k−1∑
i=1

(
1 +

τ

n

)k−i−1
zi +

(
1 +

τ

n

)k
y0,

we have

y⌊nt⌋√
n

=
z⌊nt⌋√
n

+ τ

∫ t

0
eτ(t−s) z[ns]√

n
ds+Rn(t), (7.20)

where sup0≤t≤1 |Rn(t)| = OP (n
−1/2). This, together with (7.19), indicates that there exists a

random array {y∗nk, n ≥ 1, k = 1, 2, · · · , n} such that

{(y∗nk, z∗nk), k = 1, 2, · · · , n} =d {(yk, zk), k = 1, 2, · · · , n}

for all n ≥ 1, and

sup
0≤t≤1

∣∣ 1√
nσ

y∗n,⌊nt⌋ − Jτ (t)
∣∣ = OP (n

−η) (7.21)

for some η > 0, where Jτ (t) = Bt+ τ
∫ t
0 e

τ(t−s)Bsds. Since Jτ (t) is a Gaussian process satisfying

sup
|s−t|≤∆
0≤t≤1

|Jτ (t)− Jτ (s)| ≤ Cτ sup
|s−t|≤∆
0≤t≤1

|Bt −Bs| = OP (∆
1/2),

it follows easily from Theorem 2.2 with Xnk = yn,k−1 = yk−1/
√
nσ and vk = σk,A [recall (7.18)]

that, for any bn > 0 satisfying bn → 0 and bn log
K n→ ∞ for some K > 0,

1

nbn

n∑
k=2

σk,A h(yk−1/bn
√
n)I(|yk−1| ≤ bn

√
n)

=
1

nbn

n∑
k=2

σk,AH(yn,k−1/bn) =
Eσ1,A
nbn

n∑
k=1

H(ynk/bn) + oP (1), (7.22)
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for each A ≥ 0, where H(x) = h(σ x)I(σ |x| ≤ 1) and h(x) is a continuous function. By taking

A = 0, as a consequence of (7.22) and Theorem 2.1, we have

( 1√
nσ

⌊nt⌋∑
i=1

ui,
1

nbn

n∑
k=2

σ2kH(yn,k−1/bn)
)

=
( 1√

nσ

⌊nt⌋∑
i=1

ui,
σ2

nbn

n∑
k=1

H(ynk/bn)
)
+ oP (1)

⇒
(
Bt, σ

∫
|x|≤1

h(x)dxLJτ (1, 0)
)
, (7.23)

on DR2 [0, 1], where LJr(t, s) is the local time process of the linear diffusion Jτ = {Jτ (t)}t≥0 and

we have used the fact:
∫∞
−∞H(x)dx = σ−1

∫
|x|≤1 h(x)dx.

We are now ready to prove (7.13). Let Sn =
∑n

k=1 xnkuk, where

xnk =
1

nb
3/2
n

yk−1I(|yk−1| ≤ bn
√
n).

First note that {uk,Fk}k≥1 is a martingale difference and xnk is a function of uk−1, uk−2, ..., u1

so that {Sn}n≥1 is a martingale having the conditional variance:

Ṽ 2
n =

1

n2b3n

n∑
k=1

σ2k y
2
k−1I(|yk−1| ≤ bn

√
n).

Since result (7.23) with h(x) = x2 yields that, on DR2 [0, 1],

( 1√
nσ

⌊nt⌋∑
i=1

ui, Ṽ 2
n

)
=

( 1√
nσ

⌊nt⌋∑
i=1

ui, σ2 V 2
n

)
+ oP (1)

⇒
(
Bt, σ

∫
|x|≤1

x2dxLJτ (1, 0)
)
,

by using Wang’s extended martingale limit theorem(c.g. Theorem 3.13, ? with Xnk = xnkuk

and Znk = uk/
√
n), (7.13) will follow if we prove:

1

n

n∑
k=1

E
[
u2kI(|uk| ≥ ϵ

√
n)|Fk−1

]
→P 0, for any ϵ > 0, (7.24)

n∑
k=1

x2nkE
[
u2kI(|xnkuk| ≥ ϵ)|Fk−1

]
→P 0, for any ϵ > 0, (7.25)

1√
n

n∑
k=1

|xnk|E(u2k|Fk−1) →P 0. (7.26)

The proof of (7.26) is simple. In fact, by noting nbn → ∞, it follows from (7.23) with

h(x) = |x| (H(x) = h(σ x)I(σ |x| ≤ 1)) that

1√
n

n∑
k=1

|xnk|E(u2k|Fk−1) =
1√
nbn

1

nbn

n∑
k=1

σ2kH(yn,k−1/bn) →P 0,
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as required. As for (7.25), for any ϵ > 0 and A > 0, it follows from uk = σkϵk, σk is adapted to

Fk−1 and E
(
ϵ2k|Fk−1

)
= 1 that

n∑
k=1

x2nkE
[
u2kI(|xnkuk| ≥ ϵ)|Fk−1

]
≤

n∑
k=1

x2nkE
[
u2kI(|uk| ≥ A)|Fk−1

]
+

n∑
k=1

x2nkI(|xnk| ≥ ϵ/A)E
[
u2k|Fk−1

]
≤

n∑
k=1

x2nkσ
2
kI(σk ≥

√
A) + sup

k≥1
E
[
ϵ2kI(|ϵk| ≥

√
A)|Fk−1

] n∑
k=1

x2nkσ
2
k

+A2ϵ−2
n∑

k=1

x4nk σ
2
k

=
1

nbn

n∑
k=1

H1(yn,k−1/bn)σ
2
kI(σk ≥

√
A) + sup

k≥1
E
[
ϵ2kI(|ϵk| ≥

√
A)|Fk−1

] 1

nbn

n∑
k=1

H1(yn,k−1/bn)σ
2
k

+A2ϵ−2 1

(nbn)2

n∑
k=1

H2(yn,k−1/bn)σ
2
k, (7.27)

where H1(x) = (σ x)2I(σ |x| ≤ 1) and H2(x) = (σ x)4I(σ |x| ≤ 1). Since nbn → ∞ and

Eσ21I(σ1 ≥
√
A) → 0 and supk≥1 E

[
ϵ2kI(|ϵk| ≥

√
A)|Fk−1

]
→P 0 as A → ∞, it follows easily

from (7.22) and (7.27) that

n∑
k=1

x2nkE
[
u2kI(|xnkuk| ≥ ϵ)|Fk−1

]
→P 0,

as n→ ∞ first and then A→ ∞. This proves (7.25). Similarly, for ϵ > 0, we have

1

n

n∑
k=1

E
[
u2kI(|uk| ≥ ϵ

√
n)|Fk−1

]
≤ 1

n

n∑
k=1

σ2kI(σk ≥ log n) + sup
k≥1

E
[
ϵ2kI(|ϵk| ≥ ϵ

√
n/ log n)|Fk−1

] 1
n

n∑
k=1

σ2k

= oP (1),

implying (7.24). (7.13) is now proved and we also complete the proof of Theorem 3.1. 2

7.5 Proof of Theorem 3.2

We start with some preliminaries. Let Θ(z) = 1 −
∑p−1

j=1 θjz
j , L be the usual lag operator and

Θ(L)ũk = uk. Since
∑p−1

j=1 |θj | < 1, Θ(z) is invertible when |z| ≤ 1 so that

ũk = Θ−1(L)uk =
∞∑
j=0

πjuk−j , where Θ−1(z) =
∞∑
j=0

πjz
j and u−i = 0 for i ≥ 0.

It follows from ? that

ũk = Θ−1(1)uk + ûk−1 − ûk, (7.28)
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where ûk =
∑∞

i=0 π̂iuk−i with π̂i =
∑∞

j=i+1 πj , satisfying that Eû2k = σ2
∑∞

i=0 π̂
2
i < ∞ and

(recall u−i ≥ 0 if i ≥ 0)

max
1≤k≤n

|ûk| ≤
∞∑
i=0

|π̂i| max
1≤k≤n

|uk| = OP (n
1/(2+δ)), (7.29)

where we have used the facts that
∑∞

i=0 |π̂i| ≤
∑∞

i=0 i|πi| <∞ and, due to (7.15),

max
1≤k≤n

|uk| ≤
( n∑
k=1

|uk|2+δ
)1/(2+δ)

= OP (n
1/(2+δ)).

Consequently, we have supk≥1 Eũ
2
k <∞ and, for any m ≥ 1 and j ≥ 0,

max
0≤j≤n−m

E
∣∣∣ j+m∑
k=j+1

ũk

∣∣∣ ≤ Cm1/2, (7.30)

for some constant C > 0. Furthermore, when α = 1, we may rewrite (3.5) as

yk = yk−1 + ũk, (7.31)

so that zk = (ũk−1, ..., ũk−p) (recall ũj = 0 if j < 0). See ?, for instance.

The proof of (3.6) now follows from the following lemmas. Define ||z|| = (z21 + ...+ z2p)
1/2 for

a vector z = (z1, · · · , zp) and ||A|| = maxz ||Az||/||z|| for a p× p matrix A.

Lemma 7.1. When α = 1, we have

(a) ||
(∑n

k=1 z
′
kzk
)−1|| = OP (n

−1);

(b) ||
∑n

k=1 zkyk−1|| = OP (n);

(c) ||
∑n

k=1 zkuk|| = OP (
√
n);

(d)
∣∣∣∣∣∣∑n

k=1 zkyk−1I(|yk−1| ≤ bn
√
n)
∣∣∣∣∣∣ = OP (n

3/2b2n).

Proof. (a)-(b) follows from Lemma 3.2 of ?. See, also, ?. (c) is obvious by using the martingale

properties.

We next prove (d), starting with some preliminaries. It follows from (7.28) and (7.31) that

yn = Θ−1(1)
n∑

k=1

uk + û0 − ûn.

Since |û0|+max1≤k≤n |ûk| = OP (n
1/(2+δ)) for some δ > 0 by using (7.29), on a richer probability

space, there exists a Brownian motion B = {B(t)}t≥0 so that, for some η > 0,

sup
0≤t≤1

∣∣∣yn,⌊nt⌋ − Θ−1(1)B(nt)√
n

∣∣∣ = OP (n
−η), (7.32)
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where ynk = yk/(
√
nσ). As a consenqence, for any m→ ∞ and m/n→ 0, we have

sup
0≤u≤1

sup
|u−v|≤m/n

|yn,[nu] − yn,[nv]|

≤ Θ−1(1) sup
0≤u≤1

sup
|u−v|≤m/n

∣∣∣B(nu)√
n

− B(nv)√
n

∣∣∣+ oP (n
−η)

= OP (1)(m/n)
1/2 log(m/n) + oP (n

−η). (7.33)

Let Hn(x) be a real function satisfying the following condition: for any x, y ∈ R,

|Hn(x)−Hn(y)| ≤ C b−1
n |x− y| and sup

x,n
|Hn(x)| ≤ C.

Recall that zk = (ũk−1, ..., ũk−p). In terms of (7.30) and (7.33), by letting Tn = [n/m] and

choosing m such that (m/n)1/2 log(m/n) = O(b3n) and mb
2
n → ∞, we have

∣∣∣∣∣∣ n∑
k=1

zkHn(b
−1
n ynk)

∣∣∣∣∣∣ ≤
Tn∑
j=0

∣∣∣∣∣∣ (j+1)m∑
k=jm+1

zkHn(b
−1
n ynk)

∣∣∣∣∣∣+ C

n∑
k=mTn+1

||zk||

≤ C

Tn∑
j=0

∣∣∣∣∣∣ (j+1)m∑
k=jm+1

zk

∣∣∣∣∣∣+ C
n∑

k=mTn+1

||zk||

+ max
0≤j≤Tn

max
jm<k≤(j+1)m

|Hn(b
−1
n ynk)−Hn(b

−1
n yn,(j+1)m)|

n∑
k=1

||zk||

≤ OP

[
nm−1/2 + (n−mTn)

]
+OP (n b

−2
n ) sup

0≤u≤1
sup

|u−v|≤m/n
|yn,[nu] − yn,[nv]|

= OP (nbn). (7.34)

We are now ready to prove (d). We may write∣∣∣∣∣∣ n∑
k=1

zkyk−1I(|yk−1| ≤ bn
√
n)
∣∣∣∣∣∣ = σ

√
nbn

∣∣∣∣∣∣ n∑
k=1

zkl(σ b
−1
n yn,k−1)

∣∣∣∣∣∣
where l(x) = xI(|x| ≤ 1). Let l1n(x) be a continuous function so that

l1n(x) =


x, |x| ≤ 1− bn,
0, |x| ≥ 1 + bn,
linear, 1− bn < |x| < 1 + bn.

and l2n(x) = l(x)− l1n(x). Since |l1n(x)| ≤ 1 and

|l1n(x)− l1n(y)| ≤ max{(2bn)−1, 1} |x− y|,

it follows from (7.34) that ∣∣∣∣∣∣ n∑
k=1

zkl1n(b
−1
n ynk)

∣∣∣∣∣∣ = OP (nbn).

34



Hence result (d) will follow if we prove

Rn :=
∣∣∣∣∣∣ n∑

k=1

zkl2n(b
−1
n ynk)

∣∣∣∣∣∣ = OP (nbn). (7.35)

Note that |l2n(x)| ≤ I(1 − bn ≤ |x| ≤ 1 + bn). Applying the Cauchy-Schwarz inequality and

recalling supk≥1E||zk||2 <∞ gives

Rn ≤
n∑

k=1

I(1− bn ≤ |b−1
n yn,k| ≤ 1 + bn)||zk||

≤
( n∑

k=1

I(1− bn ≤ |b−1
n ynk| ≤ 1 + bn)

n∑
k=1

||zk||2
)1/2

= OP (n
1/2)

( n∑
k=1

I(1− bn ≤ |b−1
n ynk| ≤ 1 + bn)

)1/2
. (7.36)

Write Bn(t) = Θ−1(1)B(nt)/
√
n for 0 ≤ t ≤ 1, and let

Ωn =
{

sup
0≤t≤1

|yn,⌊nt⌋ −Bn(t)| ≤ b2n

}
.

Then on Ωn, we have

n∑
k=1

I(1− bn ≤ |b−1
n ynk| ≤ 1 + bn)

= n

∫ 1

0
I(1− bn ≤ |b−1

n yn,⌊nt⌋| ≤ 1 + bn)dt+OP (1)

≤ n

∫ 1

0
I(1− 2bn ≤ |b−1

n Bn(t)| ≤ 1 + 2bn)dt+OP (1) = OP (nb
2
n), (7.37)

where we have used the fact that, by writing a0 =
√
|Θ−1(1)|,∫ 1

0
I(1− 2bn ≤ |b−1

n Bn(t)| ≤ 1 + 2bn)dt

d
=

∫ 1

0
I(1− 2bn ≤ |b−1

n B(a0 t)| ≤ 1 + 2bn)dt

= a−1
0

∫ a0

0
I(1− 2bn ≤ |b−1

n B(t)| ≤ 1 + 2bn)dt

= a−1
0

∫ ∞

−∞
I(1− 2bn ≤ |b−1

n x| ≤ 1 + 2bn)LB(a0, x)dx

= a−1
0 bn

∫ ∞

−∞
I(1− 2bn ≤ |x| ≤ 1 + 2bn)LB(a0, xbn)dx

= 8a−1
0 b2nLB(a0, 0)(1 + oP (1)).

Note that (7.32) implies lim
n→∞

P(Ωn) = 1 for any bn > 0 satisfying bn → 0 and bn log
K n→ ∞ for

some K > 0. Now (7.35) follows from (7.36)−(7.37) and hence the proof of (d) is complete.
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Lemma 7.2. Recall ỹk = ykI(|yk| ≤ bn
√
n). When α = 1, we have

( 1√
n2b3n

n∑
k=1

ỹk−1 uk,
1

n2b3n

n∑
k=1

ỹ2k−1

)
→D

(
σ Z1/2N, Z

)
, (7.38)

where Z = σ−1Θ−2(1)
∫
|x|≤1 x

2dxLB(1, 0) and N is a standard normal variate independent of

the local time LB(t, x) of Brownian motion B = {Bt}t≥0.

Proof. The proof is similar to that of (7.13) by using (7.32) and Theorem 2.2. The details

are omitted. 2

We now come back to the proofs of (3.6) and (3.7). Note that, when α = 1,

α̂2n − 1 = An/Bn, (7.39)

where ỹk−1 = yk−1I(|yk−1| ≤ bn
√
n) and

An =

n∑
k=1

ỹk−1 uk −
n∑

k=1

zk ỹk−1

( n∑
k=1

z′kzk

)−1
n∑

k=1

z′k uk,

Bn =

n∑
k=1

yk−1ỹk−1 −
n∑

k=1

zk ỹk−1

( n∑
k=1

z′kzk

)−1
n∑

k=1

z′k yk−1.

Using Lemmas 7.1 and 7.2, simple calculations show that[ n∑
k=1

y2k−1I(|yk−1| ≤ bn
√
n)
]1/2 (

α̂2n − α
)

=
( 1

n2b3n

n∑
k=1

ỹ2k−1

)1/2 1√
n2b3n

∑n
k=1 ỹk−1 uk − 1√

n2b3n

∑n
k=1 zk ỹk−1

(∑n
k=1 z

′
kzk
)−1∑n

k=1 z
′
k uk

1
n2b3n

∑n
k=1 ỹ

2
k−1 −

1
n2b3n

∑n
k=1 zk ỹk−1

(∑n
k=1 z

′
kzk
)−1∑n

k=1 z
′
k yk−1

=

1√
n2b3n

∑n
k=1 ỹk−1 uk +OP (b

1/2
n )(

1
n2b3n

∑n
k=1 ỹ

2
k−1

)1/2
+OP (n−1/2b−1

n )

→D N (0, σ2),

due to bn → 0 and bn log
K n → ∞ for some K > 0. This proves (3.6). The proof of (3.7) is

simple and hence the details are omitted. 2

7.6 Proof of Theorem 4.1

We start with some preliminaries. First note that, as in (7.28), it follows from ? that

ξj = Φ ηj + ξ̂j−1 − ξ̂j , (7.40)
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where ξ̂j =
∑∞

i=0 ϕ̂iηj−i with ϕ̂i =
∑∞

k=i+1 ϕk, satisfying that Eξ̂2j = σ22
∑∞

i=0 ϕ̂
2
i < ∞. As a

consequence, we have

xk =

k∑
j=1

βk−jξj = Φ

k∑
j=1

βk−jηj +

k∑
j=1

βk−j
[
ξ̂j−1 − ξ̂j

]
= Φ

k∑
j=1

βk−jηj +∆k,

where ∆k = βk−1ξ̂0 − ξ̂k + (1− β)
∑k−1

j=1 β
k−j−1ξ̂j . Since, as in the proof of (7.29),

max
1≤k≤n

|∆k| ≤ Cτ

(
|ξ̂0|+ max

1≤k≤n
|ξ̂k|
)
= OP (n

1/(2+δ)),

the same arguments used in the proof of (7.21) yield that, on a richer probability space, there

exists a Brownian motion B = {Bt}t≥0 and a random array {x∗nk, n ≥ 1, k = 1, 2, · · · , n} such

that {x∗nk, k = 1, 2, · · · , n} =d {xk, k = 1, 2, · · · , n} for all n ≥ 1 and

sup
0≤t≤1

∣∣ Φ−1

√
nσ2

x∗n,⌊nt⌋ − Jτ (t)
∣∣ = OP (n

−η) (7.41)

for some η > 0, where Jτ (t) = Bt + τ
∫ t
0 e

τ(t−s)Bsds is a Gaussian process satisfying

sup
|s−t|≤∆
0≤t≤1

|Jτ (t)− Jτ (s)| ≤ Cτ sup
|s−t|≤∆
0≤t≤1

|Bt −Bs| = OP (∆
1/2).

We are now ready to prove Theorem 4.1. Note that

α̂3n − α =

∑n
k=1 ukf(xk−1) I(|xk−1| ≤ bn

√
n)∑n−1

k=0 f
2(xk)I(|xk−1| ≤ bn

√
n)

. (7.42)

Recalling condition A2, we have

1√
nbnπ2(bn

√
n)

n∑
k=1

ukf(xk−1) I(|xk−1| ≤ bn
√
n) =

1√
nbn

n∑
k=1

ukH̃(σ2Φxnk/bn) +Rn,

where xnk = Φ−1 xk−1/
√
nσ2, H̃(x) = H(x)I(|x| ≤ 1) and

Rn =
1√

nbnπ2(bn
√
n)

n∑
k=1

ukR(bn
√
n, σ2Φxnk/bn) I(σ2Φ |xnk|/bn ≤ 1).

Under given conditions A1 and A2, Rn is a martingale with the conditional variance:

1

nbnπ2(bn
√
n)

n∑
k=1

σ21k R
2(bn

√
n, σ2Φxnk/bn) I(σ2Φ |xnk|/bn ≤ 1)

≤ a2(bn
√
n)

π2(bn
√
n)

1

nbn

n∑
k=1

σ21k A(σ2Φxnk/bn) = oP (1),
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where A(x) =
(
1 + |x|δ

)
I(|x| ≤ 1) and we have used the fact:

1

nbn

n∑
k=1

σ21k A(σ2Φxnk/bn) = OP (1),

as in the proof of (7.23). As a consequence, the classical martingale limit theorem (see, e.g., ?)

implies that Rn = oP (1), i.e.,

1√
nbnπ2(bn

√
n)

n∑
k=1

ukf(xk−1) I(|xk−1| ≤ bn
√
n) =

1√
nbn

n∑
k=1

ukH̃(σ2Φ xnk/bn) + oP (1).

Similarly, we have

1

nbnπ2(bn
√
n)

n−1∑
k=0

f2(xk)I(|xk−1| ≤ bn
√
n) =

1

nbn

n−1∑
k=0

H̃2(σ2Φxnk/bn) + oP (1).

Since the same arguments used in the proof of (7.13) implies

( 1√
nbn

n∑
k=1

ukH̃(σ2Φ xnk/bn),
1

nbn

n−1∑
k=0

H̃2(σ2Φxnk/bn)
)

→D

[
σ1

(∫ ∞

−∞
H̃2(σ2Φ x)dx

)1/2
L
1/2
Jτ

(1, 0)N,

∫ ∞

−∞
H̃2(σ2Φ x)dxLJτ (1, 0)

]
, (7.43)

where N is a standard normal variate independent of LJτ (1, 0), taking all estimates above into

(7.42), we obtain

√
n bnπ(bn

√
n )
(
α̂3n − α

)
=

1√
nbn

∑n
k=1 ukH̃(σ2Φ xnk/bn) + oP (1)

1
nbn

∑n−1
k=0 H̃

2(σ2Φxnk/bn) + oP (1)

→D σ1 (σ2Φ)
1/2
(∫

|x|≤1
H2(x)dx

)−1/2
L
−1/2
Jτ

(1, 0)N,

where we have used the fact that
∫∞
−∞ H̃2(σ2Φ x)dx = (σ2Φ)

−1
∫
|x|≤1H

2(x)dx. This proves

(4.2). Similarly, we have

[ n∑
k=1

f2(xk−1)I(|xk−1| ≤ bn
√
n)
]1/2 (

α̂3n − α
)

=

1√
nbn

∑n
k=1 ukH̃(σ2Φ xnk/bn) + oP (1)(

1
nbn

∑n−1
k=0 H̃

2(σ2Φxnk/bn) + oP (1)
)1/2 →D N (0, σ21),

i.e., (4.3) holds. Finally, the proof of (4.4) is simple and hence the details are omitted. 2
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7.7 Proof of Theorem 4.2

Let ṽk = vk − v̂k and note that

n∑
k=1

(
v̂k − v̂k+min{M,n−k}

)
xk−1I(|xk−1| ≤ bn

√
n)− Λ̃ξv

=
M∑
j=1

n−j∑
k=1

(v̂k+j−1 − v̂k+j)xk−1I(|xk−1| ≤ bn
√
n)− Λ̃ξv

= − v̂n

M∑
j=1

xn−jI(|xn−j | ≤ bn
√
n). (7.44)

It suffices to show that, for LM = o
[
(nbn)

1/2],

Cn :=

n∑
k=1

(
ṽk − ṽk+min{M,n−k}

)
xk−1I(|xk−1| ≤ bn

√
n) = oP (nb

3/2
n ), (7.45)

Dn :=
M∑
j=1

xn−jI(|xn−j | ≤ bn
√
n) = oP (nb

3/2
n ) (7.46)

and ( 1

nb
3/2
n

n∑
k=1

vk+min{M,n−k} xk−1I(|xk−1| ≤ bn
√
n),

1

n2b3n

n∑
k=1

x2k−1I(|xk−1| ≤ bn
√
n)
)

→D

(
(σΦ)−1/2Ψ1

[ ∫
|x|≤1

x2dxLJτ (1, 0)
]1/2

N, (σΦ)−1

∫
|x|≤1

x2dxLJτ (1, 0)
)
. (7.47)

Indeed, by noting that the estimation error in α̂bSW is

α̂bSW − α =

∑n
k=1 vk+min{M,n−k} xk−1I(|xk−1| ≤ bn

√
n)∑n

k=1 x
2
k−1I(|xk−1| ≤ bn

√
n)

+

∑n
k=1

(
vk − vk+min{M,n−k}

)
xk−1I(|xk−1| ≤ bn

√
n)− Λ̃ξv∑n

k=1 x
2
k−1I(|xk−1| ≤ bn

√
n)

,

it follows from (7.44)-(7.47), v̂n = OP (1),
∫
|x|≤1 x

2dx = 2/3 and the continuous mapping theorem

that

nb3/2n

(
α̂bSW − α

)
=

1

nb
3/2
n

∑n
k=1 vk+min{M,n−k} xk−1I(|xk−1| ≤ bn

√
n) + 1

nb
3/2
n

(Cn + v̂nDn)

1
n2b3n

∑n
k=1 x

2
k−1I(|xk−1| ≤ bn

√
n)

→D (3σΦ/2)1/2Ψ1 L
−1/2
Jτ

(1, 0)N.

This proves (4.9). As Ψ̂1n is a consistent estimator of Ψ2
1 = Ev21, the proof of (4.11) is similar

and hence the details are omitted.

We next prove (7.45)-(7.47), starting with (7.45). Note that ṽk = (α̂−α)xk−1 and max1≤k≤n |xk| =

OP (
√
n) due to x[nt]/

√
nσ ⇒ Jτ (t) on D[0, 1]. It follows from (4.6) that max1≤k≤n |ṽk| =
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OP (n
−1/2) and

|Cn| ≤ 2 max
1≤k≤n

|ṽk|
n∑

k=1

|xk−1|I(|xk−1| ≤ bn
√
n)

= OP (nb
2
n)

1

nbn

n∑
k=1

w(xk−1/
√
nbn) = OP (nb

2
n),

where w(x) = xI(|x| ≤ 1). This proves (7.45) as bn → 0.

The proof of (7.46) is simple since |Dn| ≤M
√
nbn = o(nb

3/2
n ).

To prove (7.47), for M =Mn, write

vk+M =

∞∑
j=0

ψjζk+M−j =

M∑
j=0

ψM−jζk+j +

∞∑
j=1

ψj+Mζk−j

= v
(1)
k,M + v

(2)
k,M , say.

Consequently, we have
n∑

k=1

vk+min{M,n−k} xk−1I(|xk−1| ≤ bn
√
n)

=
n−M∑
k=1

vk+M xk−1I(|xk−1| ≤ bn
√
n) + vn

n∑
k=n−M+1

xk−1I(|xk−1| ≤ bn
√
n)

=
n∑

k=1

v
(1)
k,M xk−1I(|xk−1| ≤ bn

√
n) +Rn, (7.48)

where

|Rn| ≤
√
nbn

[ n∑
k=n−M+1

(
|vn|+ |v(1)k,M |

)
+

n−M∑
k=1

|v(2)k,M |
]
.

It follows from Eζ21 <∞ and E|v(2)k,M | ≤
(
E|v(2)k,M |2

)1/2 ≤ (Eζ21 ∑∞
j=M+1 ψ

2
j

)1/2
that

E|Rn| ≤ C
√
nbn

[
M + n

( ∞∑
j=M

ψ2
j

)1/2]
= o(nb3/2n ),

i.e., Rn = oP (nb
3/2
n ). Taking this fact into (7.48), result (7.47) will follow if we prove( 1

nb
3/2
n

n∑
k=1

v
(1)
k,M xk−1I(|xk−1| ≤ bn

√
n),

1

n2b3n

n∑
k=1

x2k−1I(|xk−1| ≤ bn
√
n)
)

→D

(
Ψ1Φ

−1/2
[ ∫

|x|≤1
x2dxLJτ (1, 0)

]1/2
N, (σΦ)−1

∫
|x|≤1

x2dxLJτ (1, 0)
)
. (7.49)

Let znk = v
(1)
k,M xk−1I(|xk−1| ≤ bn

√
n) and Fk = σ(ζk, ζk−1, ..). It is readily seen that (znk,Fk)k≥1

forms a martingale difference with

n∑
k=1

E(z2nk|Fk−1) =
n∑

k=1

E
(
v
(1)
k,M

)2
x2k−1I(|xk−1| ≤ bn

√
n) = σ2

M∑
j=0

ψ2
j

n∑
k=1

x2k−1I(|xk−1| ≤ bn
√
n)

=
[
1 + o(1)

]
Ψ2

1

n∑
k=1

x2k−1I(|xk−1| ≤ bn
√
n).
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The proof of (7.48) now is the same as that of (7.43) and hence the details are omitted. The

proof of Theorem 4.2 is complete. 2

8 Tables and Figures

Table 1: The empirical size for the near unit root autoregression model

n
τ
C0 1 2 3 4 5 10 20

50 0 0.059 0.058 0.072 0.085 0.091 0.093 0.070
-1 0.062 0.060 0.070 0.080 0.086 0.079 0.065
-5 0.058 0.056 0.069 0.070 0.074 0.070 0.069
-10 0.053 0.057 0.068 0.076 0.079 0.077 0.077

100 0 0.061 0.060 0.071 0.078 0.084 0.091 0.066
-1 0.060 0.067 0.065 0.079 0.081 0.076 0.064
-5 0.057 0.051 0.060 0.067 0.073 0.064 0.064
-10 0.048 0.051 0.067 0.071 0.074 0.071 0.070

200 0 0.057 0.060 0.066 0.074 0.086 0.087 0.069
-1 0.061 0.058 0.061 0.069 0.079 0.078 0.059
-5 0.054 0.053 0.059 0.064 0.067 0.060 0.059
-10 0.046 0.050 0.059 0.066 0.067 0.064 0.064

500 0 0.059 0.063 0.064 0.072 0.081 0.090 0.078
-1 0.054 0.059 0.061 0.069 0.080 0.080 0.062
-5 0.049 0.050 0.062 0.064 0.065 0.059 0.057
-10 0.052 0.053 0.056 0.065 0.065 0.060 0.059

1 Nominal size 5%.
2 The number of simulations is 10, 000.
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Table 2: Empirical size for the unit root tests when when θ = 0

Self-Weighted (C0) ADF
n p 1 2 3 4 5 10

ϵk ∼ N (0, 1)
50 0 0.043 0.043 0.055 0.070 0.086 0.099 0.054

1 0.061 0.062 0.065 0.075 0.087 0.101 0.056
2 0.067 0.067 0.070 0.074 0.083 0.094 0.050

100 0 0.042 0.043 0.054 0.066 0.083 0.096 0.051
1 0.063 0.057 0.061 0.069 0.079 0.093 0.050
2 0.072 0.065 0.068 0.071 0.080 0.090 0.048

200 0 0.041 0.044 0.049 0.060 0.078 0.096 0.051
1 0.064 0.056 0.054 0.061 0.076 0.094 0.050
2 0.072 0.064 0.060 0.063 0.073 0.090 0.046

500 0 0.040 0.045 0.053 0.059 0.070 0.101 0.056
1 0.058 0.055 0.054 0.059 0.070 0.100 0.053
2 0.065 0.060 0.057 0.059 0.071 0.098 0.053

ϵk ∼ U(−
√
3,
√
3)

50 0 0.035 0.042 0.052 0.071 0.087 0.100 0.054
1 0.061 0.062 0.063 0.073 0.086 0.099 0.052
2 0.059 0.065 0.069 0.078 0.082 0.093 0.049

100 0 0.035 0.041 0.048 0.065 0.086 0.097 0.051
1 0.064 0.057 0.055 0.066 0.081 0.096 0.050
2 0.070 0.063 0.062 0.069 0.079 0.093 0.047

200 0 0.037 0.040 0.053 0.062 0.081 0.099 0.054
1 0.064 0.052 0.057 0.064 0.079 0.098 0.054
2 0.069 0.060 0.065 0.065 0.079 0.097 0.050

500 0 0.041 0.041 0.046 0.054 0.067 0.094 0.053
1 0.062 0.047 0.050 0.055 0.067 0.095 0.053
2 0.069 0.056 0.053 0.055 0.066 0.094 0.052

1 Nominal size 5%.
2 The parameter p denotes the number of lag terms in augmented autoregression for the
UR test.
3 The number of simulations is 10, 000.

42



Table 3: Empirical size for the unit root tests when when θ = −0.5

Self-Weighted (C0) ADF
n p 1 2 3 4 5 10

ϵk ∼ N (0, 1)
50 0 0.082 0.139 0.193 0.251 0.286 0.306 0.220

1 0.057 0.057 0.063 0.070 0.072 0.076 0.056
2 0.062 0.061 0.061 0.066 0.067 0.070 0.051

100 0 0.098 0.154 0.208 0.264 0.316 0.343 0.252
1 0.052 0.049 0.051 0.061 0.064 0.064 0.049
2 0.059 0.054 0.052 0.057 0.060 0.060 0.049

200 0 0.112 0.163 0.215 0.261 0.316 0.361 0.269
1 0.048 0.039 0.046 0.058 0.061 0.062 0.050
2 0.054 0.043 0.045 0.054 0.057 0.058 0.047

500 0 0.138 0.180 0.220 0.258 0.307 0.389 0.298
1 0.042 0.036 0.042 0.056 0.061 0.062 0.054
2 0.048 0.039 0.042 0.054 0.059 0.060 0.053

ϵk ∼ U(−
√
3,
√
3)

50 0 0.085 0.138 0.193 0.251 0.290 0.302 0.218
1 0.060 0.055 0.058 0.067 0.070 0.072 0.050
2 0.064 0.058 0.060 0.066 0.069 0.070 0.049

100 0 0.102 0.154 0.206 0.272 0.322 0.344 0.253
1 0.053 0.043 0.050 0.062 0.064 0.065 0.050
2 0.061 0.049 0.049 0.059 0.059 0.061 0.047

200 0 0.120 0.176 0.221 0.269 0.330 0.366 0.280
1 0.048 0.038 0.050 0.060 0.064 0.065 0.052
2 0.055 0.043 0.048 0.058 0.063 0.063 0.052

500 0 0.141 0.185 0.216 0.256 0.301 0.379 0.292
1 0.039 0.035 0.042 0.056 0.061 0.061 0.055
2 0.044 0.036 0.042 0.054 0.058 0.059 0.052

1 Nominal size 5%.
2 The parameter p denotes the number of lag terms in augmented autoregression for the
UR test.
3 The number of simulations is 10, 000.
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Table 4: The empirical size for testing predictive ability when ϕv = 0 and ϕξ = 0

Self-Weighted (C0) IVX (γ)
n τ 1 2 3 4 5 0.6 0.7 0.8 0.9

50 0 0.060 0.082 0.102 0.107 0.102 0.071 0.070 0.072 0.070
-1 0.059 0.081 0.089 0.090 0.090 0.076 0.072 0.071 0.070
-5 0.051 0.073 0.080 0.077 0.074 0.080 0.080 0.080 0.079
-10 0.048 0.078 0.085 0.082 0.082 0.086 0.086 0.083 0.085

100 0 0.059 0.074 0.092 0.095 0.092 0.062 0.059 0.060 0.060
-1 0.052 0.071 0.082 0.086 0.080 0.067 0.064 0.060 0.061
-5 0.051 0.060 0.070 0.067 0.063 0.074 0.072 0.069 0.068
-10 0.047 0.068 0.075 0.071 0.071 0.082 0.079 0.076 0.076

200 0 0.058 0.074 0.081 0.085 0.087 0.060 0.057 0.056 0.055
-1 0.056 0.064 0.071 0.075 0.077 0.063 0.060 0.058 0.056
-5 0.050 0.060 0.066 0.067 0.061 0.066 0.065 0.065 0.063
-10 0.049 0.062 0.065 0.063 0.061 0.070 0.068 0.066 0.065

500 0 0.061 0.066 0.074 0.090 0.092 0.057 0.060 0.058 0.060
-1 0.062 0.061 0.071 0.079 0.080 0.059 0.060 0.060 0.058
-5 0.053 0.059 0.069 0.068 0.066 0.061 0.060 0.059 0.061
-10 0.050 0.060 0.067 0.063 0.059 0.062 0.060 0.061 0.061

1 Nominal size 5%.
2 The number of simulations is 10, 000.

Table 5: The empirical size for testing predictive ability when ϕv = 0 and ϕξ = 0.5

Self-Weighted (C0) IVX (γ)
n τ 1 2 3 4 5 0.6 0.7 0.8 0.9

50 0 0.050 0.063 0.080 0.091 0.104 0.066 0.066 0.068 0.070
-1 0.055 0.063 0.075 0.090 0.095 0.069 0.069 0.068 0.066
-5 0.051 0.060 0.069 0.075 0.077 0.073 0.073 0.072 0.071
-10 0.051 0.060 0.074 0.079 0.077 0.072 0.075 0.074 0.075

100 0 0.048 0.066 0.069 0.079 0.087 0.056 0.056 0.057 0.059
-1 0.057 0.061 0.062 0.071 0.080 0.059 0.058 0.057 0.058
-5 0.052 0.057 0.058 0.064 0.066 0.064 0.062 0.062 0.060
-10 0.049 0.054 0.056 0.064 0.065 0.067 0.066 0.066 0.064

200 0 0.052 0.061 0.068 0.075 0.074 0.052 0.052 0.052 0.054
-1 0.055 0.058 0.066 0.068 0.071 0.055 0.053 0.053 0.053
-5 0.050 0.054 0.055 0.059 0.063 0.058 0.057 0.057 0.054
-10 0.052 0.054 0.056 0.060 0.065 0.062 0.059 0.058 0.058

500 0 0.055 0.061 0.063 0.066 0.064 0.057 0.057 0.057 0.060
-1 0.054 0.060 0.063 0.062 0.066 0.057 0.056 0.058 0.058
-5 0.051 0.054 0.058 0.060 0.065 0.053 0.056 0.056 0.057
-10 0.047 0.050 0.058 0.062 0.063 0.056 0.053 0.057 0.056

1 Nominal size 5%.
2 The number of simulations is 10, 000.
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Table 6: The empirical size for testing predictive ability when ϕv = 0.5 and ϕξ = 0.5

SW(C0) BC-SW (C0) IVX (γ) BC-IVX (γ)
n τ 1 3 5 1 3 5 0.7 0.9 0.7 0.9

50 0 0.008 0.022 0.042 0.049 0.033 0.054 0.096 0.082 0.057 0.058
-1 0.007 0.019 0.042 0.035 0.032 0.056 0.119 0.100 0.062 0.063
-5 0.011 0.065 0.162 0.011 0.055 0.103 0.297 0.253 0.136 0.124
-10 0.026 0.309 0.410 0.013 0.169 0.211 0.530 0.477 0.275 0.241

100 0 0.003 0.014 0.027 0.038 0.023 0.047 0.089 0.069 0.044 0.047
-1 0.003 0.010 0.019 0.026 0.022 0.042 0.123 0.087 0.047 0.048
-5 0.004 0.020 0.091 0.008 0.030 0.064 0.311 0.238 0.094 0.086
-10 0.007 0.160 0.364 0.005 0.080 0.140 0.543 0.465 0.194 0.163

200 0 0.002 0.010 0.020 0.027 0.021 0.045 0.103 0.063 0.039 0.041
-1 0.002 0.006 0.010 0.017 0.019 0.041 0.145 0.083 0.042 0.045
-5 0.001 0.005 0.045 0.003 0.024 0.049 0.324 0.223 0.074 0.068
-10 0.002 0.066 0.281 0.003 0.042 0.089 0.553 0.432 0.131 0.110

500 0 0.002 0.009 0.013 0.012 0.023 0.041 0.127 0.051 0.033 0.039
-1 0.001 0.004 0.006 0.008 0.021 0.038 0.172 0.073 0.038 0.038
-5 0.000 0.001 0.009 0.002 0.021 0.037 0.354 0.195 0.053 0.052
-10 0.001 0.015 0.160 0.002 0.029 0.056 0.562 0.396 0.080 0.070

1 Nominal size 5%.
2 The number of simulations is 10, 000.

Table 7: Tests for univariate predictive regressions with monthly data
Regressors OLS SW IVX

Book-to-market ratio (b/m) 0.003 -0.007 0.004
Dividend payout ratio (d/e ) 0.005 0.003 0.006
Default yield spread (dfy) 0.246 0.267 0.250
Dividend-price ratio (d/p) 0.005 -0.001 -0.005
Dividend yield (d/y) 0.004 0.004 -0.005
Earnings-price ratio (e/p) 0.003 0.013 0.004
Inflation rate (infl) −0.927∗∗ −1.146∗∗ −0.928∗∗

Long-term yield (lty) −0.088∗ -0.048 -0.095
Net equity expansion (nits) -0.045 -0.128 -0.023
T-bill rate (tbl) −0.114∗∗ -0.108 −0.112∗∗

a * denotes 10% significance and ** denotes 5% significance.
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Table 8: Tests for univariate predictive regressions with quarterly data
Regressors OLS SW IVX

Book-to-market ratio (b/m) 0.012 -0.056 0.012
Dividend payout ratio (d/e ) 0.020 0.011 0.024
Default yield spread (dfy) 0.692 -12.290 0.656
Dividend-price ratio (d/p) 0.018 -0.053 -0.027
Dividend yield (d/y) 0.017 -0.083 -0.049
Earnings-price ratio (e/p) 0.007 0.003 0.013
Inflation rate (infl) −0.998∗ -1.145 −1.010∗

Long-term yield (lty) -0.236 -1.105 -0.254
Net equity expansion (nits) -0.122 -0.330 -0.060
T-bill rate (tbl) −0.298∗ -0.352 −0.290∗

Term spread (tms) 0.503 0.849 0.509

a * denotes 10% significance and ** denotes 5% significance.
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(a)
θ =
0;
ϵk ∼
N (0, 1)

(b)
θ =
0;
ϵk ∼
U(−1, 1)

(c)
θ =
−0.5;
ϵk ∼
N (0, 1)

(d)
θ =
−0.5;
ϵk ∼
U(−1, 1)

Figure 1: The local power for unit root test

1 The sample size n = 200. The number of simulations is 10, 000.
2 For the SW estimator, we apply the truncation rate bn = C0 log

−1(n) for C0 ∈ {3, 5}.
3 For yk ∼AR(1) with θ = 0 in (a) and (b), the lag parameter p = 0.
4 For yk ∼AR(2) with θ = 0.5 in (c) and (d), the lag parameter p = 1.
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Figure 2: The local power for testing predictive ability when ϕv = 0 and ϕξ = 0

a The sample size n = 200. The number of simulations is 10, 000.
b For the SW estimator, we apply the truncation rate bn = C0 log

−1(n) for C0 ∈ {3, 5}.
c For the IVX estimator, we apply the instrument with γ ∈ {0.7, 0.9}.
d The autoregressive coefficients of error terms ϕv = 0 and ϕξ = 0.
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Figure 3: The local power for testing predictive ability when ϕv = 0 and ϕξ = 0.5

a The sample size n = 200. The number of simulations is 10, 000.
b For the SW estimator, we apply the truncation rate bn = C0 log

−1(n) for C0 ∈ {3, 5}.
c For the IVX estimator, we apply the instrument with γ ∈ {0.7, 0.9}.
d The autoregressive coefficients of error terms ϕv = 0 and ϕξ = 0.5.
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Figure 4: The local power for testing predictive ability when ϕv = 0.5 and ϕξ = 0.5

a The sample size n = 200. The number of simulations is 10, 000.
b For the BC-SW estimator, we apply the truncation rate bn = C0 log

−1(n) for C0 ∈ {3, 5}.
c For the IVX estimator, we apply the instrument with γ ∈ {0.7, 0.9}.
d The autoregressive coefficients of error terms ϕv = 0.5 and ϕξ = 0.5.
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