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Abstract

Functional coefficient (FC) cointegrating regressions offer empirical investigators flexibil-

ity in modeling economic relationships by introducing covariates that influence the direction

and intensity of comovement among nonstationary time series. FC regression models are also

useful when formal cointegration is absent, in the sense that the equation errors may them-

selves be nonstationary, but where the nonstationary series display well-defined FC linkages

that can be meaningfully interpreted as correlation measures involving the covariates. The

present paper proposes new nonparametric estimators for such FC regression models where

the nonstationary series display linkages that enable consistent estimation of the correlation

measures between them. Specifically, we develop
√
n-consistent estimators for the functional

coefficient and establish their asymptotic distributions, which involve mixed normal limits

that facilitate inference. Two novel features that appear in the limit theory are (i) the need

for non-diagonal matrix normalization due to the presence of stationary and nonstationary

components in the regression; and (ii) random bias elements that appear in the asymptotic

distribution of the kernel estimators, again resulting from the nonstationary regression com-

ponents. Numerical studies reveal that the proposed estimators achieve significant efficiency

improvements compared to the estimators suggested in earlier work by Sun et al. (2011).

Easily implementable specification tests with standard chi-square asymptotics are suggested

to check for constancy of the functional coefficient. These tests are shown to have faster

divergence rate under local alternatives and enjoy superior performance in simulations than

tests proposed recently in Gan et al. (2014). An empirical application based on the quantity

theory of money illustrates the practical use of correlated but non-cointegrated regression

relations.

JEL classification: C14; C22.

Keywords: Cointegration; Correlation measure; Functional coefficient regression; Marginal

integration; Nonstationary time series.

*Wang and Phillips acknowledge Marsden Fund support at the University of Auckland. Wang acknowledges
research support from the National Natural Science Foundation of China (Grant 72103197). Phillips acknowl-
edges research support from the Kelly Fund at the University of Auckland. Tu acknowledges support from the
National Natural Science Foundation of China (Grant 71532001, 71671002), China’s National Key Research Spe-
cial Program (2016YFC0207705), the Center for Statistical Science at Peking University, the Key Laboratory
of Mathematical Economics and Quantitative Finance at Peking University, and the Ministry of Education for
support. Email addresses: yingwang.econ@ruc.edu.cn; peter.phillips@yale.edu; yundong.tu@gsm.pku.edu.cn



1 Introduction

Cointegration has been an important tool in the empirical analysis of long run relationships
among nonstationary time series since the seminal work of Granger (1981) and Engle and
Granger (1987). While many economic and financial time series show strong evidence of co-
movement over time, such variables often fall short of being formally cointegrated given the
strict criteria involved in models of cointegration. As an alternative approach to analyzing co-
movement in time series, a functional coefficient version of the standard cointegration model has
attracted research attention in recent years. This model, which we call FC-cointegration, serves
as a flexible semiparametric device for extending the standard model in a way that can capture
more nuanced long run behavior in which the relationship may evolve over time in response to
covariate influences that locally adjust comovement among the nonstationary variables.(Xiao,
2009; Cai et al., 2009; Li et al., 2015; Sun et al., 2016; Wang et al., 2016; Tu and Wang, 2019,
2020, 2022; Phillips and Wang, 2023).

In the absence of cointegration or FC-cointegration, purported linear or nonparametric non-
linear relationships among nonstationary variables may be completely spurious in the sense that
no meaningful causal associations1 exist, as when the variables are independently determined as
integrated or near integrated processes (Phillips, 1986, 1998, 2009). FC models offer an inter-
mediate possibility. Formal cointegrating linkages may be absent in a model where the equation
errors are nonstationary. But nonstationary series may nonetheless display well-defined linkages
in terms of explicit estimable functional coefficients that define specific correlation measures
among the variables in terms of observable covariates. The present paper proposes new non-
parametric estimators for such FC regression models where the nonstationary series display
linkages or causal associations that enable consistent estimation of these correlation measures.
Such models have been considered in recent research by Sun et al. (2011) and Gan et al. (2014).
Specifically, this model has the form

yt = x′tβ(zt) + ut, t = 1, · · · , n, (1)

where the k × 1 vector xt is an integrated process of order 1, β(·) is a k × 1 vector of smooth
measurable and squared integrable functions of a scalar stationary variable zt, and ut is an
unobserved unit root innovation process.

The nonstationary error in (1) distinguishes this model from the FC-cointegration model
studied by Juhl (2005), Cai et al. (2009), and Xiao (2009), where the innovations are assumed
to be stationary. The formulation (1) suggests that the variables xt and yt are associated and
may well move together over time but not so closely as to ensure the existence of cointegration
or even FC-cointegration. In such cases, the association between xt and yt may be regarded as
weak relative to that of FC-cointegration. The weak association is captured by the function β(·)
with a covariate zt that controls the nature and strength of this association.

Models such as (1) are relevant in the study of economic relationships in which the deter-
mining economic and financial forces are not strong enough to establish comovement that can
be characterized as cointegration or FC-cointegration. One example is purchasing power par-
ity (PPP), where the underlying theory of the impact of relative prices on exchange rates is
not always supported by a manifest empirical association due to imperfect information or mar-
ket frictions that lead to missing integrated factors in the relationships or where the observed
adjustment towards PPP may be extremely slow. Other examples may arise in relationships

1Since trending time series are inevitably correlated (Phillips, 1986), we interpret causal association as being

explicitly model-determined, as distinct from trend coordinate representations in the sense of Phillips (1998).
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that sustain persistent measurement errors in data aggregation or through significant omitted
variables, as argued in Sun et al. (2011). We call models that fall into the class described
by (1) non-cointegrated FC (NC-FC) regressions. These models serve as a semiparametric in-
terface in measuring associations among integrated variables that are neither cointegrated nor
FC-cointegrated but not entirely spurious.

In studying models of the form (1) Sun et al. (2011) provided two consistent estimators
for β(z), but did not provide asymptotic distribution theory. So econometric machinery for
conducting inference about the functional coefficients in such systems is presently unavailable.
One of the goals of this paper is to address this issue so that a full limit distribution theory is
available that reveals the asymptotic behavior of consistent estimators, thereby opening up an
inferential framework for studying functional linkages that may exist among non-cointegrating
nonstationary time series.

Specifically, this paper constructs new estimators of β(·) by means of direct non-parametric
estimation of a differenced version of the model. We find that for the initial bivariate nonpara-
metric estimators, the asymptotic distribution is delivered by the approximation error involved
in capturing the functional coefficient of the nonstationary regressor xt instead of from the er-
ror term and by central limit theory, as is conventional. This finding is new to the functional
coefficient regression literature and is a second main contribution of the paper. Non-diagonal
matrix normalization methods2, and explicit partitioned regression methods are used to isolate
the dominant components in this limit theory. Without employing these techniques, the non-
parametric approximation error contribution to the limit distribution can be falsely ignored in
derivations and can lead to incorrect limit theory, as will be explained later. For a full analysis
of this latter phenomena readers are referred to other recent work (Phillips and Wang, 2023).

Based on this approach several new FC estimates are constructed using the initial bivariate
nonparametric estimators by means of marginal integration and backfitting techniques. Marginal
integration was proposed by Linton and Nielsen (1995), Newey (1994) and Tjøstheim and Aues-
tad (1994) to estimate models with an additive structure. There is now a large literature, see
Chen et al. (1996), Linton (1997, 2000), Fan et al. (1998), Yang et al. (2006), Cai and Masry
(2000) and Cai and Xiao (2012), among others. Our preferred estimates of the functional quan-
tities β(z) and α(z) := β(z) − Eβ(zt) are consistent and asymptotically normal with variance
converging at rate 1/n and asymptotic bias diminishing at the usual rate h2, where h is the
smoothing bandwidth used in functional coefficient estimation. The resulting

√
n rate of con-

vergence in the limit theory is not standard in the semiparametric literature. As a result, the
proposed estimators possess improved performance over those in Sun et al. (2011) which have a
standard

√
nh rate.

A third objective of the paper is to construct a test based on our proposed estimators for
detecting linearity against the semiparametric specification in (1). This procedure amounts to
testing whether β(z) can be treated simply as a constant, an issue first studied by Gan et al.
(2014). Of the two tests they proposed, the one based on Sun et al. (2011)’s estimator of α(z)
has better performance in simulations. We show that when β(·) degenerates to a constant, our
estimators for α(·) become n

√
h-consistent. Given these improved rates of convergence, a natural

expectation is that a test statistic constructed from the proposed estimators for α(·) would enjoy
better power performance than that of Gan et al. (2014). This conjecture is formally confirmed
in our analysis. In particular, we show analytically that our tests diverge at a faster rate than

2Such methods have been used in vector autoregression asymptotics (Phillips, 1995) and in recent work on

weak instrument and general limit theory (Magdalinos and Phillips, 2019) and other nonstationary asymptotics

(Vogelsang and Wagner, 2014; Phillips and Kheifets, 2019)
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that of Gan et al. (2014) under the alternative, leading to improved power performance. Finite
sample simulation results corroborate the asymptotic analysis.

The remainder of the paper is organized as follows. Section 2 presents the estimation proce-
dures, including one step and two step estimators. Section 3 derives their limit properties and
discusses how the results differ from standard nonparametric estimation limit theory. Section 4
considers hypothesis testing on the functional coefficient β(z). Numerical results are reported in
Section 5 to illustrate the finite sample performance of the estimators and tests. Section 6 pro-
vides an empirical illustration of the methods in exploring a quantity theory of money relation
where the variables are correlated but not cointegrated. Section 7 concludes. Proofs are given
in the Appendix.

In matters of notation, we use ‘⇝’ to signify weak convergence of the associated probabil-
ity measures in the relevant probability space, ‘

p−→’ to denote convergence in probability, and
definitional equality is shown by ‘:=’ and ‘=:’. Stochastic processes like Brownian motion B(r)
on [0, 1] are usually written as B and integrals such as

∫
are understood to be taken over the

interval [0, 1] unless otherwise indicated.

2 Estimation

Our approach to estimation starts by differencing the model (1), which leads to a version of
the model with stationary errors and stationary and nonstationary regressors. Importantly,
the coefficients in this regression equation can be interpreted as functions of two arguments
(essentially, zt and zt−1), which may be estimated by kernel nonparametric estimation. Marginal
integration is then used to deliver estimates of the coefficient function β(z).

One-step estimation

Differencing (1) gives an equation with a stationary error and two sets of regressors with

functional coefficients. To proceed, we start by defining α(z) = β(z)−β0, where β0 = Eβ(zt), so
that Eα(zt) = 0. Model (1) is then equivalent up to initial conditions to the differenced equation

∆yt = x′tβ(zt)− x′t−1β(zt−1) + ∆ut (2)

= (∆xt)
′β(zt) + x′t−1[β(zt)− β(zt−1)] + ∆ut

= (∆xt)
′β(zt) + x′t−1[α(zt)− α(zt−1)] + ∆ut. (3)

An important aspect of (3) is that its regressors are both stationary (∆xt) and nonstationary

(xt−1) when xt is an integrated time series. This duality complicates the limit theory in ways

that go beyond simple degeneracy of the asymptotic signal matrix, as will become clear later.

Another feature of (3) is that the coefficient of xt−1 is the differenced function β(zt)− β(zt−1),

which is zero when β(·) is constant.
The coefficients of (3) may be interpreted as functions of the two arguments zt and zt−1.
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Specifically, we rewrite (3) as3

∆yt = (∆xt)
′β1(zt, zt−1) + x′t−1β2(zt, zt−1) + ∆ut, (4)

where β1(z, w) ≡ β(z) and β2(z, w) ≡ α(z)− α(w). It is apparent that∫
β1(z, w)ℓ1(w)dw = β(z),

∫
β2(z, w)ℓ2(w)dw = α(z), (5)

for any weight functions ℓ1(w) and ℓ2(w) satisfying
∫
ℓ1(w)dw = 1 and

∫
ℓ2(w)dw = 1. Noting

that Eα(zt) = 0, one choice of such a weight function could be ℓ1(w) = ℓ2(w) = f(w), the
density function of zt.

Marginal integration estimators for β(z) and α(z) can be constructed once we obtain esti-

mators for β1(z, w) and β2(z, w). To this end, for any interior point (z, w), denote the local level

least squares estimators of β1(z, w) and β2(z, w) in model (4) by β̂1(z, w) and β̂2(z, w). To be pre-

cise, let wt = zt−1, and X ′
t = ((∆xt)

′, x′t−1). Then (4) can be written as ∆yt = X ′
tβ(zt, wt)+∆ut.

Let the bandwidth parameters in nonparametric estimation associated with the variables zt and

wt be h1 and h2. The kernel weighted least squares (KLS) estimator of β(z, w) is given by

(β̂′
1(z, w), β̂

′
2(z, w))

′ =

(
n∑

t=2

XtX
′
tKtzKtw

)−1 n∑
t=2

Xt∆ytKtzKtw, (6)

where Ktz = K((zt − z)/h1) and Ktw = K((wt − w)/h2).

Using the empirical density of zt as the weight function and adopting the trimming technique

to avoid the boundary bias problem in local level estimation, the marginal integration estimators

are

β̂1s(z) =
1

n

n∑
t=1

β̂1(z, zt)1(zt ∈ Sn), (7)

and

α̂(z) =
1

n

n∑
t=1

β̂2(z, zt)1(zt ∈ Sn), (8)

where the subscript “1s” in β̂1s(z) signifies the one-step estimator of β(z), and Sn is a compact
subset of R that trims out the boundary region of the support of zt so that weak uniform
convergence results can be obtained for β̂1(z, w) and β̂2(z, w) over (z, w) ∈ Sn × Sn. The set
Sn needs to satisfy P (zt ∈ Sn) → 1 as n → ∞ uniformly over t = 1, · · · , n and then the use
of a trimming function in this way will not affect the asymptotic theory. Trimming techniques
of this type are now widely adopted in nonparametric regression; see, for example, Sun et al.

3As one referee pointed out, model (4) has appeared in the earlier literature, e.g., Cai et al. (2009) and Sun

et al. (2016). However, valid asymptotic theory does not follow from these or other previous studies due to the

error in the past functional coefficient literature, specifically the ignored random bias component which changes

the limit theory in a materially important way, as pointed out in the Introduction of the present paper and

analyzed by Phillips and Wang (2023).
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(2011) and Sun et al. (2016) and, for the construction of such a trimming set, see Remark 6 in
Appendix C of Sun et al. (2016).

Since Eα(zt) = 0, a re-centered estimator of α(z) can be constructed as

α̃(z) = α̂(z)− 1

n

n∑
t=1

α̂(zt), (9)

which satisfies Eα̃(z) = 0.

Two-step estimation

An estimator for β0 can be constructed by means of an alternative regression as follows.

First, model (1) can be rewritten as yt − x′tα(zt) = x′tβ0 + ut. Then, with the estimator α̂(z)

replacing α(z), we have the implied equation

yt − x′tα̂(zt) = x′tβ0 + ũt, with ũt = ut + x′t(α(zt)− α̂(zt)).

Setting ỹt = yt − x′tα̂(zt) and taking differences in the above equation, we get

∆ỹt = (∆xt)
′β0 +∆ũt.

This formulation leads to the backfitted ordinary least squares estimator of β0

β̂0 =

(
n∑

t=2

∆xt(∆xt)
′

)−1 n∑
t=2

∆xt∆ỹt. (10)

In place of least squares, generalized least squares or frequency domain methods might be used in

the regression to improve efficiency. Using β̂0 the two-step estimator of β(z) can be constructed

as

β̂2s(z) = α̂(z) + β̂0. (11)

It can be shown that β̂2s(z) = β̃0 + α̃(z), where β̃0 is an estimator constructed as in (10),
with α̂(zt) replaced by α̃(zt) in computing ỹt. This equivalence parallels that between the two
estimators of β(z) proposed in Sun et al. (2011), the proof of which is straightforward.

3 Asymptotic properties

To study the asymptotic properties of these estimators we make the following assumptions.

Assumption 1. (i) {∆xt, zt,∆ut} are strictly stationary α-mixing processes of size −p/(p−
2) (where p = 2 + δ for some small δ > 0) with finite, positive definite long-run variance

matrix and finite q moments for some q > 2p > 4;

(ii) {∆xt} and {zt} are independent and both are independent of {∆ut};

(iii) zt has Lebesgue density f(z), (zt, zt−1) has joint Lebesgue density f(z, w), (zt−1, zt, zt+1)

has joint Lebesgue density f(w, z, u), and (zt−1, zt, zs−1, zs) (s > t+ 1) has joint Lebesgue

density f(w, z, u, v). These densities are bounded above and away from zero and are three

times continuously differentiable on their respective supports;
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(iv) β(z) is three times continuously differentiable and bounded on the support of zt;

(v) The kernel function K(·) is a bounded probability density function symmetric around zero

with bounded support. Define µj(K) =
∫
ujK(u)du and νj(K) =

∫
ujK2(u)du;

(vi) As n → ∞, h1, h2 → 0, nh1h2 → ∞ and cn/
√
h1 → 0, where cn = h21 + h22 +

√
logn
nh1h2

.

Remark 3.1. Some of these conditions are stronger than necessary but are made so that model

(1) has the main ingredients of a prototype non-cointegrated FC system, which is convenient

in the development of the limit theory and ensures mixed normality which facilitates inference.

Condition (ii) is restrictive, especially exogeneity, but matches conditions used earlier in this lit-

erature. In particular, strict exogeneity of (∆xt, zt) was assumed in the FC cointegration model

of Xiao (2009), Sun et al. (2013) and Sun et al. (2016). Sun et al. (2011) assumed indepen-

dence between zt and (∆xt,∆ut) in their treatment of the non-cointegration case but permitted

endogeneity of xt, although they did not provide a limit theory for their functional coefficient

estimator. A fully nonparametric regression model with endogeneity was considered in Wang

and Phillips (2009) and standard normal limit theory was established for a self-normalized test

statistic. But convergence rates are slow in the general nonparametric case and the functional

coefficient regression model was not considered in that work. Recent work by Liang et al. (2022)

allowed (xt, zt) to be endogenous in the functional coefficient cointegrating framework with ei-

ther xt or zt nonstationary. In contrast to stationary nonparametric regression, they found

that the conventional local level and local linear kernel estimators remain valid in the pres-

ence of endogeneity. However, treatment of the endogenous regressors case while allowing for

a non-cointegrating nonstationary regression framework as in this paper will require substantial

additional work and is left as a future project. The conditions on the density functions in As-

sumption 1 (iii), the functional coefficient in (iv) and those on the kernel function stated in (v)

are all commonly used in kernel nonparametrics. Similar bandwidth conditions as those given

in Assumption 1 (vi) can be found in Fan et al. (1998) and Cai and Masry (2000).

With these conditions in hand, we obtain the following asymptotic properties of the afore-
mentioned estimators. We proceed under the assumption that h1 = h2 ≡ h to simplify the
discussion. The restriction is not unreasonable because smoothing is performed with respect to
the same variable zt in this use of bivariate kernel estimation.

Theorem 3.1. Under Assumption 1, for a given interior point z of the support of zt, the

following results hold as n → ∞:

(a) For the one-step estimator of β(z) defined in (7),

1√
h
(β̂1s(z)− β(z))⇝MN

(
0, ν2(K)

(∫
[β(1)(z)′Bx]

2

)
E
[

f(zt)

f(z, zt)

]
[E∆xt(∆xt)

′]−1

)
,

(12)

where Bx is the limit Brownian Motion for which n−1/2
∑[nr]

t=1∆xt ⇝ Bx(r).
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(b) For the estimators of α(z) defined in (8) and (9),

√
n(α̂(z)− α(z)− h2B(z))⇝ N (0,Γ(α(zt))) , (13)

√
n[α̃(z)− α(z)− h2B̄(z)]⇝ N (0,Γ(α(zt))), (14)

where B(z) = µ2(K)E
(
C1(z,zt)−C2(z,zt)

f(z,zt)

)
, C1(z, w) = β(1)(z)f

(1)
z (z, w) + 1

2β
(2)(z)f(z, w),

C2(z, w) = β(1)(w)f
(1)
w (z, w) + 1

2β
(2)(w)f(z, w), B̄(z) = B(z) − EB(zt) and Γ(α(zt)) is the

long run variance matrix of {α(zt)}.

(c) For the estimator of β0 defined in (10),

√
n(β̂0 − β0 + h2B)⇝ N

(
0, [E∆xt(∆xt)

′]−1Γ(∆xt∆ut)[E∆xt(∆xt)
′]−1 + Γ(α(zt))

)
, (15)

√
n(β̃0 − β0 + h2B̄)⇝ N

(
0, [E∆xt(∆xt)

′]−1Γ(∆xt∆ut)[E∆xt(∆xt)
′]−1 + Γ(α(zt))

)
, (16)

where Γ(∆xt∆ut) denotes the long run variance of ∆xt∆ut, B = EB(zt)+[E(∆xt(∆xt)
′)]−1

∫
dBxBBx,

BxB(r) is the matrix Brownian motion limit of the partial sum process 1√
n

∑[nr]
t=1∆xt[∆B(zt)]′.

B̄ is defined in the same way as B with B(z) replaced by B̄(z) and BxB replaced by BxB̄.

(d) For the two-step estimator of β(z) defined in (11),

√
n
{
β̂2s(z)− β(z)− h2[B(z)− B]

}
⇝ N

(
0, [E∆xt(∆xt)

′]−1Γ(∆xt∆ut)[E∆xt(∆xt)
′]−1
)
.

(17)

Remark 3.2. (Limit theory for β̂1s(z)) The limit distribution and convergence rate for β̂1s(z)

given in (12) is highly unusual in functional coefficient models and more generally in nonpara-

metric regression. As shown in the proof of the theorem, the first step estimator β̂1(z, w) in (6)

of the bivariate kernel regression (4) is found to be an inconsistent estimator of the functional

coefficient β(z). More specifically, we find (see (52) in Appendix A) that

β̂1(z, w)− β1(z, w) ∼a

[∑
∆xt(∆xt)

′KtzKtw

]−1∑
∆xtx

′
t−1[β(zt)− β(z)− (β(wt)− β(w))]KtzKtw,

(18)

so that part of the approximation error coming from the bivariate functional coefficient of xt−1

in the kernel regression ends up dominating the asymptotic distribution of β̂1(z, w). Detailed

study of the proof reveals that the bias function associated with this coefficient dominates because

it arises in that part of the partitioned regression associated with the integrated regressor xt−1,

whose order of magnitude dominates that of the regressor ∆xt. However, although the first step

estimator β̂1(z, w) is inconsistent, upon marginal averaging to obtain the estimator β̂1s(z), we

find that β̂1s(z) is consistent but at the very slow rate
√
h or n− 1

10 if h = O(n− 1
5 ). The mixed

normal (MN ) limit theory for β̂1s(z) in Theorem 3.1 (a) is the consequence of the limiting

stochastic integral form of (18) and its conditional normality given the Brownian motion limit

process Bx.
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Remark 3.3. (Limit theory for α̂(z)) The limit result for α̂(z) is also nonstandard in non-

parametric smoothing. Although the asymptotic bias has the usual order h2, the asymptotic

variance is of order O(1/n), which is independent of the bandwidth h. This rate differs from the

existing results in nonparametric smoothing involving nonstationary variables (Cai et al., 2009).

Due to the additive form of the functional coefficient of xt−1 in (4), i.e., β2(z, w) = α(z)−α(w),

the marginal integration based estimator α̂(z) involves the sample average n−1
∑n

t=1 α(zt) and

can be decomposed as follows

α̂(z)− α(z) =
1

n

n∑
t=1

[β̂2(z, zt)− β2(z, zt)]−
1

n

n∑
t=1

α(zt). (19)

Here, the second term is clearly of order Op(1/
√
n). But for the bivariate estimator β̂2(z, w) in

the first term, we find in the proof that

β̂2(z, w)− β2(z, w) ∼a

[
n∑

t=2

xt−1x
′
t−1KtzKtw

]−1 n∑
t=2

xt−1x
′
t−1ζt = Op(h

2 + 1/
√
n) (20)

where ζt = [β(zt)− β(z)− (β(wt)− β(w))]KtzKtw. We show in the proof that, after subsequent

averaging with respect to w, the variance contribution from (20) is dominated by the second term

of (19). Thus the first term of (19) only contributes an asymptotic bias term in determining the

limit distribution and the second term of (19) delivers the limit normal distribution in Theorem

3.1 (b) and the rate of convergence
√
n. Similar considerations apply to the limit theory for

α̃(z). The details are presented in the Appendix. These limit results again differ considerably

from those of conventional nonparametric regression.

Remark 3.4. (Limit theory for β̂0) We note that the bias function B is random and involves

a stochastic integral, which is another highly unusual feature of this regression. In the proof we

obtained the following decomposition

β̂0 − β0 =

[
n∑

t=2

∆xt(∆xt)
′

]−1 [ n∑
t=2

∆xt∆ut +

n∑
t=2

∆xt∆{x′t[α(zt)− α̂(zt)]}

]
.

It turns out that the bias of α̂(zt), which is B(zt), contributes a term
∑n

t=2∆xt∆[x′tB(zt)]. It is

this term that leads to a stochastic integral in the bias of β̂0 (see (64) in Appendix A). Inference

regarding β0 can be conducted with the help of the limit theory presented here, for example by

using the conventional Wald type statistic. Note that the limit theory here is different from that

in Theorem 3.2 below. This suggests constancy of β(z) should be tested first and then one can

choose the right limit theory to conduct inference regarding β0.

Remark 3.5. (Bandwidth Roles) The convergence rate and the order of the asymptotic vari-

ance of α̂(z) are both independent of the bandwidth, in contrast to typical nonparametric esti-

mators where the order depends on the smoothing bandwidth and the effective sample size. This

result suggests that smaller bandwidths (h1, h2) might be preferred to improve bias properties in
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estimation. But the bandwidths (h1, h2) need to satisfy the restrictions given in Assumption 1

(vi) and bandwidths that are chosen too small lead to degeneracies in finite samples due to sin-

gular denominator problems in local level estimation. This comment on the role of bandwidths

and their restictions applies as well to the estimators β̂0, β̃0 and β̂2s(z). Section 5.1 numerically

investigates the sensitivity of estimator performance to bandwidth variation.

If the functional coefficient β(z) is a constant almost everywhere in the support of zt, or
equivalently, α(z) = 0 a.e., it is easy to see that the asymptotic variances of β̂1s(z), α̂(z) and
α̃(z) are all zero. These limit distributions are therefore degenerate. In this case, we have
standard asymptotic theory presented below.

Theorem 3.2. If β(z) = β0, a constant, a.e. in the support of zt, as n → ∞, we have

√
nh(β̂1s(z)− β0)⇝ N (0,E(∆ut)

2ν0(K)E[f(zt)/f(z, zt)][E∆xt(∆xt)
′]−1), (21)

n
√
hα̂(z)⇝MN

(
0,E(∆ut)

2ν0(K)E
[

f(zt)

f(z, zt)

] [∫
BxB

′
x

]−1
)
, (22)

√
n(β̂0 − β0)⇝ N (0, [E∆xt(∆xt)

′]−1Γ(∆xt∆ut)[E∆xt(∆xt)
′]−1), (23)

√
n(β̂2s(z)− β0)⇝ N (0, [E∆xt(∆xt)

′]−1Γ(∆xt∆ut)[E∆xt(∆xt)
′]−1). (24)

Further, α̃(z) is asymptotically equivalent to α̂(z) and β̃0 is asymptotically equivalent to β̂0.

Remark 3.6. When the functional coefficients are constant, there is no approximation error

and the bias in kernel estimation is eliminated. This simplification means that more conventional

results hold. In particular, the coefficient of the stationary regressor ∆xt now converges at the

usual rate
√
nh and the coefficient of the nonstationary variable xt−1 is superconsistent at the

rate n
√
h.

4 Testing Linear against Semiparametric Forms

Nonparametric functional coefficient models offer the potential to assess specific functional forms
of dependence in β(z), the most important of which is simple constancy, which leads to a
linear regression specification. Theory and past empirical work often suggest linearity in both
coefficients and variables and it is therefore of primary interest to test this specification against
the more general semiparametric model which embodies the functional dependence β(z).

For functional coefficient cointegration models, related tests of linearity were suggested in
Xiao (2009) and Sun et al. (2016). Under the current non-cointegrated setting, Gan et al. (2014)
also studied linearity testing and proposed two specific tests, showing in simulations that there
was a performance advantage in using a test based on a semiparametric estimator of α(z).

With the more efficient nonparametric estimates of α(z) and β(z) developed in the present
paper, it might be expected that more efficient tests of linearity can be constructed. We employ
the commonly used approach in tests of this kind which involves examining the discrepancy
between the semiparametric estimate and the restricted estimate obtained under the null of
linearity. Xiao (2009) used the maximum squared distance observed at a finite number of points,
Sun et al. (2016) considered the integrated squared distance, and Gan et al. (2014) focused on

9



the squared distance calculated over the observations {zt}. For ease of implementation and
comparison, we follow Xiao (2009) and consider the squared distance calculated at a finite
number of distinct points {z∗s}ms=1, where m is a fixed integer, in the support of zt.

More specifically, our test statistic is based on a weighted distance measure of the form

Īα =
∑m

s=1 α̂(z
∗
s )

′Wnα̂(z
∗
s ), for some suitable weight matrix Wn. According to Theorem 3.2,

α̂(z) converges to zero at rate n
√
h when α(·) = 0 and has a mixed normal limit distribution.

Denote the conditional asymptotic variance of n
√
hα̂(z) in (22) as Ω(z). We therefore consider

the test statistic

Îα = n2h
m∑
s=1

α̂(z∗s )
′Ω̂(z∗s )

−1α̂(z∗s ), (25)

where Ω̂(z) converges weakly to Ω(z)4. It is easy to see that Îα ⇝ χ2
km under the null, where

χ2
ℓ denotes a chi-squared distributed random variate with ℓ degree of freedom. Alternatively,

if the re-centered estimator α̃(z) is used to replace α̂(z) in the calculation of Îα, we obtain an
analogous test statistic, denoted Ĩα, that has the same asymptotic distribution.

We summarize the limit properties of these statistics under the null hypothesis as follows.

Theorem 4.1. Assume that the conditions of Theorem 3.2 hold. Under H0 : α(z) = 0 a.e. and

for fixed integer m, we have Îα ⇝ χ2
km, Ĩα ⇝ χ2

km as n → ∞.

According to Theorem 4.1, the two proposed test statistics are asymptotically chi-squared
and the null is rejected if the test statistic exceeds the prescribed critical value. As is common
in nonparametric testing, convergence to the null limit distribution is often slow and the chi-
squared distribution may then be a poor approximation for the finite sample distribution of
the statistic. We therefore present a bootstrap procedure for practical implementation of these
tests, as in Gan et al. (2014).

Bootstrap steps for the Îα test

Step (i). For observed sample {yt, xt, zt}nt=1, obtain the nonparametric estimator α̂(z∗s ) as in
(8) at the selected grid points {z∗s}ms=1. With these estimates, compute the statistic Îα as in (25).
Then obtain the two-step estimator β̂2s(zt) for t = 1, · · · , n and compute ût = yt − x′tβ̂2s(zt).
Let ϵ̂t = ût − ût−1 and σ̂2 = 1

n−1

∑n
t=2 ϵ̂

2
t .

Step (ii). Use the dependent wild bootstrap procedure of Shao (2010) to generate ϵ∗t from
ϵ̂t, and compute u∗t =

∑t
s=1 ϵ

∗
s for t = 1, · · · , n. Compute y∗t = x′tβ̌0 + u∗t , where β̌0 is the OLS

estimate of β0 obtained by regressing ∆yt on ∆xt. Compute the bootstrap statistic Î∗α as in
Step (i), using the bootstrap sample {y∗t , xt, zt}nt=1.

Step (iii). Repeat Step (ii) a large number of times, say B = 400, and use the upper δ-

percentile of the bootstrap statistic empirical distribution {Î∗(b)α }Bb=1, cδ, to approximate the

upper δ-percentile critical value of the null distribution of Îα.

4Ω̂(z) can be constructed by replacing the unknown components of Ω(z) with consistent estimates. In par-

ticular, with ût = yt − x′
tβ̂2s(zt), E(∆ut)

2 can be estimated by (n − 1)−1 ∑n
t=2(∆ût)

2. The densities can be

replaced by corresponding kernel density estimates and the expectation can be estimated by the sample average

n−1 ∑n
t=1 f̂(zt)/f̂(z, zt). Finally, the matrix quadratic functional

∫
BxB

′
x can be estimated in the usual way by

the standardized sample moment matrix n−2 ∑n
t=1 xtx

′
t. We then have

Ω̂(z) =
1

n− 1

n∑
t=2

(∆ût)
2 × ν0(K)× 1

n

n∑
t=1

f̂(zt)

f̂(z, zt)
× 1

n2

n∑
t=1

xtx
′
t ∼a Ω(z).

Consistency of Ω̂(z) is sufficient and follows easily from consistency of estimates for each component.
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Step (iv). Reject the null hypothesis if Îα > cδ, or if the p-value= 1
B

∑B
b=1 1(Î

∗(b)
α > Îα) < δ.

Otherwise, the null is not rejected.

The bootstrap procedure for Ĩα is similar. Bootstrap consistency is established below.

Theorem 4.2. Let Wn denote the sample observations {yt, xt, zt}nt=1. Under Assumption 1, we

have

Gn(x)
p−→ Φχ,km(x), (26)

for all x, as n → ∞, where Gn(x) is the conditional bootstrap distribution of Î∗α|Wn, given the

original sample Wn, and Φχ,km(x) is the χ2
km cumulative distribution function.

Simulations reported in Section 5.2 are used to examine size performance of the tests. The
asymptotic tests are found to be satisfactory provided m is not too large. But the bootstrap
tests typically have improved size performance and are generally recommended for practical
work.

Next we examine the local power properties of the tests. We consider the local alternative

HL
1 : α(z) = ρnα

0(z), where ρn is a deterministic sequence converging to zero, and α0(z) is a

nonzero function. First, in view of Theorem 3.1 (b), it is not hard to see that the bias B(z)
of α̂(z) is of order ρnh

2 in this case and the asymptotic variance Γ(α(zt)) is of order ρ
2
n. Then

from (13), we have

α̂(z) = Op(ρn) +Op(ρnh
2) +Op(ρ

2
n/

√
n) = Op(ρn). (27)

It follows that Îα = Op(ρ
2
nn

2h) under the local alternative HL
1 . In a similar fashion, Ĩα =

Op(ρ
2
nn

2h) for fixed m. The findings are summarized as follows.

Theorem 4.3. Under Assumption 1, the local alternative HL
1 , and for fixed integer m as n → ∞,

we have Îα = Op(ρ
2
nn

2h), Ĩα = Op(ρ
2
nn

2h).

Remark 4.1. Under local alternatives of the form HL
1 , tests based on Îα and Ĩα are consistent

when ρ2nn
2h → ∞, i.e., when the localizing rate ρn diminishes slower than 1/

√
n2h. When

ρn = O(1/
√
n2h), the tests have nontrivial power whose magnitude depends specifically on the

form of the sequence ρn.

Remark 4.2. For fixed alternatives with ρn a constant sequence the tests diverge at the rate

Op(n
2h), which is much faster than the test Ĵb proposed by Gan et al. (2014) for which Ĵb =

Op(nh) under fixed alternatives.

Tests can also be constructed using estimates of β(z). For example, based on the two-
step estimator β̂2s(z) we may consider test statistics that are constructed in the form of distance
measures such as Īβ =

∑m
s=1[β̂2s(z

∗
s )−β̌0]

′[β̂2s(z
∗
s )−β̌0] or analogous weighted measures, where β̌0

is the OLS estimator obtained by regressing ∆yt on ∆xt. Note that under the null, β̂2s(z)− β̌0 =
Op(1/

√
n), which suggests that Īβ = Op(1/n). Therefore, the test statistic Îβ = nĪβ = Op(nρ

2
n)

under the local alternative HL
1 . Since Îβ is less powerful than Îα under local alternatives, we do

not investigate its properties any further.
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5 Simulations

This section investigates the properties of the proposed estimates and tests in finite samples and
makes comparisons with procedures suggested in earlier work.

5.1 Estimation accuracy

We compare the finite sample performance of the estimates proposed in Section 2 with those of
Sun et al. (2011) (SHL thereafter), and conduct simulations to assess sensitivity in performance
to bandwidth choice.

The following model is used as the data generating process:

yt = xtβ(zt) + ut, (28)

xt = xt−1 + ϵxt, (29)

ut = ut−1 + ϵut, (30)

where ϵxt and ϵut are independent N (0, 1), and independent of each other5. Three different

design processes are used for zt in the simulations:

(IID) zt is iid uniform [-1,1];

(MA) zt = vt + 0.5vt−1, where vt is iid uniform [0,2];

(AR) zt = 0.5zt−1 + vt, where vt is iid uniform [-1,1].

The first design assumes an independent process for zt while the latter two allow for serial

correlation in zt. To model the functional coefficient β(zt) we consider three specifications for

α(z):

(i) Quadratic: α(z) = z − 0.5z2 − E(zt − 0.5z2t );

(ii) Trigonometric: α(z) = sin(z)− E sin(zt);

(iii) Constant: α(z) = 0 a.e..

The first two function forms have been considered by Sun et al. (2011). We set β(z) = α(z)+β0

and, without loss of generality, set β0 = 1.

A Gaussian kernel is used throughout the simulations with bandwidth h = c · σ̂zn−1/5, where

σ̂z is the sample standard deviation of zt. To check the sensitivity of performance to bandwidth

choice, the constant c is allowed to take values on a grid with step length 0.2 on the interval

5The DGP here follows Sun et al. (2011) for fair comparisons. We also looked at the case where both ϵxt

and ϵut are serially correlated. The results remain qualitatively the same and are available from the authors on

request.
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[0.2, 2.0]. We adopt the Integrated Mean Squared Error (IMSE) as a measure of estimation

accuracy for a functional coefficient estimator θ̂(z), viz.,

IMSE(θ̂(z)) = R−1
R∑

r=1

{
n−1

n∑
t=1

[θ̂(r)(zt)− θ(zt)]
2

}
, (31)

where θ̂(r)(z) denotes the estimate obtained in the r-th replication. We use the conventional

MSE to measure estimation accuracy for β0, viz.,

MSE(β̂0) = R−1
R∑

r=1

[β̂
(r)
0 − β0]

2.

The results are reported for R = 400 replications. Two sample sizes n = 50, 100 are considered.

To demonstrate sensitivity with respect to bandwidth, we plot the IMSEs and MSEs against

the constant c employed in the bandwidth formula. We use c∗ to denote the optimal value of

c at which the smallest IMSE or MSE is achieved. From Remark 3.5 we know that for the
√
n-consistent estimates, the asymptotic variance is independent of the bandwidth. Thus we

expect these estimates to perform better at smaller values of c compared to the
√
nh-consistent

estimates. To save space, the results are reported only for quadratic α(z) and α(z) = 0 a.e.,

since those for the trigonometric function (ii) are similar. Figures 1, 2 and 3 present the results

for quadratic α(z) for the three different designs of zt. Results for α(z) = 0 a.e. are collected in

Figures 4, 5 and 6.

We start by considering the case of quadratic α(z) in detail. When zt has no serial correlation,

the main findings from Figure 1 can be summarized as follows. First, the two estimates of α(z)

perform similarly, with the re-centered estimate α̃(z) being slightly better than α̂(z). Both

uniformly outperform the two SHL estimates for all bandwidth choices and all sample sizes.

Our estimates achieve best performance at smaller bandwidth choices (both at c∗ = 0.8 when

n = 50 and both at c∗ = 0.6 when n = 100) in comparison to the SHL estimates where the best

bandwidth choice is c∗ = 1.4 for n = 50 and n = 100. Second, in estimating β0, the estimator

β̃0 is the best of our proposed two estimators. The best performance is attained at c∗ = 0.8

when n = 50 and c∗ = 0.6 when n = 100, and significantly improves that of the SHL estimator

β̂0, whose best performance occurs for c∗ = 1.0 when n = 50 and c∗ = 0.8 when n = 100. Third,

in estimating β(z), the first step estimator β̂1s(z) is inferior to the SHL estimate while the

two-step estimator β̂2s(z) is superior to the SHL estimates especially when c is relatively small.

For the two-step estimator β̂2s(z), the optimal constant is c∗ = 0.8 for n = 50 and c∗ = 0.6 for

n = 100, while for the SHL estimator the optimal constant is c∗ = 1.2 for both n = 50 and

100. These results support the asymptotic theory, which indicates smaller bandwidths within

this permissable range should be preferred for all the
√
n-consistent estimators.

Figures 2 and 3 show results for serially correlated zt. For the estimation of α(z) and β(z),

the proposed
√
n-consistent estimators all outperform the SHL estimators at a relatively small

bandwidth. We further observe that the IMSE curves intersect those of the SHL estimates as the
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bandwidth increases. Compared to the case of independent zt, the cross-over point happens at a

smaller bandwidth. This finding suggests that the range of bandwidths over which our marginal

integration based estimators enjoy better performance than those of SHL become narrower for

dependent covariates zt. For the estimation of β0, the SHL estimate β̂0 enjoys a large advantage

when n = 100.

Next, when α(z) = 0 a.e., Figures 4-6 indicate that all the estimates enjoy much smaller

IMSE and MSE than when α(z) ̸= 0 irrespective of the presence or absence of serial dependence

in zt. The relative improvement of the proposed estimates over the SHL estimates is more

significant in this case. The improvement is especially marked for the IMSE of α(z), an outcome

that reflects the super consistency of our estimates of α(z). In this case, the best performing

estimates of α(z), β0 and β(z) are uniformly superior to the SHL estimates6. All the IMSEs and

MSEs decrease as c increases, leading to the best performance at c = 2. This is well expected

as the optimal bandwidth tends to infinity when the function to be estimated is a constant.

To better illustrate the efficiency gains of the proposed estimates, we report the ratios of the

best IMSE estimates (α̃(z) and β̂2s(z)) to those of the SHL estimates (SHLα̂(z) and SHLβ̃(z)).

Table 1 presents the results for quadratic α(z) and Table 2 presents those for α(z) = 0 a.e..

The levels of the best IMSE of the SHL estimators are reported in the square brackets. We

include the values of c for which the best IMSEs are achieved, c∗, in parentheses. In both Table

1 and 2, our estimates achieve significant efficiency gains compared to SHL under almost all the

considered scenarios and sample sizes. In Table 1 for the quadratic function, the improvement

with independent zt is the most marked. Furthermore, we observe that our estimates tend to

perform best around c = 0.6, while the SHL estimates achieve their best performance around

c = 1.2. This outcome again supports the asymptotic theory, which indicates that smaller

bandwidths within the allowable range should be preferred for the
√
n-consistent estimators. It

is apparent in Table 2 that the improvement regarding α(z) is more marked than that of α(z)

in Table 1. This finding again supports the super-consistency of our estimates of α(z) under the

null α(z) = 0 a.e..

In sum, for estimation of α(z) and β(z), the
√
n-consistent estimates vastly outperform the

SHL estimates when small bandwidths are employed. The improvement is even more pronounced

when α(z) = 0 a.e..

5.2 Test performance

We compare the performance of the proposed tests (Îα and Ĩα) with that of the Ĵb statistic

proposed by Gan et al. (2014)7 (GHX, hereafter). The DGP is the same as (28)-(30). Following

6The results for the IMSE and MSE at c = 0.2 in Figures 4-6 are excluded in the plots due to the extremely

large values.
7Only Ĵb is included because it has superior performance according to the simulations in Gan et al. (2014).
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Figure 1: Plots of IMSE and MSE, where α(z) is quadratic, zt is iid with h = c · σ̂zn−1/5
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Figure 2: Plots of IMSE and MSE, where α(z) is quadratic, zt is MA(1) with h = c · σ̂zn−1/5
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Figure 3: Plots of IMSE and MSE, where α(z) is quadratic, zt is AR(1) with h = c · σ̂zn−1/5
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Figure 4: Plots of IMSE and MSE, where α(z) = 0 a.e., zt is iid with h = c · σ̂zn−1/5
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Figure 5: Plots of IMSE and MSE, where α(z) = 0 a.e., zt is MA(1) with h = c · σ̂zn−1/5
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Figure 6: Plots of IMSE and MSE, where α(z) = 0 a.e., zt is AR(1) with h = c · σ̂zn−1/5
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Table 1: IMSE ratios (in bold) when α(z) is quadratic

zt is iid zt is MA(1) zt is AR(1)

α̃(z) SHLα̂(z) β̂2s(z) SHLβ̃(z) α̃(z) SHLα̂(z) β̂2s(z) SHLβ̃(z) α̃(z) SHLα̂(z) β̂2s(z) SHLβ̃(z)

n = 50 0.489 [0.054] 0.581 [ 0.088] 0.459 [0.067] 0.568 [0.114] 0.764 [0.122] 0.793 [0.157]

(0.8) (1.4) (0.8) (1.2) (0.8) (1.6) (0.8) (1.4) (0.6) (1.2) (0.6) (1.2)

n = 100 0.257 [0.040] 0.338 [ 0.063] 0.271 [0.066] 0.281 [0.099] 0.715 [0.089] 0.784 [0.104]

(0.6) (1.4) (0.6) (1.2) (0.6) (1.8) (0.6) (1.6) (0.6) (1.2) (0.6) (1.2)

Table 2: IMSE ratios (in bold) when α(z) = 0 a.e.

zt is iid zt is MA(1) zt is AR(1)

α̃(z) SHLα̂(z) β̂2s(z) SHLβ̃(z) α̃(z) SHLα̂(z) β̂2s(z) SHLβ̃(z) α̃(z) SHLα̂(z) β̂2s(z) SHLβ̃(z)

n = 50 0.083 [0.011] 0.541 [ 0.035] 0.047 [0.025] 0.454 [0.055] 0.032 [0.035] 0.385 [0.066]

(2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0)

n = 100 0.036 [0.009] 0.489 [ 0.020] 0.033 [0.013] 0.455 [0.025] 0.023 [0.015] 0.333 [0.027]

(2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0) (2.0)

Gan et al. (2014), let ϵxt be i.i.d. N (0, 22), x0 = 0, and ϵut be i.i.d. N (0, 1) with u0 = 08. For the

covariate zt, we consider both the dependent case zt = vt+ vt−1+ ϵxt, and the independent case

zt = vt, where vt is i.i.d. uniform [0,2]. The bandwidths are determined by the rule h = σ̂zn
−1/5,

for two sample sizes n = 50, 100.

Table 3: Test size based on asymptotic critical values (in percentages, nominal size=5%)

zt = vt ∼ iid U [0, 2] zt = vt + vt−1 + ϵxt

Îα Ĩα Îα Ĩα

m = 3 n = 50 8.75 0.75 12.25 1.75

n = 100 7.25 1.75 9.50 1.25

m = 5 n = 50 11.75 2.50 13.25 3.00

n = 100 11.25 3.00 15.50 4.00

m = 9 n = 50 20.00 6.00 22.25 5.25

n = 100 17.00 5.00 18.00 6.75

m = 20 n = 50 25.00 7.50 25.50 8.25

n = 100 23.25 7.75 20.25 7.00

We first consider size performance. Without loss of generality, we set β(z) = 1 under the

null. We consider m ∈ {3, 5, 9, 20} and use the {j/(m + 1)}mj=1 percentiles of {zt} for a grid

choice of m distinct points. The number of replications is 400. Table 3 reports empirical size (in

8Serial correlation in ∆xt and ∆ut does not qualitatively change the findings. Detailed results are available

from the authors on request.
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percentages) using asymptotic critical values with nominal size 5%. The Îα test is found to be

slightly oversized when m is small and oversizing worsens as m increases. On the other hand,

the Ĩα test is undersized when m is small, increases as m increases, and when m = 9 the size

of Ĩα is close to nominal. Based on size performance, the Ĩα test is preferred. But choice of the

number of grid points m has an important bearing on size control, as is clear from Table 3.

To ameliorate size dependence on m we explore the bootstrap tests following the procedure

of Section 4. Table 4 reports the size of our bootstrap tests (denoted as Î∗α and Ĩ∗α) and that of

GHX test9 (Ĵb) with bootstrap size B = 200. We see that the GHX test is severely undersized for

all specifications, consistent with their findings. In addition, the size distortion is not corrected

by increasing the sample size. The two proposed tests on the other hand have size close to

nominal, which seems also to be insensitive to the choice of m.

Table 4: Size of the bootstrap tests (in percentage, nominal size=5%)

zt = vt ∼ iid U [0, 2] zt = vt + vt−1 + ϵxt

Î∗α Ĩ∗α Ĵb Î∗α Ĩ∗α Ĵb

m = 3 n = 50 4.00 8.00 0.00 3.00 6.00 0.00

n = 100 4.50 5.50 0.00 7.00 7.00 0.00

m = 5 n = 50 3.00 7.00 0.75 4.00 5.50 0.25

n = 100 3.00 7.00 0.00 4.00 6.50 0.00

m = 9 n = 50 4.00 7.00 0.00 5.50 8.00 0.00

n = 100 3.50 6.00 0.25 4.00 5.50 0.00

m = 20 n = 50 4.00 7.00 0.50 4.50 6.50 0.75

n = 100 4.00 7.50 0.00 5.00 6.00 0.00

Next we consider the power performance of Ĩα with m = 9 and the bootstrapped tests Î∗α and

Ĩ∗α as these three tests have satisfactory size performance. For ease of reporting and without loss

of generality we use m = 9 also for the bootstrapped tests. We consider two local alternatives

HL
1 : β(z) = τ(z− 0.5z2)n−3/5 +1 and HL

2 : β(z) = τn−3/5/(1 + e−z) + 1, for τ = 0, 1, 2, . . . , 10.

In view of the divergence rates discussed in Remark 4.1 and 4.2, we know that the proposed

tests have non-trivial asymptotic power whereas the GHX test has trivial asymptotic power for

such local alternatives.

We plot power curves in Figure 7 for HL
2 . Results for H

L
1 are similar and are unreported here.

The power curves with independent zt are collected in the upper panel with (a) and (b) for our

proposed tests and (c) for the test GHX Ĵb. Results with serially correlated zt are summarized in

9For the test of Gan et al. (2014) we follow their suggestion and use h = σ̂z · n−1/5.
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the lower panel in the same fashion. We first observe that the power performance of Ĩα and that

of its bootstrapped version Ĩ∗α are close for all cases considered. The powers of Î∗α are slightly

lower than those of Ĩα and Ĩ∗α. Second, the power of our proposed tests evidently rises quickly

towards unity as τ increases and tends to increase as the sample size increases. This behavior

holds for all specifications, showing that the proposed tests have power under the current local

alternative. The GHX Ĵb test has substantially lower finite sample power and the power curves

actually decline as n increases, with power curves for n = 100 lying below the curves for n = 50,

as is clear from sub-figures (c) and (f). These results corroborate the asymptotic theory that

our tests diverge at a faster rate than that of Gan et al. (2014). In short, the simulation findings

support the use of Ĩα for an appropriate choice of m that controls size and, more generally, its

bootstrapped version Ĩ∗α.
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Figure 7: Power curves for HL
2 (the calculation used m = 9)

6 Empirical application

This section provides an empirical application based on the quantity theory of money to illustrate

the uses of correlated but non-cointegrated regression relations. The classical quantity theory

of money suggests MtVt = PtYt, where M stands for the money stock, V for the velocity of

circulation, P for the price level and Y for real output. Upon appropriate transformation we

have pt = mt+ vt where pt ≡ logPt, and mt ≡ log(Mt/Yt) is referred to as excess money supply.

The velocity vt = log Vt has often been argued to be stationary. A general cointegration model
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Figure 8: Estimation results of model (32) using Nadaraya-Watson estimator

considered by Bachmeier and Swanson (2005) is pt = βmt + v′t where β may be different from

1 and v′t is the regression residual. To incorporate possible structural breaks and parameter

instability, Wang et al. (2016) considered a functional-coefficient cointegration model which is

given by

pt = mtβ(zt) + ut, (32)

where zt is taken as the unemployment rate.

We follow Wang et al. (2016) and start from model (32). We are interested in the property

of ut in model (32). Specifically, we use the Consumer Price Index (2017=100) for P, the Gross

Domestic Product in chained 2017 dollars as a measure of Y , and M2 for measure of M . All

data are seasonally adjusted quarterly US figures ranging from 1959Q1 to 2019Q4. The mt

and pt are found to be unit root processes. We first estimate model (32) by the Nadaraya-

Watson estimator. The coefficient estimates and correponding residuals are displayed in Figure

8. From Figure 8 the residuals are evidently nonstationary and this is confirmed by the ADF

test. This suggests model (32) coincides with the correlated but not cointegrated framework

studied in the present paper. Therefore we re-estimate the coefficient β(·) using our proposed

method. The estimation results are displayed in Figure 9 showing that the coefficient estimate

differs substantially from that of Figure 8. The findings in Figure 9 are supported by the theory

in the present paper and are reliable whereas those in Figure 8 are not, due to the evident

nonstationarity of ut. Further, using our proposed constancy test, we cannot reject the null that

β(·) can be treated as constant. So, one might consider simplifying model (32) to a linear model.

Nonetheless, we find clear evidence of a correlated but not cointegrated functional coefficient

relation between the price level pt and excess money supply mt.
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Figure 9: Estimation of β(·) in model (32) using our proposed estimator β̂2s(z)

7 Concluding Remarks

Functional coefficient regression models have attracted econometric interest because of their

flexibility in modeling comovement among economic and financial variables where fixed linear

and nonlinear relations fail to capture relations that may co-vary with other variables. Such

models are useful in both stationary and nonstationary time series settings. This paper studies

models in which the comovement among variables is not so close as to be characterized as

cointegrating or even cointegrating with functional coefficients, leading to a framework that

is intermediate between cointegration and completely spurious regression among independent

variables. Our results complement earlier research (Sun et al., 2011; Gan et al., 2014) showing

that
√
n consistent estimation of the functional coefficient and asymptotically valid inference

about the form of this function are both possible in such non-cointegrated functional coefficient

models. The methods use marginal integration and back fitting techniques, and numerical

studies show that substantial efficiency gains are possible in estimation and bootstrap tests can

be constructed with standard asymptotic chi-squared distributions, stable size, and good local

power properties.

The present paper suggests several useful directions for future study. The model in the

present study is a prototypical non-cointegrated system with a functional coefficient of general

form. However, the model is limited by the assumption of exogenous regressors, as in the func-

tional cointegration analysis of Xiao (2009). A primary task in future research is to provide a

methodology of estimation that allows for endogenous regressors in the non-cointegrated frame-

work with functional coefficients and a mixed normal limit theory that facilitates inference.

A further goal is to extend the current research to encompass the cointegration case, thereby

providing empirical researchers with tools of estimation and inference that are robust to a wide

degree of comovement among integrated variables. Another direction of research is to investigate

the properties of the proposed estimates when the smoothing covariate is itself nonstationary, a

substantial additional complication that raises technical issues considered in other recent work

Wang et al. (2023). A further line of research is to provide for a wider range of nonstationary
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variables in the system, including near integrated and mildly integrated time series (Phillips,

1987, 1988; Phillips and Magdalinos, 2007) with the use of suitable instrumental variable meth-

ods such as functional coefficient versions of the IVX method of Phillips et al. (2009). The

multivariate zt case also needs investigation since the marginal integration approach has very

poor performance when zt is multivariate. New estimation methods are needed to deal with this

‘curse of dimensionality’ problem. Furthermore, testing procedures appropriate for a general

form of the functional coefficient also requires study. Some of these extensions are currently

under investigation.
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Appendix

This appendix has two parts. Appendix A contains proofs of the main theorems of the paper.

Appendix B provides useful lemmas and intermediate results used in the proofs of Appendix A.

Some of the results provide functional limit theory for partial sum matrix processes that involve

kernel functions in various levels of complexity, which may be of wider interest and application.

In terms of notation, we use := or =: to denote definitional equivalence. When we write

Sn = Op(nh) × S, we mean that the stochastic order of Sn is Op(nh) and (nh)−1Sn converges

to S either in probability or in distribution. The notation ∼a means equivalence in asymptotic

distribution.

A Proofs of the Main Theorems

As mentioned, the use of the trimming function 1(zt ∈ Sn) in (7) and (8) does not affect the

asymptotic theory and is therefore omitted in the proofs that follow to simplify notation.

Proof of Theorem 3.1. With some algebra we have the decomposition

β̂(z, w)− β(z, w) =

[∑
t

XtX
′
tKtzKtw

]−1∑
t

XtX
′
t(β(zt, wt)− β(z, w))KtzKtw

+

[∑
t

XtX
′
tKtzKtw

]−1∑
t

Xt∆utKtzKtw

=: [Ωn(z, w)]
−1Bn(z, w) + [Ωn(z, w)]

−1Vn(z, w), (33)

As explained in the Introduction use of standard diagonal matrix normalization fails in develop-

ing the correct asymptotic behavior of the component products in (33). We therefore examine

below the component elements of Ωn(z, w), Bn(z, w) and Vn(z, w) in sequence in order to isolate

leading terms that contribute to the limit theory. We start with the signal matrix

Ωn(z, w) =

(∑
∆xt(∆xt)

′KtzKtw
∑

∆xtx
′
t−1KtzKtw∑

xt−1(∆xt)
′KtzKtw

∑
xt−1x

′
t−1KtzKtw

)
=:

(
Ωn11(z, w) Ωn12(z, w)

Ωn21(z, w) Ωn22(z, w)

)
.

We take each element in turn and, for notational simplicity, omit dependence on (z, w). Starting

with Ωn11 we have the decomposition

Ωn11 =
∑

∆xt(∆xt)
′KtzKtw =:

∑
∆xt(∆xt)

′E[ξt] +
∑

∆xt(∆xt)
′ξ̄t,

where ξt = KtzKtw, ξ̄t = ξt −Eξt. In view of Lemma B.1 (a), we have Eξt = O(h1h2)× f(z, w),

ξ̄t = Op(
√
h1h2), and then

∑
∆xt(∆xt)

′ξ̄t = Op(
√
nh1h2). With nh1h2 → ∞, we can write

Ωn11 ∼a O(nh1h2)× E[∆xt(∆xt)
′]f(z, w) +Op(

√
nh1h2)

= O(nh1h2)× E[∆xt(∆xt)
′]f(z, w). (34)
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Similarly, for the (2,2) element Ωn22 we have

Ωn22 =
∑

xt−1x
′
t−1KtzKtw

=
∑

xt−1x
′
t−1E[ξt] +

∑
xt−1x

′
t−1ξ̄t

∼a Op(n
2h1h2)×

∫
BxB

′
xf(z, w) +Op(n

√
nh1h2)

= Op(n
2h1h2)×

∫
BxB

′
xf(z, w). (35)

For the (1,2) element Ωn12, in view of Lemma B.1 (d), we can write

Ωn12 =
∑

∆xtx
′
t−1KtzKtw ∼a Op(n

√
h1h2)×

∫
dBxξB

′
x. (36)

To analyze the inverse matrix [Ωn(z, w)]
−1, we use partitioned inversion. This approach

ensures that all key elements are retained in deriving the limit theory, whereas diagonal matrix

normalization eliminates elements that are important in the matrix product (33). Writing

[Ωn(z, w)]
−1 =

(
Ω11
n Ω12

n

Ω21
n Ω22

n

)
,

we have

Ω11
n = Ω−1

n11 +Ω−1
n11Ωn12[Ω

∗
n22]

−1Ω′
n12Ω

−1
n11, (37)

Ω12
n = −Ω−1

n11Ωn12[Ω
∗
n22]

−1,

Ω21
n = −Ω−1

n22Ω
′
n12[Ω

∗
n11]

−1,

Ω22
n = Ω−1

n22 +Ω−1
n22Ω

′
n12[Ω

∗
n11]

−1Ωn12Ω
−1
n22, (38)

where Ω∗
n22 = Ωn22 − Ω′

n12Ω
−1
n11Ωn12, Ω

∗
n11 = Ωn11 − Ωn12Ω

−1
n22Ω

′
n12. In view of the previous

analysis of the orders of Ωn11,Ωn12 and Ωn22, it is clear that Ωn22 is the leading term of Ω∗
n22

and Ωn11 is the leading term of Ω∗
n11. Further inspection reveals that the second term on the

right hand side of (37) is negligible compared to the first term Ω−1
n11, and this is also true for

(38). Therefore we have Ω11
n ∼a Ω−1

n11, Ω
12
n ∼a −Ω−1

n11Ωn12[Ωn22]
−1, Ω21

n ∼a −Ω−1
n22Ω

′
n12[Ωn11]

−1

and Ω22
n ∼a Ω−1

n22.

Next we analyze Bn(z, w). For the same reason as for [Ωn(z, w)]
−1 we write this matrix in

partitioned components form as

Bn(z, w) =
∑
t

XtX
′
t(β(zt, wt)− β(z, w))KtzKtw

=

(∑
∆xt(∆xt)

′[β1(zt, wt)− β1(z, w)]KtzKtw +
∑

∆xtx
′
t−1[β2(zt, wt)− β2(z, w)]KtzKtw∑

xt−1(∆xt)
′[β1(zt, wt)− β1(z, w)]KtzKtw +

∑
xt−1x

′
t−1[β2(zt, wt)− β2(z, w)]KtzKtw

)

=:

(
Bn1(z, w) +Bn2(z, w)

Bn3(z, w) +Bn4(z, w)

)
. (39)

28



Omitting dependence on (z, w), we take these elements in turn. Starting with Bn1, we apply

the same decomposition as before, giving

Bn1 =
∑

(∆xt)(∆xt)
′(β1(zt, wt)− β1(z, w))KtzKtw

=
∑

(∆xt)(∆xt)
′(β(zt)− β(z))KtzKtw

=
∑

(∆xt)(∆xt)
′E[ηt] +

∑
(∆xt)(∆xt)

′η̄t, (40)

where ηt = (β(zt) − β(z))KtzKtw, η̄t = ηt − Eηt. In view of Lemma B.1 (b), we know that

E[ηt] = O(h1h2h
2
1)× µ2(K)C1(z, w), where

C1(z, w) = β(1)(z)f (1)
z (z, w) +

1

2
β(2)(z)f(z, w),

and in view of Lemma B.1 (g) we can write

Bn1 ∼a Op(nh1h2h
2
1)× µ2(K)E[∆xt(∆xt)

′]C1(z, w) +Op(
√
nh1h2h21)×

∫
dBxxη. (41)

Next, decomposing Bn4 in the same way, we have

Bn4 =
∑

xt−1x
′
t−1[β2(zt, wt)− β2(z, w)]KtzKtw

=
∑

xt−1x
′
t−1[β(zt)− β(z)− (β(wt)− β(w))]KtzKtw

=
∑

xt−1x
′
t−1E[ζt] +

∑
xt−1x

′
t−1ζ̄t, (42)

where ζt = [β(zt)− β(z)− (β(wt)− β(w))]KtzKtw and ζ̄t = ζt −Eζt. In view of Lemma B.1 (c),

we have

E[ζt] = O(h1h2)× µ2(K)[h21C1(z, w)− h22C2(z, w)],

where

C2(z, w) = β(1)(w)f (1)
w (z, w) +

1

2
β(2)(w)f(z, w).

By virtue of the independence of xt and zt we have ζ̄t = Op(
√
h1h2(h21 + h22)). We then deduce

that

Bn4 ∼aOp(n
2h1h2)×

∫
BxB

′
xµ2(K)[h21C1(z, w)− h22C2(z, w)] +Op(n

√
nh1h2(h21 + h22))×

∫
BxB

′
xdBζ .

(43)

Next consider Bn2, which we write in the form

Bn2 =
∑

∆xtx
′
t−1[β2(zt, wt)− β2(z, w)]KtzKtw =

∑
∆xtζ

′
txt−1. (44)

In view of Lemma B.1 (f), we find that

Bn2 ∼a Op

(
n
√
h1h2(h21 + h22)

)
×
∫

dBxζBx. (45)
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Similarly, for Bn3 we have

Bn3 =
∑

xt−1(∆xt)
′[β1(zt, wt)− β1(z, w)]KtzKtw =

∑
xt−1(∆xt)

′ηt, (46)

and in view of Lemma B.1 (e),

Bn3 =Op

(
n
√
h1h2h21

)
×
∫

BxdBxη. (47)

Turning to Vn(z, w) we again use the partitioned form

Vn(z, w) =
∑
t

Xt∆utKtzKtw =

(
∆xt∆utKtzKtw

xt−1∆utKtzKtw

)
=:

(
Vn1

Vn2

)
. (48)

Since {ut} is independent of {xt, zt}, we have EVn1 = 0 and

Vn1 = Op

(√
nh1h2

)
×
∫

dBxuK , (49)

whereBxuK(r) is the limit Brownian motion of the partial sum process 1√
nh1h2

∑[nr]
t=1∆xt∆utKtzKtw,

and
∫
dBxuK = BxuK(1) has variance matrix E[(∆xt)(∆xt)

′]E[(∆ut)
2]f(z, w)ν20(K). Similarly,

for Vn2 we have

Vn2 = Op

(
n
√
h1h2

)
×
∫

BxdBuK , (50)

where BuK(r) is the limit Brownian motion of the partial sum process 1√
nh1h2

∑[nr]
t=1∆utKtzKtw.

With these preliminaries in hand, we now proceed to deduce the limit behavior of the esti-

mators given in Theorem 3.1.

(a) We start with the bivariate kernel estimator β̂1(z, w). From the partitioned regression, we

have the following decomposition

β̂1(z, w)− β1(z, w)

= Ω11
n [Bn1(z, w) +Bn2(z, w)] + Ω12

n [Bn3(z, w) +Bn4(z, w)] + Ω11
n Vn1 +Ω12

n Vn2

∼a Ω−1
n11[Bn1(z, w) +Bn2(z, w)]− Ω−1

n11Ωn12[Ωn22]
−1[Bn3(z, w) +Bn4(z, w)]

+ Ω−1
n11Vn1 − Ω−1

n11Ωn12[Ωn22]
−1Vn2. (51)

In view of the analysis of the orders of the components given above and using h1 = h2 = h, the

leading term on the right hand side of (51) is evidently Ω−1
n11Bn2(z, w), which is of order Op(1).

Specifically,

β̂1(z, w)− β1(z, w) = Ω−1
n11Bn2 +Op(h+ 1/

√
nh2)

∼a Op(1)×
1

f(z, w)
{E[∆xt(∆xt)

′]}−1

∫
dBxζBx, (52)
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so that the bivariate estimator β̂1(z, w) is actually inconsistent. The inconsistency originates

in the nonstationarity of xt which leads to the nonzero stochastic integral component that is

present in (52).

Next consider the time averaged estimator β̂1s(z). Noting that β1(z, w) = β(z), we have

β̂1s(z)− β(z) =
1

n

n∑
t=1

[β̂1(z, zt)− β1(z, zt)]. (53)

In view of (52), to obtain the asymptotic distribution of β̂1s(z), we need analyze the matrix

ratio Ω−1
n11(z, w)Bn2(z, w) time averaged with respect to w. For the component Ωn11, we have

the uniform result (nh1h2)
−1Ωn11 = f(z, w)E[∆xt(∆xt)

′]+Op(cn), where cn = h21+h22+
√

logn
nh1h2

,

uniformly for all (z, w) (see, for example, Li and Racine (2007, p.79)). Hence, we need to average

of f−1(z, w)(nh1h2)
−1Bn2 with respect to w. We have

1

n

∑
s

f−1(z, zs)
1

nh1h2

∑
t

∆xtx
′
t−1[β(zt)− β(z)− (β(wt)− β(zs))]KtzK(

wt − zs
h2

)

=
1

nh1

∑
t

∆xtx
′
t−1Ktz

1

nh2

∑
s

f−1(z, zs)[β(zt)− β(z)− (β(wt)− β(zs))]K(
wt − zs

h2
)

∼a
1

nh1

∑
t

∆xtKtzf
−1(z, wt)[β(zt)− β(z)]′f(wt)xt−1

=:
1

nh1

∑
t

∆xtϵ
′
βtxt−1

∼a Op(
√
h1)×

∫
dBxϵBx, (54)

where ϵβt = Ktzf
−1(z, wt)[β(zt) − β(z)]f(wt) and Bxϵ is the matrix Brownian motion limit of

the partial sum process 1√
nh3

1

∑
t∆xtϵ

′
βt. The third line above follows because

1

nh2

∑
s

f−1(z, zs)[β(zt)− β(z)− (β(wt)− β(zs))]K(
wt − zs

h2
) (55)

p−→f−1(z, wt)[β(zt)− β(z)− (β(wt)− β(wt))]f(wt)

=f−1(z, wt)[β(zt)− β(z)]f(wt).

The final line (54) follows from Lemma B.1 (h) by virtue of the independence of xt and zt.

Therefore, with cn/
√
h → 0, as assumed in Assumption 1 (vi), we have

1√
h
[β̂1s(z)− β(z)] ∼a {E[∆xt(∆xt)

′]}−1

∫
dBxϵBx. (56)

The result follows because the average of the smaller order terms in (51) are all at most of order

op(
√
h). As pointed out in (52), these terms are originally of order Op(h + 1/

√
nh2), which is

op(
√
h) uniformly in w since nh3 → ∞ as implied by cn/

√
h → 0, leading to order at most

op(
√
h) upon averaging.
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We now analyze the limit distribution on the right side of (56). In view of Assumption 1

(ii), the Brownian motions Bx and Bxϵ are independent, as can be verified element-wise. For

example, when xt is univariate we have the sample covariance

E[
1√
n

∑
t

∆xt][
1√
nh31

∑
t

∆xtϵβt] =
1

n
√
h31

∑
t,s

E[∆xt∆xs]Eϵβs

=
Eϵβs
n
√
h31

∑
1≤t,t−ℓ≤n

E[∆xt∆xt−ℓ] =
Eϵβs
n
√
h31

n−1∑
ℓ=1−n

[n− |ℓ|]γ∆x(ℓ)

=O(h31)×
1

n
√
h31

×O(n) = O(h3/2) = o(1),

where γ∆x(ℓ) = E[∆xt∆xt−ℓ] and the second to last equality follows because ∆xt has finite long

run variance and Eϵβs = O(h31), as shown in (93) in the proof of Lemma B.1 (h) below. Hence

conditional on Bx,
∫
dBxϵBx is a normal random vector with variance

ν2(K)E[f(wt)/f(z, wt)]

∫
(β(1)(z)′Bx)

2E[∆xt(∆xt)
′].

The asymptotic variance of β̂1s(z) is then ν2(K)E[f(wt)/f(z, wt)]
∫
(β(1)(z)′Bx)

2[E(∆xt)(∆xt)
′]−1

and we deduce that

1√
h
(β̂1s(z)− β(z))⇝MN

(
0, ν2(K)E[f(wt)/f(z, wt)]

∫
(β(1)(z)′Bx)

2[E(∆xt)(∆xt)
′]−1

)
,

giving the stated result.

(b) We first consider β̂2(z, w). The estimation error is

β̂2(z, w)− β2(z, w) = Ω21
n [Bn1 +Bn2] + Ω22

n [Bn3 +Bn4] + Ω21
n Vn1 +Ω22

n Vn2

∼a − Ω−1
n22Ω

′
n12Ω

−1
n11[Bn1 +Bn2] + Ω−1

n22[Bn3 +Bn4]

− Ω−1
n22Ω

′
n12Ω

−1
n11Vn1 +Ω−1

n22Vn2. (57)

In the same way as before for (a), it can be verified that the leading term on the right side of

(57) is Ω−1
n22Bn4, which is of order Op(h

2 + 1/
√
n). More specifically, we have

β̂2(z, w)− β2(z, w) = Ω−1
n22Bn4 +Op(1/(nh)) = op(1). (58)

Thus, β̂2(z, w) is consistent. In view of (35) and (43), we have

β̂2(z, w)− β2(z, w) ∼a h2B2(z, w) +
1√
n
f−1(z, w)

[∫
BxB

′
x

]−1 ∫
BxB

′
xdBζ , (59)

where B2(z, w) = f−1(z, w)µ2(K)[C1(z, w)−C2(z, w)] is deterministic and
∫
BxB

′
xdBζ is a k×1

random vector stochastic integral with zero mean.
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The marginal integration estimator α̂(z) is defined as α̂(z) = 1
n

∑n
t=1 β̂2(z, zt). Since β2(z, w) =

β(z)− β(w) = α(z)− α(w), we have

α̂(z)− α(z) =
1

n

n∑
t=1

β̂2(z, zt)− α(z)

=
1

n

n∑
t=1

[β̂2(z, zt)− β2(z, zt)] +
1

n

n∑
t=1

β2(z, zt)− α(z)

=
1

n

n∑
t=1

[β̂2(z, zt)− β2(z, zt)]−
1

n

n∑
t=1

α(zt). (60)

Evidently, 1
n

∑n
t=1 α(zt) = Op(1/

√
n). We need to analyze the order of the first term in (60) for

comparative purposes. Since 1
n2

∑
xt−1x

′
t−1 ⇝

∫
BxB

′
x independently of zt and E[ξt] = f(z, w)

we can focus on the sample average of f−1(z, w)Bn4 with respect to w, or equivalently, the

sample average of the two terms in (59). The second term of (59) has zero mean because

E
∫
BxB

′
xdBζ = 0. Similar to the analysis in (54), we can show that after averaging over

w, the second term of (59) contributes a term of order op(1/
√
n) and is therefore negligible

compared with the sample average 1
n

∑n
t=1 α(zt). Moreover, the average of B2(z, w) with respect

to w contributes a bias term, which will converge to the expectation EB2(z, zt). At the same

time, the average of the terms of smaller order in (57) is negligible because it is at most of

order Op(1/(nh)) = op(1/
√
n) in view of (58). It follows that the limit distribution of α̂(z) is

determined by the sample average 1
n

∑n
t=1 α(zt). Therefore we have

√
n
(
α̂(z)− α(z)− h2B(z)

)
⇝ N (0,Γ(α(zt))), (61)

where B(z) = EB2(z, zt) = µ2(K)EC1(z,zt)−C2(z,zt)
f(z,zt)

and Γ(α(zt)) denotes the long run variance

matrix of {α(zt)}.
For the estimator α̃(z), we have

α̃(z)− α(z) = α̂(z)− α(z)− n−1
n∑

t=1

α̂(zt)

=
1

n

n∑
t=1

[β̂2(z, zt)− β2(z, zt)]−
1

n

n∑
t=1

[α̂(zt)− α(zt)]−
2

n

n∑
t=1

α(zt)

= − 1

n

n∑
t=1

α(zt) +
1

n

n∑
t=1

[
β̂2(z, zt)− β2(z, zt)

]
− 1

n

n∑
t=1

1

n

n∑
s=1

[β̂2(zt, zs)− β2(zt, zs)]. (62)

Similar to the analysis in (60), we find that (62) is dominated by the term − 1
n

∑n
t=1 α(zt). The

biases coming from the second and third term in (62) are h2B(z) and −h2EB(zt), respectively.
Then we have

√
n[α̃(z)− α(z)− h2(B(z)− EB(zt))]⇝ N (0,Γ(α(zt))). (63)
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(c) Least squares gives

β̂0 =

[
n∑

t=2

∆xt(∆xt)
′

]−1 n∑
t=2

∆xt∆ỹt = β0 +

[
n∑

t=2

∆xt(∆xt)
′

]−1 n∑
t=2

∆xt∆ũt,

where ỹt = yt − x′tα̂(zt), ũt = yt − x′tα̂(zt)− x′tβ0, and

∆ũt = yt − x′tα̂(zt)− x′tβ0 − [yt−1 − x′t−1α̂(zt−1)− x′t−1β0]

= ∆yt − x′tα̂(zt) + x′t−1α̂(zt−1)− (∆xt)
′β0

= ∆ut + x′t[α(zt)− α̂(zt)]− x′t−1[α(zt−1)− α̂(zt−1)].

Thus

β̂0 = β0 +

[
n∑

t=2

∆xt(∆xt)
′

]−1 n∑
t=2

∆xt∆ut

+

[
n∑

t=2

∆xt(∆xt)
′

]−1 n∑
t=2

∆xt{x′t[α(zt)− α̂(zt)]− x′t−1[α(zt−1)− α̂(zt−1)]}

=: β0 +A1n +

[
n−1

n∑
t=2

∆xt(∆xt)
′

]−1

A2n,

defining A1n and A2n. It is easy to see that A1n = Op(n
−1/2). Recall that α̂(z)−α(z)−h2B(z) ∼a

− 1
n

∑n
s=1 α(zs). Then

A2n =
1

n

n∑
t=2

∆xt{x′t[α(zt)− α̂(zt)]− x′t−1[α(zt−1)− α̂(zt−1)]}

=
1

n

n∑
t=2

∆xt(∆xt)
′ 1

n

n∑
s=1

α(zs)− h2
1

n

n∑
t=2

∆xt∆[x′tB(zt)],

where

1

n

n∑
t=2

∆xt∆[x′tB(zt)] =
1

n

n∑
t=2

∆xt(∆xt)
′B(zt) +

1

n

n∑
t=2

∆xtx
′
t∆B(zt)⇝E[∆xt(∆xt)

′]EB(zt) +
∫

dBxBBx,

(64)

and BxB is defined as the matrix Brownian motion limit of the associated partial sum process,

viz., 1√
n

∑[nr]
t=1∆xt[∆B(zt)]′ ⇝ BxB(r). Then we can write

β̂0 − β0 + h2
{
EB(zt) + [E∆xt(∆xt)

′]−1

∫
dBxBBx

}
∼a

[
n∑

t=2

∆xt(∆xt)
′

]−1 n∑
t=2

∆xt∆ut +
1

n

n∑
s=1

α(zs) (65)

∼a Op(1/
√
n)× {N (0, [E∆xt(∆xt)

′]−1Γ(∆xt∆ut)[E∆xt(∆xt)
′]−1) +N (0,Γ(α(zt)))}

= Op(1/
√
n)×N (0, [E∆xt(∆xt)

′]−1Γ(∆xt∆ut)[E∆xt(∆xt)
′]−1 + Γ(α(zt))),
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where the last step is due to the independence of {ut} and {zt}. We therefore have

√
n(β̂0 − β0 + h2B)⇝ N (0, [E∆xt(∆xt)

′]−1Γ(∆xt∆ut)[E∆xt(∆xt)
′]−1 + Γ(α(zt))), (66)

where the bias B = EB(zt) + [E∆xt(∆x)′t]
−1
∫
dBxBBx is a random vector.

The analysis of β̃0 is similar. We only need to replace B(z) with B(z)− EB(zt) =: B̄(z). So
(66) continues to hold for β̃0, with B replaced by B̄ = EB̄(zt)+[E∆xt(∆xt)

′]−1
∫
dBxB̄Bx, where

BxB̄ is defined as 1√
n

∑[nr]
t=1∆xt[∆B̄(zt)]′ ⇝ BxB̄(r).

(d) In view of (65), we have β̂0−β0 ∼a −h2B+[
∑n

t=2∆xt(∆xt)
′]−1

∑n
t=2∆xt∆ut+

1
n

∑n
s=1 α(zs),

and in view of (60), we can write α̂(z)− α(z) ∼a h2B(z)− 1
n

∑n
s=1 α(zs). Then we have

β̂2s(z)− β(z) = β̂0 − β0 + α̂(z)− α(z)

∼a h2(B(z)− B) +

[
n∑

t=2

∆xt(∆xt)
′

]−1 n∑
t=2

∆xt∆ut, (67)

from which we deduce

√
n[β̂2s(z)− β(z)− h2(B(z)− B)]⇝ N

(
0, [E∆xt(∆xt)

′]−1Γ(∆xt∆ut)[E∆xt(∆xt)
′]−1
)
, (68)

as stated. ■

Proof of Theorem 3.2

When β(z) is a constant function, say β(z) = β0 for all z, different asymptotics apply. First

of all, we have

β̂1(z, w)− β0 = Ω11
n Vn1 +Ω12

n Vn2 ∼a Ω−1
n11Vn1 − Ω−1

n11Ωn12[Ωn22]
−1Vn2. (69)

Based on the order analysis in the proof of Theorem 3.1, we know the first term in the right

hand side of (69) is the leading term and the second term can be ignored. Thus we can write

β̂1(z, w)− β0 ∼a Ω−1
n11Vn1, (70)

from which we deduce the following limit theory√
nh1h2(β̂1(z, w)− β0)⇝ N (0, ν20(K)f−1(z, w)E(∆ut)

2[E∆xt(∆xt)
′]−1). (71)

To analyze the marginal integration estimator β̂1s(z), we need to look at the average of
1

nh1h2
f−1(z, w)Vn1 with respect to w. We have

1

n

n∑
s=1

f−1(z, zs)
1

nh1h2

n∑
t=2

∆xt∆utKtzK(
wt − zs

h2
)

=
1

nh1

n∑
t=2

∆xt∆utKtz
1

nh2

n∑
s=1

f−1(z, zs)K(
wt − zs

h2
)

∼a
1

nh1

n∑
t=2

∆xt∆utKtzf
−1(z, wt)f(wt)

= Op(
1√
nh1

)×N (0,E(∆ut)
2ν0(K)E[f(wt)/f(z, wt)]E[∆xt(∆xt)

′]), (72)
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where last equality follows by direct evaluation as

EK2
tzf

−2(z, wt)f
2(wt) =

∫
K2

tzf
−2(z, wt)f

2(wt)f(zt, wt)dztdwt

=

∫
K2(u)[f(z, wt) + f (1)

z (z, wt)h1u+ · · · ]h1duf−2(z, wt)f
2(wt)dwt

= h1ν0(K)

∫
f(z, wt)f

−2(z, wt)f
2(wt)dwt + o(h1)

= h1ν0(K)E[f(wt)/f(z, wt)]{1 + o(1)}. (73)

Thus we have√
nh1(β̂1s(z)− β0)⇝ N (0,E(∆ut)

2ν0(K)E[f(wt)/f(z, wt)][E∆xt(∆xt)
′]−1). (74)

In a similar way for the coefficient of xt−1, we have

β̂2(z, w) = Ω21
n Vn1 +Ω22

n Vn2 ∼a −Ω−1
n22Ω

′
n12Ω

−1
n11Vn1 +Ω−1

n22Vn2 ∼a Ω−1
n22Vn2. (75)

Proceeding as before, we then find that

n
√
h1h2β̂2(z, w)⇝MN

(
0, ν20(K)f−1(z, w)E(∆ut)

2

[∫
BxB

′
x

]−1
)
. (76)

Then, averaging 1
n2h1h2

f−1(z, w)Vn2 with respect to w, we obtain

1

n

n∑
s=1

f−1(z, zs)
1

n2h1h2

n∑
t=2

xt−1∆utKtzK(
wt − zs

h2
)

=
1

n2h1

n∑
t=2

xt−1∆utKtz
1

nh2

n∑
s=1

f−1(z, zs)K(
wt − zs

h2
)

∼a
1

n2h1

n∑
t=2

xt−1∆utKtzf
−1(z, wt)f(wt)

= Op(
1

n
√
h1

)×MN
(
0,

∫
BxB

′
xE(∆ut)

2ν0(K)E[f(wt)/f(z, wt)]

)
. (77)

Note that (60) now becomes α̂(z) = 1
n

∑n
s=1 β̂2(z, zs). Therefore we have

n
√
h1α̂(z)⇝MN

(
0,E(∆ut)

2ν0(K)E[f(wt)/f(z, wt)]

[∫
BxB

′
x

]−1
)
. (78)

For the estimator α̃(z), we have

α̃(z) =α̂(z)− n−1
n∑

t=1

α̂(zt) =
1

n

n∑
s=1

β̂2(z, zs) +
1

n

n∑
t=1

1

n

n∑
s=1

β̂2(zt, zs), (79)

and following a similar argument as in (77) we can show that 1
n

∑n
t=1

1
n

∑n
s=1 β̂2(zt, zs) =

Op(1/n). Thus, α̃(z) ∼a
1
n

∑n
s=1 β̂2(z, zs) = α̂(z).
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For β̂0, we first have by substitution

β̂0 =β0 +

[
n∑

t=2

∆xt(∆xt)
′

]−1 n∑
t=2

∆xt{∆ut − x′tα̂(zt) + x′t−1α̂(zt−1)}.

Since α̂(z) = Op(1/n
√
h1), we have x′tα̂(zt) = Op(1/

√
nh1) = op(1). Then

β̂0 − β0 ∼a

[
n∑

t=2

∆xt(∆xt)
′

]−1 n∑
t=2

∆xt∆ut,

from which we deduce that

√
n(β̂0 − β0)⇝ N

(
0, [E∆xt(∆xt)

′]−1Γ(∆xt∆ut)[E∆xt(∆xt)
′]−1
)
. (80)

The analysis for β̃0 follows the same lines and is omitted.

Finally, for the two-step estimator β̂2s(z), we have β̂2s(z)− β0 = β̂0 − β0 + α̂(z) ∼a β̂0 − β0

because α̂(z) = Op(1/n
√
h1) = op(1/

√
n). Therefore

√
n(β̂2s(z)− β0)⇝ N

(
0, [E∆xt(∆xt)

′]−1Γ(∆xt∆ut)[E∆xt(∆xt)
′]−1
)
.

■

Proof of Theorem 4.2.

The proof is similar to the proof of Theorem 3.2 and is simply sketched here. First, not-

ing that for the bootstrapped statistic Î∗α, the corresponding true model is y∗t = x′tβ̌0 + u∗t ,

where u∗t is I(1) according to its generating process. The bootstrap sequence {ϵ∗t = ∆u∗t }
evidently satisfies the restrictions imposed on {∆ut} given in Assumption 1 (i) (ii). Then

following Theorem 3.2, we have n
√
hα̂∗(z) ⇝ MN (0,Ω∗(z)), where α̂∗(z) is the bootstrap

analogue of α̂(z), Ω∗(z) = ν0(K)E(∆u∗t )
2E[f(wt)/f(z, wt)]

[∫
BxB

′
x

]−1
is the bootstrap ana-

logue of Ω(z). Denote the bootstrap version of β̂2s(z) as β̂∗
2s(z). Then, from Theorem 3.2

we know that
√
n(β̂∗

2s(z) − β̌0) ⇝ N (0, [E∆xt(∆xt)
′]−1Γ(∆xt∆u∗t )[E∆xt(∆xt)

′]−1). Therefore,

∆û∗t = ∆u∗t + op(1), where û∗t = y∗t − x′tβ̂
∗
2s(zt). Thus E(∆u∗t )

2 can be consistently estimated

by (n− 1)−1
∑n

t=2(∆û∗t )
2. Then the consistent estimator Ω̂∗(z) of Ω∗(z) can be constructed in

the same way as Ω̂(z). Following the same argument as in the proof of Theorem 4.1, we have

(Î∗α|Wn)⇝ χ2
km. ■

B Useful Lemmas

Lemma B.1. (a) 1√
nh1h2

∑[nr]
t=1 ξ̄t ⇝ Bξ(r), where ξ̄t = ξt − Eξt, ξt = KtzKtw, and Bξ(r) is

scalar Brownian motion with variance given by (83) ;

(b) 1√
nh1h2h2

1

∑[nr]
t=1 η̄t ⇝ Bη(r) where η̄t = ηt − Eηt, ηt = (β(zt) − β(z))KtzKtw, and Bξ(r) is

vector Brownian motion with variance matrix given by (86) ;
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(c) 1√
nh1h2(h2

1+h2
2)

∑[nr]
t=1 ζ̄t ⇝ Bζ(r) where ζ̄t = ζt−Eζt, ζt = [β(zt)−β(z)−(β(wt)−β(w))]KtzKtw

and Bζ(r) is vector Brownian motion with variance matrix given by (87);

(d) 1√
nh1h2

∑[nr]
t=1∆xtξt ⇝ Bxξ(r), where Bxξ(r) is vector Brownian motion with variance matrix

given by (89);

(e) 1√
nh1h2h2

1

∑[nr]
t=1(∆xt)

′ηt ⇝ Bxη(r) where Bxη(r) is scalar Brownian motion with variance

given by (90);

(f) 1√
nh1h2(h2

1+h2
2)

∑
∆xtζ

′
t ⇝ Bxζ(r) where Bxζ(r) is matrix Brownian motion with variance

matrix given in tensor form by (91);

(g) 1√
nh1h2h2

1

∑[nr]
t=1∆xt(∆xt)

′η̄t ⇝ Bxxη(r) where Bxxη(r) is vector Brownian motion with vari-

ance matrix given by (92);

(h) 1√
nh3

1

∑[nr]
t=1∆xtKtzf

−1(z, wt)[β(zt)−β(z)]′f(wt)⇝ Bxϵ(r) where Bxϵ(r) is matrix Brownian

motion with variance matrix given in tensor form by (95).

Proof (a) First note that E[ξ̄t] = 0. To find out the order of ξ̄t, we need to compute Eξ̄2t =

Eξ2t − [Eξt]2, which requires the computation of E[ξt] and E[ξ2t ]. We have

E[KtzKtw] =

∫
K(

zt − z

h1
)K(

wt − w

h2
)f(zt, wt)dztdwt

=

∫
K(u)K(v)f(z + h1u,w + h2v)h1duh2dv

= h1h2

∫
K(u)K(v)[f(z, w) + f (1)

z (z, w)h1u+ f (1)
w (z, w)h2v + · · · ]dudv

= h1h2[f(z, w) + o(1)]

= O(h1h2)× f(z, w), (81)

and

E[K2
tzK

2
tw] =

∫
K2(

zt − z

h1
)K2(

wt − w

h2
)f(zt, wt)dztdwt

=

∫
K2(u)K2(v)f(z + h1u,w + h2v)h1duh2dv

= h1h2

∫
K2(u)K2(v)[f(z, w) + f (1)

z (z, w)h1u+ f (1)
w (z, w)h2v + · · · ]dudv

= h1h2[f(z, w)(ν0(K))2 + o(1)]

= O(h1h2)× f(z, w)(ν0(K))2. (82)

Then Eξ̄2t = Eξ2t − [Eξt]2 = O(h1h2) + [O(h1h2)]
2 = O(h1h2) × f(z, w)ν20(K). Therefore ξ̄t =

Op(
√
h1h2). Then to obtain the desired result, we only need to show that the long run variance

of ξ̄t, which is limn→∞E( 1√
nh1h2

∑n
t=1(ξt − Eξt))2, is finite. This is a standard result in the
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literature, and can be found in, for example, Robinson (1983), Masry (1996). The long run

variance is dominated by the variance and so the variance of Bξ(1) is

V ar(Bξ(1)) = f(z, w)ν20(K). (83)

(b) First note that E[η̄t] = 0. To find the order of η̄t, we need to compute E(η̄tη̄′t) = E(ηtη′t) −
(Eηt)(Eηt)′, which requires the computation of E[ηt] and E(ηtη′t). We have

E[ηt] = E[(β(zt)− β(z))KtzKtw]

=

∫
(β(zt)− β(z))K(

zt − z

h1
)K(

wt − w

h2
)f(zt, wt)dztdwt

=

∫
[β(1)(z)h1u+

1

2
β(2)(z)h21u

2 + · · · ]K(u)K(v)

× [f(z, w) + f (1)
z (z, w)h1u+ f (1)

w (z, w)h2v + · · · ]h1duh2dv

= h1h2{h21[β(1)(z)f (1)
z (z, w) +

1

2
β(2)(z)f(z, w)]µ2(K) + o(h21)}

= O(h1h2h
2
1)× [β(1)(z)f (1)

z (z, w) +
1

2
β(2)(z)f(z, w)]µ2(K)

=: O(h1h2h
2
1)× C1(z, w)µ2(K), (84)

and

E(ηtη′t) =E[(β(zt)− β(z))(β(zt)− β(z))′K2
tzK

2
tw]

=

∫
(β(zt)− β(z))(β(zt)− β(z))′K2(

zt − z

h1
)K2(

wt − w

h2
)f(zt, wt)dztdwt

=

∫
[β(1)(z)h1u+

1

2
β(2)(z)h21u

2 + · · · ][β(1)(z)h1u+
1

2
β(2)(z)h21u

2 + · · · ]′K2(u)K2(v)

× [f(z, w) + f (1)
z (z, w)h1u+ f (1)

w (z, w)h2v + · · · ]h1duh2dv

= h1h2{h21[β(1)(z)][β(1)(z)]′f(z, w)ν2(K)ν0(K) + o(h21)}

= O(h1h2h
2
1)× [β(1)(z)][β(1)(z)]′f(z, w)ν2(K)ν0(K). (85)

It follows that E(η̄tη̄′t) = O(h1h2h
2
1) and thus η̄t = Op(

√
h1h2h21). Using the same argument as

in (a), the long run variance of η̄t is dominated by the variance and thus the claimed convergence

holds. The variance matrix of the vector Brownian motion Bη is

V ar(Bη(1)) = [β(1)(z)][β(1)(z)]′f(z, w)ν0(K)ν2(K), (86)

which is singular and lies in the range space of the vector β(1)(z).

(c) Note that Eζ̄t = 0. Proceeding in a similar fashion to the proof of (b), we get E[ζt] =
h1h2µ2(K)[h21(β

(1)(z)f
(1)
z (z, w)+ 1

2β
(2)(z)f(z, w))−h22(β

(1)(w)f
(1)
w (z, w)+ 1

2β
(2)(w)f(z, w))]{1+

o(1)} =: h1h2µ2(K)[h21C1(z, w)− h22C2(z, w)]{1 + o(1)}. Further,

E[ζtζ ′t] = h1h2f(z, w)ν0(K)ν2(K)[h21(β
(1)(z))(β(1)(z))′ + h22(β

(1)(w))(β(1)(w))′]{1 + o(1)}.
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Then E(ζ̄tζ̄ ′t) = O(h1h2(h
2
1 + h22)) and ζ̄t = Op(

√
h1h2(h21 + h22)). With h1 = h2 = h, we can

write V ar(ζ̄t) = h4f(z, w)ν0(K)ν2(K)[(β(1)(z))(β(1)(z))′ + (β(1)(w))(β(1)(w))′]{1 + o(1)}. The

variance matrix of the vector Brownian motion Bζ is

V ar(Bζ(1)) = f(z, w)ν0(K)ν2(K)[β(1)(z)(β(1)(z))′ + β(1)(w)(β(1)(w))′], (87)

which is singular if the dimension k > 2.

(d) Note that E[∆xtξt] = 0 by Assumption 1 (ii). In view of the proof of (a), we have ξt =

ξ̄t + Eξt = Op(
√
h1h2) + O(h1h2) = Op(

√
h1h2). Therefore by a functional law for mixing

random variables we have 1√
nh1h2

∑[nr]
t=1(∆xt)ξt ⇝ Bxξ(r) for a vector Brownian motion Bxξ

whose variance matrix is given by the long run variance of ∆xtξt. We have

lrvar(∆xtξt) =
1

nh1h2
E

[
n∑

t=2

∆xtξt

][
n∑

t=2

(∆xt)
′ξt

]
=

1

nh1h2

n∑
t,s=2

E∆xt(∆xs)
′ξtξs

=
1

nh1h2
[nE∆xt(∆xt)

′Eξ2t + 2

n−1∑
j=1

(n− j)E∆xt(∆xt−j)
′Eξtξt−j ]

= E∆xt(∆xt)
′[(h1h2)

−1Eξ2t ] + 2h1h2

n−1∑
j=1

(n− j)E∆xt(∆xt−j)
′{(h21h22)−1Eξtξt−j ]}.

(88)

Note that Eξ2t = O(h1h2) and Eξtξt−j = O(h21h
2
2) uniformly for j > 0. Since ∆xt has finite

long run variance by Assumption 1 (i), the second term in (88) is of order O(h1h2) and can be

ignored. Hence, lrvar(∆xtξt) = E∆xt(∆xt)
′f(z, w)ν20(K). It follows that the variance matrix

of the vector Brownian motion Bxξ is

V ar(Bxξ(1)) = E[∆xt(∆xt)
′]f(z, w)ν20(K). (89)

(e) Note that E[(∆xt)
′ηt] = 0. In the analysis of (b), we have shown that ηt = η̄t + Eηt =

Op(
√

h1h2h21). Therefore the claimed convergence holds. Similar to the analysis in (88), we can

verify that the long run variance of (∆xt)
′ηt is dominated by its variance. Thus the variance of

the scalar Brownian motion Bxη(1) is

V ar(Bxη(1)) = E{[(∆xt)
′ηt]

2} = f(z, w)ν2(K)ν0(K)E{[(∆xt)
′β(1)(z)]2}. (90)

(f) Note that Bxζ is a k × k Brownian motion matrix. It is sufficient to verify the elementwise

convergence and focus on the scalar xt case. First E{∆xtζ
′
t} = 0 by Assumption 1 (ii). In

the proof of (c), we have seen that ζt = ζ̄t + E[ζt] = Op(
√
h1h2(h21 + h22)). Then the claimed

convergence holds by functional limit theory. Similar to the analysis in (88), the long run
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variance of ∆xtζ
′
t is dominated by its variance. When xt is a scalar, the variance of Bxζ(1)

is V ar(Bxζ(1)) = E[∆xtζ
′
tζt(∆xt)

′] = E[(∆xt)
2]Eζ2t = E[(∆xt)

2]f(z, w)ν0(K)ν2(K)[(β(1)(z))2 +

(β(1)(w))2]. In the vector xt case we work with the vector ∆xt ⊗ ζt. The variance matrix of the

matrix Brownian motion is then written as the variance matrix of the vector Brownian motion

Bx⊗ζ , which is just

V ar(Bx⊗ζ(1)) = E[∆xt∆x′t ⊗ ζtζ
′
t] = E∆xt∆x′t ⊗ Eζtζ ′t

=f(z, w)ν0(K)ν2(K)E∆xt∆x′t ⊗ [β(1)(z)(β(1)(z))′ + β(1)(w)(β(1)(w))′]. (91)

(g) First we have E∆xt(∆xt)
′η̄t = 0. In the proof of (b), we have shown that η̄t = Op(

√
h1h2h21).

So the claimed convergence holds by functional limit theory. Similar to (88), we can verify that

the long run variance of ∆xt(∆xt)
′η̄t is dominated by its variance. The variance matrix of

Bxxη(1) is therefore given by

V ar(Bxxη(1)) = E[∆xt(∆xt)
′η̄tη̄

′
t∆xt(∆xt)

′] = E{(∆xt)(∆xt)
′[(∆xt)

′β(1)(z)]2}f(z, w)ν2(K)ν0(K).

(92)

(h) Note that Bxϵ is a k × k matrix Brownian motion. To prove the desired convergence it is

sufficient to prove the element-wise convergence and focus on the case where xt is scalar. Let

ϵβt = Ktzf
−1(z, wt)[β(zt) − β(z)]f(wt). We first show ϵβt = Op(

√
h31). This can be seen from

the fact that

Eϵβt =
∫

Ktzf
−1(z, wt)[β(zt)− β(z)]f(wt)f(zt, wt)dztdwt

=

∫
K(u)f−1(z, wt)[β

(1)(z)h1u+
1

2
β(2)(z)h21u

2 + · · · ]f(wt)

× [f(z, wt) + f (1)
z (z, wt)h1u+ · · · ]h1dudwt

= h1

∫
f−1(z, wt){h21[β(1)(z)f (1)

z (z, wt) +
1

2
β(2)(z)f(z, wt)]µ2(K) + o(h21)}f(wt)dwt

= O(h31)× µ2(K)

∫
f−1(z, wt)[β

(1)(z)f (1)
z (z, wt) +

1

2
β(2)(z)f(z, wt)]f(wt)dwt, (93)

and

Eϵβtϵ′βt =
∫

K2
tzf

−2(z, wt)[β(zt)− β(z)][β(zt)− β(z)]′f2(wt)f(zt, wt)dztdwt

=

∫
K2(u)f−2(z, wt)[β

(1)(z)h1u+
1

2
β(2)(z)h21u

2 + · · · ][β(1)(z)h1u+
1

2
β(2)(z)h21u

2 + · · · ]′

× f2(wt)[f(z, wt) + f (1)
z (z, wt)h1u+ · · · ]h1dudwt

= h1

∫
f−2(z, wt){h21(β(1)(z))(β(1)(z))′f(z, wt)ν2(K) + o(h21)}f2(wt)dwt

= O(h31)× (β(1)(z))(β(1)(z))′ν2(K)

∫
f−1(z, wt)f

2(wt)dwt

= O(h31)× (β(1)(z))(β(1)(z))′ν2(K)E[f(wt)/f(z, wt)]. (94)
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Then the claimed convergence holds. Similar to the analysis in (88), we can show that the long

run variance of ∆xtϵ
′
βt is dominated by its variance. Therefore, when xt is a scalar, the variance

matrix of Bxϵ(1) is V ar(Bxϵ(1)) = ν2(K)E[f(zt)/f(z, zt)]E[(∆xt)
2][β(1)(z)]2. In the matrix case,

we work with the vector ∆xt ⊗ ϵβt. The variance matrix of the matrix Brownian motion is then

written as the variance matrix of the vector Brownian motion Bx⊗ϵ, which is just

V ar(Bx⊗ϵ(1)) = E[∆xt(∆xt)
′ ⊗ ϵβtϵ

′
βt] = E∆xt(∆xt)

′ ⊗ Eϵβtϵ′βt
=ν2(K)E[f(zt)/f(z, zt)]E∆xt(∆xt)

′ ⊗ (β(1)(z))(β(1)(z))′, (95)

which is singular. ■
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