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1 Introduction

This paper considers kernel weighted local p-th order polynomial estimation of the functional

coefficient regression model

yt = x′tβ(zt) + ut, (1.1)

where xt is a vector of dimension d. Model (1.1) has been widely studied in the literature. Tu

and Wang (2019) provide a brief review of this functional coefficient regression model and the

various properties commonly assigned to the regressor xt and covariate zt.

The limit theory in the literature for the case where xt contains nonstationary components

and zt is a stationary process was shown in Phillips and Wang (2023b) to be incorrect, explaining

the source of the error and providing a correction in the stylized case where xt is nonstationary

and kernel weighted local level estimation is employed. A brief explanation here of the com-

plications induced by nonstationarity leading to the error is useful, showing how bias affects

variance and thereby completely changes the limit theory. The local level estimator β̂(z) of the

functional coefficient β(z) is[
n∑

t=1

xtx
′
tK

(
zt − z

h

)]
(β̂(z)− β(z))

=

n∑
t=1

xtx
′
tEξβt +

n∑
t=1

xtx
′
t(ξβt − Eξβt) +

n∑
t=1

xtutK

(
zt − z

h

)
, (1.2)

where ξβt = (β(zt)−β(z))K
(
zt−z
h

)
represents the local approximation error. Phillips and Wang

(2023b) show that the term
∑n

t=1 xtx
′
t(ξβt − Eξβt) on the RHS of (1.2) may well dominate the

expression, thereby leading to major changes in the limit distribution. This subtle phenomenon

had been ignored in the earlier literature, most likely by simply following the stationary xt

regressor case where the term is dominated by the usual ‘variance’ term
∑n

t=1 xtutK
(
zt−z
h

)
in

deriving the asymptotics. But when xt is nonstationary, the term is amplified by the strength

of the regressor producing a ‘random bias’ effect that influences the limit distribution. Thus,

the random bias term involves interaction between the approximation error in the functional

coefficient and the regressor xt, which becomes important in nonstationary FC regression because

of the signal strength of xt.

Therefore, a complete limit theory for general local polynomial estimation and associated

inferential procedures is now needed for this model framework, given the wide relevance and

empirical applications of functioncal coefficient regression in the cointegrating case (Xiao, 2009;

Cai et al., 2009; Li et al., 2015; Sun et al., 2016; Wang et al., 2016; Tu and Wang, 2019).

This paper meets that need, thereby enabling full practical application of functional coefficient

cointegrating regression covering local level and local polynomial approaches. Two cases are

analyzed, the first with a full vector xt of nonstationary regressors, and the second where the

regressor is partitioned as xt = (x′1t, x
′
2t)

′ into a d1-vector x1t of stationary regressors and a
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d2-vector of nonstationary regressors with d1 + d2 = d. The functional covariate zt is assumed

to be univariate for ease of exposition as this is the most common case in practical work and

the multivariate case involves no new ideas but far more complex notation.

Our first contribution provides correct limit theory for local p-th order polynomial estimation

of (1.1). This involves estimation of both the functional coefficient β(z) and its ℓ-th derivatives

{β(ℓ)(z); ℓ = 1, 2, ..., p}. Results for coefficient derivatives are of independent interest and are

particularly relevant to studies of shape characteristics such as locally flat behavior in the func-

tional coefficients (Phillips and Wang, 2023a) and various constant coefficient specializations.

Bandwidth selection, optimal bandwidth order, and corresponding best convergence rates are

also discussed. Selection of the approximating polynomial order p is considered based on the new

limit theory. An adaptive procedure to select the fit order p is proposed, thereby allowing adap-

tation to the spatial characteristics of the locations being estimated. This adaptive procedure

is found to work well in simulations and is much less sensitive to bandwidth than usual fixed

order fitting. This approach greatly facilitates the application of functional coefficient modeling

in practical work.

A second contribution addresses inference and deals with the construction of a robust t-

ratio based on the new limit theroy. Although the correct limit distribution of the functional

coefficient estimator takes different forms depending on the bandwidth contraction rate, the

newly constructed t-ratio has a unified form. Further, computation is the same for the case

where the regressor is fully nonstationary, or fully stationary, or where it has both stationary

and nonstionary components. This unification of inference has clear advantages in practical

work. Our simulation studies also confirm the improvements of the robust t-ratio over the usual

t-ratio in the literature. Testing constancy of the functional coefficient is also analyzed under

the new limit theory.

The paper is organized as follows. Section 2 presents the limit theory for estimation in

the case where xt is fully nonstationary and the mixed regressor case is studied in Section 3.

Construction of the new robust t-ratio statistic is given in Section 4 and constancy testing is

considered in Section 5. Simulations analyzing finite sample properties are reported in Section

6 and Section 7 concludes. Proofs and useful lemmas are given in the Appendix.

Notations. Id denotes the d× d identity matrix; MN (0, C) denotes a mixed normal distri-

bution with zero mean and (stochastic) variance matrix C; ∼a denotes asymptotic equivalence,

namely An ∼a Bn suggests An = Bn(1 + op(1)) as n → ∞;
d−→ represents convergence in distri-

bution; ≡ signifies equivalence in distribution; and =: indicates definitional equivalence.
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2 Nonstationary regressors

2.1 Limit theory

We start with the case where xt is a d×1 nonstationary vector. The local p-th order polynomial

estimation of model (1.1) is given by

θ̂(z) =

[
n∑

t=1

wtw
′
tKtz

]−1 n∑
t=1

wtytKtz, (2.1)

where wt = Dt ⊗ xt, Dt = (1, zt − z, ..., (zt − z)p)′, Ktz = 1
hK

(
zt−z
h

)
and θ(z) is the composite

vector θ(z) = (β(z)′, β(1)(z)′, ..., β
(p)(z)′

p! )′ of β(z) and its derivatives. Then the local p-th order

polynomial estimator of β(z) is given by β̂(z) = (e′0 ⊗ Id)θ̂(z), where e0 is a (p + 1) × 1 vector

with the first element 1 and other elements zeros.

The following regularity conditions are assumed in developing the limit theory given in

Theorem 2.1 below.

Assumption 1. (i) {xt} is a full rank unit root process satisfying the functional law 1√
n
x⌊n·⌋

d−→
Bx(·), where Bx is vector Brownian motion with nonsingular variance matrix;

(ii) {ut} is a martingale difference sequence (mds) with respect to filtration Ft = σ{(zt−s,∆xt−s, ut−s) :

s = 0, 1, ...}. In addition, E(ut|zt) = 0, E(ut|∆xt) = 0, E(u2t |zt = z) = σ2
u(z) > 0, and

E(u4t ) < ∞;

(iii) {zt} is a strictly stationary α-mixing scalar process with mixing numbers α(j) that satisfy∑
j≥1 j

c[α(j)]1−2/δ < ∞ for some δ > 2 and c > 1 − 2/δ with finite moments of order

p > 2δ > 4. The density f(z) of zt and joint density f0,j(s0, sj) of (zt, zt+j) are bounded

above and away from zero over their supports with uniformly bounded and continuous

derivatives to the second order.

Assumption 2. (i) The kernel function K(·) is a bounded probability density function sym-

metric about zero with µj(K) =
∫
K ujK(u)du, νj(K) =

∫
K ujK2(u)du for j = 0, 1, 2, ...

and support K that is either [−1, 1] or R = (−∞,∞);

(ii) β(z) is a smooth function with uniformly bounded continuous derivatives to the (p+2)-order

and E||β(zt)||2 +
∑p+2

ℓ=1 E||β
(ℓ)(zt)||2 < ∞;

(iii) h → 0, nh → ∞ as n → ∞.

These conditions correspond closely with those assumed in earlier work dealing with non-

stationary functional coefficient regression – see Phillips and Wang (2023b) and the references

therein. The zero conditional mean condition in Assumption 1 (ii) rules out simultaneous endo-

geneity. Condition E(ut|zt) = 0 has also been adopted by Liang et al. (2023) in the stationary
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FC model and they found that both the lcoal level and local linear estimators would be in-

consistent if this condition fails. Here we adopt the same condition because the asymptotic

distribution of the local polynomial estimator, though still be consistent, will be totally from

that with E(ut|zt) = 0, as explained in Remark 2.3 below. Further, if E(ut∆xt) = 0 fails, the

conventional local polynomial estimator suffers from endogeneity bias. As in the case of simple

fixed coefficient cointegrating regression and time-varying parameter cointegrating regression,

special methods beyond least squares are needed to allow for endogenous regressors in (1.1). A

new approach to addressing endogeneity is outlined in Remark 2.3 which shows how to adapt

the IVX approch of Phillips and Magdalinos (2009) to FC nonstationary regression.

Theorem 2.1. Under Assumptions 1 and 2, for the kernel weighted local p-th order polynomial

estimator β̂(z), as n → ∞, we have

(a) if nh2p+2 → 0

n
√
h
(
β̂(z)− β(z)− hp

∗+2Bp,0(z)
)

d−→ f−1(z)
[
(e′0M

−1
p )⊗B−1

(x,2)

] ∫
dBuζ⊗Bx ≡ MN (0,Ωu,p,0(z)) ;

(2.2)

(b) if nh2p+2 → ∞√
n

h

1

hp

(
β̂(z)− β(z)− hp

∗+2Bp,0(z)
)

d−→ f−1(z)
[
(e′0M

−1
p )⊗B−1

(x,2)

] ∫
Ip+1 ⊗ (BxB

′
x)dBξ

≡ MN (0,Ωβ,p,0(z)) ; (2.3)

(c) if nh2p+2 → c ∈ (0,∞)

n
4p+3
4p+4

(
β̂(z)− β(z)− hp

∗+2Bp,0(z)
)

d−→ f−1(z)
[
(e′0M

−1
p )⊗B−1

(x,2)

]{
c
2p+1
4p+4

∫
Ip+1 ⊗ (BxB

′
x)dBξ + c

−1
4p+4

∫
dBuζ ⊗Bx

}
≡ MN

(
0, c

2p+1
2p+2Ωβ,p,0(z) + c

−1
2p+2Ωu,p,0(z)

)
; (2.4)

where p∗ = (p− 1)1{p=odd} + p1{p=even},

Bp,0(z) = f−1(z)e′0M
−1
p (µp∗+2, ..., µp∗+p+2)

′ [B1p(z)1{p=odd} +B2p(z)1{p=even}
]
, (2.5)

B1p(z) =
β(p+1)(z)

(p+ 1)!
f(z), B2p(z) =

β(p+1)(z)

(p+ 1)!
f (1)(z) +

β(p+2)(z)

(p+ 2)!
f(z), (2.6)

Ωu,p,0(z) = σ2
u(z)f

−1(z)ωp,0(K)B−1
(x,2), (2.7)

Ωβ,p,0(z) = f−1(z)ω∗
p,0(K)B−1

(x,2)

∫ [
BxB

′
x

β(p+1)(z)

(p+ 1)!

β(p+1)(z)′

(p+ 1)!
BxB

′
x

]
B−1

(x,2), (2.8)

with ωp,0(K) = e′0M
−1
p RpM

−1
p e0, ω∗

p,0(K) = e′0M
−1
p R∗

pM
−1
p e0, B(x,2) =

∫
BxB

′
x, and e0 is a

(p+ 1)× 1 vector with the first element unity and zeros otherwise. Brownian motions Buζ and

Bξ are defined in Lemma B.1 (ii) and (iii). The matrices Mp, Rp and R∗
p are given explicitly in

the Appendix – see (A.3), (B.3) and (B.4).
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The above theorem suggests the dividing condition is nh2p+2 when a local p-th order polyno-

mial is used. Apparently, nh2p+2 is more likely to shrink to zero when larger p is used. Then the

random bias term is more likely to be asymptotically ignorable and the usual asymptotic theory

applies. Intuitively, this is because when a higher order polynomial is used, the functional coef-

ficient approximation error is smaller and hence the random bias term is smaller. This reflects

one of the gains from using higher order polynomial fitting.

Remark 2.1. (Special cases) Local constant estimation is nested as a special case with p = 0.

This limit theory matches earlier findings of Phillips and Wang (2023b, Theorem 2.1). Local

linear estimation corresponds to the case where p = 1. We provide the results here briefly for

the convenience of practioners. Simple calculations give the local linear estimator β̂(z),

(a) if nh4 → 0, n
√
h(β̂(z)− β(z)− h2 12µ2β

(2)(z))
d−→ MN (0,Ωu,1,0(z));

(b) if nh4 → ∞,
√

n
h3 (β̂(z)− β(z)− h2 12µ2β

(2)(z))
d−→ MN (0,Ωβ,1,0(z));

(c) if nh4 → c ∈ (0,∞), n7/8(β̂(z)−β(z)−h2 12µ2β
(2)(z))

d−→ MN
(
0, c3/4Ωβ,1,0(z) + c−1/4Ωu,1,0(z)

)
,

where Ωu,1,0(z) = σ2
u(z)f

−1(z)ν0B
−1
(x,2) and Ωβ,1,0(z) = f−1(z)ν4B

−1
(x,2)

∫
[BxB

′
x
β(2)(z)

2
β(2)(z)′

2 BxB
′
x]B

−1
(x,2).

Remark 2.2. As the associate editor pointed out, the functional law 1√
n
x⌊n·⌋

d−→ Bx(·) in As-

sumption 1 (i) could be generalized. First, the rate results of the paper remain valid if the weak

limit of n−1/2x[n·] is an Ornstein-Uhlenbeck (OU) process. This follows directly because the rate

results in the paper depend on the stochastic order of the design matrix
∑n

t=1 xtx
′
t, which remain

unchanged when the limit of n−1/2x[n·] is an OU process. Second, xt could be a nonstation-

ary long memory process with memory parameter (d ∈ (1/2, 1)), in which case the weak limit

of n1/2−dx[n·] is fractional Brownian motion (Giraitis et al., 2012). In this situation, the rate

results presented in the paper need to be correspondingly adjusted. However, the t-ratio results

established later in Theorem 4.1 should continue to hold for d ∈ (1/2, 1) since the t-ratio is a

self-normalized quantity.

Remark 2.3. (Dealing with endogeneity) As indicated above, when the regressors xt are

endogenous and E(ut∆xt) = 0 fails, the approach in the present paper needs to be extended to

address endogeneity. At least two approaches may be considered in providing such an extension.

One method follows the time-varying parameter cointegrating regression case where a version

of fully modified least squares is employed (Li et al., 2020). A second method involves the

development of a kernel version of IVX regression (Phillips and Magdalinos, 2009; Kostakis

et al., 2015). For example, if E∆xtut ̸= 0 and zt is exogenous, the local level bias-corrected IVX

(BC-IVX) estimator of the functional coefficient β(z) in (1.1) is given by

β̃IV X(z) =
(∑

x̃tx
′
tKtz

)−1 (∑
x̃tytKtz − nhΛ̂xuf̂(z)

)
, (2.9)

where x̃t is the IV generated by x̃t = Rnxx̃t−1 +∆xt with Rnx = (1− 1/nα)Id and α ∈ (2/3, 1),

Λ̂xu is the estimate of the one-sided long run variance Λxu =
∑∞

h=0 E(∆xt−hut), and f̂(z) is a

consistent kernel density estimate of f(z). Local level BC-IVX estimation addresses endogeneity
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in xt. When nh2 → 0 its limit distribution is dominated by the traditional variance term and

the convergence rate is
√
n1+αh. Simulations (not reported here) show that local level BC-IVX

estimation can provide a satisfactory correction for endogeneity as in cointegrating regression

with near integrated regressors. A full investigation of the limit theory and the finite sample

performance of local level BC-IVX estimation is a topic for subsequent work.

Next consider the effect of endogeneity in the covariate zt, where E(ut|zt) ̸= 0. In this situa-

tion, preliminary analysis indicates that the asymptotic distribution is dominated by the variance

term, so that β̂(z)−β(z) ∼a (
∑

xtx
′
tKtz)

−1
∑

xtutKtz = Op(1/
√
n) giving

√
n convergence. The

limit theory is quite different from that presented in Theorem 2.1 as well as the stationary FC

regression case where covariate endogeneity leads to inconsistency.1 A full development of the

limit theory and properties of local polynomial estimation in general cases of this type is beyond

the scope of the present work and is a topic for future study.

Remark 2.4. Joint inference of β(z) and β(w) can be conducted for two different points z and

w once the joint limit theory is obtained. It is not hard to show that the two estimators β̂(z) and

β̂(w) are asymptotically independent when z ̸= w and the covariance matrix is block diagonal.

Similar conclusions have been reported in Xiao (2009). Then a Wald type statistic based on

squared distance can be constructed to test whether β(z) equals β(w). We thank the associate

editor for this point.

More generally, when local p-th order polynomial estimation is employed we obtain the

derivative estimates {β̂(ℓ)(z); ℓ = 1, 2, ..., p}. The asymptotic properties of these higher deriva-

tives are derived in a similar fashion and are given in the following result.

Theorem 2.2. Under Assumptions 1 and 2, for ℓ = 1, 2, ..., p, as n → ∞, we have

β̂(ℓ)(z)− β(ℓ)(z)

ℓ!
− hp

∗
ℓ−ℓ+2Bp,ℓ(z)

∼a hp−ℓ

√
h

n
f−1(z)

[
(e′ℓM

−1
p )⊗B−1

(x,2)

] ∫ {
Ip+1 ⊗ (BxB

′
x)
}
dBξ

+
1

n
√
h2ℓ+1

f−1(z)
[
(e′ℓM

−1
p )⊗B−1

(x,2)

] ∫
dBuζ ⊗Bx

= hp−ℓ

√
h

n
MN (0,Ωβ,p,ℓ(z)) +

1

n
√
h2ℓ+1

MN (0,Ωu,p,ℓ(z)) , (2.10)

where p∗ℓ = p1{p−ℓ=even} + (p− 1)1{p−ℓ=odd},

Bp,ℓ(z) = f−1(z)e′ℓM
−1
p (µp∗ℓ+2, ..., µp+p∗ℓ+2)

′{B1p(z)1{p−ℓ=odd} +B2p(z)1{p−ℓ=even}}, (2.11)

Ωβ,p,ℓ(z) = f−1(z)ω∗
p,ℓ(K)B−1

(x,2)

∫ [
BxB

′
x

β(p+1)(z)

(p+ 1)!

β(p+1)(z)′

(p+ 1)!
BxB

′
x

]
B−1

(x,2), (2.12)

1In the stationary FC regression case Liang et al. (2023) found that both local level and local linear estimators

are inconsistent when E(ut|zt) = 0 fails. In the nonstationary regressor case, consistency holds because of the

additional strength in the signal.
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Ωu,p,ℓ(z) = σ2
u(z)f

−1(z)ωp,ℓ(K)B−1
(x,2), (2.13)

and ωp,ℓ(K) = e′ℓM
−1
p RpM

−1
p eℓ, ω

∗
p,ℓ(K) = e′ℓM

−1
p R∗

pM
−1
p eℓ, eℓ is a (p+1)×1 vector with unity

in the (ℓ + 1)-th element and zeros otherwise. B1p(z), B2p(z), B(x,2) and the matrices Mp, Rp

and R∗
p are the same with that in Theorem 2.1.

The theorem applies also when ℓ = 0 for the estimator of the functional coefficient, in which

case p∗0 = p∗, as defined earlier. The result indicates that the deterministic bias term at an

interior point is of order O(hp+1−ℓ) with p − ℓ odd and of order O(hp+2−ℓ) with p − ℓ even,

which compares with that in the nonparametric regression model, e.g., Fan and Gijbels (1996,

Theorem 3.1).

Remark 2.5. (Categorization according to nh2p+2) Although the results of Theorem 2.2 are

not presented in the form of three different categories of convergence rates as in Theorem 2.1, it

is easy to see that the asymptotic distribution of β̂(ℓ)(z) falls into three categories depending on

the rate nh2p+2, irrespective of the particular derivative degree ℓ. But for the estimator β̂(ℓ)(z)

to be consistent, the divergence n2h2ℓ+1 → ∞ must hold.

Remark 2.6. (Special case: Local linear estimation p = 1) When local linear estimation

is used, for the first order derivative estimator β̂(1)(z) we have p = 1 and ℓ = 1. Since this

case is of primary importance in applications, the results are given here explicitly. In particular,

following (2.10) we have

β̂(1)(z)− β(1)(z)− h2B1,1(z) ∼a

√
h

n
MN (0,Ωβ,1,1) +

1

n
√
h3

MN (0,Ωu,1,1) , (2.14)

where B1,1(z) = f−1(z)µ4µ
−1
2 B2p(z), B2p(z) = 1

2β
(2)(z)f (1)(z) + 1

6β
(3)(z)f(z) when p = 1,

Ωβ,1,1 = ν6µ
−2
2 f−1(z)B−1

(x,2)

∫ [
Bx

(
B′

x
β(2)(z)

2

)2
B′

x

]
B−1

(x,2), and Ωu,1,1 = ν2µ
−2
2 σ2

u(z)f
−1(z)B−1

(x,2).

Here nh3/2 → ∞ is needed for consistency of β̂(1)(z), and the categorizing rate condition for

β̂(1)(z) is nh4, just as for the local linear estimator β̂(z) in Remark 2.1. Specifically,

(a) if nh4 → 0, n
√
h3(β̂(1)(z)− β(1)(z)− h2B1,1(z))

d−→ MN (0,Ωu,1,1) ;

(b) if nh4 → ∞,
√

n
h (β̂

(1)(z)− β(1)(z)− h2B1,1(z))
d−→ MN (0,Ωβ,1,1) ;

(c) if nh4 → c ∈ (0,∞), n5/8(β̂(1)(z)− β(1)(z)− h2B1,1(z))
d−→ MN

(
0, c1/4Ωβ,1,1 + c−3/4Ωu,1,1

)
.

Remark 2.7. (Finite boundary point) Let z be a (finite) boundary point. First consider bias.

Our analysis shows that bias is of order O(hp+1−ℓ), viz., boundary bias has the same order as

that of an interior point with odd p− ℓ. The key lies in the computation of Eξjpt in Lemma B.1.

When z is a finite boundary point we have Eξjpt = O(hp+j+1) for all p+j since
∫
up+j+1K(u)du

is no longer zero for even p + j. This is because integration in
∫
up+j+1K(u)du is no longer

taken over the whole support of the kernel function and so symmetry of the kernel function

7



cannot be used to produce zero.2 Therefore, the boundary bias is of order Op(h
p+1−ℓ), which is

the same as that of the interior point with odd p − ℓ. This implies that when p − ℓ is odd the

boundary bias is of the same order as the interior bias and no boundary modification is required.

When p− ℓ is even, the boundary bias is of larger order than the interior bias by a factor 1/h.

A similar phenomenon has been pointed out by Fan and Gijbels (1996) for the nonparametric

regression model. This finding validates in the present FC context the common practice in local

level regression of removing the first-order boundary bias by using local polynomial regression

with p ≥ 1.

For the boundary variance the analysis is similar to that at an interior point and the order

of the conventional variance term is the same at both boundary and interior points. This is due

to the fact that the order is determined by a leading term that involves integration of the form∫
u2sK2(u)du, which is always nonzero for both interior and boundary points (see (B.2) in the

appendix). So the conventional variance formula has the same order at both the boundary and

interior points. The same conclusion holds for the random bias term (see (B.1) in the appendix).

Hence boundary variance has the same order as interior variance.

2.2 Optimal bandwidth order

We first discuss bandwidth selection and the corresponding Root of Mean Squared Error (RMSE)

convergence rate. The limit theory shows that the properties of the derivative estimates β̂(ℓ)(z)

depend heavily on bandwidth rate conditions. Particular interest therefore centers on the optimal

bandwidth order with best RMSE convergence rate. For convenience, suppose h = chσ̂zn
γ =

O(nγ). Let gp,ℓ(γ) denotes the RMSE order of the estimator β̂(ℓ)(z) when local p-th order

polynomial estimation is used, namely β̂(ℓ)(z)− β(ℓ)(z) = Op(n
gp,ℓ(γ)). The optimal bandwidth

order, denoted γ∗p,ℓ, is the γ value that minimizes the RMSE order gp,ℓ(γ) for given p and ℓ, i.e.,

γ∗p,ℓ = argminγ gp,ℓ(γ). Let g∗p,ℓ = gp,ℓ(γ
∗
p,ℓ) denote the corresponding best RMSE rate3. For a

given ℓ, the optimal bandwidth order will depend on p. Below two cases are considered: ℓ = 0

and ℓ ≥ 1.

ℓ = 0: analysis for the coefficient estimator β̂(z)

Here we focus on estimation of the functional coefficient β(z). Let h = O(nγ) and gp,0(γ) denote

the RMSE rate of estimator β̂(z) under local p-th order polynomial estimation. From the results

2For example, suppose zt has bounded support [a, b] and z is a left boundary point. Let z = a + λh where

λ ∈ [0, 1). Then the integration is from −λ to 1 if the kernel has support [−1, 1] and from −λ to +∞ if the kernel

has support (−∞,+∞). Then it is easy to see that
∫
up+j+1K(u)du ̸= 0.

3The best RMSE rate here is different from the minimax rate discussed in, for example, Fan (1992), Fan

(1993), and Cheng et al. (1993), for local polynomial fitting in nonparametric regression. We conjecture that

a similar analysis could be conducted in the current nonstationary FC model and a rigorous analysis is left for

future work. We thank the associate editor for raising this point.
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of Theorem 2.1, we find that

gp,0(γ) =


max{−1− γ/2, γ(p∗ + 2)}, −1 < γ < − 1

2p+2 ,

max{−4p+3
4p+4 ,−

2p∗+4
4p+4 }, γ = − 1

2p+2 ,

max{−1
2 + γ(p+ 1/2), γ(p∗ + 2)}, − 1

2p+2 < γ < 0.

(2.15)

With some calculation we have:

(i) when p = 0

g0,0(γ) =


−(1 + γ/2), −1 < γ ≤ −1/2,

−1−γ
2 , −1/2 < γ < −1/3,

2γ, −1/3 ≤ γ < 0,

(2.16)

(ii) when p ≥ 1

gp,0(γ) =

−1− γ/2, −1 < γ ≤ − 2
2p∗+5 ,

γ(p∗ + 2), − 2
2p∗+5 < γ < 0.

(2.17)

Figure 1 collects plots of gp,0(γ) in three cases: p = 0, p is a positive odd number and p is a

positive even number. We separate plots for p = odd and p = even because different RMSE rates

apply for γ = −1/(2p+ 2), the boarderline order in case (c) of Theorem 2.1. More specifically,

when p = odd the RMSE order is −1/2 at γ = −1/(2p + 2), and when p = even the RMSE

order is −(p∗ +2)/(2p+2) = −(p+2)/(2p+2). From Figure 1(a), it is evident that the fastest

RMSE convergence rate that the local level estimator β̂(z) attains is ng∗0,0 = n−3/4, and this

is achieved with the optimal bandwidth order γ∗0,0 = −1/2. In view of subplots (b) and (c),

the best RMSE convergence rate that β̂(z) attains is ng∗p,0 = n
− 2p∗+4

2p∗+5 , and this is achieved with

optimal bandwidth order γ∗p,0 = −2/(2p∗ + 5).

We now consider the asymptotic forms that apply at the optimal bandwidth order γ∗p,0. For

the local level estimator β̂(z), the optimal bandwidth order γ∗0,0 = −1/2 corresponds to case (c)

of Theorem 2.1. Here the limit distribution has two variance matrix components: one is the usual

limit variance capturing the impact of the regression error, the other captures variation arising

from the functional coefficient approximation error or bias. The limit theory of the local level

estimator and the impact of bias on variance was fully studied in Phillips and Wang (2023b).

When p > 0, the optimal bandwidth order γ∗p,0 = −2/(2p∗ + 5) leads to nh2p+2 → 0 as evident

in Figures 1(b)&(c). So case (a) of Theorem 2.1 applies at the optimal bandwidth order γ∗p,0.

Hence the asymptotic distribution of β̂(z) involves only the traditional variance. Importantly,

this is just the limiting variance. Later in the simulation section we will show that use of both

sources of variation in t-ratio testing can greatly improve finite sample performance in inference.

Note that both the optimal bandwidth order γ∗p,0 and the fastest RMSE rate g∗p,0 are functions

of p∗ when p ≥ 1. This suggests that for p = 2j or p = 2j + 1 with j = 1, 2, ..., which both lead

to p∗ = 2j, the two estimators β̂(z) share the same fastest RMSE convergence rate and the same

best bandwidth order. For example, the local quadratic estimator of β(z) (p = 2) and the local

9



(a) p = 0 (b) p ≥ 1, p = odd

(c) p ≥ 1, p = even

Figure 1: Plot of the RMSE rate gp,0(γ) versus γ for estimators of β(z) under different p (in the

figure γ1 =
−2

2p∗+5 , γ2 =
−1

2p+2 , g1 = −2p∗+4
2p∗+5 , g2 = −p∗+2

2p+2)

cubic estimator of β(z) (p = 3) attain the common fastest convergence rate n−8/9 at the same

best bandwidth order h = O(n−2/9). For greater clarity the relation among polynomial order p,

optimal bandwidth order, and best RMSE rate, Figure 2 plots the best RMSE rate g∗p,0 against p,

showing the associated optimal bandwidth order γ∗p,0. Evidently the optimal bandwidth order is

an increasing function of p, namely a higher order fit corresponds to a larger neighborhood. Also,

the best RMSE rate g∗p,0 is a decreasing function of p, reflecting the theoretical efficiency gain

of using larger p, namely higher order polynomial approximation in the regression. However,

the impacts of fit order p on RMSE is twofold. Figure 2 only demonstrates the impacts on

the asymptotic rate of RMSE. Through results (2.11)-(2.13), we can see p also affects bias and

variance and hence RMSE through constant factors e′ℓM
−1
p (µp∗ℓ+2, ..., µp+p∗ℓ+2)

′, ωp,ℓ(K) and

ω∗
p,ℓ(K). Larger p will definitely increase variation through ωp,ℓ(K) and ω∗

p,ℓ(K). Therefore,

we cannot select p purely based on Figure 2. In the next subsection, we provide an adaptive

procedure to select p automatically by minimizing the estimated MSE at the given location.
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Figure 2: Plot of the fastest RMSE rate g∗p,0 and the corresponding optimal bandwidth order

γ∗p,0 versus p = 0, 1, 2, ... for estimators of β(z)

ℓ ≥ 1: analysis for the derivative estimates β̂(ℓ)(z)

Consider estimation of the ℓ-th derivative β(ℓ)(z) with ℓ ≥ 1. Since ℓ ≤ p, we just consider

p ≥ 1. Following Theorem 2.2, we have

gp,ℓ(γ) = max{γ(p∗ℓ − ℓ+ 2), γ(p− ℓ) +
γ − 1

2
,−1− γ(2ℓ+ 1)

2
}

=

−1− γ(2ℓ+1)
2 , max{−1,− 2

2ℓ+1} < γ ≤ − 2
2p∗ℓ+5 ,

γ(p∗ℓ − ℓ+ 2), − 2
2p∗ℓ+5 < γ < 0,

(2.18)

which is a tick-shaped function similar to that in subplots (b) and (c) of Figure 1. As easily

verified, (2.18) also applies for p ≥ 1 and ℓ = 0. We therefore conclude that for p ≥ 1 and

ℓ = 0, 1, ..., p, the minimum value of gp,ℓ(γ) is attained at γ∗p,ℓ = − 2
2p∗ℓ+5 . Consequently, the best

RMSE rate of estimator β̂(ℓ)(z) is g∗p,ℓ = gp,ℓ(γ
∗
p,ℓ) = −1 + (2ℓ+1)

2
2

2p∗ℓ+5 = −2p∗ℓ−2ℓ+4
2p∗ℓ+5 , which is an

increasing function of ℓ for a given p. This suggests the best convergence rate that β̂(ℓ)(z) can

achieve is slower for larger ℓ, namely the estimation efficiency is lower for higher order derivatives

β(ℓ)(z). Furthermore, with h = O(nγ∗
p,ℓ) we have nh2p+2 → 0 when p ≥ 1. This implies that when

local linear or higher order polynomial is used and the optimal bandwidth order is employed,

the asymptotic distribution of β̂(ℓ)(z) is dominated by the conventional variance term, namely

the term 1

n
√
h2ℓ+1

MN (0,Ωu,p,ℓ(z)) in (2.10) for ℓ ≥ 1, or case (a) of Theorem 2.1 for ℓ = 0.

We now take a closer look at the optimal bandwidth order γ∗p,ℓ = − 2
2p∗ℓ+5 . Since p∗ℓ =

p1{p−ℓ=even} + (p − 1)1{p−ℓ=odd}, γ
∗
p,ℓ is determined by the value of p − ℓ (even or odd) and

the value of p. This implies that for a given p ≥ 1, the optimal bandwidth order γ∗p,ℓ for the

estimate β̂(ℓ)(z) is the same for all odd ℓ, and the same for all even ℓ. For example, when

local cubic estimation is used with p = 3, β̂(z) and β̂(2)(z) share the same optimal bandwidth

order γ∗3,0 = γ∗3,2 = −2/9, and β̂(1)(z) and β̂(3)(z) share the same optimal bandwidth order

γ∗3,1 = γ∗3,3 = −2/11. As a second example, when local linear estimation is used with p = 1, the

optimal bandwidth order for estimator β̂(z) is γ∗1,0 = −2/5 and the corresponding best RMSE

rate is g∗1,0 = −4/5. The optimal bandwidth order for the estimate β̂(1)(z) is γ∗1,1 = −2/7 and
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the corresponding best RMSE rate is g∗1,1 = −4/7. In general, when local p-th order polynomial

estimation is employed with p ≥ 1, two different optimal bandwidth orders should apply for

the estimates β̂(ℓ)(z) depending on the even/odd property of ℓ. This suggests that to estimate

β(ℓ)(z) efficiently for all ℓ and a given p, we should use a two step estimation procedure which

employs the two optimal bandwidth order sequentially.

To summarize, the above analysis on optimal bandwidth order and best RMSE rate gives:

γ∗p,ℓ =

−1/2, p = 0, ℓ = 0,

− 2
2p∗ℓ+5 , p ≥ 1, ℓ = 0, 1, ..., p,

(2.19)

and

g∗p,ℓ =

−3/4, p = 0, ℓ = 0,

−2p∗ℓ−2ℓ+4
2p∗ℓ+5 , p ≥ 1, ℓ = 0, 1, ..., p;

(2.20)

and with the optimal bandwidth order, viz., h = O(nγ∗
p,ℓ), we have:

nh2p+2 →


c ∈ (0,∞) if p = 0, [case (c) in Theorem 2.1]

0 if p ≥ 1, [case (a) in Theorem 2.1 and only

Ωu,p,ℓ(z) term in (2.10) of Theorem 2.2]

(2.21)

Overall, the results for p = 0 and ℓ = 0 are quite different from the general case with p ≥ 1 and

ℓ = 0, 1, ..., p. The optimal bandwidth orders given here serve as a good preliminary choice of

bandwidth when estimation of coefficient derivatives are needed. The computation of the robust

t-ratio proposed in Section 4 is shown to benefit from the optimal bandwidth order presented

in (2.19).

2.3 Adaptive selection of p

In closing this discussion we address the practical choice of p in estimating the coefficient β(z).

Considering that the curvature of the function may highly be different at different locations, we

propose to select p adaptively in a way that it adapts to the spatial characteristic of the location

to be estimated. The best fit order naturally depends on the size of the local neighborhood

and hence the bandwidth. A larger bandwidth requires a higher order fit to improve accuracy.

Therefore, our adaptive procedure is conducted under the premise of a constant bandwidth – eee

Fan and Gijbels (1995) for a similar treatment. We will show that with p selected in an adaptive

way, the resulted coefficient estimator is much less sensitive to bandwidth. One may observe

that an alternative way to achieve spatial-adaptation is variable bandwidth. However, choosing

the correct amount of variable bandwidth is very difficult. On the other hand, selection of p is

discrete and can be implemented via minimizing the MSE. Our numerical study suggests the
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adaptive procedure to select p performs very well. Therefore, we focus on the adaptive choice

of p instead of h here.

In view of Theorem 2.1, the MSE of a local p-th order fit estimator β̂(z) at a given point z

depends on both p and h. More specifically, for univariate xt we have

MSE(z;h, p) =
[
hp

∗+2Bp,0(z)
]2

+ Vp,0(z), (2.22)

where Vp,0(z) = h2p+1

n Ωβ,p,0(z) +
1

n2h
Ωu,p,0(z) is the total variance. With a given constant

bandwidth h, such as the rule-of-thumb choice h = σ̂zn
−2/5 in local linear fitting, we can estimate

MSE for 0 ≤ p ≤ P where P is the pre-determined maximun order considered. Estimation of

MSE involves estimation of bias and variance, which will be discussed in detail in Section 4.

Then we select p by minimizing M̂SE(z;h, p) with respect to p. The procedure is summarized

as follows.

� Step 1, for any given point z and constant bandwidth h, obtain M̂SE(z;h, p) for 0 ≤ p ≤ P ;

� Step 2, choose the fit order by minimizing M̂SE(z;h, p) with respect to p. Then estimate

β(z) using the selected p and the given h.

The above adaptive procedure is found to perform very well. On the one hand, it has good

estimation accuracy compared with fixed order fitting, especially for functions with high spatial

heterogeneity. On the other hand, the adaptive procedure is much less sensitive to bandwidth

h than fixed order fitting. Details are provided in Section 6.2.

When xt is multivariate, we would have multiple fit orders to select if we allow coefficients to

have different fit orders. In this situation, the above procedure could be extended by computing

a weighted version of the MSE with weights being the inverse of the preliminary estimates

of the coefficients. Then optimization could be done with respect to the multiple fit order.

Furthermore, the adaptive procedure could be extended to the case of derivative estimation.

The MSE of β̂(ℓ)(z) follows from Theorem 2.2. With the estimate of MSE for β̂(ℓ)(z), we can

select p in the same way. However, considering that simplicity is important in practical work,

the aforementioned extensions are not appealing in applications since it requires (P +1)d times

estimation where d is the dimensionality of xt. Therefore, we do not provide further details about

the extensions. In practice, one may keep using local level, local linear or even local quadratic

estimation if simplicity is a priority. Compared with local level estimation, local linear and

local quadratic estimation each has the benefit of making the random bias term smaller. It

might then seem that following the usual (stationary case) asymptotic theory of ignoring the

random bias term with standard bandwidth choice would be most convenient. However, as we

will show in Section 4, it is not only more consistent with the asymptotic theory but also helpful

in performance to take the random bias term into consideration and use the new robust t-ratio

proposed there.
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3 Mixed component regressors in xt

3.1 Limit theory

This section considers the case where xt = (x′1t, x
′
2t)

′ with x1t a stationary d1-vector, x2t a

nonstationary d2-vector, and d1 + d2 = d. The first component x1t may have unity as its first

component, allowing for an intercept term in the model. The corresponding partition of β(z) is

written as β(z) = (β′
1(z), β

′
2(z))

′. The local p-th order polynomial estimator is again given in

(2.1). The following regularity conditions are used for this case of mixed regressors.

Assumption 3. (i) x2t satisfies Assumption 1 (i); x1t is a strictly stationary α-mixing process

with mixing numbers α(j) that satisfy
∑

j≥1 j
c[α(j)]1−2/δ < ∞ for some δ > 2 and c >

1− 2/δ with finite moments of order p > 2δ > 4, and µx(z) = E(x1t|zt = z), E(x1tx′1t|zt =
z) = Σx(z) is positive definite a.s.;

(ii) {ut} is a mds with respect to the filtration Ft = σ{(zt−s, x1,t−s,∆x2,t−s, ut−s) : s = 0, 1, ...}.
What’s more, E(ut|zt) = 0, E(u2t |zt = z) = σ2

u(z) > 0, E(ut|zt, x1t) = 0, E(ut|∆x2t) = 0,

and E(u4t ) < ∞;

(iii) Assumption 1 (iii) and Assumption 2 hold.

Theorem 3.1. For the local p-th order polynomial estimate of the functional coefficient β(ℓ)(z),

ℓ = 0, 1, 2, ..., p, we have, under Assumption 3, as n → ∞

β̂(ℓ)(z)− β(ℓ)(z)

ℓ!
− hp

∗
ℓ−ℓ+2Bp,ℓ(z) ∼a hp−ℓ

√
hD−1

n MN (0,ΩM,β,p,ℓ(z)) +
1

hℓ
√
nh

D−1
n MN (0,ΩM,u,p,ℓ(z)).

(3.1)

More specifically,

(a) if nh2p+2 → 0

√
nh2ℓ+1

[
β̂
(ℓ)
1 (z)− β

(ℓ)
1 (z)

ℓ!
− hp

∗
ℓ−ℓ+2Bp,ℓ,1(z)

]
d−→ MN (0,Ω11

M,u,p,ℓ(z)),

n
√
h2ℓ+1

[
β̂
(ℓ)
2 (z)− β

(ℓ)
2 (z)

ℓ!
− hp

∗
ℓ−ℓ+2Bp,ℓ,2(z)

]
d−→ MN (0,Ω22

M,u,p,ℓ(z)),

(b) if nh2p+2 → ∞

1

hp−ℓ
√
h

[
β̂
(ℓ)
1 (z)− β

(ℓ)
1 (z)

ℓ!
− hp

∗
ℓ−ℓ+2Bp,ℓ,1(z)

]
d−→ MN (0,Ω11

M,β,p,ℓ(z)),

1

hp−ℓ

√
n

h

[
β̂
(ℓ)
2 (z)− β

(ℓ)
2 (z)

ℓ!
− hp

∗
ℓ−ℓ+2Bp,ℓ,2(z)

]
d−→ MN (0,Ω22

M,β,p,ℓ(z)),
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(c) if nh2p+2 → c ∈ (0,∞)

n
2p−2ℓ+1

4p+4

[
β̂
(ℓ)
1 (z)− β

(ℓ)
1 (z)

ℓ!
− hp

∗
ℓ−ℓ+2Bp,ℓ,1(z)

]
d−→ MN

(
0, c

− 2ℓ+1
2p+2Ω11

M,u,p,ℓ(z) + c
2p−2ℓ+1

2p+2 Ω11
M,β,p,ℓ(z)

)
,

√
nn

2p−2ℓ+1
4p+4

[
β̂
(ℓ)
2 (z)− β

(ℓ)
2 (z)

ℓ!
− hp

∗
ℓ−ℓ+2Bp,ℓ,2(z)

]
d−→ MN

(
0, c

− 2ℓ+1
2p+2Ω22

M,u,p,ℓ(z) + c
2p−2ℓ+1

2p+2 Ω22
M,β,p,ℓ(z)

)
,

where Bp,ℓ,1(z) =
(
Id1 0d1×d2

)
Bp,ℓ(z), Bp,ℓ,2(z) =

(
0d2×d1 Id2

)
Bp,ℓ(z), Bp,ℓ(z) is the same as

in (2.11) of Theorem 2.2, Dn = diag{Id1 ,
√
nId2},

ΩM,u,p,ℓ(z) = σ2
u(z)ωp,ℓ(K)f(z)−1S(z)−1, (3.2)

ΩM,β,p,ℓ(z) = ω∗
p,ℓ(K)f(z)−1S(z)−1S∗(z)S(z)−1, (3.3)

p∗ℓ , ωp,ℓ(K), ω∗
p,ℓ(K), and eℓ are the same with Theorem 2.2. S(z) is given in (A.20), S∗(z)

is defined in (B.6), and Ω11
M,u,p,ℓ(z) denotes the (1,1) block of the block matrix ΩM,u,p,ℓ(z) and

other matrices with affixes are similarly defined.

Remark 3.1. From the proof of Theorem 3.1, we see that the form of the variance matrix in the

limit distribution MN (0,ΩM,β,p,ℓ(z)) is sourced from the impact of the random bias in estimation

on the limiting variance. More precisely, it comes from the term Bb
j , defined in (A.31) in the

Appendix, which has two stochastic integral components
∫
dBj2Bx and

∫
BxB

′
xBj4 originating

in the sample covariance terms
∑

t x1tx
′
2tξjpt,2 and

∑
t x2tx

′
2tξjpt,2, where ξjpt,2 involves β2(zt),

the coefficient of the nonstationary regressor x2t. So only the approximation error coming from

the coefficient of the nonstationary regressor contributes to the limit distribution. The intuitive

reason for this confined impact is that the approximation error in estimation is magnified by

the nonstationary regressor and the approximation error of the coefficient β1(zt) does not play

a role in the limit distribution. This matches the finding of Phillips and Wang (2023b) that the

functional coefficient approximation error (i.e., the bias effect in the nonparametric regression)

does not affect the limit theory in stationary functional coefficient regression but that it plays an

important role in nonstationary functional coefficient regression because of the strength in the

signal of the nonstationary regressor.

Remark 3.2. Case (a) of Theorem 3.1 with nh2p+2 → 0 nests Theorem 2.1 of Cai et al. (2009)

for their special case with p = 1 (local linear) and ℓ = 0. Cases (b) and (c) are new to the

literature. These results show that the convergence rates of the centered estimation errors for

the coefficient of the nonstationary regressor x2t are in both cases
√
n faster than those of the

stationary regressor x1t. However, this difference may not apply for the RMSE convergence

rates, as is shown in the next subsection.

3.2 Optimal bandwidth order

Let g1p,ℓ(γ) and g2p,ℓ(γ) denote the RMSE order of β̂
(ℓ)
1 (z) and β̂

(ℓ)
2 (z) with h = O(nγ). We focus

on the estimation of functional coefficients β1(z) and β2(z), namely the case of ℓ = 0. We start
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with g2p,0(γ), the RMSE order of β̂2(z). Since p∗ℓ = p∗ when ℓ = 0, the bias term hp
∗
ℓ−ℓ+2Bp,ℓ(z)

in Theorem 3.1 is the same as the bias term hp
∗+2Bp,0(z) in Theorem 2.1. Further, it is easily

verified that when ℓ = 0 the convergence rates of β̂2(z) presented in the three cases of Theorem

3.1 are identical to those of β̂(z) given in the three cases of Theorem 2.1. As a result, g2p,0(γ)

is the same as gp,0(γ) given in (2.15). Then (2.16) and (2.17) follow directly. We have

(i) for p = 0

g20,0(γ) =


−(1 + γ/2), −1 < γ ≤ −1/2,

−1−γ
2 , −1/2 < γ < −1/3,

2γ, −1/3 ≤ γ < 0,

(3.4)

(ii) for p ≥ 1

g2p,0(γ) =

−1− γ/2, −1 < γ ≤ − 2
2p∗+5 ,

γ(p∗ + 2), − 2
2p∗+5 < γ < 0.

(3.5)

The result for g1p,0(γ) follows the limit theory of β̂1(z) in Theorem 3.1, leading to

g1p,0(γ) =


max{−1/2− γ/2, γ(p∗ + 2)} −1 < γ < − 1

2p+2 ,

max{−2p+1
4p+4 ,−

p∗+2
2p+2} γ = − 1

2p+2 ,

max{γ(p+ 1/2), γ(p∗ + 2)} − 1
2p+2 < γ < 0.

(3.6)

After some computation we have

g1p,0(γ) =


−1/2− γ/2 −1 < γ < − 1

2p+2 ,

−2p+1
4p+4 γ = − 1

2p+2 ,

γ(p+ 1/2) − 1
2p+2 < γ < 0.

(3.7)

Figure 3 plots g1p,0(γ) and g2p,0(γ) for a straightforward comparison. Three subplots are needed,

corresponding to different values of p. First, g1p,0(γ) is tick-shaped in all three subplots for all

p = 0, 1, 2, ... while g2p,0(γ) is tick-shaped only for p > 0 in subplots (b) and (c). The curve

g2p,0(γ) lies uniformly below that of g1p,0(γ) indicating faster RMSE convergence rates of β̂2(z),

as expected. Further, when p = 0 in subplot (a) the two curves achieve their minimum values

simultaneously at the same bandwidth order γ = −1/2. When p > 0 in subplots (b) and (c),

the minimum values are attained at different bandwidth orders. More specifically, the optimal

bandwidth order for β̂1(z) exceeds that for β̂2(z) when p > 0. This suggests that when p > 0

a two step estimation procedure may be used to improve estimation efficiency of β1(z) and

β2(z). Section 2.4 of Cai et al. (2009) also mentioned the idea of two-step estimation. In the

first step, we may use the optimal bandwidth order for β2(z). Then, with β2(z) replaced by

the first step estimator β̂2(z), we can re-estimate β1(z) with its own optimal bandwidth. The

second step estimator of β1(z) should have faster RMSE convergence rate than the first step

estimator. Note that when p > 0, the β1(z)-optimal bandwidth order γ∗1p,0 = −1/(2p + 2)
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(a) p = 0 (b) p ≥ 1, p = odd

(c) p ≥ 1, p = even

Figure 3: Plot of g1p,0(γ) and g2p,0(γ) (in the figure γ1 = −2
2p∗+5 , γ2 = −1

2p+2 , g1 = −2p∗+4
2p∗+5 ,

g2 = −p∗+2
2p+2 , g3 = −2p+1

4p+4)

satisfies nh2p+2 → c ∈ (0,∞). Hence, if this bandwidth order is used , the asymptotics of

β̂1(z) and β̂2(z) follow the mixed case given in Theorem 3.1 (c). However, the β2(z)-optimal

bandwidth order γ∗2p,0 = −2/(2p∗ + 5) satisfies nh2p+2 → 0. Therefore, when this order is used,

the asymptotics for β̂1(z) and β̂2(z) follow case (a) of Theorem 3.1.

Similar to Figure 2, we plot the best RMSE rate that β̂1(z) and β̂2(z) can attain with

respect to p. These are the two unbroken lines in Figure 4. The upper unbroken line marked

with circles is for β̂1(z) and this depicts the best RMSE rate that β̂1(z) can attain using its own

optimal bandwidth order γ∗1p,0, namely g∗1p,0 = g1p,0(γ
∗
1p,0). The lower unbroken line marked with

diamonds depicts the counterpart for β̂2(z), namely g∗2p,0 = g2p,0(γ
∗
2p,0). Clearly β̂2(z) enjoys

a faster best RMSE convergence rate than β̂1(z). However, these two unbroken lines cannot

be achieved at the same time since they use different bandwidth orders. To demonstrate the

efficiency loss of one estimator while using optimal bandwidth order of the other estimator, we

add two further lines in Figure 4. The upper dashed line marked with diamonds represents the
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Figure 4: Plot of best RMSE rate in response to p in the mixed case

RMSE order of β̂1(z) when the optimal order γ∗2p,0 of β̂2(z) is used. Similarly, the lower dashed

line marked with circles shows the RMSE order of β̂2(z) when the optimal order γ∗1p,0 of β̂1(z)

is used. Therefore in Figure 4, the two curves with the same color and same markers (circles or

diamonds) share the same bandwidth order and can be achieved at the same time. Compared

with the infeasible ideal combination (the two unbroken lines), the combination of the two blue

lines with diamonds suffers less efficiency loss than the combination of the two red lines with

circles. We therefore suggest using the β̂2(z)-optimal bandwidth order γ∗2p,0 in estimation.

In closing this discussion, we mention that a similar analysis could be conducted to select

fit order p in an adaptive way as mentioned in Section 2.3 for nonstationary xt. But as we have

pointed out, adaptive selection of p in a multivariate case is not appealing. In the current mixed

case different optimal bandwidth orders apply, which makes optimization complex, and we do

not pursue this further. When simplicity is the priority, one may continue with local level or

local linear estimation and simply use the β̂2(z)-optimal bandwidth order γ∗2p,0.

4 A robust t-ratio

This section considers robust inference of the functional coefficient β(z) and constructs a robust

t-ratio for β(z) in all cases where the regressor xt is stationary, nonstationary or of mixed type.

(i) Nonstationary regressor xt

The construction follows the asymptotic theory given in Theorem 2.1. First, we can write

β̂(z)− β(z)− hp
∗+2Bp,0(z) ∼a hp

√
h

n
MN (0,Ωβ,p,0(z)) +

1

n
√
h
MN (0,Ωu,p,0(z))

≡ MN
(
0,

h2p+1

n
Ωβ,p,0(z) +

1

n2h
Ωu,p,0(z)

)
=: MN (0, Vp,0(z)). (4.1)
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Then the t-ratio follows by normalization as

T̂p,0(z) = V̂p,0(z)
−1/2(β̂(z)− β(z)− hp

∗+2B̂p,0(z)) (4.2)

where V̂p,0(z) and B̂p,0(z) denote consistent estimates of the respective variance matrix and bias

components. Note that both sources of variation, Ωβ,p,0(z) and Ωu,p,0(z), are included in the

construction of Vp,0(z). Instead of keeping only the larger term for a given bandwidth rate,

retaining them both can make the constructed t-ratio robust to bandwidth rate; and including

the term that is smaller in asymptotic order helps to improve finite sample performance and

make the t-ratio distribution closer to standard normal.

In view of (2.5), the estimate B̂p,0(z) of the bias Bp,0(z) can be obtained by consistent

estimation of its components. Specifically, for a given kernel K(·), Mp, Rp and R∗
p are fixed.

Estimation of these three matrice require estimation of µi =
∫
uiK(u)du for i = 0, 1, 2, ..., 2p and

νj =
∫
uiK(u)du for j = 0, 1, ..., 4p+2. Note that K(·) is a probability density function, we have

µi =
∫
uiK(u)du = EU i and νi =

∫
ujK2(u)du = E[U jK(U)] where U is a random variable

with density K(·). So we can estimte µi and νj by sample average, namely, µ̂i =
1
S

∑S
s=1 u

i
s for

i ≥ 1, and ν̂j =
1
S

∑S
s=1 u

j
sK(us) for j ≥ 0, where {us}Ss=1 denotes the random sample generated

from K(·). For symmetric kernel, we have µj = 0 and νj = 0 for odd index j. Estimation is

only needed for the even index. We have confirmed via numerical studies (not reported) that

the estimation accuracy of µ̂i and ν̂j is good. So with estimates of Mp, Rp and R∗
p, we can

easily obtain estimates ω̂p,0(K) and ω̂∗
p,0(K). To estimate bias, it remains to estimate B1p(z)

and B2p(z), which essentially involves β(p+1)(z) and β(p+2)(z) and can be accomplished by using

local (p+1)-th and (p+2)-th order polynomial estimation. Combining the component estimates

we get the following consistent bias estimate

B̂p,0(z) = e′0M̂
−1
p (µ̂p∗+2, ..., µ̂p∗+p+2)

′

{
β̂(p+1)(z)

(p+ 1)!
1{p=odd} +

[
β̂(p+1)(z)

(p+ 1)!

f̂ (1)(z)

f̂(z)
+

β̂(p+2)(z)

(p+ 2)!

]
1{p=even}

}
,

(4.3)

where µ̂i can be either true values or estimates as described above, and f̂(z) and f̂ (1)(z) are

kernel density and derivative estimates.

The variance matrix V̂p,0(z) is constructed in a similar fashion. Note that 1
n2

∑
t xtx

′
tKtz

d−→
f(z)B(x,2). Consequently f−1(z)B−1

(x,2) ∼a n2(
∑

t xtx
′
tKtz)

−1. As a result 1
n2h

Ωu,p,0(z) can be

estimated by σ̂2
u(z)ω̂p,0(K)(h

∑
t xtx

′
tKtz)

−1 where σ̂2
u(z) =

∑
t û

2
tKtz/

∑
Ktz and ût is a fitted

residual. Note that 1
n3

∑
t xtx

′
t
β(p+1)(z)
(p+1)!

β(p+1)(z)′

(p+1)! xtx
′
tKtz

d−→ f(z)
∫
[BxB

′
x
β(p+1)(z)
(p+1)!

β(p+1)(z)′

(p+1)! BxB
′
x].

Then h2p+1

n Ωβ,p,0(z) can be estimated by

h2p+1

n
ω̂∗
p,0(K)n2

(∑
t

xtx
′
tKtz

)−1
1

n3h

∑
t

xtx
′
t

β̂(p+1)(z)

(p+ 1)!

β̂(p+1)(z)′

(p+ 1)!
xtx

′
tKtzn

2h

(∑
t

xtx
′
tKtz

)−1

=h2p+1ω̂∗
p,0(K)

(∑
t

xtx
′
tKtz

)−1∑
t

xtx
′
t

β̂(p+1)(z)

(p+ 1)!

β̂(p+1)(z)′

(p+ 1)!
xtx

′
tKtz

(∑
t

xtx
′
tKtz

)−1

. (4.4)
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Let An(z) =
∑

t xtx
′
tKtz. Combining the above results gives

V̂p,0(z) = h2p+1ω̂∗
p,0(K)(An(z))

−1
∑
t

xtx
′
t

β̂(p+1)(z)

(p+ 1)!

β̂(p+1)(z)′

(p+ 1)!
xtx

′
tKtz(An(z))

−1 + σ̂2
u(z)ω̂p,0(K)(An(z))

−1

= (An(z))
−1

{
h2p+1ω̂∗

p,0(K)
∑
t

xtx
′
t

β̂(p+1)(z)

(p+ 1)!

β̂(p+1)(z)′

(p+ 1)!
xtx

′
tKtz + h−1σ̂2

u(z)ω̂p,0(K)An(z)

}
(An(z))

−1.

(4.5)

(ii) Mixed regressor xt

Following (3.1) we have

β̂(z)− β(z)− hp
∗+2Bp,0(z) ∼a hp

√
hD−1

n MN (0,ΩM,β,p,0(z)) +
1√
nh

D−1
n MN (0,ΩM,u,p,0(z))

= MN
(
0, h2p+1D−1

n ΩM,β,p,0(z)D
−1
n +

1

nh
D−1

n ΩM,u,p,0(z)D
−1
n

)
=: MN (0, VM,p,0(z)). (4.6)

Consequently, the t-ratio is defined as

T̂M,p,0(z) = V̂M,p,0(z)
−1/2(β̂(z)− β(z)− hp

∗+2B̂p,0(z)). (4.7)

The bias estimate B̂p,0(z) is the same as the case of nonstationary xt and we illustrate with the

construction of V̂M,p,0(z). First note that
1
nD

−1
n

∑
t xtx

′
tKtzD

−1
n

d−→ f(z)S(z). Then f(z)−1S(z)−1 ∼a

nDn(
∑

t xtx
′
tKtz)

−1Dn = nDn(An(z))
−1Dn, so we estimate ΩM,u,p,0(z) by σ̂2

u(z)ω̂p,0(K)nDn(An(z))
−1Dn.

Further note that

1

n2
D−1

n

∑
t

xtx
′
2t

β
(p+1)
2 (z)

(p+ 1)!

β
(p+1)
2 (z)′

(p+ 1)!
x2tx

′
tKtzD

−1
n

d−→ f(z)S∗(z).

Then we can estimate ΩM,β,p,0(z) by

ω̂∗
p,0(K)× nDn(An(z))

−1Dn × 1

n2
D−1

n

∑
t

xtx
′
2t

β̂
(p+1)
2 (z)

(p+ 1)!

β̂
(p+1)
2 (z)′

(p+ 1)!
x2tx

′
tKtzD

−1
n

× nDn(An(z))
−1Dn

= ω̂∗
p,0(K)Dn(An(z))

−1
∑
t

xtx
′
2t

β̂
(p+1)
2 (z)

(p+ 1)!

β̂
(p+1)
2 (z)′

(p+ 1)!
x2tx

′
tKtz(An(z))

−1Dn.

Combining the above results, we get

V̂M,p,0(z) = h2p+1D−1
n ω̂∗

p,0(K)Dn(An(z))
−1
∑
t

xtx
′
2t

β̂
(p+1)
2 (z)

(p+ 1)!

β̂
(p+1)
2 (z)′

(p+ 1)!
x2tx

′
tKtz(An(z))

−1DnD
−1
n

+
1

n
D−1

n σ̂2
u(z)ω̂p,0(K)nhDn(An(z))

−1DnD
−1
n

= h2p+1ω̂∗
p,0(K)D−1

n Dn(An(z))
−1
∑
t

xtx
′
2t

β̂
(p+1)
2 (z)

(p+ 1)!

β̂
(p+1)
2 (z)′

(p+ 1)!
x2tx

′
tKtz(An(z))

−1DnD
−1
n
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+ h−1σ̂2
u(z)ω̂p,0(K)(An(z))

−1

= (An(z))
−1

{
h2p+1ω̂∗

p,0(K)
∑
t

xtx
′
2t

β̂
(p+1)
2 (z)

(p+ 1)!

β̂
(p+1)
2 (z)′

(p+ 1)!
x2tx

′
tKtz + h−1σ̂2

u(z)ω̂p,0(K)An(z)

}
(An(z))

−1.

(4.8)

Observe that the estimate in (4.8) is very close to that of (4.5). The only minor difference

is that x2t appears in place of xt in two places. In fact, it turns out that (4.5) remains valid in

the mixed xt case. This is because

x′t
β(p+1)(z)

(p+ 1)!
= x′1t

β
(p+1)
1 (z)

(p+ 1)!
+ x′2t

β
(p+1)
2 (z)

(p+ 1)!
∼a x′2t

β
(p+1)
2 (z)

(p+ 1)!
,

and as a result 1
n2D

−1
n

∑
t xtx

′
t
β(p+1)(z)
(p+1)!

β(p+1)(z)′

(p+1)! xtx
′
tKtzD

−1
n

d−→ f(z)S∗(z). Note that the two

cases also share the same bias estimate. This means that the robust t-ratio can be computed

in the same way as given in (4.2) and there is no need to distinguish the nonstationary xt and

mixed xt case, which is an important advantage in practice. Furthermore, it can be verified

that (4.2) also applies when xt is stationary. This will greatly facilitate empirical computation

in practical work.

The following result gives the limit behavior of the t-ratio.

Theorem 4.1. As n → ∞ we have: (i) T̂p,0(z)
d−→ N (0, Id) under Assumptions 1 and 2; and

(ii) T̂M,p,0(z)
d−→ N (0, Id) under Assumption 3.

To facilitate empirical application, we provide4 a step-by-step self-contained description for

the computation of the robust t-ratio.

� Step 1, generate random sample {us}Ss=1 from probability density function K(·). Compute

µ̂i =
1
S

∑S
s=1 u

i
s for 1 ≤ i ≤ 2p, and ν̂j =

1
S

∑S
s=1 u

j
sK(us) for 0 ≤ j ≤ 4p+2. Then we get

the three matrice Mp, Rp and R∗
p, and ωp,0(K) and ω∗

p,0(K) can be estimated following

the definitions.

� Step 2, compute bias estimate B̂p,0(z) given in (4.3). Specifically, f(z) and f (1)(z) can be

estimated by kernel estimates. The higher order derivatives β(j)(z), j = p+1, p+2 can be

estimated by using local j-th order polynomial estimation with optimal bandwidth order

−2/(2j + 5) (see (2.19)).

� Step 3, obtain consistent estimate of variance matrix V̂p,0(z) based on (4.5).

� Step 4, compute the t-ratio by formula (4.2).

In conclusion, the formulation of our t-ratio has the advantage that it enables computation in

the same way regardless of the bandwidth rate and the properties of xt, allowing for stationary,

4We thank the associate editor for suggesting we provide a stepwise description of the computational algorithm.
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nonstationary and mixed cases. This generality is the reason we call the test statistic a robust t-

ratio. As shown later in Section 6.1, the robust t-ratio performs well in finite sample simulations.

The above discussion focuses on robust inference about the functional coefficient β(z). Al-

though it is less likely to be relevant in practical work, we mention that the significance of

derivative estimates can be tested by following similar lines in the construction of a t-ratio

based on the limit theory of β̂(ℓ)(z) given in Theorems 2.2 and 3.1. This approach to signifi-

cance testing of derivatives was employed by Phillips and Wang (2023a) in testing the presence

of locally flat behavior in a functional coefficient.

5 Constancy testing

This section considers the issue of testing the overall constancy of a functional coefficient such

as β(z) over the support of zt. The problem of constancy testing has been considered in the

past literature by Xiao (2009) and Sun et al. (2016) for integrated xt and by Li et al. (2002) for

stationary xt. Here we are concerned whether the new asymptotic results of the present paper

change the limit theory of existing tests. We consider the test proposed by Sun et al. (2016)

which uses the integrated squared distance between semiparametric and parametric estimates

over the support of zt. The test in Xiao (2009) only uses information at a finite number of

points.

We first extend the test statistic of Sun et al. (2016) to the current local p-th order polynomial

estimation environment. Note that the null of a constant functional coefficient is equivalent to

H0 : θ(z) = θ0 = (β′
0, 0

′
pd×1)

′ a.e. The test statistic is motivated by the following integrated

squared distance ∫ [
θ̂(z)− θ̂0

]′ [
θ̂(z)− θ̂0

]
dz (5.1)

where θ̂(z) is given in (2.1) and θ̂0 = (β̂′
0, 0

′
pd×1)

′ where β̂0 is the OLS estimate of β0. To avoid

the random denominator problem, we consider∫ [∑
t

wtw
′
tKtz(θ̂(z)− θ̂0)

]′ [∑
t

wtw
′
tKtz(θ̂(z)− θ̂0)

]
dz

=

∫ [∑
t

wtytKtz −
∑
t

wtw
′
tKtz θ̂0

]′ [∑
t

wtytKtz −
∑
t

wtw
′
tKtz θ̂0

]
dz

=

∫ [∑
t

wt(yt − w′
tθ̂0)Ktz

]′ [∑
t

wt(yt − w′
tθ̂0)Ktz

]
dz

=

∫ [∑
t

wt(yt − x′tβ̂0)Ktz

]′ [∑
t

wt(yt − x′tβ̂0)Ktz

]
dz

=

∫ [∑
t

wtûtKtz

]′ [∑
t

wtûtKtz

]
dz
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=
∑
t

∑
s

ûtûs

∫
w′
twsKtzKszdz, (5.2)

where ût = yt − x′tβ̂0 is the parametric residual and wt = Dt ⊗ xt depends on z. In view of

w′
tws =

∑p
j=0(zt − z)j(zs − z)jx′txs, we have

∫
w′
twsKtzKszdz = x′txs

p∑
j=0

∫
(zt − z)j(zs − z)jKtzKszdz

= x′txs

p∑
j=0

[
h−1

∫
K(v)K

(
v +

zt − zs
h

)
dv −

∫
v(zs − zt − hv)K(v)K

(
v +

zt − zs
h

)
dv

]
{1 + op(1)}

∼a h−1x′txs

∫
K(v)K

(
v +

zt − zs
h

)
dv. (5.3)

As a result, the leading term of (5.2) is h−1
∑

t

∑
s ûtûsx

′
txs
∫
K(v)K(v+ zt−zs

h )dv. Following Li

et al. (2002) we replace
∫
K(v)K(v+ zt−zs

h )dv by K( zt−zs
h ). Upon appropriate standardization,

we obtain the test statistic

În =
1

n3h

∑
t

∑
s

x′txsûtûsK

(
zt − zs

h

)
, (5.4)

which is the same as that in Sun et al. (2016). The standardized version of the test statistic is

given by

Jn = n
√
hÎn/

√
σ̂2
n (5.5)

where

σ̂2
n =

1

n4h

n∑
t=1

n∑
s ̸=t

ũ2t ũ
2
s(x

′
txs)

2K2((zt − zs)/h), (5.6)

ũt = yt − x′tβ̂(zt) is the nonparametric residual.

Under the null, the limit distribution of Jn is the same as that presented in Sun et al. (2016)

because the numerator În only involves the OLS estimator β̂0 and the denominator convergence

σ̂2
n

d−→ σ2 = 4σ4
uν0(K)E(f(z1))

∫ 1
0

∫ s
0 (Bx(s)

′Bx(r))
2drds remains valid due to consistency of β̂(z).

The proof is conducted in a similar fashion to that of Sun et al. (2016). More specifically, for

the coefficient of the nonstationary regressor we have RMSE convergence rate faster than n−1/2

with an appropriately selected bandwidth as evident from the unbroken lines in Figures 1 and 3.

For the coefficient of the stationary regressor consistency is sufficient to ensure the denominator

convergence and this is confirmed by the dashed lines in Figure 3.

Under the alternative, the limit behavior of Jn presented in Sun et al. (2016) also continues

to hold. The denominator convergence remains valid since β̂(z) is consistent under both the

null and the alternative. For the numerator, it only involves the OLS estimator β̂0 and does

not depend on the properties of the semiparametric estimator β̂(z). So the new limit theory of
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β̂(z) does not affect the properties of În. So the behavior of Jn under the alternative does not

change.

In sum, our analysis shows that with local p-th order polynomial estimation, the test statistic

for constancy can be constructed in the same way as that in Sun et al. (2016). The limit behavior

of the test statistic remains unchanged under both the null and the alternative. Therefore, the

test and limit theory presented in Sun et al. (2016) can continue to be used with our estimator

β̂(z).

6 Simulations

6.1 Robust t-ratio and estimation accuracy

This section explores the finite sample performance of the robust t-ratio proposed in Section

4. We consider all three cases where the regressor xt may be stationary, nonstationary, or has

mixed form. The most frequently used local level (p = 0) and local linear approximation (p = 1)

are considered. More specifically, the model is

M1 : y1t = x1tβ(zt) + ut,

M2 : y2t = x2tβ(zt) + ut,

M3 : y3t = x1tβ1(zt) + x2tβ2(zt) + ut.

Data is generated as follows: x1t is a stationary AR(1) with coefficient 0.5 and iid standard

normal innovations, x2t is a unit root process with iid N (0, 1) innovations, the error term ut

is a stationary AR(1) with coefficient 0.5 and iid standard normal innovations, the coefficients

β(z) = z5, β1(z) = z4 and β2(z) = z5, and the covariate zt is iid uniform over the support [0, 2].

Behavior at point z = 1 is examined. The number of replications is 5,000. We consider the

empirical t-ratio at point z = 1 with sample size n = 200.

As we have pointed out in Section 4, the robust t-ratio can be computed in the same manner

as shown in (4.2)5. We plot the empirical density of the robust t-ratio for models M1 and M2

in Figure 5. Both local level and local linear estimators are considered. For comparison, we also

include the empirical density of the usual t-ratio in the literature, namely the one that ignores

the random bias term. For stationary model M1, we have mentioned that the usual limit theory

in the literature is correct since the random bias term is smaller than the usual variance term

and thus does not contribute to the limit distribution. Subplots (a) and (b) in Figure 5 show the

5Some other computation details include: f(z) is estimated by kernel density estimator with usual bandwidth

σ̂zn
−1/5; f ′(z) is estimated with derivative density estimator with usual bandwidth σ̂zn

−1/7; σ2
u(z) is estimated

by 1
n

∑n
t=1 û

2
t due to independence between u and z and ût is the residual obtained with local linear estimator

with usual bandwidth σ̂zn
−2/5 (note that −2/5 is the optimal order for local linear estimation); the derivative

β(j)(z), j = 1, 2, ..., P + 2, is estimated via local j-th order approximation with bandwidth hj = σ̂zn
−2/(2j+5)

where the order −2/(2j +5) is the optimal bandwidth order in the case of ℓ = p – see (2.19) for details; a second

order Epanechnikov kernel is used; µj and νj are estimated by following the procedure given in Section 4.
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empirical densities of the t-ratios for the stationary model. The most popular optimal bandwidth

order n−1/5 is used. We can see that the robust t-ratio shows great improvement over the usual

t-ratio when the local level estimator is used, even though both are valid asymptotically. The

finite sample improvement arises from the inclusion of the random bias term which is relevant

but asymptotically negligible in the stationary FC model. When local linear estimator is used,

the finite sample improvement is less pronounced as shown in subplot (b) because the random

bias term is of smaller order with local linear approximation and thus has a weaker impact on

the finite sample behaviour of the t-ratio. For the nonstationary model M2, we employ the most

commonly used bandwidth order n−2/5. The densities are collected in subplots (c) and (d) in

Figure 5. When local level estimator is employed, the usual t-ratio is incorrect because we have

nh2 → ∞ in this situation and case (b) of Theorem 2.1 should apply. The robust t-ratio is valid

in this case. Subplot (c) confirms this, where we can see the robust t-ratio manifests significant

improvement over the usual (asymptotically invalid) t-ratio. When the local linear estimator is

employed, both the robust t-ratio and the usual t-ratio are asymptotically valid because we have

nh4 → 0 and case (a) of Theorem 2.1 applies. From subplot (d) we observe that the two t-ratios

have correspondingly close performance, indicating that the random bias term is relatively small

in this specific example.

Parallel results for the mixed model M3 are collected in Figure 6. The findings are similar.

For the local level estimator, the usual t-ratio is invalid asymptotically and the robust t-ratio is

valid. Case (b) of Theorem 3.1 applies in this situation. Subplot (a) of Figure 6 clearly demon-

strates the improvement of the robust t-ratio over the usual t-ratio for both coefficients. When

the local linear estimator is employed, case (a) of Theorem 3.1 applies since nh4 → 0 is satisfied.

Both the robust and usual t-ratios are valid in this case. Subplot (b) suggests their finite sample

performance is close since the random bias term is small in this situation. In conclusion, the

results strongly favor the use of the robust t-ratio because it is always asymptotically correct

and typically delivers finite sample improvements over the usual t-ratio even when the usual

t-ratio is asymptotically valid.

Estimation accuracy

We report the RMSE at the interior point z = 1 over a range of bandwidth orders in Figure 7

for mixed model M3. The bandwidths employed in the simulations are determined by the rule

h = σ̂zn
γ . The bandwidth order γ varies from -0.6 to -0.1 with step length 0.01. A Gaussian

kernel is used to avoid the singularity problem at small bandwidths. We consider local level,

local linear and local quadratic estimators with n = 400.

From Figure 7 estimation accuracy for the coefficient β2(z) is evidently much greater than

that for β1(z). This is consistent with the theoretical finding that the regression coefficient

estimate of the nonstationary regressor has a faster convergence rate than that of the stationary

regressor. Further, the empirical optimal bandwidth order is increasing as fit order p increases.

More specifically, for the local level estimator, the empirical optimal bandwidth order for β1(z)
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(a) stationary xt, local level, h = 1.5σ̂zn
−1/5 (b) stationary xt, local linear, h = 1.5σ̂zn

−1/5

(c) nonstationary xt, local level, h = 1.5σ̂zn
−2/5 (d) nonstationary xt, local linear, h = 1.5σ̂zn

−2/5

Figure 5: Empirical densities of the t-ratios for stationary model M1 and nonstationary model

M2 with n = 200
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(a) mixed xt, local level, h = 1.5σ̂zn
−2/5

(b) mixed xt, local linear, h = 1.5σ̂zn
−2/5

Figure 6: Empirical densities of the t-ratios for mixed model M3 with n = 200

(a) local level (b) local linear (c) local quadratic

Figure 7: Empirical RMSE of the coefficient estimators with respect to bandwidth order γ
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is found to be −0.52, and that for β2(z) is −0.48. These are very close to the suggested values

based on theory. From Figure 3(a) we know that the optimal bandwidth order is −0.5 for

both β1(z) and β2(z). For local linear estimators the empirical optimal bandwidth order is

found to −0.35 for β1(z) and −0.46 for β2(z). For local quadratic estimators the empirical

optimal bandwidth order is found to −0.24 for β1(z) and −0.26 for β2(z). So the finite sample

performance corroborates the limit theory findings in Section 3.

6.2 Adaptive selection of p

This section examines performance of the coefficient estimator with p selected in an adaptive

way as shown in Section 2.3. We set xt to be a unit root process with errors ut ∼iid N (0, 1). For

the functional coefficient we follow Fan and Gijbels (1995) and consider the following functions:

� βa(z) = z + 2exp(−16z2), z ∼ uniform(−2, 2),

� βb(z) = sin(2z) + 2exp(−16z2), z ∼ uniform(−2, 2),

� βc(z) = 0.3exp(−4(z + 1)2) + 0.7exp(−16(z − 1)2), z ∼ uniform(−2, 2),

� βd(z) = 0.4z, z ∼ N (0, 1).

The fixed bandwidth h = chσ̂zn
−2/5 is used for all p = 0, 1, ..., 4. We consider different ch to

examine the sensitivity to bandwidth. We want to show: (i) the adaptive procedure is more

accurate than fixed order polynomial fit; (ii) the adaptive procedure is far less sensitive to

bandwidth variation than the fixed order polynomial approximation. The computation details

are the same with that in Section 6.1.

Let’s focus on Example βa(z). Results for other examples are similar and are omitted to

save space. We first plot the estimated curves for different bandwidth parameters ch. Figure

8 displays some representative results: Figure 8 (a) shows that adaptive estimation has good

accuracy; and, compared with the fixed order (local linear) fit in Figure 8 (b), adaptive estimation

is evidently far less sensitive to ch, even when bandwidth is increased by a factor of 3.

To assess estimation accuracy more precisely, we computed the Mean Absolute Deviation

Error at grid points zj = −2 + 0.04j, j = 0, 1, ..., 100, given by

MADE(zj) =
1

B

B∑
b=1

|β̂b(zj)− β(zj)|, (6.1)

and calculated the ratio of MADE for fixed order fit over adaptive order fit at different band-

widths with B = 1000 replications. Evidently from Figure 9, over the entire support of zt the

adaptive estimation has better performance than fixed order fit at both small and large band-

widths. At both ends of the support a local linear fit is comparable to the adaptive fit, and at

the middle of the support a higher order fit (p ≥ 2) is better. This clearly demonstrates the

advantages in determining the fit order adaptively.
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Figure 8: Estimated curves under different bandwidth h = chσ̂zn
−2/5
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(c) ch = 4.5

Figure 9: Ratio of MADE of the fixed order estimation over the adaptive order estimation at

different bandwidth h = chσ̂zn
−2/5
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In conlusion, the adaptive procedure to select p is more accurate and less sensitive to band-

width than fixed order fitting. We therefore recommend selecting p adaptively when the function

is suspected of having considerable heterogeneity. A rule-of-thumb bandwidth choice such as

that commonly employed in local level or local linear estimation can be used in the adaptive

procedure as this procedure is not sensitive to bandwidth.

7 Conclusion

As in Phillips and Wang (2023b), this paper finds that the correct limit theory for local poly-

nomial estimation in general functional coefficient regression is considerably more complex than

might be expected from earlier work. In models where both stationary and nonstationary re-

gressors are included, our findings show that the limit theory takes several forms dependent on

bandwidth rates and these have implications for optimal rates of convergence, bandwidth se-

lection and the preferred order of polynomial approximation in local polynomial nonparametric

regression. A robust approach to constructing a self normalized t-statistic is proposed that is

based on the new limit theory and is shown to be valid for fitted functional coefficients of both

stationary and nonstationary regressors under various bandwidth rate conditions even in models

with mixed regressors. Tests for constancy are also asymptotically valid in this general setting;

and adaptive estimation of the polynomial fit order is found to be particularly useful. These

findings help to complete the limit theory obtained earlier in Phillips and Wang (2023b) for local

level functional coefficient regression. The results given here use similar regularity conditions

to those assumed in the earlier work. As we have discussed, there remains scope for extending

those conditions to allow for a nonstationary covariate and dependencies, particularly between

the functional covariate and regressors. These extensions involve new technical complexities in

sample covariance asymptotics for functions of dependent nonstationary processes that exceed

presently known limit theory. The development of such asymptotics is ongoing research.
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Appendix

A Proof of the Main Theorems

Proof of Theorem 2.1 Plugging yt = w′
tθ(z)+x′tβ(zt)−w′

tθ(z)+ut into (2.1) and rearranging,

we have

θ̂(z)− θ(z)

=

[
n∑

t=1

wtw
′
tKtz

]−1 n∑
t=1

wt[x
′
tβ(zt)− w′

tθ(z)]Ktz +

[
n∑

t=1

wtw
′
tKtz

]−1 n∑
t=1

wtutKtz

=

[
n∑

t=1

wtw
′
tKtz

]−1 n∑
t=1

wtx
′
t

β(zt)− β(z)−
p∑

j=1

β(j)(z)

j!
(zt − z)j

Ktz +

[
n∑

t=1

wtw
′
tKtz

]−1 n∑
t=1

wtutKtz

=

[
n∑

t=1

wtw
′
tKtz

]−1 n∑
t=1

wtx
′
tBp(zt, z)Ktz +

[
n∑

t=1

wtw
′
tKtz

]−1 n∑
t=1

wtutKtz (A.1)

where Bp(zt, z) = β(zt)− β(z)−
∑p

j=1
β(j)(z)

j! (zt − z)j . We analyze each of the terms in (A.1) in

turn.

We start with
∑n

t=1wtw
′
tKtz. Following Gu and Liang (2014) we have the following uniform

convergence

sup
z∈S

|| 1
n2

H−1
p

n∑
t=1

wtw
′
tKtzH−1

p − f(z)Mp ⊗B(x,2)|| = op(1), (A.2)

where Hp = Hp ⊗ Id, Hp = diag{1, h, ..., hp},

Mp =


1 µ1(K) · · · µp(K)

µ1(K) µ2(K) · · · µp+1(K)
...

. . .
...

µp(K) µp+1(K) · · · µ2p(K)

 , (A.3)

and B(x,2) =
∫
BxB

′
x.

Next turn to the component
∑n

t=1wtx
′
tBp(zt, z)Ktz, which is a (p + 1)d × 1 vector. The

(j + 1)-th block element is the d × 1 vector
∑

(zt − z)jxtx
′
tBp(zt, z)Ktz =

∑
xtx

′
tξjpt with

ξjpt = (zt − z)jBp(zt, z)Ktz for j = 0, 1, ..., p. Let ξpt = (ξ′0pt, ξ
′
1pt, ..., ξ

′
ppt)

′. We have the

decomposition

n∑
t=1

wtx
′
tBp(zt, z)Ktz =

n∑
t=1

[Ip+1 ⊗ (xtx
′
t)]ξpt =

n∑
t=1

[Ip+1 ⊗ (xtx
′
t)]Eξpt +

n∑
t=1

[Ip+1 ⊗ (xtx
′
t)][ξpt − Eξpt].

(A.4)
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In view of Lemma B.1 (i), when p is odd

Eξpt =



hp+1µp+1B1p(z)

hp+3µp+3B2p(z)

hp+3µp+3B1p(z)
...

h2pµ2pB1p(z)

h2p+2µ2p+2B2p(z)


= hp+1 [(H1pU1p(K))⊗ Id]Bp,odd(z) {1 + o(1)} , (A.5)

whereH1p = diag{1, h2, h2, h4, h4, ..., hp−1, hp+1}, U1p(K) = diag{µp+1, µp+3, µp+3, ..., µ2p, µ2p+2},
and Bp,odd(z) = (B′

1p(z), B
′
2p(z), B

′
1p(z), ..., B

′
1p(z), B

′
2p(z))

′; when p is even,

Eξpt =



hp+2µp+2B2p(z)

hp+2µp+2B1p(z)

hp+4µp+4B2p(z)
...

h2pµ2pB1p(z)

h2p+2µ2p+2B2p(z)


= hp+1 [(H2pU2p(K))⊗ Id]Bp,even(z) {1 + o(1)} , (A.6)

where H2p = diag{h, h, h3, h3, ..., hp−1, hp+1}, U2p(K) = diag{µp+2, µp+2, ..., µ2p, µ2p+2}, and

Bp,even(z) = (B′
2p(z), B

′
1p(z), ..., B

′
1p(z), B

′
2p(z))

′. As a result, for the first term on the right side

of (A.4), we have

n∑
t=1

(
Ip+1 ⊗ xtx

′
t

)
Eξpt

∼a n2hp+1
(
Ip+1 ⊗B(x,2)

) {
[(H1pU1p(K))⊗ Id]Bp,odd(z)1{p=odd} + [(H2pU2p(K))⊗ Id]Bp,even(z)1{p=even}

}
.

Combining this with (A.2) and using standard Kronecker algebra gives[
n∑

t=1

wtw
′
tKtz

]−1 n∑
t=1

(
Ip+1 ⊗ xtx

′
t

)
Eξpt

∼a

{
n2Hpf(z)

[
Mp ⊗B(x,2)

]
Hp

}−1
n2hp+1

(
Ip+1 ⊗B(x,2)

)
×
{
[(H1pU1p(K))⊗ Id]Bp,odd(z)1{p=odd} + [(H2pU2p(K))⊗ Id]Bp,even(z)1{p=even}

}
=hp+1f−1(z)H−1

p [Mp ⊗B(x,2)]
−1H−1

p

(
Ip+1 ⊗B(x,2)

)
×
{
[(H1pU1p(K))⊗ Id]Bp,odd(z)1{p=odd} + [(H2pU2p(K))⊗ Id]Bp,even(z)1{p=even}

}
=hp+1f−1(z)(H−1

p ⊗ Id)
[
M−1

p ⊗B−1
(x,2)

]
(H−1

p ⊗ Id)
[
Ip+1 ⊗B(x,2)

]
×
{
[(H1pU1p(K))⊗ Id]Bp,odd(z)1{p=odd} + [(H2pU2p(K))⊗ Id]Bp,even(z)1{p=even}

}
=hp+1f−1(z)

[
H−1

p M−1
p H−1

p ⊗ Id
]

×
{
[(H1pU1p(K))⊗ Id]Bp,odd(z)1{p=odd} + [(H2pU2p(K))⊗ Id]Bp,even(z)1{p=even}

}
=hp+1f−1(z)

{
[H−1

p M−1
p H1U1p(K)]⊗ Id

}
Bp,odd(z)1{p=odd}
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+ hp+1f−1(z)
{
[H−1

p M−1
p H2U2p(K)]⊗ Id

}
Bp,even(z)1{p=even}, (A.7)

where H1 = H−1
p H1p = diag{1, h, 1, h, ..., 1, h} and H2 = H−1

p H2p = diag{h, 1, h, 1, ..., 1, h}.
Next consider the second term on the right side of (A.4). In view of Lemma B.1 (iii), we

have

n∑
t=1

(
Ip+1 ⊗ xtx

′
t

)
[ξpt − Eξpt] ∼a n

√
nh2p+1

∫ [
Ip+1 ⊗ (BxB

′
x)
]
(Hp ⊗ Id)dBξ. (A.8)

Combining (A.8) with (A.2), we obtain[
n∑

t=1

wtw
′
tKtz

]−1 n∑
t=1

(Ip+1 ⊗ xtx
′
t)[ξpt − Eξpt]

∼a

{
n2Hpf(z)

[
Mp ⊗B(x,2)

]
Hp

}−1
n
√
nh2p+1

∫ [
Ip+1 ⊗ (BxB

′
x)
]
(Hp ⊗ Id)dBξ

= hp
√

h

n
f−1(z)(H−1

p ⊗ Id)
[
M−1

p ⊗B−1
(x,2)

]
(H−1

p ⊗ Id)

∫ [
Ip+1 ⊗ (BxB

′
x)
]
(Hp ⊗ Id)dBξ

= hp
√

h

n
f−1(z)

{
[H−1

p M−1
p ]⊗B−1

(x,2)

}∫ [
Ip+1 ⊗ (BxB

′
x)
]
dBξ. (A.9)

Lastly consider
∑

twtutKtz whose typical element is
∑

t(zt − z)jxtutKtz =
∑

t xtutζjt. Let

ζt = (ζ0t, ζ1t, ..., ζpt)
′ so we can write

∑
wtutKtz =

∑
(utζt) ⊗ xt. From Lemma B.1 (ii) we get√

h
nH

−1
p

∑
utζt

d−→ Buζ where Buζ = (B0uζ , B1uζ , ..., Bpuζ)
′ has variance matrix σ2

u(z)f(z)Rp.

Consequently,∑
wtutKtz =

∑
(utζt)⊗ xt ∼a

√
n
√
n/h

∫
(HpdBuζ)⊗Bx =

√
n2/h(Hp ⊗ Id)

∫
dBuζ ⊗Bx.

(A.10)

A strengthened version of (A.10) is available in Gu and Liang (2014) which states that

sup
z∈S

||n−1
√
h(Hp ⊗ Id)

−1
∑

(utζt)⊗ xt −
∫

dBuζ ⊗Bx|| = op(1).

Combining (A.10) with (A.2) gives[
n∑

t=1

wtw
′
tKtz

]−1∑
wtutKtz

∼a

{
n2Hpf(z)

[
Mp ⊗B(x,2)

]
Hp

}−1
nh−1/2(Hp ⊗ Id)

∫
dBuζ ⊗Bx

=
1

n
√
h
f−1(z)(H−1

p ⊗ Id)
[
M−1

p ⊗B−1
(x,2)

]
(H−1

p ⊗ Id)(Hp ⊗ Id)

∫
dBuζ ⊗Bx

=
1

n
√
h
f−1(z)

{
[H−1

p M−1
p ]⊗B−1

(x,2)

}∫
dBuζ ⊗Bx. (A.11)

A combination of (A.1), (A.4), (A.7),(A.9), and (A.11) leads to

θ̂(z)− θ(z) ∼a hp+1f−1(z)
{
[H−1

p M−1
p H1U1p(K)]⊗ Id

}
Bp,odd(z)1{p=odd}
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+ hp+1f−1(z)
{
[H−1

p M−1
p H2U2p(K)]⊗ Id

}
Bp,even(z)1{p=even}

+ hp
√

h

n
f−1(z)

{
[H−1

p M−1
p ]⊗B−1

(x,2)

}∫
[Ip+1 ⊗ (BxB

′
x)]dBξ

+
1

n
√
h
f−1(z)

{
[H−1

p M−1
p ]⊗B−1

(x,2)

}∫
dBuζ ⊗Bx. (A.12)

We now derive the limit distribution of β̂(z). Note that β̂(z) − β(z) = (e′0 ⊗ Id)[θ̂(z) −
θ(z)] where e0 = (1, 0, 0, ..., 0)′ is (p + 1) × 1. Since (e′0 ⊗ Id)

{
[H−1

p M−1
p H1U1p(K)]⊗ Id

}
=

[e′0H
−1
p M−1

p H1U1p(K)]⊗ Id = [e′0M
−1
p H1U1p(K)]⊗ Id and following (A.12) we then obtain

β̂(z)− β(z) ∼a hp+1f−1(z)
{
[e′0M

−1
p H1U1p(K)]⊗ Id

}
Bp,odd(z)1{p=odd}

+ hp+1f−1(z)
{
[e′0M

−1
p H2U2p(K)]⊗ Id

}
Bp,even(z)1{p=even}

+ hp
√

h

n
f−1(z)

{
[e′0M

−1
p ]⊗B−1

(x,2)

}∫ {
Ip+1 ⊗ (BxB

′
x)
}
dBξ

+
1

n
√
h
f−1(z)

{
[e′0M

−1
p ]⊗B−1

(x,2)

}∫
dBuζ ⊗Bx, (A.13)

where the first two terms on the right side of (A.13) are analyzed in Lemma B.2. In consequence

(A.13) can be simplified as follows

β̂(z)− β(z)− hp
∗+2Bp,0(z) ∼a hp

√
h

n
f−1(z)

[
(e′0M

−1
p )⊗B−1

(x,2)

] ∫ {
Ip+1 ⊗ (BxB

′
x)
}
dBξ

+
1

n
√
h
f−1(z)

[
(e′0M

−1
p )⊗B−1

(x,2)

] ∫
dBuζ ⊗Bx, (A.14)

with p∗ = (p− 1)1{p=odd} + p1{p=even} and

Bp,0(z) = f−1(z)e′0M
−1
p (µp∗+2, ..., µp∗+p+2)

′ [B1p(z)1{p=odd} +B2p(z)1{p=even}
]
.

Determining which term on the right side of (A.14) has larger order depends on nh2p+2. The

analysis that follows considers different situations regarding the behavior of nh2p+2.

(a) If nh2p+2 → 0, the last term on the right side of (A.14) is larger and dominates the limit dis-

tribution, so that
∫
dBuζ⊗Bx = MN

(
0, σ2

u(z)f(z)Rp ⊗B(x,2)

)
due to the mds assumption, im-

plying that f−1(z)[(e′0M
−1
p )⊗B−1

(x,2)]
∫
dBuζ ⊗Bx ≡ MN

(
0, σ2

u(z)f
−1(z)ωp,0(K)B−1

(x,2)

)
, where

ωp,0(K) = e′0M
−1
p RpM

−1
p e0. Consequently, we obtain

n
√
h
(
β̂(z)− β(z)− hp

∗+2Bp,0(z)
)

d−→ MN
(
0, σ2

u(z)f
−1(z)ωp,0(K)B−1

(x,2)

)
= MN (0,Ωu,p,0(z)) .

(A.15)

(b) If nh2p+2 → ∞, the first term on the right side of (A.14) is larger and hence dominates the

limit distribution. We have∫ [
Ip+1 ⊗ (BxB

′
x)
]
dBξ = MN

(
0,

∫
[Ip+1 ⊗ (BxB

′
x)]

{
f(z)R∗

p ⊗

[
β(p+1)(z)

(p+ 1)!

β(p+1)(z)′

(p+ 1)!

]}
[Ip+1 ⊗ (BxB

′
x)]

)
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= MN

(
0, f(z)R∗

p ⊗
∫ [

BxB
′
x

β(p+1)(z)

(p+ 1)!

β(p+1)(z)′

(p+ 1)!
BxB

′
x

])
,

so that

f−1(z)[(e′0M
−1
p )⊗B−1

(x,2)]

∫
[Ip+1 ⊗ (BxB

′
x)]dBξ

= MN

(
0, f−1(z)ω∗

p,0(K)B−1
(x,2)

∫ [
BxB

′
x

β(p+1)(z)

(p+ 1)!

β(p+1)(z)′

(p+ 1)!
BxB

′
x

]
B−1

(x,2)

)
,

where ω∗
p,0(K) = e′0M

−1
p R∗

pM
−1
p e0. Consequently, we obtain√

n

p

1

hp

(
β̂(z)− β(z)− hp

∗+2Bp,0(z)
)

d−→ MN

(
0, f−1(z)ω∗

p,0(K)B−1
(x,2)

∫ [
BxB

′
x

β(p+1)(z)

(p+ 1)!

β(p+1)(z)′

(p+ 1)!
BxB

′
x

]
B−1

(x,2)

)
= MN (0,Ωβ,p,0(z)). (A.16)

(c) If nh2p+2 → c ∈ (0,∞), the two terms on the right side of (A.14) are of the same order. So

they both contribute to the limit distribution. In view of (A.15) and (A.16), we have

n
4p+3
4p+4

(
β̂(z)− β(z)− hp

∗+2Bp,0(z)
)

d−→ c
2p+1
4p+4MN (0,Ωβ,p,0(z)) + c

−1
4p+4MN (0,Ωu,p,0(z)).

(A.17)

The two mixed normal variates on the right side of (A.17) are independent. This can be

easily verified by noting that the conditional covariance between 1√
nh

H−1
p

∑
utζt (which weakly

converges to Buζ) and
1√

nh2p+3
(Hp ⊗ Id)

−1
∑

(ξpt −Eξpt) (which weakly converges to Bξ) is zero

due to Assumption 1 (ii). Therefore we have

n
4p+3
4p+4

(
β̂(z)− β(z)− hp

∗+2Bp,0(z)
)

d−→ MN
(
0, c

2p+1
2p+2Ωβ,p,0(z) + c

−1
2p+2Ωu,p,0(z)

)
.

■

Proof of Theorem 2.2 This theorem concerns the estimator β̂(ℓ)(z) of the ℓ-th derivative

β(ℓ)(z) for ℓ = 1, 2, ..., p. From the definition of θ(z) we get β̂(ℓ)(z)/ℓ! = [e′ℓ ⊗ Id]θ̂(z) where

eℓ = (0, ..., 0, 1, 0, ..., 0)′, ℓ = 0, 1, 2, ..., p, is a (p + 1) × 1 vector with unity in the (ℓ + 1)th

element and zeros otherwise. Following (A.12) we have

β̂(ℓ)(z)− β(ℓ)(z)

ℓ!
∼a hp+1f−1(z)

{
[e′ℓH

−1
p M−1

p H1U1p(K)]⊗ Id
}
Bp,odd(z)1{p=odd}

+ hp+1f−1(z)
{
[e′ℓH

−1
p M−1

p H2U2p(K)]⊗ Id
}
Bp,even(z)1{p=even}

+ hp
√

h

n
f−1(z)

{
[e′ℓH

−1
p M−1

p ]⊗B−1
(x,2)

}∫ {
Ip+1 ⊗ (BxB

′
x)
}
dBξ

+
1

n
√
h
f−1(z)

{
[e′ℓH

−1
p M−1

p ]⊗B−1
(x,2)

}∫
dBuζ ⊗Bx. (A.18)
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Note that the first two terms on the right side of (A.18) are analyzed in Lemma B.2, and also

e′ℓH
−1
p M−1

p = h−ℓe′ℓM
−1
p . Then (A.18) can be rewritten as

β̂(ℓ)(z)− β(ℓ)(z)

ℓ!
− hp

∗
ℓ−ℓ+2Bp,ℓ(z)

∼a hp−ℓ

√
h

n
f−1(z)

[
(e′ℓM

−1
p )⊗B−1

(x,2)

] ∫ {
Ip+1 ⊗ (BxB

′
x)
}
dBξ

+
1

n
√
h2ℓ+1

f−1(z)
[
(e′ℓM

−1
p )⊗B−1

(x,2)

] ∫
dBuζ ⊗Bx, (A.19)

where Bp,ℓ(z) = f−1(z)e′ℓM
−1
p (µp∗ℓ+2, ..., µp+p∗ℓ+2)

′{B1p(z)1{p−ℓ=odd} +B2p(z)1{p−ℓ=even}}.
Then the asymptotic distribution is determined by the two terms on the right side of (A.19),

whose analysis is entirely analogous to the case of ℓ = 0, done in the proof of Theorem 2.1,

leading to

β̂(ℓ)(z)− β(ℓ)(z)

ℓ!
− hp

∗
ℓ−ℓ+2Bp,ℓ(z)

∼a hp−ℓ

√
h

n
MN

(
0, f−1(z)ω∗

p,ℓ(K)B−1
(x,2)

∫ [
BxB

′
x

β(p+1)(z)

(p+ 1)!

β(p+1)(z)′

(p+ 1)!
BxB

′
x

]
B−1

(x,2)

)
+

1

n
√
h2ℓ+1

MN
(
0, σ2

u(z)f
−1(z)ωp,ℓ(K)B−1

(x,2)

)
=: hp−ℓ

√
h

n
MN (0,Ωβ,p,ℓ) +

1

n
√
h2ℓ+1

MN (0,Ωu,p,ℓ),

where ωp,ℓ(K) = e′ℓM
−1
p RpM

−1
p eℓ and ω∗

p,ℓ(K) = e′ℓM
−1
p R∗

pM
−1
p eℓ. It is not hard to see that the

dividing condition is still nh2p+2, which is not dependent on ℓ. ■

Proof of Theorem 3.1 The decomposition in (A.1) still applies. We start with the denominator∑n
t=1wtw

′
tKtz. Instead of (A.2), we now have

sup
z∈S

|| 1
n
(Hp ⊗Dn)

−1
n∑

t=1

wtw
′
tKtz(Hp ⊗Dn)

−1 − f(z)Mp ⊗ S(z)|| = op(1),

where Dn = diag{Id1 ,
√
nId2},

S(z) =

(
Σx(z) µx(z)

∫
B′

x∫
Bxµ

′
x(z) B(x,2)

)
, (A.20)

µx(z) = E(x1t|zt = z), and Σx(z) = E(x1tx′1t|zt = z). Therefore we have

n∑
t=1

wtw
′
tKtz ∼a nf(z)(Hp ⊗Dn)[Mp ⊗ S(z)](Hp ⊗Dn). (A.21)

Now turn to
∑n

t=1wtx
′
tBp(zt, z)Ktz =

∑
t[Ip+1⊗xtx

′
t]ξpt. For its typical element

∑
t xtx

′
tξjpt,

we have∑
t

xtx
′
tξjpt =

∑
t

(
x1tx

′
1t x1tx

′
2t

x2tx
′
1t x2tx

′
2t

)(
ξjpt,1

ξjpt,2

)
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=
∑
t

(
x1tx

′
1tξjpt,1 + x1tx

′
2tξjpt,2

x2tx
′
1tξjpt,1 + x2tx

′
2tξjpt,2

)

=
∑
t

(
E[x1tx′1tξjpt,1] + E[x1tξ′jpt,2]x2t
x2tE[x′1tξjpt,1] + x2tx

′
2tE[ξjpt,2]

)
+
∑
t

(
ηj1t + ηj2tx2t

x2tηj3t + x2tx
′
2tηj4t

)
(A.22)

= S1j + S2j , (A.23)

where ξjpt,1 = (zt− z)jB1p(zt, z)Ktz is d1× 1, B1p(zt, z) = β1(zt)−β1(z)−
∑p

j=1
β
(j)
1 (z)
j! (zt− z)j ,

ξjpt,2 is d2 × 1 and is similarly defined, ηj1t = x1tx
′
1tξjpt,1 − E[x1tx′1tξjpt,1] is d1 × 1, ηj2t =

x1tξ
′
jpt,2 −E[x1tξ′jpt,2] is d1 × d2, ηj3t = x′1tξjpt,1 −E[x′1tξjpt,1] is 1× 1, and ηj4t = ξjpt,2 −E[ξjpt,2]

is d2 × 1. Then we can write

n∑
t=1

wtx
′
tBp(zt, z)Ktz =


S10

S11

...

S1p

+


S20

S21

...

S2p

 =: S1n + S2n. (A.24)

S1n and S2n in (A.24) are considered in turn. Starting with S1n, it suffices to look at the

individual element S1j , which is defined in (A.23). It is easy to see that

S1j =
∑
t

(
E[x1tx′1tξjpt,1] + E[x1tξ′jpt,2]x2t
x2tE[x′1tξjpt,1] + x2tx

′
2tE[ξjpt,2]

)
∼a nDnS(z)DnEξjpt.

Hence

S1n ∼a n[Ip+1 ⊗DnS(z)Dn]Eξpt.

Note that (A.5) and (A.6) continue to hold. Therefore we obtain

S1n ∼anh
p+1Ip+1 ⊗ (DnS(z)Dn)

×
{
[(H1pU1p(K))⊗ Id]Bp,odd(z)1{p=odd} + [(H2pU2p(K))⊗ Id]Bp,even(z)1{p=even}

}
.

In view of (A.21) we further have[
n∑

t=1

wtw
′
tKtz

]−1

S1n

∼a {nf(z)(Hp ⊗Dn)[Mp ⊗ S(z)](Hp ⊗Dn)}−1 × nhp+1(Ip+1 ⊗DnS(z)Dn)

×
{
[(H1pU1p(K))⊗ Id]Bp,odd(z)1{p=odd} + [(H2pU2p(K))⊗ Id]Bp,even(z)1{p=even}

}
= hp+1f−1(z)

{
[H−1

p M−1
p H−1

p ]⊗ Id
}

×
{
[(H1pU1p(K))⊗ Id]Bp,odd(z)1{p=odd} + [(H2pU2p(K))⊗ Id]Bp,even(z)1{p=even}

}
= hp+1f−1(z)

{
[H−1

p M−1
p H1U1p(K)]⊗ Id

}
Bp,odd(z)1{p=odd}

+hp+1f−1(z)
{
[H−1

p M−1
p H2U2p(K)]⊗ Id

}
Bp,even(z)1{p=even}, (A.25)
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which coincides with (A.7).

Next consider S2n and its elements S2j , which are given in the second term in (A.22). This

requires examining ηjit for i = 1, 2, 3, 4. In view of Lemma B.3, we get

S2j =
∑
t

(
ηj1t + ηj2tx2t

x2tηj3t + x2tx
′
2tηj4t

)
∼a

√
nh2p+2j+1

(
Bj1 +

√
n
∫
dBj2Bx√

n
∫
BxdBj3 + n

∫
BxB

′
xdBj4

)

∼a

√
nh2p+2j+1Dn

(
Bj1

∫
dBj2Bx∫

BxdBj3

∫
BxB

′
xdBj4

)(
1 0

0
√
n

)(
1

1

)
=

√
nh2p+2j+1DnBje2n,

where Bj is d× 2, e2n = (1,
√
n)′. Consequently,

S2n ∼a

√
nh2p+1(Hp ⊗Dn)Be2n,

where B = (B′
0, ..., B

′
p)

′ is d(p+ 1)× 2. In view of (A.21) we further have[
n∑

t=1

wtw
′
tKtz

]−1

S2n

∼a {nf(z)(Hp ⊗Dn)[Mp ⊗ S(z)](Hp ⊗Dn)}−1 ×
√
nh2p+1(Hp ⊗Dn)Be2n

= hp
√

h

n
f−1(z)

[
H−1

p M−1
p ⊗D−1

n S(z)−1
]
Be2n. (A.26)

Finally, we consider
∑

wtutKtz, whose typical element is (zt− z)jxtutKtz = utζjtxt. In view

of Eζ2jt = h2j−1f(z)ν2j , we have
∑

utζjtx1t ∼a

√
nh2j−1Buj1 and

∑
utζjtx2t ∼a

√
n
√
nh2j−1

∫
BxdBuj2

whereBuj1 is d1×1 with variance f(z)ν2jσ
2
u(z)Σx(z), andBuj2 is d2×1 with variance f(z)ν2jσ

2
u(z)

where σ2
u(z) = E(u2t |zt = z). Therefore

∑
utζjtxt =

(∑
utζjtx1t∑
utζjtx2t

)
∼a

√
nh2j−1

(
Buj1√

n
∫
BxdBuj2

)
=

√
nh2j−1DnBuj ,

where Buj is d× 1. As a result we have∑
wtutKtz =

∑
(utζt)⊗ xt ∼a

√
n/h(Hp ⊗Dn)Bu,

where Bu = (B′
u0, ..., B

′
up)

′ is (p+ 1)d× 1. Combining this with (A.21) gives[
n∑

t=1

wtw
′
tKtz

]−1∑
wtutKtz

∼a {nf(z)(Hp ⊗Dn)[Mp ⊗ S(z)](Hp ⊗Dn)}−1 ×
√

n/h(Hp ⊗Dn)Bu

=
1√
nh

f−1(z)
[
H−1

p M−1
p ⊗D−1

n S(z)−1
]
Bu. (A.27)

In view of (A.1), (A.24), (A.25), (A.26), and (A.27) we have

θ̂(z)− θ(z) ∼ah
p+1f−1(z)

{
[H−1

p M−1
p H1U1p(K)]⊗ Id

}
Bp,odd(z)1{p=odd}
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+ hp+1f−1(z)
{
[H−1

p M−1
p H2U2p(K)]⊗ Id

}
Bp,even(z)1{p=even}

+ hp
√

h

n
f−1(z)[H−1

p M−1
p ⊗D−1

n S(z)−1]Be2n

+
1√
nh

f−1(z)[H−1
p M−1

p ⊗D−1
n S(z)−1]Bu. (A.28)

Recall that β̂(ℓ)(z)/ℓ! = [e′ℓ ⊗ Id]θ̂(z). Following (A.28) we have

β̂(ℓ)(z)− β(ℓ)(z)

ℓ!
∼ah

p+1f−1(z)
{
[e′ℓH

−1
p M−1

p H1U1p(K)]⊗ Id
}
Bp,odd(z)1{p=odd}

+ hp+1f−1(z)
{
[e′ℓH

−1
p M−1

p H2U2p(K)]⊗ Id
}
Bp,even(z)1{p=even}

+ hp
√

h

n
f−1(z)

[
e′ℓH

−1
p M−1

p ⊗D−1
n S(z)−1

]
Be2n

+
1√
nh

f−1(z)
[
e′ℓH

−1
p M−1

p ⊗D−1
n S(z)−1

]
Bu.

In view of Lemma B.2 and noting that e′ℓH
−1
p M−1

p = h−ℓe′ℓM
−1
p , we have

β̂(ℓ)(z)− β(ℓ)(z)

ℓ!
− hp

∗
ℓ−ℓ+2Bp,ℓ(z) ∼a hp−ℓ

√
h

n
f−1(z)

[
(e′ℓM

−1
p )⊗D−1

n S(z)−1
]
Be2n

+
h−ℓ

√
nh

f−1(z)
[
(e′ℓM

−1
p )⊗D−1

n S(z)−1
]
Bu. (A.29)

It remains to analyze the last two terms on the right side of (A.29). Let S(z)−1 =

(
S11 S12

S21 S22

)
.

Then

[(e′ℓM
−1
p )⊗D−1

n S(z)−1]Be2n =

p∑
j=0

aℓjD
−1
n S(z)−1Bje2n

=

p∑
j=0

aℓj

(
Id1 0

0 1√
n
Id2

)(
S11 S12

S21 S22

)(
Bj1

∫
dBj2Bx∫

BxdBj3

∫
BxB

′
xdBj4

)(
1
√
n

)

=

p∑
j=0

aℓj

(
S11Bj1 + S12

∫
BxdBj3 +

√
n[S11

∫
dBj2Bx + S12

∫
BxB

′
xdBj4]

1√
n
[S21Bj1 + S22

∫
BxdBj3] + [S21

∫
dBj2Bx + S22

∫
BxB

′
xdBj4]

)

∼a

p∑
j=0

aℓj

(√
n[S11

∫
dBj2Bx + S12

∫
BxB

′
xdBj4]

[S21
∫
dBj2Bx + S22

∫
BxB

′
xdBj4]

)
=

√
nD−1

n ((e′ℓM
−1
p )⊗ S(z)−1)Bb (A.30)

where Bb = ((Bb
0)

′, ..., (Bb
p)

′),

Bb
j =

( ∫
dBj2Bx∫

BxB
′
xdBj4

)
, (A.31)

and also,

[(e′ℓM
−1
p )⊗D−1

n S(z)−1]Bu =

p∑
j=0

aℓjD
−1
n S(z)−1Buj
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=

p∑
j=0

aℓj

(
S11Buj1 + S12

∫
BxdBuj2

1√
n
[S21Buj1 + S22

∫
BxdBuj2]

)
= D−1

n [(e′ℓM
−1
p )⊗ S(z)−1]Bu. (A.32)

Combining (A.29), (A.30) and (A.32), we have

β̂(ℓ)(z)− β(ℓ)(z)

ℓ!
− hp

∗
ℓ−ℓ+2Bp,ℓ(z)

∼a hp−ℓ
√
hf−1(z)D−1

n ((e′ℓM
−1
p )⊗ S(z)−1)Bb +

h−ℓ

√
nh

f−1(z)D−1
n [(e′ℓM

−1
p )⊗ S(z)−1]Bu.

(A.33)

In view of Lemma B.4, we can write

β̂(ℓ)(z)− β(ℓ)(z)

ℓ!
− hp

∗
ℓ−ℓ+2Bp,ℓ(z)

∼a hp−ℓ
√
hf−1(z)D−1

n ((e′ℓM
−1
p )⊗ S(z)−1)MN (0, R∗

p ⊗ f(z)S∗(z))

+
h−ℓ

√
nh

f−1(z)D−1
n [(e′ℓM

−1
p )⊗ S(z)−1]MN (0, f(z)σ2

u(z)Rp ⊗ S(z))

≡ hp−ℓ
√
hD−1

n MN (0, e′ℓM
−1
p R∗

pM
−1
p eℓf(z)

−1S(z)−1S∗(z)S(z)−1)

+
h−ℓ

√
nh

D−1
n MN (0, σ2

u(z)e
′
ℓM

−1
p RpM

−1
p eℓf(z)

−1S(z)−1)

=: hp−ℓ
√
hD−1

n MN (0,ΩM,β,p,ℓ(z)) +
h−ℓ

√
nh

D−1
n MN (0,ΩM,u,p,ℓ(z)).

Since β̂
(ℓ)
1 (z) =

(
Id1 0d1×d2

)
β̂(ℓ)(z) and β̂

(ℓ)
2 (z) =

(
0d2×d1 Id2

)
β̂(ℓ)(z), we have

β̂
(ℓ)
1 (z)− β

(ℓ)
1 (z)

ℓ!
− hp

∗
ℓ−ℓ+2Bp,ℓ,1(z) ∼a hp−ℓ

√
hMN (0,Ω11

M,β,p,ℓ(z)) +
h−ℓ

√
nh

MN (0,Ω11
M,u,p,ℓ(z)),

and

β̂
(ℓ)
2 (z)− β

(ℓ)
2 (z)

ℓ!
− hp

∗
ℓ−ℓ+2Bp,ℓ,2(z) ∼a hp−ℓ

√
h

n
MN (0,Ω22

M,β,p,ℓ(z)) +
h−ℓ

n
√
h
MN (0,Ω22

M,u,p,ℓ(z)),

where Bp,ℓ,1(z) =
(
Id1 0d1×d2

)
Bp,ℓ(z) and Bp,ℓ,2(z) =

(
0d2×d1 Id2

)
Bp,ℓ(z). It is easy to see

that the dividing condition is still nh2p+2 for both β̂
(ℓ)
1 (z) and β̂

(ℓ)
2 (z). The three categories of

Theorem 3.1 then follow. ■

Proof of Theorem 4.1 The proof is self-evident, following those of Theorems 2.1 and 3.1, and

is omitted. ■

B Useful Lemmas

Lemma B.1. Under Assumptions 1 and 2,
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(i) Eξjpt = hp+j+1µp+j+1B1p(z)1{p+j=odd} + hp+j+2µp+j+2B2p(z)1{p+j=even}, and Eξjptξ′jpt =
h1+2j+2p β

(p+1)(z)
(p+1)!

β(p+1)(z)′

(p+1)! f(z)ν2j+2p+2, where ξjpt = (zt − z)jBp(zt, z)Ktz, Bp(zt, z) =

β(zt)− β(z)−
∑p

j=1
β(j)(z)

j! (zt − z)j;

(ii)
√

h
nH

−1
p

∑[nr]
t=1 utζt

d−→ Buζ(r), where ζt = (ζ0t, ζ1t, ..., ζpt)
′, ζjt = (zt − z)jKtz, Buζ =

(B0uζ , B1uζ , ..., Bpuζ)
′ has variance σ2

u(z)f(z)Rp, and Hp = diag{1, h, ..., hp};

(iii) 1√
nh2p+1

(Hp⊗ Id)
−1
∑[nr]

t=1(ξpt−Eξpt)
d−→ Bξ(r), where ξpt = (ξ′0pt, ξ

′
1pt, ..., ξ

′
ppt)

′, ξjpt is given

in (i), and Bξ = (B′
0ξ, ..., B

′
pξ)

′ has variance f(z)R∗
p ⊗

[
β(p+1)(z)
(p+1)!

β(p+1)(z)′

(p+1)!

]
.

Proof (i) We have

Eξjpt =
1

h

∫
(zt − z)jBp(zt, z)K(

zt − z

h
)f(zt)dzt

=

∫
(hu)j

[
β(p+1)(z)

(p+ 1)!
(hu)p+1 +

β(p+2)(z)

(p+ 2)!
(hu)p+2 + o(hp+2)

]
K(u)[f(z) + f (1)(z)hu+ o(h)]du

= hp+j+1β
(p+1)(z)

(p+ 1)!
f(z)µp+j+1(K)1{p+j=odd}

+ hp+j+2

[
β(p+1)(z)

(p+ 1)!
f (1)(z) +

β(p+2)(z)

(p+ 2)!
f(z)

]
µp+j+2(K)1{p+j=even} + o(hp+j+2)

= hp+j+1µp+j+1(K)B1p(z)1{p+j=odd} + hp+j+2µp+j+2(K)B2p(z)1{p+j=even} + o(hp+j+2),

and

Eξjptξ′jpt =
1

h2

∫
(zt − z)2jBp(zt, z)B

′
p(zt, z)K

2(
zt − z

h
)f(zt)dzt

= h−1

∫
(hu)2j

[
β(p+1)(z)

(p+ 1)!
(hu)p+1 + o(hp+1)

][
β(p+1)(z)

(p+ 1)!
(hu)p+1 + o(hp+1)

]′
×K2(u)[f(z) + f (1)(z)hu+ o(h)]du

= h1+2j+2pβ
(p+1)(z)

(p+ 1)!

β(p+1)(z)′

(p+ 1)!
f(z)ν2j+2p+2(K) + o(h1+2j+2p). (B.1)

(ii) Take a typical element of utζt, viz., utζjt. We have Eutζjt = 0 and

E(utζjt)2 =
∫
(zt − z)2ju2tK

2
tzf(zt)dzt

= σ2
u(z)h

−1

∫
(hu)2jK2(u)[f(z) + f (1)(z)hu+ o(h)]du

= h2j−1σ2
u(z)f(z)ν2j + o(h2j−1), (B.2)

where σ2
u(z) = E(u2t |zt = z). Then by standard invariance principle (IP) arguments we get

1√
nh2j−1

∑
utζjt

d−→ Bjuζ where Bjuζ has variance σ
2
u(z)f(z)ν2j . To show the joint convergence of∑

t utζt, it suffices to confirm that the IP holds for any linear combination of {
∑

t utζjt}
p
j=0. Note
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that such a linear combination can be expressed as
∑

t ut[c0+c1(zt−z)+...+cp(zt−z)p]Ktz where

c = (c0, c1, ..., cp)
′ is any (p+1)×1 vector. The IP certainly holds for such a quantity due to the

mds property of ut. Therefore, upon appropriate standardization, we have
√

h
nH

−1
p

∑
utζt

d−→
Buζ where Buζ = (B0uζ , B1uζ , ..., Bpuζ)

′. To obtain the variance matrix of Buζ , it is left to

compute the asymptotic covariance between 1√
nh2j−1

∑
utζjt and

1√
nh2ℓ−1

∑
utζℓt. We have

E
[

1√
nh2j−1

∑
utζjt

] [
1√

nh2ℓ−1

∑
utζℓt

]
=

1

nhj+ℓ−1

∑
t

Eu2t (zt − z)j+ℓK2
tz +

1

nhj+ℓ−1

∑
t̸=s

Eutus(zt − z)j(zs − z)ℓKtzKsz

= σ2
u(z)f(z)νj+ℓ + o(1).

The o(1) term in the last line is justified as follows. First, E(zt − z)j(zt − z)ℓKtzKsz = O(hj+ℓ)

by standard arguments. Then

1

nhj+ℓ−1

∑
t̸=s

Eutus(zt − z)j(zs − z)ℓKtzKsz

=
1

hj+ℓ−1

n−1∑
k=−n+1,k ̸=0

(
1− |k|

n

)
Eutut+kE(zt − z)j(zt+k − z)ℓKtzKt+k,z

=O(
hj+ℓ

hj+ℓ−1
)

n−1∑
k=−n+1,k ̸=0

αu(k) = O(h) = o(1),

because the long run variance of ut is bounded. It then follows that Buζ has variance matrix

σ2
u(z)f(z)Rp with

Rp =


ν0 ν1 · · · νp

ν1 ν2 · · · νp+1

...
...

. . .
...

νp νp+1 · · · ν2p

 . (B.3)

(iii) In view of (i), we have V ar(ξjpt) = O(h1+2j+2p) and ξjpt = Op(h
p+j+1/2). It follows

from invariance principle that 1√
nh2p+2j+1

∑
[ξjpt − Eξjpt]

d−→ Bjξ where Bjξ has variance matrix

β(p+1)(z)
(p+1)!

β(p+1)(z)′

(p+1)! f(z)ν2j+2p+2. Consequently, 1√
nh2p+1

(Hp ⊗ Id)
−1
∑[nr]

t=1(ξpt − Eξpt)
d−→ Bξ(r)

where Bξ = (B′
0ξ, ..., B

′
pξ)

′, and has variance matrix f(z)R∗
p ⊗

[
β(p+1)(z)
(p+1)!

β(p+1)(z)′

(p+1)!

]
with

R∗
p =


ν2p+2 ν2p+3 · · · ν3p+2

ν2p+3 ν2p+4 · · · ν3p+3

...
...

. . . ν4p+1

ν3p+2 ν3p+3 · · · ν4p+2

 . (B.4)

■
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Lemma B.2. Under Assumptions 1 and 2, for ℓ = 0, 1, ..., p we have

hp+1f−1(z)
{
[e′ℓH

−1
p M−1

p H1U1p(K)]⊗ Id
}
Bp,odd(z)1{p=odd}

+ hp+1f−1(z)
{
[e′ℓH

−1
p M−1

p H2U2p(K)]⊗ Id
}
Bp,even(z)1{p=even}

= hp
∗
ℓ−ℓ+2Bp,ℓ(z)

where Bp,ℓ(z) is given in Theorem 2.2.

Proof Denote M−1
p = [(aij)] where i, j = 0, 1, ..., p. Due to the special form of Mp, we can

verify that aij = 0 when i + j = odd. The (ℓ + 1)-th row of M−1
p is e′ℓM

−1
p = (aℓ0, aℓ1, ..., aℓp)

for ℓ = 0, 1, ..., p. Then we get e′ℓH
−1
p M−1

p = h−ℓe′ℓM
−1
p . Consequently,

hp+1f−1(z)
{
[e′ℓH

−1
p M−1

p H1U1p(K)]⊗ Id
}
Bp,odd(z)1{p=odd}

+hp+1f−1(z)
{
[e′ℓH

−1
p M−1

p H2U2p(K)]⊗ Id
}
Bp,even(z)1{p=even}

= hp−ℓ+1f−1(z)
{
[(e′ℓM

−1
p )H1U1p(K)]⊗ Id

}
Bp,odd(z)1{p=odd}

+hp−ℓ+1f−1(z)
{
[(e′ℓM

−1
p )H2U2p(K)]⊗ Id

}
Bp,even(z)1{p=even}. (B.5)

We need to discuss several different situations.

When p = odd and ℓ = odd we have e′ℓM
−1
p = (aℓ0, aℓ1, ..., aℓp) = (0, aℓ1, 0, aℓ3, ..., 0, aℓp).

This gives (e′ℓM
−1
p )H1U1p(K) = (0, haℓ1µp+3, 0, ..., 0, haℓpµ2p+2). As a result, the first term on

the right side of (B.5) becomes hp−ℓ+1f−1(z)[(0, haℓ1µp+3, 0, ..., 0, haℓpµ2p+2) ⊗ Id]Bp,odd(z) =

hp−ℓ+2f−1(z)
[∑(p+1)/2

k=1 aℓ,2k−1µp+2k+1

]
B2p(z) = hp−ℓ+2f−1(z)e′ℓM

−1
p (µp+2, ..., µ2p+2)

′B2p(z).

When p = odd and ℓ = even we have e′ℓM
−1
p = (aℓ0, aℓ1, ..., aℓp) = (aℓ0, 0, aℓ2, 0, ..., aℓ,p−1, 0).

This gives (e′ℓM
−1
p )H1U1p(K) = (aℓ0µp+1, 0, aℓ2µp+3, 0, ..., aℓ,p−1µ2p, 0). Then the first term

on the right side of (B.5) becomes hp−ℓ+1f−1(z)[(aℓ0µp+1, 0, ..., aℓ,p−1µ2p, 0) ⊗ Id]Bp,odd(z) =

hp−ℓ+1f−1(z)
[∑(p−1)/2

k=0 aℓ,2kµp+2k+1

]
B1p(z) = hp−ℓ+1f−1(z)e′ℓM

−1
p (µp+1, ..., µ2p+1)

′B1p(z).

When p = even and ℓ = odd we have e′ℓM
−1
p = (aℓ0, aℓ1, ..., aℓp) = (0, aℓ1, 0, aℓ3, ..., aℓ,p−1, 0).

This gives (e′ℓM
−1
p )H2U2p(K) = (0, aℓ1µp+2, 0, aℓ3µp+4, ..., aℓ,p−1µ2p, 0). The second term on the

right side of (B.5) now becomes hp−ℓ+1f−1(z)[(0, aℓ1µp+2, 0, aℓ3µp+4, ..., aℓ,p−1µ2p, 0)⊗Id]Bp,even(z) =

hp−ℓ+1f−1(z)
[∑p/2

k=1 aℓ,2k−1µp+2k

]
B1p(z) = hp−ℓ+1f−1(z)e′ℓM

−1
p (µp+1, ..., µ2p+1)

′B1p(z).

When p = even and ℓ = even we have e′ℓM
−1
p = (aℓ0, aℓ1, ..., aℓp) = (aℓ0, 0, aℓ2, 0, ..., 0, aℓp).

This gives (e′ℓM
−1
p )H2U2p(K) = (haℓ0µp+2, 0, haℓ2µp+4, ..., 0, haℓpµ2p+2). The second term on

the right side of (B.5) then becomes hp−ℓ+1f−1(z)[(haℓ0µp+2, 0, haℓ2µp+4, ..., 0, haℓpµ2p+2) ⊗
Id]Bp,even(z) = hp−ℓ+2f−1(z)

[∑p/2
k=0 aℓ,2kµp+2k+2

]
B2p(z) = hp−ℓ+2f−1(z)e′ℓM

−1
p (µp+2, ..., µ2p+2)

′B2p(z).

Combining the above analyses, we conclude that when p − ℓ = even, the bias is of order

O(hp−ℓ+2) and can be expressed as hp−ℓ+2f−1(z)e′ℓM
−1
p (µp+2, ..., µ2p+2)

′B2p(z). When p− ℓ =

odd, the bias is of orderO(hp−ℓ+1) and can be expressed as hp−ℓ+1f−1(z)e′ℓM
−1
p (µp+1, ..., µ2p+1)

′B1p(z).

Let p∗ℓ = p1{p−ℓ=even} + (p− 1)1{p−ℓ=odd}. We can therefore express the bias in general as

hp
∗
ℓ−ℓ+2f−1(z)e′ℓM

−1
p (µp∗ℓ+2, ..., µp+p∗ℓ+2)

′ {B2p(z)1{p−ℓ=even} +B1p(z)1{p−ℓ=odd}
}
= hp

∗
ℓ−ℓ+2Bp,ℓ(z).

■
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Lemma B.3. Under Assumption 3,

(i)
∑

t ηj1t ∼a

√
nh2p+2j+1Bj1 and Bj1 has variance Σx(z)

β
(p+1)
1 (z)
(p+1)!

β
(p+1)
1 (z)′

(p+1)! ×f(z)ν2j+2p+2Σx(z);

(ii)
∑

t ηj2t ∼a

√
nh2p+1+2jBj2 where Bj2 is d1×d2 and RowV ec(Bj2) has variance f(z)ν2j+2p+2

×
[
Σx(z)⊗

β
(p+1)
2 (z)
(p+1)!

β
(p+1)
2 (z)′

(p+1)!

]
;

(iii)
∑

t ηj3t ∼a

√
nh2p+1+2jBj3 where Bj3 has variance f(z)ν2j+2p+2µ

′
x(z)

β
(p+1)
1 (z)
(p+1)!

β
(p+1)
1 (z)′

(p+1)! µx(z);

(iv)
∑

t ηj4t ∼a

√
nh2p+1+2jBj4 where Bj4 has variance

β
(p+1)
2 (z)
(p+1)!

β
(p+1)
2 (z)′

(p+1)! f(z)ν2j+2p+2.

Proof (i) For ηj1t, we find that

Ex1tx′1tξjpt,1ξ′jpt,1x1tx′1t = Σx(z)h
1+2j+2pβ

(p+1)
1 (z)

(p+ 1)!

β
(p+1)
1 (z)′

(p+ 1)!
f(z)ν2j+2p+2Σx(z).

Then
∑

t ηj1t ∼a

√
nh2p+2j+1Bj1, whereBj1 is d1×1 with variance Σx(z)

β
(p+1)
1 (z)
(p+1)!

β
(p+1)
1 (z)′

(p+1)! f(z)ν2j+2p+2Σx(z).

(ii) For ηj2t, we look at the row-vectorized component RV ec(ηj2t) = x1t ⊗ ξjpt,2 − Ex1t ⊗ ξjpt,2.

We have E(x1t ⊗ ξjpt,2)(x1t ⊗ ξjpt,2)
′ = Σx(z) ⊗ Eξjpt,2ξ′jpt,2 = h2j+2p+1f(z)ν2j+2p+2[Σx(z) ⊗

β
(p+1)
2 (z)
(p+1)!

β
(p+1)
2 (z)′

(p+1)! ]. Then
∑

t ηj2t ∼a

√
nh2p+1+2jBj2 where Bj2 is d1 × d2 and RV ec(Bj2) has

variance f(z)ν2j+2p+2

[
Σx(z)⊗

β
(p+1)
2 (z)
(p+1)!

β
(p+1)
2 (z)′

(p+1)!

]
.

(iii) For ηj3t, in view of

E(x′1tξjpt,1)2 = Ex′1tξjpt,1ξ′jpt,1x1t = µ′
x(z)h

1+2j+2pβ
(p+1)
1 (z)

(p+ 1)!

β
(p+1)
1 (z)′

(p+ 1)!
f(z)ν2j+2p+2µx(z),

we obtain
∑

t ηj3t ∼a

√
nh2p+1+2jBj3 where Bj3 is 1 × 1 and has variance f(z)ν2j+2p+2µ

′
x(z)

×β
(p+1)
1 (z)
(p+1)!

β
(p+1)
1 (z)′

(p+1)! µx(z).

(iv) For ηj4t, we have
∑

t ηj4t ∼a

√
nh2p+1+2jBj4 whereBj4 is d2×1 with variance

β
(p+1)
2 (z)
(p+1)!

β
(p+1)
2 (z)′

(p+1)! f(z)ν2j+2p+2.

■

Lemma B.4. Under Assumption 3 we have

(i) Bb ∼a MN
(
0, R∗

p ⊗ [f(z)S∗(z)]
)
;

(ii) Bu ∼a MN (0, f(z)σ2
u(z)Rp ⊗ S(z)).

Proof (i) We start with component Bb
j of Bb. Note that Bb

j =

( ∫
dBj2Bx∫

BxB
′
xdBj4

)
. For

∫
dBj2Bx,

we know that RV ec(Bj2) has variance f(z)ν2j+2p+2

[
Σx(z)⊗

β
(p+1)
2 (z)
(p+1)!

β
(p+1)
2 (z)′

(p+1)!

]
. Then

∫
dBj2Bx

is mixed normal with variance f(z)ν2j+2p+2

∫
[Id1 ⊗ B′

x][Σx(z) ⊗
β
(p+1)
2 (z)
(p+1)!

β
(p+1)
2 (z)′

(p+1)! ][Id1 ⊗ Bx] =

f(z)ν2j+2p+2[Σx(z)⊗
∫
B′

x
β
(p+1)
2 (z)
(p+1)!

β
(p+1)
2 (z)′

(p+1)! Bx] = f(z)ν2j+2p+2Σx(z)
∫
B′

x
β
(p+1)
2 (z)
(p+1)!

β
(p+1)
2 (z)′

(p+1)! Bx. For
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∫
BxB

′
xdBj4, note that Bj4 has variance

β
(p+1)
2 (z)
(p+1)!

β
(p+1)
2 (z)′

(p+1)! f(z)ν2j+2p+2. Then
∫
BxB

′
xdBj4 is

mixed normal with variance

f(z)ν2j+2p+2

∫
BxB

′
x

β
(p+1)
2 (z)

(p+ 1)!

β
(p+1)
2 (z)′

(p+ 1)!
BxB

′
x = f(z)ν2j+2p+2

∫
BxB

′
xB

′
x

β
(p+1)
2 (z)

(p+ 1)!

β
(p+1)
2 (z)′

(p+ 1)!
Bx.

Then we consider the covariance between
∫
dBj2Bx and

∫
BxB

′
xdBj4. Note that

∫
dBj2Bx comes

from
∑

t ηj2tx2t and
∫
BxB

′
xdBj4 comes from

∑
t x2tx

′
2tηj4t with ηj2t = x1tξ

′
jpt,2−E[x1tξ′jpt,2] and

ηj4t = ξjpt,2 − E[ξjpt,2] where ξjpt,2 is a kernel weighted sequence. To compute the covariance

between
∑

t ηj2tx2t and
∑

t x2tx
′
2tηj4t, we need only consider the term with t = s, namely∑

t ηj2tx2t[x2tx
′
2tηj4t]

′ for the (1,2) block of the covariance matrix. Upon standardization, we find

that the (1,2) block of the covariance matrix is f(z)ν2j+2p+2

∫
µx(z)B

′
xB

′
x
β
(p+1)
2 (z)
(p+1)!

β
(p+1)
2 (z)′

(p+1)! Bx.

As a result, the covariance matrix of Bb
j is

f(z)ν2j+2p+2

 Σx(z)
∫
B′

x
β
(p+1)
2 (z)
(p+1)!

β
(p+1)
2 (z)′

(p+1)! Bx

∫
µx(z)B

′
xB

′
x
β
(p+1)
2 (z)
(p+1)!

β
(p+1)
2 (z)′

(p+1)! Bx∫
Bxµx(z)B

′
x
β
(p+1)
2 (z)
(p+1)!

β
(p+1)
2 (z)′

(p+1)! Bx

∫
BxB

′
xB

′
x
β
(p+1)
2 (z)
(p+1)!

β
(p+1)
2 (z)′

(p+1)! Bx


=: f(z)ν2j+2p+2S

∗(z). (B.6)

Let Bb = ((Bb
0)

′, ..., (Bb
p)

′)′. Then the covariance matrix of Bb is R∗
p ⊗ [f(z)S∗(z)] and Bb ∼a

MN (0, R∗
p ⊗ [f(z)S∗(z)]).

(ii) Note that Bu has component Buj =

(
Buj1∫
BxdBuj2

)
. With the mds assumption, Buj1 is

d1 × 1 normal with variance f(z)ν2jσ
2
u(z)Σx(z), and Buj2 is 1 × 1 with variance f(z)ν2jσ

2
u(z).

Then
∫
BxdBuj2 is d2 × 1 mixed normal MN (0, f(z)ν2jσ

2
u(z)

∫
BxB

′
x). Note that Buj1 comes

from
∑

t utζjtx1t and
∫
BxdBuj2 comes from

∑
t utζjtx2t with ζjt = (zt − z)jKtz. Hence, for

the covariance between
∑

t utζjtx1t and
∑

t utζjtx2t we need only consider the term with t =

s because ζjt is a kernel weighted sequence. So the (1,2) block of the covariance matrix is

determined by
∑

t u
2
t ζ

2
jtx1tx

′
2t. Upon appropriate standardization, we find that the (1,2) block

of the covariance matrix is f(z)ν2jσ
2
u(z)µx(z)

∫
B′

x. Then it follows that the covariance matrix

of Buj =

(
Buj1∫
BxdBuj2

)
is f(z)ν2jσ

2
u(z)S(z). Consequently, the covariance matrix of Bu =

(B′
u0, ..., B

′
up)

′ is f(z)σ2
u(z)[Rp ⊗ S(z)], and so Bu ∼a MN (0, f(z)σ2

u(z)[Rp ⊗ S(z)]). ■
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