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Abstract
Financial econometrics is a dynamic discipline that began to take on its present

form around the turn of the century. Since then it has found a permanent position as
a popular course sequence in both undergraduate and graduate teaching programs
in economics, finance, and business schools. Because of the breadth of the subject’s
foundations, its extensive coverage in applications and because these courses attract
a wide range of students with accompanying interests and skill sets that cover diverse
areas and technical capabilities, teaching financial econometrics presents many chal-
lenges to the university educator. This chapter addresses some of these challenges,
provides helpful guidelines to educators, and draws on the combined experience of
the authors as teachers and researchers of modern financial econometrics as well
as their recent textbook Financial Econometric Modeling (Hurn et al., 2021). The
focus is on students converting to finance and econometrics with limited technical
background.
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1 Introduction

The discipline of financial econometrics is a remarkable success story which, in
a short period of time, has given rise to its own professional society, a dedicated
journal, and to Nobel Prize awards in Economics. It has a flourishing literature
which began with simple models to explain asset prices and their volatility, moved
on to tackle complex phenomena such as the pricing of financial derivatives, and
proceeded through a rich avenue of applications to study recent problems. The
primary concerns of this subject bear most closely on all the major financial and wider
economic challenges that societies are now facing. Indeed, as the financial universe
grows, new challenges emerge for which models need to be created and econometric
methodologies developed. Some of these challenges are posed by phenomena such
as ultra-high frequency trading and the multidimensional nature of financial market
microstructure; others arise from the requirements of high dimensional financial
portfolio analysis, the nature of algorithmic trading, and its wider impact on financial
markets and financial stability.

While the reasons to study financial econometrics are compelling, teaching fi-
nancial econometrics is particularly challenging because the audience has diverse
backgrounds. The instructor is faced not only with having to keep all these students
interested, but also to motivate them to buy into financial econometrics in a deeper
sense by learning how existing methods as well as advanced probabilistic concepts
in stochastic process theory combine to advance understanding of financial data.
Based on these diverse needs, teachers of financial econometrics must provide, inter
alia, a skilled exposition of theory in conjunction with computational algorithms, the
visual display of quantitative information, constructive estimation and inference in
both parametric and nonparametric model environments, and recent improvements
in filtering and prediction.

In this chapter we focus on designing a course in financial econometrics primarily
aimed at masters level conversion students. Our aim is to demonstrate how teaching
a single unifying framework, namely maximum likelihood, enables students to ap-
preciate how a supposedly vast array of disparate concepts, models and techniques
are related. This will produce a deeper understanding of the techniques being taught
and why, as well as introduce these conversion students to the data, methods, and
concerns of this modern subject area where the topics, ideas, theories, and findings
relate closely to work that is ongoing in the financial industry
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2 Course Outline and Motivation

At the outset it is useful to clarify prerequisites in terms of prior knowledge. Students
in these conversion classes often have little exposure to any of the primary disci-
plines of economics, finance or econometrics. Nonetheless, some basic knowledge is
presumed, including familiarity with basic statistics, variance and covariance rules,
summation notation and simple hypothesis testing as would be taught in a typical
first year business statistics course. Students would know the concept of a proba-
bility distribution, the bell-shaped curve of the normal distribution and have had an
introduction to linear regression. Linear algebra is kept simple as far as possible but
vector and matrix notation is needed as well as the concept of a determinant when
dealing with the formulation and statistical estimation of multivariate financial mod-
els. Finally, students are assumed to have a basic understanding of differential and
integral calculus at the secondary school level, a requirement that can be demanding
for conversion students coming from a predominantly arts background. Remedial
work by way of a short tutorial camp can assist in easing the bridgeway into the
mainline course.

Integral to our approach in building and motivating such a bridgeway is the early
embrace of modern software packages to embed them into the teaching program
as a means of learning and reinforcing key concepts. Commercial computing and
econometric packages such as EViews and Stata have the twin advantages of easy
use and direct access to powerful tools that help confirm verify results obtained from
canned routines.1 The programming language R is also a useful and economically
viable option for students adept at coding, although in our experience teaching
econometrics, student appreciation of modeling, estimation and inference is usually
enhanced when the coding requirement is minimal and instructor advice reinforces
the contextual message and guidance of good software manuals.2

Our outlined course focuses on financial prices and returns with dividends paying
a minor supporting role. This focus is naturally delimiting because it eliminates
discussion of discrete financial variables and various microstructure concepts. But
this tigher focus than usual is justified because it is beneficial to students whose

1 EViews, for instance, has an object called LOGL which enables students to write out the log
likelihood functions for a particular model; and, similarly, Stata has two powerful maximum likeli-
hood tools -mlexp- and -ml- that allow log likelihood functions to be programmed. Fully exploring
the capabilities of the software beyond the point of accepting automated tuning parameters and
following the guidance from the manual are, in our experience, powerful learning techniques.
2 All the numerical results and graphical plots in this chapter are reproducible using a single Stata
.do file which is available from the authors on request.
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exposure to financial concepts is limited. Indeed many students have never seen
the computation of the returns to a financial asset. In our experience, display and
discussion of the time series trajectories of prices and returns coupled with an
introductory coverage of some of the empirical regularities of financial returns are
effective ways of engaging students in the core subject matter right from the outset.
Indeed, the relationship between simple time series plots and actual market events is
easy to trace out, intelligible to all, and particularly appealing to students with little
background in econometrics or finance.

Emphasis on empirical characteristics of returns leads naturally to consideration
of the unconditional distribution of returns. This discussion is useful in bringing into
play the concept of a probability density and in familiarising a novice audience with
the forms of the normal and t distributions. Many conversion students are familiar
with the concept of ‘the bell curve’ but in our experience few have actually seen the
analytic form of the density. Early introduction of these two continuous distributions
turns out to be an important stepping stone to maximum likelihood estimation and
inference.

After introducing the notion of financial returns and elaborating some their em-
pirical properties, a little financial theory comes naturally. Two models are standouts
in an introductory course: the constant mean model as a basic expository tool;
and the single factor capital asset pricing model (CAPM) as a finance fundamental
that introduces a number of key concepts such as the distinction between systemic
and idiosyncratic risk. Further, both these models introduce the idea of unknown
parameters that must be estimated from observed data.

The existence of unknown parameters leads naturally to issues of estimation.
Of the many possible approaches to this subject, maximum likelihood (ML) is
especially advantageous in providing a synthesis of specification, estimation and
testing within its framework, thereby capturing some of the elements of real world
experience in financial econometric modeling. It is this strategy that formed the basis
of our recent text Financial Econometric Modeling (Hurn et al., 2021). The approach
requires knowledge of the necessary ingredients for constructing a likelihood and
some familiarity with the rules of probability. ML is naturally intuitive with its goal
of selecting parameter values that are ‘most likely’ to have generated the data given a
specified model; and basic calculus guides students to use differentiation to identify
local maxima of the likelihood function. What students typically do not appreciate
is that while solving the likelihood equation to find stationary points of maxima
using the first and second derivatives leads to the estimator, shape characteristics
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from the second derivative can also be used to estimate the standard error. Choice of
estimator and standard error are then together governed by the specification of the
likelihood. With this understanding established, the ML approach can be illustrated
in the constant mean and CAPM models in detail, providing a framework that covers
specification, estimation and inference. These applications clearly reveal that use
of ML involves distributional input. But students can correspondingly be made
aware of potentially wider generality in terms of quasi-maximum likelihood (QML)
estimation and its relevance asymptotically.

The use of maximum likelihood as a unifying theme in financial econometrics is
by no means universal. Regression methods are commonly adopted in many financial
econometric courses and books because of their simplicity and general applicabil-
ity in estimating and testing financial models that involve linear specifications. But
reliance on regression analysis limits applications according to the nature of the
underlying financial models and the data, typically eliminating the consideration of
more advanced models; and these methods are easily explained as nested within the
general ML framework. Another widely used approach in financial applications is
Generalized Methods of Moments (GMM) estimation, whose importance in terms
of its utilization of financially relevant moment conditions is highlighted for in-
stance in the asset pricing text of Cochrane (2001). Both GMM and ML involve
extremum estimation. ML relies on specific distributional assumptions and GMM
relies on relevant moment conditions but not full model specification. Both meth-
ods have advantages and disadvantages and discussion of these has continued since
the publication of Hansen (1982) promoted GMM methods. In many instances the
two approaches can be shown to overlap. GMM was developed under conditions
that require stationary and ergodic data and suitable instrumentation to ensure the
validity of the moment conditions used in estimation, although overidentifying con-
ditions can be tested using methods developed by Sargan (1958) in the original work
on instrumental variables. Stationarity and ergodicity impose strong conditions on
typical time series and panel data employed in financial applications; and extending
GMM asymptotic theory to allow for the types of stochastically trending nonsta-
tionary data that are common in financial data on asset prices, dividends and yields
has proved difficult, although some progress has been made in the special case of
deterministic trends (Andrews and McDermott, 1995). The performance of GMM
relies on suitability of the instruments and inevitably suffers when instruments are
weak or irrelevant. A prime argument for the use of GMM over maximum likelihood
is the avoidance of full model specification including distributional choice. This can
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be an advantage in practical work. But there are also natural reasons for choosing
a range of probability distributions to capture and explain financial processes; and
from a teaching perspective the discussion of relevant distributional features can play
a useful role in a beginning course as illustrated in Hurn et al. (2021).3

Once a basic methodological groundwork is established with two simple model
illustrations it is possible to introduce more advanced material. From a financial
perspective, modeling the variance of financial returns is potentially more interest-
ing and relevant than the mean in many applications because it provides a crucial
input into financial decision making. Examples include portfolio management, the
construction of hedge ratios, the pricing of options and the pricing of risk in general.
Moreover, while mean returns can be challenging to explain empirically because of
the dominance of volatility in the short run, the variance of returns is typically easier
to explain using historical data on shocks and other observables that reflect changing
risk conditions in financial markets. In implementing various strategies to explore
market risk factors empirically, practitioners soon realised that an important charac-
teristic of the return variance is that in most cases it is noticeably time-varying. In
consequence, the same is true of the square root of the variance which is commonly
known as volatility. A traditional approach to modeling time-varying variance is
to employ a class of models known as generalised autoregressive conditional het-
eroskedasticity (GARCH) (Engle, 1982; Bollerslev, 1986). This is a flexible class
of volatility models that can capture a wide range of features that characterise time-
varying risk. GARCH models are quintessential financial econometric models that
provide a convenient vehicle for the use of maximum likelihood. The multivariate
case can also be considered and it is convenient at this stage in class discussion
to employ the bivariate normal distribution in setting up the dynamic conditional
correlation (DCC) model (Engle, 2002).

In many applications multiple financial processes must be modeled simulta-
neously, as when constructing optimal investment portfolios. The advent of vast
financial datasets now accentuates this traditional need and raises further issues of
how large bodies of information can be processed to improve financial decision
making. While not addressing big data requirements in modeling, the final part of
an introductory course can at least consider joint modeling of prices and dividends

3 Another framework that avoids making distributional choices or imposing a specific parametric
structure on financial models is the nonparametric approach. See, for example, Pagan and Ullah
(1999) and Martin et al. (2013). That route may be considered too demanding for most students in
an introductory conversion course to financial econometrics, which is the position taken in our own
treatment here.
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using the basic present value model (Gordon, 1959). Our approach is to start by
exploring short-run dynamics of log returns on financial assets and log dividend re-
turns and then to introduce the notion of a long-run equilibrium relationship between
the log levels of the data that constrains the dynamics. This development directly
leads to cointegration by means of an error correction mechanism (e.g., Davidson
et al. (1978)) and can conveniently sidestep more technical issues of unit root testing
(Dickey and Fuller, 1979, 1981; Phillips, 1987; Phillips and Perron, 1988) and tests
for cointegration (Johansen, 1988; Phillips and Ouliaris, 1990). The treatment can
remain firmly within a maximum likelihood framework without a formal discus-
sion of Johansen-type reduced rank vector autoregression (Johansen, 1988, 1991).
This approach is intuitive enough to appeal to a non-technical audience and retains
the flavor of error correction dynamic modeling.4 From a modeling viewpoint the
move to multivariate distributions can be a difficult jump for students,5 but is partly
mitigated by avoiding unnecessary technicalities and the fact that the students have
already been exposed to a multivariate volatility model.

The empirical data used to illustrate the concepts covered by the course is a
monthly dataset for the period January 1962 to December 2022. This data is available
from the authors on request and includes the following time series:

(i) From Robert Shiller’s data page:6 the monthly S&P 500 index, dividend pay-
ments on the S&P 500 index and 1-month Treasury Bill returns.

(ii) From Kenneth French’s data page:7 the returns to 5 industry portfolios, namely
Consumer (including consumer durables, nondurables, wholesale, retail, and
some services), Manufacturing (including manufacturing, energy, and utilities),
Tech (including computing, business equipment, telephone and television trans-
mission), Health (including healthcare, medical equipment, and drugs) and Other
(including mines, construction, transport, hotels, business services, entertain-
ment and finance).

4 The emphasis on maximum likelihood in a correctly specified system means that problems of bias
in least squares approaches are avoided and methods such as fully modified (Phillips and Hansen,
1990; Phillips, 1995) or dynamic least squares estimation (Phillips and Loretan, 1991; Saikkonen,
1991; Stock and Watson, 1993) are not dealt with.
5 As indeed it was for statisticians in extending the univariate normal density to the multivariate
normal case.
6 https://shillerdata.com/.
7 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

https://shillerdata.com/
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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3 Financial Asset Prices and Returns

One of the most frequently encountered concept in financial econometrics is the price
of a financial asset. The price of an equity security is defined in terms of the dollar
(or other currency denomination) amount at which a transaction can occur (a quoted
price) or has occurred (an historical transaction price). A major property of financial
asset prices is their nonstationarity, which implies that the observed trajectories of
prices depend on the time period in which they are examined. This property is
highlighted in Figure 1 which plots the monthly S&P 500 Index from January 1962
to December 2022. The time path of equity prices shows long-run growth over this
period whose general shape can be roughly captured by an exponential trend. The two
shaded areas, January 1987 to December 1996 and January 2007 to December 2016,
respectively, demonstrate that the means and variances of the price series in these two
periods are very different, indicating time dependence. Although the movement of
stock prices over long historical periods is of substantial interest to investors, dealing
with nonstationary series poses intriguing and challenging econometric problems
which require special techniques that will be touched upon in Section 8.
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Fig. 1 The monthly S&P 500 Index from January 1962 to December 2022. The two shaded areas
are from January 1987 to December 1996 and from January 2007 to December 2016.
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To capture the trend properties of prices, we can consider filtering the series by
taking a log difference, giving

𝑟𝑡 = log 𝑃𝑡 − log 𝑃𝑡−1, (1)

which generates the log return on the asset. A financial return provides a measure
of outcome of the decision to invest in a financial asset. This measure accounts not
only for the capital gain or loss due to the price change over the holding period of
the asset but also for the cumulative impact of the contractual stream of cash flows
that take place over the course of the holding period, although these cash flows in
the form of dividends are often ignored.

There are good reasons to work with log returns. First, log returns represent
continuously compounded returns. If 𝑚 is the compounding period and 𝑟𝑡 the return,
then prices evolve according to

𝑃𝑡 = 𝑃𝑡−1

(
1 + 𝑟𝑡

𝑚

)𝑚
.

Continuous compounding is produced when 𝑚 → ∞, leading to

𝑃𝑡 = 𝑃𝑡−1 lim
𝑚→∞

(
1 + 𝑟𝑡

𝑚

)𝑚
. (2)

Letting 𝑠 = 𝑚/𝑟𝑡 this expression may be rewritten as

𝑃𝑡 = 𝑃𝑡−1 lim
𝑠→∞

[(
1 + 1

𝑠

)𝑠 𝑟𝑡 ]
= 𝑃𝑡−1

[
lim
𝑠→∞

(
1 + 1

𝑠

)𝑠]𝑟𝑡
= 𝑃𝑡−1𝑒

𝑟𝑡 . (3)

Taking logarithms of expression (3) and rearranging yields the definition of the log
returns given in equation (1).

Second, log returns are particularly useful because of the simplification they allow
in dealing with multi-period returns. For example, the 2-period return is given by

𝑟𝑡 (2) = log 𝑃𝑡 − log 𝑃𝑡−2 = (log 𝑃𝑡 − log 𝑃𝑡−1) + (log 𝑃𝑡−1 − log 𝑃𝑡−2) = 𝑟𝑡 + 𝑟𝑡−1 .

By extension, the 𝑘-period return is

𝑟𝑡 (𝑘) = 𝑟𝑡 + 𝑟𝑡−1 + · · · + 𝑟𝑡−(𝑘−1) =
𝑘−1∑︁
𝑗=0

𝑟𝑡− 𝑗 .

Third, and perhaps most significant from an econometric perspective, the log
returns series obtained by filtering prices in this way yields a stationary series.
because the behaviour of returns in the two shaded sub-samples in Figure 2 is very
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similar. This result is demonstrated in Figure 2 which shows monthly log returns
of the S&P500 expressed in percentage terms. The behaviour in the time series in
the two shaded windows is now very similar, unlike the situation in Figure 1. This
observation is reinforced by Table 1 which reports the summary statistics for the
percentage monthly log returns of the S&P500 for the entire sample period and also
for the two highlighted sub-periods. It can be seen all the sample statistics are very
similar.

-20.00

-10.00

0.00

10.00

 

1960 1980 2000 2020
 

Log Returns on S&P 500 Index

Fig. 2 Percentage monthly log returns on the S&P 500 Index from January 1962 to December
2022. The two shaded areas are from January 1987 to December 1996 and from January 2007 to
December 2016, respectively.

Table 1 Summary statistics for percentage monthly log returns on S&P 500 for the periods January
1962 to December 2022, January 1987 to December 1996 and January 2007 to December 2016.

1962 - 2022 1987 - 1996 2007- 2016

Mean 0.552 0.913 0.384
Median 0.906 0.939 1.059
Variance 13.245 10.169 16.540
Standard Deviation 3.639 3.189 4.067
Skewness −1.226 −1.298 −1.865
Kurtosis 8.018 8.575 11.139
Minimum −22.804 −13.425 −22.804
Maximum 11.352 10.703 11.352
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The largest negative monthly returns in the two sub-samples are, respectively,
-13.425% (October 1987 and -22.804% (October 2008). These negative returns are
associated with important stock market events. Monday 19 October 1987 is known
as Black Monday, a day on which the U.S. stock market experienced a large one
day decline that triggered a global stock market slump. The stock market crash
of October 2008 arose from defaults on consolidated mortgage-backed securities
and led to what is now known as the Global Financial Crisis. The occurrence of
large negative monthly returns leads naturally to the question of the distributional
characteristics of returns. Investors in financial assets are interested in the mean and
standard deviation (or riskiness) of the investment, but also in the shape of the returns
distribution which is related to the skewness and kurtosis statistics given in Table 1.

4 Distributional Characteristics of Returns

The most commonly used distribution in statistics is the normal distribution in which
the probability density of returns has the familiar shape of a symmetric bell-shaped
curve about the mean. The probability density function is given by8

𝑓 (𝑟𝑡 ; 𝜇, 𝜎2) = 1
√

2𝜋𝜎2
exp

(
− (𝑟𝑡 − 𝜇)2

2𝜎2

)
or 𝑟𝑡 ∼ 𝑁 (𝜇, 𝜎2),

in which 𝑁 (𝜇, 𝜎2) signifies a normal distribution with mean 𝜇 and variance 𝜎2. The
normal distribution is symmetric and therefore has zero skewness. The kurtosis of the
normal distribution which refers primarily to the tail behaviour9 of the distribution
has the value 3.

Figure 3 plots the histogram of the percentage monthly return of S&P500 for
the full sample period from January 1962 to December 2022 with the best fitting

8 In the spirit of this chapter, we keep the notation as simple as possible in recognition of the
technical background of the target audience. In more theoretical presentation the “∼” symbol is
sometimes written as “∼𝑑 ” or as “ 𝑑→ ” to emphasise convergence in distribution.
9 The word kurtosis comes from the Greek root ‘kurtos’ meaning curved or arching. Correspond-
ingly, kurtosis is often associated with the apparent peakedness of a distribution. This interpretation,
including the nomenclature, was introduced by Pearson (1905) but has been recently challenged
(Westfall, 2014). Since kurtosis is defined in terms of the scaled fourth moment of a distribution
a primary effect measured by kurtosis is the extent of outliers in the distribution arising from
heaviness in the tails. But as more probability is drawn into the tails, the net effect is less probability
elsewhere, although this may not always be at the center of the distribution. The normal distribution
has kurtosis with value 3 and is said to have zero excess kurtosis. Distributions with higher kurtosis
than 3 have positive excess kurtosis.
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normal distribution superimposed.10 It is immediately apparent that the histogram
demonstrates what Table 1 indicates, namely that the returns distribution exhibits a
sharper peak and fatter tails (particularly in the left tail consistent with the reported
negative skewness) than the best-fitting normal distribution, which is overlaid on the
histogram of the returns. Distributions of returns exhibiting these characteristics are
referred to as leptokurtic.
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Fig. 3 The histogram of percentage monthly log returns on the S&P 500 from January 1962 to
December 2022 with the best fitting normal distribution superimposed.

To capture potential non-normal asset returns the normal distribution assumption
is often replaced by a Student 𝑡 distribution whose probability density is given by

𝑓 (𝑟𝑡 ; 𝜇, 𝜎2, 𝜈) =
Γ

(
𝜈 + 1

2

)
√
𝜋𝜎2𝜈 Γ

( 𝜈
2

) (
1 + (𝑟𝑡 − 𝜇)2

𝜎2𝜈

)−( 𝜈+1
2 )

, (4)

10 The best fitting normal distribution is based on the maximum likelihood estimates of 𝜇 and 𝜎2

which are dealt with in Section 6.
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where 𝜈 represents the degrees of freedom parameter and Γ(·) is the gamma func-
tion11. The parameter 𝜈 provides additional flexibility compared with the normal
distribution in modeling empirical distributions. In the special case where 𝜈 → ∞,
the 𝑡 distribution becomes the normal distribution.
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Fig. 4 The histogram of percentage monthly log returns on the S&P 500 from January 1962 to
December 2022 with the best fitting Student 𝑡 distribution superimposed.

The value of the parameter 𝜈 in the Student 𝑡 distribution determines the number
of integer moments of the distribution that exist. Specifically, integer moments lower
than 𝜈 exist. Thus, the mean or first moment of the 𝑡 distribution exists provided
𝜈 > 1; the second moment exists if 𝜈 > 2 and in that case the variance is given
by 𝜎2𝜈/(𝜈 − 2); the first three moments exist if 𝜈 > 3; and for 𝜈 > 4 the first
four moments all exist. For the special case where 𝜈 = 1, no integer moments exist
(moments of fractional order less than unity do exist) and the density is known as the
Cauchy distribution. The form of the 𝑡 distribution given in equation (4) is a version
of the distribution in which 𝜇 characterises central location (the mean provided that
𝜈 > 1) and 𝜎2 characterises dispersion (the variance provided that 𝜈 > 2).

11 The gamma function is a generalisation of the factorial operator that accommodates real and
complex number arguments, not just integers. The form of this function is not important for current
purposes and its values are readily computed using available software.
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The plot in Figure 4 illustrates how the Student 𝑡 distribution does a slightly better
job of capturing the distributional features of returns than does the normal distribution
shown in Figure 3, particularly in terms of the peakedness of the distribution (with
the higher and somewhat sharper peak than the normal density fit) and the length
of the left tail. In this particular case the degrees of freedom parameter 𝜈 is 3.89,
indicating that the first three moments of the distribution exist.

5 Models of Returns

Having discussed some empirical facts about financial asset returns, it is now appro-
priate to introduce some theoretical models which purport to model these returns.
The simplest model of financial returns is the constant mean and constant variance
model which is given by

𝑟𝑡 = 𝛼 + 𝑢𝑡 , 𝑢𝑡 ∼ 𝑁 (0, 𝜎2), (5)

where 𝑟𝑡 is returns and 𝑢𝑡 is a normally distributed idiosyncratic disturbance term,
with zero mean and variance 𝜎2, that captures unexplained deviations of returns
from their mean. The expected return is given by 𝛼 and the risk of the asset by 𝜎.

The constant mean model is of little predictive use as it simply summarises the
returns distribution. The most long standing model of financial asset returns is the
CAPM that encapsulates the risk characteristics of an asset in terms of its so-called
𝛽-risk, a quantity that is measured by the ratio

𝛽 =
cov(𝑟𝑡 − 𝑟 𝑓 𝑡 , 𝑟𝑚𝑡 − 𝑟 𝑓 𝑡 )

var(𝑟𝑚𝑡 − 𝑟 𝑓 𝑡 )
. (6)

The 𝛽-risk is a measure of the exposure of the returns 𝑟𝑡 on a particular financial
asset to movements in market returns, 𝑟𝑚𝑡 , relative to a risk-free rate of interest 𝑟 𝑓 𝑡 .
Individual stocks, or even the portfolios of stocks, are classified as follows in terms
of their degree of 𝛽-risk: if 𝛽 > 1 the asset is aggressive in the sense that its returns
magnifies movements in the market; if 0 < 𝛽 < 1 the asset is defensive and serves
to attenuate movements in the market; and if 𝛽 = 1 the asset is a benchmark for the
market. Assets with 𝛽 = 0 are uncorrelated with the market, while those with 𝛽 = −1
provide a perfect hedge for movements in the market.

The CAPM is formulated by expressing the relationship between the excess return
on the asset 𝑟𝑡 −𝑟 𝑓 𝑡 and the market 𝑟𝑚𝑡 −𝑟 𝑓 𝑡 in terms of the following linear equation
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𝑟𝑡 − 𝑟 𝑓 𝑡 = 𝛼 + 𝛽(𝑟𝑚𝑡 − 𝑟 𝑓 𝑡 ) + 𝑢𝑡 , 𝑢𝑡 ∼ 𝑁 (0, 𝜎2), (7)

where the excess return on the asset represents the dependent variable and the
excess return on the market represents the explanatory variable. The disturbance
term 𝑢𝑡 captures additional (idiosyncratic) movements in the dependent variable not
predicted by CAPM. Assuming that these additional movements are also independent
of 𝑟𝑚𝑡 − 𝑟 𝑓 𝑡 , then E[(𝑟𝑚𝑡 − 𝑟 𝑓 𝑡 )𝑢𝑡 ] = 0. The model in equation (7) contains three
unknown parameters. The first is the intercept parameter 𝛼, which captures the
abnormal return to the asset over and above the asset’s exposure to the excess return
on the market. The second is the slope parameter 𝛽, which corresponds to the asset’s
𝛽-risk as defined in (6). The third parameter is 𝜎2 which captures the idiosyncratic
risk of the asset.

The CAPM provides a convenient method of decomposing the total risk of an
asset into systematic risk (or risk that is inherent to the entire market) from exposure
to movements in the market, and idiosyncratic risk caused by other factors. For-
mally, this decomposition is achieved by squaring both sides of (7) and then taking
expectations, which gives

E[(𝑟𝑡 − 𝑟 𝑓 𝑡 )2]︸            ︷︷            ︸
Total risk

= E[(𝛼 + 𝛽(𝑟𝑚𝑡 − 𝑟 𝑓 𝑡 ))2]︸                        ︷︷                        ︸
Systematic risk

+ E(𝑢2
𝑡 ),︸ ︷︷ ︸

Idiosyncratic risk

using the zero correlation property E[(𝑟𝑚𝑡 − 𝑟 𝑓 𝑡 )𝑢𝑡 ] = 0. The systematic risk is also
known as nondiversifiable risk while the idiosyncratic risk, E(𝑢2

𝑡 ) = 𝜎2, represents
the diversifiable risk.

6 Maximum Likelihood Estimation

The maximum likelihood estimator of the generic unknown parameter vector 𝜃 is
denoted 𝜃̂ and is defined to be the parameter value that maximises the logarithm of
the probability distribution of the data, which is typically known as the log likelihood
function. Put differently, the maximum likelihood estimator of the elements of the
unknown parameter vector 𝜃 is obtained by finding the value of 𝜃 that is most
likely to have generated the observed data. Let log 𝐿 (𝜃) denote the log likelihood
function which, by definition is conditional on the data. In some cases, a closed-form
expression for 𝜃̂ can be obtained. For many interesting cases, numerical methods are
required to perform the optimization. The necessary ingredients for constructing a
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likelihood require the use of certain rules of probability and rules for summation to
manipulate distributional expressions, together with some knowledge of the forms
of various distributions.12

6.1 Specification

Having specified the probability distribution 𝑓 (𝑟𝑡 ; 𝜃) of a financial process 𝑟𝑡 at
each observation 𝑡, the probabilities associated with each event across the full time
series sample {𝑡 = 1, 2, · · · , 𝑇}, are combined to generate the average log likelihood
function. It is worth emphasising that the term log likelihood function will be used
subsequently without any reference to it being an average.13 This convention is used,
by among others, Newey and McFadden (1994) and White (1994). See also Martin
et al. (2013).

There exist four types of log likelihood functions:

log 𝐿 (𝜃) =



1
𝑇

𝑇∑
𝑡=1

log 𝑓 (𝑟𝑡 ; 𝜃) [Case 1]

1
𝑇

𝑇∑
𝑡=1

log 𝑓 (𝑟𝑡 |𝑥𝑡 ; 𝜃) [Case 2]

1
𝑇

𝑇∑
𝑡=1

log 𝑓 (𝑟𝑡 |𝑟𝑡−1, ...𝑟𝑡−𝐾 ; 𝜃) [Case 3]

1
𝑇

𝑇∑
𝑡=1

log 𝑓 (𝑟𝑡 |𝑥𝑡 , 𝑟𝑡−1, ..., 𝑟𝑡−𝐾 ; 𝜃). [Case 4]

Case 1 represents the simplest case in which the distribution is the same at every
observation. In Case 2 the distribution of the data varies over the sample according
to changes in a conditioning variable 𝑥𝑡 . Case 3 differs from Case 2 in the sense
that the distribution of the data changes over the sample driven by conditioning on
past values of 𝑟𝑡 . In the most general case, Case 4, variations in the probability
distributions arise from conditioning on both 𝑥𝑡 and past values 𝑟𝑡−1, ..., 𝑟𝑡−𝐾 . The
specification here assumes that observations at 𝑟0, 𝑟−1, · · · are available. Examples
of Case 1 and Case 2 are given in this section and examples of Cases 3 and 4 are
given in Sections 7 and 8, respectively.

12 To facilitate exposition many steps in the derivations are omitted in what follows. Interested
readers are referred to Hurn et al. (2021) for the intermediate details.
13 The definition of the log likelihood function as an average over 𝑇 observations is consistent with
the notion of convergence to the true average value as 𝑇 → ∞.
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Constant mean model

Consider the constant mean model of returns in equation (5), as 𝑢𝑡 is assumed to be
normally distributed it follows that 𝑟𝑡 is also normally distributed. The distribution
of 𝑟𝑡 is therefore given by

𝑓 (𝑟𝑡 ; 𝜃) =
1

√
2𝜋𝜎2

exp

(
−

(
𝑟𝑡 − 𝛼

)2

2𝜎2

)
,

in which the sample data, 𝑟𝑡 , are independent drawings from a normal distribution
with mean 𝛼 and variance 𝜎2. The log likelihood function follows Case 1 and has
the form

log 𝐿 (𝜃) = −1
2

log 2𝜋 − 1
2

log𝜎2 − 1
2𝜎2

1
𝑇

𝑇∑︁
𝑡=1

(𝑟𝑡 − 𝛼)2,

with parameter vector 𝜃 = {𝛼, 𝜎2}.

CAPM

The CAPM given in equation (7) may be rewritten as

𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡 + 𝑢𝑡 , 𝑢𝑡 ∼ 𝑁 (0, 𝜎2) , (8)

where for notational simplicity 𝑦𝑡 = 𝑟𝑡 − 𝑟 𝑓 𝑡 is the excess return on the asset and
𝑥𝑡 = 𝑟𝑚𝑡 − 𝑟 𝑓 𝑡 is the excess return on the market. If it is assumed that 𝑢𝑡 once more
has a normal distribution with mean 0 and variance 𝜎2, then it follows that

𝑢𝑡 ∼ 𝑁 (0, 𝜎2) ⇒ (𝑦𝑡 − 𝛼 − 𝛽𝑥𝑡 ) ∼ 𝑁 (0, 𝜎2) ⇒ 𝑦𝑡 ∼ 𝑁 (𝛼 + 𝛽𝑥𝑡 , 𝜎
2) .

Taking 𝑟 𝑓 𝑡 and 𝑟𝑚𝑡 as given, the distribution of 𝑦𝑡 is

𝑓 (𝑦𝑡 ; 𝜃) =
1

√
2𝜋𝜎2

exp

(
−

(
𝑦𝑡 − 𝛼 − 𝛽𝑥𝑡

)2

2𝜎2

)
.

The log likelihood function is constructed based on Case 2 and is given by

log 𝐿 (𝜃) = −1
2

log 2𝜋 − 1
2

log𝜎2 − 1
2𝜎2

1
𝑇

𝑇∑︁
𝑡=1

(𝑦𝑡 − 𝛼 − 𝛽𝑥𝑡 )2,

with 𝜃 =
{
𝛼, 𝛽, 𝜎2}.
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6.2 Estimation

The first derivative of the log likelihood function is known as the gradient 𝐺 (𝜃) and
is defined as

𝐺 (𝜃) = 𝜕 log 𝐿 (𝜃)
𝜕𝜃

.

The second derivative of the log likelihood function is known as the Hessian and is
given by the matrix

𝐻 (𝜃) = 𝜕2 log 𝐿 (𝜃)
𝜕𝜃𝜕𝜃′

.

From the basic rules of calculus, the maximum likelihood estimator 𝜃̂ is found by
solving the likelihood equation

𝐺 (𝜃̂) = 0. (9)

The Hessian is integral to estimating a measure of the precision of the maximum
likelihood estimator14 given by the standard error se(𝜃̂). This property is based on
the result that

var(𝜃̂) = 1
𝑇

(
− 𝐻 (𝜃̂)−1

)
.

It follows therefore that the standard errors of 𝜃̂ are given by the square roots of the
diagonal elements of this matrix.

Constant mean model

The (2 × 1) gradient vector of the constant mean model is given by

𝐺 (𝜃) =
©­­­«
𝜕 log 𝐿 (𝜃)

𝜕𝛼

𝜕 log 𝐿 (𝜃)
𝜕𝜎2

ª®®®¬ =

©­­­­«
1
𝜎2

1
𝑇

𝑇∑
𝑡=1

(𝑦𝑡 − 𝛼)

− 1
2𝜎2 + 1

2𝜎4
1
𝑇

𝑇∑
𝑡=1

(𝑦𝑡 − 𝛼)2

ª®®®®¬
.

The maximum likelihood estimator is found by setting 𝐺 (𝜃̂) = 0 which requires
solving the following two equations

14 The Hessian is also used to determine whether 𝜃 does provide a local maximum of log 𝐿 (𝜃 ) .
This feature of 𝐻 (𝜃 ) follows from standard calculus rules for determining the shape of a curve at
a stationary point. Issues of multiple local maxima versus the absolute maximum of the likelihood
function should be mentioned but are not dealt with here. Iterative methods to find extrema in
optimization problems are also relevant and are briefly discussed below in Section 6.3.
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1
𝜎̂2

1
𝑇

𝑇∑︁
𝑡=1

(𝑦𝑡 − 𝛼̂) = 0

− 1
2𝜎̂2 + 1

2𝜎̂4
1
𝑇

𝑇∑︁
𝑡=1

(𝑦𝑡 − 𝛼̂)2
= 0 ,

for 𝛼̂ and 𝜎̂2. Solving these expressions yields the maximum likelihood estimators

𝛼̂ =
1
𝑇

𝑇∑︁
𝑡=1

𝑦𝑡 = 𝑦

𝜎̂2 =
1
𝑇

𝑇∑︁
𝑡=1

(𝑦𝑡 − 𝛼̂)2
.

The sample mean is therefore the maximum likelihood estimator of 𝛼 and the sample
variance of 𝑦𝑡 , without any degrees of freedom correction, is the maximum likelihood
estimator of 𝜎2. In other words, the maximum likelihood estimate of the variance
uses the full sample size 𝑇 in the denominator.15

CAPM

The (3 × 1) gradient vector for the CAPM model is given by

𝐺 (𝜃) =

©­­­­­­­«

𝜕 log 𝐿 (𝜃)
𝜕𝛼

𝜕 log 𝐿 (𝜃)
𝜕𝛽

𝜕 log 𝐿 (𝜃)
𝜕𝜎2

ª®®®®®®®¬
=

©­­­­­­­­«

1
𝜎2

1
𝑇

𝑇∑
𝑡=1

(𝑦𝑡 − 𝛼 − 𝛽𝑥𝑡 )

1
𝜎2

1
𝑇

𝑇∑
𝑡=1

(𝑦𝑡 − 𝛼 − 𝛽𝑥𝑡 ) 𝑥𝑡

− 1
2𝜎2 + 1

2𝜎4
1
𝑇

𝑇∑
𝑡=1

(𝑦𝑡 − 𝛼 − 𝛽𝑥𝑡 )2

ª®®®®®®®®¬
.

Setting 𝐺 (𝜃̂) = 0 yields a a linear system of three equations and three unknowns
with the following solutions16

𝛼̂ = 𝑦 − 𝛽𝑥

15 These are the estimators that were used in the construction of the normal approximation to the
histogram in Figure 3.
16 The expressions for 𝛼 and 𝛽 are in fact the ordinary least squares estimators, demonstrating
that for this class of models the ordinary least squares estimator is equivalent to the maximum
likelihood estimator, at least under the assumption of normality. The expression for 𝜎̂2 shows that
the maximum likelihood estimator is equivalent to the ordinary least squares estimator apart from
the degrees of freedom correction.
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𝛽 =

∑𝑇
𝑡=1 (𝑦𝑡 − 𝑦) (𝑥𝑡 − 𝑥)∑𝑇

𝑡=1 (𝑥𝑡 − 𝑥)2

𝜎̂2 =
1
𝑇

𝑇∑︁
𝑡=1

(𝑦𝑡 − 𝛼̂ − 𝛽𝑥𝑡 )2.

As an example, consider estimating the CAPM for a portfolio of high technology
stocks as compiled by Kenneth French and published on his website. The maximum
likelihood estimate of 𝜃 = {𝛼, 𝛽, 𝜎} is

𝜃̂ =

©­­­«
𝛼̂

𝛽

𝜎̂

ª®®®¬ =
©­«

0.382
0.905

4.3475

ª®¬ ,
and the value of the log likelihood function at the maximum is−2111.5. The gradient
vector at the optimum is

𝐺 (𝜃̂) =

©­­­­­­«

𝜕 log 𝐿 (𝜃)
𝜕𝛼

𝜕 log 𝐿 (𝜃)
𝜕𝛽

𝜕 log 𝐿 (𝜃)
𝜕𝜎2

ª®®®®®®¬
=

©­«
3.218 × 10−7

9.780 × 10−6

9.838 × 10−6

ª®¬ ,
indicative that the condition 𝐺 (𝜃̂) = 0 is satisfied to a very close approximation. The
covariance matrix of 𝜃̂ is the symmetric matrix

var(𝜃̂) =
©­­­«

0.0259 · ·
−0.0004 0.0019 ·

0.0000 0.0000 0.0129

ª®®®¬ ,
and the standard errors of the elements of 𝜃̂ are given by the square roots of the
diagonal elements of this matrix

se(𝜃̂) =
©­­­«

se(𝛼̂)

se(𝛽)
se(𝜎̂)

ª®®®¬ =

©­­­«
0.161

0.044

0.114

ª®®®¬ .
Estimates of the CAPM for all 5 industry portfolios are presented in the top panel

of Table 2. Three of the portfolios, consumer, manufacturing and health, are very
defensive portfolios with their 𝛽-risk being significantly less than 1. Unsurprisingly
the portfolios with the highest 𝛽-risk are the technology stocks and the catch-all
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portfolio, other. Even these, however, have 𝛽 < 1. All the portfolios have positive
𝛼’s which means that they earn a return above the risk-free rate of interest even when
their exposure to systematic risk is taken into account.

6.3 Numerical Optimization: The Robust CAPM

Both the estimation problems considered so far have analytical solutions. Typi-
cally numerical methods based on iterative gradient algorithms are employed to
maximise the log likelihood function when analytic formulae are not available.
Econometric software usually provides for a number of alternative algorithms. The
Newton-Raphson (NR) algorithm uses both the first (gradient) and second deriva-
tives (Hessian) of the log likelihood and despite being one of the oldest iterative
algorithms available is nonetheless still widely used. Letting 𝜃 (𝑘 ) be the value of 𝜃
at iteration 𝑘, and 𝜃 (𝑘+1) the updated value, the Newton-Raphson algorithm is given
by

𝜃 (𝑘+1) = 𝜃 (𝑘 ) − 𝐻−1 (𝜃 (𝑘 ) )𝐺 (𝜃 (𝑘 ) ).

The algorithm begins with a starting value 𝜃 (0) , with the iterations continuing until
there is no change in the estimates of 𝜃, that is 𝜃 (𝑘+1) ≃ 𝜃 (𝑘 ) .

An example of the use of numerical methods to compute the maximum likelihood
estimator is provided by the robust CAPM with disturbances now following a Student
𝑡 distribution. The heavy-tailed 𝑡 distribution helps to accommodate the presence
of outliers in the data. Unfortunately, closed-form expressions for the maximum
likelihood estimators of the parameters of the model are no longer available in this
case. This model is

𝑦𝑡 = 𝛼 + 𝛽𝑥𝑡 + 𝑢𝑡 , 𝑢𝑡 ∼ 𝑆𝑡 (0, 𝜎2, 𝜈),

where, as in the simple CAPM, 𝑦𝑡 = 𝑟𝑡 − 𝑟 𝑓 𝑡 is the excess return on the asset and
𝑥𝑡 = 𝑟𝑚𝑡 −𝑟 𝑓 𝑡 is the excess return on the market. The notation 𝑆𝑡 (0, 𝜎2, 𝜈) represents
a standardised form of 𝑡 distribution in which the density is given by

𝑓 (𝑢𝑡 ) =
Γ

(
𝜈 + 1

2

)
√︁
𝜋𝜎2 (𝜈 − 2)Γ

( 𝜈
2

) (
1 +

𝑢2
𝑡

𝜎2 (𝜈 − 2)

)−( 𝜈+1
2 )

, (10)
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where the degrees of freedom parameter 𝜈 is assumed to satisfy 𝜈 > 2, a condition
that ensures the variance is finite as remarked earlier. In fact, the variance of the
standardised distribution 𝑆𝑡 (0, 𝜎2, 𝜈) is the squared scale coefficient 𝜎2, which is
convenient in many applications. This form of the 𝑡 distribution differs slightly from
that given earlier in equation (4) because it allows 𝑢𝑡 to have dispersion measured
directly by the scale parameter 𝜎. As before in (4), the parameter 𝜈 determines how
heavy the tails of the distribution are, thereby capturing the effects of outliers.

Transforming to the implied distribution of the observations 𝑦𝑡 , gives the density

𝑓 ( 𝑦𝑡 | 𝑥𝑡 ; 𝜃) =
Γ

(
𝜈 + 1

2

)
√︁
𝜋𝜎2 (𝜈 − 2)Γ

( 𝜈
2

) (
1 + (𝑦𝑡 − 𝛼 − 𝛽𝑥𝑡 )2

𝜎2 (𝜈 − 2)

)−( 𝜈+1
2 )

. (11)

To derive the maximum likelihood estimator of 𝜃 = {𝛼, 𝛽, 𝜎2, 𝜈}, the likelihood
function log 𝐿 (𝜃) is based on Case 2 and has the form

log 𝐿 (𝜃) = 1
𝑇

𝑇∑︁
𝑡=1

log 𝑓 ( 𝑦𝑡 | 𝑥𝑡 ; 𝜃)

= log Γ
(
𝜈 + 1

2

)
− 1

2
log𝜎2 − 1

2
log (𝜋 (𝜈 − 2))

− log Γ
( 𝜈

2

)
−

(
𝜈 + 1

2

)
1
𝑇

𝑇∑︁
𝑡=1

log
(
1 + (𝑦𝑡 − 𝛼 − 𝛽𝑥𝑡 )2

𝜎2 (𝜈 − 2)

)
.

(12)

Since this expression for the log likelihood function is nonlinear in the parameters,
a numerical approach is adopted to compute the maximum likelihood estimator, 𝜃̂.

The results of estimating this robust version of the CAPM by maximum likelihood
using a numerical optimisation algorithm are given in the bottom panel of Table
2. The estimate of the degrees of freedom parameter, 𝜈̂, implies the presence of
significant outliers in the returns series. On the other hand, the fact that the estimates
of 𝛼-risk and 𝛽-risk are qualitatively similar to those obtained using the assumption
of normal disturbances implies that the estimates are robust to these outliers.

6.4 Testing

The likelihood function provides a simple and intuitive approach to inference, the
most common form of which is to test whether the parameter of the model has a
certain hypothesised value, 𝜃0 say, resulting in the null and alternative hypotheses
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Table 2 Parameter estimates of the CAPM model based on the normal distribution (top panel) and
the 𝑡 distribution (bottom panel) using monthly excess log returns on five United States industry
portfolios for the period January 1962 to December 2022. Standard errors are in parentheses.

𝛼 𝛽 𝜎̂ 𝜈̂ log 𝐿

Consumer 0.465 0.792 3.592 -1971.9
(0.133) (0.036) (0.094)

Manufacturing 0.415 0.758 3.452 -1942.9
(0.128) (0.035) (0.090)

Tech 0.382 0.905 4.347 -2111.5
(0.161) (0.044) (0.114)

Health 0.545 0.667 4.251 -2095.1
(0.157) (0.043) (0.111)

Other 0.392 0.926 4.128 -2073.7
(0.153) (0.042 ) (0.108)

Consumer goods 0.395 0.755 -3.600 7.408 -1960.3
(0.128) (0.036 ) (0.127) (1.923)

Manufacturing 0.339 0.754 3.471 6.452 -1928.5
(0.121) (0.035) (0.132) (1.529)

Tech 0.358 0.903 4.364 5.084 -2081.4
(0.146) (0.042) (0.193) (0.938)

Health 0.506 0.662 4.230 7.798 -2079.6
(0.150) (0.044) (0.146) (2.053)

Other 0.363 0.909 4.153 6.058 -2056.7
(0.143) (0.040 ) ( 0.163) (1.358)

𝐻0 : 𝜃 = 𝜃0, 𝐻1 : 𝜃 ≠ 𝜃0.

Let 𝜃̂0 and 𝜃̂1 represent the estimates of 𝜃 under the null and alternative hypotheses,
respectively. There exist three testing strategies within the maximum likelihood
framework: the Likelihood Ratio test (LR), the Wald test (W), and the Lagrange
Multiplier test (LM). All the test statistics are a function of the distance between the
parameters under the null and alternative hypotheses. An important property of tests
based on the likelihood is that they encompass many of the test statistics commonly
used in financial econometrics.

Likelihood ratio test

The LR statistic measures the distance between 𝜃̂0 and 𝜃̂1 in terms of their log
likelihood values, that is, log 𝐿 (𝜃̂0) and log 𝐿 (𝜃̂1). The test is given by

𝐿𝑅 = −2𝑇
(
log 𝐿 (𝜃̂0) − log 𝐿 (𝜃̂1)

)
.
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A small difference between the log likelihood values indicates the null hypothesis is
supported by the data. Whereas, a large difference between the log likelihood values
indicates that the data favour the less restrictive hypothesis. The LR test requires that
the model be estimated both under the null and under the alternative hypotheses.

Wald test

The Wald statistic measures the distance between 𝜃̂1 and the value of the parameter
under the null hypothesis, 𝜃0, where the weight is given by the inverse of the
covariance matrix of the estimate evaluated at 𝜃̂1, Ω(𝜃̂1). The test is given by

𝑊 = 𝑇
(
𝜃̂1 − 𝜃0

) ′ (
Ω(𝜃̂1)

)−1 (
𝜃̂1 − 𝜃0

)
.

The Wald test requires that the model be estimated under the alternative hypothesis
only. The widespread application of 𝑡-tests and 𝐹-tests to financial models are all
based on the Wald test principle.

Lagrange multiplier tests

The LM statistic measures the distance between 𝜃̂0 and 𝜃̂1 in terms of the gradients
of the two log likelihood functions, that is, 𝐺 (𝜃̂0) and 𝐺 (𝜃1). Since 𝜃̂1 maximises
log 𝐿 (𝜃), 𝐺 (𝜃̂1) = 0, which implies that the LM test statistic does not depend on
the maximum likelihood estimator of 𝜃 under the alternative hypothesis. The test is
given by

𝐿𝑀 = 𝑇𝐺 (𝜃̂0)′ (Ω(𝜃̂0))−1𝐺 (𝜃̂0),

where Ω(𝜃̂0) is the disturbance covariance matrix evaluated under the null hypoth-
esis. It follows that the LM test requires that the model be estimated under the null
hypothesis.

Under the null hypothesis all three test statistics have chi-squared asymptotic dis-
tributions with degrees of freedom equal to the number of restrictions imposed under
the null hypothesis. In view of this property the choice of which test statistic to use is
often based on expediency. For example, the Likelihood ratio test requires estimation
of the parameters of the model under both the null and alternative hypothesis. On
the other hand, the Wald test requires estimation of the parameters only under the
alternative hypothesis, while the LM test requires estimation of the parameters only
under the null hypothesis.
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Illustration

To illustrate the test statistics consider testing the hypothesis 𝛽 = 1 for the technology
stocks portfolio (Tech) in the robust CAPM estimation reported in Table 2. Without
loss of generality, the order of the elements of parameter vector is taken to be
𝜃 = {𝜈, 𝜎, 𝛼, 𝛽}.

The restricted model simply imposes this constraint and estimates 𝛼, 𝜎 and 𝜈.
Computing the LR test gives

𝐿𝑅 = −2 ×
(
− 2084.0 − (−2081.4)

)
= 5.28.

Referring this statistic to the 𝜒2 distribution with 1 degree of freedom gives a 𝑝 value
for the test of 0.022 indicating a rejection of the hypothesis at the 5% level.

The Wald test has a very simple form given that there is only one parameter
restriction to test. The test is constructed as

𝑊 =
(
0 0 0 −0.0972

) ©­­­«
2.0546
6.6560 48.3297
0.0020 0.0029 47.6126

−1.0647 −1.5050 17.8882 579.7282

ª®®®¬
©­­­«

0
0
0

−0.0972

ª®®®¬ = 5.41.

Referring this statistic to the 𝜒2 distribution with 1 degree of freedom gives a 𝑝 value
for the test of 0.020 indicating a rejection of the hypothesis at the 5% level.

Finally, the LM test is requires evaluating the gradient of the unrestricted model
but using the parameters obtained from estimating the restricted model. In this case
the test is

𝐿𝑀 =
(
0 0 0 −53.5041

) ©­­­«
0.8798

−.01211 0.0374
−0.0005 0.0000 0.0212

0.0013 −0.0001 −0.0007 0.0017

ª®®®¬
©­­­«

0
0
0

−53.5041

ª®®®¬ = 5.45.

Referring this statistic to the 𝜒2 distribution with 1 degree of freedom gives a 𝑝

value for the test of 0.019 indicating a rejection of the hypothesis at the 5% level. All
three test statistics give the same qualitative results, namely that the null hypothesis
is rejected at the 5% level.
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7 Modelling Volatility

Although Table 1 suggests the three variances reported for the full and sub-samples
of log returns are nearly identical, it would be inappropriate to assume that volatility
does not change over time. One of the most documented features of financial asset
returns is the tendency for large changes in the log returns on financial assets to be
followed by further large changes or reversals (market turmoil), or for small changes
in log returns to be followed by further small changes (market tranquility).
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Squared log Returns on S&P 500 Index

Fig. 5 Squared percentage monthly log returns on the S&P 500 Index from January 1962 to
December 2022.

Consider Figure 5 which plots the squared percentage monthly returns on the
S&P 500 index for the period January 1962 to December 2022. It is apparent that
there are sustained periods of market volatility, for example around the DotCom
bubble of the early 2000s and during the subprime mortgage crisis of 2007/2008.
This phenomenon is known as volatility clustering which highlights the property that
the variation in financial returns is not constant over time but often appears to come
in bursts of higher and lower variation. There are also periods of relative tranquility
when the magnitude of movements in the returns is relatively small.



Teaching Financial Econometrics to Students Converting to Finance 27

7.1 The GARCH(1,1) model

The simplest but most important volatility models are the autoregressive conditional
heteroskedasticity (ARCH) class (Engle, 1982) and the geneneralised autoregressive
conditional heteroskedasticity (GARCH) variant (Bollerslev, 1986). In particular,
the GARCH(1,1) is given by the following equations

𝑟𝑡 = 𝜇 + 𝑢𝑡 [Mean]

ℎ𝑡 = 𝛼0 + 𝛼1𝑢
2
𝑡−1 + 𝛽1ℎ𝑡−1 [Variance] (13)

𝑢𝑡 ∼ 𝑁 (0, ℎ𝑡 ) . [Distribution]

The first component of the model is the mean (or conditional mean) specification
where the parameter 𝜇 allows for returns to have a non-zero mean (or conditional
mean). The second component of the model is the conditional variance specification
whereby

ℎ𝑡 = E𝑡−1 (𝑢2
𝑡 ) = E𝑡−1 (𝑟𝑡 − E𝑡−1 (𝑟𝑡 ))2 ,

is a function of the lag of the squared disturbance term, 𝑢2
𝑡 , and the lag of the

conditional variance, ℎ𝑡−1. The third component of the model is the choice of the
distribution of the disturbance which at the moment is simply taken to have zero mean
and variance ℎ𝑡 . The parameter 𝛽1 determines how past shocks affect the conditional
variance at time 𝑡. The larger is 𝛽1 the longer is the memory of the shock. At the
other extreme where 𝛽1 = 0, the length of time a shock affects ℎ𝑡 is finite, with a
memory of just 1-period. For this special case the model is known as the ARCH(1)
model.

Estimation of the parameters of the GARCH(1,1) model requires that the distri-
bution of 𝑢𝑡 be specified. There are two common choices.

Normal distribution

If 𝑢𝑡 is normally distributed with mean 0 and variance ℎ𝑡 then it follows that the
distribution of 𝑟𝑡 is

𝑓 (𝑟𝑡 ; 𝜃) =
1

√
2𝜋ℎ𝑡

exp
(
− (𝑟𝑡 − 𝜇)2

2ℎ𝑡

)
,

with 𝜃 = {𝜇, 𝛼0, 𝛼1, 𝛽}. Based on this distribution the log likelihood function is
given by
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log 𝐿 (𝜃) = −1
2

log 2𝜋 − 1
2

1
𝑇

𝑇∑︁
𝑡=1

log ℎ𝑡 −
1
2

1
𝑇

𝑇∑︁
𝑡=1

(𝑟𝑡 − 𝜇)2

ℎ𝑡
,

where ℎ𝑡 is defined in (13). This is an example of the log likelihood function
belonging to Case 3 as a result of ℎ𝑡 being a function of 𝑟𝑡−1, 𝑟𝑡−2, · · · .

An important property required of GARCH models is that the conditional variance
ℎ𝑡 , defined in equation (??), needs to be positive at each point in time. Failure to meet
this requirement, even for just one observation, will mean that that the log likelihood
function becomes undefined as a result of taking the logarithm of a negative number.

To estimate the GARCH model using an iterative optimisation algorithm, starting
values are needed for the parameters together with some initial values for computing
the conditional variance. The specification at observation 𝑡 = 1 is

ℎ1 = 𝛼0 + 𝛼1𝑢
2
0 + 𝛽1ℎ0,

so that starting values for 𝑢0 and ℎ0 are required in order to compute ℎ1. One possible
choice of starting values is to set 𝑢0 = 0 and to set ℎ0 equal to an estimate of the
unconditional variance of 𝑟𝑡 .

Student 𝒕 distribution

Now assume that 𝑢𝑡 follows the standardised 𝑡 distribution given in. equation (10)
with degrees of freedom parameter 𝜈 so that 𝜃 = {𝜇, 𝛼0, 𝛼1, 𝛽1, 𝜈} and 𝜈 > 2 is
assumed. The variance of the conditional distribution is conveniently given directly
by ℎ𝑡 . The log likelihood function is then

log 𝐿 (𝜃) = log
(
Γ

(
𝜈 + 1

2

))
− 1

2
log (𝜋 (𝜈 − 2)) − log

(
Γ

( 𝜈
2

))
− 1

2
1
𝑇

𝑇∑︁
𝑡=1

log ℎ𝑡 −
(
𝜈 + 1

2

)
1
𝑇

𝑇∑︁
𝑡=1

log
(
1 + (𝑟𝑡 − 𝜇)2

ℎ𝑡 (𝜈 − 2)

)
,

with ℎ𝑡 defined in (13). As before, an iterative optimisation algorithm is needed to
estimate the parameters of the model by maximum likelihood.

The degrees of freedom parameter for the 𝑡 distribution indicates that the normal
distribution may be a less appropriate choice the assumption of normally distributed
disturbances will therefore result in a misspecification of the log likelihood function.
Provided that the conditional mean and variance specifications are not misspecified,
estimates of the model’s parameters are still consistent despite the fact that the shape
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Table 3 Parameter estimates of the GARCH(1,1) model for the monthly log returns on the S&P
500 index for period January 1962 to December 2022 for log likelihood functions based on the
normal and Student 𝑡 distributions. Standard errors are in parentheses.

Distribution 𝜇 𝛼0 𝛼1 𝛽 𝜈̂ log 𝐿

Normal 0.686 1.586 0.153 0.740 -1953.8
(0.133) (0.561) (0.029) (0.063)

Student 𝑡 0.884 1.359 0.140 0.767 4.496 -1907.0
(0.109) (0.612) (0.046) (0073) (0.729)

of the distribution is incorrectly represented. But in this case standard errors need
to be computed by means of a combination of the Hessian and the outer product of
the gradient of the log likelihood function. In the context of GARCH models these
standard errors are known as Bollerslev-Wooldridge standard errors (Bollerslev and
Wooldridge, 1992).

7.2 Univariate Extensions

The GARCH model has been extended in numerous ways but perhaps the most
important of these extensions concerns the effects of shocks that embody the effects
of news relevant to financial markets that arrived in period 𝑡 − 1. In no-news days,
good and bad news balance and 𝑢𝑡−1 = 0, whereas positive (negative) values of 𝑢𝑡−1

represent good (bad) news. An important property of this GARCH(1,1) specification
is that shocks of the same magnitude, positive or negative, result in the same increase
in volatility ℎ𝑡 . That is, positive news with 𝑢𝑡−1 > 0 has the same effect on the
conditional variance as negative news 𝑢𝑡−1 < 0 because it is only the absolute size of
the news that matters since it is the squared function, 𝑢2

𝑡−1, that enters the equation.
To illustrate the GARCH news impact curve (NIC), ℎ𝑡 is plotted against 𝑢𝑡−1 in
Figure 6. The major point to note is that the NIC of the simple GARCH model is
symmetric.

In the case of stock markets, an asymmetric response to news is supported by
theory, in which case negative shocks, 𝑢𝑡−1 < 0, have a larger effect on the conditional
variance. The heuristic explanation is that a negative shock raises the debt-equity
ratio, thereby increasing leverage and consequently risk. It is this (aptly-named)
leverage effect that suggests bad news leads to a greater increase in conditional
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Fig. 6 News impact curve for the GARCH(1,1) model based on the normal distribution for the
percentage monthly log returns on the S&P 500 index for the period January 1962 to December
2022.

variance than good news. There are two popular specifications in the GARCH class
that relax the restriction of a symmetric response to the news.

Threshold GARCH (TARCH)

The TARCH(1,1) specification (Zakoı̈an, 1994; Glosten et al., 1993) of the condi-
tional variance is

ℎ𝑡 = 𝛼0 + 𝛼1𝑢
2
𝑡−1 + 𝛽1ℎ𝑡−1 + 𝜆𝑢2

𝑡−1𝐼𝑡−1,

where 𝐼𝑡−1 is an indicator variable defined as

𝐼𝑡−1 =

{
1 : 𝑢𝑡−1 ≥ 0
0 : 𝑢𝑡−1 < 0.

The leverage effect in equity markets suggests 𝜆 < 0, so that negative news, 𝑢𝑡−1 <

0, is associated with a higher effect on volatility than positive news of the same
magnitude.

Exponential GARCH (EGARCH)

The EGARCH(1,1) specification Nelson (1991) of the conditional variance is
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log ℎ𝑡 = 𝛼0 + 𝛼1

���� 𝑢𝑡−1√
ℎ𝑡−1

���� + 𝜆1
𝑢𝑡−1√
ℎ𝑡−1

+ 𝛽1 log ℎ𝑡−1.

An important advantage of the EGARCH specification is that the conditional variance
is guaranteed to be positive at each point in time. This result follows from the fact
that the variance is expressed in terms of log ℎ𝑡 so that the actual variance is obtained
by exponentiation. The parameter 𝛼1 captures any potential asymmetry in the effect
of 𝑢𝑡−1 on log ℎ𝑡 . It is expected that 𝛼1 < 0, so that negative news is associated with
a higher effect than positive news of the same magnitude.

7.3 Forecasting

Despite these numerous extensions and refinements, in practice the GARCH(1,1)
has remained a workhorse in many financial econometric applications. Perhaps its
enduring popularity is due to the fact that the forecasts generated by the GARCH(1,1)
model are difficult to beat in practice (Hansen and Lunde, 2005). For a GARCH(1,1)
model, forecasts of ℎ𝑡 from the model are generated by replacing the unknown
parameters 𝛼0, 𝛼1 and 𝛽1 and the unknown quantities 𝑢2

𝑇
and ℎ𝑇 by their respective

sample estimates. The forecasts are computed recursively starting with

ℎ̂𝑇+1 |𝑇 = 𝛼̂0 + 𝛼̂1𝑢̂
2
𝑇 + 𝛽1 ℎ̂𝑇 .

Given this estimate, ℎ̂𝑇+2 |𝑇 is computed as

ℎ̂𝑇+2 |𝑇 = 𝛼̂0 + (𝛼̂1 + 𝛽1) ℎ̂𝑇+1 |𝑇 ,

which, in turn, is used to compute ℎ̂𝑇+3 |𝑇 and so on. To forecast higher order GARCH
models the same recursive approach is adopted.

The forecast from a GARCH(1,1) model converges relatively quickly to the es-
timate of the long-term average volatility implied by the model, which is given
by

ℎ̂ =
𝛼̂0

1 − 𝛼̂1 − 𝛽1
.

The estimate unconditional variance ℎ̂ is defined so long as 𝛼̂1 + 𝛽1 < 1. Figure 7
demonstrates this convergence for S&P 500 returns. Based on the estimates of the
GARCH(1,1) model in the top two rows of Table 3, out-of-sample predictions are
made starting in October 2008. The forecast converges to the long-term mean despite
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Fig. 7 Forecast (dashed line) and estimated (solid line) of the conditional variance of S&P 500
returns obtained from a GARCH(1,1) model. Also shown is the horizontal line representing the
estimated unconditional variance implied by the model. The forecast starts at the beginning of
October 2008 at the beginning of the global financial crisis but quickly converges to the long-term
mean.

the fact it starts well above the long-term mean. The fact that the actual estimated
conditional variance series drops off a lot more quickly than the forecast indicating
that GARCH forecasts are quite persistent.

7.4 Multivariate GARCH

Univariate GARCH models focus on the variance of a financial return. Multivariate
GARCH models focus jointly on the variances of financial returns as well as their
covariances. Consider, for example, a portfolio containing 𝑁 = 2 assets with log
returns 𝑟1𝑡 and 𝑟2𝑡 . The optimal weights of the minimum variance portfolio are
(Hurn et al., 2021)

𝑤1 =
var(𝑟2𝑡 ) − cov(𝑟1𝑡 , 𝑟2𝑡 )

var(𝑟1𝑡 ) + var(𝑟2𝑡 ) − 2cov(𝑟1𝑡 , 𝑟2𝑡 )
, 𝑤2 = 1 − 𝑤1, (14)

where 𝑤1 is the optimal weight allocated to asset 1 in the portfolio and 𝑤2 is the cor-
responding weight on asset 2. The weights 𝑤1 and 𝑤2 are assumed to be constant over
time as they are a function of the two unconditional variances and the unconditional
covariance. Restricting the portfolio weights to be constant suggests that there is no
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need to rebalance the portfolio to account for financial shocks. To relax this assump-
tion and allow for time-varying portfolio weights the unconditional expectations in
(14) are replaced by conditional expectations. As with the time-varying model of
𝛽-risk, the conditional variances can be modelled using a multivariate extension of
the GARCH model (MGARCH).

In the simplest bivariate case there are two assets whose means are

𝑟1𝑡 = 𝜇1 + 𝑢1𝑡

𝑟2𝑡 = 𝜇2 + 𝑢2𝑡 .
(15)

The conditional variances and covariance of the disturbances are given by the matrix

𝐻𝑡 = E
(
𝑢𝑡𝑢

′
𝑡

)
=

(
ℎ11𝑡 ℎ12𝑡
ℎ21𝑡 ℎ22𝑡

)
. (16)

The conditional variances are located down the main diagonal which are now defined
as ℎ𝑖𝑖𝑡 . The conditional covariances are located in the off-diagonal terms which
satisfy the symmetry restriction ℎ𝑖 𝑗𝑡 = ℎ 𝑗𝑖𝑡 . A natural way to proceed is to assume
that the disturbances follow a bivariate normal distribution17

𝑓 (𝑢𝑡 ) = (2𝜋)−1 |𝐻𝑡 |−1/2 exp
(
−1

2
𝑢′𝑡𝐻

−1
𝑡 𝑢𝑡

)
, (17)

There are two issues which make the estimation of MGARCH models difficult.
The first of these problems relates to the requirement that conditional variances need
to be positive at all points in time. The problem is highlighted in equation (17) in
which the determinant of the covariance matrix, |𝐻𝑡 |, be positive at each point in
time.18 The second, and no less acute problem, is that in fully specified multivariate
GARCH models the number of parameters to be estimated increases exponentially
with the number of assets in the system, 𝑁 .

A solution to both these problems is the DCC model of Engle (2002). This model
is now one of the most widely adopted MGARCH specifications in empirical work.
The DCC model addresses the joint issues of positive definiteness and parameter
dimensionality by specifying the conditional covariance matrix as

17 For this bivariate model, the matrix determinant is |𝐻𝑡 | = ℎ11𝑡ℎ22𝑡 − ℎ2
12𝑡 . The matrix inverse is

𝐻−1
𝑡 =

1
ℎ11𝑡ℎ22𝑡 − ℎ2

12𝑡

(
ℎ22𝑡 −ℎ12𝑡

−ℎ21𝑡 ℎ11𝑡

)
.

18 In matrix notation, the covariance matrix is required to be positive definite.
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𝐻𝑡 =

(
ℎ11𝑡 ℎ12𝑡
ℎ12𝑡 ℎ22𝑡

)
= 𝑆𝑡𝑅𝑡𝑆𝑡 , (18)

where 𝑆𝑡 is a diagonal matrix of conditional standard deviations on the diagonal and
zero elsewhere, and 𝑅𝑡 is a conditional correlation matrix with a unity diagonal and
correlations in the off-diagonal terms. The 𝑆𝑡 matrix is obtained by estimating 𝑁

univariate GARCH models for the returns on each asset. The 𝑅𝑡 matrix is constructed
by defining

𝑅𝑡 = diag(𝑄𝑡 )−1/2𝑄𝑡diag(𝑄𝑡 )−1/2, (19)

with the matrix 𝑄𝑡 evolving according to the GARCH specification

𝑄𝑡 = (1 − 𝜆1 − 𝜆2)𝑄 + 𝜆1𝑧𝑡−1𝑧
′
𝑡−1 + 𝜆2𝑄𝑡−1. (20)

Equation (19) ensures that the positive definiteness property is satisfied, while by
choosing the parameters 𝜆1 and 𝜆2 as scalars ensures the parameter dimensionality
issue is addressed as there are just two parameters capturing all covariance dynamics
regardless of the dimension 𝑁 .

Estimation of the DCC parameters of the MGARCH model is achieved by maxi-
mum likelihood methods. For two assets, 𝑁 = 2, and assuming bivariate normality,
the log likelihood function is given by

log 𝐿 (𝜃) = − log 2𝜋−1
2

1
𝑇

𝑇∑︁
𝑡=1

log
���� ℎ11𝑡 ℎ12𝑡
ℎ12𝑡 ℎ22𝑡

����−1
2

1
𝑇

𝑇∑︁
𝑡=1

(
𝑢1𝑡
𝑢2𝑡

) ′ (
ℎ11𝑡 ℎ12𝑡
ℎ12𝑡 ℎ22𝑡

)−1 (
𝑢1𝑡
𝑢2𝑡

)
,

where 𝑢1𝑡 and 𝑢2𝑡 are explicit functions of the observed data as defined in (15),
and 𝐻𝑡 is defined in (18). Note that 𝜃 is expanded to include all of the MGARCH
parameters, including any additional parameters in the means of 𝑟1𝑡 and 𝑟2𝑡 . This
is a nonlinear problem that requires a numerical algorithm. Most software packages
routinely implement this estimation.

Maximum likelihood estimation of the model is illustrated using monthly per-
centage log returns on 𝑁 = 2 United States industry portfolios, consumer and
manufacturing, for the period January 1962 to December 2022. The DCC model is
estimated using both the multivariate normal and multivariate standardised Student
𝑡 distributions with the parameter estimates reported in Table 4.

Figure 8 plots the predicted conditional covariance of the consumer and manufac-
turing portfolios obtained from the DCC model with Student 𝑡 errors. The adjustment
parameters reported in Table 4 are statistically significant suggesting that there is
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Table 4 Coefficient estimates for DCC models based on the normal and Student 𝑡 distributions. The
data are percentage monthly log returns on the consumer and manufacturing industry portfolios.
The sample period is January 1962 to December 2022. Standard errors are in parentheses.

Distribution Asset Mean Variance Covariance DOF
𝜇 𝛼0 𝛼1 𝛽1 𝜆1 𝜆2 𝜈̂

Normal Consumer 1.042 1.117 0.118 0.837
(0.149) (0.353) (0.021) (0.028) 0.081 0.866

Manufacturing 0.993 0.955 0.102 0.852 (0.018) (0.032)
(0.139) (0.313) (0.019) (0.026)

Student 𝑡 Consumer 1.099 1.221 0.115 0.838
(0.143) (0.453) (0.026) (0.035) 0.077 0.885 6.395

Manufacturing 1.039 1.062 0.090 0.855 (0.017) (0.025) ( 1.043)
(0.132) (0.389) (0.021) (0.033)
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Fig. 8 Estimated dynamic conditional covariance of the consumer and manufacturing portfolios
obtained from the DCC model. Estimates are obtained from the DCC model with Student 𝑡
distributed errors. The sample period is January 1962 to December 2022.

prima facie evidence to support the claim that the covariance are time varying.19 This
conclusion is mirrored by the plot of the evolution of the conditional correlation.

19 Testing for dynamic correlation in multivariate GARCH models is discussed in (Harvey and
Thiele, 2016; Silvennoinen and Teräsvirta, 2016).
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8 Multivariate Models of Returns, Prices and Dividends

An important class of multivariate models in finance is the vector autoregression
(VAR) wherein each variable in the system is expressed as a linear function of its
own lags as well as the lags of all of the other variables in the system. This type of
model was first explored systematically in a pioneering article by Mann and Wald
(1943) and reinvigorated by the work of Sims (1972). One limitation of VARs is that
they can potentially fail to capture long-run relationships between the variables in the
system. Vector error correction models (VECMs) impose cross-equation restrictions
on the parameters of a VAR that allow these long-run or equilbrium relationships to
be captured.

8.1 Vector autoregressions

Consider a bivariate model for log equity returns, 𝑟1𝑡 , obtained in the now familiar
way of applying the first difference filter to the log of equity prices and log dividend
returns, 𝑟2𝑡 , obtained by applying the first difference filter to the log of dividend
payments. The VAR is written as

𝑟1𝑡 = 𝛿1 + 𝛾11𝑟1𝑡−1 + 𝛾12𝑟2𝑡−1 + 𝑣1𝑡 (21)

𝑟2𝑡 = 𝛿2 + 𝛾21𝑟1𝑡−1 + 𝛾22𝑟2𝑡−1 + 𝑣2𝑡 , (22)

where 𝑣1𝑡 and 𝑣2𝑡 are disturbance terms capturing unexplained movements in 𝑟1𝑡 and
𝑟2𝑡 , respectively, and the 𝛾𝑖 𝑗 are unknown parameters. In this model current changes
in the variables are functions of delayed own effects and previous movements in the
other variable in the system. Self evidently the VAR model is easily extended to
allow for returns on multiple assets, and longer lag structures.

An important feature of the model is that it can be used to study the effects of
shocks in 𝑟1𝑡 arising from 𝑣1𝑡 , and shocks in 𝑟2𝑡 arising from 𝑣2𝑡 , on current and
future movements in the two returns. A further property of the model is that the
shocks do not need to be independent as the covariance matrix of the two shocks is
given by

𝐻 = E
(
𝑣𝑡 𝑣

′
𝑡

)
=

(
ℎ11 ℎ12
ℎ21 ℎ22

)
, (23)

where ℎ11 and ℎ22 are the variances of the shocks, and ℎ12 = ℎ21 is the covariance
between the two shocks.
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Estimation of the parameters of the VAR in equations (21) to (23) is accomplished
using maximum likelihood methods based on specifying a multivariate distribution
for 𝑣𝑡 = (𝑣1𝑡 , 𝑣2𝑡 )′. As in Section 7, consider the bivariate case of two assets, 𝑁 = 2,
where 𝑣𝑡 follows a bivariate normal distribution with mean zero and covariance
matrix 𝐻 given by

𝑓 (𝑣𝑡 ) = (2𝜋)−1 |𝐻 |−1/2 exp(−1
2
𝑣′𝑡𝐻

−1𝑣𝑡 ). (24)

The difference between this equation and the bivariate normal distribution given in
(17) is that 𝐻 is now no longer time varying. The log likelihood function is

log 𝐿 (𝜃) = − log 2𝜋 − 1
2

log
���� ℎ11 ℎ12
ℎ21 ℎ22

���� − 1
2

1
𝑇

𝑇∑︁
𝑡=1

(
𝑣1𝑡
𝑣2𝑡

) ′ (
ℎ11 ℎ12
ℎ21 ℎ22

)−1 (
𝑣1𝑡
𝑣2𝑡

)
, (25)

where 𝑣1𝑡 and 𝑣2𝑡 are explicit functions of the data and are defined in (22). The
parameter vector is

𝜃 = (𝛿1, 𝛿2, 𝛾11, 𝛾12, 𝛾21, 𝛾22, ℎ11, ℎ22, ℎ12) .

and the log likelihood function is to be maximised with respect to 𝜃 in the usual
manner. 20

8.2 VECM Models

While the VAR is a useful multivariate model to analyse short-run dynamics, it
does not necessarily capture long-run behaviour arising from potential relatioships
between the variables in the system. Figure 9 shows the logarithms of monthly equity
prices, 𝑝𝑡 = log 𝑃𝑡 , and the log of monthly dividend payments, 𝑑𝑡 = log 𝐷𝑡 , over
the period January 1962 to December 2022. It is also apparent from Figure 9 that
although equity prices and dividends are nnstationary, there is a strong comovement
in the two series over time.

The observation that prices and dividends are linked is consistent with the present
value model of equity prices in which price is related to the future stream of dividends
associated with the asset. This long-run relationship is expressed as

20 In fact, the maximum likelihood estimation of the VAR parameters reduces to applying ordinary
least squares to each equation of the VAR separately. This property represents the multivariate least
squares analogue of the result given in footnote 3.
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Fig. 9 Time series plots of the logarithms of monthly United States equity prices (solid line) and
dividend payments (dashed line) for the period January 11962 to December 2022.

𝑝𝑡 = 𝛽0 + 𝛽𝑑𝑑𝑡 + 𝑢𝑡 , (26)

where 𝑝𝑡 is the log equity price, 𝑑𝑡 is the log dividend, 𝑢𝑡 is a disturbance term
and 𝛽0 and 𝛽𝑑 are unknown parameters. This relationship is clearly illustrated in
Figure 10. Superimposed on the scatter is the best fit of equation (26). What this
diagram shows is that any deviation from the relationship encapsulated by the linear
model is stationary. The natural conclusion is that the disturbances 𝑢𝑡 are transient
shocks and the system reacts in a way so as to restore equilibrium after the impact
of a shock. It is this tendency for changes in log equity prices (log equity returns,
𝑟1𝑡 ) and changes in log dividends (log dividend returns, 𝑟2𝑡 ) to restore equilibrium
that is missing from the VAR model. In econometric parlance, this represents a
cointegrating relationship where 𝛽0 and 𝛽𝑑 are the cointegrating parameters. If there
were no cointegration between the variables the scatter diagram would have points
much more evenly scattered about the two dimensional plane. Cointegration has the
effect of an attractor amongst nonstationary series, in the present case compressing
equity prices and dividends close to a one dimensional relationship. This suggests
that for cointegration to be satisfied 𝑝𝑡 and 𝑑𝑡 must be nonstationary while 𝑢𝑡 is in
fact stationary.
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Fig. 10 Scatter plot of the logarithms of monthly United States equity prices and dividends for the
period January 1962 to December 2022, with the best fitting estimate of equation (26) superimposed.

To understand the forces at work within the present value model in response to
a shock 𝑢𝑡−1 at time 𝑡 the dynamics of adjustment need to be specified. The change
in the log equity price, 𝑝𝑡 − 𝑝𝑡−1 = 𝑟1𝑡 and log dividends 𝑑𝑡 − 𝑑𝑡−1 = 𝑟2𝑡 , may be
represented by the following two adjustment equations

𝑝𝑡 − 𝑝𝑡−1 = 𝛿1 + 𝛼1𝑢𝑡−1 + 𝑣1𝑡

𝑑𝑡 − 𝑑𝑡−1 = 𝛿2 + 𝛼2𝑢𝑡−1 + 𝑣2𝑡 ,

or alternatively, by using equation (26),

𝑝𝑡 − 𝑝𝑡−1 = 𝛿1 + 𝛼1 (𝑝𝑡−1 − 𝛽0 − 𝛽𝑑𝑑𝑡−1) + 𝑣1𝑡 (27)

𝑑𝑡 − 𝑑𝑡−1 = 𝛿2 + 𝛼2 (𝑝𝑡−1 − 𝛽0 − 𝛽𝑑𝑑𝑡−1) + 𝑣2𝑡 , (28)

where the 𝑣𝑖𝑡 are disturbance terms capturing additional movements in prices and
dividends unrelated to the shock captured in 𝑢𝑡 . Consider the effect of a positive
shock, 𝑢𝑡−1 > 0, that moves the system to a point above the solid line in Figure
10. Given that equity prices need to adjust downwards in this scenario to restore
equilibrium, the adjustment parameter 𝛼1 satisfies the restriction 𝛼1 < 0. Similarly,
dividends need to increase to restore equilibrium in this scenario, the adjustment
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parameter 𝛼2 satisfies the restriction 𝛼2 > 0. The relative strength of the movements
in equity prices and dividends is determined by the relative magnitudes of the adjust-
ment parameters 𝛼1 and 𝛼2. The adjustment parameters 𝛼1 and 𝛼2 are known as the
error correction parameters as they control the relative strengths of the adjustments
in the dependent variables with respect to the (lagged) equilibrium error.

The model represented by equations (27) and (28) is known as a vector error
correction model (VECM). Once additional short-run dynamics are allowed the
model may be respecified as

Δ𝑝𝑡 = 𝛿1 + 𝛼1 (𝑝𝑡−1 − 𝛽0 − 𝛽𝑑𝑑𝑡−1) + 𝛾11Δ𝑝𝑡−𝑖 + 𝛾12Δ𝑑𝑡−1 + 𝑣1𝑡

Δ𝑑𝑡 = 𝛿2 + 𝛼2 (𝑝𝑡−1 − 𝛽0 − 𝛽𝑑𝑑𝑡−1) + 𝛾21Δ𝑝𝑡−𝑖 + 𝛾22Δ𝑑𝑡−1 + 𝑣2𝑡 .

The strength of these additional dynamics are captured by the 𝛾11, 𝛾12, 𝛾21 and 𝛾22

parameters which measure the magnitude and direction of influence of the lagged
dependent variables. The multivariate nature of a VECM means that all lagged
dependent variables appear in both equations.

The model can be written in terms of log returns as

𝑟1𝑡 = 𝛿1 + 𝛼1 (𝑝𝑡−1 − 𝛽0 − 𝛽𝑑𝑑𝑡−1) + 𝛾11𝑟1𝑡−1 + 𝛾12𝑟2𝑡−1 + 𝑣1𝑡 (29)

𝑟2𝑡 = 𝛿2 + 𝛼2 (𝑝𝑡−1 − 𝛽0 − 𝛽𝑑𝑑𝑡−1) + 𝛾21𝑟1𝑡−1 + 𝛾22𝑟2𝑡−1 + 𝑣2𝑡 , (30)

making it obvious that the VECM is simply a VAR model of log returns with an
added term that imposes the long-run equilibrium on the system in the form of
cross-equation restrictions.

The log likelihood function of the bivariate VECM is given by

log 𝐿 (𝜃) = − log 2𝜋 − 1
2

log
���� ℎ11 ℎ12
ℎ21 ℎ22

���� − 1
2

1
𝑇

𝑇∑︁
𝑡=1

(
𝑣1𝑡
𝑣2𝑡

) ′ (
ℎ11 ℎ12
ℎ21 ℎ22

)−1 (
𝑣1𝑡
𝑣2𝑡

)
, (31)

where 𝑣1𝑡 and 𝑣2𝑡 are the disturbances in the VECM equations (29) and (30). Despite
the nonlinearity introduced by the long-run restrictions, Johansen (1988) showed that
a convenient non-iterative maximum likelihood algorithm is available to maximise
the log likelihood function. For this reason the maximum likelihood estimator is
often referred to as the Johansen estimator, although it is nonetheless generically a
maximum likelihood estimator. Furthermore, it is a special case of what is known
as a reduced rank regression because of the linear cointegrating linkage factor
(𝑝𝑡−1 − 𝛽0 − 𝛽𝑑𝑑𝑡−1) that appears as a restriction in the two equations (29) and
(30). This factor reduces the effective nonstationarity of the individual variables
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{𝑝𝑡−1, 𝑑𝑡−1} to accord with the stationarity of the differenced endogenous dependent
variables {Δ𝑝𝑡 ,Δ𝑑𝑡 } and the equation errors, thereby balancing the fitted equations.
Such multivariate linear regression models that rely on reduced rank restrictions
were originally examined in the work of Anderson (1951). The primary advance
of the econometric literature in the context of such restricted multiple time series
models was the rigorous treatment of nonstationarity that opened up the development
of a valid asymptotic theory of estimation and inference (Phillips and Durlauf, 1986;
Phillips, 1988a,b; Johansen, 1988).

9 Conclusion

The teaching perspective adopted throughout this chapter is that maximum likeli-
hood represents a useful framework in which to achieve a synthesis of specification,
estimation and testing in financial econometrics. In our view this framework enables
a good blend of data description, finance theory, introductory econometric method-
ology, and empirical implementation that is most likely to engage the interest of
students with little or no finance or econometric backgrounds, while at the same
time providing just enough technical detail to maintain the attention of students with
greater background strength.

With this simple beginning where might one look to build a second semester
that offers more advanced material? Evidently, this first course adopts an intuitive
approach that mixes ideas and methods with data and empirical implementation. So
there is much detail to be provided if a rigorous foundation is to be built. These
additions could be achieved by working backwards to strengthen technicalities or by
moving forward in a way that introduces new concepts and material that enhances
motivation. Keeping with a maximum likelihood approach, one nice extension is to
consider order statistics of returns and how these lead naturally to extreme value
distributions, giving new insights about extreme returns and introducing a group
of useful new distributions. It is then a short step forward to copulas and extreme
return linkages. With these advances toward the financial frontier, some of the
earlier topics from the first course can be explored in more detail. Multivariate
GARCH modeling and cointegration methods can be revisited at a more general
and higher technical level, opening up the vast arena of econometric analysis and
treatment of nonstationarity complete with cointegration testing in both VAR and
triangular system models. Beyond these topics and closer to the frontiers of financial
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econometrics as well as the financial industry itself lies a wealth of new models
arising out of market microstructure considerations, many aspects of which are
treatable within the maximum likelihood framework.
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