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Abstract

New limit theory is provided for a wide class of sample variance and covariance functionals
involving both nonstationary and stationary time series. Sample functionals of this type
commonly appear in regression applications and the asymptotics are particularly relevant
to estimation and inference in nonlinear nonstationary regressions that involve unit root,
local unit root or fractional processes. The limit theory is unusually general in that it
covers both parametric and nonparametric regressions. Self normalized versions of these
statistics are considered that are useful in inference. Numerical evidence reveals interesting
strong bimodality in the finite sample distributions of conventional self normalized statistics
similar to the bimodality that can arise in t-ratio statistics based on heavy tailed data.
Bimodal behavior in these statistics is due to the presence of long memory innovations and
is shown to persist for very large sample sizes even though the limit theory is Gaussian
when the long memory innovations are stationary. Bimodality is shown to occur even in
the limit theory when the long memory innovations are nonstationary. To address these
complications new self normalized versions of the test statistics are introduced that deliver
improved approximations that can be used for inference.

JEL Classification: C13, C22.
Key words and phrases: Bimodality, Endogeneity, Limit theory, Local time, Nonlinear func-
tional, Nonstationarity, Sample covariance, Zero energy.

1 Introduction

Parametric and nonparametric regressions with nonstationary data have attracted considerable
recent attention because of the prevalence of nonstationary time series in applied work across
many different disciplines and the need for asymptotic theory to support methods of estimation
and inference in the presence of nonstationarity. Much of this work has focussed on cointegrating
regression where linkages between nonstationary processes and stationary innovations play an
integral role in the notion of cointegration and its various extensions to fractional processes
involving long memory time series. The literature in this area is now voluminous, as discussed
in recent papers (e.g., Duffy and Kasparis (2021); Wang et al. (2021)). Readers are referred to
Park (2014) and Tjgstheim (2020) for partial overviews of the field of nonlinear cointegration

*Wang acknowledges support from the Australian Research Council (Grant No. DP170104385). Phillips
acknowledges research support from the NSF (Grant No. SES 18-50860) and a Kelly Fellowship at the University
of Auckland.



studies that cover many of the relevant contributions and empirical applications. In almost
all of this literature a key role in the asymptotic development is played by sample covariance
functionals that involve (possibly nonlinear functions of ) nonstationary processes and stationary
time series. Sample covariances of this type take similar but subtly different forms in parametric
and nonparametric regressions. They typically appear in signal functions and score functions
whose asymptotic behavior is critical in determining the limit theory needed for estimation,
inference and specification testing in such regressions. Prototypical forms of these functionals
for nonparametric and parametric cases are shown below in (1.3) and (1.4) by Ry, and Ra,(6°).
The goal of the present paper is to extend existing results on such functionals, accommodate
these two forms in a general limit theory, and develop self normalized statistics that will be
useful for inference in regression. We open the discussion with three illustrative examples.

In the nonparametric case, simple nonlinear nonstationary regressions typically have the
form

yk = g(xr) tug, k=1,---,n, (1.1)

with an I(1) regressor generated by the partial sum model xp = xp_1 + & with weakly de-
pendent and possibly correlated innovations {u, &}, thereby allowing for endogeneity. In the
nonparametric case, the nonlinear cointegrating function g(xx) may be estimated at some point
x by local level kernel regression in the usual manner via the criterion

Qnnlg) = ZKh(ZEk — ) (yk — 9(21))?, (1.2)

k=1

giving §(r) = argmingQ, n(g) = Zfiif';(i’(f:k_;;) where Kj(s) = K (%), K(-) is a nonnegative

real kernel function and the bandwidth parameter h = h,, — 0 as n — oco. The limit theory of
g(z) then depends on the behavior of suitably normalized forms of the two sample functionals

n

Ri, = ZKh(a:k —x) and Ry, = ZKh(aCk — x)uy, (1.3)
k—1 k—1

where Rjp, is a sample signal process and Rs, is a sample score process, both of which are
nonlinear in the nonstationary regressor xjp. Test statistics typically also require estimation of
the innovations using the regression residuals 4, = v — §(zx) and a sample functional such as
Rs, = > ¢ K2 (wp — 2)43. Full development of a limit theory for estimation and inference
concerning the function g(-) in (1.1) requires joint convergence results for suitably normalized
forms of sample functionals such as (Ry,, Ron, R3n). In applications allowance is typically made
for endogeneity of the regressor xy in the regression (1.1). Importantly, as shown in the nonlinear
cointegration study of Wang and Phillips (2009b), such nonparametric nonstationary regressions
do not require the use of instrumental variables and do not suffer from ill-posedness, in contrast
to stationary regressions and there is, in contrast therefore, no need for regularization.

In the parametric case, the nonlinear cointegrating function has a specific functional form
g(xr) = g(zg;0) that depends on some unknown parameter vector § € © C RP, where © is
a compact subspace of RP for some finite p. The nonlinear least squares estimator is then
§(z) = g(x;0) with § = argmingeg@n(0) where Qn(0) = >°1 | (yx — g(zx;0))?. In this case, the
limit theory for 6 depends on normalized versions of the sample functionals

Rin(0°) = GRGY and Ry (6°) = > Gluy, (1.4)
k—1 k—1



where G = 9g(zy;60°)/00 and €° is the true value of §. As in the nonparametric case, test

statistics usually depend on regression residuals u; = yx — g(xx; 6), leading to sample functionals
such as Rs,(0) = 7, GzGi’az.

The sample variance and covariance functionals in (1.3) and (1.4) are closely related but
differ because of the critical role played by the presence of the bandwidth sequence A in the
functions of (1.3), making a general theory difficult. Asymptotics for regression estimation and
inference in such cases have therefore been studied in past research separately and often in
special cases.! More complex models that include spurious nonlinear regression (Phillips, 2009;
Tu and Wang, 2022) and functional coefficient (FC) nonstationary regressions involve similar
sample functionals for which asymptotic theory is also needed to facilitate empirical work.

FC regressions are of particular interest in applications because covariate dependence or
time variation in the regression coefficients is often of interest in applications. Such models
with nonstationary regressors were originally considered by Xiao (2009)?. It was later shown
in Phillips and Wang (2023) that important subtleties arise in such FC regressions that affect
the limit theory in material ways because nonstationarity in the regressors amplifies the impact
of bias in nonparametric FC regression. Models of this type are typically linear in (possibly
multivariate) regressors x and take the form

Yk = Q(Zk)/ﬂjk + Uf;, k= ]-7 R (15)

with coefficients 0(zx) that are smooth functions of a covariate z; that may be stationary or
nonstationary. In FC models of this type estimation of the coefficient functions 6(-) at some
point z in the domain of z; necessarily involves the three sample functionals

Ry, = Zkal‘?gKh(Zk —2),Rsp, = ZKh(zk — 2)ug, Ren = Zxkx;[ﬁ(zk) —0(2)|Kp (2 — 2)
k—1 k—1 k—1
(1.6)

where Rg, is an additional sample covariance bias functional that depends on the regressors, the
kernel function, and bias effects that need further decomposition to fully resolve the asymptotic
theory.?

These examples motivate a general formulation that is relevant in many different applications.
To fix ideas, suppose an observable time series x; is a scalar nonstationary process, either
integrated (1), near I(1), or a similar time series with fractional process innovations, as detailed
in what follows, and wy = (w1, ..., wek) is a sequence of stationary random vectors. The paper is
concerned with sample quantities S, of x; and w;. defined by sample sums of nonlinear functions
of xp, and wy that take the general form

Sn= > flar/h,wy),
k=1

where h = h,, > 0 is a sequence of positive constants indexed by the sample size n and f(x,y)
is a real function on R'*?. The partial sum S,, is a scalar nonlinear functional of multivariate

!See, for instance, Phillips and Park (1998); Park and Phillips (1999, 2000, 2001); Karlsen and Tjostheim
(2001); Wang and Phillips (2009a,c); Gao and Phillips (2013); Li et al. (2016); Wang and Phillips (2016); Wang
et al. (2021)

2See also Cai et al. (2009); Sun and Li (2011); Sun et al. (2016); Liang et al. (2023).

3As explained in Phillips and Wang (2023), the bias effect Rs, has both a ‘deterministic’ component
> zexy)E€sr and a ‘random’ component (3" | ki )nse where £s, = [B(zk) — B(2)]Kn(zk — z) and
ngr = &pr — E€gr. The presence of these two components influences the limit theory, rates of convergence,
and bandwidth choice in important ways. Readers are referred to Phillips and Wang (2023) for details.



arguments that involve both stationary and nonstationary processes. Such functionals play
a dominant role in the development of the theory of estimation and inference in nonlinear
cointegrating regression, where the regressor is usually a nonstationary time series, including
those with autoregressive unit roots and local unit root properties. In such regression contexts,
a prominent example of S, has the form of a sample covariance function that involves both the
nonstationary regressor and the equation innovations. In this case, two covariance functions
are most typical, one of the form Sy, = > }_; f(@k, wog, ..., war)wix and the other of the form
Son = Y p_q f(zr/h)wik, where an auxiliary sequence h = hy, may be present that depends on
the sample size, as in nonparametric kernel regression discussed above.

As is now well known in the literature (see, for instance, Park and Phillips (2001); Karlsen
and Tjostheim (2001); Wang and Phillips (2009a,c); Chan and Wang (2015); Dong and Linton
(2018); Duffy (2020); Hu et al. (2021) and the references therein), covariance expressions such
as S1, occur in nonlinear parametric cointegrating regression and expressions such as Sa,, with
the auxiliary sequence h, arise naturally in Nadaraya-Watson estimation where f(x) is a kernel
function and h — 0 is a bandwidth used in the nonparametric regression.

It transpires that the limit behavior of S, depends on the value of the integral ffooo g (s)ds,
where g(z) = E f(z,w;). When [*°_g(s)ds # 0, it was shown in Wang et al. (2021) that upon
suitable normalization S5, satisfies

o0
d—nSn —D / g(x)dx Lg(1,0), (1.7)
nh oo
provided d,,/nh — 0 and d,,/h — oo, with d? = var(z,) and where Lg(t,s) is the local time
of a stochastic process G(t) at the spatial point s, as defined in the following section. Result
(1.7) was established in quite general settings, generalizing and improving previous related work
on convergence to local time given by Akonom (1993); Borodin et al. (1995); Phillips and Park
(1998); Jeganathan (2004); Wang and Phillips (2009a, 2016); Duffy (2016). This fundamental
limit result enabled the investigation of asymptotic theory for latent variable nonparametric
cointegrating regression in which some variables were observed with measurement error.

The present work is concerned with developing a limit theory for the sample function S, in
the case where ffooo g (s) ds = 0, which is commonly known as the zero-energy case. Towards this
end, in some specialized cases such as f(x,y) = m(z) or f(x,y) = m(z)y where m(z) is bounded
and integrable, the asymptotic behaviour of S, is known and has been considered in Wang and
Phillips (2009¢, 2011), with the attendant requirement that h — 0, and in an unpublished
manuscript by Jeganathan (2008) (with ~ = 1). This paper provides a unified extension of
these existing results that encompasses the two cases where h = 1 and h — 0, together with
the setting of general functionals f(z,y) rather than the specialized forms f(z,y) = m(z)y or

In unifying the two standard limit cases where h = 1 and h — 0, our work might be
compared with Gozalo and Linton (2000) who showed how to nonparametrically encompass a
parametric model by using a local nonlinear least squares criterion that allows for recentering a
nonparametric regression on a specific parametric model. In the present context, that approach
would involve replacing (1.2) with the criterion Q, p(z,a) = > p_; Kn(zr — z)(yx — m(zy, a))?
for some parametric function m(zy,«), leading to the estimate g(x) = m(z,&) where & =
argmin, @, p(x,a). When the parametric form m(z;«a) is correct or nearly correct around the
point x, there is an advantage to using a wider bandwidth A in such a regression; and, if the
parametric model m(x; ) were correct almost everywhere, there would be an advantage in
letting h — oo rather than h — 0. The limit theory for this approach in Gozalo and Linton



(2000) relies on an IID setup. Extending that approach to the present setting and exploring
possible advantages of parametric information in local nonparametric nonlinear regression with
nonstationary data are interesting lines of future research.

It should be mentioned that the zero energy case where the functional | fooo g (s)ds = 0 [recall
that g(x) = Ef(z,w)] arises naturally in regression applications. For instance, in nonparametric
cointegrating regression, the development of a limit theory for normalized versions of functionals
such as the sample covariance So, is vital for both estimation and inference. Thus, when
x is an I(1) regressor and wiy is an error process, use of the natural centralizing condition
Ewi; = 0 in turn implies that [ g (s)ds = [* f(x)dzEwi; = 0. Such situations arise even
in complex settings where endogeneity is present - see Wang and Phillips (2009¢, 2011, 2016)
for details and econometric applications. Similarly, in regression with nonstationary nonlinear
heteroskedasticity when nonstationary volatility is present in the errors [with u; = f (x4, wy), say],
the zero energy condition ffooo g (s) ds = 0 where again g(z) = Ef(x,w;) is usually required for
the development of an asymptotic theory. In this case, the use of general functionals such
as f(x,y) in the sample covariance limit theory enables a full representation of nonstationary
nonlinear volatility in the regression errors.

The remainder of the paper is organized as follows. Section 2 provides the main limit theory
for nonlinear functionals of non-stationary time series and a series of remarks that analyze the
findings and connect to later discussion. Section 3 provides numerical evidence which reveals
an intriguing bimodality for self-normalized statistics that arises in finite samples and that can
persist in extremely large samples even though the limit theory is Gaussian. Section 4 discusses
these findings, explains the slow convergence, and shows how bimodal limit theory does arise
in the presence nonstationary long memory innovations. Alternative self-normalized statistics
are considered that substantially improve finite sample performance. Concluding remarks are
in Section 5. Proofs of the main results are given in Section 6 and supporting propositions and
lemmas that play key roles in proving the main results are in Section 7. Proofs of the lemmas
are in the Appendix.

Throughout the paper = denotes weak convergence of probability measures with respect to
the uniform topology (see, for instance, Billingsley (1968)) and — p is distributional convergence
in Euclidean space. For a vector A = (Ay, .., Ag), we define ||A|| = |A1]| + ... + |A4|. Constants
are represented by C, Cq, (s, ..., which may differ in different locations.

2 Main Results

2.1 Assumptions and Preliminaries

Let \; = (€&,¢€;), i € Z be a sequence of iid random vector innovations with E|[\g||> < co. Let
& = Z;io ¢jep—; be a linear process where the coefficients ¢y, k > 0, satisfy ¢g # 0 and one of
the following conditions:

LM: ¢, ~ k™ p(k),1/2 < p < 1 and p(z) is a function that is slowly varying at oco®;

SM: > 2 |ok] <ooand ¢ =777 dr # 0.

In the following development, observable nonstationary time series xj, are generated by the
linear process innovations & as detailed in the near unit root process given in A1(i) below.

“That is, p(z) is measurable function from (0, 00) to (0,00) so that, for all @ > 0, p(az)/p(z) — 1 as 2 — oo,
e.g., a positive constant, log(z) or log®(z) for any real b > 0



The inclusion of additional innovations e; in A; is useful for specifiying (possibly correlated)
model disturbances, as in the generating mechanisms used in simulations later in the paper
in Sections 3 and 4. For the development of the asymptotic theory in our main results, the
following assumptions are made about the components of S, = >, f (zx/h, wy) .

Al (i) 2k = ppxp_1 + &, where 20 =0, p, = 1 — yn~! for some constant vy > 0;
(i) Ee; =0 and [ |Ee|dt < oo .

A2 (a) wg = (Wig, ..., wax), where w, = Ti(Ag, ..., Ag—m, ) for some fixed mg > 0 and I';(.), i =
1,2,...,d, are real measurable functions of their respective components;

(b) E||w;||™>{248} < oo, where § is given in A3(I) below.

A3 (I) A bounded function T'(z) exists such that, for some 8 > 0,

oo

F@y)| < T+’ and / (1+ |2 T(2)de < oo;

(I1) ffooo g(x)dz = 0, where g(z) = E f(x,w;);
(1) [ E|f(z,w1)|dz < oo, where f(z,y) = [°°_ e f(t,y)dt.

Assumption A1(i) accommodates near integrated time series xj that are derived from ei-
ther short memory (under SM) or long memory (under LM) innovations, thereby covering
a large class of nonstationary time series. The extra distributional assumption A1(ii) is a
smoothness condition requiring integrability of the characteristic function Ee*¢! that is often
useful in establishing convergence to a local time process. The condition can be relaxed to
lim supjy| .00 [t|*Ee®€t| < oo for some a > 0, but is generally difficult to eliminate completely in
the development of limit theory for nonlinear cointegrating regression. The zero initialization
xo = 0 is assumed for convenience to avoid notational clutter and can be considerably relaxed,
as is well known from earlier research. In particular, all the main results still hold if instead
zo = op(dy), where d2 = var(3>_p_; &) It is also well-known (see Wang et al. (2003), for
instance) that

a2 ~

n

g2 n3~2" p2(n), under LM,
01 ¢%n, under SM,

and 2 |¢) /dn = Z; on DI[0,1], where ¢, = m JoS a7 (@ + 1) *dx and

t
Zy = W(t)—i—'y/ e W (s)ds, t>0
0

B Bsp_,,(t), under LM,
W) = {Bl/g(t), under SM,

and By (t) is fractional Brownian motion with Hurst exponent H and B; /Q(t) is standard Brow-
nian motion. In this event, Z; is a fractional Ornstein-Uhlenbeck process, having a continuous
local time process which we denote by Lz(t,z). As in Geman and Horowitz (1980), the local
time process Lz(t,z) is defined as

e—0 2¢

1 t
Ly(t,x) = lim/I(\Zr—xge)dr. (2.1)
0

6



These notations will be used subsequently without further explanation.

Assumption A2 ensures that wg, & > 1, is a sequence of stationary random vectors. No
restriction is imposed on the relationship between €, and e of A\y = (e, ex)’, which enables
the results established here to be widely applicable in nonlinear cointegrating regression models
with endogeneity, where the components ¢; and e; drive regressor time series and regressor
errors, respectively. The extension of A2 to include linear process formulations is possible if the
functional f(x,y) has a certain structure still allowing for endogeneity. We refer to Corollary
2.1 for further details on this extension.

Finally, Assumption A3 provides conditions on the function f(z,y). These, together with
A2(Db), ensure that,

[ B sef e < 0Bl [ @<, (2)

—00

the Fourier transform f(t,y) = 75 et f(x,y)de is well defined, sup, g(z) < oo, [ |g(x)|dx <
JE|f(z,wi)|dz < oo, and [* (1 + |z])E|f(2,w1)|dz < oco. Furthermore, it follows from
Ef(0,w1) = [*_E f(z,w)dz = 0 that

Ef(t,w)] < / |(eitr - I)Ef(m,wl)’ dr < C'min{1, [¢|}. (2.3)

— 00

On the other hand, using the inverse Fourier transformation, A3(III) ensures the representation
of f(x,wy), almost surely,

flx,wg) = 1 /OO e_mf(t,wk)dt. (2.4)

2 J_

These properties will be used in the main results that follow without further reference.

2.2 Asymptotic theory
Our main result is as follows.

Theorem 2.1. Suppose A1 — A3 hold. For any h = hy, — 0 satisfying nh/d, — oo, we have

[nt] d, [nt]

(% ZfQ(a?k/h,wk), (%)1/2 Zf(xkz/h?wk’)>

= (r2Lz(t,0), TNLY?(t,0)), (2.5)

on Dp2[0,1], where 72 = ffooo E f2(s,wy)ds, and N is a standard normal variate independent of
Lz(t,0) for0 <t <1.

If in addition v = 0, where v is used in A1 (i), and ffoooEﬂf(t,wo)(l + [Jw,||?) }dt < oo
for any r > 0, then

d [nt] a0\ /2 [nt]
(%3 2 (). (n) S )
k=1 k=1

= (2 Lz(t,0), 1 NLY?(t,0)), (2.6)
on Dp2[0,1] (recall Zy = W (t) when v = 0), where 78 = Go + 2322 | G, with
1 [ A A ,
G, = o E {f(s,wo)f(s, wr)e_wx"}ds
7r

—0o0



o

= | B w0+ o) Yy, (27)
—00

Remark 2.1. Different constants 7 and 71 appear in the second components of results (2.5)

and (2.6). In fact, as h — 0, we have

%Z > E{fn/hwi) f(ares/howig)} = o(L),

k=1 j=k+1

(see the proof of (7.2) in Proposition 7.3); but when h =1 and v =0
dn
;Zf(ﬂ«"kawk)f(xmpww) —p GjLz(1,0), (2.8)
k=1

for any j > 1 (see (7.5) of Proposition 7.4). These facts indicate that the influence of cross
product terms such as f(xy/h, wi) f(2k4;/h, Wi ;) on the variance of (%)1/2 Z,E’g (xx/h,wy)
is eliminated as h — 0, but this is not the case when h = 1. In consequence, different constants
appear in the two results (2.5) and (2.6). In addition to (2.6), the following joint convergence
holds in which, for any ¢ > 0,

[t [t

(dl Zf2($kvwk)7 %n Zf(xk,wk)f($k+lawk+l)a‘--7

k=1 k=1

d [nt] a0\ 12 [nt]
Fn > (@ we) £ Thogs Wheq) <:> Zf(évk,wk))
k=1 k=1

= (r2Lg(t,0), G Lz(t,0),..., Gy Lz(t,0), 1 NLY?(t,0)), (2.9)

on Dpe+1]0, 1]. The proof of (2.9) involves only minor additions to that of (2.6) and the details
are omitted.

Remark 2.2. In special cases where f(z,y) = K(z)y (with K(z) bounded and integrable) and
f(z,y) = K(z) (with [ K(z)dz = 0 and K (z) bounded and integrable), a similar result to (2.5)
has been considered in Wang and Phillips (2009¢) and Wang and Phillips (2011), respectively,
and a similar result to (2.6) can be found in Jeganathan (2008). Theorem 2.1 provides a unified
generalization of these existing results to functional limit theorems. Our proof makes use of the
methodology developed in Wang and Phillips (2009¢), which seems simpler than that used in
Jeganathan (2008).

Remark 2.3. The quantity mg given in A2 (a) is set to be a fixed constant, but it can be
chosen as large as required in applications. Further, careful examination the proof reveals that
the result continues to hold when my = m,, — oo provided the expansion rate is slow enough.
Moreover, when f(x,y) = K(x)y, the stationary component wy, in Theorem 2.1 can be extended
to include linear processes and endogeneity, as the following corollary shows, thereby covering
regression models with errors u; and regressors x; that allow for endogeneity.

Corollary 2.1. In addition to A1, suppose that

(a) K(z) is a bounded continuous function satisfying [ K(x)dz < oo and [ |K (z)|dz < oo,
where K (z) = [ K (s)ds;



(b) u = >2720%j Ak—j, where EA; = 0, E|[A1|[* < oo and the coefficient vector ), =
(w1, Y2) satisfies 3257 o k(|vik] + |ax|) < 0o and 37571y # 0.

For any h = h,, — 0 satisfying nh/d, — oo, we have

dn n dn 1/2 n
(% ;KQ(xk/h)ui, <nh> ;K(l’k/h) Uk:)
—p (F2Lz(1,0), FNLJ*(1,0)), (2.10)

where 72 = [ K?(s)dsEui and N is a standard normal variate independent of Lz(1,0).
If h =1 and in addition v = 0, where v is used in A1 (i), then

d, & d, d \"?* &
—p (F2Lz(1,0), 7 Lz(1,0), TlNLl/Q(l,O)), (2.11)

where, for some M = M,, — oo,

. n—j
jn—ZK2 Ty, uk+2 ZE( ) ZK (z1) K (Thoj) uk U g (2.12)

=1

takes the form of a heteroskedastic and autocorrelation consistent (HAC) estimator in which
E(ﬁ) is a lag kernel weight function such as the Bartlett triangular kernel (i) =1- m, and
where 72 = Go +23°°° | G, with

~ 1 o0

. oo
G, = 7 |K(s))|2IE{u0ure_Z$“}ds:/ K(y)E {uou, K(y + x,) } dy.

2.3 Self-normalized statistics and discussion

Result (2.10) coincides with (7.4) of Proposition 7.1 in Wang and Phillips (2016) but with
less restrictions on h (the requirement hlogn — 0 used there is removed here), indicating the
following self-normalized result: as h — 0 and nh/d,, — oo,

Ta(h) = D b1 K(xk/h) Uk
Vs K2 (an/hu?

In view of the standard normal asymptotics this result is convenient and useful for purposes

—p N(0,1). (2.13)

of estimation and inference in nonparametric regression models involving nonstationary time
series and kernel estimation with a shrinking bandwidth parameter h — 0, as explained in the
Introduction.

Result (2.11) with fixed h = 1 is similar to that of Theorem 5 in Jeganathan (2008). In
this case, a suitable self-normalized version of the sample covariance statistic can be constructed
from the elements of (2.11) and (2.12) as

JH1) = 1/221( (ze)u, —p  N(0,1), (2.14)
k=1

which again has standard normal asymptotics making the formulation convenient in applications
that involve nonlinear parametric regressions with nonstationary time series. We mention that,



the result that J2 —p 72Lz(1, 0) holds for any continuous function ((z) satisfying £(0) = 1,
although we assume here that ¢( M)ls a lag kernel weight function to ensure the positivity of 7,
in finite samples. Furthermore, we prove (2.11) for some M,, — co. The existence of such an
M, is clear from (6.14) and (6.15) in the proof of Corollary 2.1.

While these naturally constructed self-normalized statistics have elegant Gaussian limit re-
sults, numerical work (reported below in Section 3) reveals that neither (2.13) nor (2.14) perform
well in finite sample simulations. In particular, when z; is generated with long memory inno-
vations in & and the memory parameter is large (u close to 0.5), bimodality appears in the
finite sample densities even when the sample size is as large as n = 5,000. Such bimodality is
known to arise with self-normalized statistics and ¢ ratios in other contexts, especially in the
presence of heavy tailed data where individual large draws can dominate both the numerator
and the denominator in the ratio — see Logan et al. (1973); Fiorio et al. (2010). The explanation
of the phenomena in the present setting is unrelated to heavy tails but is instead related to
strong dependence in the data. Heuristically, strong memory when p is close to 0.5 ensures that
the weight function K (xy) is generally so small that only a limited number of terms dominate
the numerator and denominator summations Y ;_; K (zj)u; and > p_; K2 (zp)ui (see Fig. 4
for illustrative trajectories), thereby inducing bimodality in the finite sample densities of J¥(1)
around the modes £1. To control this behavior, a modification of (2.14) such as the following

Ti(1) = ”szk w —p N(O,1), (2.15)

might be considered where 7, in (2.12) is replaced by

/\ - 52 ZKQ Tk —i-QZf( ) ZK :Uk $k+j)ukuk+j, (2.16)

for some consistent estunator 52 of 02 = Eu? and with M = M,, — co as n — co. The advantage
of 7, is that the use of & 02 S5y K*(xx) in the first term, rather than Y°p_; K?(22)u?, atten-
uates the bimodality induced by the numerator and denominator summations > ;_; K (xk)uk
and > p_; K? /(\J:k)uz discussed above and in the heuristic analysis of (3.4) below. However,
the estimate 7, in (2.16) is not necessarily positive. For instance, in 40,000 replications when
n = 100 around 15 cases of negative values occur with d = 0.1, rising to 60 cases with d = 0.55.
To address this difficulty the following adjustment to (2.16) is employed

n . n—j
T = Ei ZK2 T —|—22€< > K l‘kﬂ‘)ukukﬂ'a (2.17)
k=1 j=1 k=1
where
M* := M X 1(Jp > 0) + M* X (T, < 0)I(Tpps > 0), (2.18)

in which the truncation lag number M is reduced by one lag at a time when 3; < 0 to the first
value M* for which ZLM* > 0. In 50,000 replications with n=100 and n=1,000 the modification
(2.17), with the simple rule (2.18), was found to work well. Using Toar- in place of 7, leads to
the same standard normal asymptotics as (2.15) for the statistic

— —~—1/2

jnM* ZK $k Uy —D N(071)7 (219)
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provided M* — oo as n — oo. Simulation results for the statistic j;(l) are shown in Fig. 3 in the
following numerical section and confirm that the statistic removes bimodality in finite samples
and has distributions considerably closer to the standard normal limit than the statistic J;¥(1)
in (2.14) for various values of the long memory parameter d and samples as small as n = 100.
Similarly, we may use the following result instead of (2.13): as h — 0 and nh/d, — oo,
n
jn(h) = Dt K (/1) v —p N(0,1). (2.20)
VT2 S K (/)

The proofs of (2.15) and (2.20) follow easily from (2.14), (2.13) and the following fact by using
(4.8) of Wang et al. (2021) [see also (7.42) in the proof of Proposition 7.4 with f(z,y) = K(z)y]:
for any h > 0,

% > K2 (w/h) (Bui —up) = op(1). (2.21)
k=1

The details are omitted.

3 Numerical evidence

We explore the finite sample properties of the self-normalized statistics .J,, and J(1) defined as in
(2.13) and (2.14). Since earlier research has considered models with shrinking bandwidths h — 0,
the model employed here focuses mainly on the case h = 1 for which the general limit theory is
given in (2.9). As indicated above, the key difference in this case is that the cross product term
(2.8) is not eliminated when h 4 0. The statistic J;(1) takes this into account by estimating the
appropriate self-normalizing quantity. As is apparent from (2.9) and (2.11) the limiting form of
the denominator of J;*(1) has the form of a long run self-normalization, with the major difference
that in the present case this quantity has a random limit since 7, — %12 Lz(1,0) as n — oo in
place of the usual non-random quantity that arises in standard problems with stationary short
memory time series.

In the simulations here, x; is generated according to A1l with autoregressive coefficient
pn = 1. The linear process & = Z?io ¢jer—; in LM is generated using the fractional integration

: _ d); T(d+j
mechanism & = (1 — L)% = > 020 %et_j, where (d); = 1“211;'37 so that ¢; ~ W, where
I'(+) is the gamma function and the memory parameter d = 1 —p € (0,0.5). Endogeneity in x; is

introduced by defining the innovations in the linear process & by €, = (1 — pz)l/ 2
ut is the short memory autoregressive process uy = Qui_1 + ey, |0] < 1, with ey ~zq N(0,1)

and independent of €, ~;;q N(0,1). With this specification of u; we have

&= ¢ =0-p)"> rerk+pY b5 erutj@]
J=0 k=0 j=0  ¢=0

00 00 k
= (1= i t+pYy (Z ¢k—z9€> Cut—k
k=0 k=0 \/{=0

=> |:¢1k€xtk + ¢2k€utk] (3.1)

k=0

€zt + pur where

with 1, = (1—p?)/2¢;, and gy, = ng:o ¢k_¢. The innovation & has long memory parameter
d and endogeneity measured through the correlation coefficient p.
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The self-normalized statistics Jp(h), J(1), and J;(1) defined in (2.13) and (2.14) are com-
puted for f(x;/h,w;) = K(z4/h)uy with b = 2/n%2 or h = 1. In the following computations we
used K(z) = (1/v2m)e /2,0 =05, p=5.0 and d € {0.1,0.25,0.4,0.55}, where d = 0.55 lies
in the nonstationary long memory region and is included for comparison. Kernel estimates of
the densities of J,,(h) were computed using

Dohe1 K (xk/h)uk

h —
S K2 (/e

(3.2)

for h = 2/n%% and h = 1 and are shown in Figs. 1(a) and 1(b). The self normalized statistic
J(1) was computed by the explicit formula

> ks K () un
S K2 (o) + 23000 £ (Fr) SO0 K (@) K (o) e i

Jn(1) = (3-3)

/2"

with lag truncation parameter M = |2n'/| and its densities are shown in Figs. 1(c) and 2(c).
The number of replications employed was 40,000, with sample size n = 100 in Fig. 1 and
n = 1,000 in Fig. 2.

The densities in Fig. 1 where n = 100 are all non-normal. Bimodality with modes around
+1 are clearly evident in all cases and all values of d. For .J,,(1) the dual modes are evident but
somewhat less pronounced than for .J,,(h) with h = 2/n%2. The bimodality is clearly stronger
in the presence of nonstationary long memory innovations & with d = 0.55 (shown by dashed
green lines). Bimodality is most prominent and with greatest concentration for the statistic
J(1). Bimodality is evidently weaker for the lower memory parameters, particularly cases
where d = 0.10 (shown by black unbroken lines).

Ji1) 7 7 ' Ji(1)

(a) Jn(h) densities (b) Jn(1) densities (¢) J;(1) densities

Figure 1: Empirical densities of J,,(h) with h = %, Jn(1), and J} (1) for sample size n = 100
and d € {0.10,0.25,0.40, 0.55}.

In Fig. 2 the densities are computed for n = 1,000. In Fig. 2(a) bimodality is clearly
evident for J,(h), applies for all values of d and is again stronger in the nonstationary case.
The densities of J,(1) and J}(1) in Figs. 2(b) and 2(c), where n = 1,000, are closer to normal
than when n = 100 except for the nonstationary innovation case (d = 0.55); and bimodality is
still more pronounced for J(1) than for J,(1). When d = 0.1, there are no apparent modes in
the density of J,(1) and only minor modes in the density of J(1). Nonetheless, convergence to
normality when 0 < d < 0.5 appears slow and shape differences in the densities persist between
the stationary and nonstationary error cases. The tendency to bimodality continues to be more
marked in the nonstationary case.
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i\ [—d=010
i

Juh)

(a) Jn(h) densities (b) J.(1) densities (¢) Jy(1) densities

Figure 2: Empirical densities of J,(h), J,(1), and J(1) for sample size n = 1,000 and d €
{0.10,0.25,0.40,0.55}.

As discussed in Section 2.3, when the innovations & have strong dependence with memory
parameter d close to the nonstationary boundary 0.5, the weight function K(z;) is negligible
except for a very small number of terms in which x; = Z}Z:l & ~ 0. Suppose z; is closest to
zero for t = 7 then K (z,;) ~ 1 and so J,(1) ~ £1, thereby inducing a tendency to bimodality in
the finite sample densities of J,,(1) around modes at 1. When h — 0 this facet of the weight
function is accentuated for K (x;/h) and we may therefore expect greater evidence of bimodality
in finite samples for J,(h), which is corroborated by the results in Figs. 1(a) and 2(a).

Further, in Figs. 1 and 2 it is evident that J(1) shows more evidence of bimodality than
Jn(1). This may be explained by the following heuristic. Suppose z; is closest to zero in the
sample at t = 7 and next closest to zero at t = 7 + 1, so that K(x,) ~ K(0) ~ 1//27 and then
K(xry1) = K(&ry1) = e_§Z+1/2/m. (Fig. 4 below shows an illustrative case). With a Bartlett
kernel ¢(-) we then have

K(zr)ur + K(2r41)Urq1
(K (wr)?uZ + K (wr1)?0d 1 + 2 (1= 57) K(2) K (2r01)urur ]2
_ K(zr)ur + K(Tr41)Ur41 — 1140 () (3.4)
‘K(«TT)UT +K(x’r+1)u7'+1‘ +Op (ﬁ) ' M)’

Jr(1) =~

showing a clear tendency to bimodality.

Next note that & = (1 — L)%, has variance ag = o? 11:8:?52 ~a ‘17;/27; — o0 as d — 0.5. Let

& = agg} where & has unit variance. Then K(z,41) ~ K (&r41) = e_age'ﬂ/\/ 27 and

ey
K(zr)ur + K(2r41)ury1 Uy + e e Ty Ur o2

(K (27)%u2 + K (2741)%u2, ]2 [u2 + 6—0553+1]1/2 lur

1

Jn(1) =

showing a tendency to bimodality as the memory parameter d — 0.5. The same tendency
to bimodality is also present in the approximation of .J(1) in addition to that given in (3.4),
thereby implying that J(1) is more likely to manifest bimodal behavior in finite samples than
Jn(1), corroborating the simulation findings.
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(a) Jn(1) densities, n =100  (b) Jn(1) densities, n = 1,000 (c) Jn(1) densities, n = 5,000
Figure 3: Empirical densities of 3;(1) for sample sizes n = 100 and for n = 1,000 and d €
{0.10,0.25,0.40,0.55}.

Fig. 3 shows finite sample densities of the statistic j];(l) in (2.17) using the same simulation
design with the same set of long memory parameters, endogeneity correlation p = 0.5, and
for sample sizes increasing from n = 100 to n = 5,000 based on 40,000 replications. As
evident in the graphics, the statistic removes bimodality in finite samples although there are
extended shoulders on either side of the origin to around +1, particularly when n = 100. The
distributions are far closer to the standard normal limit than those of the statistic J(1) in
(2.14) at every sample size with evident convergence in shape to normal for all values of the long
memory parameter and clearest for d = 0.1, as would be expected. These findings support the
heuristic analysis leading to (3.4) and (3.5). For when the variance estimate 3; M+ is employed,
the scaling-out effect that leads to bimodality is removed, thereby explaining the finite sample
distributions being closer to the standard normal.

4 Further analysis: finite sample and asymptotic bimodality

As noted in Section 2.3, natural self-normalization of sample covariance statistics does not
perform well in finite samples relative to the asymptotic theory when strong effects of long
memory are present in the data. This result in nonlinear nonparametric regression is new to the
literature. But the observed finite sample bimodality has a subtle connection in its origins with
earlier findings on bimodal ¢ ratios where behavior is dominated by a few observations when
there is heavy tailed data. In the present case, behavior is dominated by the few neighboring
observations whose impact is not diminished by the kernel weights under strong dependence.
Fig. 4 illustrates with a single shot picture of typical data trajectories generated for z; and wu,
with d = 0.1 and n = 1, 000.
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Figure 4: Single shot trajectories of x; and u; generated with d = 0.10 and n = 1,000 according
to the simulation design given below.

Some additional analysis and computations are now provided to shed light on the finite sam-
ple properties of self-normalized sample covariance statistics in which nonstationarity originates
in partial sums of long memory processes. The following simple framework with no endogeneity
is used for the following discussion and data generation.

Simulation design

e both ¢, and uy are iid N'(0,1) and the ¢, are independent of the uy;

o I = Z?Zl ¢j, where (1 — L)4¢; = ¢;, with 0 <d<1/2and 1/2 < p=1-d<1,so that
§ =01~ L)fdej =Y s Picj—i With ¢; ~ d) (=),

o K(z)=e""/2/\/2x.
For j =1 and 2, define

n
Sjn = u7jn_1/2 Z K(xk) Uk,
k=1
where Jin, = Y p_y K2(zx) and Jon, = >0, KQ(:Ck)ui Under these conditions & is a long
memory process with memory parameter 0 < d = 1 — u < 1/2 and xj is nonstationary with
memory parameter 1+ d. Sa, is a natural self-normalized sample covariance statistic, matching
Jx(1) in (2.14). °
Recall that d2 = var(z,) ~ Agn'*t?? where Ay is a positive constant depending only on d.
It is readily seen from (2.11) and (2.21) that

1 1 Ag\1/2
z=adim TiggJm 7D (7) LBy 1202(1,0),
”72717_1%1 —p 0, (4.1)

where By (t)} is fractional Brownian motion with Hurst exponent H and Lp, (t,s) is the local
time process of { By (t)}+>0. In view of the independence of xj, and uy, and since ug, ~;;q N (0, 1),
we have Sy, ~q N(0,1) for all n > 1 and

jln
j2n

"When ¢;, and z, are independent of uy, the term 2 Z;Vil 0(45) SopZd K (wk) K (2h45) uk uky s that is included

in 7, is unnecesssary since the terms GT appearing in Corollary 2.1 are zero for all » > 1.

Sop = ( ) Sin —p N(0,1), (4.2)
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so that S, has a standard normal limit distribution. Now consider the finite sample performance
of the statistics S1,, and Sa,.

\
L 1] 1
04 " 0 e d=0.25
& b d = 0.40
03k 3 Y% |---d=055]]
z
‘B
3
Zozt
o1}
0 ‘
-4 3 2 1 0 1 2 3 4
Son
(a) Sin densities, n = 100 (b) S2rn densities, n = 100

Figure 5: Empirical densities of Sy, and Sy, for n =100, d € {0.1,0.25,0.4,0.55}.

A. Simulation results for S1,: Kernel density estimates of the finite sample distributions
of Sy, are shown in Fig. 5(a) for sample size n = 100 with d € {0.1,0.25,0.4,0.55} from 40, 000
replications. The graphs confirm the exact finite sample N(0,1) distribution for all values of
the memory parameter d, including the nonstationary case d = 0.55.

B. Simulation results for Sz, : Fig. 5(b) shows the finite sample densities of Sy, for n =
100 and same memory parameter values d € {0.1,0.25,0.4,0.55} again from 40, 000 replications.
Bimodality in these distributions around the points +1 is clearly evident for all d > 0.10 and
strong in the nonstationary case d = 0.55; for d = 0.10 the density has shoulders at the same
points +1. Figs. 6(a) and 6(b) show the corresponding densities for n = 1,000 and n = 5, 000.
The slow convergence of these distributions to normality in the presence of stationary long
memory is evident, especially for d = 0.4 where shoulders in the density around +1 are evident
even when n = 5,000. In the nonstationary d = 0.55 case bimodality remains evident, although
it is not as strong as it is for smaller sample sizes.

Although Ss,, has a normal limit distribution for all memory parameters d € (0,0.5) the finite
sample performance of Ss,, depends on the value of d, in contrast to S1,,. Bimodality is strongest
for stationary values of d closest to the boundary d = 0.5 and remains present even for very
large sample sizes. This anomalous behavior can be explained in terms of relative convergence
rates as follows. Recalling (4.1), when d = 0.4 we have

(@)1/2_1: jln_jQTL :OP(TL_O'O5)
1/2, +1/2 1/2 ’
Jon 27{ (jM{ +‘727{ )
whence Ja,,/Jin —p 1 as n — o00; but the convergence rate is seen to be very slow. With such
a slow convergence rate, even for n = 5,000 (where n=%% = 0.65) and with S1,, ~4 N(0,1)
for all n > 1, the value of S5, = (%)1/ 281n can be substantially impacted by the factor
T ) 2, leading to departures from the normality of S, and the presence of bimodality in the
Jon
distribution.
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Figure 6: Empirical densities of S, for sample sizes n = 1,000 and n = 5,000 and d €
{0.1,0.25,0.4,0.55}.

When xp = Z;?:l ¢; with (1 — L)4¢; = €; and d > 1/2, the input ¢; is a nonstationary long
memory process) and the limit distribution Sy, is not normal. In fact, bimodality must appear
in this case and we have

jln —Pp A= ZKQ(IL‘k), \7271 —p B = ZK2(ZE1€)U%, (43)
k=1 k=1

where A and B (A # B) are well defined positive random variables. Hence, as n — oo,

1/2 1/2
S2n = <§;:> / Sln —D <%) / N(O, 1)? (4'4)
since Si, ~ N(0,1) for all n > 1. The presence of the ratio A/B of the random variables (A, B)
assures bimodaily in the limit distribution (4.4).
The proof of (4.3) and (4.4) is straightforward. Let A, = > p_, K?(zx) and recall that
xn ~q N(0,d,) where di = var(xy) ~q Ag ntt2d as n — oo, it is readily seen that, whenever
d > 1/2 and m,n — oo,

EApmn = Y EE?(zp)=> / K2(dyy)e ¥ 2dy
k=m k=m
< O dt=0 ) kR,
k=m k=m

Hence, A:=5 2| K 2(zy) is a well defined random variable and J1,, —p A. Similarly, we have
EB,, — 0 where By, = > 1 KQ(xk)ni, and hence Jo, —p B.

Fig. 7 gives simulation results for Sy, in the nonstationary innovation cases d = 0.75
and d = 1 for n = 100, 1,000, and 5,000 based on 25,000 replications. Bimodality appears a
prominent feature of the densities of S, for both d = 0.75 and d = 1, showing little tendency
to diminish even in very large sample sizes, corroborating the non-Gaussian limit theory in the
nonstationary case. The bimodality is stronger when d = 1 than when d = 0.75 for all sample
sizes.
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(a) Sa2, densities, n = 100 (b) S2r densities, n = 1000 (¢) San densities, n = 5000

Figure 7: Empirical densities of Sy, for sample sizes n = 100,1000 and n = 5,000 and d €
{0.75,1.00}.

5 Concluding Remarks

Sample covariance functionals of regressors and innovations play a key role in nonlinear non-
stationary regression models and self normalized versions of these statistics are a foundation
for inference. The limit theory given here covers a wide class of such functionals and reveals
important differences between stationary and nonstationary long memory innovations. Methods
involving bandwidths h = h,, — 0 in nonparametric models and fixed h = 1 suited for para-
metric applications are jointly included in the present findings. Numerical work shows strong
bimodality in the finite sample distributions, slow convergence to the Gaussian limit theory
under stationary long memory innovations and non-Gaussian limit theory when the innovations
have nonstationary long memory. New forms of self normalization are shown to provide the
same limit theory but improved finite sample performance suitable for practical work in these
difficult cases.

It is of interest to explore the performance of this modified form of self normalization in
regression test applications. Bimodality, when induced by self-normalization as in the cases
considered here, typically leads to the presence of modes around +1 (Logan et al., 1973; Fiorio
et al., 2010). The general impact of such bimodality is to transfer extreme tail probability in the
distribution towards the modes, which in turn typically makes testing somewhat conservative in
applications and this is inclined to reduce power in testing under local alternatives when using
nominal asymptotic critical values. We might therefore expect some such impact in the present
examples with long memory innovations. The new form of self normalization introduced here
is designed to attenuate such effects and an investigation of the size/power implications of this
modification in regression applications is topic for future research.

The present framework, in conjuntion with earlier findings in the nonstationary nonlinear
regression literature, can be extended to cover a wider class of models than already discussed.
One such model is a nonlinear distributed lag cointegrating regression of the following additive
nonparametric type yx = g(zx) —1—2;121 9j(Azy_;)+ui, where the I(1) regressor xy, is nonlinearly
related to yj, with additive and nonlinear distributed lag effects from the regressors {Axj_; :
j =1,...J}. In such models the cointegrating function g(x) is usually of primary interest. If
the additive component Z;]:l gj(Axy_;) were ignored and instead absorbed into the primary
component, the equation y; = p + g(x) + vy = gu(xr) + vr, may be consistently estimated
by kernel methods. Indeed, with some modification, the results and limit theory of Wang and
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Phillips (2009¢)) would continue to hold in such cases because they cover regressions with an
endogeneous regressor x, correlated with a stationary error such as vy. If the g; are measurable,
integrable functions and Az is stationary, then setting pu = 23'121 Eg;(Axy_;) and vy = ug, +
Z}]:1 (9j(Azp—;) — Eg;j(Azi_;)), estimation and inference concerning g,,(z) in the system y;, =
gu(xk) + vi can be justified as in Wang and Phillips (2009c)) under some extension of the
underlying conditions to accommodate the properties of the induced error process v,. Full
exploration of this and related extensions is left for future research.

6 Proofs of the main results

Proof of Theorem 2.1. First note that, for any bounded h > 0 and nh/d,, — oo,

dn
(T max | fla/hw)] = op(D) (6.1)

by a similar augument as in Proposition 7.4%. Due to (6.1), without loss of generality, we assume
flzp/hywg) = 0 for k=1,..., Ao, (6.3)

where Ag is a fixed constant that can be chosen large enough. This convention will reduce
notational complexity in the proofs of propositions that are given in next section and the lemmas
in the Appendix.

We adopt the methodology employed in Wang and Phillips (2009¢), starting with an outline
of the proof of (2.6), where some useful propositions will be given in the next section. Define,
for 0 <t <1,

[nt]

Su(t) = (dl)lme(xk’wk),

n
k=1

q
Yog(t) = tno(t) +2) nj(t),
i=1

where for j =0,1,...,q,

[nt]
> fan wr) f(@hgs wi ),

k=1

dn

n

Ynj(t) =

and for all ;, 3 € R, 0< 59 <51 <...<sp<ocand 0 <ty <ty <...<t; <oo,

l m
Zna = Z @i [Cn1(ti) — Gua(tio1)] + Z Bi[Cn2(si) = Cna(si—1)],
i=1 1=1

Indeed, as in (7.4) of Proposition 7.4, it follows from nh/d, — oo that, for any A > 0,

(G2
dn = 2 1/2 dn 1/2
< [*Zf (zk/hy wi) I(| f (zh /By wy )| > A)] +A(E)

nh nh
k=1

max | f(zr/h, wr)]

. [/: Ef2 (2, w)I(|f (2, w1)| > A)de LZ(LO)]W, ——— (6.2)

This implies (6.1) since [ Ef*(x,w1)I(|f(z,w1)| > A)de < A7% [*_Ef*(z,w1)dz — 0 by (2.2), as A — occ.
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where (p1(t) = f EWJ ej and (uo(t) = f Z]Lntl e_j. An application of Proposition 7.4 implies
that, for any ¢ > 1,

(¢n07¢n17-“7wnq;an(t)) = <G07G17-“7Gq7Aq) LZ(ta 0)7 (64)

on Dge+20,1], where A, = Go+2Y.7_, G,. This, together with the tightness of {S,,(¢)}n>1 (see
Proposition 7.2 with h = 1), yields

{Sn(t), Yug(t), Zn2}n>1 is tight on Dgs[0,1]. (6.5)
Hence, for each {n’} C {n}, there exists a subsequence {n”} C {n'} such that
{Sn//(t), Y, q<t //2} = {77 Aq Lz(t, 0), Zg}, (6.6)

on Dgsl0, 1], where

l

Zy = Z o;(Bi, — Biy, ,) + Z Bi(Bas; — Bays, 1),

i=1 =1

and 7(t) is a process continuous with probability one due to (6.1).

Let Zns = >0 1V [Sn(ti) - Sn(ti_l)] and Z3 =Y . 17 [n(ti) — n(ti_l)}, where v; € R and
0 <ty <t <..<t, <s. Since for each 0 < ¢t < 1, S,(¢) is uniformly integrable (see
Proposition 7.1 with A = 1), it follows from Proposition 7.3 (i) with ~ =1 that, for any s < ¢,

E " 73H22) [n(t) — (s)]
= lim Ee&'%wst2um2)[S (1) — S, (s)] = 0. (6.7)

n'’— oo

See, e.g., Billingsley (1968, Theorem 5.4). Similarly, by Propositions 7.1 with A = 1 and 7.3 (iii)
with h = 1, we have

B A2 [(1) = n(s))? ~ [V (1) = Y (s)]} =0, (6:8)

where Y (t) = 72Lz(t,0). Indeed, by letting Y (t) = A,Lz(t,0) and noting

sup E|Y,(t) —Y(t)] <2|A, — 72| E sup Lz(t,0) < C Z |G| — 0,
0<t<1 <t<1 re=gqtl

due to Proposition 7.5, it follows from Propositions 7.1 with A = 1 and 7.3 (iii) with h = 1 that,
for any € > 0,

}Eei(Zg,—&-Zz){[n £) —[v(t) - Y(s)]}]
< ;Eezwm{ — [Ya(t) = Yq(s)] }]
+E |[Yo( —Y( ] +EH (s) = Y(s)]|
< nllifloo ‘Ee Z”HSJFZ"H2){ /() = S (8)] — [Yarrg(t) — Yorg(s)]}] + 2¢
< 3 (6.9)

by letting ¢ — co. This yields (6.8) as the left side of (6.9) does not depend on e.
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Let Fs = 0{B14,0 <t < 1;Bg,0 <t < 00,n(t),0 <t < s}. Results (6.7) and (6.8) imply
that, for any 0 < s <t <1,

E([n(t)—n(s)]lfs) = 0, as.,
E({In(t) = n(s)? = [Y () = Y(s)]} | ) = 0, as,

Note that Fs 1, n(s) is Fs-measurable for each 0 < s < 1 and Y (t) = 72Ly(t,0) (for any fixed
t € [0,1]) is Fs-measurable for each 0 < s < 1. It follows from Wang (2015, Lemma 3.4)
that the finite-dimensional distributions of (n(t), Y (t)) coincide with those of {NY/2(t), Y'(t)},
where N is a normal variate independent of Y'(t). Since n(t) does not depend on the choice of
the subsequence {n"}, it follows from (6.5) and (6.6) that

{Sn(t), Yng(t)} = {[mLz(t,0)]'*N, AjLz(t,0)}, (6.10)

on Dp2(0,1], where N is normal variate independent of Lz(¢,0). This, together with (6.4) and
the continuous mapping theorem, yields (2.6).
The proof of (2.5) is similar. Set, for 0 <¢ <1 and h > 0,

d, /2 [nt| d, |nt| ,
k=1

nh
k=1

As h — 0 and nh/d, — oo, Zyp(t) = Z(t) := 72 Lz(t,0) by (7.4) in Proposition 7.4. The
same arguments as those leading to (2.6) can be used to establish (2.5) except that Sy, (t), Y54 (%)
and Y (t) are replaced by Sy, 1(t), Z, 1(t) and Z(t), respectively. The corresponding propositions
with h — 0 are given in next section. |

Proof of Corollary 2.1. We only prove (2.11). The proof of the other result is similar. Let
Uik = Z;n:oo ¢j A;f—j’ U2k = Ul — ULk = Z;’imOJrl Q,bj /\;c—j and, fOl" r = O, 1, 2,

GT,mO = / K(y>E{u10 U1y K(y‘i‘xr)}dy

Using (2.9), for any my > 0 and ¢ > 0, we have

dn . 2 2 dn -
— K — K K
(n ; (zk)uiy, - ; (p)urk K (L) UL ot 1, oo

dy & dn\ 2 &

. ZK($k)U1kK(xk+q)ul,k+qa <n> ZK(iUk)Ulk)
k=1 k=1

= (Goumo L2(1,0), Grmg Lz(1,0), .., Ggmo Lz(1,0), F1my NLY?(1,0)),

where 71, = éO,mo +2 Z;fil ér,mo. This implies that, for any mg > 0, ¢ > 0 and any continuous
function with [(0) =1,
1/2 n

k=1 k=1

—p (Gomg Lz(1,0), 72, Lz(1,0), 71m NLY*(1,0)),
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where 77, = Gome +2 20— Grm, and

n—j

— 2d, j
jn,q - ZK $k ulk + — ZE < > K a:k+]-) U1k Ul,k+j~

j=1 k=1
Consequently, to prove Corollary 2.1, it suffices to show the following;:

(a) as mo — oo,

|Go = Gomol + Y 1Gr = Gramo| — 0; (6.11)
r=1
(b) for any mg > 1,
B up K(zy)|” < C(n/dy) Z FA s+ o D] (6.12)
k=1 j=mgo

(c) for any r > 0, as n — oo first and then my — oo,

n—r
dn

; Z K(mk)K(karr) (Ulk UL, k+r — ukukH) = Op(l); (6.13)
k=1

Further, if mg = mo(n) — oo, i.e., my depends on n, it also follows that there exists
M, = M, depending on mg such that, as n — oo,

= — Z | ZK l’k .’L‘k+7~) (ulk UL, k+r — 'U/kukJrT)‘ = 0p(1>. (6.14)
r=1 k=1
(d) there exists M = M,, — oo so that, as n — oo first and then ¢ — oo,

— Z f( ) ZK xk karr) Uk Uk+r = OP(l)- (615)

r=q+1

For the proofs of (6.11), (6.12) - (6.14) and (6.15), we refer to Propositions 7.5, 7.6 and 7.7,
respectively. O

7 Subsidiary propositions

This section proves the following propositions which are required in the proofs of Theorem 2.1
and Corollary 2.1. The notation is the same as in the previous section except where explicitly
mentioned.

Proposition 7.1. For any fired 0 <t < 1, r > 0 and any bounded h > 0 satisfying nh/d,, — oo,
Ynr(t), Znn(t) and Sg’h(t), n > 1, are uniformly integrable.

Proposition 7.2. For any bounded h > 0 satisfying nh/dy, — 00, {Zy p(t) }n> and { Sy n(t) }n>1
are tight on DJ0, 1].

Proposition 7.3. For any 0 < s <t < 1, we have that
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(i) if h > 0 is bounded satisfying nh/d, — oo, then

lim Eei(ZnstZn2)(g (1) — 8, 1(s)] = O; (7.1)

n—00 ’
(i) if h — 0 satisfying nh/d, — oo, then

lim Ee'(ZnstZn2) L[5 (1) — Sy n(8)]* = [Zup(t) = Znn(s)]} = 0; (7.2)

n— o0
(111) for any € > 0, there exists a qo > 0 such that

lim | e/Znst2m2) (S, (£) — Su(s)]2 — [Yag(t) — Yag(s)]}] < e, (7.3)

n—oo

for all g > qq.

Proposition 7.4. For any bounded h > 0 satisfying nh/d,, — oo, we have
Znp(t) = T Lz(t,0), (7.4)
on Dg[0,1]. If, in addition, v =0 and [E {|f(t,w0)(1 + ||w,|[P) }dt < 00,0 <7 < m, then

{wnO(t)aq;Z)nl(t)aalzbnm(t)} = {G07Gla-"aGm}LZ(t)O)u (75)
on Dpm+1]0,1].
Proposition 7.5. If y = 0, we have 3,22, |G| < 00 and 32, |G,| < oo, and (6.11) also holds.

Proposition 7.6. Results (6.13) and (6.14) hold and, for any bounded h > 0 satisfying nh/d, —
00, we have

E|> g K(z/W)[F < Cmb/dy) [ D Y4 (] + )] (7.6)
k=1 Jj=mo

Proposition 7.7. Result (6.15) holds.

7.1 Preliminary lemmas

Except where explicitly mentioned, the proofs of all lemmas are given in the Appendix. Through-
out this section, we let Fr = o(Ag, \g—1, -..).

Lemma 7.1. Let p(s, s1,...,8m) be a real function of its components and ty,...,t,, € Z, where
m > 0. There exists an Ag > 0 such that the following results hold.

(i) For any h >0 and k > 2m + Ay, we have

Ch [
E|p($k/h7)‘t1a"'7)‘tm)| S W ]E‘p(tv)‘la7)‘m)|dt (77)

(i) For any h >0, k—j>2m+ Ay and j+1 < tq,....t,m <k, we have

Ch [*™
E[|lp(zk/h Atys - M| | Fj] < i Ep(t, A1, s Am)|dt. (7.8)

—j J=
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(iii) For any h >0 and k — j > 1, we have

B oo/ |7) < T [ bt (7.9)

Ay Jos

Proof. For the proofs of (7.7) and (7.8), we refer to Lemma A.1 of Wang et al. (2021). As
oo # 0, the proof of (7.9) is simple. See, for instance, Lemma 2.1 (iii) of Wang (2015). O

Recalling (6.3), f(x,y) < T(z)(1 4+ [|y||?) and E |Jw:|[™*{>*} < 0o, where T'(z) is bounded
and integrable, a simple application of Lemma 7.1 (i) and (ii) yields that, for any h > 0,

S _E f2(ax/hywy) < Cnh/d,, E [Zf2(xk/h, wk)}2 < C (nh/dy)*. (7.10)
k=1 k=1

and (7.10) still holds if f?(xy/h,wy) is replaced by Y,fj defined by

Yij = E [f(w/howi)| Fieg] — E [f(@r/howy)| Fiejoi],

where j > 0 is a fixed integer. Furthermore, it follows from Lemma 7.1 (iii) that, for any r > 1,

E [If (zhsr/howper)[|Fi] < {E [T (@rer/B) | Fil }72{E [0+ llwge P21 F] 37
< Ch'? Ry,

where R, = {E [(1+ Hwk+r|’26)|-7:k] }1/2 depending only on Mg, ..., \g—m,. Hence, for any r > 1,
h>0and 0 <s<t<1, we also have

[nt]
> E [|f(33k/h,wk)| | f(@htr /Py Wher )] | f[ns]:|

k=[ns]+Bo
[nt]
Z E [‘f(mk/mwk)’E {1f (@hsr /s wietr)| | Fie} | f[ns]}

k=[ns]+Bo
[nt]
k=[ns]+Bo

< Cnh®2(t —$)*/d,, (7.11)

IN

for some a > 0, whenever By is sufficiently large so that (7.8) is applicable. We remark that
(7.11) holds for r = 0 if h3/? is replaced by h. These results will be used later.

In the next lemma, Q; is set to be a subset of Q = {1,2,....,k}, Q2 = Q — Q; and

k
Z €v tav + Bv
v=1

Lemma 7.2. Suppose that 25:1 a2 < C1¢ and, for any Q satisfying #Q1 < Vk,

Bi:=» ap >, (7.12)



for some constants sequence 1. Then, for any § > 0 and s1,s2 € R, we have

/ min{1, s1 [¢|° + @}‘Eeizk(t)‘dt

k
< O3 s 1+ (X)) + s2m ) (7.13)

v=1

/ min{1, s; [¢|} min{1, |t|}’Eeizk(t)’dt
k
< O Hsin 1+ 87)). (7.14)
v=1
If in addition Zlqul 512 < a < oo, then
/ [Be=Wldt < Ok +r BT, (7.15)
MZB/T]C

for any B > 2a'/2.

Proof. The proof of Lemma 7.2 is similar to that of Wang and Phillips (2011, pages 246-247)
and is therefore omitted. But an outline of the proof is given in Appendix A.1 for completeness.
Od

Since Lemma 7.2 still holds when z;(t) is replaced by 2zx_m, () when k > m3 and since wy,
depends only on Ak, ..., \g—y,, the following lemma is a direct consequence of Lemma 7.2.

Lemma 7.3. Let g(x,y) be a real function satisfying
e |Eg(t,w)| < Cmin{l, |t|} and sup, E {(1 + |60|)|g(t,w1)|} < 00.

For any bounded h > 0 and 13, < C'k?, we have

/oo [E e t/M) gt wy)|dt < Chrt, (7.16)
for all k > m3. Instead of (7.16), we also have

/_OO ‘Eeiz’“(t/h)g(t, wk)‘dt

k
< Ch{(1+ o), 2 1+ (253)1/2] + Bro Ty, '} (7.17)
v=1

where gy = MaXg<ij<mov (k—1) [k—i| and Bro = maxo<;<mov(k—1) |Br—il- Similarly, when supy axo =
O(1), we have

/ min{1, [t|/h} |E e M g(t, wy,)|dt

k
< Ch{k™2+ [Bro(r, 2+ k72 + 7% (1+ D 82) ) (7.18)
v=1
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Proof. See Appendix A.2. O
_ is:pk/thiZl-: V€4
Let I(m) = [E (e i=m+17i% (s, wy) | Fm)ds and
Igi(m) = //E (eisz’“/hﬂt”/hﬁzé':mﬂng(s,wk)g(t,wl) | Fin)dsdt,
where g(x,y) is a real function given in Lemma 7.3, and let
ey (B) = / / g1(£)g2 (1) E (efson/Mrita /551056 | o dsdt,
s|>B/dx J|t|>B/d;

where g1(t) and go(t) are bounded real functions. The next lemma is an application of Lemma

7.3.

Lemma 7.4. Letm >0,1—k > A% +1and k—m > A(Q) + 1, where Ay > mg and my is given
as in Lemma 7.5. Suppose a := Zé.zl ny? < 00.

(i) For any h > 0, we have

|1 (m)] Chld?, (1+a'?) + Bodt, ], (7.19)
Lea(m)| < Ch2dt, [d7% (1 +a'?) + Bod L] (7.20)

IN

where B = maxo<j<mg |’Yl—j"

1) Under SM, if |v;| < C/v/n where m < j <1, for any h > 0, we have
J

(m)] < Ch((k—m)" +Vk—m/Vn), (7.21)
Lea(m) < CRE[(I—k) " k—m)™ + (1= k)32 (k —m)~1/2]. (7.22)

(iii) For any h > 0 and B > 2a"/?, we have

0., (B)| < CR*[(1—-k)2+B 4 %] ;" (7.23)
Proof. See Appendix A.3. |

Let Iy(h) = f(zx/h, wi) exp {i D immt1 pi€;//n} and
n
Ig(h) = f(zp/howg) flx/how) exp{i Y pje;/v/n},
j=m+1
where 1 are constants satisfying |y < C. Using Lemma 7.4, we have the following results.

Lemma 7.5. There exists a By > mqg such that, for allm > 0,1 —k > By, k —m > By and
bounded h > 0,

(i) under LM,

| < Ch(d2, +di-m/Vn), (7.24)
|E [11i(h) | F]|

Ch*d; "t (d% +di—i/v/n), (7.25)
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(ii) under SM,

E [Ie(h) | Fu]| < Ch((k—m)"' +Vk—m/Vn), (7.26)
|E [ILk(h) | Fm]| < CR*[(1—k) " (k—m)*
+ (L= k)32 (k —m)~1/2]. (7.27)

Lemma 7.6. There exists a By > mqg such that, for allm > 0,1 —k > By, k —m > By and
bounded h > 0,

(i) under LM,

E{f(1/h, w)E [f(zn/h,wp) | From] }| < Ch*ditdi, (7.28)
(ii) under SM,

|E {f(z1/h, w)E [f(zp/hwi) | Foem]}|
< CR[(L—k) VR (- k)22, (7.29)

The proofs of Lemmas 7.5 and 7.6 are given in Appendices A.4 and A.5.

Lemma 7.7. Let I'(.) be a measurable function with T'(\1) = 0 and ET?(\;) < oo. There exists
an Ag such that

(a) for all k> Ay and |l — k| < Ao,
EA{T(\—j) T(Nij) K (i /h) K (/) }| < Chdy? (7.30)
(b) for allk > Ag, | — k> Ag and | —j < k,
|E{T(M\i—j) T(Ni—j) K (zi/h) K(z/R)}| < Ch*d;td Y. (7.31)
(c) for allk > Ag, | — k> Ag and | —j > k,

[E{T(A\r—j) T(Ni—j) K (z/h) K (21/h) } |

j )

< o Y o lokld d under LM, (7.32)

k=Yl — k)P + kY2 (01— k)32 under SM

Similarly, uniformly for y € R, we have
[E{K(y+x/M)T(N—j) T(A-p) }|

d’! if |l =5+ k[ < Ao,
< Chil, Lk P , (7.33)

o=09s| 2ol 10| () +17%), if [l =5 + k[ > Ao,

for any Ag > 1 and j,k > 0.

Proof. See Appendix A.6.

Our final lemma gives a useful tightness criterion for a class of stochastic processes on D|0, 1].
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Lemma 7.8. Let X,; be a sequence of random variables and X,,(t) = Z,En:t{ Xk The sequence
{Xn(t)} is tight in DI[0,1] if maxi<k<n | Xnk| = op(1) and there exist an integer Ag > 0 and a

number oy, (€,0) such that

[ns]

p(\ Xpi| > e‘Xn(tl),...,Xn(tm)) < anle,d),
k:[ntm]+A0
and
lim lim sup ay,(€,0) =0,
d—0 n—oo

for each positive € > 0, where 0 <t <ts <..<t, <s<1ands—t, <.

Proof. If Ay = 0, Lemma 7.8 is a special case of Billingsley (1974, Theorem 4). Extension
to integer Ag > 1 is trivial under the condition that maxj<g<p |Xnk| = op(1). The details are
omitted. O

7.2 Proofs of propositions

Propositions 7.4 and 7.7 are treated separately due to their complexity and their proofs are
given later in Sections 7.3 and 7.4, respectively.

Proof of Proposition 7.1. We only prove uniformity of S2, (1) for bounded h > 0 satis-
fying nh/d, — oo. The other results are similar and simpler. Let m > mg be a constant that
will be specified later. Let

n

Sin = <%)1/QZE[f(xk/mwk)‘fkfm]?
k=1
S = (5557 {an/hwn) — B [flon/hwn) Fon]

B
Il
—

Note that, for any A > 2,

2ES?, +8AT'ES), +2ES3 1(S7, > A/4)

<
< 4ES}, +16A7'ES),.

It suffices to show that, for some ¢y > 0,
(a) ES3 < com*;
(b) under LM, ES2, < codil*> ™"
(c) under SM, ES?, < ¢ (dr_nl/2 +log?n/\/n).

Indeed, for any € > 0, by taking A, n sufficiently large and m = A'/®, it follows from (a)-(c)
that

IESTQL,,L(I) I(S,%}h(l) > A) < Zlc()(d;ll/2 + d%z_“) +16c1A"Y2 4 ¢ log? n/vn <,

under both LM and SM, due to d,, — 0 and p > 1/2.
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To prove (a), let Yy; = E [ f(z/h, wg)|Fi—j] — E [f(zr/h, wi)|Fr—j-1],0 < j <m —1. We
may write

dn
Bst, < mi(")? S E() %)’
< Cm?(;) B V) <com

for some ¢y > 0, which yields (a), where we have used the result (7.10) with f2(.) replaced by
Yij.
We next prove (b) and (c). Let g, = E [f(zx/h, wi)|Fi—m]. For some ¢ > 1, we may write

n  k+q
ES}, = [ZEQHQZ > B2y Y E (9:9))]
k=1 j—k+1 k=1 j=k+q
= R+ Ryo+ Rys. (7.34)

Recall (6.3). It follows from (7.8) in Lemma 7.1 that |gr| < Ch/d,,. On the other hand,
Elgx| <E|f(xg/h,wr)| < Ch/d. As a consequence, we have

dn _
|[Bna| + [Rna| < Ch Jdm — kzl E |qi| < Cghdy,'.
As for R,3, by taking m > By where By is given in Lemma 7.6,
(i) under LM, it follows from (7.28) that, for any ¢ > By,

|Rys| < Z Z I ( gkgjr<c—2 Z di'd2),

k=1 j=k+q k=1 j=k+q
oo

Ch/ 27372 (x)d.
q

IN

(ii) under SM, it follows from (7.29) that, for any q > By,

|Rns| < Z Z IE (gk95)]

k=1 j=k+q

S Z Z k_1+(j—k)_3/2k_1/2]
k: 1 j=k+q

<

Ch(log*n/v/n + / x_?’/gda:).
q
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Taking these estimates into (7.34), we obtain (b) and (c) by letting ¢ = v/d,,, as h is bounded.
This completes the proof. O

Proof of Proposition 7.2. We prove tightness of .S, ,(t). Tightness of Z, j,(t) is shown in
a similar way to Wang (2015, Theorem 2.20) and the details are omitted.

Recalling (6.1) and Lemma 7.8, it suffices to prove the folllowing: for any fixed s € [0, 1], for
each € > 0 and any bounded h > 0 satisfying nh/d,, — oo, there exists a sequence of a,(€,0)
satisfying lims_,o lim sup,,_, ., o (€,6) = 0 such that

Lnt)
I, = sup P(‘ Z f(ﬁk/h,wk)’ 2 e(nh/dn)l/z |‘7:[n8]> < o€, 9), (7.35)
[t—s|<d k=[ns]+Bo

where By is chosen as in Lemma 7.5. In fact, by noting

Lnt]
k=[ns|+Bo
Lnt]
2 > > E(fer/hwn)l 1 (@/hwn)| | Fiug)

k=[ns]+Bo kE<I<2Bg
[ nt]

+2 Yy Z ‘E{f(xk/h,wk)f(xz/hwz)!f[ns}

[ns]—}—Bo I=k+2Bg

IN

it follows from (7.11) and Lemma 7.5 that, for some o > 0:

(a) under LM [using (7.25)],

|_ntJ n

Ja(s,t) < Cnh(t—s)*/do+CR* Y > dily gd,
k=[ns]+1I=k+1

< 2Cnh(t —s)%/dy;

(b) under SM [using (7.27)],

Jn(s,t) < C+/mh(t —s)* +
[nt] n
R3S [ R O s (= B2 [ns)

k=[ns]+11=k+1
<2C/nh(t—s)“.
Now (7.35) follows by choosing a,(e,d) = 2Ce 26* and the fact that

L < €2dy/(nh) sup Ju(s,1) < anle, ).
jt—s|<6

|

Proof of Proposition 7.3. We start with (7.2). Due to the iid properties of A, there exist
constants p; with |p;] < C,

E ei(ZnstZ02) (S, (t) — Sy ()] = [Znn(t) — Zn,h(S)]}}
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IN

\E[ S99 (18, 1(8) = S () = [Zun() = Zun(s)]} | Fiua]|

dn
o 2 Z E[E [I1ix(h) | Fing]|
k:[ns]—‘rll k+1
d k+Bo
< ) (X + ) ) BIE ([T () | Fny]|
=[ns]+1 I=k+1 I=k+Bo
= Rn4+Rn5a (736)

IN

where By and IIj;(h) are defined as in Lemma 7.5. Similar to (7.11) with minor modifications,
under both LM and SM, we have R,y < C h'/2. To estimate R5, under LM, it follows from
(7.25) that

Cd,

Y dt (4% + dik/Vn) < Ch.

k=11=k+Bog

Rn5 <

Similarly, under SM, we have R,5 < Ch by (7.27). Taking these estimates into (7.36), we have
(7.2) as h — 0.
In a similar way for any ¢ > By, we have

‘Eei(Z”3+Z"2){[5n(t) = Su(8)]? = [Yag () = Yag()]}]

k=[ns]+1 l=k+q
d# Zk:[ns]ﬂ Z?:Hq d;;_l[ns} df_2k, under LM,
= S SRt D (= B) 7Lk = [ns) ™+ (1= k)32 (k — [ns]) /2],
under SM,
< C 2?3y, under LM,
- f $*372d:c—|—10g n/y/n, under SM,

< e+ Clog’n/v/n,

by choosing ¢ sufficiently large. This proves (7.3). The proof of (7.1) is similar and simpler, so
the details are omitted. O

Proof of Proposition 7.5. With v = 0 where v is used in A1 (i), we may write

ZZQSJQ -7 = Zar i€+ Z aryj — ajle—j, (7.37)

=1 5=0

where q; = le=0 ¢s and a; = 0if I < 0. Let 2z, = >, €gar—j and z1, = Z?:Oo[arﬂ — ajle_;.
We have var(z,) ~ d? for r > 2mq and, when my is fixed,

E|f(s,wo)(e ™ = 1)] + [Ef (s, wo)]

Ef(s, wo)e 7| <
< C(1+ o)) minfL,]s]}.

Now it is readily seen from the iid properties of ¢, and (7.18) in Lemma 7.3 that

1

< o \E{f s,wo)e” S |E {f s,wy)e” 5 1 ds

le
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< Ot farl) [ min{L, o]} [E {Fs. )} ds
< O +a)(d +r70).
Hence »_2,, |G| < oo due to |a,| < C under SM and |a,| < d; under LM.

To prove (6.11) and "2, |G| < 0o, we make use of (7.33) in Lemma 7.7. In fact, for any
r > 1and y € R, it follows from (7.33) that

‘E {(Ulouh — UOUT)K(y + xr)}‘

(3 S+ 3 ) E N K+ )]

<
k=mo+17=0 k=0j=mo+1
00 r+k+1
< 20 ) > d k] ]
k=mo+1 j=r+k—1
r+k
+2 Z Z!I?/)kIHI%HZ\%\Z\%Hd +77%)
k=mo+1 j=0
< 24t D |l Z||¢j+r+k!|
k=mo+1 j=—1
r+k
+2C Z ZII%HII%HZI%IZI%Hd +r7%).
k=mo+1 j=0

Note that S/ _ |¢s| 728 [b|(d® + 773) < C5Y/2 kY2r=3/2 under both SM and LM. It is
readily seen from Y72, k'/2 [[4hy]| < oo that

S (G — Gl < / A () 22 8 { sy = o Ky + )y
r=1 -

IN

¢y k1/2||wk||/K Jdy — 0, (7.38)

k=mo+1

as mg — oo. Similarly, we have \éo — éo,mo‘ —0,asmg — 0o, and Y 7 |C~}r| < 00. The proof
of Proposition 7.5 is then complete. O

Proof of Proposition 7.6. The proofs of (6.13) and (6.14) are simply established using
Lemma 7.1. Indeed, by noting that

n—r

| Z K (z1) K (Thtr) (Wik it ke — UkUktr) ’
k=1

(Y 24y S ) S K@) N e,

= mo+111=0 =0 1= mo-+1 k=1

it follows from Lemma 7.1 (i) and ;2 ||¢;| < oo that, for some constant Ay > 0,

o) o0 dn " _
ElRal < O >0 S il el S [(Ao+2)+ > dy ]
k=1

l=mop+111=0
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o0
< Ci1M; Z v < CMimgt.
l=mo+1

Hence (6.14) follows if we take M; = y/mg. The proof of (6.13) is similar.

We next prove (7.6). Let Zzzk = 0 for k¥ > [ and I'(.) be a measurable function with
I'(A1) = 0 and ET'?()\;) < oco. Since K (z) is bounded, for Ag being chosen as in Lemma 7.7, we
have

A, ‘ZF Ak—j) @“k/h)‘
k=1
n Ao
< 2| 3" Ty Kz /h) [P+ 0 (3 Tyl )?
k=Ao k=1

o> > > 32 ) ) F(Aug) K1) K/

k=Ag [k—l|<Ag  k=Agl=k+Ag
Ag

+C (30wl )

k=1
=: Aip+ Doy + Asp,  say. (7.39)

It follows from Lemma 7.7 that

ElAy,| < ChY . > 1/dy < Cinh/dy,
k=1 |k—I|<Ag
n— nA(k n _
> k- zlélod ' <Zz /\k-i-tl]o d; ! +Z T DYy dl—Qk)’ under LM,
ElAg| < Ch? gyl =172 z”“’“ﬂ)( — k)7
0

l k+A0
Zk A 2ol= k+j (k=M= k) + kY2 (1 — k‘)_3/2], under SM
< C(nh?/d,) J{/‘iﬂ + Zgzo |l under LM,
j'/? +log’n/\/n+ 1, under SM,
< Cj?nh/dy,

where we have used the fact Zi:o lpr| < Cj/d;j < C§'/? under LM. On the other hand, it is
readily seen that E|As,| < C A2
Taking these estimates into (7.39), for any bounded h, we have

E| ZF MNeej) K (g /h) |° < C 5V nh/d,. (7.40)

The result (6.12) now follows from

E\Zukmo (z/h)] _IE]ZZ%A,” (zx/h) |

Jj=mg k=1

S M)+ lsl) - 5 + ) IE\Z% K(a/m)

Jj=mo Jj=mo

33



< 2 GVl + ) D T (| + (el

Jj=mo Jj=mo

(E|Z€k K (i /h) [ +E\Zek i K/m)[)

< Ol [ 32 M+ Wl

Jj=mo

where we employ Holder’s inequality and (7.40) with A(A\x) = € and ey, respectively. The proof
of Proposition 7.6 is complete. o

7.3 Proof of Proposition 7.4

We start with (7.4). The tightness of Z, j,(t) has been established in Proposition 7.2. It suffices
to show that the finite-dimensional distributions of Z,, j,(t) converge to those of 72Lz(t,0). To
this end, let g(z) = E f%(z,w1). Under A2(b) and A3(I), g(z) is bounded and integrable.
Furthermore, by using Wang (2015, Theorem 2.20), we have

[nt]

dn, Z

% g(xk/h) = 7-2LZ(ta 0)7 (741)
k=1

whenever d,,/h — oo and d,,/nh — 0. In terms of (7.41), the finite-dimensional distribution of
Zn p(t) will converge to those of 72Lz(t,0) if we show that, for any fixed 0 < ¢ < 1,

[t ]
%Z[g(xk/h)— FA(xr/h,wy)] = op(l). (7.42)

k=1

This is essentially the same as in the proof of (A.20) for i = 2 in Wang et al. (2021) (also see
(4.8) in the paper) and hence the details are omitted. (7.4) is now proved.
We next prove (7.5). It suffices to show the following:

(a) for each 0 <7 < m, {tn,r(t)}n>1 is tight on D[0, 1]; and

(b) the finite-dimensional distributions of {¥no(t), ¥n1(t), ..., Ynm(t)} converge to those of
{Go , G, ., Gy } Lz(t, 0).

The proof of part (a) is simple. Indeed, by noting
[nt]

dy
[Ynr () = Yur ()] < - > 1@ wi) f @k, Whepr)|
k=[ns]+1
d [nt]+r
< 2 < _
< = k_§+1f(xk,wk)_\zn,1(t) Zn1(s)] + op(1),

uniformly for s < ¢, the tightness of ¢, (¢) is implied by that of Z, 1(t).
To prove part (b), let h.(y) = E{f(y,wo)f(y + @r,wr)}. We have h,(y) is bounded and
integrable due to A2(b) and A3(I). Hence, as in (7.41),

L’I’Ltj m

dy

. Z [aoho(l‘k) + ...+ ozmhm(a:k)} = Z arG,Lz(t,0),
k=1 r=0
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on D[0,1], for any (ap, ..., ay,) € R™FL. The Cramér-Wold theorem now implies that part (b)
will follow if we prove

‘wnr(t)—%Zhr(xk)| = op(1), (7.43)

for any r > 0 and any fixed 0 <t < 17,
The proof of (7.43) is quite technical, starting with some preliminaries. Let a; = Zi:o s
and a; = 0if [ < 0. With v = 0, we may write

0 k
ap = Y oy —asjleg + Y an—jej, (7.44)
j=—00 j=1
and
k k+r
Tktr — Tk = Z [ak+r—j - ak—j]fj + Z Aftr—5€j
j=—00 Jj=k+1
0 r
= > larj—asgler+ ) arjejpn
= Tikyr T T2k (745)
where
_AO
Tige = Y lar—j —a_jlejn,
j=—o0
0 r
Tokr = > lar—j—a_jleiet Y arjejin
j=—Ao+1 J=1

It is readily seen that, for any Ag > 0, x1x, is independent of xgy, and z1j, is independent of
wy, and Wy, when Ag > mg + 1. By letting v; = a,+; — a;, we further have Z;’il 732 < oo and

_A() k— A()
Likyr = Z lar—j — a—jlejk = Z Vk—q€q T Z Vk—q€q- (7.46)
Jj=—00 g=—00

We next let f(t,s) = [ & f(x, s)dx,

o

Vi(t,s) = f(—=t,wp)f(s, wppy)e 552k
A (t,s) = E{f —t, wyp) f(s,wr)e*isxr}.

Using the Fourier transformations, under A3 (III), it is readily seen that

! ' ‘ ¢ —18T20,r
hir(y,s) = 9 /ez(tS)yE Vo(t,s)dt = e ™Y E {f(y, wo) f (s, wy)e 20,7 }7
! (t—s —is ¢ —isx
h27‘(y7 3) = % /el(t )yA’r’(t7 S)dt =€ yIE{f(y7 wo)f(s wr) 7‘}7

"We remark that the r in (7.43) is allowed to depend on n and we have in fact established the convergence in
(7.43) in Ly rather than in probability. These enhanced properties will be useful in the proof of Proposition 7.7.
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hr(y)

= E{f(y,wo)f(y+xr,wr)} = ;r/hgr(y,s)ds.

We are now ready to consider (7.43). Without loss of generality, assume ¢ = 1. We have

wm" ( 1 ) -
where

Roa

Ria

Rog

R3a

Rya

Z f(zk, wi) f Sy Whtr) e HThtr g
27rn

2n

2}// —t,wg) (5, Wi )P st 4 Ry,
[s|<A

i(t—s8)w)— STk, BV, (1. S dsdt + R1a + Roa
2n Z //<A ) 1 0
dn —1isxT
dn Z e kb (xg, s)ds + Ria + Roa
[s|<A

2m™n
k=1

dn — ,

ﬁ / e ¥k hop(xg, s)ds + Roa + Ria + Roa
k=1 7 ls[<A

n

—_— Z/ hgr(l‘k,s)ds—l—RgA+R2A+R1A+R0A
k=1 1sI<A

hr(wk) — Raa + R3a + Roa + Ria + Roa, (7.47)

3

dn

™

f(xlw ’U)k) / f(S, wk+7")e_isrk+rds?
[s|>A

S

k=1

dn . sx ST
= & 2nz/|<A/ t=s)en=istinr [V, (¢, 5) — EVi(t, s) ] dt ds,

= e_lszlkr hl xk? ) h2 (xkas d87
27m ||<Ak§:1 " ’ )]

= e Tk ] hr ,s)dtd
27m/| Z 2 (xk ) g

|<Ak 1

_ / / i(t—s a:k e~ 5Tk _ 1)Ar(t, s)ds,
|<A

n

/ hor(xg, s)ds .
1 |s|>A

Lo
N | &
:‘3

Recalling wy, depends only on Ak, ..., \g—y,,, Where my is a fixed integer, it follows from Lemma
7.1 (i) and |f(y, wo)| < T(y)(1 + [fwol|?) that

E%mscz/ E { |, wo)l 1 (5. wir) | s

[s|>A

< Zd‘ /

|s|>A

/E {1y, wol | £(s,w,)| }dyds
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(s, Wy wol|?) Vds ,
< 0 [Ty [ E(FG I+ ol ))ds 0

as A — oco. Similarly,

—
E|Ru| < C— Z/ E |hor (2, $)|ds

dp = _
¢St [ [ ey sldyds
n s|>A

k=1 ‘

IA

IN

¢ /s>A /E {1£(y,wol | f(s,wy)|}dyds — 0,

as A — oo. Hence, |Roa| + |R4a| = op(1), as n — oo first and then A — oo. This, together
with (7.47), implies that (7.43) will follow if we prove: for any fixed A > 0,

Rja = op(l), j=1,23, (7.48)

as n — oo frist and then Ay — oo.
The proof of (7.48) for j = 2 is simple. Indeed, due to the independence between z1o, and
w1, Wy, we have

[ [ 1ty ety 9] s

< /| . / E {1£ (g w0)| £ (s, wn)| |00 — 1] Vdyds
< 4 / / E {|£(y, wo)| | (s, w,)|dyds E|z10,]
< CA[Y (arsy — a2,

Jj=Ao

for any fixed A > 0. This yields that

dy, -
E|Rza| < /| ZE‘hM(CUk,S)—h2r(l’k78)‘d8

2mn <A
d n
< dl/ /Ihu(y,S)—hzr(y,S)ldde
n ; © Jisiza
> 1/2
< CA[Y (ary—ap)?]"? =0,
Jj=Ao

as n — oo first and then Ay — oo, as required.
It is readily seen that (7.48) for j = 1 and 3 will follow if we prove: for any fixed A > 0,

dn [ iues)ap i
— sup E Z/ez(u 8)Tp—1i5T 1k [Vk(u, s5) — EVj(u, 5)]du‘ = o(1), (7.49)
n |s|]<A k=1
dn, [ i ~
- sup E Z/ez(u s)xy (6 IST1k,r _ 1)Ar(u7 s)du‘ = 0(1)7 (7_50)
[s|<A k=1
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as n — oo first and then Ay — oc.
We first prove (7.50). We may write, for any B > 1 and |s| < A,

n
Z / eiuazk (e—iswlk,r _ 1)Ar(u + s, S)du
k=1

n

_ Z (/ +/ >€iuazk (efisxlk,r _ 1)Ar(u + s, S)du
|U‘23/dk ‘u|<B/d)C

k=1
= Apn(s) + Agy(s), say. (7.51)

Recalling | f(z,y)| < T(z)(1+||y||?), where T'(z) is a bounded and integrable function, we have
sup\A us|<//E{]fa:wo | f (y, w,)| }dady < oo, (7.52)

sup (14, s)ldu < [ [E {17 w0)|f o) s

< /T(a:)dw /E{|f(t,wo)(1—|— [, ]1%) }dt < oo, (7.53)
% sgp/‘/Ar(t—i-s,s)eitydt‘dy:sgp/|h2r(y,s)|dy
<C //u-«: {1£(t,wo)|f (z,w,)| }dtda < . (7.54)

Due to (7.52), it is readily seen that, uniformly for |s| < A and any B > 0,

E[Agn(s)] < C sup [Ap(u+s,8)B Y d' Elry,]

ul,|s|<A k=1
< CBn/d, | Z (Qryr — ak)z]l/Q. (7.55)
k=Aop

To consider Ay, (s), writing Ay, (s) = Ay 1(s) + A1 2(s), where

n
Aln,l(s) — / eiuzk—isank,rAr(u + s, s)du,
|u|>B/dk

n

AIn,Q(S) - Z /u|>3/dk ekaAr(u + 5 s)du

then (7.50) will follow if we prove

d, ,
0 sup E[Aini(s)l < C(nfdn) /Bt + BA3du/n, i=1,2. (7.56)
N s1<A

Indeed, due to (7.51) - (7.56) and 74, := Y52 4 (@rr — ax)* = 0 as Ag — o0, (7.50) follows by
~1/3
taking B =17, "".

We only prove (7.56) for i = 1 as the result for i = 2 is similar. We have

BAmi@f <3| /

/ Ar(t—i—s,s)Ar(u+s,s)ETkjdtdu‘
k=1 j=1 YI[t[=2B/dy Ju[>B/d
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(Y X)) \/ / At +5,5) Ar(u + 5, 5) ETydtdu |
|k—]|2A(2)+1 |k—j|§Ag |t|2B/dk |u|28/dj
= Qi + Qop, say, (757)

where T}, ; = et@rtiues e=is(@1r,r+215r) Recalling (7.46), it follows that
|[E(Tkj | Fo)|
< ‘E( itxy+iur; e*iSZ’;;lAO kaqeqe*iSZZfo Yi—q€q |f0)‘
_ ‘]E( itrptiuz; ,— ’LZ sq/q €q |]:0)| (758)
where

Ve—gq +Vj—q» 1< qg<EkAJ,
Yo =19 Tvi-o ifkAj<q<kVj— A,
0, lfQZkV]—AO,

satisfying Zf;il 7;2 < o0. Now, by noting (7.52) and using (7.23), we have that, uniformly for
|s| < A,

O, < 2E Y / / At + 5, 8) A (u+ 5, 5)| [E(Tyy | Fo)dtdu
b joazyr ! 2By Jjul=Byd
< Cc > [U-k7+Bd ]!
I-k>AZ+1

< OB '(n/dy,)>.

Turning to consider €o,, note that
E‘/ Ar(t—i-s,s)em’“dt‘ < B/dsup | A, (t + s, 5)|
t|>B/dy, t,s
—HE’ /Ar(t—i- &s)emkdt‘
< OB/dy +Cd; ! /’/AT(t—l—s,s)eitydt‘dy < CB/dy,

due to (7.52) and (7.53). Uniformly for |s| < A, we have

] < Y / |Ar(u+ s, s |duE‘/ (t—l—s,s)Tkjdt’
|u|>B/d; [t|>B/ds,

k—jl<A3
/ \Ar(u—i—s,s)]E‘/ AT(t—&—s,s)emkdt‘du
|k—j|§A% ‘u|2B/dj [t|>B/dy

CBA:n/d,.

IN

IN

Taking this estimate into (7.57), for any fixed A > 0, we have

sup E|A1,1(s)* < C’(B_1 + BA%dn/n) (n/dy)?, (7.59)
|s|<A

yielding (7.56). Then (7.50) is established.
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Finally, we prove (7.49). Let o4 (t,s) = Vi(t,s) — EV(t,s). Uniformly for |s| < A where A
is fixed, we have

n
E‘ Z / e”xk*isxlk,v-gk(t + s, s)dﬂ2
k=1

n n
= Z Z E / / e~ @ty ) gtz o (p 4 g s)oj(u+ s, s)dtdu

k=1 j=1
= ( Z + Z )E//e_is(mlkf“ljv’)eitz’“““gjjUk(t+s,s)oj(qus,s)dtdu
li—k2A3+1 [i—k|<AG
=: Ry6 + Rn7, say. (7.60)
Note that o (t + s, s) depends only on €, ..., €x—a,, Eog(u + s,s) =0 and

sup oy (t +5,5)] < C+sup (£, wg)] sup | (4, wir)|
S

)

< O+ [Jwel P + [wpr %)
As in the proof of (7.50), it follows from (7.20) in Lemma 7.4 that

[Rng| < Z }E//eis(x“”””vr)em’“””xﬂ'ak(t, s)oj(u, s)dtdul
|i—k|>AZ+1
. . . kVi

< Z E // ‘E[ezt:pkﬂux]‘ﬂszqii ’quqak(t + s, S)Uj(u + s, 3) ‘ ].“0] ‘dtdu

|i—k|>A3+1

(where ~, is given as in (7.58))

-1 -2
< C ) dldEy,
li—k|>A3+1

< { n/dy, under LM, (7.61)

n logn/d,, under SM.
To consider Rz, let lx(y) = [ €0y (t + s,s)dt. It is readily seen that

@ < 1 (s w)llf (s, wieer) |+ E {1 (g, wi)llf (s, wier) |}
< Ol (y, wi)| (1 + [[wper|”) + CE{1F (g, wie) (L + [Jwper 1) }

and by Lemma 7.1
E |l (zx)> < Cd'E (1 + ||wn|[*) < Crd;t
This yields that

Rarl < Y E{l(@)l =)} <G Y &t <CAjn/dy. (7.62)
|j—k|<AZ+1 li—k|<AZ+1

It follows from (7.60)-(7.62) that
d n .
an § : T —1ST1k,r t dt
n |k1/€ ol + 5, 9) |

< O +logn) ()2 0,

as n — oo first and then Ay — oo. This proves (7.49) and also completes the proof of Proposition
74. 0
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7.4 Proof of Proposition 7.7

Recall (6.14) and that I(z) is continuous with [(0) = 1. It suffices to show that there exists
M = M, — oo so that, as n — oo first and then ¢ — oo,

- Z [( ) ZK $k xk—l—r) Uik UL ftr = Op(l), (7.63)
r=q+1

where uy;(= u1j) = Y 2 wi)\;-_i for some my = mp(n) — oo and mg = o(w/n/dn).
To this end, as in (7.45) and (7.46), for Ay = mo + 1, we write

Thtr — Tk = Likyr T T2krs

where, by using the notations a; = le=0 ¢s with ¢ =0if [ <0 and v, = a1y — ay,

~Ag k—Ao 0
Tike = Y larj—a jlee= Y Tei&G+ D Ve-i€is
j=—00 7=1 j=—00
0 T
vk = Y larj—asglein Y ar e
j=— Ao+ i=1

Recall that K(z) = 5 [ " K (t)dt under the condition (a). For any r > 0 and I,, > 0, we have

Z K (2) K (k4 ) Wik W1 or

n—r

= — K(Ik) ULk UL ftr / K(S)eiiszk”ds + L1,
Is|<ln

= Lln(T‘) + LG(T’) + Lgn(’r’), (764)

where, with Vi (s) = e 75267 wyp ug g,

n—r

1 N )
Lin(r) = 5= ) K(z)urw k+7«/ K(s)e **¥ktr(s,
23 Js1>1n
1 — R .
Lan(r) = 53 K(w) [ R(s)esonton) BV (s)ds,
& k=1 |S|Sln
1 «— X -
L3, (r) = o K(."Ek)/||<l K(s)e is(zp+Tik,r) [Vk(s) —EVk(s)] ds.
k=1 n

Using Lemma 7.1(i) and [ |K (s)|ds < oo, for any mg — oo satisfying mo = O(n/d,,), there
exists My = My, — oo so that, whenever [,, — oo,

My
dn
— E|L1p
=3 ElLu()

r—q+l
3mo
coyt [Zmulkumw S d S IR
r= q+1 3mo+1 ls|>1n
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< oM / K ()| ds — 0. (7.65)
|s|>1

To estimate Lo, (r), let hy(y) = E[K(y + w20, )uiouir]. It is readily seen that he(y) is
bounded and integrable. Furthermore, using (7.33) in Lemma 7.7 with minor modifications0,

we have
_ mo mo
‘hr(y)| < ZZ ‘E [K(y—ka?zo,r)lﬁl)\/_l%)\;fv“
=0 v=0
2 & if |r—v+1 <1,
< C ;UZO ||¢ZH ‘|¢v|| {Zs 0|¢8| ZT‘+I ’¢s| |(d 3+r_3)’ if |T—U—|—l’ > 2,
mo r4+l+1 mo mo
< Ol Do Tl +C 30> Pl o'l 42
=0 v=r+l—1 =0 v=0

< Crldst o < ori?,

uniformly in y € R, where we have used the facts that d; ! < Cr~Y/2 and 3> |¢s] ZTH |ps|(d 3+
r=3) < Cv/21?r=3/2 under both SM and LM and 3% v|[th,]| < co. Now, by noting that
EVi(s) = EVy(s), sup, E|Vo(s)| < E|uigui,| < C < oo and

~ 1 . .
W) = oo [ K(s)e ™ BYy(s)ds,

standard calculations, together with the Holder inquality, show® that

dn dn 5
T ElLan(r)] < *ZE (1) [P (21 + 2130) HJFCF ZEK(ﬂﬁk)/ |K (s)|ds

k=1 |s|>1n

n 3/4 1dy o~ 1/4 .
< {— ZEK4/3(xk)] {— ZE}hr(kara:lm)\“] +C |K (s)|ds

n =1 n el [s|>1n
< | / KB (y)dy] ™ | / )| dy] "+ C [ R (s)lds

[s|>1n
< cr% 4 1K (s)]ds.
[s|>1n

As a consequence, for any l,, — oo and M; — oo as given in (7.65), we have

M,
dn
— E|Lo,
- > El|Law(r)

r=q+1

IN

My
c Y r9/8+0M1/ |K(s)|ds

r=q+1 |S|>l’ﬂ

IN

Cq 8 oM, / K (s)|ds — 0, (7.66)

|s|>1n

as n — oo first and then ¢ — oc.

8Note that zp + Tik,r = Zk

Jj=—o00

ap—j — a—j +yp—; if j <0, and Z a? = d2 Lemma 7.1 still holds when the xj, is replaced by xx + T1x,r.

j=—00 J

Qp— €5 where ('ikfj = Qk—j +’yk,jl(j < k- Ao) ifj > 1 and dk,j =
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We finally estimate Ls,(r). It follows from the Fourier transformation that

L3n(r) = 2n)? Z / / " K(s) e!t=9)mr emisTikr [V (5) — BV (s)] dsdt
= 27r e, K(8)L(s,7)ds, (7.67)
where L, (s, fK i(t—s)ok o—isTik,r [Vk( )— EVk(s)] dt. Let oi(s) = Vi(s)—EVi(s).

Uniformly for |s | S ln, we have

EEQ S 7, E‘Z/K t—|—8 itxy— lsxlkro-k dt‘

= ZZE//K (t + 8) K (u+ s) e"S@mrtaiin) glantiuzi o) () g (s)dtdu

k=1 j=1

— < Z + Z )E//K(t+ s)f((u—l— s) e_is(”””””lf”")em’“”“xfUk(s)aj(s)dtdu

J-k[>A3+1  |j—kl<A3
=: Rn1(s) + Rna(s), (7.68)

Note that o(s) depends only on €jyy, ..., €x—4a,, Eox(s) = 0 and

sup |ox(s)] < C(1+ uik] [ur jrer])-
S

As in the proof of (7.50), it follows from (7.20) in Lemma 7.4 that

Ru(s)l < > |E / / e~ i@t gt g (9o () dtdu)

li—k|>AZ+1
< Z //‘E ztm;ﬁrzux]ﬂszq 1’7q 10%(s O'] |]:0Hdtdu

li—k|>A2+1

(where 7, is given as in (7.58))
< C Z d;; 1d|]2k‘(1+|5’)

lj—k|>AZ+1
n/dy, under LM,
< .
< C+lsD) { n logn/d,, under SM. (7.69)
As for Rpa(s), by recalling K (z) = o= [ K(t)e™dz and Ag = mg + 1, we have
[Rna(s)| < Z E [K (zk) K (z5) sup |oy(s)| sup |o;(s)]]
—k|<AZ+1 ’ ’
< G Y dt < Cmin/dy. (7.70)
li—k|<AG+1

It follows from (7.67)-(7.70) that, for any l,, — oo satisfying l,, = o(y/n/d,) and mg = o(y/n/d,),
there exists My = My, — oo,

Mo
dyp
— E|Ls3,
S ElLs(r)

r=q+1
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< CM; sup E|Ly(s,r \/ s)|ds < C My sup [E£2(s 7«)]1/2
|s|<ln

|sl<ln |s/<n

dn12
)/

gCMWa+mm+%W%n 0. (7.71)

By virtue of (7.64), (7.65), (7.66) and (7.71), for any M = M,, — oo and M,, < min{M,,, M2, },

we have

—_— Z 4 < ) E‘ ZK ij kaJrr) Utk UL, k+r

7‘q+1
- cd, X
< - ELn ELn ELn
< Cnr;q;l(ll(r)lJr | Lon (1)) Tzq;rl |L3n(r)| — 0,

as n — oo first and then ¢ — oo. This proves (7.63) and completes the proof of Proposition 7.7.
O
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A Appendix: Proofs of Lemmas

A.1 Proof of Lemma 7.2

The idea of the proof is similar to that of Wang and Phillips (2011, pages 246-247) and the
following outline is provided here for completeness. We first prove (7.13). Write Q1 = Q4(¢)
(€2, respectively) for the set of 1 < v < k such that [t o, + 6, > 1 (|t o+ By| < 1, respectively),

and
By=>» a,fB, and Bz= > f7.

vEQ vEll2

Since B3 < By, Bs by Holder’s inequality, we have

Z (tay+ B8y)2 = 2By +2tBy + B
qe2

Bik(t + Ba/Bix)® + (Bs — B3 /Bi)
> Bi(t + Ba/Bii)*.
On the other hand, there exist constants y; > 0 and 2 > 0 such that
: gt >1
ie1l < € 1 -
}Ee ‘ = { e~ 2l if <1, (A.1)

since Ee; = 0, E€2 < oo and ¢ satisfies the Cramér’s condition due to JIE elto|dt < co. See, e.g.,
Chapter 1 of Petrov (1995). Without loss of generality, assume oy # 0 and let g(t) = E e?@1<,
From these facts and the independence of ¢, it follows that, for k£ sufficiently large and all ¢,

k
‘Eeizk(t)‘ < lg(t)] H |E€i61(taq+5q)|

q=2
< g(@®)] exp{ — n#() — 12 Z (tow + Bu)?}
veEo
< g(®)] exp { = n#() — 72 Bik (t + B2/Bix)*}. (A.2)

Hence, by recalling (7.12) and |Bg| < Zle |y By |, simple calculations show that
/ min{1, s1 [t|° + s2} |E eiz’“(t)‘dt

/ g()| e VEdt + (51 [t + sp)e2 Buk (+B2/Buw)? gy
#(Q1)>VE #(Q1)<VE

CeVF 4O s / (It + |Bal/Bux) e~ 2 B P 1(Byy, > m3)dt

IN

IN

+C s9 /ew2 B (B > mj)dt
k
< C (k:_3 + 5 [mgl—é +mlzl—% (Z | ﬁvD(S] + 59 m,gl)-
v=1

Result (7.13) now follows from the fact that

k k

k k
> o Bul < (Y lewl?) 2 (D182 < Omi (3 18.2) 2.
v=1 v=1

v=1 v=1
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The proof of (7.14) is similar and hence the details are omitted. We finally prove (7.15). In
fact, by recalling B3/Byy, < Bs < a, i.e, By/Biy, < a'/?/my, due to (7.12), it follows from (A.2)
that

/ I 20| dt
[t1>B/m,

gl e VEdt+C / =2 Bu (t+B2/Bu)’ gy
#(01)<Vk,|t|>B/my.

IN

/#(Q1)>\/E

e A|>2 1B/ e 2 Bw (B, > mi)dt
Za mg

IN

< O3 +m; B,

as required. O

A.2 Proof of Lemma 7.3
Let Vi (t) = Zﬁzk_mo+1(tav + By)€y. Note that

’E eizk(t/h)g(t7 wk) | < ‘Eeizk*mo(t/h)} ‘Eeiv’“(t/h)g(t’ wk) ‘
< E ’g(tv w1)| ‘E eizk*mo(t/h)"

It follows from (7.13) with s; = 0 and sp = 1 that
/ [E ™M) (¢ wy)|dt < Ch / |Ee=-mo®|dt < Ch (k73 + 7,1,

yielding (7.16). Similarly, by noting that

B Mgt wy) | < [E (N —1)g(t,w) |+ [Eg(t,wy)]
2min{1, axo [t|/h + Bro}E {Ieollg(t,w1)|} + Cmin{1, |t[}

C Bro + Cmin{1, ago |¢]/R} + Cmin{1, ¢}, (A.3)

ININ A

we have

/}E {eizk(t/h)g(t,wk)ﬂdt
< C /min{l,ako |t|/h} ‘ Ee'2k—mo (t/h) ‘dt + CPBro /‘Eeiz’f—mo(t/h) ’dt

+C / min{1, [t[} | Ee"-mo /M) |qt

k
< Ch{(1+4 ako)y > [1+ (253)1/2] + Bromy

v=1

as required in (7.17). As for (7.18), by noting that
[E e Mg (twp) | < C Bro+ CminL, |t} + Cmin{1, [¢]/h},

due to (A.3) and supy agg = O(1), it follows from (7.13) and (7.14) that
/min{l, t|/h} |E {e=M g(t,wy) }|dt
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< ChBo /mm{1,yty/h}}Ee”k—moWh)}dt+c/min{1,(|t|/h)2}\EeiZk—mo<f/h> |t

+C / min{1, [f]} min{, [t|/}}| Ec™-mo (/" |df
< Ch{k™> + [Bro(r, 2 + k7% + 71,7 1+Zﬁ
This proves (7.18). O

A.3 Proof of Lemma 7.4

We only prove (7.20) and (7.22). The other proofs are similar and simpler. Note that

k k J 0
v o= > oG =Y i Z+ > Veudju
j=1 j=1 U=—00
k 00
= Z €u Ay + Z €—ubu i, (A4)
u=1 u=0
where a;_, = Zf —y pEus g and by = 25:1 pE=% ¢pgin. Tt follows from the independence of
the €; that
Lk (m)]
S // ‘E {ei825:m+1 ak:—vﬁv/h'f‘itz:i;:rrﬂrl al—vﬁv/h-‘rizzzmle ’YjEjg(S’wk)g(t7wl)}‘dsdt
< C / ‘E{eiZi:kH(tdl—v/h—k%)Ev g(t,wl)}‘ A(t, k)dt
(A.5)
where

At k) = / |E{eiZf:mﬂ(Sakfv/h+tazfu/h+%)eu g(s’wk)},d&

As in Lemma 7.2, denote by Qy asubset of @ ={m+1,2,....,k} and Qs = Q — Q. Note that,
forany k—m > 1,35 o, a?_, = di_, whenever # <k —m. It is readily seen from (7.16)
with a, = ag_, and B, = ta;_,/h + Y that

Alt,k) < Chd?, ), (A.6)
By similar arguments it follows from (7.17) with «, = a;—, and 8, = 7, that
/ ‘E {ei Zi:k+1(t‘1l7u/h+’)’v)ﬁv g(t’ wl)}‘ dt
l
< Ch{l—k) P +and 1+ (> )"+ Budl)
v=k+1
< Chld %1+ a'?) + Bd ], (A.7)

where a = S0 42, Bl = maxo<j<m, |1—;| and we have used the fact:

oo = max |og—| = max fai| =O(1).
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It follows from (A.5)-(A.7) that

|Ik7l(m)| S Ch dlzim /‘]E eiZi:k+l(tGZ—1;/h+7v)€/u g(t’ wl)‘ dt
< Ch*dt [d7%(1+a'?) + Bod L],

implying (7.20).
The proof of (7.22) requires some modifications. First notice that, under SM, we have

At k) < Ch[(k —m)~ +min{1, |t|/h} (k —m)~ /%], (A.8)
rather than (A.6). Indeed, under SM, it follows that
(a) A(t,k) < Ch(k —m)~'/2 by (7.16) and, for any ¢ € R,

(b) A(t,k) < Ch[(k—m)~t+[t|/h (k—m)~Y?] by (7.17) with a, = a_, and B, = ta_,/h+
,U«v/\/ﬁ’

implying (A.8). Now, by using (A.5) first and then (7.17) and (7.18), we have
Tk (m)]
< Ch(k - m)_l / ‘E {eiZi:kH(tm_v/h—F%)Ev g(t,wl)}}dt
+Ch(k —m)~1/? / min{1, |¢]/R}|E {& Zomrsaltoro/mtm)en g )} de
< ORI —k)HE—m)" + (1 — k)32 —m)?],
which yields (7.22). O

A.4 Proof of Lemma 7.5

We only prove (7.25). The other proofs are similar and use the corresponding results in Lemma
7.4. Recalling (2.4), we may write

1 . . A ) e
I (h) = (27T)2//f(t,wk)f(s,w;)emk/h“wl/hel 2j=mt1 GV s, (A.9)

It follows from (A.4), the independence of €; and (7.20) with v; = p;/+/n and g(s, wy) = f(s,wp)
that
|E [I1.(h) | Fn]|

<21>2 //E(ez‘szk/h+itml/h++z’2§—m+1 #jej/x/ﬁf(s,wk)f(t,wl) | fm)dsdt
s

Cr*d.t, (&2 + dii/V/n),

IN

IN

as required. O
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A.5 Proof of Lemma 7.6
Recalling (A.4), as in (A.9) we have

B { £/ b wn)E [f(on /o) | o]}
= [ JIE{e et ) B s, ] s
[ [ Efen Bt fet )

E [e (k™ Uk ap—yetith™t R ay ve) f (s, wy,)]dsdt
< C/,E St f(—t,wp) b Alt, k),

IN

where, by letting a; , =0ifk—m+1<v<kanda ,=a_,if 1 <v<k-—m, we have
A(t, k) /‘E ZZU 1(sag_y/h+ta;_ [h)ey f(s,wk)} ‘ds.

The remainder of the proof is the same as that of Lemma 7.4 and is omitted. O

A.6 Proof of Lemma 7.7

Take Ay as required in Lemma 7.1. Recalling K (x) is bounded, (7.30) follows immediately from
Lemma 7.1 (i). If & > Ag, l — k > Ap and | — j < k, it follows from Lemma 7.1 (ii) and the
conditional arguments that

I

[EA{T(A\r—j) T(Ni—j) K (zx/h) K (21/h) }|
E {|T(Ak—j) T(Ni—j) K (z1/B)| [E [K (21/h)| Fi ]|}
CET?(\) h*d M d

IA A

indicating (7.31).
We next assume that k > Ay, [ —k > Ag and [ —j > k. Recalling (A.4), as in (A.9), we have

;o //}E {eitn/ e () () HIR (=s))] 1K (1) dsdt
< C'/‘E ezthflzv:kaz—vev F()\l_j)}‘A(t,k‘)dt

where

f|E{ vt (St /httar—o/h)ew g=ilsek—sbj—kk/hta—kbi-kk/P) T (N, _ ;) }}ds,
At k) = ifk—j <0,
J |E{ e ) ()\kfj)} |ds, ifk—j>1

It follows from arguments similar to those given in the proof of Lemma 7.4 with some minor
modifications” that:

9Replace mo by j, set 7, = 0 and take m = 0. In this case, aqo used in (A.7) satisfies
J
Qo = max lou—i| = JZoax, \al| < Z s,
s=0

which can not be eliminated.
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(a) under LM, A(t, k) < Chd, ' and

I

IN

Chd;! /\E{e“h_lﬂ—k‘””E”F(Al—ﬂ}! dt

IN

J
C Y gl 1 dy M 3
s=0

(b) under SM (noting |bj_y, m| < ZZ —jm |#i] £ C < oo for any m > 0 and maxi<y<y |ay| <

C < o0),
At k) < /|IEJ {eiZif:l,u;ék-j<sak7v/h+ta17v/h>6v }y (min{1, |s|/h} + min{1, |¢|/h} )ds
< Ch (k7' 4+ min{1, |t|/h}k1/?)
and
I < Chk™! /\E{e“h‘l v v DN ) }\dt

FCOhk1/? /min{1,|t|/h}\1E {eith”zv ka-ueo D(\_ }\dt
< CREEY -k P+ CR? kY2 (1 — k)32

This proves (7.32).
Similarly, by letting 2, = 37} 1, €xar—k, We have

|E {T( Ar,j T(A_g)eor/m
if |r—j+k| <A
< ofgemm [ itlr = ’
| | la;| larx — ar| min{1, |s|?}, if |r —j + k| > Ao,
implying that, uniformly for y € R,
|E{K(y + x1/h)T(N—;) k) }

/ ms))ME{eml/hmz_j)m_w}!ds

IN

d_ fll—j+kl <A
< Ch . L, D= ik < A,
o los| S sl (d® +173), if |1 —j + k| > Ao,

as required in (7.33). O.
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