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Abstract

New limit theory is provided for a wide class of sample variance and covariance functionals
involving both nonstationary and stationary time series. Sample functionals of this type
commonly appear in regression applications and the asymptotics are particularly relevant
to estimation and inference in nonlinear nonstationary regressions that involve unit root,
local unit root or fractional processes. The limit theory is unusually general in that it
covers both parametric and nonparametric regressions. Self normalized versions of these
statistics are considered that are useful in inference. Numerical evidence reveals interesting
strong bimodality in the finite sample distributions of conventional self normalized statistics
similar to the bimodality that can arise in t-ratio statistics based on heavy tailed data.
Bimodal behavior in these statistics is due to the presence of long memory innovations and
is shown to persist for very large sample sizes even though the limit theory is Gaussian
when the long memory innovations are stationary. Bimodality is shown to occur even in
the limit theory when the long memory innovations are nonstationary. To address these
complications new self normalized versions of the test statistics are introduced that deliver
improved approximations that can be used for inference.

JEL Classification: C13, C22.

Key words and phrases: Bimodality, Endogeneity, Limit theory, Local time, Nonlinear func-
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1 Introduction

Parametric and nonparametric regressions with nonstationary data have attracted considerable

recent attention because of the prevalence of nonstationary time series in applied work across

many different disciplines and the need for asymptotic theory to support methods of estimation

and inference in the presence of nonstationarity. Much of this work has focussed on cointegrating

regression where linkages between nonstationary processes and stationary innovations play an

integral role in the notion of cointegration and its various extensions to fractional processes

involving long memory time series. The literature in this area is now voluminous, as discussed

in recent papers (e.g., Duffy and Kasparis (2021); Wang et al. (2021)). Readers are referred to

Park (2014) and Tjøstheim (2020) for partial overviews of the field of nonlinear cointegration

*Wang acknowledges support from the Australian Research Council (Grant No. DP170104385). Phillips

acknowledges research support from the NSF (Grant No. SES 18-50860) and a Kelly Fellowship at the University

of Auckland.
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studies that cover many of the relevant contributions and empirical applications. In almost

all of this literature a key role in the asymptotic development is played by sample covariance

functionals that involve (possibly nonlinear functions of) nonstationary processes and stationary

time series. Sample covariances of this type take similar but subtly different forms in parametric

and nonparametric regressions. They typically appear in signal functions and score functions

whose asymptotic behavior is critical in determining the limit theory needed for estimation,

inference and specification testing in such regressions. Prototypical forms of these functionals

for nonparametric and parametric cases are shown below in (1.3) and (1.4) by R2n and R2n(θ
0).

The goal of the present paper is to extend existing results on such functionals, accommodate

these two forms in a general limit theory, and develop self normalized statistics that will be

useful for inference in regression. We open the discussion with three illustrative examples.

In the nonparametric case, simple nonlinear nonstationary regressions typically have the

form

yk = g(xk) + uk, k = 1, · · · , n, (1.1)

with an I(1) regressor generated by the partial sum model xk = xk−1 + ξk with weakly de-

pendent and possibly correlated innovations {uk, ξk}, thereby allowing for endogeneity. In the

nonparametric case, the nonlinear cointegrating function g(xk) may be estimated at some point

x by local level kernel regression in the usual manner via the criterion

Qn,h(g) =

n∑
k=1

Kh(xk − x)(yk − g(xk))
2, (1.2)

giving ĝ(x) = argmingQn,h(g) =
∑n

k−1 ykKh(xk−x)∑n
k−1 Kh(xk−x)

where Kh(s) =
1
hK( sh), K(·) is a nonnegative

real kernel function and the bandwidth parameter h = hn → 0 as n → ∞. The limit theory of

ĝ(x) then depends on the behavior of suitably normalized forms of the two sample functionals

R1n =
n∑

k−1

Kh(xk − x) and R2n =
n∑

k−1

Kh(xk − x)uk, (1.3)

where R1n is a sample signal process and R2n is a sample score process, both of which are

nonlinear in the nonstationary regressor xk. Test statistics typically also require estimation of

the innovations using the regression residuals ûk = yt − ĝ(xk) and a sample functional such as

R3n =
∑n

k−1K
2
h(xk − x)û2k. Full development of a limit theory for estimation and inference

concerning the function g(·) in (1.1) requires joint convergence results for suitably normalized

forms of sample functionals such as (R1n, R2n, R3n). In applications allowance is typically made

for endogeneity of the regressor xk in the regression (1.1). Importantly, as shown in the nonlinear

cointegration study of Wang and Phillips (2009b), such nonparametric nonstationary regressions

do not require the use of instrumental variables and do not suffer from ill-posedness, in contrast

to stationary regressions and there is, in contrast therefore, no need for regularization.

In the parametric case, the nonlinear cointegrating function has a specific functional form

g(xk) = g(xk; θ) that depends on some unknown parameter vector θ ∈ Θ ⊂ Rp, where Θ is

a compact subspace of Rp for some finite p. The nonlinear least squares estimator is then

ĝ(x) = g(x; θ̂) with θ̂ = argminθ∈ΘQn(θ) where Qn(θ) =
∑n

k−1(yk − g(xk; θ))
2. In this case, the

limit theory for θ̂ depends on normalized versions of the sample functionals

R1n(θ
0) =

n∑
k−1

G0
kG

0′
k and R2n(θ

0) =
n∑

k−1

G0
kuk, (1.4)
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where G0
k = ∂g(xk; θ

0)/∂θ and θ0 is the true value of θ. As in the nonparametric case, test

statistics usually depend on regression residuals ûk = yk−g(xk; θ̂), leading to sample functionals

such as R3n(θ̂) =
∑n

k−1G
θ̂
kG

θ̂′
k û

2
k.

The sample variance and covariance functionals in (1.3) and (1.4) are closely related but

differ because of the critical role played by the presence of the bandwidth sequence h in the

functions of (1.3), making a general theory difficult. Asymptotics for regression estimation and

inference in such cases have therefore been studied in past research separately and often in

special cases.1 More complex models that include spurious nonlinear regression (Phillips, 2009;

Tu and Wang, 2022) and functional coefficient (FC) nonstationary regressions involve similar

sample functionals for which asymptotic theory is also needed to facilitate empirical work.

FC regressions are of particular interest in applications because covariate dependence or

time variation in the regression coefficients is often of interest in applications. Such models

with nonstationary regressors were originally considered by Xiao (2009)2. It was later shown

in Phillips and Wang (2023) that important subtleties arise in such FC regressions that affect

the limit theory in material ways because nonstationarity in the regressors amplifies the impact

of bias in nonparametric FC regression. Models of this type are typically linear in (possibly

multivariate) regressors xk and take the form

yk = θ(zk)
′xk + uk, k = 1, · · · , n, (1.5)

with coefficients θ(zk) that are smooth functions of a covariate zk that may be stationary or

nonstationary. In FC models of this type estimation of the coefficient functions θ(·) at some

point z in the domain of zt necessarily involves the three sample functionals

R4n =

n∑
k−1

xkx
′
kKh(zk − z), R5n =

n∑
k−1

Kh(zk − z)uk, R6n =

n∑
k−1

xkx
′
k[θ(zk)− θ(z)]Kh(zk − z)

(1.6)

where R6n is an additional sample covariance bias functional that depends on the regressors, the

kernel function, and bias effects that need further decomposition to fully resolve the asymptotic

theory.3

These examples motivate a general formulation that is relevant in many different applications.

To fix ideas, suppose an observable time series xt is a scalar nonstationary process, either

integrated I(1), near I(1), or a similar time series with fractional process innovations, as detailed

in what follows, and wk = (w1k, ..., wdk) is a sequence of stationary random vectors. The paper is

concerned with sample quantities Sn of xk and wk defined by sample sums of nonlinear functions

of xk and wk that take the general form

Sn =

n∑
k=1

f(xk/h,wk),

where h ≡ hn > 0 is a sequence of positive constants indexed by the sample size n and f(x, y)

is a real function on R1+d. The partial sum Sn is a scalar nonlinear functional of multivariate

1See, for instance, Phillips and Park (1998); Park and Phillips (1999, 2000, 2001); Karlsen and Tjostheim
(2001); Wang and Phillips (2009a,c); Gao and Phillips (2013); Li et al. (2016); Wang and Phillips (2016); Wang
et al. (2021)

2See also Cai et al. (2009); Sun and Li (2011); Sun et al. (2016); Liang et al. (2023).
3As explained in Phillips and Wang (2023), the bias effect R6n has both a ‘deterministic’ component

(
∑n

k−1 xkx
′
k)Eξβk and a ‘random’ component (

∑n
k−1 xkx

′
k)ηβk where ξβk = [β(zk) − β(z)]Kh(zk − z) and

ηβk = ξβk − Eξβk. The presence of these two components influences the limit theory, rates of convergence,
and bandwidth choice in important ways. Readers are referred to Phillips and Wang (2023) for details.
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arguments that involve both stationary and nonstationary processes. Such functionals play

a dominant role in the development of the theory of estimation and inference in nonlinear

cointegrating regression, where the regressor is usually a nonstationary time series, including

those with autoregressive unit roots and local unit root properties. In such regression contexts,

a prominent example of Sn has the form of a sample covariance function that involves both the

nonstationary regressor and the equation innovations. In this case, two covariance functions

are most typical, one of the form S1n =
∑n

k=1 f(xk, w2k, ..., wdk)w1k and the other of the form

S2n =
∑n

k=1 f(xk/h)w1k, where an auxiliary sequence h = hn may be present that depends on

the sample size, as in nonparametric kernel regression discussed above.

As is now well known in the literature (see, for instance, Park and Phillips (2001); Karlsen

and Tjostheim (2001); Wang and Phillips (2009a,c); Chan and Wang (2015); Dong and Linton

(2018); Duffy (2020); Hu et al. (2021) and the references therein), covariance expressions such

as S1n occur in nonlinear parametric cointegrating regression and expressions such as S2n, with

the auxiliary sequence h, arise naturally in Nadaraya-Watson estimation where f(x) is a kernel

function and h→ 0 is a bandwidth used in the nonparametric regression.

It transpires that the limit behavior of Sn depends on the value of the integral
∫∞
−∞ g (s) ds,

where g(x) = E f(x,w1). When
∫∞
−∞ g (s) ds ̸= 0, it was shown in Wang et al. (2021) that upon

suitable normalization Sn satisfies

dn
nh
Sn →D

∫ ∞

−∞
g(x)dxLG(1, 0), (1.7)

provided dn/nh → 0 and dn/h → ∞, with d2n = var(xn) and where LG(t, s) is the local time

of a stochastic process G(t) at the spatial point s, as defined in the following section. Result

(1.7) was established in quite general settings, generalizing and improving previous related work

on convergence to local time given by Akonom (1993); Borodin et al. (1995); Phillips and Park

(1998); Jeganathan (2004); Wang and Phillips (2009a, 2016); Duffy (2016). This fundamental

limit result enabled the investigation of asymptotic theory for latent variable nonparametric

cointegrating regression in which some variables were observed with measurement error.

The present work is concerned with developing a limit theory for the sample function Sn in

the case where
∫∞
−∞ g (s) ds = 0, which is commonly known as the zero-energy case. Towards this

end, in some specialized cases such as f(x, y) = m(x) or f(x, y) = m(x) y wherem(x) is bounded

and integrable, the asymptotic behaviour of Sn is known and has been considered in Wang and

Phillips (2009c, 2011), with the attendant requirement that h → 0, and in an unpublished

manuscript by Jeganathan (2008) (with h = 1). This paper provides a unified extension of

these existing results that encompasses the two cases where h = 1 and h → 0, together with

the setting of general functionals f(x, y) rather than the specialized forms f(x, y) = m(x) y or

m(x).

In unifying the two standard limit cases where h = 1 and h → 0, our work might be

compared with Gozalo and Linton (2000) who showed how to nonparametrically encompass a

parametric model by using a local nonlinear least squares criterion that allows for recentering a

nonparametric regression on a specific parametric model. In the present context, that approach

would involve replacing (1.2) with the criterion Qn,h(x, α) =
∑n

k=1Kh(xk − x)(yk −m(xk, α))
2

for some parametric function m(xk, α), leading to the estimate ĝ(x) = m(x, α̂) where α̂ =

argminαQn,h(x, α). When the parametric form m(x;α) is correct or nearly correct around the

point x, there is an advantage to using a wider bandwidth h in such a regression; and, if the

parametric model m(x;α) were correct almost everywhere, there would be an advantage in

letting h → ∞ rather than h → 0. The limit theory for this approach in Gozalo and Linton

4



(2000) relies on an IID setup. Extending that approach to the present setting and exploring

possible advantages of parametric information in local nonparametric nonlinear regression with

nonstationary data are interesting lines of future research.

It should be mentioned that the zero energy case where the functional
∫∞
−∞ g (s) ds = 0 [recall

that g(x) = Ef(x,w1)] arises naturally in regression applications. For instance, in nonparametric

cointegrating regression, the development of a limit theory for normalized versions of functionals

such as the sample covariance S2n is vital for both estimation and inference. Thus, when

xk is an I(1) regressor and w1k is an error process, use of the natural centralizing condition

Ew11 = 0 in turn implies that
∫∞
−∞ g (s) ds =

∫∞
−∞ f(x)dxEw11 = 0. Such situations arise even

in complex settings where endogeneity is present - see Wang and Phillips (2009c, 2011, 2016)

for details and econometric applications. Similarly, in regression with nonstationary nonlinear

heteroskedasticity when nonstationary volatility is present in the errors [with ut = f(xt, wt), say],

the zero energy condition
∫∞
−∞ g (s) ds = 0 where again g(x) = Ef(x,w1) is usually required for

the development of an asymptotic theory. In this case, the use of general functionals such

as f(x, y) in the sample covariance limit theory enables a full representation of nonstationary

nonlinear volatility in the regression errors.

The remainder of the paper is organized as follows. Section 2 provides the main limit theory

for nonlinear functionals of non-stationary time series and a series of remarks that analyze the

findings and connect to later discussion. Section 3 provides numerical evidence which reveals

an intriguing bimodality for self-normalized statistics that arises in finite samples and that can

persist in extremely large samples even though the limit theory is Gaussian. Section 4 discusses

these findings, explains the slow convergence, and shows how bimodal limit theory does arise

in the presence nonstationary long memory innovations. Alternative self-normalized statistics

are considered that substantially improve finite sample performance. Concluding remarks are

in Section 5. Proofs of the main results are given in Section 6 and supporting propositions and

lemmas that play key roles in proving the main results are in Section 7. Proofs of the lemmas

are in the Appendix.

Throughout the paper ⇒ denotes weak convergence of probability measures with respect to

the uniform topology (see, for instance, Billingsley (1968)) and →D is distributional convergence

in Euclidean space. For a vector A = (A1, .., Ad), we define ||A|| = |A1|+ ...+ |Ad|. Constants

are represented by C,C1, C2, ..., which may differ in different locations.

2 Main Results

2.1 Assumptions and Preliminaries

Let λi = (ϵi, ei)
′, i ∈ Z be a sequence of iid random vector innovations with E||λ0||2 < ∞. Let

ξk =
∑∞

j=0 ϕjϵk−j be a linear process where the coefficients ϕk, k ≥ 0, satisfy ϕ0 ̸= 0 and one of

the following conditions:

LM: ϕk ∼ k−µ ρ(k), 1/2 < µ < 1 and ρ(x) is a function that is slowly varying at ∞4;

SM:
∑∞

k=0 |ϕk| <∞ and ϕ ≡
∑∞

k=0 ϕk ̸= 0.

In the following development, observable nonstationary time series xk are generated by the

linear process innovations ξk as detailed in the near unit root process given in A1(i) below.

4That is, ρ(x) is measurable function from (0,∞) to (0,∞) so that, for all a > 0, ρ(ax)/ρ(x) → 1 as x → ∞,
e.g., a positive constant, log(x) or logb(x) for any real b > 0
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The inclusion of additional innovations ei in λi is useful for specifiying (possibly correlated)

model disturbances, as in the generating mechanisms used in simulations later in the paper

in Sections 3 and 4. For the development of the asymptotic theory in our main results, the

following assumptions are made about the components of Sn =
∑n

k=1 f (xk/h,wk) .

A1 (i) xk = ρnxk−1 + ξk, where x0 = 0, ρn = 1− γn−1 for some constant γ ≥ 0;

(ii) Eϵ1 = 0 and
∫∞
−∞ |Eeitϵ1 |dt <∞ .

A2 (a) wk = (w1k, ..., wdk), where wik = Γi(λk, ..., λk−m0) for some fixedm0 ≥ 0 and Γi(.), i =

1, 2, ..., d, are real measurable functions of their respective components;

(b) E ||w1||max{2,4β} <∞, where β is given in A3(I) below.

A3 (I) A bounded function T (x) exists such that, for some β > 0,

|f(x, y)| ≤ T (x)(1 + ||y||β) and

∫ ∞

−∞
(1 + |x|)T (x)dx <∞;

(II)
∫∞
−∞ g(x)dx = 0, where g(x) = E f(x,w1);

(III)
∫∞
−∞ E |f̂(x,w1)|dx <∞, where f̂(x, y) =

∫∞
−∞ eitxf(t, y)dt.

Assumption A1(i) accommodates near integrated time series xk that are derived from ei-

ther short memory (under SM) or long memory (under LM) innovations, thereby covering

a large class of nonstationary time series. The extra distributional assumption A1(ii) is a

smoothness condition requiring integrability of the characteristic function Eeitϵ1 that is often

useful in establishing convergence to a local time process. The condition can be relaxed to

lim sup|t|→∞ |t|aEeitϵ1 | < ∞ for some a > 0, but is generally difficult to eliminate completely in

the development of limit theory for nonlinear cointegrating regression. The zero initialization

x0 = 0 is assumed for convenience to avoid notational clutter and can be considerably relaxed,

as is well known from earlier research. In particular, all the main results still hold if instead

x0 = oP (dn), where d
2
n = var(

∑n
k=1 ξk). It is also well-known (see Wang et al. (2003), for

instance) that

d2n ∼ Eϵ20
{
cµ n

3−2µ ρ2(n), under LM,
ϕ2 n, under SM,

and x⌊nt⌋/dn ⇒ Zt on D[0, 1], where cµ = 1
(1−µ)(3−2µ)

∫∞
0 x−µ(x+ 1)−µdx and

Zt = W (t) + γ

∫ t

0
e−γ(t−s)W (s)ds, t ≥ 0

W (t) =

{
B3/2−µ(t), under LM,

B1/2(t), under SM,

and BH(t) is fractional Brownian motion with Hurst exponent H and B1/2(t) is standard Brow-

nian motion. In this event, Zt is a fractional Ornstein-Uhlenbeck process, having a continuous

local time process which we denote by LZ(t, x). As in Geman and Horowitz (1980), the local

time process LZ(t, x) is defined as

LZ(t, x) = lim
ϵ→0

1

2ϵ

∫ t

0
I
(
|Zr − x| ≤ ϵ

)
dr. (2.1)

6



These notations will be used subsequently without further explanation.

Assumption A2 ensures that wk, k ≥ 1, is a sequence of stationary random vectors. No

restriction is imposed on the relationship between ϵk and ek of λk = (ϵk, ek)
′, which enables

the results established here to be widely applicable in nonlinear cointegrating regression models

with endogeneity, where the components ϵk and ek drive regressor time series and regressor

errors, respectively. The extension of A2 to include linear process formulations is possible if the

functional f(x, y) has a certain structure still allowing for endogeneity. We refer to Corollary

2.1 for further details on this extension.

Finally, Assumption A3 provides conditions on the function f(x, y). These, together with

A2(b), ensure that,∫ ∞

−∞

[
Ef2(x,w1) + Ef4(x,w1)

]
dx ≤ C E ||w1||max{2,4β}

∫ ∞

−∞
T (x)dx <∞, (2.2)

the Fourier transform f̂(t, y) =
∫∞
−∞ eitxf(x, y)dx is well defined, supx g(x) < ∞,

∫
|g(x)|dx ≤∫

E |f(x,w1)|dx < ∞, and
∫∞
−∞(1 + |x|)E |f(x,w1)|dx < ∞. Furthermore, it follows from

Ef̂(0, w1) =
∫∞
−∞ E f(x,w1)dx = 0 that

|Ef̂(t, w1)| ≤
∫ ∞

−∞

∣∣(eitx − 1
)
Ef(x,w1)

∣∣ dx ≤ Cmin{1, |t|}. (2.3)

On the other hand, using the inverse Fourier transformation, A3(III) ensures the representation

of f(x,wk), almost surely,

f(x,wk) =
1

2π

∫ ∞

−∞
e−itxf̂(t, wk)dt. (2.4)

These properties will be used in the main results that follow without further reference.

2.2 Asymptotic theory

Our main result is as follows.

Theorem 2.1. Suppose A1 – A3 hold. For any h ≡ hn → 0 satisfying nh/dn → ∞, we have

( dn
nh

⌊nt⌋∑
k=1

f2
(
xk/h,wk

)
,
( dn
nh

)1/2 ⌊nt⌋∑
k=1

f
(
xk/h,wk

))
⇒

(
τ2 LZ(t, 0), τ NL

1/2
Z (t, 0)

)
, (2.5)

on DR2 [0, 1], where τ2 =
∫∞
−∞ E f2(s, w1)ds, and N is a standard normal variate independent of

LZ(t, 0) for 0 ≤ t ≤ 1.

If in addition γ = 0, where γ is used in A1 (i), and
∫∞
−∞ E

{
|f̂(t, w0)

(
1 + ||wr||β)

}
dt < ∞

for any r ≥ 0, then

(dn
n

⌊nt⌋∑
k=1

f2
(
xk, wk

)
,

(
dn
n

)1/2 ⌊nt⌋∑
k=1

f(xk, wk)
)

⇒
(
τ2 LZ(t, 0), τ1NL

1/2
Z (t, 0)

)
, (2.6)

on DR2 [0, 1] (recall Zt =W (t) when γ = 0), where τ21 = G0 + 2
∑∞

r=1Gr with

Gr =
1

2π

∫ ∞

−∞
E
{
f̂(s, w0)f̂(s, wr)e

−isxr
}
ds

7



=

∫ ∞

−∞
E
{
f(y, w0)f(y + xr, wr)

}
dy. (2.7)

Remark 2.1. Different constants τ and τ1 appear in the second components of results (2.5)

and (2.6). In fact, as h→ 0, we have

dn
nh

n∑
k=1

n∑
j=k+1

E
{
f(xk/h,wk)f(xk+j/h,wk+j)

}
= o(1),

(see the proof of (7.2) in Proposition 7.3); but when h = 1 and γ = 0

dn
n

n∑
k=1

f(xk, wk)f(xk+j , wk+j) →D GjLZ(1, 0), (2.8)

for any j ≥ 1 (see (7.5) of Proposition 7.4). These facts indicate that the influence of cross

product terms such as f(xk/h,wk)f(xk+j/h,wk+j) on the variance of
(
dn
nh

)1/2 ∑⌊nt⌋
k=1 f

(
xk/h,wk

)
is eliminated as h→ 0, but this is not the case when h = 1. In consequence, different constants

appear in the two results (2.5) and (2.6). In addition to (2.6), the following joint convergence

holds in which, for any q > 0,

(dn
n

⌊nt⌋∑
k=1

f2
(
xk, wk

)
,
dn
n

⌊nt⌋∑
k=1

f
(
xk, wk

)
f
(
xk+1, wk+1

)
, ...,

dn
n

⌊nt⌋∑
k=1

f
(
xk, wk

)
f
(
xk+q, wk+q

)
,

(
dn
n

)1/2 ⌊nt⌋∑
k=1

f(xk, wk)
)

⇒
(
τ2 LZ(t, 0), G1 LZ(t, 0), ..., Gq LZ(t, 0), τ1NL

1/2
Z (t, 0)

)
, (2.9)

on DRq+1 [0, 1]. The proof of (2.9) involves only minor additions to that of (2.6) and the details

are omitted.

Remark 2.2. In special cases where f(x, y) = K(x) y (with K(x) bounded and integrable) and

f(x, y) = K(x) ( with
∫
K(x)dx = 0 and K(x) bounded and integrable), a similar result to (2.5)

has been considered in Wang and Phillips (2009c) and Wang and Phillips (2011), respectively,

and a similar result to (2.6) can be found in Jeganathan (2008). Theorem 2.1 provides a unified

generalization of these existing results to functional limit theorems. Our proof makes use of the

methodology developed in Wang and Phillips (2009c), which seems simpler than that used in

Jeganathan (2008).

Remark 2.3. The quantity m0 given in A2 (a) is set to be a fixed constant, but it can be

chosen as large as required in applications. Further, careful examination the proof reveals that

the result continues to hold when m0 = mn → ∞ provided the expansion rate is slow enough.

Moreover, when f(x, y) = K(x)y, the stationary component wk in Theorem 2.1 can be extended

to include linear processes and endogeneity, as the following corollary shows, thereby covering

regression models with errors ut and regressors xt that allow for endogeneity.

Corollary 2.1. In addition to A1, suppose that

(a) K(x) is a bounded continuous function satisfying
∫
K(x)dx < ∞ and

∫
|K̂(x)|dx < ∞,

where K̂(x) =
∫
eixsK(s)ds;

8



(b) uk =
∑∞

j=0 ψj λk−j, where Eλ1 = 0, E ||λ1||4 < ∞ and the coefficient vector ψk =

(ψk1, ψk2) satisfies
∑∞

k=0 k(|ψ1k|+ |ψ2k|) <∞ and
∑∞

k=0 ψk ̸= 0.

For any h ≡ hn → 0 satisfying nh/dn → ∞, we have( dn
nh

n∑
k=1

K2
(
xk/h)u

2
k,

(
dn
nh

)1/2 n∑
k=1

K
(
xk/h

)
uk

)
→D

(
τ̃2 LZ(1, 0), τ̃ NL

1/2
Z (1, 0)

)
, (2.10)

where τ̃2 =
∫∞
−∞K2(s)dsEu21 and N is a standard normal variate independent of LZ(1, 0).

If h = 1 and in addition γ = 0, where γ is used in A1 (i), then(dn
n

n∑
k=1

K2
(
xk
)
u2k,

dn
n

Jn,

(
dn
n

)1/2 n∑
k=1

K(xk)uk

)
→D

(
τ̃2 LZ(1, 0), τ̃

2
1 LZ(1, 0), τ̃1NL

1/2
Z (1, 0)

)
, (2.11)

where, for some M =Mn → ∞,

Jn =

n∑
k=1

K2
(
xk
)
u2k + 2

M∑
j=1

ℓ

(
j

M

) n−j∑
k=1

K
(
xk
)
K
(
xk+j

)
uk uk+j , (2.12)

takes the form of a heteroskedastic and autocorrelation consistent (HAC) estimator in which

ℓ( j
M ) is a lag kernel weight function such as the Bartlett triangular kernel ℓ( j

M ) = 1− |j|
M , and

where τ̃21 = G̃0 + 2
∑∞

r=1 G̃r with

G̃r =
1

2π

∫ ∞

−∞
|K̂(s))|2E

{
u0 ur e

−isxr
}
ds =

∫ ∞

−∞
K(y)E

{
u0 urK(y + xr)

}
dy.

2.3 Self-normalized statistics and discussion

Result (2.10) coincides with (7.4) of Proposition 7.1 in Wang and Phillips (2016) but with

less restrictions on h (the requirement h log n → 0 used there is removed here), indicating the

following self-normalized result: as h→ 0 and nh/dn → ∞,

Jn(h) :=

∑n
k=1K

(
xk/h

)
uk√∑n

k=1K
2
(
xk/h)u

2
k

→D N (0, 1). (2.13)

In view of the standard normal asymptotics this result is convenient and useful for purposes

of estimation and inference in nonparametric regression models involving nonstationary time

series and kernel estimation with a shrinking bandwidth parameter h → 0, as explained in the

Introduction.

Result (2.11) with fixed h = 1 is similar to that of Theorem 5 in Jeganathan (2008). In

this case, a suitable self-normalized version of the sample covariance statistic can be constructed

from the elements of (2.11) and (2.12) as

J∗
n(1) := J −1/2

n

n∑
k=1

K
(
xk
)
uk →D N (0, 1), (2.14)

which again has standard normal asymptotics making the formulation convenient in applications

that involve nonlinear parametric regressions with nonstationary time series. We mention that,

9



the result that J 2
n →D τ̃21LZ(1, 0) holds for any continuous function ℓ(x) satisfying ℓ(0) = 1,

although we assume here that ℓ( j
M )is a lag kernel weight function to ensure the positivity of Jn

in finite samples. Furthermore, we prove (2.11) for some Mn → ∞. The existence of such an

Mn is clear from (6.14) and (6.15) in the proof of Corollary 2.1.

While these naturally constructed self-normalized statistics have elegant Gaussian limit re-

sults, numerical work (reported below in Section 3) reveals that neither (2.13) nor (2.14) perform

well in finite sample simulations. In particular, when xt is generated with long memory inno-

vations in ξt and the memory parameter is large (µ close to 0.5), bimodality appears in the

finite sample densities even when the sample size is as large as n = 5, 000. Such bimodality is

known to arise with self-normalized statistics and t ratios in other contexts, especially in the

presence of heavy tailed data where individual large draws can dominate both the numerator

and the denominator in the ratio – see Logan et al. (1973); Fiorio et al. (2010). The explanation

of the phenomena in the present setting is unrelated to heavy tails but is instead related to

strong dependence in the data. Heuristically, strong memory when µ is close to 0.5 ensures that

the weight function K(xk) is generally so small that only a limited number of terms dominate

the numerator and denominator summations
∑n

k=1K
(
xk)uk and

∑n
k=1K

2
(
xk)u

2
k (see Fig. 4

for illustrative trajectories), thereby inducing bimodality in the finite sample densities of J ∗
n (1)

around the modes ±1. To control this behavior, a modification of (2.14) such as the following

Ĵ∗
n(1) := Ĵn

−1/2
n∑

k=1

K
(
xk
)
uk →D N (0, 1), (2.15)

might be considered where Jn in (2.12) is replaced by

Ĵn = σ̂2n

n∑
k=1

K2
(
xk
)
+ 2

M∑
j=1

ℓ

(
j

M

) n−j∑
k=1

K
(
xk
)
K
(
xk+j

)
uk uk+j , (2.16)

for some consistent estimator σ̂2n of σ2 = Eu21 and withM =Mn → ∞ as n→ ∞. The advantage

of Ĵn is that the use of σ̂2n
∑n

k=1K
2
(
xk
)
in the first term, rather than

∑n
k=1K

2
(
x2k
)
u2k, atten-

uates the bimodality induced by the numerator and denominator summations
∑n

k=1K
(
xk)uk

and
∑n

k=1K
2
(
xk)u

2
k discussed above and in the heuristic analysis of (3.4) below. However,

the estimate Ĵn in (2.16) is not necessarily positive. For instance, in 40,000 replications when

n = 100 around 15 cases of negative values occur with d = 0.1, rising to 60 cases with d = 0.55.

To address this difficulty the following adjustment to (2.16) is employed

ĴnM∗ = σ̂2n

n∑
k=1

K2
(
xk
)
+ 2

M∗∑
j=1

ℓ

(
j

M

) n−j∑
k=1

K
(
xk
)
K
(
xk+j

)
uk uk+j , (2.17)

where

M∗ :=M × I
(
Ĵn ≥ 0

)
+M∗ × I

(
Ĵn < 0

)
I
(
ĴnM∗ > 0

)
, (2.18)

in which the truncation lag number M is reduced by one lag at a time when Ĵn < 0 to the first

value M∗ for which ĴnM∗ > 0. In 50,000 replications with n=100 and n=1,000 the modification

(2.17), with the simple rule (2.18), was found to work well. Using ĴnM∗ in place of Ĵn leads to

the same standard normal asymptotics as (2.15) for the statistic

J̃n(1) := Ĵn
−1/2

M∗

n∑
k=1

K
(
xk
)
uk →D N (0, 1), (2.19)

10



providedM∗ → ∞ as n→ ∞. Simulation results for the statistic J̃n(1) are shown in Fig. 3 in the

following numerical section and confirm that the statistic removes bimodality in finite samples

and has distributions considerably closer to the standard normal limit than the statistic J∗
n(1)

in (2.14) for various values of the long memory parameter d and samples as small as n = 100.

Similarly, we may use the following result instead of (2.13): as h→ 0 and nh/dn → ∞,

Ĵn(h) :=

∑n
k=1K

(
xk/h

)
uk√

σ̂2n
∑n

k=1K
2
(
xk/h)

→D N (0, 1). (2.20)

The proofs of (2.15) and (2.20) follow easily from (2.14), (2.13) and the following fact by using

(4.8) of Wang et al. (2021) [see also (7.42) in the proof of Proposition 7.4 with f(x, y) = K(x)y]:

for any h > 0,

dn
nh

n∑
k=1

K2
(
xk/h)

(
Eu2k − u2k) = oP (1). (2.21)

The details are omitted.

3 Numerical evidence

We explore the finite sample properties of the self-normalized statistics Jn and J∗
n(1) defined as in

(2.13) and (2.14). Since earlier research has considered models with shrinking bandwidths h→ 0,

the model employed here focuses mainly on the case h = 1 for which the general limit theory is

given in (2.9). As indicated above, the key difference in this case is that the cross product term

(2.8) is not eliminated when h ̸→ 0. The statistic J∗
n(1) takes this into account by estimating the

appropriate self-normalizing quantity. As is apparent from (2.9) and (2.11) the limiting form of

the denominator of J∗
n(1) has the form of a long run self-normalization, with the major difference

that in the present case this quantity has a random limit since Jn → τ̃21 LZ(1, 0) as n → ∞ in

place of the usual non-random quantity that arises in standard problems with stationary short

memory time series.

In the simulations here, xt is generated according to A1 with autoregressive coefficient

ρn = 1. The linear process ξt =
∑∞

j=0 ϕjϵt−j in LM is generated using the fractional integration

mechanism ξt = (1− L)−dϵt =
∑∞

j=0
(d)j
j! ϵt−j , where (d)j =

Γ(d+j)
Γ(1+j) , so that ϕj ∼ 1

Γ(d)j1−d , where

Γ(·) is the gamma function and the memory parameter d = 1−µ ∈ (0, 0.5). Endogeneity in xt is

introduced by defining the innovations in the linear process ξt by ϵt = (1− ρ2)1/2ϵxt+ ρut where
ut is the short memory autoregressive process ut = θut−1 + eut, |θ| < 1, with eut ∼iid N (0, 1)

and independent of ϵxt ∼iid N (0, 1). With this specification of ut we have

ξt =
∞∑
j=0

ϕjϵt−j = (1− ρ2)1/2
∞∑
k=0

ϕkϵx t−k + ρ
∞∑
j=0

ϕj

∞∑
ℓ=0

θℓϵu t−j−ℓ

]

= (1− ρ2)1/2
∞∑
k=0

ϕkϵx t−k + ρ
∞∑
k=0

(
k∑

ℓ=0

ϕk−ℓθ
ℓ

)
ϵu t−k

=
∞∑
k=0

[
ψ̄1kϵx t−k + ψ̄2kϵu t−k

]
(3.1)

with ψ̄1k = (1−ρ2)1/2ϕk and ψ̄2k = ρ
∑k

ℓ=0 ϕk−ℓ. The innovation ξt has long memory parameter

d and endogeneity measured through the correlation coefficient ρ.
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The self-normalized statistics Jn(h), Jn(1), and J
∗
n(1) defined in (2.13) and (2.14) are com-

puted for f(xt/h,wt) = K(xt/h)ut with h = 2/n0.2 or h = 1. In the following computations we

used K(x) = (1/
√
2π)e−x2/2, θ = 0.5, ρ = 5.0 and d ∈ {0.1, 0.25, 0.4, 0.55}, where d = 0.55 lies

in the nonstationary long memory region and is included for comparison. Kernel estimates of

the densities of Jn(h) were computed using

Jn(h) =

∑n
k=1K

(
xk/h

)
uk√∑n

k=1K
2
(
xk/h)u

2
k

, (3.2)

for h = 2/n0.2 and h = 1 and are shown in Figs. 1(a) and 1(b). The self normalized statistic

J∗
n(1) was computed by the explicit formula

J∗
n(1) =

∑n
k=1K

(
xk
)
uk[∑n

k=1K
2
(
xk
)
u2k + 2

∑M
j=1 ℓ

(
j
M

) ∑n−j
k=1K

(
xk
)
K
(
xk+j

)
uk uk+j

]1/2 . (3.3)

with lag truncation parameter M = ⌊2n1/6⌋ and its densities are shown in Figs. 1(c) and 2(c).

The number of replications employed was 40, 000, with sample size n = 100 in Fig. 1 and

n = 1, 000 in Fig. 2.

The densities in Fig. 1 where n = 100 are all non-normal. Bimodality with modes around

±1 are clearly evident in all cases and all values of d. For Jn(1) the dual modes are evident but

somewhat less pronounced than for Jn(h) with h = 2/n0.2. The bimodality is clearly stronger

in the presence of nonstationary long memory innovations ξt with d = 0.55 (shown by dashed

green lines). Bimodality is most prominent and with greatest concentration for the statistic

J∗
n(1). Bimodality is evidently weaker for the lower memory parameters, particularly cases

where d = 0.10 (shown by black unbroken lines).
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(a) Jn(h) densities
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(b) Jn(1) densities
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(c) J∗
n(1) densities

Figure 1: Empirical densities of Jn(h) with h = 2
n0.2 , Jn(1), and J

∗
n(1) for sample size n = 100

and d ∈ {0.10, 0.25, 0.40, 0.55}.
In Fig. 2 the densities are computed for n = 1, 000. In Fig. 2(a) bimodality is clearly

evident for Jn(h), applies for all values of d and is again stronger in the nonstationary case.

The densities of Jn(1) and J
∗
n(1) in Figs. 2(b) and 2(c), where n = 1, 000, are closer to normal

than when n = 100 except for the nonstationary innovation case (d = 0.55); and bimodality is

still more pronounced for J∗
n(1) than for Jn(1). When d = 0.1, there are no apparent modes in

the density of Jn(1) and only minor modes in the density of J∗
n(1). Nonetheless, convergence to

normality when 0 < d < 0.5 appears slow and shape differences in the densities persist between

the stationary and nonstationary error cases. The tendency to bimodality continues to be more

marked in the nonstationary case.
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(a) Jn(h) densities
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(b) Jn(1) densities
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(c) J∗
n(1) densities

Figure 2: Empirical densities of Jn(h), Jn(1), and J∗
n(1) for sample size n = 1, 000 and d ∈

{0.10, 0.25, 0.40, 0.55}.

As discussed in Section 2.3, when the innovations ξk have strong dependence with memory

parameter d close to the nonstationary boundary 0.5, the weight function K(xt) is negligible

except for a very small number of terms in which xt =
∑t

k=1 ξk ≈ 0. Suppose xt is closest to

zero for t = τ then K(xτ ) ≈ 1 and so Jn(1) ≈ ±1, thereby inducing a tendency to bimodality in

the finite sample densities of Jn(1) around modes at ±1. When h → 0 this facet of the weight

function is accentuated for K(xt/h) and we may therefore expect greater evidence of bimodality

in finite samples for Jn(h), which is corroborated by the results in Figs. 1(a) and 2(a).

Further, in Figs. 1 and 2 it is evident that J∗
n(1) shows more evidence of bimodality than

Jn(1). This may be explained by the following heuristic. Suppose xt is closest to zero in the

sample at t = τ and next closest to zero at t = τ + 1, so that K(xτ ) ≈ K(0) ≈ 1/
√
2π and then

K(xτ+1) ≈ K(ξτ+1) = e−ξ2τ+1/2/
√
2π. (Fig. 4 below shows an illustrative case). With a Bartlett

kernel ℓ(·) we then have

J∗
n(1) ≈

K(xτ )uτ +K(xτ+1)uτ+1

[K(xτ )2u2τ +K(xτ+1)2u2τ+1 + 2
(
1− 1

M

)
K(xτ )K(xτ+1)uτuτ+1]1/2

=
K(xτ )uτ +K(xτ+1)uτ+1

|K(xτ )uτ +K(xτ+1)uτ+1|+Op

(
1
M

) = ±1 +Op

(
1

M

)
, (3.4)

showing a clear tendency to bimodality.

Next note that ξt = (1− L)−dϵt has variance σ
2
ξ = σ2ϵ

Γ(1−2d)
Γ(1−d)2

∼a
σ2
ϵ /π

1−2d → ∞ as d→ 0.5. Let

ξt = σξ ξ̃t where ξ̃t has unit variance. Then K(xτ+1) ≈ K(ξτ+1) = e−σ2
ξ ξ̃

2
τ+1/

√
2π and

Jn(1) ≈
K(xτ )uτ +K(xτ+1)uτ+1

[K(xτ )2u2τ +K(xτ+1)2u2τ+1]
1/2

≈ uτ + e−σ2
ξ ξ̃

2
τ+1uτ+1

[u2τ + e−σ2
ξ ξ̃

2
τ+1 ]1/2

≈ uτ
|uτ |

+Op

(
e−σ2

ξ

)
≈ ±1 +Op

(
1

1− 2d

)
, (3.5)

showing a tendency to bimodality as the memory parameter d → 0.5. The same tendency

to bimodality is also present in the approximation of J∗
n(1) in addition to that given in (3.4),

thereby implying that J∗
n(1) is more likely to manifest bimodal behavior in finite samples than

Jn(1), corroborating the simulation findings.
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(a) J̃n(1) densities, n = 100
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(b) J̃n(1) densities, n = 1, 000
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(c) J̃n(1) densities, n = 5, 000

Figure 3: Empirical densities of J̃n(1) for sample sizes n = 100 and for n = 1, 000 and d ∈
{0.10, 0.25, 0.40, 0.55}.

Fig. 3 shows finite sample densities of the statistic J̃n(1) in (2.17) using the same simulation

design with the same set of long memory parameters, endogeneity correlation ρ = 0.5, and

for sample sizes increasing from n = 100 to n = 5, 000 based on 40, 000 replications. As

evident in the graphics, the statistic removes bimodality in finite samples although there are

extended shoulders on either side of the origin to around ±1, particularly when n = 100. The

distributions are far closer to the standard normal limit than those of the statistic J∗
n(1) in

(2.14) at every sample size with evident convergence in shape to normal for all values of the long

memory parameter and clearest for d = 0.1, as would be expected. These findings support the

heuristic analysis leading to (3.4) and (3.5). For when the variance estimate ĴnM∗ is employed,

the scaling-out effect that leads to bimodality is removed, thereby explaining the finite sample

distributions being closer to the standard normal.

4 Further analysis: finite sample and asymptotic bimodality

As noted in Section 2.3, natural self-normalization of sample covariance statistics does not

perform well in finite samples relative to the asymptotic theory when strong effects of long

memory are present in the data. This result in nonlinear nonparametric regression is new to the

literature. But the observed finite sample bimodality has a subtle connection in its origins with

earlier findings on bimodal t ratios where behavior is dominated by a few observations when

there is heavy tailed data. In the present case, behavior is dominated by the few neighboring

observations whose impact is not diminished by the kernel weights under strong dependence.

Fig. 4 illustrates with a single shot picture of typical data trajectories generated for xt and ut
with d = 0.1 and n = 1, 000.

14



0 100 200 300 400 500 600 700 800 900 1000

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

Figure 4: Single shot trajectories of xt and ut generated with d = 0.10 and n = 1, 000 according
to the simulation design given below.

Some additional analysis and computations are now provided to shed light on the finite sam-

ple properties of self-normalized sample covariance statistics in which nonstationarity originates

in partial sums of long memory processes. The following simple framework with no endogeneity

is used for the following discussion and data generation.

Simulation design

� both ϵk and uk are iid N (0, 1) and the ϵk are independent of the uk;

� xk =
∑k

j=1 ξj , where (1− L)dξj = ϵj , with 0 < d < 1/2 and 1/2 < µ = 1− d < 1, so that

ξj = (1− L)−dϵj =
∑∞

i=0 ϕiϵj−i with ϕi ∼ 1
Γ(d) i

−(1−d);

� K(x) = e−x2/2/
√
2π.

For j = 1 and 2, define

Sjn = Jjn
−1/2

n∑
k=1

K(xk)uk,

where J1n =
∑n

k=1K
2(xk) and J2n =

∑n
k=1K

2(xk)u
2
k. Under these conditions ξk is a long

memory process with memory parameter 0 < d = 1 − µ < 1/2 and xk is nonstationary with

memory parameter 1+ d. S2n is a natural self-normalized sample covariance statistic, matching

J∗
n(1) in (2.14). 5

Recall that d2n = var(xn) ∼ Ad n
1+2d, where Ad is a positive constant depending only on d.

It is readily seen from (2.11) and (2.21) that

1

n1/2−d
J1n,

1

n1/2−d
J2n →D

(Ad

2

)1/2
LB(1+2d)/2

(1, 0),

J2n − J1n

J1n
→P 0, (4.1)

where BH(t)} is fractional Brownian motion with Hurst exponent H and LBH
(t, s) is the local

time process of {BH(t)}t≥0. In view of the independence of xk and uk and since uk ∼iid N (0, 1),

we have S1n ∼d N (0, 1) for all n ≥ 1 and

S2n =
(J1n

J2n

)1/2
S1n →D N (0, 1), (4.2)

5When ϵk and xk are independent of uk the term 2
∑M

j=1 ℓ(
j
M
)
∑n−j

k=1 K
(
xk

)
K
(
xk+j

)
uk uk+j that is included

in Jn is unnecesssary since the terms G̃r appearing in Corollary 2.1 are zero for all r ≥ 1.
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so that S2n has a standard normal limit distribution. Now consider the finite sample performance

of the statistics S1n and S2n.
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(a) S1n densities, n = 100
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(b) S2n densities, n = 100

Figure 5: Empirical densities of S1n and S2n for n = 100, d ∈ {0.1, 0.25, 0.4, 0.55}.
A. Simulation results for S1n: Kernel density estimates of the finite sample distributions

of S1n are shown in Fig. 5(a) for sample size n = 100 with d ∈ {0.1, 0.25, 0.4, 0.55} from 40, 000

replications. The graphs confirm the exact finite sample N (0, 1) distribution for all values of

the memory parameter d, including the nonstationary case d = 0.55.

B. Simulation results for S2n : Fig. 5(b) shows the finite sample densities of S2n for n =

100 and same memory parameter values d ∈ {0.1, 0.25, 0.4, 0.55} again from 40, 000 replications.

Bimodality in these distributions around the points ±1 is clearly evident for all d > 0.10 and

strong in the nonstationary case d = 0.55; for d = 0.10 the density has shoulders at the same

points ±1. Figs. 6(a) and 6(b) show the corresponding densities for n = 1, 000 and n = 5, 000.

The slow convergence of these distributions to normality in the presence of stationary long

memory is evident, especially for d = 0.4 where shoulders in the density around ±1 are evident

even when n = 5, 000. In the nonstationary d = 0.55 case bimodality remains evident, although

it is not as strong as it is for smaller sample sizes.

Although S2n has a normal limit distribution for all memory parameters d ∈ (0, 0.5) the finite

sample performance of S2n depends on the value of d, in contrast to S1n. Bimodality is strongest

for stationary values of d closest to the boundary d = 0.5 and remains present even for very

large sample sizes. This anomalous behavior can be explained in terms of relative convergence

rates as follows. Recalling (4.1), when d = 0.4 we have(J1n

J2n

)1/2
− 1 =

J1n − J2n

J 1/2
2n (J 1/2

1n + J 1/2
2n )

= OP (n
−0.05),

whence J2n/J1n →P 1 as n → ∞; but the convergence rate is seen to be very slow. With such

a slow convergence rate, even for n = 5, 000 (where n−0.05 ≈ 0.65) and with S1n ∼d N (0, 1)

for all n ≥ 1, the value of S2n =
(J1n
J2n

)1/2
S1n can be substantially impacted by the factor(J1n

J2n

)1/2
, leading to departures from the normality of S1n and the presence of bimodality in the

distribution.
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(a) S2n densities, n = 1, 000
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(b) S2n densities, n = 5000

Figure 6: Empirical densities of S2n for sample sizes n = 1, 000 and n = 5, 000 and d ∈
{0.1, 0.25, 0.4, 0.55}.

When xk =
∑k

j=1 ξj with (1− L)dξj = ϵj and d > 1/2, the input ξj is a nonstationary long

memory process) and the limit distribution S2n is not normal. In fact, bimodality must appear

in this case and we have

J1n →P A :=
∞∑
k=1

K2(xk), J2n →P B :=
∞∑
k=1

K2(xk)u
2
k, (4.3)

where A and B (A ̸= B) are well defined positive random variables. Hence, as n→ ∞,

S2n =
(J1n

J2n

)1/2
S1n →D

(A
B

)1/2
N (0, 1), (4.4)

since S1n ∼ N(0, 1) for all n ≥ 1. The presence of the ratio A/B of the random variables (A,B)

assures bimodaily in the limit distribution (4.4).

The proof of (4.3) and (4.4) is straightforward. Let Am,n =
∑n

k=mK
2(xk) and recall that

xn ∼d N (0, dn) where d2n = var(xn) ∼a Ad n
1+2d as n → ∞, it is readily seen that, whenever

d > 1/2 and m,n→ ∞,

EAm,n =
n∑

k=m

EK2(xk) =
n∑

k=m

∫
K2(dky)e

−y2/2dy

≤ C
n∑

k=m

d−1
k = C1

n∑
k=m

k−(1+2d)/2 → 0.

Hence, A :=
∑∞

k=1K
2(xk) is a well defined random variable and J1n →P A. Similarly, we have

EBm,n → 0 where Bm,n =
∑n

k=mK
2(xk)η

2
k, and hence J2n →P B.

Fig. 7 gives simulation results for S2n in the nonstationary innovation cases d = 0.75

and d = 1 for n = 100, 1, 000, and 5, 000 based on 25, 000 replications. Bimodality appears a

prominent feature of the densities of S2n for both d = 0.75 and d = 1, showing little tendency

to diminish even in very large sample sizes, corroborating the non-Gaussian limit theory in the

nonstationary case. The bimodality is stronger when d = 1 than when d = 0.75 for all sample

sizes.
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(a) S2n densities, n = 100
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(b) S2n densities, n = 1000
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(c) S2n densities, n = 5000

Figure 7: Empirical densities of S2n for sample sizes n = 100, 1000 and n = 5, 000 and d ∈
{0.75, 1.00}.

5 Concluding Remarks

Sample covariance functionals of regressors and innovations play a key role in nonlinear non-

stationary regression models and self normalized versions of these statistics are a foundation

for inference. The limit theory given here covers a wide class of such functionals and reveals

important differences between stationary and nonstationary long memory innovations. Methods

involving bandwidths h = hn → 0 in nonparametric models and fixed h = 1 suited for para-

metric applications are jointly included in the present findings. Numerical work shows strong

bimodality in the finite sample distributions, slow convergence to the Gaussian limit theory

under stationary long memory innovations and non-Gaussian limit theory when the innovations

have nonstationary long memory. New forms of self normalization are shown to provide the

same limit theory but improved finite sample performance suitable for practical work in these

difficult cases.

It is of interest to explore the performance of this modified form of self normalization in

regression test applications. Bimodality, when induced by self-normalization as in the cases

considered here, typically leads to the presence of modes around ±1 (Logan et al., 1973; Fiorio

et al., 2010). The general impact of such bimodality is to transfer extreme tail probability in the

distribution towards the modes, which in turn typically makes testing somewhat conservative in

applications and this is inclined to reduce power in testing under local alternatives when using

nominal asymptotic critical values. We might therefore expect some such impact in the present

examples with long memory innovations. The new form of self normalization introduced here

is designed to attenuate such effects and an investigation of the size/power implications of this

modification in regression applications is topic for future research.

The present framework, in conjuntion with earlier findings in the nonstationary nonlinear

regression literature, can be extended to cover a wider class of models than already discussed.

One such model is a nonlinear distributed lag cointegrating regression of the following additive

nonparametric type yk = g(xk)+
∑J

j=1 gj(∆xk−j)+uk, where the I(1) regressor xk is nonlinearly

related to yk with additive and nonlinear distributed lag effects from the regressors {∆xk−j :

j = 1, ...J}. In such models the cointegrating function g(xk) is usually of primary interest. If

the additive component
∑J

j=1 gj(∆xk−j) were ignored and instead absorbed into the primary

component, the equation yk = µ + g(xk) + vk = gµ(xk) + vk may be consistently estimated

by kernel methods. Indeed, with some modification, the results and limit theory of Wang and
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Phillips (2009c)) would continue to hold in such cases because they cover regressions with an

endogeneous regressor xk correlated with a stationary error such as vk. If the gj are measurable,

integrable functions and ∆xk is stationary, then setting µ =
∑J

j=1 Egj(∆xk−j) and vk = uk +∑J
j=1 (gj(∆xk−j)− Egj(∆xk−j)), estimation and inference concerning gµ(xk) in the system yk =

gµ(xk) + vk can be justified as in Wang and Phillips (2009c)) under some extension of the

underlying conditions to accommodate the properties of the induced error process vk. Full

exploration of this and related extensions is left for future research.

6 Proofs of the main results

Proof of Theorem 2.1. First note that, for any bounded h > 0 and nh/dn → ∞,( dn
nh

)1/2
max
1≤k≤n

| f(xk/h,wk)| = oP(1), (6.1)

by a similar augument as in Proposition 7.46. Due to (6.1), without loss of generality, we assume

f(xk/h,wk) = 0 for k = 1, ..., A0, (6.3)

where A0 is a fixed constant that can be chosen large enough. This convention will reduce

notational complexity in the proofs of propositions that are given in next section and the lemmas

in the Appendix.

We adopt the methodology employed in Wang and Phillips (2009c), starting with an outline

of the proof of (2.6), where some useful propositions will be given in the next section. Define,

for 0 ≤ t ≤ 1,

Sn(t) =
(dn
n

)1/2 ⌊nt⌋∑
k=1

f(xk, wk),

Ynq(t) = ψn0(t) + 2

q∑
j=1

ψnj(t),

where for j = 0, 1, ..., q,

ψnj(t) =
dn
n

⌊nt⌋∑
k=1

f(xk, wk) f(xk+j , wk+j),

and for all αi, βj ∈ R, 0 ≤ s0 < s1 < ... < sm <∞ and 0 ≤ t0 < t1 < ... < tl <∞,

Zn2 =

l∑
i=1

αi

[
ζn1(ti)− ζn1(ti−1)

]
+

m∑
i=1

βi
[
ζn2(si)− ζn2(si−1)

]
,

6Indeed, as in (7.4) of Proposition 7.4, it follows from nh/dn → ∞ that, for any A > 0,( dn
nh

)1/2
max

1≤k≤n
| f(xk/h,wk)|

≤
[ dn
nh

n∑
k=1

f2(xk/h,wk)I(|f(xk/h,wk)| ≥ A)
]1/2

+A
( dn
nh

)1/2
→D

[ ∫ ∞

−∞
Ef2(x,w1)I(|f(x,w1)| ≥ A)dxLZ(1, 0)

]1/2
, as n → ∞. (6.2)

This implies (6.1) since
∫∞
−∞ Ef2(x,w1)I(|f(x,w1)| ≥ A)dx ≤ A−2

∫∞
−∞ Ef4(x,w1)dx → 0 by (2.2), as A → ∞.
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where ζn1(t) =
1√
n

∑⌊nt⌋
j=1 ϵj and ζn2(t) =

1√
n

∑⌊nt⌋
j=1 ϵ−j . An application of Proposition 7.4 implies

that, for any q ≥ 1,(
ψn0, ψn1, ..., ψnq, Ynq(t)

)
⇒

(
G0, G1, ..., Gq,Λq

)
LZ(t, 0), (6.4)

on DRq+20, 1], where Λq = G0+2
∑q

r=1Gr. This, together with the tightness of {Sn(t)}n≥1 (see

Proposition 7.2 with h = 1), yields

{Sn(t), Ynq(t), Zn2}n≥1 is tight on DR3 [0, 1]. (6.5)

Hence, for each {n′} ⊆ {n}, there exists a subsequence {n′′} ⊆ {n′} such that{
Sn′′(t), Yn′′q(t), Zn′′2

}
⇒

{
η(t), Λq LZ(t, 0), Z2

}
, (6.6)

on DR3 [0, 1], where

Z2 =
l∑

i=1

αi

(
B1ti −B1,ti−1

)
+

m∑
i=1

βi
(
B2si −B2,si−1

)
,

and η(t) is a process continuous with probability one due to (6.1).

Let Zn3 =
∑v

i=1 γi
[
Sn(ti) − Sn(ti−1)

]
and Z3 =

∑v
i=1 γi

[
η(ti) − η(ti−1)

]
, where γj ∈ R and

0 ≤ t0 < t1 < ... < tv ≤ s. Since, for each 0 ≤ t ≤ 1, Sn(t) is uniformly integrable (see

Proposition 7.1 with h = 1), it follows from Proposition 7.3 (i) with h = 1 that, for any s < t,

E ei(Z3+Z2)
[
η(t)− η(s)

]
= lim

n′′→∞
E ei(Zn′′3+Zn′′2)[Sn′′(t)− Sn′′(s)] = 0. (6.7)

See, e.g., Billingsley (1968, Theorem 5.4). Similarly, by Propositions 7.1 with h = 1 and 7.3 (iii)

with h = 1, we have

E ei(Z3+Z2)
{
[η(t)− η(s)]2 − [Y (t)− Y (s)]

}
= 0, (6.8)

where Y (t) = τ21LZ(t, 0). Indeed, by letting Yq(t) = ΛqLZ(t, 0) and noting

sup
0≤t≤1

E |Yq(t)− Y (t)| ≤ 2 |Λq − τ21 |E sup
0≤t≤1

LZ(t, 0) ≤ C
∞∑

r=q+1

|Gr| → 0,

due to Proposition 7.5, it follows from Propositions 7.1 with h = 1 and 7.3 (iii) with h = 1 that,

for any ϵ > 0, ∣∣E ei(Z3+Z2)
{
[η(t)− η(s)]2 −

[
Y (t)− Y (s)

]}∣∣
≤

∣∣E ei(Z3+Z2)
{
[η(t)− η(s)]2 −

[
Yq(t)− Yq(s)

]}∣∣
+E

∣∣[Yq(t)− Y (t)
]∣∣+ E

∣∣[Yq(s)− Y (s)
]∣∣

≤ lim
n′′→∞

∣∣E ei(Zn′′3+Zn′′2)
{
[Sn′′(t)− Sn′′(s)]2 − [Yn′′q(t)− Yn′′q(s)]

}∣∣+ 2ϵ

≤ 3ϵ, (6.9)

by letting q → ∞. This yields (6.8) as the left side of (6.9) does not depend on ϵ.
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Let Fs = σ{B1t, 0 ≤ t ≤ 1;B2t, 0 ≤ t < ∞, η(t), 0 ≤ t ≤ s}. Results (6.7) and (6.8) imply

that, for any 0 ≤ s < t ≤ 1,

E
([
η(t)− η(s)

]
| Fs

)
= 0, a.s.,

E
({

[η(t)− η(s)]2 −
[
Y (t)− Y (s)

]}
| Fs

)
= 0, a.s.

Note that Fs ↑, η(s) is Fs-measurable for each 0 ≤ s ≤ 1 and Y (t) = τ21LZ(t, 0) (for any fixed

t ∈ [0, 1]) is Fs-measurable for each 0 ≤ s ≤ 1. It follows from Wang (2015, Lemma 3.4)

that the finite-dimensional distributions of (η(t), Y (t)) coincide with those of {NY 1/2(t), Y (t)},
where N is a normal variate independent of Y (t). Since η(t) does not depend on the choice of

the subsequence {n′′}, it follows from (6.5) and (6.6) that{
Sn(t), Ynq(t)

}
⇒

{
[τ1LZ(t, 0)]

1/2N, ΛqLZ(t, 0)
}
, (6.10)

on DR2 [0, 1], where N is normal variate independent of LZ(t, 0). This, together with (6.4) and

the continuous mapping theorem, yields (2.6).

The proof of (2.5) is similar. Set, for 0 ≤ t ≤ 1 and h > 0,

Sn,h(t) =
( dn
nh

)1/2 ⌊nt⌋∑
k=1

f(xk/h,wk), Zn,h(t) =
dn
nh

⌊nt⌋∑
k=1

f2(xk/h,wk).

As h → 0 and nh/dn → ∞, Zn,h(t) ⇒ Z(t) := τ2 LZ(t, 0) by (7.4) in Proposition 7.4. The

same arguments as those leading to (2.6) can be used to establish (2.5) except that Sn(t), Ynq(t)

and Y (t) are replaced by Sn,h(t), Zn,h(t) and Z(t), respectively. The corresponding propositions

with h→ 0 are given in next section. 2

Proof of Corollary 2.1. We only prove (2.11). The proof of the other result is similar. Let

u1k =
∑m0

j=0 ψj λ
′
k−j , u2k = uk − u1k =

∑∞
j=m0+1 ψj λ

′
k−j and, for r = 0, 1, 2, ...

G̃r,m0 =

∫ ∞

−∞
K(y)E

{
u10 u1rK(y + xr)

}
dy.

Using (2.9), for any m0 > 0 and q ≥ 0, we have

(dn
n

n∑
k=1

K2(xk)u
2
1k,

dn
n

n∑
k=1

K(xk)u1kK(xk+1)u1,k+1, ...,

dn
n

n∑
k=1

K(xk)u1kK(xk+q)u1,k+q,

(
dn
n

)1/2 n∑
k=1

K(xk)u1k

)
⇒

(
G̃0,m0 LZ(1, 0), G̃1,m0 LZ(1, 0), ..., G̃q,m0 LZ(1, 0), τ̃1,m0 NL

1/2
Z (1, 0)

)
,

where τ̃1,m0 = G̃0,m0+2
∑∞

r=1 G̃r,m0 . This implies that, for anym0 > 0, q ≥ 0 and any continuous

function with l(0) = 1,

(dn
n

n∑
k=1

K2
(
xk
)
u21k, J̃n,q,

(
dn
n

)1/2 n∑
k=1

K(xk)u1k

)
→D

(
G̃0,m0 LZ(1, 0), τ̃

2
1,q LZ(1, 0), τ̃1,m0 NL

1/2
Z (1, 0)

)
,
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where τ̃21,q = G̃0,m0 + 2
∑q

r=1 G̃r,m0 and

J̃n,q =
dn
n

n∑
k=1

K2
(
xk
)
u21k +

2dn
n

q∑
j=1

ℓ

(
j

M

) n−j∑
k=1

K
(
xk
)
K
(
xk+j

)
u1k u1,k+j .

Consequently, to prove Corollary 2.1, it suffices to show the following:

(a) as m0 → ∞,

|G̃0 − G̃0,m0 |+
∞∑
r=1

|G̃r − G̃r,m0 | → 0; (6.11)

(b) for any m0 ≥ 1,

E
∣∣ n∑
k=1

u2kK(xk)
∣∣2 ≤ C (n/dn)

[ ∞∑
j=m0

j1/4(|ψ1j |+ |ψ2j |)
]2
; (6.12)

(c) for any r ≥ 0, as n→ ∞ first and then m0 → ∞,

dn
n

n−r∑
k=1

K
(
xk
)
K
(
xk+r

) (
u1k u1,k+r − ukuk+r

)
= oP (1); (6.13)

Further, if m0 = m0(n) → ∞, i.e., m0 depends on n, it also follows that there exists

M1 ≡M1n depending on m0 such that, as n→ ∞,

Rn :=
dn
n

M1∑
r=1

∣∣ n−r∑
k=1

K
(
xk
)
K
(
xk+r

) (
u1k u1,k+r − ukuk+r

)∣∣ = oP (1). (6.14)

(d) there exists M ≡Mn → ∞ so that, as n→ ∞ first and then q → ∞,

dn
n

M∑
r=q+1

ℓ
( r
M

) n−r∑
k=1

K
(
xk
)
K
(
xk+r

)
uk uk+r = oP (1). (6.15)

For the proofs of (6.11), (6.12) - (6.14) and (6.15), we refer to Propositions 7.5, 7.6 and 7.7,

respectively. 2

7 Subsidiary propositions

This section proves the following propositions which are required in the proofs of Theorem 2.1

and Corollary 2.1. The notation is the same as in the previous section except where explicitly

mentioned.

Proposition 7.1. For any fixed 0 ≤ t ≤ 1, r ≥ 0 and any bounded h > 0 satisfying nh/dn → ∞,

ψnr(t), Zn,h(t) and S
2
n,h(t), n ≥ 1, are uniformly integrable.

Proposition 7.2. For any bounded h > 0 satisfying nh/dn → ∞, {Zn,h(t)}n≥ and {Sn,h(t)}n≥1

are tight on D[0, 1].

Proposition 7.3. For any 0 ≤ s < t ≤ 1, we have that
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(i) if h > 0 is bounded satisfying nh/dn → ∞, then

lim
n→∞

E ei(Zn3+Zn2)[Sn,h(t)− Sn,h(s)] = 0; (7.1)

(ii) if h→ 0 satisfying nh/dn → ∞, then

lim
n→∞

E ei(Zn3+Zn2)
{
[Sn,h(t)− Sn,h(s)]

2 − [Zn,h(t)− Zn,h(s)]
}
= 0; (7.2)

(iii) for any ϵ > 0, there exists a q0 > 0 such that

lim
n→∞

∣∣E ei(Zn3+Zn2)
{
[Sn(t)− Sn(s)]

2 − [Ynq(t)− Ynq(s)]
}∣∣ ≤ ϵ, (7.3)

for all q ≥ q0.

Proposition 7.4. For any bounded h > 0 satisfying nh/dn → ∞, we have

Zn,h(t) ⇒ τ2LZ(t, 0), (7.4)

on DR[0, 1]. If, in addition, γ = 0 and
∫
E
{
|f̂(t, w0)

(
1 + ||wr||β)

}
dt <∞, 0 ≤ r ≤ m, then{

ψn0(t), ψn1(t), ..., ψnm(t)
}

⇒
{
G0 , G1 , ..., Gm

}
LZ(t, 0), (7.5)

on DRm+1 [0, 1].

Proposition 7.5. If γ = 0, we have
∑∞

r=1 |Gr| <∞ and
∑∞

r=1 |G̃r| <∞, and (6.11) also holds.

Proposition 7.6. Results (6.13) and (6.14) hold and, for any bounded h > 0 satisfying nh/dn →
∞, we have

E
∣∣ n∑
k=1

u2kK(xk/h)
∣∣2 ≤ C (nh/dn)

[ ∞∑
j=m0

j1/4(|ψ1j |+ |ψ2j |)
]2
. (7.6)

Proposition 7.7. Result (6.15) holds.

7.1 Preliminary lemmas

Except where explicitly mentioned, the proofs of all lemmas are given in the Appendix. Through-

out this section, we let Fk = σ(λk, λk−1, ...).

Lemma 7.1. Let p(s, s1, ..., sm) be a real function of its components and t1, ..., tm ∈ Z, where
m ≥ 0. There exists an A0 > 0 such that the following results hold.

(i) For any h > 0 and k ≥ 2m+A0, we have

E| p(xk/h, λt1 , ..., λtm)| ≤
C h

dk

∫ ∞

−∞
E|p(t, λ1, ..., λm)|dt. (7.7)

(ii) For any h > 0, k − j ≥ 2m+A0 and j + 1 ≤ t1, ..., tm ≤ k, we have

E
[∣∣p(xk/h, λt1 , ..., λtm)∣∣ | Fj

]
≤ C h

dk−j

∫ ∞

−∞
E|p(t, λ1, ..., λm)|dt. (7.8)
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(iii) For any h > 0 and k − j ≥ 1, we have

E
[
|p(xk/h)|

∣∣Fj

]
≤ C h

dk−j

∫ ∞

−∞
|p(x)|dx, (7.9)

Proof. For the proofs of (7.7) and (7.8), we refer to Lemma A.1 of Wang et al. (2021). As

ϕ0 ̸= 0, the proof of (7.9) is simple. See, for instance, Lemma 2.1 (iii) of Wang (2015). 2

Recalling (6.3), f(x, y) ≤ T (x)(1 + ||y||β) and E ||w1||max{2,4β} <∞, where T (x) is bounded

and integrable, a simple application of Lemma 7.1 (i) and (ii) yields that, for any h > 0,

n∑
k=1

E f2(xk/h,wk) ≤ Cnh/dn, E
[ n∑
k=1

f2(xk/h,wk)
]2

≤ C
(
nh/dn

)2
. (7.10)

and (7.10) still holds if f2(xk/h,wk) is replaced by Y 2
kj defined by

Ykj = E
[
f(xk/h,wk)|Fk−j

]
− E

[
f(xk/h,wk)|Fk−j−1

]
,

where j ≥ 0 is a fixed integer. Furthermore, it follows from Lemma 7.1 (iii) that, for any r ≥ 1,

E
[
|f(xk+r/h,wk+r)||Fk

]
≤

{
E
[
T 2(xk+r/h) | Fk

]}1/2 {E [(1 + ||wk+r||2β)|Fk

]}1/2
≤ Ch1/2Rk,

where Rk =
{
E
[
(1+ ||wk+r||2β)|Fk

]}1/2
depending only on λk, ..., λk−m0 . Hence, for any r ≥ 1,

h > 0 and 0 ≤ s < t ≤ 1, we also have

⌊nt⌋∑
k=[ns]+B0

E
[
|f(xk/h,wk)| |f(xk+r/h,wk+r)| | F[ns]

]

≤
⌊nt⌋∑

k=[ns]+B0

E
[
|f(xk/h,wk)|E

{
|f(xk+r/h,wk+r)| | Fk

}
| F[ns]

]

≤ Ch1/2
⌊nt⌋∑

k=[ns]+B0

E
{
|f(xk/h,wk)|Rk | F[ns]

}
≤ C nh3/2(t− s)α/dn, (7.11)

for some α > 0, whenever B0 is sufficiently large so that (7.8) is applicable. We remark that

(7.11) holds for r = 0 if h3/2 is replaced by h. These results will be used later.

In the next lemma, Ω1 is set to be a subset of Ω = {1, 2, ..., k}, Ω2 = Ω− Ω1 and

zk(t) =
k∑

v=1

ϵv
(
tαv + βv

)
.

Lemma 7.2. Suppose that
∑k

v=1 α
2
v ≤ Cτ2k and, for any Ω1 satisfying #Ω1 ≤

√
k,

B1k :=
∑
v∈Ω2

α2
v ≥ τ2k , (7.12)

24



for some constants sequence τk. Then, for any δ ≥ 0 and s1, s2 ∈ R+, we have∫
min{1, s1 |t|δ + s2}

∣∣E eizk(t)∣∣dt
≤ C

(
k−3 + s1 τ

−1−δ
k

[
1 +

( k∑
v=1

β2v
)δ/2]

+ s2 τ
−1
k

)
; (7.13)∫

min{1, s1 |t|}min{1, |t|}
∣∣E eizk(t)∣∣dt

≤ C
(
k−3 + s1 τ

−3
k

[
1 +

k∑
v=1

β2v
])
. (7.14)

If in addition
∑k

v=1 β
2
l ≤ a <∞, then∫

|t|≥B/τk

∣∣E eizk(t)∣∣dt ≤ C
(
k−3 + τ−1

k B−1
)
, (7.15)

for any B ≥ 2a1/2.

Proof. The proof of Lemma 7.2 is similar to that of Wang and Phillips (2011, pages 246-247)

and is therefore omitted. But an outline of the proof is given in Appendix A.1 for completeness.

2

Since Lemma 7.2 still holds when zk(t) is replaced by zk−m0(t) when k ≥ m2
0 and since wk

depends only on λk, ..., λk−m0 , the following lemma is a direct consequence of Lemma 7.2.

Lemma 7.3. Let g(x, y) be a real function satisfying

� |E g(t, w1)| ≤ Cmin{1, |t|} and supt E
{
(1 + |ϵ0|)|g(t, w1)|

}
<∞.

For any bounded h > 0 and τk ≤ C k2, we have∫ ∞

−∞

∣∣E eizk(t/h) g(t, wk)
∣∣dt ≤ Ch τ−1

k , (7.16)

for all k ≥ m2
0. Instead of (7.16), we also have∫ ∞

−∞

∣∣E eizk(t/h)g(t, wk)
∣∣dt

≤ Ch
{
(1 + αk0)τ

−2
k

[
1 +

( k∑
v=1

β2v
)1/2]

+ βk0 τ
−1
k

}
, (7.17)

where αk0 = max0≤i≤m0∨(k−1) |αk−i| and βk0 = max0≤i≤m0∨(k−1) |βk−i|. Similarly, when supk αk0 =

O(1), we have ∫ ∞

−∞
min{1, |t|/h}

∣∣E eizk(t/h)g(t, wk)
∣∣dt

≤ C h
{
k−3 +

[
βk0(τ

−2
k + k−3) + τ−3

k

](
1 +

k∑
v=1

β2v
)}
. (7.18)
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Proof. See Appendix A.2. 2

Let Ik(m) =
∫
E
(
eisxk/h+i

∑l
j=m+1 γjϵjg(s, wk) | Fm

)
ds and

Ik,l(m) =

∫ ∫
E
(
eisxk/h+itxl/h+i

∑l
j=m+1 γjϵjg(s, wk)g(t, wl) | Fm

)
dsdt,

where g(x, y) is a real function given in Lemma 7.3, and let

IIk,l(B) =

∫
|s|≥B/dk

∫
|t|≥B/dl

g1(t)g2(t)E
(
eisxk/h+itxl/h+i

∑l
j=1 γjϵj | F0

)
dsdt,

where g1(t) and g2(t) are bounded real functions. The next lemma is an application of Lemma

7.3.

Lemma 7.4. Let m ≥ 0, l − k ≥ A2
0 + 1 and k −m ≥ A2

0 + 1, where A0 ≥ m0 and m0 is given

as in Lemma 7.3. Suppose a :=
∑l

j=1 γ
2
j <∞.

(i) For any h > 0, we have

|Ik(m)| ≤ C h
[
d−2
k−m(1 + a1/2) + βl0 d

−1
k−m

]
, (7.19)

|Ik,l(m)| ≤ C h2 d−1
k−m

[
d−2
l−k(1 + a1/2) + βl0 d

−1
l−k

]
. (7.20)

where βl0 = max0≤j≤m0 |γl−j |.

(ii) Under SM, if |γj | ≤ C/
√
n where m ≤ j ≤ l, for any h > 0, we have

|Ik(m)| ≤ C h
(
(k −m)−1 +

√
k −m/

√
n
)
, (7.21)

|Ik,l(m)| ≤ C h2
[
(l − k)−1(k −m)−1 + (l − k)−3/2(k −m)−1/2

]
. (7.22)

(iii) For any h > 0 and B ≥ 2a1/2, we have

|IIk,l(B)| ≤ C h2
[
(l − k)−2 +B−1d−1

l−k

]
d−1
k . (7.23)

Proof. See Appendix A.3. 2

Let Ik(h) = f(xk/h,wk) exp
{
i
∑n

j=m+1 µjϵj/
√
n
}
and

IIlk(h) = f(xk/h,wk) f(xl/h,wl) exp
{
i

n∑
j=m+1

µjϵj/
√
n
}
,

where µl are constants satisfying |µl| ≤ C. Using Lemma 7.4, we have the following results.

Lemma 7.5. There exists a B0 ≥ m0 such that, for all m ≥ 0, l − k ≥ B0, k −m ≥ B0 and

bounded h > 0,

(i) under LM, ∣∣E [Ik(h) | Fm

]∣∣ ≤ C h
(
d−2
k−m + dk−m/

√
n
)
, (7.24)∣∣E [IIlk(h) | Fm

]∣∣ ≤ C h2 d−1
k−m

(
d−2
l−k + dl−k/

√
n
)
, (7.25)
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(ii) under SM, ∣∣E [Ik(h) | Fm

]∣∣ ≤ C h
(
(k −m)−1 +

√
k −m/

√
n
)
, (7.26)∣∣E [IIlk(h) | Fm

]∣∣ ≤ C h2
[
(l − k)−1(k −m)−1

+ (l − k)−3/2(k −m)−1/2
]
. (7.27)

Lemma 7.6. There exists a B0 ≥ m0 such that, for all m ≥ 0, l − k ≥ B0, k −m ≥ B0 and

bounded h > 0,

(i) under LM, ∣∣E{f(xl/h,wl)E
[
f(xk/h,wk) | Fk−m

]}∣∣ ≤ C h2 d−1
k d−2

l−k, (7.28)

(ii) under SM, ∣∣E{f(xl/h,wl)E
[
f(xk/h,wk) | Fk−m

]}∣∣
≤ C h2

[
(l − k)−1 k−1 + (l − k)−3/2 k−1/2

]
. (7.29)

The proofs of Lemmas 7.5 and 7.6 are given in Appendices A.4 and A.5.

Lemma 7.7. Let Γ(.) be a measurable function with Γ(λ1) = 0 and EΓ2(λ1) <∞. There exists

an A0 such that

(a) for all k ≥ A0 and |l − k| ≤ A0,∣∣E{Γ(λk−j) Γ(λl−j)K(xk/h)K(xl/h)
}∣∣ ≤ C hd−1

k (7.30)

(b) for all k ≥ A0, l − k ≥ A0 and l − j ≤ k,∣∣E{Γ(λk−j) Γ(λl−j)K(xk/h)K(xl/h)
}∣∣ ≤ C h2 d−1

k d−1
l−k. (7.31)

(c) for all k ≥ A0, l − k ≥ A0 and l − j > k,∣∣E{Γ(λk−j) Γ(λl−j)K(xk/h)K(xl/h)
}∣∣

≤ C h2

{∑j
k=0 |ϕk| d

−1
k d−2

l−k under LM,

k−1(l − k)−1 + k−1/2 (l − k)−3/2. under SM
(7.32)

Similarly, uniformly for y ∈ R, we have∣∣E{K(y + xl/h)Γ(λl−j) Γ(λ−k)
}∣∣

≤ C h

{
d−1
l if |l − j + k| ≤ A0,∑j
s=0 |ϕs|

∑l+k
s=k |ϕs| |(d

−3
l + l−3), if |l − j + k| > A0,

(7.33)

for any A0 ≥ 1 and j, k ≥ 0.

Proof. See Appendix A.6.

Our final lemma gives a useful tightness criterion for a class of stochastic processes on D[0, 1].
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Lemma 7.8. Let Xnk be a sequence of random variables and Xn(t) =
∑⌊nt⌋

k=1Xnk. The sequence

{Xn(t)} is tight in D[0, 1] if max1≤k≤n |Xnk| = oP (1) and there exist an integer A0 ≥ 0 and a

number αn(ϵ, δ) such that

P
(∣∣ [ns]∑

k=[ntm]+A0

Xnk

∣∣ ≥ ϵ
∣∣Xn(t1), ..., Xn(tm)

)
≤ αn(ϵ, δ),

and

lim
δ→0

lim sup
n→∞

αn(ϵ, δ) = 0,

for each positive ϵ > 0, where 0 ≤ t1 ≤ t2 ≤ ... ≤ tm ≤ s ≤ 1 and s− tm ≤ δ.

Proof. If A0 = 0, Lemma 7.8 is a special case of Billingsley (1974, Theorem 4). Extension

to integer A0 ≥ 1 is trivial under the condition that max1≤k≤n |Xnk| = oP (1). The details are

omitted. 2

7.2 Proofs of propositions

Propositions 7.4 and 7.7 are treated separately due to their complexity and their proofs are

given later in Sections 7.3 and 7.4, respectively.

Proof of Proposition 7.1. We only prove uniformity of S2
n,h(1) for bounded h > 0 satis-

fying nh/dn → ∞. The other results are similar and simpler. Let m ≥ m0 be a constant that

will be specified later. Let

S1n =
( dn
nh

)1/2 n∑
k=1

E
[
f(xk/h,wk)|Fk−m

]
,

S2n =
( dn
nh

)1/2 n∑
k=1

{
f(xk/h,wk)− E

[
f(xk/h,wk)|Fk−m

]}
.

Note that, for any A ≥ 2,

ES2
n,h(1) I(S

2
n,h(1) ≥ A) ≤ 2ES2

1n + 2ES2
2nI(S

2
1n + S2

2n ≥ A/2)

≤ 2ES2
1n + 8A−1ES4

2n + 2ES2
2nI(S

2
1n ≥ A/4)

≤ 4ES2
1n + 16A−1ES4

2n.

It suffices to show that, for some c0 > 0,

(a) ES4
2n ≤ c0m

4;

(b) under LM, ES2
1n ≤ c0 d

1/2−µ
m ;

(c) under SM, ES2
1n ≤ c0

(
d
−1/2
m + log2 n/

√
n
)
.

Indeed, for any ϵ > 0, by taking A, n sufficiently large and m = A1/8, it follows from (a)-(c)

that

ES2
n,h(1) I(S

2
n,h(1) ≥ A) ≤ 4c0(d

−1/2
m + d1/2−µ

m ) + 16c1A
−1/2 + c0 log

2 n/
√
n ≤ ϵ,

under both LM and SM, due to dm → 0 and µ > 1/2.
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To prove (a), let Ykj = E
[
f(xk/h,wk)|Fk−j

]
− E

[
f(xk/h,wk)|Fk−j−1

]
, 0 ≤ j ≤ m − 1. We

may write

S2n =
( dn
nh

)1/2 m−1∑
j=0

n∑
k=1

Ykj .

Note that Ykj forms a martingale difference. Hölder’s and Burkholder’s inequalities imply that

ES4
2n ≤ m3

( dn
nh

)2 m−1∑
j=0

E
( n∑
k=1

Ykj
)4

≤ C2m
3
( dn
nh

)2 m−1∑
j=0

E
( n∑
k=1

Y 2
kj

)2 ≤ com
4,

for some c0 > 0, which yields (a), where we have used the result (7.10) with f2(.) replaced by

Y 2
kj .

We next prove (b) and (c). Let gk = E
[
f(xk/h,wk)|Fk−m

]
. For some q ≥ 1, we may write

ES2
1n =

dn
nh

[ n∑
k=1

E g2k + 2
n∑

k=1

k+q∑
j=k+1

E gkgj + 2
n∑

k=1

n∑
j=k+q

E (gkgj)
]

= Rn1 +Rn2 +Rn3. (7.34)

Recall (6.3). It follows from (7.8) in Lemma 7.1 that |gk| ≤ Ch/dm. On the other hand,

E |gk| ≤ E |f(xk/h,wk)| ≤ Ch/dk. As a consequence, we have

|Rn1|+ |Rn2| ≤ Cqh /dm
dn
nh

n∑
k=ln

E |qk| ≤ Cqhd−1
m .

As for Rn3, by taking m ≥ B0 where B0 is given in Lemma 7.6,

(i) under LM, it follows from (7.28) that, for any q ≥ B0,

|Rn3| ≤ 2dn
nh

n∑
k=1

n∑
j=k+q

|E (gkgj)| ≤ C
hdn
n

n∑
k=1

n∑
j=k+q

d−1
k d−2

j−k

≤ Ch

∫ ∞

q
x2µ−3ρ−2(x)dx.

(ii) under SM, it follows from (7.29) that, for any q ≥ B0,

|Rn3| ≤ 2√
nh

n∑
k=1

n∑
j=k+q

|E (gkgj)|

≤ C h√
n

n∑
k=1

n∑
j=k+q

[
(j − k)−1 k−1 + (j − k)−3/2 k−1/2

]
≤ Ch

(
log2 n/

√
n+

∫ ∞

q
x−3/2dx

)
.
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Taking these estimates into (7.34), we obtain (b) and (c) by letting q =
√
dm, as h is bounded.

This completes the proof. 2

Proof of Proposition 7.2. We prove tightness of Sn,h(t). Tightness of Zn,h(t) is shown in

a similar way to Wang (2015, Theorem 2.20) and the details are omitted.

Recalling (6.1) and Lemma 7.8, it suffices to prove the folllowing: for any fixed s ∈ [0, 1], for

each ϵ > 0 and any bounded h > 0 satisfying nh/dn → ∞, there exists a sequence of αn(ϵ, δ)

satisfying limδ→0 lim supn→∞ αn(ϵ, δ) = 0 such that

In := sup
|t−s|≤δ

P
(∣∣ ⌊nt⌋∑

k=[ns]+B0

f(xk/h,wk)
∣∣ ≥ ϵ (nh/dn)

1/2 | F[ns]

)
≤ αn(ϵ, δ), (7.35)

where B0 is chosen as in Lemma 7.5. In fact, by noting

Jn(s, t) := E
[∣∣∣ ⌊nt⌋∑

k=[ns]+B0

f(xk/h,wk)
∣∣∣2 | F[ns]

]

≤ 2

⌊nt⌋∑
k=[ns]+B0

∑
k≤l≤2B0

E
(
|f(xk/h,wk)| |f(xl/h,wl)| | F[ns]

)

+2

⌊nt⌋∑
k=[ns]+B0

n∑
l=k+2B0

∣∣∣E{f(xk/h,wk) f(xl/h,wl) | F[ns]

}∣∣∣,
it follows from (7.11) and Lemma 7.5 that, for some α > 0:

(a) under LM [using (7.25)],

Jn(s, t) ≤ C nh(t− s)α/dn + Ch2
⌊nt⌋∑

k=[ns]+1

n∑
l=k+1

d−1
k−[ns] d

−2
l−k

≤ 2C nh(t− s)α/dn;

(b) under SM [using (7.27)],

Jn(s, t) ≤ C
√
nh(t− s)α +

Ch2
⌊nt⌋∑

k=[ns]+1

n∑
l=k+1

[
(l − k)−1(k − [ns])−1 + (l − k)−3/2(k − [ns])−1/2

]
≤ 2C

√
nh(t− s)α.

Now (7.35) follows by choosing αn(ϵ, δ) = 2Cϵ−2δα and the fact that

In ≤ ϵ−2dn/(nh) sup
|t−s|≤δ

Jn(s, t) ≤ αn(ϵ, δ).

2

Proof of Proposition 7.3. We start with (7.2). Due to the iid properties of λk, there exist

constants µj with |µj | ≤ C,∣∣∣E ei(Zn3+Zn2)
{
[Sn,h(t)− Sn,h(s)]

2 − [Zn,h(t)− Zn,h(s)]
}∣∣∣
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≤ E
∣∣∣E [ei∑⌊nt⌋

j=[ns]+1
µjϵj

{
[Sn,h(t)− Sn,h(s)]

2 − [Zn,h(t)− Zn,h(s)]
}
| F[ns]

]∣∣∣
≤ dn

nh

n∑
k=[ns]+1

n∑
l=k+1

E
∣∣E [IIlk(h) | F[ns]

]∣∣
≤ dn

nh

n∑
k=[ns]+1

( k+B0∑
l=k+1

+

n∑
l=k+B0

)
E
∣∣E [IIlk(h) | F[ns]

]∣∣
=: Rn4 +Rn5, (7.36)

where B0 and IIlk(h) are defined as in Lemma 7.5. Similar to (7.11) with minor modifications,

under both LM and SM, we have Rn4 ≤ C h1/2. To estimate Rn5, under LM, it follows from

(7.25) that

Rn5 ≤ Cdn
nh

h2
n∑

k=1

n∑
l=k+B0

d−1
k

(
d−2
l−k + dl−k/

√
n
)
≤ Ch.

Similarly, under SM, we have Rn5 ≤ Ch by (7.27). Taking these estimates into (7.36), we have

(7.2) as h→ 0.

In a similar way for any q ≥ B0, we have∣∣E ei(Zn3+Zn2)
{
[Sn(t)− Sn(s)]

2 − [Ynq(t)− Ynq(s)]
}∣∣

≤ dn
n

n∑
k=[ns]+1

n∑
l=k+q

E
∣∣E [IIlk(1) | F[ns]

]∣∣
≤


dn
n

∑n
k=[ns]+1

∑n
l=k+q d

−1
k−[ns] d

−2
l−k, under LM,

1√
n

∑n
k=[ns]+1

∑n
l=k+q

[
(l − k)−1(k − [ns])−1 + (l − k)−3/2(k − [ns])−1/2

]
,

under SM,

≤ C

{ ∫∞
q x2µ−3dx, under LM,∫∞

q x−3/2dx+ log2 n/
√
n, under SM,

≤ ϵ+ C log2 n/
√
n,

by choosing q sufficiently large. This proves (7.3). The proof of (7.1) is similar and simpler, so

the details are omitted. 2

Proof of Proposition 7.5. With γ = 0 where γ is used in A1 (i), we may write

xr =

r∑
i=1

∞∑
j=0

ϕjϵi−j =

r∑
j=1

ar−jϵj +

∞∑
j=0

[ar+j − aj ]ϵ−j , (7.37)

where al =
∑l

s=0 ϕs and al = 0 if l < 0. Let zr =
∑r

k=1 ϵkar−k and z1r =
∑m0

j=0[ar+j − aj ]ϵ−j .

We have var(zr) ∼ d2r for r ≥ 2m0 and, when m0 is fixed,

|Ef̂(s, w0)e
−isz1r | ≤ E |f̂(s, w0)(e

−isz1r − 1)|+ |Ef̂(s, w0)|
≤ C (1 + |ar|)min{1, |s|}.

Now it is readily seen from the iid properties of ϵk and (7.18) in Lemma 7.3 that

|Gr| ≤ 1

2π

∫ ∞

−∞
|E
{
f̂(s, w0)e

−isz1r
}
| |E
{
f̂(s, wr)e

−iszr
}
|ds
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≤ C (1 + |ar|)
∫ ∞

−∞
min{1, |s|} |E

{
f̂(s, wr)e

−iszr
}
|ds

≤ C (1 + |ar|)(d−3
r + r−3).

Hence
∑∞

r=2m0
|Gr| <∞ due to |ar| ≤ C under SM and |ar| ≤ dr under LM.

To prove (6.11) and
∑∞

r=1 |G̃r| < ∞, we make use of (7.33) in Lemma 7.7. In fact, for any

r ≥ 1 and y ∈ R, it follows from (7.33) that

|E
{
(u10u1r − u0ur)K(y + xr)

}
|

≤
( ∞∑

k=m0+1

∞∑
j=0

+
∞∑
k=0

∞∑
j=m0+1

) ∣∣E{ψkλ
′
−k ψjλ

′
r−jK(y + xr)

}∣∣
≤ 2

∞∑
k=m0+1

r+k+1∑
j=r+k−1

d−1
r ||ψk|| ||ψj ||

+2
∞∑

k=m0+1

∞∑
j=0

||ψk|| ||ψj ||
j∑

s=0

|ϕs|
r+k∑
s=k

|ϕs| |(d−3
r + r−3)

≤ 2d−1
r

∞∑
k=m0+1

||ψk||
1∑

j=−1

||ψj+r+k||

+2C

∞∑
k=m0+1

∞∑
j=0

||ψk|| ||ψj ||
j∑

s=0

|ϕs|
r+k∑
s=k

|ϕs| |(d−3
r + r−3).

Note that
∑j

s=0 |ϕs|
∑r+k

s=k |ϕs|(d−3
r + r−3) ≤ Cj1/2 k1/2r−3/2 under both SM and LM. It is

readily seen from
∑∞

k=0 k
1/2 ||ψk|| <∞ that

∞∑
r=1

|G̃r − G̃r,m0 | ≤
∫ ∞

−∞
K(y)

∞∑
r=1

|E
{
(u10u1r − u0ur)K(y + xr)

}
|dy

≤ C
∞∑

k=m0+1

k1/2 ||ψk||
∫
K(y)dy → 0, (7.38)

as m0 → ∞. Similarly, we have |G̃0− G̃0,m0 | → 0, as m0 → ∞ , and
∑∞

r=1 |G̃r| <∞. The proof

of Proposition 7.5 is then complete. 2

Proof of Proposition 7.6. The proofs of (6.13) and (6.14) are simply established using

Lemma 7.1. Indeed, by noting that

∣∣ n−r∑
k=1

K
(
xk
)
K
(
xk+r

) (
u1k u1,k+r − ukuk+r

)∣∣
≤ C

( ∞∑
l=m0+1

∞∑
l1=0

+
∞∑
l=0

∞∑
l1=m0+1

) n−r∑
k=1

K
(
xk
) ∣∣ψlλ

′
k−l ψl1λ

′
k+r−l1

∣∣,
it follows from Lemma 7.1 (i) and

∑∞
l=0 l||ψl| <∞ that, for some constant A0 > 0,

E|Rn| ≤ CM1

∞∑
l=m0+1

∞∑
l1=0

||ψl|| ||ψl1 ||
dn
n

[
(A0 + 2) +

n∑
k=1

d−1
k

]
32



≤ C1M1

∞∑
l=m0+1

||ψl| ≤ CM1m
−1
0 .

Hence (6.14) follows if we take M1 =
√
m0. The proof of (6.13) is similar.

We next prove (7.6). Let
∑l

j=k = 0 for k > l and Γ(.) be a measurable function with

Γ(λ1) = 0 and EΓ2(λ1) <∞. Since K(x) is bounded, for A0 being chosen as in Lemma 7.7, we

have

∆n ≡
∣∣ n∑
k=1

Γ(λk−j)K(xk/h)
∣∣2

≤ 2
∣∣ n∑
k=A0

Γ(λk−j)K(xk/h)
∣∣2 + C

( A0∑
k=1

|Γ(λk−j)|
)2

= 2
( n∑

k=A0

n∑
|k−l|<A0

+2
n−1∑
k=A0

n∑
l=k+A0

)
Γ(λk−j) Γ(λl−j)K(xk/h)K(xl/h)

+C
( A0∑
k=1

|Γ(λk−j)|
)2

=: ∆1n +∆2n +∆3n, say. (7.39)

It follows from Lemma 7.7 that

E|∆1n| ≤ C h
n∑

k=1

n∑
|k−l|<A0

1/dk ≤ C1 nh/dn,

E|∆2n| ≤ C h2


∑n−1

k=A0
d−1
k

(∑n∧(k+j)
l=k+A0

d−1
l−k +

∑j
k=0 |ϕk|

∑n
l=k+j d

−2
l−k

)
, under LM,∑n−1

k=A0
k−1/2

∑n∧(k+j)
l=k+A0

(l − k)−1/2+∑n−1
k=A0

∑n
l=k+j

[
k−1(l − k)−1 + k−1/2 (l − k)−3/2

]
, under SM

≤ C (nh2/dn)

{
j/dj +

∑j
k=0 |ϕk|, under LM,

j1/2 + log2 n/
√
n+ 1, under SM,

≤ C j1/2 nh2/dn,

where we have used the fact
∑j

k=0 |ϕk| ≤ C j/dj ≤ C j1/2 under LM. On the other hand, it is

readily seen that E|∆3n| ≤ C A2
0.

Taking these estimates into (7.39), for any bounded h, we have

E
∣∣ n∑
k=1

Γ(λk−j)K(xk/h)
∣∣2 ≤ C j1/2 nh/dn. (7.40)

The result (6.12) now follows from

E
∣∣ n∑
k=1

uk,m0 K(xk/h)
∣∣2 = E

∣∣ ∞∑
j=m0

n∑
k=1

ψj λ
′
k−j K(xk/h)

∣∣2
≤

∞∑
j=m0

j1/4(|ψ1j |+ |ψ2j |)
∞∑

j=m0

j−1/4(|ψ1j |+ |ψ2j |)−1E
∣∣ n∑
k=1

ψj λ
′
k−j K(xk/h)

∣∣2
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≤ 2
∞∑

j=m0

j1/4(|ψ1j |+ |ψ2j |)
∞∑

j=m0

j−1/4(|ψ1j |+ |ψ2j |)

(
E
∣∣ n∑
k=1

ϵk−j K(xk/h)
∣∣2 + E

∣∣ n∑
k=1

ek−j K(xk/h)
∣∣2)

≤ C (nh/dn)
[ ∞∑
j=m0

j1/4(|ψ1j |+ |ψ2j |)
]2
,

where we employ Hölder’s inequality and (7.40) with Λ(λk) = ϵk and ek, respectively. The proof

of Proposition 7.6 is complete. 2

7.3 Proof of Proposition 7.4

We start with (7.4). The tightness of Zn,h(t) has been established in Proposition 7.2. It suffices

to show that the finite-dimensional distributions of Zn,h(t) converge to those of τ2LZ(t, 0). To

this end, let g(x) = E f2(x,w1). Under A2(b) and A3(I), g(x) is bounded and integrable.

Furthermore, by using Wang (2015, Theorem 2.20), we have

dn
nh

⌊nt⌋∑
k=1

g(xk/h) ⇒ τ2LZ(t, 0), (7.41)

whenever dn/h → ∞ and dn/nh → 0. In terms of (7.41), the finite-dimensional distribution of

Zn,h(t) will converge to those of τ2LZ(t, 0) if we show that, for any fixed 0 < t ≤ 1,

dn
nh

⌊nt⌋∑
k=1

[
g(xk/h)− f2(xk/h,wk)

]
= oP (1). (7.42)

This is essentially the same as in the proof of (A.20) for i = 2 in Wang et al. (2021) (also see

(4.8) in the paper) and hence the details are omitted. (7.4) is now proved.

We next prove (7.5). It suffices to show the following:

(a) for each 0 ≤ r ≤ m, {ψnr(t)}n≥1 is tight on D[0, 1]; and

(b) the finite-dimensional distributions of
{
ψn0(t), ψn1(t), ..., ψnm(t)

}
converge to those of{

G0 , G1 , ..., Gm

}
LZ(t, 0).

The proof of part (a) is simple. Indeed, by noting

|ψnr(t)− ψnr(s)| ≤ dn
n

⌊nt⌋∑
k=[ns]+1

|f(xk, wk)f(xk+r, wk+r)|

≤ dn
n

⌊nt⌋+r∑
k=[ns]+1

f2(xk, wk) ≤ |Zn,1(t)− Zn,1(s)|+ oP (1),

uniformly for s < t, the tightness of ψnr(t) is implied by that of Zn,1(t).

To prove part (b), let hr(y) = E
{
f(y, w0)f(y + xr, wr)

}
. We have hr(y) is bounded and

integrable due to A2(b) and A3(I). Hence, as in (7.41),

dn
n

⌊nt⌋∑
k=1

[
α0h0(xk) + ...+ αmhm(xk)

]
⇒

m∑
r=0

αrGrLZ(t, 0),
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on D[0, 1], for any (α0, ..., αm) ∈ Rm+1. The Cramér-Wold theorem now implies that part (b)

will follow if we prove

∣∣ψnr(t)−
dn
n

⌊nt⌋∑
k=1

hr(xk)
∣∣ = oP (1), (7.43)

for any r ≥ 0 and any fixed 0 ≤ t ≤ 17.

The proof of (7.43) is quite technical, starting with some preliminaries. Let al =
∑l

s=0 ϕs
and al = 0 if l < 0. With γ = 0, we may write

xk =

0∑
j=−∞

[ak−j − a−j ]ϵj +

k∑
j=1

ak−jϵj , (7.44)

and

xk+r − xk =
k∑

j=−∞
[ak+r−j − ak−j ]ϵj +

k+r∑
j=k+1

ak+r−jϵj

=

0∑
j=−∞

[ar−j − a−j ]ϵj+k +

r∑
j=1

ar−jϵj+k

= x1k,r + x2k,r, (7.45)

where

x1k,r =

−A0∑
j=−∞

[ar−j − a−j ]ϵj+k,

x2k,r =

0∑
j=−A0+1

[ar−j − a−j ]ϵj+k +

r∑
j=1

ar−jϵj+k.

It is readily seen that, for any A0 > 0, x1k,r is independent of x2k,r and x1k,r is independent of

wk and wk+r when A0 ≥ m0 + 1. By letting γj = ar+j − aj , we further have
∑∞

j=1 γ
2
j <∞ and

x1k,r =

−A0∑
j=−∞

[ar−j − a−j ]ϵj+k =

k−A0∑
q=1

γk−qϵq +
0∑

q=−∞
γk−qϵq. (7.46)

We next let f̂(t, s) =
∫∞
−∞ eitxf(x, s)dx,

Vk(t, s) = f̂(−t, wk)f̂(s, wk+r)e
−isx2k,r ,

Ar(t, s) = E
{
f̂(−t, w0)f̂(s, wr)e

−isxr
}
.

Using the Fourier transformations, under A3 (III), it is readily seen that

h1r(y, s) :=
1

2π

∫
ei(t−s)yEV0(t, s)dt = e−isy E

{
f(y, w0)f̂(s, wr)e

−isx20,r
}
,

h2r(y, s) :=
1

2π

∫
ei(t−s)yAr(t, s)dt = e−isy E

{
f(y, w0)f̂(s, wr)e

−isxr
}
,

7We remark that the r in (7.43) is allowed to depend on n and we have in fact established the convergence in
(7.43) in L1 rather than in probability. These enhanced properties will be useful in the proof of Proposition 7.7.
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hr(y) = E
{
f(y, w0)f(y + xr, wr)

}
=

1

2π

∫
h2r(y, s)ds.

We are now ready to consider (7.43). Without loss of generality, assume t = 1. We have

ψnr(1) =
dn
2πn

n∑
k=1

f(xk, wk)

∫
f̂(s, wk+r)e

−isxk+rds

=
dn

(2π)2n

n∑
k=1

∫ ∫
|s|≤A

f̂(−t, wk)f̂(s, wk+r)e
i(t−s)xk−is(xk+r−xk)dsdt+R0A,

=
dn

(2π)2n

n∑
k=1

∫ ∫
|s|≤A

ei(t−s)xk−isx1k,rEVk(t, s)dsdt+R1A +R0A

=
dn
2πn

n∑
k=1

∫
|s|≤A

e−isx1k,rh1r(xk, s)ds+R1A +R0A

=
dn
2πn

n∑
k=1

∫
|s|≤A

e−isx1k,rh2r(xk, s)ds+R2A +R1A +R0A

=
dn
2πn

n∑
k=1

∫
|s|≤A

h2r(xk, s)ds+R3A +R2A +R1A +R0A

=:
dn
n

n∑
k=1

hr(xk)−R4A +R3A +R2A +R1A +R0A, (7.47)

where

R0A =
dn
2πn

n∑
k=1

f(xk, wk)

∫
|s|>A

f̂(s, wk+r)e
−isxk+rds,

R1A =
dn

(2π)2n

n∑
k=1

∫
|s|≤A

∫
ei(t−s)xk−isx1k,r

[
Vk(t, s)− EVk(t, s)

]
dt ds,

R2A =
dn
2πn

∫
|s|≤A

n∑
k=1

e−isx1k,r
[
h1r(xk, s)− h2r(xk, s)

]
ds,

R3A =
dn
2πn

∫
|s|≤A

n∑
k=1

(
e−isx1k,r − 1

)
h2r(xk, s)dtds

=
dn

(2π)2n

n∑
k=1

∫
|s|≤A

∫
ei(t−s)xk

(
e−isx1k,r − 1

)
Ar(t, s)ds,

R4A =
dn
2πn

n∑
k=1

∫
|s|>A

h2r(xk, s)ds .

Recalling wk depends only on λk, ..., λk−m0 , where m0 is a fixed integer, it follows from Lemma

7.1 (i) and |f(y, w0)| ≤ T (y)(1 + ||w0||β) that

E |R0A| ≤ C
dn
n

n∑
k=1

∫
|s|>A

E
{
|f(xk, wk)| |f̂

(
s, wk+r

)
|
}
ds

≤ C
dn
n

n∑
k=1

d−1
k

∫
|s|>A

∫
E
{
|f(y, w0| |f̂(s, wr)|

}
dyds
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≤ C

∫
T (y)dy

∫
|s|>A

E
{
|f̂(s, wr)|(1 + ||w0||β)

}
ds→ 0,

as A→ ∞. Similarly,

E |R4A| ≤ C
dn
n

n∑
k=1

∫
|s|>A

E |h2r(xk, s)|ds

≤ C
dn
n

n∑
k=1

d−1
k

∫
|s|>A

∫
|h2r(y, s)|dyds

≤ C

∫
|s|>A

∫
E
{
|f(y, w0| |f̂(s, wr)|

}
dyds→ 0,

as A → ∞. Hence, |R0A| + |R4A| = oP (1), as n → ∞ first and then A → ∞. This, together

with (7.47), implies that (7.43) will follow if we prove: for any fixed A > 0,

RjA = oP (1), j = 1, 2, 3, (7.48)

as n→ ∞ frist and then A0 → ∞.

The proof of (7.48) for j = 2 is simple. Indeed, due to the independence between x10,r and

w1, wr, we have ∫
|s|≤A

∫ ∣∣h1r(y, s)− h2r(y, s)
]∣∣dyds

≤
∫
|s|≤A

∫
E
{
|f(y, w0)| |f̂(s, wr)| |e−isx10,r − 1|

}
dyds

≤ A

∫ ∫
E
{
|f(y, w0)| |f̂(s, wr)|dyds E |x10,r|

≤ CA
[ ∞∑
j=A0

(ar+j − aj)
2
]1/2

,

for any fixed A > 0. This yields that

E |R2A| ≤ dn
2πn

∫
|s|≤A

n∑
k=1

E
∣∣h1r(xk, s)− h2r(xk, s)

∣∣ds
≤ dn

n

n∑
k=1

d−1
k

∫
|s|≤A

∫
|h1r(y, s)− h2r(y, s)|dyds

≤ C A
[ ∞∑
j=A0

(ar+j − aj)
2
]1/2 → 0,

as n→ ∞ first and then A0 → ∞, as required.

It is readily seen that (7.48) for j = 1 and 3 will follow if we prove: for any fixed A > 0,

dn
n

sup
|s|≤A

E
∣∣∣ n∑
k=1

∫
ei(u−s)xk−isx1k,r

[
Vk(u, s)− EVk(u, s)

]
du
∣∣∣ = o(1), (7.49)

dn
n

sup
|s|≤A

E
∣∣∣ n∑
k=1

∫
ei(u−s)xk

(
e−isx1k,r − 1

)
Ar(u, s)du

∣∣∣ = o(1), (7.50)
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as n→ ∞ first and then A0 → ∞.

We first prove (7.50). We may write, for any B ≥ 1 and |s| ≤ A,

n∑
k=1

∫
eiuxk

(
e−isx1k,r − 1

)
Ar(u+ s, s)du

=
n∑

k=1

(∫
|u|≥B/dk

+

∫
|u|<B/dk

)
eiuxk

(
e−isx1k,r − 1

)
Ar(u+ s, s)du

= ∆1n(s) + ∆2n(s), say. (7.51)

Recalling |f(x, y)| ≤ T (x)(1+ ||y||β), where T (x) is a bounded and integrable function, we have

sup
u,s

|Ar(u, s)| ≤
∫ ∫

E
{
|f(x,w0)|f(y, wr)|

}
dxdy <∞, (7.52)

sup
s

∫
|Ar(u, s)|du ≤

∫ ∫
E
{
|f̂(t, w0)|f(x,wr)|

}
dtdx

≤
∫
T (x)dx

∫
E
{
|f̂(t, w0)

(
1 + ||wr||β)

}
dt <∞, (7.53)

1

2π
sup
s

∫ ∣∣∣ ∫ Ar(t+ s, s)eitydt
∣∣∣dy = sup

s

∫
|h2r(y, s)|dy

≤ C

∫ ∫
E
{
|f(t, w0)|f̂(x,wr)|

}
dtdx <∞. (7.54)

Due to (7.52), it is readily seen that, uniformly for |s| ≤ A and any B > 0,

E|∆2n(s)| ≤ C sup
|u|,|s|≤A

|Ar(u+ s, s)|B
n∑

k=1

d−1
k E |x1k,r|

≤ C Bn/dn
[ ∞∑
k=A0

(ar+k − ak)
2
]1/2

. (7.55)

To consider ∆1n(s), writing ∆1n(s) = ∆1n,1(s) + ∆1n,2(s), where

∆1n,1(s) =

n∑
k=1

∫
|u|≥B/dk

eiuxk−isx1k,rAr(u+ s, s)du,

∆1n,2(s) =

n∑
k=1

∫
|u|≥B/dk

eiuxkAr(u+ s, s)du,

then (7.50) will follow if we prove

dn
n

sup
|s|≤A

E |∆1n,i(s)| ≤ C (n/dn)
√
B−1 +BA2

0dn/n, i = 1, 2. (7.56)

Indeed, due to (7.51) - (7.56) and τA0 :=
∑∞

k=A0
(ar+k − ak)

2 → 0 as A0 → ∞, (7.50) follows by

taking B = τ
−1/3
A0

.

We only prove (7.56) for i = 1 as the result for i = 2 is similar. We have

E|∆1n,1(s)|2 ≤
n∑

k=1

n∑
j=1

∣∣ ∫
|t|≥B/dk

∫
|u|≥B/dj

Ar(t+ s, s)Ar(u+ s, s)ETkj dtdu
∣∣
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=
( ∑

|k−j|≥A2
0+1

+
∑

|k−j|≤A2
0

) ∣∣ ∫
|t|≥B/dk

∫
|u|≥B/dj

Ar(t+ s, s)Ar(u+ s, s)ETkjdtdu
∣∣

=: Ω1n +Ω2n, say, (7.57)

where Tk,j = eitxk+iuxj e−is(x1k,r+x1j,r). Recalling (7.46), it follows that∣∣E(Tkj | F0)
∣∣

≤
∣∣E(eitxk+iuxj e−is

∑k−A0
q=1 γk−qϵqe−is

∑j−A0
q=1 γj−qϵq | F0)

∣∣
=

∣∣E(eitxk+iuxj e−i
∑k∨j

q=1 s γ
′
q ϵq | F0)

∣∣, (7.58)

where

γ′q =


γk−q + γj−q, if 1 ≤ q < k ∧ j,
γk∨j−q, if k ∧ j ≤ q < k ∨ j −A0,
0, if q ≥ k ∨ j −A0,

satisfying
∑∞

q=1 γ
′2
q < ∞. Now, by noting (7.52) and using (7.23), we have that, uniformly for

|s| ≤ A,

Ω1n ≤ 2E
∑

k−j≥A2
0+1

∫
|t|≥B/dk

∫
|u|≥B/dj

|Ar(t+ s, s)Ar(u+ s, s)| |E(Tkj | F0)|dtdu

≤ C
∑

l−k≥A2
0+1

[
(l − k)−2 +B−1 d−1

l−k

]
d−1
k

≤ C B−1 (n/dn)
2.

Turning to consider Ω2n, note that

E
∣∣∣ ∫

|t|≥B/dk

Ar(t+ s, s)eitxkdt
∣∣∣ ≤ B/dk sup

t,s
|Ar(t+ s, s)|

+E
∣∣∣ ∫ Ar(t+ s, s)eitxkdt

∣∣∣
≤ CB/dk + Cd−1

k

∫ ∣∣∣ ∫ Ar(t+ s, s)eitydt
∣∣∣dy ≤ CB/dk,

due to (7.52) and (7.53). Uniformly for |s| ≤ A, we have

|Ω2n| ≤
∑

|k−j|≤A2
0

∫
|u|≥B/dj

|Ar(u+ s, s)|duE
∣∣∣ ∫

|t|≥B/dk

Ar(t+ s, s)Tkjdt
∣∣∣

≤
∑

|k−j|≤A2
0

∫
|u|≥B/dj

|Ar(u+ s, s)|E
∣∣∣ ∫

|t|≥B/dk

Ar(t+ s, s)eitxkdt
∣∣∣ du

≤ CBA2
0 n/dn.

Taking this estimate into (7.57), for any fixed A > 0, we have

sup
|s|≤A

E|∆1n,1(s)|2 ≤ C
(
B−1 +BA2

0dn/n
)
(n/dn)

2, (7.59)

yielding (7.56). Then (7.50) is established.
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Finally, we prove (7.49). Let σk(t, s) = Vk(t, s) − EVk(t, s). Uniformly for |s| ≤ A where A

is fixed, we have

E
∣∣ n∑
k=1

∫
eitxk−isx1k,rσk(t+ s, s)dt

∣∣2
=

n∑
k=1

n∑
j=1

E
∫ ∫

e−is(x1k,r+x1j,r)eitxk+iuxjσk(t+ s, s)σj(u+ s, s)dtdu

=
( ∑

|j−k|≥A2
0+1

+
∑

|j−k|≤A2
0

)
E
∫ ∫

e−is(x1k,r+x1j,r)eitxk+iuxjσk(t+ s, s)σj(u+ s, s)dtdu

=: Rn6 +Rn7, say. (7.60)

Note that σk(t+ s, s) depends only on ϵk+r, ..., ϵk−A0 , Eσk(u+ s, s) = 0 and

sup
t,s

|σk(t+ s, s)| ≤ C + sup
t

|f̂(t, wk)| sup
t

|f̂(t, wk+r)|

≤ C(1 + ||wk||2β + ||wk+r||2β).

As in the proof of (7.50), it follows from (7.20) in Lemma 7.4 that

|Rn6| ≤
∑

|j−k|≥A2
0+1

∣∣E∫ ∫ e−is(x1k,r+x1j,r)eitxk+iuxjσk(t, s)σj(u, s)dtdu
∣∣

≤
∑

|j−k|≥A2
0+1

E
∫ ∫ ∣∣E[eitxk+iuxj−is

∑k∨j
q=1 γ

′
qϵqσk(t+ s, s)σj(u+ s, s) | F0

]∣∣dtdu
(where γ′q is given as in (7.58))

≤ C
∑

|j−k|≥A2
0+1

d−1
k d−2

|j−k|

≤ C

{
n/dn, under LM,

n log n/dn, under SM.
(7.61)

To consider Rn7, let lk(y) =
∫
eityσk(t+ s, s)dt. It is readily seen that

|lk(y)| ≤ |f(y, wk)||f̂(s, wk+r)|+ E
{
|f(y, wk)||f̂(s, wk+r)|

}
≤ C |f(y, wk)|(1 + ||wk+r||β) + C E

{
|f(y, wk)|(1 + ||wk+r||β)

}
and by Lemma 7.1

E |lk(xk)|2 ≤ Cd−1
k E (1 + ||w1||4β) ≤ C1d

−1
k .

This yields that

|Rn7| ≤
∑

|j−k|≤A2
0+1

E
{
|lk(xk)| |lj(xj)|

}
≤ C1

∑
|j−k|≤A2

0+1

d−1
k ≤ CA2

0n/dn. (7.62)

It follows from (7.60)-(7.62) that

dn
n

E
∣∣ n∑
k=1

∫
eitxk−isx1k,rσk(t+ s, s)dt

∣∣
≤ C (A2

0 + log n) (
dn
n
)1/2 → 0,

as n→ ∞ first and then A0 → ∞. This proves (7.49) and also completes the proof of Proposition

7.4. 2
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7.4 Proof of Proposition 7.7

Recall (6.14) and that l(x) is continuous with l(0) = 1. It suffices to show that there exists

M ≡Mn → ∞ so that, as n→ ∞ first and then q → ∞,

dn
n

M∑
r=q+1

ℓ
( r
M

) n−r∑
k=1

K
(
xk
)
K
(
xk+r

)
u1k u1,k+r = oP (1), (7.63)

where u1j(= u1,j) =
∑m0

i=0 ψiλ
′
j−i for some m0 = m0(n) → ∞ and m0 = o

(√
n/dn

)
.

To this end, as in (7.45) and (7.46), for A0 = m0 + 1, we write

xk+r − xk = x1k,r + x2k,r,

where, by using the notations al =
∑l

s=0 ϕs with al = 0 if l < 0 and γl = ar+l − al,

x1k,r =

−A0∑
j=−∞

[ar−j − a−j ]ϵj+k =

k−A0∑
j=1

γk−jϵj +
0∑

j=−∞
γk−jϵj ,

x2k,r =
0∑

j=−A0+1

[ar−j − a−j ]ϵj+k +
r∑

j=1

ar−jϵj+k.

Recall that K(x) = 1
2π

∫
eitxK̂(t)dt under the condition (a). For any r ≥ 0 and ln ≥ 0, we have

n−r∑
k=1

K
(
xk
)
K
(
xk+r

)
u1k u1,k+r

=
1

2π

n−r∑
k=1

K
(
xk
)
u1k u1,k+r

∫
|s|≤ln

K̂(s)e−isxk+rds+ L1n

= L1n(r) + L2n(r) + L3n(r), (7.64)

where, with Vk(s) = e−isx2k,r u1k u1,k+r,

L1n(r) =
1

2π

n−r∑
k=1

K
(
xk
)
u1k u1,k+r

∫
|s|>ln

K̂(s)e−isxk+rds,

L2n(r) =
1

2π

n−r∑
k=1

K
(
xk
) ∫

|s|≤ln

K̂(s) e−is(xk+x1k,r) EVk(s) ds,

L3n(r) =
1

2π

n−r∑
k=1

K
(
xk
) ∫

|s|≤ln

K̂(s) e−is(xk+x1k,r)
[
Vk(s)− EVk(s)

]
ds.

Using Lemma 7.1(i) and
∫
|K̂(s)|ds < ∞, for any m0 → ∞ satisfying m0 = O(n/dn), there

exists M1 =M1n → ∞ so that, whenever ln → ∞,

dn
n

M1∑
r=q+1

E|L1n(r)|

≤ C

M1∑
r=q+1

dn
n

[ 3m0∑
k=1

E|u1k u1,k+r|+
n∑

3m0+1

d−1
k

] ∫
|s|>ln

|K̂(s)|ds
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≤ CM1

∫
|s|>ln

|K̂(s)|ds→ 0. (7.65)

To estimate L2n(r), let h̃r(y) = E
[
K(y + x20,r)u10u1r

]
. It is readily seen that h̃r(y) is

bounded and integrable. Furthermore, using (7.33) in Lemma 7.7 with minor modifications0,

we have

∣∣h̃r(y)∣∣ ≤
m0∑
l=0

m0∑
v=0

∣∣E [K(y + x20,r)ψlλ
′
−l ψvλ

′
r−v

]∣∣
≤ C

m0∑
l=0

m0∑
v=0

||ψl|| ||ψv||

{
d−1
r if |r − v + l| ≤ 1,∑v
s=0 |ϕs|

∑r+l
s=l |ϕs| |(d−3

r + r−3), if |r − v + l| ≥ 2,

≤ C

m0∑
l=0

||ψl||
r+l+1∑

v=r+l−1

||ψv|| d−1
r + C

m0∑
l=0

m0∑
v=0

l1/2||ψl|| v1/2||ψv|| d−3/2
r

≤ Cr−1d−1
r + C r−3/2 ≤ Cr−3/2,

uniformly in y ∈ R, where we have used the facts that d−1
r ≤ Cr−1/2 and

∑v
s=0 |ϕs|

∑r+l
s=l |ϕs|(d−3

r +

r−3) ≤ Cv1/2 l1/2r−3/2 under both SM and LM and
∑∞

v=0 v||ψv|| < ∞. Now, by noting that

EVk(s) = EV0(s), sups E|V0(s)| ≤ E|u10 u1r| ≤ C <∞ and

h̃r(y) =
1

2π

∫
K̂(s) e−isy EV0(s) ds,

standard calculations, together with the Hölder inquality, show8 that

dn
n

E|L2n(r)| ≤ dn
n

n∑
k=1

E
[
K
(
xk
) ∣∣h̃r(xk + x1k,r)

∣∣]+ C
dn
n

n∑
k=1

EK
(
xk
) ∫

|s|>ln

|K̂(s)|ds

≤
[dn
n

n∑
k=1

EK4/3
(
xk
)]3/4 [dn

n

n∑
k=1

E
∣∣h̃r(xk + x1k,r)

∣∣4]1/4 + C

∫
|s|>ln

|K̂(s)|ds

≤ C
[ ∫

K4/3(y)dy
]3/4 [ ∫ ∣∣h̃r(y)∣∣4dy]1/4 + C

∫
|s|>ln

|K̂(s)|ds

≤ Cr−9/8 + C

∫
|s|>ln

|K̂(s)|ds.

As a consequence, for any ln → ∞ and M1 → ∞ as given in (7.65), we have

dn
n

M1∑
r=q+1

E|L2n(r)|

≤ C

M1∑
r=q+1

r−9/8 + CM1

∫
|s|>ln

|K̂(s)|ds

≤ Cq−1/8 + CM1

∫
|s|>ln

|K̂(s)|ds→ 0, (7.66)

as n→ ∞ first and then q → ∞.

8Note that xk + x1k,r =
∑k

j=−∞ ãk−jϵj where ãk−j = ak−j + γk−jI(j ≤ k − A0) if j ≥ 1 and ãk−j =

ak−j − a−j + γk−j if j ≤ 0, and
∑n

j=−∞ ã2
j ≍ d2n. Lemma 7.1 still holds when the xk is replaced by xk + x1k,r.
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We finally estimate L3n(r). It follows from the Fourier transformation that

L3n(r) =
1

(2π)2

n−r∑
k=1

∫ ∫
|s|≤ln

K̂(−t)K̂(s) ei(t−s)xk e−isx1k,r
[
Vk(s)− EVk(s)

]
dsdt

=
1

2π

∫
|s|≤ln

K̂(s)Ln(s, r)ds, (7.67)

where Ln(s, r) =
∑n−r

k=1

∫
K̂(−t) ei(t−s)xk e−isx1k,r

[
Vk(s)−EVk(s)

]
dt. Let σk(s) = Vk(s)−EVk(s).

Uniformly for |s| ≤ ln, we have

EL2
n(s, r) = E

∣∣ n∑
k=1

∫
K̂(t+ s) eitxk−isx1k,rσk(s)dt

∣∣2
=

n∑
k=1

n∑
j=1

E
∫ ∫

K̂(t+ s) K̂(u+ s) e−is(x1k,r+x1j,r)eitxk+iuxjσk(s)σj(s)dtdu

=
( ∑

|j−k|≥A2
0+1

+
∑

|j−k|≤A2
0

)
E
∫ ∫

K̂(t+ s) K̂(u+ s) e−is(x1k,r+x1j,r)eitxk+iuxjσk(s)σj(s)dtdu

=: Rn1(s) +Rn2(s), (7.68)

Note that σk(s) depends only on ϵk+r, ..., ϵk−A0 , Eσk(s) = 0 and

sup
s

|σk(s)| ≤ C
(
1 + |u1k| |u1,k+r|

)
.

As in the proof of (7.50), it follows from (7.20) in Lemma 7.4 that

|Rn1(s)| ≤
∑

|j−k|≥A2
0+1

∣∣E∫ ∫ e−is(x1k,r+x1j,r)eitxk+iuxjσk(s)σj(s)dtdu
∣∣

≤
∑

|j−k|≥A2
0+1

E
∫ ∫ ∣∣E[eitxk+iuxj−is

∑k∨j
q=1 γ

′
qϵqσk(s)σj(s) | F0

]∣∣dtdu
(where γ′q is given as in (7.58))

≤ C
∑

|j−k|≥A2
0+1

d−1
k d−2

|j−k|(1 + |s|)

≤ C (1 + |s|)
{

n/dn, under LM,
n log n/dn, under SM.

(7.69)

As for Rn2(s), by recalling K(x) = 1
2π

∫
K̂(t)eitxdx and A0 = m0 + 1, we have

|Rn2(s)| ≤
∑

|j−k|≤A2
0+1

E
[
K(xk)K(xj) sup

s
|σk(s)| sup

s
|σj(s)|

]
≤ C1

∑
|j−k|≤A2

0+1

d−1
k ≤ Cm2

0n/dn. (7.70)

It follows from (7.67)-(7.70) that, for any ln → ∞ satisfying ln = o(
√
n/dn) andm0 = o(

√
n/dn),

there exists M2 ≡M2n → ∞,

dn
n

M2∑
r=q+1

E|L3n(r)|
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≤ CM2 sup
|s|≤ln

E
∣∣Ln(s, r)

∣∣ ∫
|s|≤ln

|K̂(s)|ds ≤ CM2 sup
|s|≤ln

[
EL2

n(s, r)
]1/2

≤ CM2

[
ln(1 + log n) +m2

0

]1/2 (dn
n

)1/2 → 0. (7.71)

By virtue of (7.64), (7.65), (7.66) and (7.71), for anyM ≡Mn → ∞ andMn ≤ min{M1n,M2n},
we have

dn
n

M∑
r=q+1

ℓ
( r
M

)
E
∣∣∣ n−r∑
k=1

K
(
xk
)
K
(
xk+r

)
u1k u1,k+r

∣∣∣
≤ C

dn
n

M1∑
r=q+1

(
E|L1n(r)|+ E|L2n(r)|

)
+
C dn
n

M2∑
r=q+1

E|L3n(r)| → 0,

as n→ ∞ first and then q → ∞. This proves (7.63) and completes the proof of Proposition 7.7.

2
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A Appendix: Proofs of Lemmas

A.1 Proof of Lemma 7.2

The idea of the proof is similar to that of Wang and Phillips (2011, pages 246-247) and the

following outline is provided here for completeness. We first prove (7.13). Write Ω1 ≡ Ω1(t)

(Ω2, respectively) for the set of 1 ≤ v ≤ k such that |t αv+βv| ≥ 1 (|t αv+βv| < 1, respectively),

and

B2 =
∑
v∈Ω2

αvβv and B3 =
∑
v∈Ω2

β2v .

Since B2
2 ≤ B1k B3 by Hölder’s inequality, we have∑

q∈Ω2

(t αv + βv)
2 = t2B1k + 2tB2 +B3

= B1k(t+B2/B1k)
2 + (B3 −B2

2/B1k)

≥ B1k(t+B2/B1k)
2.

On the other hand, there exist constants γ1 > 0 and γ2 > 0 such that∣∣E ei ϵ1 l∣∣ ≤ { e−γ1 if |l| ≥ 1,

e−γ2l2 if |l| ≤ 1,
(A.1)

since Eϵ1 = 0, Eϵ21 <∞ and ϵ1 satisfies the Cramér’s condition due to
∫
|E eitϵ0 |dt <∞. See, e.g.,

Chapter 1 of Petrov (1995). Without loss of generality, assume α1 ̸= 0 and let g(t) = E eitα1ϵ0 .

From these facts and the independence of ϵt it follows that, for k sufficiently large and all t,

∣∣E eizk(t)∣∣ ≤ |g(t)|
k∏

q=2

|E eiϵ1(tαq+βq)|

≤ |g(t)| exp
{
− γ1#(Ω1)− γ2

∑
v∈Ω2

(t αv + βv)
2
}

≤ |g(t)| exp
{
− γ1#(Ω1)− γ2B1k (t+B2/B1k)

2
}
. (A.2)

Hence, by recalling (7.12) and |B2| ≤
∑k

v=1 |αvβv|, simple calculations show that∫
min{1, s1 |t|δ + s2}

∣∣E eizk(t)∣∣dt
≤

∫
#(Ω1)≥

√
k
|g(t)| e−

√
kdt+ C

∫
#(Ω1)≤

√
k
(s1 |t|δ + s2)e

−γ2 B1k (t+B2/B1k)
2
dt

≤ Ce−
√
k + C s1

∫ (
|t|+ |B2|/B1k

)δ
e−γ2 B1k t2I(B1k ≥ m2

k)dt

+C s2

∫
e−γ2 B1k t2I(B1k ≥ m2

k)dt

≤ C
(
k−3 + s1

[
m−1−δ

k +m−1−2δ
k

( k∑
v=1

|αv βv|
)δ]

+ s2m
−1
k

)
.

Result (7.13) now follows from the fact that

k∑
v=1

|αv βv| ≤
( k∑
v=1

|αv|2
)1/2( k∑

v=1

|βv|2
)1/2 ≤ Cmk

( k∑
v=1

|βv|2
)1/2

.
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The proof of (7.14) is similar and hence the details are omitted. We finally prove (7.15). In

fact, by recalling B2
2/B1k ≤ B3 ≤ a, i.e, B2/B1k ≤ a1/2/mk due to (7.12), it follows from (A.2)

that ∫
|t|≥B/mk

∣∣E eizk(t)∣∣dt
≤

∫
#(Ω1)≥

√
k
|g(t)| e−

√
kdt+ C

∫
#(Ω1)≤

√
k,|t|≥B/mk

e−γ2 B1k (t+B2/B1k)
2
dt

≤ Ck−3 +

∫
|t|≥2−1B/mk

e−γ2 B1k t2I(B1k ≥ m2
k)dt

≤ C(k−3 +m−1
k B−1),

as required. 2

A.2 Proof of Lemma 7.3

Let Vk(t) =
∑k

v=k−m0+1(tαv + βv)ϵv. Note that∣∣E eizk(t/h)g(t, wk)
∣∣ ≤

∣∣E eizk−m0
(t/h)

∣∣ ∣∣E eiVk(t/h)g(t, wk)
∣∣

≤ E |g(t, w1)|
∣∣E eizk−m0

(t/h)
∣∣.

It follows from (7.13) with s1 = 0 and s2 = 1 that∫ ∣∣E eizk(t/h) g(t, wk)
∣∣dt ≤ Ch

∫ ∣∣E eizk−m0
(t)
∣∣dt ≤ Ch

(
k−3 + τ−1

k

)
,

yielding (7.16). Similarly, by noting that∣∣E eiVk(t/h)g(t, wk)
∣∣ ≤

∣∣E (eiVk(t/h) − 1)g(t, wk)
∣∣+ ∣∣E g(t, wk)

∣∣
≤ 2min{1, αk0 |t|/h+ βk0}E

{
|ϵ0||g(t, w1)|

}
+ Cmin{1, |t|}

≤ C βk0 + Cmin{1, αk0 |t|/h}+ Cmin{1, |t|}, (A.3)

we have ∫ ∣∣E{eizk(t/h)g(t, wk)
}∣∣dt

≤ C

∫
min{1, αk0 |t|/h}

∣∣Eeizk−m0
(t/h)

∣∣dt+ Cβk0

∫ ∣∣Eeizk−m0
(t/h)

∣∣dt
+C

∫
min{1, |t|}

∣∣Eeizk−m0
(t/h)

∣∣dt
≤ Ch

{
(1 + αk0)τ

−2
k

[
1 +

( k∑
v=1

β2v
)1/2]

+ βk0 τ
−1
k

}
,

as required in (7.17). As for (7.18), by noting that∣∣E eiVk(t/h)g(t, wk)
∣∣ ≤ C βk0 + Cmin{1, |t|}+ Cmin{1, |t|/h},

due to (A.3) and supk αk0 = O(1), it follows from (7.13) and (7.14) that∫
min{1, |t|/h}

∣∣E{eizk(t/h)g(t, wk)
}∣∣dt
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≤ Cβk0

∫
min{1, |t|/h}

∣∣Eeizk−m0
(t/h)

∣∣dt+ C

∫
min{1, (|t|/h)2}

∣∣Eeizk−m0
(t/h)

∣∣dt
+C

∫
min{1, |t|} min{1, |t|/h}

∣∣Eeizk−m0
(t/h)

∣∣dt
≤ C h

{
k−3 +

[
βk0(τ

−2
k + k−3) + τ−3

k

](
1 +

k∑
v=1

β2v
)}
.

This proves (7.18). 2

A.3 Proof of Lemma 7.4

We only prove (7.20) and (7.22). The other proofs are similar and simpler. Note that

xk =

k∑
j=1

ρk−j
n ξj =

k∑
j=1

ρk−j
n

( j∑
u=1

+

0∑
u=−∞

)
ϵuϕj−u

=

k∑
u=1

ϵu ak−u +

∞∑
u=0

ϵ−ubu,k, (A.4)

where ak−u =
∑k−u

s=0 ρ
k−u−s
n ϕs and bu,k =

∑k
s=1 ρ

k−s
n ϕs+u. It follows from the independence of

the ϵj that

|Ik,l(m)|

≤
∫ ∫ ∣∣E{eis∑k

v=m+1 ak−vϵv/h+it
∑l

v=m+1 al−vϵv/h+i
∑l

j=m+1 γjϵjg(s, wk) g(t, wl)
}∣∣dsdt

≤ C

∫ ∣∣E{ei∑l
v=k+1(tal−v/h+γv)ϵv g(t, wl)

}∣∣Λ(t, k)dt,
(A.5)

where

Λ(t, k) =

∫ ∣∣E{ei∑k
v=m+1(sak−v/h+tal−v/h+γv)ϵv g(s, wk)

} ∣∣ds.
As in Lemma 7.2, denote by Ω1 a subset of Ω = {m+ 1, 2, ..., k} and Ω2 = Ω− Ω1. Note that,

for any k−m ≥ 1,
∑

v∈Ω2
a2k−v ≍ d2k−m whenever #Ω1 ≤

√
k −m. It is readily seen from (7.16)

with αv = ak−v and βv = tal−v/h+ γv that

Λ(t, k) ≤ Chd−1
k−m, (A.6)

By similar arguments it follows from (7.17) with αv = al−v and βv = γv that∫ ∣∣E{ei∑l
v=k+1(tal−v/h+γv)ϵv g(t, wl)

}∣∣ dt
≤ Ch

{
(l − k)−3 + αl0 d

−2
l−k

[
1 +

( l∑
v=k+1

γ2v
)1/2]

+ βl0 d
−1
l−k

}
≤ Ch

[
d−2
l−k(1 + a1/2) + βl0d

−1
l−k

]
, (A.7)

where a =
∑l

v=1 γ
2
v , βl0 = max0≤j≤m0 |γl−j | and we have used the fact:

αl0 = max
0≤i≤m0

|αl−i| = max
0≤i≤m0

|ai| = O(1).
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It follows from (A.5)-(A.7) that

|Ik,l(m)| ≤ Chd−1
k−m

∫ ∣∣E ei∑l
v=k+1(tal−v/h+γv)ϵv g(t, wl)

∣∣ dt
≤ C h2 d−1

k−m

[
d−2
l−k(1 + a1/2) + βl0d

−1
l−k

]
,

implying (7.20).

The proof of (7.22) requires some modifications. First notice that, under SM, we have

Λ(t, k) ≤ Ch
[
(k −m)−1 +min{1, |t|/h} (k −m)−1/2

]
, (A.8)

rather than (A.6). Indeed, under SM, it follows that

(a) Λ(t, k) ≤ Ch(k −m)−1/2 by (7.16) and, for any t ∈ R,

(b) Λ(t, k) ≤ Ch
[
(k−m)−1+ |t|/h (k−m)−1/2

]
by (7.17) with αv = ak−v and βv = tal−v/h+

µv/
√
n,

implying (A.8). Now, by using (A.5) first and then (7.17) and (7.18), we have

|Ik,l(m)|

≤ Ch(k −m)−1

∫ ∣∣E{ei∑l
v=k+1(tal−v/h+γv)ϵv g(t, wl)

}∣∣dt
+Ch(k −m)−1/2

∫
min{1, |t|/h}

∣∣E{ei∑l
v=k+1(tal−v/h+γv)ϵv g(t, wl)

}∣∣dt
≤ Ch2

[
(l − k)−1(k −m)−1 + (l − k)−3/2(k −m)−1/2

]
,

which yields (7.22). 2

A.4 Proof of Lemma 7.5

We only prove (7.25). The other proofs are similar and use the corresponding results in Lemma

7.4. Recalling (2.4), we may write

IIlk(h) =
1

(2π)2

∫ ∫
f̂(t, wk)f̂(s, wl)e

itxk/h+isxl/hei
∑n

j=m+1 µjϵj/
√
ndtds. (A.9)

It follows from (A.4), the independence of ϵj and (7.20) with γj = µj/
√
n and g(s, wk) = f̂(s, wk)

that ∣∣E [IIlk(h) | Fm

]∣∣
≤ 1

(2π)2

∫ ∫
E
(
eisxk/h+itxl/h++i

∑l
j=m+1 µjϵj/

√
nf̂(s, wk)f̂(t, wl) | Fm

)
dsdt

≤ C h2 d−1
k−m

(
d−2
l−k + dl−k/

√
n
)
,

as required. 2
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A.5 Proof of Lemma 7.6

Recalling (A.4), as in (A.9) we have∣∣E{f(xl/h,wl)E
[
f(xk/h,wk) | Fk−m

]}∣∣
=

∫ ∫ ∣∣E{eitxl/hf̂(−t, wl)E
[
eisxk/hf̂(s, wk)|Fk−m

]}∣∣dsdt
≤

∫ ∫ ∣∣E{eith−1
∑l

v=k al−vϵv f̂(−t, wl)
}∣∣

E
[
e (ish

−1
∑k

v=1 ak−vϵv+ith−1
∑k−m

v=1 al−vϵv)f̂(s, wk)
]
dsdt

≤ C

∫ ∣∣E{eith−1
∑l

v=k al−vϵv f̂(−t, wl)
}∣∣Λ(t, k)dt,

where, by letting a∗l−v = 0 if k −m+ 1 ≤ v ≤ k and a∗l−v = al−v if 1 ≤ v ≤ k −m, we have

Λ(t, k) =

∫ ∣∣E{ei∑k
v=1(sak−v/h+ta∗l−v/h)ϵv f̂(s, wk)

} ∣∣ds.
The remainder of the proof is the same as that of Lemma 7.4 and is omitted. 2

A.6 Proof of Lemma 7.7

Take A0 as required in Lemma 7.1. Recalling K(x) is bounded, (7.30) follows immediately from

Lemma 7.1 (i). If k ≥ A0, l − k ≥ A0 and l − j ≤ k, it follows from Lemma 7.1 (ii) and the

conditional arguments that

I :=
∣∣E{Γ(λk−j) Γ(λl−j)K(xk/h)K(xl/h)

}∣∣
≤ E

{
|Γ(λk−j) Γ(λl−j)K(xk/h)| |E

[
K(xl/h)|Fk

]
|
}

≤ C EΓ2(λ1)h
2 d−1

k d−1
l−k,

indicating (7.31).

We next assume that k ≥ A0, l−k ≥ A0 and l− j > k. Recalling (A.4), as in (A.9), we have

I =

∫ ∫ ∣∣E{eitxl/h eisxk/hΓ(λk−j) Γ(λl−j)
}∣∣|K̂(−s))| |K̂(−t)|dsdt

≤ C

∫ ∣∣E{eith−1
∑l

v=k al−vϵv Γ(λl−j)
}∣∣Λ(t, k)dt

where

Λ(t, k) =


∫ ∣∣E{ei∑k

v=1(sak−v/h+tal−v/h)ϵv e−i(sϵk−jbj−k,k/h+tϵl−kbl−k,k/h) Γ(λk−j)
} ∣∣ds,

if k − j ≤ 0,∫ ∣∣E{ei∑k
v=1(sak−v/h+tal−v/h)ϵv Γ(λk−j)

} ∣∣ds, if k − j ≥ 1.

It follows from arguments similar to those given in the proof of Lemma 7.4 with some minor

modifications9 that:
9Replace m0 by j, set γv = 0 and take m = 0. In this case, αl0 used in (A.7) satisfies

αl0 = max
0≤i≤j

|αl−i| = max
0≤i≤j

|ai| ≤
j∑

s=0

|ϕs|,

which can not be eliminated.
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(a) under LM, Λ(t, k) ≤ C hd−1
k and

I ≤ C hd−1
k

∫ ∣∣E{eith−1
∑l

v=k al−vϵv Γ(λl−j)
}∣∣ dt

≤ C

j∑
s=0

|ϕs|h2 d−1
k d−2

l−k;

(b) under SM (noting |bj−m,m| ≤
∑j

i=j−m |ϕi| ≤ C < ∞ for any m ≥ 0 and max1≤v≤k |av| ≤
C <∞),

Λ(t, k) ≤
∫ ∣∣E{ei∑k

v=1,v ̸=k−j(sak−v/h+tal−v/h)ϵv
}∣∣ (min{1, |s|/h}+min{1, |t|/h}

)
ds

≤ Ch
(
k−1 +min{1, |t|/h}k−1/2

)
and

I ≤ Chk−1

∫ ∣∣E{eith−1
∑l

v=k al−vϵv Γ(λl−j)
}∣∣ dt

+Chk−1/2

∫
min{1, |t|/h}

∣∣E{eith−1
∑l

v=k al−vϵv Γ(λl−j)
}∣∣ dt

≤ C h2 k−1(l − k)−1 + Ch2 k−1/2 (l − k)−3/2.

This proves (7.32).

Similarly, by letting z2r =
∑r

k=1,k ̸=r−j ϵkar−k, we have∣∣E{Γ(λr−j)Γ(λ−k)e
isxr/h

}∣∣
≤ C

∣∣E eisz2r/h∣∣ { 1, if |r − j + k| ≤ A0,
|aj | |ar+k − ak|min{1, |s|2}, if |r − j + k| > A0,

implying that, uniformly for y ∈ R,∣∣E{K(y + xl/h)Γ(λl−j) Γ(λ−k)
}∣∣

≤
∫

|K̂(s))|
∣∣E{eisxl/h Γ(λl−j)Γ(λ−k)

}∣∣ds
≤ C h

{
d−1
l if |l − j + k| ≤ A0,∑j
s=0 |ϕs|

∑l+k
s=k |ϕs| |(d

−3
l + l−3), if |l − j + k| > A0,

as required in (7.33). 2.
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