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Abstract

We study the impact of endogenous attention in a dynamic model of social

media sharing. Each period, a distinct user randomly draws a story from the

pool of stories on the platform and decides whether or not to share it. Users

want to share stories that are true and interesting, but differentiating true

stories from false ones requires attention. Before deciding whether to share a

story, users choose their level of attention based on how interesting the story is

and the platform’s current proportions of true and false stories. We characterize

the limit behavior of the share of true stories using stochastic approximation

techniques. For some parameter specifications, the system has a unique limit.

For others, the limit is random—starting from the same initial conditions, the

platform may end up with very different proportions of true and false stories

and different user sharing behavior. We present various comparative statics for

the limit. Endogenous attention leads to a counterbalancing force to changes

in the credibility of false stories but can intensify the effects of changes in false

stories’ production rate.
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1 Introduction

Misinformation on social media has become an issue of growing public concern so it

is important to better understand the mechanisms by which it spreads. Vosoughi,

Roy, and Aral (2018) shows that falsehoods on social media spread farther, faster

and deeper than truth, and that this is mostly due to humans rather than bots.

This underscores the need to understand users’ sharing decisions and specifically

their motivations for sharing false news. Various explanations have been proposed,

including politically motivated reasoning and ideological alignment (e.g., Van Bavel

and Pereira (2018), Allcott and Gentzkow (2017)) and digital illiteracy (e.g., Guess et

al. (2020)). Recently, Pennycook, Epstein, et al. (2021) have suggested an inattention-

based account, according to which users care about sharing accurate content but

nevertheless share false news because the social media context focuses their attention

on factors other than accuracy.

This paper starts from the premise that social media users want to share accurate

content and that more attentive users are better at filtering false content. We combine

this with three basic ideas: (i) users have some control over their attention levels; (ii)

attention is costly; and (iii) users’ choice of attention level depends on their beliefs

regarding the credibility of false content and the relative share of false content. If

a social media user believes that the relative share of false stories in their feed is

negligible, they have little incentive to invest attention towards spotting false stories.

Additionally, if false stories are blatantly false, users will not need to pay much

attention to spot them. However, if the share of false stories is significant and false

stories seem plausible, users are more likely to mistake them for true stories if they

are inattentive, so they might be willing to pay a significant cost of attention to

distinguish between true and false content.

We incorporate these ideas into an infinite-horizon dynamic model of social media

consumption. In every period, a distinct user randomly draws a story out of the

current set of stories on a social media platform and decides whether or not to share it.

Users consider two factors when evaluating a story: its veracity, or truthfulness, and

its evocativeness, or how interesting and stimulating it is. We ignore boring stories,

which we assume users do not share, and consider two levels of evocativeness: mildly

interesting (M) and very interesting (I). Each story’s veracity is fixed throughout

time; conditional on veracity, evocativeness is drawn i.i.d. for each user, capturing
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the idea the different users will find different stories very interesting. We also assume

that false stories are more likely to be very interesting.

Before drawing the story, the user chooses their attention level and pays the cost

of attention. Upon drawing the story, they receive a binary signal regarding the

story’s veracity. False stories are characterized by a credibility measure that captures

how true they appear—when false stories are highly credible, signals about their

veracity are less precise. On the other hand, the precision of the signal is increasing

in the user’s chosen attention level. We further assume that the signal’s precision

is supermodular in credibility and attention so that users’ attention is increasing in

credibility.1 If the user decides to share the story, a fixed number of identical copies of

the story are added to the platform. Regardless of the sharing decision, fixed numbers

of true and false stories are exogenously added to the platform, which corresponds to

original content creation.

Our main object of interest is the share of true stories in the system for each

period n P N, which we denote by yn. Users’ optimal behavior depends on the value

of yn, and follows one of three sharing rules. When yn is sufficiently high, the system

is in the sharing region, where users share all stories for which they receive the signal

suggesting the story is true. When yn is low, the system is in the no sharing region,

where users do not share any stories and do not pay attention. In between, there

is an intermediate region, where users share either only mildly interesting stories or

only very interesting stories, depending on the model parameters.

We analyze the evolution of yn and its long run behavior. We find that yn converges

almost surely and provide a complete characterization of its limit. For some parameter

values the limit is unique. For others it is random, so that starting from the same

initial conditions the platform may end up with significantly different limit shares of

true stories and different user behavior in the limit. This effect is most pronounced

when the platform is new and the total number of stories is small, but it is still present

in any finite-sized platform.

If users were to always follow one of the three sharing rules mentioned above, our

system would be a generalized Polya urn model (henceforth GPU) and limit behavior

could be analyzed using existing results. This is not the case, as users follow the

sharing rule that maximizes their payoffs and the optimal sharing rule depends on

the current share of true stories. Hence, our system is a concatenation of a finite

1We assume a specific functional form for the signal function for now but hope to generalize it.
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number of GPUs. To analyze its limit, we extend results on stochastic approximation

for GPUs to cover such concatenations.

We find that each of the GPUs corresponding to the different sharing rules has a

unique limit share of true stories, which we call a quasi steady state. A quasi steady

state is a limit point for our system, i.e., a point to which yn converges with positive

probability, if and only if it is within the region where its associated sharing rule

is optimal. The only other possible limit points for our system are the thresholds

between regions—points where users are indifferent between two sharing rules.

After characterizing the set of limit points, we consider comparative statics of the

limit points with respect to the model parameters. For the quasi steady states, the

share of true stories is decreasing in false story credibility for low credibility levels,

but an opposite effect may arise when credibility is high. The intuition is that while

false stories of high credibility are harder to identify, users also pay more attention to

them. When credibility is high, user responses to an increase in credibility may more

than compensate for the direct effect of this increase, thereby leading to an increase

in the limit share of true stories. The comparative statics imply that producers of

false stories may choose low credibility levels even when credibility is free. They also

imply that platforms who aim to counter the spread of false news by fact-checking

false stories might be better off not fact-checking at all than fact checking only a

small share of stories. This is because increasing the share of stories flagged as false

leads users to put more trust in stories that were not flagged.

We find that the limit share of true stories in the quasi steady states may be either

increasing or decreasing in a measure of the reach on the platform—the number of

friends who will see a shared story—and in the probability that false stories are

very interesting. We also find that when the production of rate of false stories is

sufficiently high, the system has a unique limit in which users do not share any

stories, while when this production rate is sufficiently low the system has a unique

limit in which users share all stories for which they receive the signal suggesting the

story is true. This implies that when moving from high to low false story production

rates, users’ reactions will further increase the limit share of true stories. Thus, while

user responses lead to a counterbalancing force to changes in the credibility of false

stories, they may intensify the effect of changes in false stories’ production rate.

When the system converges to a point where users are indifferent between two

sharing rules, the comparative statics can be different than for the limit points where
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the users strictly prefer one rule.2 For example, the limit share of true stories may

be increasing in the cost of attention, because the cost of attention enters negatively

into users’ payoffs while the share of true stories enters positively. So when the cost

of attention increases, the share of true stories required for indifference increases as

well. In contrast, increasing the cost of attention lowers the share of true stories at

the other limit points.

2 Related Literature

Empirical Evidence A basic assumption of our model is that users care about

the accuracy of the stories they share. Pennycook, Epstein, et al. (2021) reports a

representative survey of Americans who rated accuracy as the most important factor

affecting their sharing decisions, over other factors like humor, interest, and politi-

cal alignment. Chen, Pennycook, and Rand (2023) conducts a factor analysis of the

content dimensions affecting sharing decisions in a series of experiments, and finds

that the main factors are perceived accuracy, evocativeness, and familiarity. The

evocativeness factor captures characteristics such as the extent to which content is

surprising, amusing, or provokes anxiety and other negative feelings. The associa-

tion between these characteristics and sharing intentions is supported by Berger and

Milkman (2012), and motivates our assumption that evocativeness influences sharing

decisions.3

Chen, Pennycook, and Rand (2023) finds that all three content dimensions are

significantly positively correlated with sharing intentions. In line with Pennycook,

Epstein, et al. (2021), the accuracy focused factor has the highest coefficients in a

regression of sharing intentions on the factors, while the evocativeness factor had

the lowest coefficients. Consistent with this, we assume that users will not share

stories that they know are false even if they are very interesting. Chen, Pennycook,

and Rand (2023) also finds that users ratings on the evocativeness dimension are

negatively correlated with stories’ objective veracity. This supports our assumption

that false stories are more likely to be very interesting.

2This is analogous to the difference in comparative statics between pure-strategy and mixed-
strategy Nash equilibrium in games.

3Our model does not track the number of times an individual story has been shared, so it does
not capture the positive effect of familiarity found in e.g., Chen, Pennycook, and Rand (2023), or
the related “illusory truth” effect in Pennycook, Cannon, and Rand (2018).
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In our model, inattention plays a central role in the sharing of false content. Pen-

nycook, Epstein, et al. (2021) claims that inattention to veracity is one of the key

mechanisms leading users to share false political stories, and that shifting users’ at-

tention to accuracy significantly increases the accuracy of the content they share.

Pennycook, McPhetres, Zhang, Lu, and Rand (2020) finds similar results in the con-

text of information about COVID-19.

Theory of Online Misinformation Our paper contributes to the theoretical lit-

erature on online misinformation. Papanastasiou (2020) and Acemoglu, Ozdaglar,

and Siderius (2023) analyze sequential models of the spread of a single story across a

network. In Papanastasiou (2020), users only care about veracity. They are arranged

in a line; if a user decides not to share the story it “dies” and otherwise it is shared

with the next user in line. Before sharing, users can inspect the story at a cost, and

inspection fully reveals the story’s veracity. In Acemoglu, Ozdaglar, and Siderius

(2023), the network structure is determined by a social media platform that aims to

maximize engagement. Users care about veracity, but also want to share a story that

will be liked by many subsequent users and do not want to share a story that will

be disliked. Unlike in our model, beliefs and sharing decisions do not depend on the

actions of previous users. The paper finds that a regulator who cares about the accu-

racy of users’ beliefs may be better off censoring less content than is technologically

feasible. Like our finding that increasing the share of flagged stories may lead to a

decrease in the limit share of true stories, this relates to the “implied truth effect”

studied in Pennycook, Bear, Collins, and Rand (2020). However, while we find that

no flagging can be better than poor flagging, in their framework some censorship is

always better than none. Mostagir and Siderius (2022) also considers various poli-

cies to to curb misinformation, focusing on the difference in the responses of rational

and naive users. Other papers that study misinformation by tracking the spread of

a single story include Bloch, Demange, and Kranton (2018) and Hsu, Ajorlou, and

Jadbabaie (2021). Merlino, Pin, and Tabasso (2023) studies the diffusion of one true

message and one false message in a network. Kranton and McAdams (2024) analyzes

the interaction between information suppliers’ quality choices and social media users’

sharing decisions in a three period model.

Dasaratha and He (2023), like our paper, uses stochastic approximation to deter-

mine the evolution of the shares of true and false stories rather than the spread of a
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single story. Users do not know the state of the platform, beyond what they observe

in their feed. The paper focuses on the weight the platform places on stories’ virality

when choosing what stories to display to users, and does not feature endogenous at-

tention.4 In contrast, our paper focuses on the interaction between user’s endogenous

attention and platform evolution and develops a richer model of user’s sharing deci-

sions. In Dasaratha and He (2023) users only care about veracity, while in our model

they also care about evocativeness, and trade off their ability to filter false content

with their cost of attention.

Stochastic Approximation Our model is very close to a generalized Polya urn

with two colors, where stories are “balls” and colors are veracity levels.5 Schreiber

(2001) and Benaim, Schreiber, and Tarres (2004) use stochastic approximation argu-

ments to show that for such urn models, when the number of balls grows sufficiently

fast, the urn’s long-run behavior can be determined by studying the attractors of a

deterministic differential equation. For a fixed decision rule, our model is covered by

the assumptions of these papers, but the overall system is not, because of the dis-

continuous changes at the boundaries between regions. To extend Schreiber (2001)’s

results to our setting, we employ results from Benaim, Hofbauer, and Sorin (2005)

(henceforth BHS), which generalizes the dynamical systems approach to stochastic

approximation to the case where the differential equation is replaced by a differential

inclusion.

3 Model

We consider an infinite horizon model of a social media platform. The platform

contains stories with two characteristics (v, e). A story’s veracity is v P tT, F u, with

the story being true if t “ T and false otherwise. A story’s evocativeness is e P tM, Iu,

with the story being mildly interesting if e “ M and very interesting if e “ I. While

4In their model sharing increases the “popularity score” of a story and this popularity score
affects the probability that a story appears in a user’s feed. A similar interpretation can be applied
to our model.

5In the Polya urn model, an urn consists of balls of various colors. In each period one ball is
drawn randomly from the urn. The ball is then returned together with one additional ball of the
same color. The generalized urn model allows for the number of balls added in each period to be
random, with probabilities that depend on the state of the system. See, e.g., Schreiber (2001) and
Mahmoud (2008).
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a story’s veracity is fixed (the story is either always true or always false), a story

might be mildly interesting to one user and very interesting to another.6 When a

user draws a story, the probabilities of each evocativeness level are:

Prpe “ I|t “ T q “
1

2
;Prpe “ I|t “ F q “ δ.

We assume that δ ą 1
2
, so false stories are more likely to seem very interesting, as in

Chen, Pennycook, and Rand (2023), and that δ ă 1 as otherwise mildly interesting

stories are always true.

The false stories are of credibility θ P p0, 1q. The credibility of a false story de-

termines how difficult it is to distinguish from a true story, in a manner that will be

described below. To keep the model simple we assume that all false stories have the

same credibility.

The platform begins operating at time t “ 0 with an exogenous stock of true

and false stories pT0, F0q. In each subsequent period n P N, 1 true story and κ false

stories are exogenously added to the platform, and Tn and Fn respectively denote

the numbers of true and false stories on the platform at the beginning of period n.7

The vector zn :“ pTn, Fnq summarizes the current state of the platform; we use the

notation |zn| :“ Tn `Fn for the total number of stories in period n, and let yn :“ Tn

|zn|

denote the share of true stories.

Each period, a distinct user randomly draws a story among those currently on the

platform and decides whether or not to share it. Before making the sharing decision,

the user sees the story’s evocativeness level and a noisy signal of its veracity. The

precision of this signal depends on the user’s attention as will be explained below.

The parameter ρ describes the reach of shared stories on the platform—if the user

decides to share the story, ρ copies of the story are added to the platform.

In summary, each period the current user:

1. Draws a story, and observes its realized evocativeness.

2. Chooses an attention level a P r0, 1s.

3. Draws a signal whose distribution depends on a.

6In reality there are also boring stories that are rarely or never shared, we omit these.
7The analysis would be the same in a continuous-time model where the time the next user arrives

is a random variable. If multiple users could arrive simultaneously the analysis would be slightly
different.

7



4. Decides whether to share the story.

5. Receives payoffs.

Finally, 1 new true story and κ new false stories are posted, and ρ copies of the

current story are added if it was shared.

3.1 User’s choice and payoffs

In each period n, the current user knows the current share of true stories yn.
8 After

drawing a story and observing its evocativeness level e, the user chooses a level of

attention a, which will determine the precision of the signals they get regarding the

story’s veracity. The cost cpaq of attention level a is β ¨ a2,where β ą 0. The signal is

s P tT 1, F 1u, with probabilities given by

PpT 1
|T q “ 1;PpT 1

|F q “ θp1 ´ aq. (1)

The idea behind Equation 1 is that a false story of credibility θ is clearly false with

probability 1 ´ θ, where a clearly false story is one that users will recognize as false

even when they do not pay attention. With probability θ, users will notice the story

is false only if they pay attention. That is, an attentive user can perfectly detect false

stories. A user’s attention level a is the probability with which they pay attention.

Thus, when a user’s attention level is a and the credibility of false stories is θ, they

will identify a false story as false with probability PrpF 1|F q “ 1´θ`θa “ 1´θp1´aq.

Additionally, regardless of their attention level, if the story is true the user receives

the signal T 1 with certainty. This allows us to identify the signal F 1 with the situation

in which the user realizes the story is false and the signal T 1 with the situation in

which the user is uncertain about the story’s veracity.

Users’ payoffs when they do not share the story are normalized to 0. The payoff

to sharing a pv, eq-story, ignoring the cost of attention, is

upv,Mq “ λ p1pv “ T q ´ µ1pv “ F qq

upv, Iq “ λ p1pv “ T q ´ µ1pv “ F qq ` p1 ´ λq

8This approximates the situation where users have seen a number of recent stories and the mix
between true and false stories is not changing too quickly.
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Hence, as in the Chen, Pennycook, and Rand (2023) experiments, users want to

share stories that are true and very interesting. The parameter λ ą 0 is the weight on

veracity and 1´λ is the weight on evocativeness, i.e., the weight on stories being very

interesting. The parameter µ ą 0 captures the loss to sharing a false story relative

to the gain from sharing a true story, which is normalized to 1.

We make two parametric assumptions:

Assumption 1. µ ą 1´λ
λ
.

Assumption 2. µθ ă 2β.

Assumption 1 implies users will not share very interesting stories they know are

false, and therefore will not share any stories for which they received the signal F 1.9

It remains to analyze, for each evocativeness level, when they will share stories with

signal T 1, which we do in the beginning of the next section. Assumption 2 implies

that users attention levels conditional on sharing stories with signal T 1 are always

given by solutions to first order conditions as in Lemma 1 below.

In summary, the model parameters are pρ, κ, θ, µ, β, δ, λq. We assume throughout

that all parameters are strictly positive, satisfy Assumptions 1 and 2, and that θ, λ ă 1

and δ P p1
2
, 1q.

4 Analysis

We are interested in characterizing the composition of stories on the platform over

time, i.e, analyzing the stochastic process tznu, and in particular the share of true

stories tynu. To begin, we solve for the user-optimal attention level as a function of

the current state.

4.1 Optimal Attention and the Sharing Decision

Users choose their attention level after seeing the story’s evocativeness e. They will

never share stories for which they received the signal F 1, so they either share stories

with signal T 1 or do not share at all. Thus their payoff to a story of evocativeness e

9This assumption, which bounds λ from below, is consistent with the finding in Chen, Pennycook,
and Rand (2023) that the content factor with the strongest positive correlation with users’ sharing
intentions is perceived accuracy.
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is the maximum of 0 and their expected payoff from sharing a story with signal T 1,

which is

Upa, y, eq :“ Pa,ypT 1
|eqErupv, eq|T 1, es ´ cpaq. (2)

Let apy, eq :“ argmaxa Upa, y, eq denote the optimal attention level conditional on

sharing stories with signal T 1.

Lemma 1. The functions Upa, y,Mq and Upa, y, Iq are strictly concave, and the

optimal attention levels (conditional on sharing T 1 stories) are10

$

’

’

’

’

&

’

’

’

’

%

0 ď apy,Mq “
λµp1 ´ yqp1 ´ δqθ

βpy ` 2p1 ´ yqp1 ´ δqq
ď 1,

0 ď apy, Iq “
p1 ´ yqδθpλµ ´ p1 ´ λqq

βpy ` 2p1 ´ yqδq
ď 1.

The proof of this and all other results stated in the text are in Appendix A.

Intuitively, when y “ 1 there is no need to pay attention, so ap1, Iq “ ap1, Iq “ 0. As

y decreases the marginal gain from paying attention increases, and since the U ’s are

strictly concave, da{dy ă 0. However, when y is close enough to 0 the payoff from the

apy, eq is so low that users prefer not to pay any attention at all.11

As we show in Appendix D, both of the conditionally optimal attention levels are

decreasing in β and increasing in θ, µ, λ, and apy, Iq is increasing in δ while apy,Mq

is decreasing in δ. That is, users pay more attention when false stories are highly

credible, when the cost to sharing false stories is high, and when the weight on veracity

is high, and pay less attention when the share of true stories is high and when the

cost of attention is high. Users pay more attention to the veracity of very interesting

stories (and less attention to mildly interesting stories) when false stories are more

likely to be very interesting. These observations will be relevant for our discussion of

comparative statics in Section 4.3.

The next lemma shows that there are interior thresholds ŷM , ŷI for each evocative-

ness level such that if the share of true stories is below the corresponding threshold

then users choose a “ 0 and do not share the story, and if the share is above this

10In practice both of these attention levels are always strictly between 0 and 1. It straightforward
to verify that apy, eq ă 1 for all y and apy, eq ą 0 if y ă 1, and that the system can never reach a
state where y “ 1.

11We allow users to randomize when indifferent between a “ 0 and a “ apy, eq.
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threshold users choose the attention level given in Lemma 1 and share if and only if

they received the signal T 1.

Lemma 2. Let V py, eq :“ Upapy, eq, y, eq. V py,Mq and V py, Iq are strictly increasing

in y, and there are (unique) ŷM , ŷI P p0, 1q s.t V pŷM ,Mq “ V pŷI , Iq “ 0.

4.2 Dynamics

When 0 ă yn ă mintŷM , ŷIu, we say that the system is in the “no sharing” re-

gion (N), where users do not share any stories and do not pay attention. When

maxtŷM , ŷIu ă yn ă 1, the system is in the “sharing” region (S) where users

share all stories with signal T 1 and choose attention levels given by (1). When

mintŷM , ŷIu ă yn ă maxtŷM , ŷIu, the system is in an intermediate region where

users share only one type of story. The intermediate region is a “sharing very inter-

esting” region (I), where users share T 1 stories only if they are very interesting, if

ŷI ă ŷM . It is a “sharing mildly interesting” region (M) if the sign is reversed. Thus,

the system always has three regions: the extreme regions N to the left and S to the

right, and an intermediate region which is either I or M depending on the ordering

of ŷI and ŷM . Numerical computations show that both ŷM ă ŷI and ŷM ą ŷI are

possible so the intermediate region can be either of the two.

Let pTRpyq, pFRpyq be the probabilities that the agent shares a true or false story,

respectively, when the current share of true stories is y under the sharing rule of

region R P tN, I,M, Su. These are given by,

pTRpyq, pFRpyq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

y, p1 ´ yqθ p1 ´ δapy, Iq ´ p1 ´ δqapy,Mqq , R “ S

y
2
, p1 ´ yqδθ p1 ´ apy, Iqq , R “ I

y
2
, p1 ´ yqp1 ´ δqθ p1 ´ apy,Mqq , R “ M

0, 0, R “ N

(3)

For example, pFI pyq “ p1´yqδθ p1 ´ apy, Iqq because in region I users share a false

story if and only if all of the following occur: They drew a false story, the story is

very interesting, and they observed the signal T 1.

For each R, define the Markov process tzn;Ru by:
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zn`1;R “ zn;R `

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

¨

˝

1 ` ρ

κ

˛

‚, with probability pTRpynq

¨

˝

1

κ ` ρ

˛

‚, with probability pFRpynq

¨

˝

1

κ

˛

‚, w.p 1 ´ pTRpynq ´ pFRpynq.

(4)

These Markov processes describe the evolution of counterfactual platforms where

users follow the sharing rule of region R regardless of the current share of true stories.

As shown in Appendix B.3, they are generalized Polya urns (GPUs), which lets us

apply results from Schreiber (2001) and Benaim, Schreiber, and Tarres (2004).

The law of motion for yn in region R, implied by the law of motion for zn;R in (4),

is

yn`1 ´ yn “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

p1 ´ ynqp1 ` ρq ´ κ

|zn| ` 1 ` κ ` ρ
, with probability pTRpynq

p1 ´ ynq ´ pκ ` ρq

|zn| ` 1 ` κ ` ρ
, with probability pFRpynq

p1 ´ ynq ´ κ

|zn| ` 1 ` κ
, w.p 1 ´ pTRpynq ´ pFRpynq.

(5)

4.2.1 Limit differential inclusion

We will use tools from stochastic approximation theory to approximate the behavior

of the discrete stochastic system tynuně0 by a continuous and deterministic system. If

our system was a single GPU, we could apply results in Schreiber (2001) and Benaim,

Schreiber, and Tarres (2004) to relate its limit behavior to that of an appropriately

chosen limit differential equation. Since our system is a concatenation of the GPUs

tzn;Ru, one for each region, we instead relate its limit behavior to that of a differential

inclusion, an equation of the form dx
dt

P F pxq for a set valued function F . We construct
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this inclusion, which we will refer to as the limit differential inclusion or LDI, by

pasting together the limit ODEs associated with the GPUs tzn;Ru. In our model

these ODEs are12

gRpyq “ 1 ` pTRpyqρ ´ yp1 ` κ ` ρppTRpyq ` pFRpyqq (6)

For an intuition for the limit ODEs, note that for the process zn;R, the expected

number of incoming true stories in the next period is 1`pTRpyqρ, and the total expected

number of incoming stories in the next period is 1 ` κ ` ρ
`

pTRpyq ` pFRpyq
˘

. So,

gRpyq “ ERr#incoming true stories in period n+1|yn “ ys

´ yERr#total incoming stories in period n+1|yn “ ys.

Thus, according to the limit ODE dy
dt

“ gRpyq, the share of true stories increases

if and only if ERr#incoming true stories in period n+1|yn“ys

ER#total incoming stories in period n+1|yn“ys
ą y, i.e., if and only if the ratio of

expected incoming true stories to total expected incoming stories is greater than the

current share of true stories.

We now define the LDI as,
dy

dt
P F pyq, (7)

where in the interior of each region F takes the (singleton) value of the relevant limit

ODE:

F pyq “ tgRpyqu for y P R,

and at the thresholds, F takes on all values in the interval between the limit ODEs.

If ŷ is the threshold between regions R and W then:

F pŷq “ rmintgRpŷq, gW pŷqu,maxtgRpŷq, gW pŷqus

We say that a point y˚ P p0, 1q is a steady state for the LDI if 0 P F pyq. We say

that y˚ is a stable steady state for the LDI if it is a steady state and there exists ϵ ą 0

such that for all y P py˚ ´ ϵ, y˚ ` ϵq we have signpxq “ signpy˚ ´ yq for all x P F pyq.

A steady state is unstable if it is not stable. In our model any unstable steady state

must also be repelling, i.e., there exists ϵ ą 0 s.t for all y P py˚ ´ ϵ, y˚ ` ϵq we have

signpxq “ ´ signpy˚ ´ yq for all x P F pyq.

12See Appendix B.3 for the derivation of this equation.
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Our main result, Theorem 2 below, is that yn converges almost surely to a stable

steady state for the LDI and, except for a special case where the system begins in the

no sharing region and never leaves, converges to any stable steady state with positive

probability. Before stating this result, we characterize the set of stable steady states

of the LDI, which we denote by SF .

As we show in Lemma 4 in Appendix A, the ODEs dy
dt

“ gSpyq, dy
dt

“ gIpyq,
dy
dt

“ gMpyq, and dy
dt

“ gNpyq, defined over r0, 1s, each have a globally stable steady

state. We denote the steady state of dy
dt

“ gRpyq by g˚
Rpyq, and refer to these as quasi

steady states of the system and to ŷI , ŷM as thresholds. We reserve the term limit

points for values to which yn converges with positive probability.

Recall the definitions of the regions: N “ p0,mintŷI , ŷMuq, I “ pŷI , ŷMq,M “

pŷM , ŷIq, S “ pmaxtŷM , ŷIu, 1q. To draw phase diagrams for the LDI it suffices to

know the positions of ty˚
S, y

˚
I , y

˚
M , y

˚
N , ŷI , ŷMu. The positions of the thresholds ŷI , ŷM

determine the system’s regions, and within each region R the flow is towards the

corresponding steady state y˚
R. Thus, it is important to understand the possible

orderings of these variables.

Lemma 3. minty˚
S, y

˚
Mu ą maxty˚

I , y
˚
Nu

An intuition for Lemma 3 is that, since users care more about filtering M content

than I content, when users share an M story the expected inflow of true stories is

greater than when they share an I story. This explains why y˚
S, y

˚
M ą y˚

I . Additionally,

when users share M stories they are successfully filtering false content, so that the

expected inflow of true stories is greater than the inflow without any sharing, implying

y˚
M ą y˚

N . When users share I stories the inflow of true stories may be greater than or

less than the inflow without any sharing, so we cannot sign the relationship between

y˚
S, y

˚
M nor the relationship between y˚

I , y
˚
N but can verify that y˚

S ą y˚
N . Numerical

calculations described in Appendix D show that both y˚
S ă y˚

M and y˚
S ą y˚

M are

possible and similarly that y˚
N can be either greater or less than y˚

I . Moreover, the

relationship between any threshold and any quasi steady state is also undetermined,

i.e., both maxty˚
N , y

˚
I , y

˚
M , y

˚
Su ă mintŷI , ŷMu and minty˚

N , y
˚
I , y

˚
M , y

˚
Su ą maxtŷI , ŷMu

are possible.

This means that Lemma 3 is the only restriction on the ordering of the quasi

steady states and thresholds (for simplicity, we rule out the knife edge case of equality

between any of these variables). Because regions M and I don’t occur at same time,
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for given parameters only one of y˚
I and y˚

M matters. This means there are 40 possible

strict configurations for the five variables that pin down the phase diagram: the two

thresholds, and the quasi steady states for the system’s three regions, i.e., y˚
S, y

˚
N and

one of y˚
I , y

˚
M .

To see why there are 40 configurations, consider the case ŷI ă ŷM . In this case, the

five variables are tŷI , ŷM , y
˚
N , y

˚
I , y

˚
Su. We can now count the number of orderings of

these variables that satisfy our restrictions. First, we can choose the relative positions

of the two thresholds, giving
`

5
2

˘

“ 10 options. Now, since we assumed ŷI ă ŷM , and

by Lemma 3 we know y˚
S ą maxty˚

N , y
˚
I u, the only degree of freedom is the order

between y˚
N , y

˚
I , for a total of 20 configurations in which ŷI ă ŷM . Similarly, there are

20 configurations with ŷI ą ŷM .

(a) (b)

Figure 1: Examples of phase diagrams: (a) all quasi steady states are within their
region, (b) only y˚

S is within its region.

Figure 1 presents two examples of phase diagrams. Stable steady states of the LDI

are marked in green,unstable steady states are in red, quasi steady states that are not

steady states are in purple, and thresholds are marked by dashed lines. An immediate

observation is that all quasi steady states that are within their regions are stable

steady states for the LDI. Additionally, since every limit ODE has a unique steady

state, the only other candidate steady states for the inclusion are the thresholds.

Thus, defining Q “ ty˚
R|y˚

R P regionRu as the set of quasi steady states that are

within their respective regions, we have Q Ă SF Ă Q Y tŷI , ŷMu. Note that Q
depends on the model’s parameters and contains at most three quasi steady states.

For a threshold ŷ to be a stable steady state, the flow above it needs to point

down and the flow below it needs to point up. This requires a “flip” of quasi steady

states: Let W be the region to the left of ŷ, and Z the region to the right, a flip is:

y˚
Z ă ŷ ă y˚

W . Flips around ŷI occur when ŷI ă ŷM and y˚
I ă ŷI ă y˚

N or ŷI ą ŷM

and y˚
S ă ŷI ă y˚

M (we find that both are possible). Using Lemma 3, we find that

flips cannot occur around ŷM , which implies the following characterization of SF :
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Theorem 1. Either (a) SF “ QY tŷIu, or (b) SF “ Q. Case (a) obtains if and only

if ŷI ă ŷM and y˚
I ă ŷI ă y˚

N or ŷI ą ŷM and y˚
S ă ŷI ă y˚

M .

Figure 2 presents phase diagrams for all possible configurations in which ŷI ă

ŷM ; y˚
I ă y˚

N . As above, stable steady states are in green, unstable steady states

are in red, and quasi steady states that are not steady states are in purple. The

numbers on the bottom left of each phase diagram are the indices of the positions of

the two thresholds among the five variables that pin down the phase diagram (so in

the diagram on the top left the thresholds are in the first and second positions since

the order is ŷI ă ŷM ă y˚
I ă y˚

N ă y˚
S). Phase diagrams p2, 3q, p2, 4q, p2, 5q correspond

to case (a) of Theorem 1, in which ŷI is a stable steady state.

For each of the points ty˚
N , y

˚
M , y

˚
I , y

˚
S, ŷIu, there exists a configuration in which

this point is the only member of SF . Some of these appear in Figure 2. For example,

in phase diagram p4, 5q, SF “ ty˚
Nu. Figures 3, 4, and 5 in Online Appendix D.3

present the phase diagrams for the remaining possible configurations.

4.2.2 Limit behavior

Recall that y0 is the initial share of true stories. Since behavior in the no sharing region

(N) is deterministic—exactly 1 true story and κ false stories are added every period—

if the system starts in region N and y˚
N P N then yn Ñ y˚

N “ 1
1`κ

deterministically.

Otherwise, yn converges to any stable steady state with positive probability.

Theorem 2. yn converges almost surely to a point in SF . If y
˚
N P N and y0 P N

then yn converges to y˚
N . Otherwise, for all y˚ P SF there is positive probability

that yn converges to y˚.

We prove Theorem 2 for the cases where yn does not converge deterministically to

y˚
N in three steps: First, we show that yn converges to a steady state of the LDI almost

surely, then that yn converges to every stable steady state with positive probability,

and finally that yn almost surely does not converge to an unstable steady state.

For the first step, we prove a more general result, Theorem 3 in Appendix B,

which applies to any system that is a concatenation of a finite number of GPUs (with

two colors). We provide a formal definition of such systems in Appendix B, and

refer to them as piecewise GPUs or PGPUs. Theorem 3 relates the limit behavior

of a PGPU to an associated limit differential inclusion, defined as a concatenation
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Figure 2: Phase diagrams for the case ŷI ă ŷM ; y˚
I ă y˚

N .
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of the limit ODEs of the GPUs. Applied to our system, the theorem implies that

the limit set of yn, Lpynq “
Ş

mą0 tyn : n ą mu, is almost surely a singleton that

contains a steady state of the LDI. To prove this result, we follow standard stochastic

approximation techniques, and define a continuous time version Y of yn (or, in the

general case, of the share of balls of color 1) by rescaling time and using a piecewise

affine interpolation. We then extend a result in Schreiber (2001) to prove that Y is

almost surely a perturbed solution to the associated inclusion.13 We complete this

step by applying a result in BHS that characterizes limits of perturbed solutions.

To prove the second step—positive probability of convergence to every stable

steady state—consider first the quasi steady states y˚
R. We first show that yn has

positive probability of converging to y˚
R conditional on starting from states zm with

|zm| sufficiently large and ym sufficiently close to y˚
R. This claim is true for the coun-

terfactual process that follows the sharing rule of region R everywhere, because this

process converges almost surely to y˚
R. This implies that the claim is also true for yn,

because: i) when yn is in region R it follows the same law of motion as the counterfac-

tual process; and ii) we show that starting from a state zm with |zm| sufficiently large

and ym sufficiently close to y˚
R the counterfactual process (and therefore also yn) has

positive probability of never leaving region R. We complete the proof for this case by

showing that the system has positive probability of arriving at a state zm from which

convergence occurs with positive probability. The proof for the case where the stable

steady state is ŷI is similar but uses a different counterfactual process.

Finally, to prove that yn almost surely does not converge to an unstable steady

state we use Theorem 4 in Appendix B, which shows that a sufficient condition for

nonconvergence to an unstable steady state is that there is a positive uniform lower

bound on the noise in the stochastic process. Intuitively, noise jiggles yn away from

the steady state, and because the steady state is unstable, the drift of the process

will tend to move it further away. Theorem 4 follows from Theorem 2.9 in Pemantle

(2007). Pemantle’s result is for stochastic approximations with one dimensional limit

ODEs, but it can be applied to PGPUs as it does not require that the RHS of the

ODE is continuous.

13A continuous function X : r0,8q Ñ R is a perturbed solution to a differential inclusion if it is
absolutely continuous and satisfies conditions that ensure that it is eventually arbitrarily close to a
solution to the inclusion. See appendix B for the formal definition, adapted from BHS.
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4.2.3 Discussion

Our simplified representation of platform dynamics allows for rich limit behavior.

Our finding that the limit share of true stories is random, though not mathematically

surprising within the context of generalized urns, has notable implications for the

evolution of platform composition. It implies that starting from the same initial

platform composition and parameters, the system can end up at very different limits

in terms of both the share of true stories and users’ limit actions. For instance, in some

cases the system has positive probability of converging to any of three limits: One in

which the share of true stories is low and users do not share at all (since the probability

of sharing a false story is high), one in which the share of true stories is intermediate

and users share only stories with one evocativeness level (very interesting/mildly

interesting), and one in which the share of true stories is high and users share both very

interesting and mildly interesting stories. This path-dependence suggests sensitivity

to shocks—when the system is close to a steady state, exogenously adding a large

number of false (or true) stories may change the trajectory. Exogenous shocks will be

more likely to affect limit behavior if they occur in the “early days” of the platform,

when the overall number of stories is small. On the other hand, for each of the

candidate limit points (the four quasi steady states and the threshold ŷI), there exist

parameter configurations such that this point is the unique stable steady state of the

LDI, so the system converges to this point almost surely starting from any initial

platform composition.

4.3 Comparative statics

We will refer to points to which the system converges with positive probability as

limit points. The previous section showed that the set of limit points is SF , and

characterized SF for every parameter specification. We now ask how the positions of

the limit points and composition of SF change with the parameters.

It is straightforward to verify that y˚
N “ 1

1`κ
, so this candidate limit point is

decreasing in κ and constant in all other parameters. Theorems 5-8 in Appendix

C present comparative statics for each of the remaining candidate limit points with

respect to all parameters. We now discuss the main takeaways from these theorems.

All candidate limit points are increasing in λ and µ. This is intuitive: Increasing

the weight on veracity or the penalty for sharing false stories increases the limit share
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of true stories. Additionally, any limit point that is a quasi steady state is decreasing

in κ and, with the exception of y˚
N , is decreasing in β. This is also intuitive—increasing

the cost of attention or the exogenous inflow of false stories decreases the share of

true stories on the platform.

Less intuitive is the possibility of a limit point increasing in β or being constant in

κ. However, both of these arise when the limit point is ŷI . Recall that ŷI is the point

where users are exactly indifferent between sharing and not sharing very interesting

stories. This point is increasing in β because users’ payoffs are decreasing in the cost

of attention and increasing in the share of true stories. Hence, when β goes up, the

share of true stories required for indifference needs to go up as well to compensate for

the utility loss. ŷI does not depend on κ, since the exogenous inflow of false stories

is is not an argument in users’ utility functions. However, as we show below, when κ

is sufficiently large ŷI will not be a limit point.

Table 1: Comparative Statics for κ, β

Variable Comparative Statics w.r.t κ
y˚
M , y

˚
S, y

˚
I Everywhere decreasing in κ

ŷI Constant in κ.
Variable Comparative Statics w.r.t β
y˚
M , y

˚
S, y

˚
I Everywhere decreasing in β

ŷI Everywhere increasing in β.

Comparative statics with respect to the remaining parameters are more nuanced.

We discuss each of them in turn:

The role of θ

Table 2: Comparative Statics for θ

Variable Comparative Statics w.r.t θ
y˚
M Decreasing in θ for θ ă θM and increasing for θ ą θM ,

where θM P p0, 1s.
y˚
S Decreasing in θ for θ ă θS and increasing for θ ą θS,

where θS P p0, 1s.
y˚
I Decreasing in θ for θ ă θI and increasing for θ ą θI ,

where θI P p0, 1s.
ŷI Everywhere increasing in θ.

Recall that θ, the “credibility” of false stories, determines how hard it is to distin-
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guish between a true story and a false one. When θ increases it is harder to identify

false stories but users are aware of this and also pay more attention (both apy, Iq and

apy,Mq are increasing in θ). This leads to two opposing forces on the limit share of

true stories, and our model predicts that either one can prevail: The candidate limit

points y˚
S, y

˚
M and y˚

I are decreasing in θ up to a point and then increasing in θ, so

for sufficiently large values of θ the increase in attention more than compensates for

the increase in credibility.14 The candidate limit point ŷI behaves differently, as it is

always increasing in θ: Users’ payoffs from sharing are decreasing in θ so ŷI needs to

increase to maintain indifference.

Our model highlights the complex relationship between the credibility of false

stories and their prevalence when attention is endogenous. The observation that

increasing the credibility of false stories might actually lead to a decrease in their

prevalence might explain why it sometimes seems as if the producers of false stories

do not make much of an effort for these stories to appear true. This is especially

relevant if we acknowledge that in reality different stories have different credibility

levels and users do not know the credibility of a given story and may also not know the

distribution of θ. Under these conditions, we might expect producers of false stories

or other interested parties to put a spotlight on false stories with low credibility in

order to bias users’ estimations of θ downward. Relaxing our assumptions on θ and

modeling the interests of fake news producers are interesting directions for future

work.

Another interpretation of θ is that the social media platform employs some fact-

checking scheme, and θ is the probability that a false story is not flagged as false (so

the flagging rate is 1 ´ θ). This fits with the formulation of the signal function in

(1) since users will recognize flagged stories as false regardless of their attention level.

Under this interpretation, the comparative statics of the quasi steady states with

respect to θ imply that if flagging rates are low, marginally improving them may have

unintended consequences. Again, the intuition relates to a counterbalancing force

driven by attention choices. When more stories are flagged, users pay less attention.

This means they are more likely to share stories that have not been flagged, which can

lead to an overall increase in the limit share of false stories. The comparative statics

14Note that the comparative statics in Table 2 allow for the case that a quasi steady state y˚
R is

everywhere decreasing in θ (this is the case if θR “ 1). However, we show in Appendix D that for
each quasi steady state y˚ there are examples where y˚ is both decreasing and increasing in θ when
it is a limit point.
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for the quasi steady states ty˚
S, y

˚
I , y

˚
Mu are a manifestation of the “implied truth

effect” introduced and empirically demonstrated in Pennycook, Bear, Collins, and

Rand (2020), where false content that is not flagged as false is considered validated

and seen as more accurate. We contribute to the analysis of this effect by showing

that it might imply a non-monotonic relationship between flagging rates and the share

of true stories. Finally, the comparative statics with respect to ŷI imply that the limit

share of true stories may be everywhere decreasing in the flagging rate, through the

constraint that users are indifferent, a mechanism distinct from the implied truth

effect.

The role of δ

Table 3: Comparative Statics for δ

Variable Comparative Statics w.r.t δ
y˚
M Everywhere increasing in δ.
y˚
S Decreasing in δ for δ sufficiently close to 1

2
, and increas-

ing in δ for δ sufficiently close to 1.
y˚
I Everywhere decreasing in δ.
ŷI Everywhere increasing in δ.

Increasing δ means false stories are more likely to be very interesting, so the

comparative statics for y˚
I , y

˚
M are intuitive—the limit share of true stories decreases

(increases) in δ when users share only very interesting (mildly interesting) stories.

The quasi steady state y˚
S, where users share both types of stories, decreases in δ

when δ is close to 1
2
, and increases in δ when δ is close to 1. Appendix D presents

numerical examples where y˚
S is both decreasing and increasing in δ when it is a limit

point. Intuitively, the non-monotonicity arises because when δ is close to 1
2
users

are sharing more very interesting stories than mildly interesting stories, since both

types of stories are almost equally likely to be false and very interesting stories have

additional value. Thus, in this case, the comparative statics with respect to δ are

similar to the comparative statics for y˚
I , i.e., to those in the region where users are

sharing only very interesting stories. As δ moves closer to 1, the stories that users

share are more likely to be mildly interesting and comparative statics with respect to

δ eventually become similar to those for y˚
M . Finally, ŷI is increasing in δ because for

a fixed yn, increasing δ leads to a decrease in the value from sharing very interesting
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stories.15

The role of ρ

Table 4: Comparative Statics for ρ

Variable Comparative Statics w.r.t ρ
y˚
M Everywhere increasing in ρ.
y˚
S Everywhere increasing in ρ.
y˚
I Increasing in ρ if 1

2
ą δθ p1 ´ apy, Iqq and decreasing in

ρ when the sign is reversed.
ŷI Constant in ρ.

Candidate limit points are increasing in the reach parameter ρ when users are

successfully filtering false content, i.e., when the share of true stories shared (out of

all true stories) is greater than the share of false stories shared (out of all false stories).

The only case where this may not happen is if the system is in region I. In this case,

users are sharing 1
2
of all true stories and δθp1 ´ apy, Iqq of all false stories. We find

that both δθp1 ´ apy, Iqq ą 1
2
and δθp1 ´ apy, Iqq ă 1

2
are possible, and that both can

occur when y˚
I P I, so that y˚

I can be either increasing or decreasing in ρ when it is a

limit point. Thus, in the model, increasing the reach of shared stories may contribute

to the spread of false news only when users put high value on sharing very interesting

stories, and there are enough false stories in the system so that users are better off

not sharing mildly interesting stories.

The composition of SF

We now turn to comparative statics for the composition of SF . Making general

statements here is challenging given the large number of possible configurations. One

clear example is the effect of κ, the production rate of false stories. We find that

the thresholds are constant in κ and all quasi steady states y˚
R are decreasing in κ.

Additionally, fixing values for the other parameters, for any quasi steady state y˚
R

we have limκÑ0 y
˚
Rpκq “ 1 and limκÑ0 y

˚
Rpκq “ 0, because when the number of false

stories produced is sufficiently large the sharing decisions become inconsequential.

Thus, for sufficiently large values of κ all quasi steady states fall in the no sharing

15This can lead to a counter-intuitive situation where asymptotically users only share very in-
teresting stories, but when very interesting stories become more likely to be false the limit share of
true stories increases. This happens when ŷI is a limit point and it is between regions N and I (as
in Figure 1b) so users are mixing between sharing very interesting stories and not sharing.
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region and the unique limit point is y˚
N , and for sufficiently small values of κ all

quasi steady states fall in the sharing region and the unique limit point is y˚
S. In

other words, there are values 0 ă κ1 ă κ2 such that when κ ď κ1, SF “ ty˚
Su and

when κ ě κ2, SF “ ty˚
Nu. Thus, increasing the production rate of false stories from

κ ď κ1 to κ ě κ2 will change users limit behavior from sharing both very interesting

and mildly interesting stories to not sharing at all. Since we saw above that when

users are sharing stories of both evocativeness levels they are successfully filtering

false content, the exogenous decrease in the share of incoming stories that are true is

amplified by user behavior.16

5 Conclusion

This paper analyzes a model of the sharing of stories on a social media platform

when users’ attention levels are endogenous and depend on the mix of true and false

stories. The share of true stories converges almost surely, but the realized limit point

is stochastic, and different possible limits have very different user sharing behavior.

This randomness of the limit implies that the type of stories users happened to be

exposed to in the early days of the platform and their subsequent sharing decisions

can have long-term implications.

We show that the limit share of true stories may be either increasing or decreasing

in each of the following parameters: the cost of attention, the credibility of false

stories, the probability that false stories are very interesting, and the reach of shared

stories.

Although endogenous attention creates a counterbalancing force to changes in the

credibility/flagging of false stories, it can intensify the effect of producing more false

stories. This suggests that interventions that target producers of false news might be

more efficient than attempts to stop the spread of false news already on the platform.

Our model captures many important features in a tractable framework, and parts

with most of the literature by tracking the evolution of the entire platform rather than

the spread of a single story. Its key simplifying feature is that it has a one-dimensional

state space. We maintain this feature while considering two-dimensional story char-

16Relatedly, some changes in κ will lead to discontinuous jumps in the distribution of limnÑ8 yn.
This happens when a quasi steady state crosses a threshold so that it (or the threshold) are no longer
a limit point.
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acteristics by assuming that only a story’s veracity is fixed while its evocativeness is

drawn every period. It would be straightforward to analyze variations that preserve

this structure. For instance, Allcott and Gentzkow (2017) emphasizes the importance

of user heterogeneity and show that education, age, and total media consumption are

strongly associated with discernment between true and false content. Such character-

istics can be incorporated into our model by having the user’s type drawn randomly

every period. Allcott and Gentzkow (2017) also finds that in the run-up to the 2016

election, both Democrats and Republicans were more likely to believe ideologically

aligned articles than nonaligned ones. Such partisan considerations can be incorpo-

rated into our model by having both the user’s and story’s partisanship drawn every

period, and including the relation between them in the users’ payoffs.

Other important features of social media behavior could in principle be handled

with similar techniques but a larger state space. For example, if users conditioned

their choices on the number of times a story has been shared or if some stories were

always more interesting than others. The larger state space makes both the stochastic

approximation arguments and the analysis of the associated deterministic continuous-

time dynamics more complicated, and we leave this for future work.
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Appendix A: Proofs and Omitted Results

Proof of Lemma 1.

When v “ T , s “ T 1 with probability 1 and e “ I with probability 1
2
. When

v “ F , e “ I with probability δ. Thus,

Pa,ypT 1, T |Iq “
Pa,ypT 1, T, Iq

Pa,ypIq
“

y
2

y
2

` p1 ´ yqδ
“

y

y ` 2p1 ´ yqδ
.

Similarly,

Pa,ypT 1, T |Mq “
y

y ` 2p1 ´ yqp1 ´ δq
,

Pa,ypT 1, F |Iq “
2p1 ´ yqδθp1 ´ aq

y ` 2p1 ´ yqδ
,

Pa,ypT 1, F |Mq “
2p1 ´ yqp1 ´ δqθp1 ´ aq

y ` 2p1 ´ yqp1 ´ δq
.

By (2), the expected payoff when attention is a, evocativeness is M and the user will

share the story if and only if they receive the signal T 1 is,

Upa, y,Mq “ Pa,ypT 1, T |MqupT,Mq ` Pa,ypT 1, F |MqupF,Mq ´ βa2.

Since upT,Mq “ λ, and upF,Mq “ ´λµ, we have

Upa, y,Mq “ λ pPa,ypT 1, T |Mq ´ µPa,ypT 1, F |Mqq ´ βa2,

so

Upa, y,Mq “
λ py ´ 2µp1 ´ yqp1 ´ δqθq

y ` 2p1 ´ yqp1 ´ δq
`

2λµp1 ´ yqp1 ´ δqθ

y ` 2p1 ´ yqp1 ´ δq
a ´ βa2.

Similarly,

Upa, y, Iq “ λ pPa,ypT 1, T |Iq ´ µPa,ypT 1, F |Iqq`p1´λqpPa,ypT 1, T |Iq`Pa,ypT 1, F |Iqq´βa2,

so

Upa, y, Iq “
λpy ´ 2µp1 ´ yqδθp1 ´ aqq

y ` 2p1 ´ yqδ
`

p1 ´ λqpy ` 2p1 ´ yqδθp1 ´ aqq

y ` 2p1 ´ yqδ
´ βa2,
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and after rearranging,

Upa, y, Iq “
y ` 2p1 ´ yqδθpp1 ´ λq ´ λµq

y ` 2p1 ´ yqδ
`

2p1 ´ yqδθpλµ ´ p1 ´ λqq

y ` 2p1 ´ yqδ
a ´ βa2.

The functions Upa, y, Iq, Upa, y,Mq are strictly concave in a. Taking first order

conditions we find that they are maximized at apy, Iq, apy,Mq respectively as defined

in Lemma (1). Finally, using Assumptions 1 and 2 it straightforward to verify that

apy, Iq, apy,Mq P r0, 1s.

Proof of Lemma 2. Plugging the optimal attention levels from (1) back into

Upa, y,Mq, Upa, y, Iq respectively we get,

V py,Mq “
λpy ´ 2µp1 ´ yqp1 ´ δqθq

y ` 2p1 ´ yqp1 ´ δq
`

1

β

ˆ

λµp1 ´ yqp1 ´ δqθ

y ` 2p1 ´ yqp1 ´ δq

˙2

,

V py, Iq “
y ` 2p1 ´ yqδθpp1 ´ λq ´ λµq

y ` 2p1 ´ yqδ
`

1

β

ˆ

p1 ´ yqδθpλµ ´ p1 ´ λqq

y ` 2p1 ´ yqδ

˙2

.

(8)

To prove that these value functions are strictly increasing in y, it suffices to show

that Upa, y,Mq, Upa, y, Iq are strictly increasing in y for all a, as then for y2 ą y1 we

have V py1q “ Upapy1q, y1q ă Upapy1q, y2q ď Upapy2q, y2q “ V py2q. And

BUpa, y,Mq

By
“

2p1 ´ δqλp1 ` p1 ´ aqµθq

py ` 2p1 ´ yqp1 ´ δqq2
ą 0

BUpa, y, Iq

By
“

2δ rpλµ ´ p1 ´ λqqθp1 ´ aq ` 1s

py ` 2p1 ´ yqδq2
ą 0,

where the second inequality follows from Assumption 1. To show that both ŷI , ŷM

are interior, note that V p1, Iq “ 1 ą 0, and V p1,Mq “ λ ą 0. Additionally, from

Assumptions 1 and 2,

V p0,Mq “
λµθpλµθ ´ 4βq

4β
ă 0,

V p0, Iq “ θpλµ ´ p1 ´ λqq

„

θpλµ ´ p1 ´ λqq

4β
´ 1

ȷ

ă 0.
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Lemma 4. For all R P tS, I,M,Nu, the ODE dy
dt

“ gRpyq defined over r0, 1s has a

globally stable steady state y˚
R P p0, 1q.

Proof of Lemma 4. First, note that by the definition of gRpyq in (6), for all

R P tS, I,M,Nu we have gRp0q “ 1 and gRp1q “ ´κ. This follows from gRp0q “

1`pTRp0qρ and pTRp0q “ 0 for all R, and gRp1q “ ´κ´pFRp1qρ and pFRp1q “ 0 for all R.

For R “ N the ODE takes the simple form gNpyq “ 1 ´ p1 ` κqy and the conclusion

follows immediately with y˚
N “ 1

1`k
. For the other regions, it suffices to prove that

g3
Rpyq ą 0 for all y P r0, 1s. Indeed, for gRpyq to have more than one root in r0, 1s

it must have a local minimum that is greater than the first root, followed by a local

maximum (between the second root and y “ 1). So, there need to be 0 ă w ă z ă 1

such that g2
Rpwq ě 0 while g2

Rpzq ď 0 which cannot be the case if g3
Rpyq ą 0 for all

y P r0, 1s. The derivatives are

g3
S pyq “

12θ2ρ

β

ˆ

p1 ´ δq3λµ

py ` 2p1 ´ δqp1 ´ yqq
4 `

δ3pλµ ´ p1 ´ λqq

py ` 2δp1 ´ yqq
4

˙

,

g3
I pyq “

12δ3θ2vpλµ ´ p1 ´ λqq

β py ` 2δp1 ´ yqq
4 ,

g3
Mpyq “

12p1 ´ δq3θ2ρλµ

β py ` 2p1 ´ yqp1 ´ δqq
4 .

All are strictly positive for y P r0, 1s. Stability follows from the existence of a unique

root together with gRp0q “ 1 ą 0, gRp1q “ ´κ ă 0 for all regions R.

Proof of Lemma 3. By Lemma 4, to prove y˚
R ą y˚

W for R,W P tS, I,M,Nu,

it suffices to prove that gRpyq ą gW pyq for all y P p0, 1q. By (6), we have for any

R,W P tS, I,M,Nu:

gRpyq ´ gW pyq “ ρ
“

p1 ´ yq
`

pTRpyq ´ pTW pyq
˘

´ y
`

pFRpyq ´ pFW pyq
˘‰

.

So gRpyq ą gW pyq if and only if p1´ yq
`

pTRpyq ´ pTW pyq
˘

ą y
`

pFRpyq ´ pFW pyq
˘

. Hence,
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gSpyq ą gIpyq for all y P p0, 1q because, by (3),

p1 ´ yq
`

pTS pyq ´ pTI pyq
˘

“ p1 ´ yq
y

2
,

and,

y
`

pFS pyq ´ pFI pyq
˘

“ yp1 ´ yqθ p1 ´ δapy, Iq ´ p1 ´ δqapy,Mq ´ δp1 ´ apy, Iqqq

“ yp1 ´ yqθp1 ´ δq p1 ´ apy,Mqq ,

and, for y P p0, 1q,

p1 ´ yq
y

2
ą yp1 ´ yqθp1 ´ δq p1 ´ apy,Mqq ðñ

1

2
ą θp1 ´ δqp1 ´ apy,Mqq

which always holds since p1 ´ δq ă 1
2
, θ ă 1 and apy,Mq ď 1.

To see that gMpyq ą gIpyq for all y P p0, 1q note that,

p1 ´ yq
`

pTMpyq ´ pTI pyq
˘

“ 0,

and,

y
`

pFMpyq ´ pFI pyq
˘

“ yp1 ´ yqθ pp1 ´ δq p1 ´ apy,Mqq ´ δ p1 ´ apy, Iqqq .

So gMpyq ą gIpyq if and only if

p1 ´ δq p1 ´ apy,Mqq ă δ p1 ´ apy, Iqq .

Fix y P p0, 1q and let Lpδq “ p1 ´ δq p1 ´ apy,Mqq ;Rpδq “ δ p1 ´ apy, Iqq. We will

prove Lpδq ă Rpδq for all δ P r1
2
, 1q by showing that Lp1

2
q ă Rp1

2
q and Lpδq is

decreasing in δ while Rpδq is increasing in δ. Indeed,

R

ˆ

1

2

˙

“
1

4

ˆ

2 ´
θp1 ´ yq pλµ ´ p1 ´ λqq

β

˙

ą
1

4

ˆ

2 ´
θp1 ´ yqλµ

β

˙

“ L

ˆ

1

2

˙

,

and
BLpδq

Bδ
“

2λµθp1 ´ δqp1 ´ yqp1 ´ δp1 ´ yqq

β py ` 2p1 ´ yqp1 ´ δqq
2 ´ 1.

Assumption 2 and λ ă 1 imply that λµθ ă 2β. Therefore, it suffices to prove
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4p1 ´ δqp1 ´ yqp1 ´ δp1 ´ yqq ă py ` 2p1 ´ yqp1 ´ δqq
2, which simplifies to y2 ą 0.

Hence, BLpδq

Bδ
ă 0. To see that BRpδq

Bδ
ą 0, note that,

BRpδq

Bδ
“ 1 ´

2pλµ ´ p1 ´ λqqθδp1 ´ yqpy ` δp1 ´ yqq

βpy ` 2δp1 ´ yqq2
.

Since pλµ´p1´λqqθ ă λµθ ă 2β it suffices to prove 4pδp1´yqpy`δp1´yqq ă py`2δp1´

yqq2, which simplifies to y2 ą 0. This completes the proof that minty˚
S, y

˚
Mu ą y˚

I .

To see that minty˚
S, y

˚
Mu ą y˚

N , note that gSpyq ą gNpyq if and only if

p1 ´ yqy ą yp1 ´ yqθ p1 ´ δapy, Iq ´ p1 ´ δqapy,Mqq ,

which always holds. Finally, gMpyq ą gNpyq if and only if

p1 ´ yq
y

2
ą yp1 ´ yqp1 ´ δqθ p1 ´ apy,Mqq ,

which follows from δ ą 1
2
, θ ă 1.

Proof of Theorem 1. That Q Ă SF follows immediately from the definitions of

these sets and of F . Since each limit ODE has unique steady state, the only other

possible members of SF are the thresholds between the regions, so SF Ă Q
Ť

tŷI , ŷMu.

A threshold ŷ is a stable steady state if for all y P pŷ ´ ϵ, ŷ ` ϵq we have signpxq “

signpŷ ´ yq for all x P F pyq. This holds only if there is a “flip” of quasi steady

states: Let W be the region to the left of ŷ, and Z the region to the right, a flip is:

y˚
Z ă ŷ ă y˚

W .

Flips around ŷI occur if and only if one the following holds: ŷI ă ŷM and y˚
I ă

ŷI ă y˚
N ; or ŷI ą ŷM and y˚

S ă ŷI ă y˚
M . In Appendix D we show that both are

possible. We now show that flips cannot occur around ŷM so ŷM R SF . There are two

possible cases:

1. ŷI ă ŷM , so the region to the right of ŷM is S and the region to left is I.

2. ŷI ą ŷM , so the region to the right of ŷM is M and the region to the left is N .

In Case 1 a flip cannot occur because by Lemma 3, y˚
S ą y˚

I . In Case 2 a flip cannot

occur because by Lemma 3, y˚
M ą y˚

N .
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Proof of Theorem 2. When y˚
N P N and y0 P N , the system follows the law of

motion zn`1 “ zn `

˜

1

k

¸

, so it never leaves the region N and converges determin-

istically to y˚
N “ 1

1`κ
. We henceforth assume that y˚

N R N or y0 R N . By Theorem

3 in Appendix B, the limit set of yn is almost surely chain transitive for the LDI in

(7). Since the LDI is a one-dimensional autonomous inclusion, its chain transitive

sets are simply its steady states, so yn converges almost surely to a steady state of

the LDI. We now show that there is positive probability of convergence to any stable

steady state (Claim 1) and zero probability of convergence to an unstable steady state

(Claim 2) (see Section 4.2.1 for definitions of stable and unstable steady states).

Claim 1. If ψ is a stable steady state, there is positive probability that yn Ñ ψ.

Proof of Claim 1. Let ψ be stable steady state and ϵ ą 0.

Step 1: Defining five auxiliary processes.

The first four auxiliary processes are tzn;Ru for R P tS, I,M,Nu as defined in (4).

Recall that zn;R is what the state would be in period n in the hypothetical case where

users always follow the sharing rule of region R even when it does not maximize their

utility. For example, tzn;Su is the process in which users always share all stories for

which they received the signal T 1. Let yn;R be the share of true stories in period n for

the process tzn;Ru. The differential inclusion associated with tzn;Ru is dy
dt

P tgRpyqu.

By Lemma 4, this inclusion has a unique steady state y˚
R, so by Theorem 3, yn;R

converges almost surely to y˚
R.

17 In particular, for any ϵ ą 0 there exists mR P N
such that starting from any y in the open ball Bϵpy

˚
Rq, if the total number of stories is

greater than mR, then yn;R has positive probability of remaining in Bϵpy
˚
Rq for ever,

i.e., P pym;R P Bϵpy
˚
Rq@m ą n | yn;R P Bϵpy

˚
Rq, |zn;R| ą mRq ą 0.

The fifth auxiliary process will be used to prove convergence to ŷI when it is a

stable steady state so we define it only for that case. Let L be the region to the left

of ŷI and R the region to the right of ŷI . Since ŷI is a stable steady state, we have

y˚
R ă ŷI ă y˚

L. Let O be the third region of the system (O is located either to the

right of R or to the left of L). Define an alternative stochastic process tzn;Hu, with

share of true stories yn;H , where the law of motion in regions R,L is unchanged but

the law of motion in region O is changed to be deterministic and such that yn;H moves

17This also follows directly from the results of Schreiber (2001) because these auxiliary processes
are GPUs.
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monotonically towards the other regions.18 Let dy
dt

P FHpyq be the limit differential

inclusion for this alternative process, as defined in Definition 5 in Appendix B. By

construction, ŷI is the unique steady state for this inclusion, so Theorem 3 implies

that yn;H converges to ŷI almost surely. In particular, there exists mH P N such that

P pym;H P BϵpŷIq@m ą n | yn;H P BϵpŷIq, |zn;H | ą mHq ą 0.

Step 2: Positive probability of converging to ψ conditional on arriving at an open ball

around it when |zn| is sufficiently large.

Assume w.l.o.g. that ϵ is small enough that Bϵpy
˚
Rq Ă R if ψ “ y˚

R for some

region R and that BϵpŷIq Ă r0, 1szO if ψ “ ŷI (recall from the previous step that

O is the only region not adjacent to ŷI). For the case where ψ “ y˚
R we have

P pym P Bϵpy
˚
Rq@m ą n | yn P Bϵpy

˚
Rq, |zn| ą mRq ą 0, since conditional on yn remain-

ing in Bϵpy
˚
Rq we have yn “ yn;R (i.e., they follow the same law of motion). The fact

that yn “ yn;R conditional on yn remaining in region R also implies Ppyn Ñ y˚
R|yn P

Bϵpy
˚
Rq @n ą mq “ 1. So, if the system arrives at a state zn such that yn P Bϵpy

˚
Rq

and |zn| ą mR then yn converges to y˚
R with positive probability.

In the case where ψ “ ŷI , an analogous argument (replacing yn;R with yn;H),

implies that if the system arrives at state zn such that yn P BϵpŷIq and |zn| ą mH

then yn converges to ŷI with positive probability.

Step 3: Positive probability of arriving at such a ball.

We now prove that there is positive probability of arriving at zn such that yn P

Bϵpψq and |zn| ą m where m is as defined above. By (6), for any region R,

y˚
R “

1 ` pTRpy˚
Rqρ

1 ` κ ` ρ ppTRpy˚
Rq ` pFRpy˚

Rqq
.

This implies that 1
1`κ`ρ

ă y˚
R ă

1`ρ
1`κ`ρ

: the first inequality is immediate and the

second is equivalent to

ρ
`

κp1 ´ pTRpy˚
Rqq ` pFRpy˚

Rqp1 ` ρq
˘

ą 0,

which always holds. Since any stable steady state is either is a quasi steady state or

18So if O is to the right of R then yn;H is decreasing and in region O and if O is to the left of
L then yn;H is increasing in region O. It is easy to construct such a law of motion—for yn;H to
increase we can require that every period one true story is added and no false stories and vice versa
for yn;H to decrease.
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a threshold bounded above and below by quasi steady states, the above implies that

1

1 ` κ ` ρ
ă ψ ă

1 ` ρ

1 ` κ ` ρ
@ψ P SF . (9)

Recall that we assumed that either y˚
N R N or y0 R N (or both). If y0 R N and

ψ R N the claim follows immediately from (9) and Lemma 5 below, together with

|zn| Ñ 8 surely. If y0 R N and ψ P N then it must be the case that ψ “ y˚
N and y˚

N is

a stable steady state. In this case, Lemma 5 implies that there is positive probability

of arriving at suppNq (which is mintŷI , ŷMu). Additionally y˚
N P N implies that there

is positive probability of arriving from suppNq into Bϵpy
˚
Nq. Finally, if y0 P N and

y˚
N R N , because the system converges deterministically towards y˚

N when the system

is in region N , the system surely arrives at yn R N with |zn| ą m after finite time and

Lemma 5 implies that there is positive probability of arriving from this yn to Bϵpψq.

This completes the proof of Claim 1.

Claim 2. The system almost surely does not converge to an unstable steady state.

Proof of Claim 2.

Since by Lemma 4 all quasi steady states are stable for their associated ODEs,

the only possible unstable steady states for the LDI are the thresholds ŷI , ŷM . Let

ŷ be a unstable steady state. Let A denote the event “yn P N infinitely often” and

let AC denote its complement. We will prove that Ppyn Ñ ŷq “ 0 by proving that if

PpAq ą 0 then Ppyn Ñ ŷ|Aq “ 0, and if PpACq ą 0 then Ppyn Ñ ŷ|ACq “ 0.

Assume PpAq ą 0 and consider a realization where yn P N infinitely often. If

ŷ is not adjacent to region N then yn P N i.o. rules out convergence to ŷ. If ŷ is

adjacent to region N , then by the instability of ŷ it must be the case that y˚
N P N .

But then, if yn P N for some n then yn converges (deterministically) to y˚
N ‰ ŷ. Thus,

if PpAq “ Ppyn P N i.oq ą 0, then Ppyn Ñ ŷ|Aq “ 0.

We now apply Theorem 4 in Appendix B to prove that if PpACq ą 0 then Ppyn Ñ

ŷ “ 0|ACq “ 0. Assume PpACq ą 0 and consider a realization where yn P N at

most finitely often, so there exists m P N such that yn R N for all n ą m. To apply

Theorem 4 we need to verify that Erξ`
n |Fns are uniformly bounded below by a positive

number, where ξn`1 :“ pyn`1 ´ yn ´ Eryn`1 ´ yn|znsq|zn|, ξ`
n :“ maxt0, ξnu and Fn is

the σ-algebra generated by pz1, ..., znq.
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Consider the law of motion for yn in Equation 5. Denoting ∆T “
p1´ynqp1`ρq´κ

|zn|`1`κ`ρ
,∆F “

p1´ynq´pκ`ρq

|zn|`1`κ`ρ
,∆O “

p1´ynq´κ
|zn|`1`κ

, we have ∆T ą ∆O ą ∆F , so that when yn is in region R,

Erξ`
n`1|Fns ě pTRpynq

¨

˝∆T ´
ÿ

iPtT,F,0u

piRpynq∆i

˛

‚|zn| ě pTRpynqp1´pTRpynqqp∆T´∆Oq|zn|.

Now,

p∆T ´ ∆Oq ě
p1 ´ ynqp1 ` ρq

|zn| ` 1 ` κ ` ρ
´

κ

|zn| ` 1 ` κ ` ρ
´

p1 ´ ynq

|zn| ` 1 ` κ ` ρ
`

κ

|zn| ` 1 ` κ ` ρ

“
p1 ´ ynqρ

|zn| ` 1 ` κ ` ρ
,

so,

p∆T ´ ∆Oq|zn| ě
p1 ´ ynqρ

2 ` κ ` ρ
.

Since yn R N from some point onward, by (3), pTRpynq P tyn,
yn
2

u for both of the

adjacent regions R. Thus, for small ϵ ą 0, there exists c ą 0 such that for any

yn P pŷ ´ ϵ, ŷ ` ϵq: pTRpynqp1 ´ pTRpynqq ě c. So, for any yn P pŷ ´ ϵ, ŷ ` eq we have

Erξ`
n`1|Fns ě

cp1´ŷ´ϵqρ
2`κ`ρ

ą 0, which completes the proof of Claim 2.

Together, Claims 1 and 2 prove Theorem 2.

Lemma 5. If y˚
N R N then for any ϵ ą 0 and y R N such that y P p 1

1`κ`ρ
, 1`ρ
1`κ`ρ

q

the system has a positive probability of arriving at some ym P Bϵpyq starting from any

initial state zn.

Proof. Since the number of stories added each period is bounded, there exists some

nϵ P N such that |yn`1 ´ yn| ă ϵ whenever |zn| ą nϵ. Since |zn| Ñ 8 we can assume

w.l.o.g. that the initial state zn satisfies |zn| ą nϵ. For such zn, we consider two

possible cases: yn ă y and yn ą y.

If yn ă y then y ă
1`ρ

1`κ`ρ
implies that if the user shares a true story in period n

then yn ă yn`1 ă
1`ρ

1`ρ`κ
.19 Thus, there exists some T ą 0 such that if users share a

true story every period for T periods then yn`T P Bϵpyq.

19Because if a true story story is shared in period n then zn`1 “ zn `

ˆ

1 ` ρ
κ

˙

.
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If yn ą y then, by a similar argument, y ą 1
1`κ`ρ

implies that there exists some

T 1 ą 0 such that if users share false stories for T 1 periods then yn`T 1 P Bϵpyq.

We can assume w.l.o.g. that yn R N , because if yn P N , the assumption y˚
N R N

and the fact that behavior in region N is deterministic imply that surely ym R N

for some m ą n. Since yn R N there is positive probability of sharing a false story

and positive probability of sharing a true story. Also, since region N is always the

leftmost region and y R N then starting from yn ą y and drawing T 1 false stories or

starting from yn ă y and drawing T true stories will not lead the system to enter

region N . Thus there is positive probability of drawing T (T 1) true (false) stories

consecutively so there is positive probability of ym P Bϵpyq for some m ą n.

Appendix B: Stochastic Approximation and GPUs

This appendix extends and applies results from the theory of stochastic approxima-

tion. Specifically, we build on results from Schreiber (2001) and Benaim, Schreiber,

and Tarres (2004), who apply stochastic approximation methods to analyze General-

ized Polya Urns (GPUs). A key feature of these urn models is that the number of balls

added each period is bounded so that as the overall number of balls grows the change

in the system’s composition between any two consecutive periods becomes arbitrarily

small. Within each of the regions tN, I,M, Su, our system tznu behaves like a GPU.

To analyze the entire system, we define Piecewise Generalized Polya Urns (PGPUs),

which we analyze by combining results on GPUs with results from BHS that extend

the theory of stochastic approximation to cases where the continuous system is given

by a solution to a differential inclusion rather than a differential equation. Theorem

3 relates the limit behavior of a PGPU to the limit behavior of the associated dif-

ferential inclusion; we use it in the proof of Theorem 2. Section B.3 explains why

the processes tzn;Ru defined in (4) are GPUs and derives the corresponding limit

ODEs. We conclude this appendix with a discussion of unstable steady states for

limit inclusions and a result that we use in the proof of Theorem 2.
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B.1 Definitions and Notation

We begin by introducing some notation and definitions from the literatures on stochas-

tic approximation and generalized urns. Given a vector w P R2 define |w| “ |w1|`|w2|.

Let tznu “ tpz1n, z
2
nqu be a homogeneous Markov chain with state space Z2

` (Z` are

all the non-negative integers). Let Π : Z2
` ˆ Z2

` Ñ r0, 1s denote its transition kernel,

Πpz, z1q “ Ppzn`1 “ z1|zn “ zq. We interpret the process as an urn model, with zin

the number of balls of color i at time step n. We now define two types of stochastic

processes. Definitions 1 and 3 are taken from Benaim, Schreiber, and Tarres (2004)

(similar definitions appear in Schreiber (2001)).20

Definition 1. A Markov process tznu as above is a generalized Polya urn (GPU) if:

i. Balls cannot be removed and there is a maximal number of balls that can be

added, that is: For all n: z1n`1 ě z1n, z
2
n`1 ě z2n and there is a positive integer m

such that |zn`1 ´ zn| ď m.

ii. For each w P Z2
` with |w| ď m there exist Lipschitz-continuous maps pw : r0, 1s Ñ

r0, 1s and a real number a ą 0 such that

ˇ

ˇ

ˇ

ˇ

pw
ˆ

z1

|z|

˙

´ Πpz, z ` wq

ˇ

ˇ

ˇ

ˇ

ď
a

|z|

for all nonzero z P Z2
`.

We focus on the dynamics of the distribution of colors in the urn, and in particular

the asymptotic distribution. In the two-color case considered here this means tracking

the share of balls of color 1 (i.e., true stories), which we denote by yn “
z1n

|zn|
. A key

observation is that tynu is a stochastic approximation process, as defined below.

Definition 2. Let txnu be a stochastic process in r0, 1s adapted to a filtration tFnu.

We say that txnu is a (one dimensional) stochastic approximation if for all n P N:

xn`1 ´ xn “ γn pgpxnq ` ξn`1 ` Rnq , (10)

where γn are non-negative with γn Ñ 0,
ř

n γn “ 8, g is a Lipschitz function on R,
20Their definitions allow for more than two colors and for the possibility of balls being removed,

but we focus on the two color case without removal of balls.
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Erξn`1|Fns “ 0 and the remainder terms Rn P Fn go to zero and satisfy
ř8

n“1
|Rn|

n
ă 8

almost surely.

The function g is often called the limit ODE, because the limit of a stochastic

approximation process txnu can be related to the limits of solutions to the continuous

deterministic system dx
dt

“ gpxq.21Schreiber (2001) and Benaim, Schreiber, and Tarres

(2004) provide a formula for the limit ODE for a GPU and prove that with this limit

ODE the sequence tynu of the share of balls of color 1 is a stochastic approximation

process. Since we will later consider a system that includes several GPUs we introduce

the notation tzn;ku to refer to a general GPU.

Definition 3. For a GPU tzn;ku with corresponding maps pwk , the corresponding limit

ODE is dy
dt

“ gkpyq where gk : r0, 1s Ñ r0, 1s is given by

gkpyq “
ÿ

wPZ2

pwk pyq
`

w1
´ y|w|

˘

. (11)

B.2 Stochastic Approximation of PGPU’s

We extend the literature on GPUs to concatenations of a finite number of GPUs.

Definition 4. A Markov process tznu with transition kernel Π is a piecewise gener-

alized Polya urn (PGPU) if there exists a finite number of GPUs ttzn;kuuKk“1 (each

with kernel Πk), a finite integer K, and an interval partition tIkuKk“1 of r0, 1s, such

that for all z1, if z1

|z|
P intpIkq then Πpz, z1q “ Πkpz, z1q.22

The next definition presents the analog of a limit ODE for a PGPU, which is no

longer a differential equation but a differential inclusion, i.e., a set valued function.

Definition 5. For a PGPU tznu we define the limit differential inclusion to be dy
dt

P

21The random shocks average out from the martingale LLN and the limit of the deterministic
difference equation xn`1 ´ xn “ γngpxnq can be approximated by the ODE.

22Note that we allow for an arbitrary law of motion Πpz, z1q for z such that z1

|z|
“ maxpIkq “

minpIk`1q, i.e, when the share of balls of color 1 is the boundary of an interval. The systems we
consider will arrive at such states z with probability zero.
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F pyq where

F pyq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

tgkpyqu, y P intpIkq

tg1p0qu, y “ 0

tgKp1qu y “ 1

rmintgkpyq, gk`1pyqu,maxtgkpyq, gk`1pyqus, y “ maxpIkq, 1 ď k ă K

Henceforth, we fix a PGPU tznu comprised of GPUs ttzn;kuuKk“1, with share of

balls of color 1 denoted yn “
z1n

|zn|
and let

dy

dt
P F pyq (12)

be the associated differential inclusion. In order to apply results from BHS, we need

to verify that the paper’s standing assumptions on the inclusion hold. These are:

BHS Standing Assumptions. 1. F has a closed graph.

2. F pyq is non empty, compact, and convex for all y P r0, 1s.

3. There exists c ą 0 such that for all y P r0, 1s, supxPF pyq |x| ď cp1 ` |y|q.

Lemma 6. The inclusion (12) satisfies the standing assumptions in BHS.

Proof. Assumptions 1 and 2 follow immediately from Definition 5. Assumption 3

follows from the fact that the gkpyq are continuous functions defined over compact

sets. Since K is finite there exists some c ą 0 such that |gkpyq| ď c for all y P r0, 1s

and all k P t1, ..., Ku, and so for any y P r0, 1s: supxPF pyq|x| ď c ď cp1 ` |y|q.

To relate the limiting behaviors of yn to the solutions to the differential inclusion

12, define the piecewise affine interpolation of yn by

Yptq “ yn `
t ´ τn
γn`1

pyn`1 ´ ynq, t P rτn, τn`1s, (13)

where τ0 “ 0, τn`1 “ τn ` 1
|zn|

, and γn`1 “ 1
|zn|

.

Definition 6. A continuous function Y : r0,8q Ñ R is a perturbed solution to 12

(we also say a perturbed solution to F ) if it is absolutely continuous, and there is a

locally integrable function t ÞÑ Uptq such that
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• limtÑ8 sup0ďhďT |
şt`h

t
Upsqds| “ 0 for all T ą 0

• dYptq
dt

´ Uptq P F pYptqq for almost every t ą 0.

We now show that the continuous time version of yn is a bounded perturbed

solution to (12) and then complete our characterization of the limit of yn by applying

a result in BHS that characterizes the limit sets of perturbed solutions. The next

lemma, which relates PGPUs to their corresponding limit inclusions, is an analog

to results in Benaim, Schreiber, and Tarres (2004) and Schreiber (2001) that relate

GPUs to their limit ODEs.

Lemma 7. Let tznu be a PGPU and (12) its limit differential inclusion, and let Y

be the associated interpolated process given by (13). Then Y is a bounded perturbed

solution to F .

Proof. Since Y is piecewise affine, it is continuous and differentiable almost every-

where and hence absolutely continuous. Define t ÞÑ Uptq by

Uptq “
yn`1 ´ yn
γn`1

´ F̃ pYptqq t P rτn, τn`1s,

where the function F̃ : r0, 1s Ñ R is such that for every y P r0, 1s: F̃ pyq P F pyq. Note

that dY(t)
dt

“
yn`1´yn
γn`1

for t P rτn, τn`1s , so dY(t)
dt

´ Uptq “ F̃ pYptqq P F pYptqq. It

remains to show limtÑ8 sup0ďhďT |
şt`h

t
Upsqds| “ 0 for all T ą 0. For this, we invoke

the following theorem:23

Theorem 2.2 (Schreiber (2001)). Let tzn;ku be a GPU. Let ϕk be the flow of the

limit ODE, andYk
ptq the piecewise affine interpolation. On the event tlim infnÑ8

|zn;k|

n
ą

0u, Yk
ptq is almost surely an asymptotic pseudotrajectory for ϕk. In other words for

any T ą 0

lim
tÑ8

sup
0ďhďT

|Yk
pt ` hq ´ ϕk

pYk
ptq, hq| “ 0.

Fix T ą 0 and 0 ď h ď T . Consider
şt`h

t
Upsqds. On the event Ypsq P Ik for all

23Schreiber (2001) states the theorem for piecewise constant interpolations, but it also applies to
piecewise affine interpolations.
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s P rt, t ` hs we have

ż t`h

t

Upsqds “

ż t`h

t

ˆ

dYpsq

ds
´ F̃ pxq

˙

ds “

ż t`h

t

ˆ

dYk
psq

ds
´
dϕkpYpsq, sq

ds

˙

ds

“ Yk
pt ` hq ´ Yk

ptq ´
`

ϕk
pYptq, hq ´ ϕk

pYptq, 0q
˘

“ Yk
pt ` hq ´ ϕk

pYptq, hq.

(14)

Since by Definition 4 a PGPU has a finite number of partition intervals Ik, in the

interval rt, t ` hs the interpolation Y(t) transitions between intervals Ik a finite a

number of times. Thus,

ż t`h

t

Upsqds “

M
ÿ

j“1

“

Ykjptjq ´ ϕkjpYptj´1q, hjq
‰

,

where M ą 0 is some integer; t “ t0 ă t1 ă ... ă tM “ t ` h; hj “ tj ´ tj´1, and

kj P 1, ..., K for all 1 ď j ď M .24 Thus, from Schreiber (2001)’s Theorem 2.2 above,

lim
tÑ8

sup
0ďhďT

|
ż t`h

t

Upsqds| ď

M
ÿ

j“1

ˆ

limtÑ8 sup
0ďhďT

|Ykjptjq ´ ϕkjpYptj´1q, hq|
˙

“ 0.

We are now ready to prove Theorem 3. The proof combines the previous results with

a direct application of the following theorem:

Theorem 3.6 (BHS). Let x be a bounded perturbed solution to F . Then, the

limit set of x, Lpxq “
Ş

tě0 txpsq : s ą tu is internally chain transitive in the sense of

BHS.25

Theorem 3. Let tznu be a PGPU, tynu the share of balls of color 1 and F the associ-

ated limit differential inclusion. Then the limit set of tynu, Lpynq “
Ş

mą0 tyn : n ą mu,

is almost surely chain transitive for F .

Proof. By Lemma 7, the interpolation Y is a perturbed solution to F . Note that

it is also bounded since Yptq P r0, 1s for all t ě 0. Thus, Theorem 3.6 in BHS

implies that the limit set of Y is internally chain transitive for F . Note that the

24Note that pM, ptjqMj“0, phjqMj“1, pkjqMj“1q is a random vector.
25BHS extend the standard definition to differential inclusions.
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asymptotic behaviors of Yptq and yn are the same by the definition of interpolation,

i.e., Lpynq “ LpYq, which completes the proof.

B.3 The GPUs tzn;Ru

We now explain why the processes tzn;Ru as defined in (4) are GPUs and derive the

formula for their limit ODEs.

Lemma 8. For each region R P tN, I,M, Su, tzn;Ru is a GPU with limit ODE given

by (6).

Proof. Let R be one of the four possible regions. To show that tzn;Ru is a GPU we

need to verify the conditions of Definition 1. Condition i) follows directly from (4),

with the upper bound m “ 1 ` κ ` ρ. For condition ii), let w1 “

˜

1 ` ρ

κ

¸

, w2 “

˜

1

κ ` ρ

¸

, w3 “

˜

1

κ

¸

, and let pTRpyq, pFRpyq, 1´pTRpyq´pFRpyq respectively be the maps

pw corresponding to these vectors. By (3) all three maps are Lipschitz-continuous.

Let ΠR denote the transition kernel for tzn;Ru. By the law of motion (4), for any

w P tw1, w2, w3u and for any z P Z2
`: ΠRpz, z`wq “ pw

´

z1

|z|

¯

. Since ΠRpz, z`wq “ 0

for any w R tw1, w2, w3u, condition ii) is satisfied.26

Next, (11) together with (3) and (4), implies that the ODE associated with the

GPU tzn;Ru is

gRpyq “ pTRpyqp1 ` ρ ´ yp1 ` ρ ` κqq ` pFRpyqp1 ´ yp1 ` ρ ` κqq

` p1 ´ pTRpyq ´ pFRpyqqp1 ´ yp1 ` κqq.

Rearranging the above equation gives gRpyq “ 1`pTRpyqρ´y
`

1 ` κq ` ρ
`

pTRpyq ` pFRpyq
˘˘

,

as in (6).

26Note that we do not use the additional flexibility in Definition 1, which does not require that

ΠRpz, z ` wq be equal to pw
´

z1

|z|

¯

but only that it converges to it sufficiently quickly as |z| Ñ 8.
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B.4 Unstable Steady States

Consider a PGPU tznu, comprised of GPUs tzn;kuKk“1 with associated intervals Ik,

where gk is the RHS of the limit ODE for GPU tzn;ku. Let yn;k “
z1n;k

|zn;k|
. Recall that

yn “
z1n

|zn|
and that the LDI for this PGPU is given by (12). In this subsection, we

apply a result in Pemantle (2007) to prove that if ψ is an unstable steady state for the

LDI, then under a condition on the noise in the stochastic system, Ppyn Ñ ψq “ 0.27

We now add the following assumption, which is satisfied by the PGPU in our model:

Assumption 3. Each of the limit ODEs dy
dt

“ gkpyq has a globally stable steady state

y˚
k P r0, 1s.

Assumption 3 implies that the only possible unstable steady states for the LDI

are the thresholds between the intervals Ik. Define these these as ŷk “ maxtIku for

k “ 1, . . . , K. Finally, let Fn be the σ-algebra generated by pz1, ..., znq, let ξn`1 “

pyn`1 ´ yn ´ Eryn`1 ´ yn|znsq|zn| and denote ξ`
n “ maxt0, ξnu, ξ´

n “ ´mint0, ξnu.

Theorem 4. Let ŷk be the threshold between intervals Ik, Ik`1 and assume that ŷk is

an unstable steady state for the LDI. If there exist ϵ, r ą 0 such that for all n P N:
Erξ`

n |Fns ą r if yn P pŷk ´ ϵ, ŷk ` ϵq, then Ppyn Ñ ŷkq “ 0.

The proof applies the following result:

Theorem 2.9 (Pemantle (2007)). Suppose txnu is a stochastic approximation

process as defined in Definition 2 except that g need not be continuous. Assume

that for some p P p0, 1q and ϵ ą 0: signpgpxqq “ ´ signpp ´ xq for all x P pp ´ ϵ, p `

ϵq. Suppose further that the martingale terms ξn in the stochastic approximation

equation (10) are such that Erξ`
n`1|Fns,Erξ´

n`1|Fns are bounded above and below by

positive numbers when xn P pp ´ ϵ, p ` ϵq. Then Ppxn Ñ pq “ 0.

Proof of Theorem 4.

27See Section 4.2.1 for definitions of stable and unstable steady states for the LDI
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Define the function g : r0, 1s Ñ R. By

gpyq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

gkpyq, y P intpIkq

g1p0q, y “ 0

gKp1q y “ 1

gkpyq y “ maxpIkq, 1 ď k ă K

Recall that ξn`1 “ pyn`1 ´ yn ´ Eryn`1 ´ yn|znsq|zn|, and let

Rn “ |zn|Eryn`1 ´ yn|zns ´ gpynq.

Then ξn, Rn are adapted to Fn, Erξn`1|Fns “ 0 and

yn`1 ´ yn “
1

|zn|
pfpynq ` ξn`1 ` Rnq (15)

By Lemma 1 in Benaim, Schreiber, and Tarres (2004), and the fact that yn follows

the same law of motion as yn;k when yn P intpIkq, there exists a real number K ą 0

such that |Rn| ď K
|zn|

. Thus,
ř8

n“1
|Rn|

n
ă 8, so tynu is a stochastic approximation.

By the same Lemma, |ξn| ď 4m where m is the maximal number of balls added

in each period. This implies that Erξ`
n |Fns,Erξ´

n |Fns are bounded from above by

4m. To apply Theorem 2.9, it remains to prove that Erξ`
n |Fns,Erξ´

n |Fns are bounded

from below by a positive number when yn P pŷ ´ ϵ, ŷ ` ϵq. From ξn “ ξ`
n ´ ξ´

n and

Erξn|Fns “ 0, it follows that Erξ`
n |Fns “ Erξ´

n |Fns so it suffices to find a positive

lower bound for Erξ`
n |Fns when yn P pŷ ´ ϵ, ŷ ` ϵq and, by assumption, r ą 0 is such

a lower bound.

Appendix C: Comparative Statics

The following three theorems summarize comparative statics with respect to all pa-

rameters for the quasi steady states y˚
S, y

˚
I , y

˚
M .

Theorem 5. The quasi steady state y˚
S is increasing in ρ, µ, and λ and decreasing in

κ and β. There exists θS P p0, 1s (whose value depends on the other parameters) such
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that y˚
S is decreasing in θ for θ ă θS and increasing in θ for θ ą θS. y

˚
S is decreasing

in δ for δ sufficiently close to 1
2
and increasing in δ for δ sufficiently close to 1.

Proof of Theorem 5. Let r0 “ pρ0, κ0, θ0, µ0, β0, δ0, λ0q be a vector of parameters

and consider gSpyq as a function Gpy, rq : R8 Ñ R. Let y˚
0 P p0, 1q be the unique

y P r0, 1s that solves

Gpy˚
0 , r0q “ 0. (16)

Lemma 4 implies that Gpy, r0q ą 0 for y ă y˚
0 and Gpy, r0q ă 0 for y ą y˚

0 so it must

be the case that Gypy˚
0 , r0q ď 0. Moreover, it cannot be the case that Gypy˚

0 , r0q “ 0

because that would imply that y˚
0 is a local maximum for Gyp¨, r0q while the proof of

Lemma 4 shows that the second derivative of this function (the third derivative w.r.t

y of Gpy, r0q) is strictly positive over r0, 1s, so Gypy˚
0 , r0q ă 0.

Since Gpy˚
0 , r0q “ 0 and Gypy˚

0 , r0q ‰ 0, by the implicit function theorem equation

16 defines a function y˚
Sprq : R7 Ñ R in some neighborhood of r0, such that y˚

Sprq is

the unique steady state of the ODE dy
dt

“ gSpyq in r0, 1s, and

∇y˚
Spr0q “ ´

1

Gypy˚
0 , r0q

∇rGpy˚
0 , r0q (17)

Furthermore, since Gypy˚
0 , r0q ă 0, for all x P pρ, κ, θ, µ, β, δ, λq: signp

dy˚pr0q

dx
q “

signpGxpy˚
0 , r0qq. Plugging the probabilities pTS , p

F
S from (3) into (6) and rearranging

we have,

Gpy, rq “ 1 ` pρp1 ´ θq ´ 1 ´ κqy ´ ρp1 ´ ρqy2

`
ρypθp1 ´ yqq2

β

ˆ

p1 ´ δq2λµ

y ` 2p1 ´ yqp1 ´ δq
`
δ2pλµ ´ p1 ´ λqq

y ` 2δp1 ´ yq

˙

.

We now solve for the sign of each of the partial derivatives of G.

ρ: Gρpy, rq “ p1 ´ θqyp1 ´ yq `
ypθp1´yqq2

β

´

λµp1´δq2

y`2p1´yqp1´δq
`

δ2pλµ´p1´λqq

y`2δp1´yq

¯

ą 0.

θ: Gθpy, rq “ ρyp1 ´ yq

´

2p1´yqθ
β

´

p1´δq2λµ
y`2p1´yqp1´δq

`
δ2pλµ´p1´λqq

y`2δp1´yq

¯

´ 1
¯

.

So Gθpy, rq ą 0 if and only if,

θ ą
β

2p1 ´ yq

˜

1
p1´δq2λµ

y`2p1´yqp1´δq
`

δ2pλµ´p1´λqq

y`2δp1´yq

¸

.

Note that the RHS is always positive, so that for sufficiently small θ, y˚
S is decreasing
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in θ. However, it is possible that the RHS is below 1 so that for large values of θ the

relationship reverses. See Appendix D for an example.

κ: Gκpy, rq “ ´y ă 0.

µ: Gµpy, rq “
ρypθp1´yqq2

β

´

p1´δq2λ
y`2p1´yqp1´δq

` δ2λ
y`2δp1´yq

¯

ą 0.

β: Gβpy, rq “ ´
ρypθp1´yqq2

β2

´

p1´δq2λµ
y`2p1´yqp1´δq

`
δ2pλµ´p1´λqq

y`2δp1´yq

¯

ă 0.

δ: Gδpy, rq “
2ρypθp1´yqq2

βpy`2δp1´yqq
2

´

p2δ´1qλµy2

py`2p1´yqp1´δqq
2 ´ δp1 ´ λqpy ` δp1 ´ yqq

¯

.

So fixing all parameters except δ we have signGδpy, rq “ signpspy, δqq where

spy, δq :“ p2δ ´ 1qλµy2 ´ py ` 2p1 ´ yqp1 ´ δqq
2 δp1 ´ λqpy ` δp1 ´ yqq.

Note that spy, 1{2q “ ´
p1´λqp1`yq

4
ă 0, and spy, 1q “ y2 pλµ ´ p1 ´ λqq ą 0, so y˚

S is

decreasing in δ for small values of δ and increasing in δ for large values of δ (recall

that we assume δ ě 1
2
).

λ: Gλpy, rq “
vypqp1´yqq2

β

´

p1´δq2h
y`2p1´yqp1´δq

`
δ2p1`hq

y`2δp1´yq

¯

ą 0.

Theorem 6. The quasi steady state y˚
I is increasing in µ and λ and decreasing in

κ, β, and δ. y˚
I is increasing in ρ if 1

2
ą δθ p1 ´ apy, Iqq and decreasing in ρ when the

sign is reversed, and both cases can arise in region I. There exists θI P p0, 1s (whose

value depends on the other parameters) such that y˚
I is decreasing in θ for θ ă θI and

increasing in θ for θ ą θI .

Proof of Theorem 6. By a similar argument as in the proof of Theorem 5 we

have for all x P pρ, κ, θ, µ, β, δ, λq: signp
dy˚

I pr0q

dx
q “ signpGxpy˚

0 , r0qq where now Gpy, rq

is given by

Gpy, rq “ 1`

ˆ

ρ

ˆ

1

2
´ δθ

˙

´ 1 ´ κ

˙

y´ρ

ˆ

1

2
´ δθ

˙

y2`ρypδθp1´yqq
2 pλµ ´ p1 ´ λqq

βpy ` 2p1 ´ yqδq
.

We now solve for the sign of each of the partial derivatives of G.

ρ: Gρpy, rq “ yp1 ´ yq

”

1
2

´ δθ
´

1 ´
p1´yqδθpλµ´p1´λqq

βpy`2p1´yqδq

¯ı

.

Let spy, rq denote the expression in square brackets. Then signpGρpy, rqq “

signpspy, rqq so y˚
I is increasing in ρ if spy, rq ą 0 and decreasing in ρ if spy, rq ă 0.

In Appendix D we show that both are possible and can occur when y˚
I P I.

θ: Gθpy, rq “ δρyp1 ´ yq

´

2δθp1´yqpλµ´p1´λqq

βpy`2δp1´yqq
´ 1

¯

.
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So, Gθpy, rq ą 0 if and only if

θ ą
βpy ` 2δp1 ´ yqq

2δp1 ´ yqpλµ ´ p1 ´ λqq
.

Note that the RHS is always positive, so that for sufficiently small θ, y˚
I is decreasing

in θ. However, it is possible that the RHS is below 1 so that for large values of θ the

relationship reverses. See Appendix D for an example.

κ: Gκpy, rq “ ´y ă 0.

µ: Gµpy, rq “
ρypδθp1´yqq2λ
βpy`2p1´yqδq

ą 0.

β: Gβpy, rq “ ´ρypδθp1 ´ yqq2
pλµ´p1´λqq

β2py`2p1´yqδq
ă 0

δ: Gδpy, rq “ θρyp1 ´ yq

”

2δθp1´yqpy`δp1´yqqpλµ´p1´λqq

βpy`2δp1´yqq
2 ´ 1

ı

ă 0.

For the inequality, let fpyq “
2δθp1´yqpy`δp1´yqqpλµ´p1´λqq

βpy`2δp1´yqq
2 ´ 1. It suffices to prove

fpyq ă 0 for all y. This follows from fp0q “
θpλµ´p1´λqq

2β
´ 1 ă 0 (by Assumption 2)

and f 1pyq “ ´
2δθypλµ´p1´λqq

βpy`2δp1´yqq
3 ă 0.

λ: Gλpy, rq “
ρypδθp1´yqq2p1`µq

βpy`2δp1´yqq
ą 0.

Theorem 7. The quasi steady state y˚
M is increasing in µ, λ, ρ, and δ and decreasing

in κ and β. There exists θM P p0, 1s (whose value depends on the other parameters)

such that y˚
M is decreasing in θ for θ ă θM and increasing in θ for θ ą θM .

Proof of Theorem 7. By a similar argument as in the proof of Theorem 5 we

have for all x P pρ, κ, θ, µ, β, δ, λq: signp
dy˚

M pr0q

dx
q “ signpGxpy˚

0 , r0qq where now Gpy, rq

is given by

Gpy, rq “ 1 `

ˆ

ρ

ˆ

1

2
´ p1 ´ δqθ

˙

´ 1 ´ κ

˙

y ´ ρ

ˆ

1

2
´ p1 ´ δqθ

˙

y2

`
ρy pp1 ´ δqθp1 ´ yqq

2 λµ

βpy ` 2p1 ´ yqp1 ´ δqq
.

We now solve for the sign of each of the partial derivatives of G.

ρ: Gρpy, rq “ y p1 ´ yq

´

1
2

´ θ p1 ´ δq
´

1 ´
λµp1´yqp1´δqθ

βpy`2p1´yqp1´δqq

¯¯

ą 0.

Indeed, letting spy, rq denote the expression in square brackets, we have signpGρpy, rqq “

signpspy, rqq and spy, rq ą 0 because p1´δq ă 1
2
so spy, rq “ 1

2
´θ p1 ´ δq p1 ´ apy,Mqq ą

0.
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θ Gθpy, rq “ ρy p1 ´ δq p1 ´ yq

´

2λµp1´yqp1´δqθ
βpy`2p1´yqp1´δqq

´ 1
¯

.

So, Gθpy, rq ą 0 if and only if

θ ą
β py ` 2p1 ´ yqp1 ´ δqq

2λµp1 ´ yqp1 ´ δq
.

Note that the RHS is always positive, so that for sufficiently small θ, y˚
M is decreasing

in θ. However, it is possible that the RHS is below 1 so that for large values of θ the

relationship reverses. See Appendix D for an example.

κ: Gκpy, rq “ ´y ă 0.

µ: Gµpy, rq “
ρypp1´δqθp1´yqq

2λ
βpy`2p1´yqp1´δqq

ą 0.

β: Gβpy, rq “ ´
ρypp1´δqθp1´yqq

2λµ
β2py`2p1´yqp1´δqq

ă 0.

δ: Gδpy, rq “ ´θρyp1 ´ yq

”

2p1´δqp1´yqλµθp1´δp1´yqq

βpy`2p1´yqp1´δqq
2 ´ 1

ı

ą 0.

For the inequality, let fpyq “
2p1´δqp1´yqλµθp1´δp1´yqq

βpy`2p1´yqp1´δqq
2 ´1. It suffices to prove fpyq ă

0 for all y. This follows from fp0q “
λµθ
2β

´ 1 ă 0 (by Assumption 2) and f 1pyq “

´
2p1´δqλµθy

βpy`2p1´yqp1´δqq
3 ă 0.

λ: Gλpy, rq “
ρypp1´δqθp1´yqq

2µ
βpy`2p1´yqp1´δqq

ą 0.

To complete our characterization of comparative statics we now address how the

thresholds ŷI , ŷM change with the parameters.

Theorem 8. The thresholds ŷI and ŷM are constant in κ and ρ and increasing in

θ, µ, and β. Additionally, ŷM is decreasing in δ and λ and ŷI is increasing in δ and

λ.

Proof of Theorem 8.

For X P tM, Iu, let r0 “ pρ0, κ0, θ0, µ0, β0, δ0, λ0q be a vector of parameters and

consider V py,Xq as a function, V Xpy, rq : R8 Ñ R (for this proof we use a superscript

to distinguish between the two value functions, and subscripts for partial derivatives).

Recall that ŷI is the unique solution ŷX0 P p0, 1q to

V X
pŷ0, r0q “ 0. (18)

Additionally, recall that by Lemma 2 we have V X
y py, rq ą 0 for X “ M and X “ I.

Since V XpŷX0 , r0q “ 0 and V X
y pŷX0 , r0q ‰ 0, by the implicit function theorem, (18)
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defines a function ŷXprq : R7 Ñ R in some neighborhood of r0 and

∇ŷXpr0q “ ´
1

V X
y pŷX0 , r0q

∇rV
X

pŷX0 , r0q

Furthermore, since V X
y pŷX0 , r0q ą 0, for all m P pρ, κ, θ, µ, β, δ, λq, signp

dŷXpr0q

dm
q “

signp´V X
m pŷX0 , r0qq. We now use the functional forms of V py,Mq and V py, Iq ((8)) to

solve for the sign of each of the partial derivatives of V X . First, it is immediate that

for X “ M, I we have V X
κ py, rq “ V X

ρ py, rq “ 0. The remaining partial derivatives

are:28

V M
θ py, rq “

2λµp1 ´ yqp1 ´ δq

y ` 2p1 ´ yqp1 ´ δq

ˆ

λµθp1 ´ yqp1 ´ δq

β py ` 2p1 ´ yqp1 ´ δqq
´ 1

˙

ă 0,

V I
θ py, rq “

2p1 ´ yqδpλµ ´ p1 ´ λqq

y ` 2p1 ´ yqδ

ˆ

pλµ ´ p1 ´ λqqθp1 ´ yqδ

β py ` 2p1 ´ yqδq
´ 1

˙

ă 0,

V M
µ py, rq “

2λp1 ´ yqp1 ´ δqθ

y ` 2p1 ´ yqp1 ´ δq

ˆ

λµθp1 ´ yqp1 ´ δq

β py ` 2p1 ´ yqp1 ´ δqq
´ 1

˙

ă 0,

V I
µ py, rq “

2λp1 ´ yqδθ

y ` 2p1 ´ yqδ

ˆ

pλµ ´ p1 ´ λqqθp1 ´ yqδ

β py ` 2p1 ´ yqδq
´ 1

˙

ă 0,

V M
β py, rq “ ´

1

β2

ˆ

λµθp1 ´ yqp1 ´ δq

y ` 2p1 ´ yqp1 ´ δq

˙2

ă 0,

V I
β py, rq “ ´

1

β2

ˆ

pλµ ´ p1 ´ λqqθp1 ´ yqδ

y ` 2p1 ´ yqδ

˙2

ă 0,

V M
δ py, rq “

2λp1 ´ yqy

py ` 2p1 ´ yqp1 ´ δqq
2

ˆ

1 ` µθ

ˆ

1 ´
λµθp1 ´ yqp1 ´ δq

β py ` 2p1 ´ yqp1 ´ δqq

˙˙

ą 0,

V I
δ py, rq “

2p1 ´ yqy

py ` 2δp1 ´ yqq2

ˆ

θpλµ ´ p1 ´ λqq

ˆ

pλµ ´ p1 ´ λqqθp1 ´ yqδ

β py ` 2p1 ´ yqδq
´ 1

˙

´ 1

˙

ă 0,

V I
λ py, rq “

2p1 ´ yqδθp1 ` µq

y ` 2p1 ´ yqδ

ˆ

pλµ ´ p1 ´ λqqθp1 ´ yqδ

β py ` 2p1 ´ yqδq
´ 1

˙

ă 0.

(19)

Finally,

V M
λ py, rq “

py ´ 2µp1 ´ yqp1 ´ δqθq

y ` 2p1 ´ yqp1 ´ δq
`

2λ

β

ˆ

µp1 ´ yqp1 ´ δqθ

y ` 2p1 ´ yqp1 ´ δq

˙2

.

28The inequalities in (19) hold because by Assumption 2 and λ ă 1:
λµθp1´yqp1´δq

βpy`2p1´yqp1´δqq
ă

2p1´yqp1´δq

y`2p1´yqp1´δq
ă 1, and pλµ´p1´λqqθp1´yqδ

βpy`2p1´yqδq
ă

2p1´yqδ
y`2p1´yqδ ă 1.
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Recall that V Mpy, rq “
λpy´2µp1´yqp1´δqθq

y`2p1´yqp1´δq
` 1

β

´

λµp1´yqp1´δqθ
y`2p1´yqp1´δq

¯2

. Denote the first sum-

mand in this expression by Cpy, rq and the second by Dpy, rq. Since V MpŷM0 , r0q “ 0

we have ´CpŷM0 , r0q “ DpŷM0 , r0q. Additionally, since Dpy, rq ą 0 for all y, r it must

be the case that CpŷM0 , r0q ă 0. Finally, note that V M
λ pŷM0 , r0q “ 1

λ
CpŷM0 , r0q `

2
λ
DpŷM0 , r0q and since 2

λ
ą 1

λ
ą 0 we have 2

λ
DpŷM0 , r0q ą ´ 1

λ
CpŷM0 , r0q which implies

V M
λ pŷM0 , r0q ą 0.

Appendix D: Online Appendix

Differentiation of the functions apy, Iq and apy,Mq shows that :

Bapy,Mq

By
“ ´

λµp1 ´ δqθ

βpy ` 2p1 ´ yqp1 ´ δqq2
ă 0,

Bapy, Iq

By
“ ´

δθpλµ ´ p1 ´ λqq

βpy ` 2p1 ´ yqδq2
ă 0,

Bapy,Mq

Bθ
“

λµp1 ´ yqp1 ´ δq

βpy ` 2p1 ´ yqp1 ´ δqq
ą 0,

Bapy, Iq

Bθ
“

p1 ´ yqδpλµ ´ p1 ´ λqq

βpy ` 2p1 ´ yqδq
ą 0,

Bapy,Mq

Bδ
“ ´

p1 ´ yqyλµθ

βpy ` 2p1 ´ yqp1 ´ δqq2
ă 0,

Bapy, Iq

Bδ
“

p1 ´ yqyθpλµ ´ p1 ´ λqq

βpy ` 2p1 ´ yqδq2
ą 0,

Bapy,Mq

Bβ
“ ´

λµp1 ´ yqp1 ´ δqθ

β2py ` 2p1 ´ yqp1 ´ δqq
ă 0,

Bapy, Iq

Bβ
“ ´

p1 ´ yqδθpλµ ´ p1 ´ λqq

β2py ` 2p1 ´ yqδq
ă 0,

Bapy,Mq

Bλ
“

µp1 ´ yqp1 ´ δqθ

βpy ` 2p1 ´ yqp1 ´ δqq
ą 0

Bapy, Iq

Bλ
“

p1 ´ yqδθp1 ` µq

βpy ` 2p1 ´ yqδq
ą 0,

Bapy,Mq

Bµ
“

λp1 ´ yqp1 ´ δqθ

βpy ` 2p1 ´ yqp1 ´ δqq
ą 0,

Bapy, Iq

Bµ
“

p1 ´ yqδθλ

βpy ` 2p1 ´ yqδq
ą 0,
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where we use Assumption 1, which implies λµ ´ p1 ´ λq ą 0 to sign the partial

derivatives of apy, Iq.

Below we present numerical examples for claims made in main text. All examples

satisfy our standing parametric assumptions, i.e., all parameters are strictly positive,

satisfy Assumptions 1 and 2, and θ, λ ă 1 and δ P p1
2
, 1q.

D.1 Numerical Examples for Section 4.2.1

For a numerical example that the relationships between y˚
S and y˚

M and between y˚
I

and y˚
N can go both ways fix µ “ β “ κ “ ρ “ 1 and θ “ λ “ 0.75. Calculations

show that y˚
M ă y˚

S for δ Æ 0.745 and y˚
M ą y˚

S for δ Ç 0.745. Additionally, y˚
N ă y˚

I

for δ Æ 0.751 and y˚
N ą y˚

I for δ Ç 0.751. Thus, Lemma 3 is “all we can know”

regarding the ordering of the quasi steady states. Likewise, the relationship between

the thresholds ŷI , ŷM is also undetermined. Calculations with the same parameter

values as above show that ŷI ă ŷM for δ Æ 0.664 and ŷI ą ŷM for δ Ç 0.664.

We now show that both of the configurations that give rise to Case a. of Theorem

1 are possible. For an example where ŷI ă ŷM and y˚
I ă ŷI ă y˚

N , set ρ “ 20, θ “

0.9, κ “ 8, µ “ β “ 1, δ “ 0.65, λ “ 0.55. For an example where ŷI ą ŷM and

y˚
S ă ŷI ă y˚

M set ρ “ 1, θ “ 0.9, κ “ 2.4, µ “ β “ 1, δ “ 0.9, λ “ 0.65. It can be

verified that in both of these examples ŷI is the unique stable steady state of the LDI.

D.2 Numerical Examples for Section 4.3

Non-monotonicity in θ:

We now show that each of the quasi steady states y˚
M , y

˚
S, y

˚
I can be first decreasing

and then increasing in θ when it is a steady state for the LDI (and thus a limit point

for the system). For y˚
S, set ρ “ 0.3, κ “ 1.5, µ “ 0.6, β “ 0.3, δ “ 0.55, and λ “ 0.95.

With these parameters y˚
S is in the sharing region for all θ P p0, 1q and is decreasing

in θ for θ Æ 0.95 and then increasing.

For y˚
M , set ρ “ 1, κ “ 8, µ “ 0.6, β “ 0.3, δ “ 0.9, λ “ 0.95. With these

parameters ŷM ă ŷI for all θ, so the intermediate region is M . Additionally, y˚
M is in

region M for all θ Ç 0.15 (otherwise, y˚
M is in region S), and y˚

M is decreasing in θ

for θ Æ 0.87 and then increasing in θ. So y˚
M is both decreasing and increasing in θ

in region M . Also, for θ Ç 0.16, y˚
S, y

˚
N are also in region M so y˚

M is the unique limit

point of the system.
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Finally, for y˚
I , set ρ “ 0.45, κ “ 3, µ “ 0.6, β “ 0.3, δ “ 0.53, λ “ 0.9. With these

parameters ŷI ă ŷM for all θ so the intermediate region is region I. Additionally, y˚
I

is in region I for all θ Ç 0.85 (in region S for smaller θ), and y˚
I is decreasing in θ

for θ Æ 0.9 and then increasing in θ. So y˚
I is both decreasing and increasing in θ in

region I.

Non monotonicity in δ:

For an example that y˚
S can decrease and then increase in δ when it is a steady

state for the LDI, again set µ “ β “ κ “ ρ “ 1 and θ “ λ “ 0.75. With these

parameters, y˚
S ą maxtŷI , ŷMu for all δ P p1

2
, 1q so that y˚

S is a steady state for the

LDI for any value of δ. Additionally, we find that y˚
S is decreasing in δ for δ Æ 0.727

and increasing in δ for δ Ç 0.727.

Dependence of y˚
I on ρ:

We now show that y˚
I can be either increasing or decreasing in ρ, and both cases

can occur when y˚
I is a limit point. Set θ “ 0.9, κ “ 3, µ “ β “ 1, δ “ 0.8, λ “ 0.55.

With these parameters ŷI ă ŷM so the intermediate region is I (for any value of ρ).

Starting with ρ “ 0 we have that y˚
I is in region I and it is monotonically decreasing in

ρ such that it goes into region N when ρ « 24.5. However, with the same parameter

values but setting δ “ 0.55, the intermediate region is still I and we still have y˚
I P I

for ρ “ 0 but now it is increasing in ρ until and enters region S when ρ « 161.5.

In this example, making false stories more likely to be very interesting reverses the

effect of increasing reach.

D.3 Omitted phase diagrams
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Figure 3: Phase diagrams for the case ŷI ă ŷM ; y˚
I ą y˚

N .

Figure 4: Phase diagrams for the case ŷI ą ŷM ; y˚
S ą y˚

M .
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Figure 5: Phase diagrams for the case ŷI ą ŷM ; y˚
S ă y˚

M .
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