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Abstract
We study the dynamic relationship of school choices across different educational stages.
Using quasi-random middle school assignments in New York City, we show that middle
schools with top quality-review scores cause students to be matched to higher-achievement
high schools, in both level and value-added. A decomposition exercise using a sequential
model of middle and high school choices shows that such effects of middle schools mainly
operate by affecting students’ high school applications rather than high school priorities,
accounting for nearly 80% of the total effect. By mainly changing students’ high school
applications, abolishing eligibility restrictions of top quality-review-scored middle schools
can not only increase the average quality of attended high schools but also narrow the racial
and income disparities in it. Such efficiency and equity gains increase by up to 50% when
combined with similar high school admissions reforms.
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1 Introduction
Throughout their children’s academic journey, households engage with multiple educational

decisions that are dynamically interrelated. For example, a child’s elementary or middle school may
influence which high schools or colleges she aspires to attend and for which she is qualified, and
knowing this, parents often factor in these future consequences when making decisions at earlier
educational stages. This dynamic linkage in households’ decisions underscores the importance
of considering how policies targeting one educational stage may also have consequences on other
stages. Furthermore, it suggests that policies targeting different schooling stages simultaneously
should take potential complementarity or substitutability into account.

We study the dynamic relationship of households’ educational decisions and its implications
for policy evaluation in the context of school choice. School choice is a choice-based tool for
assigning students to schools for which they qualify, involving high-stakes educational decisions
for households. Worldwide, numerous school districts implement centralized school choice across
various education levels.1 This offers exceptional opportunities for in-depth analysis of households’
intertemporal decision-making by generating rich records of households’ choices and assignments
throughout multiple stages. Nevertheless, prior studies have largely focused on studying school
choices one level at a time, leading to a lack of empirical evidence and an appropriate framework.

To address this gap, we ask the following research questions:
1. How does a student’s earlier school choice influence their subsequent school choices?

2. How can educational policies capitalize on this sequentiality to enhance their effectiveness?

We study these questions in the context of NYC public middle and high school choices. We
investigate whether a student’s attended middle school, resulting from her middle school choice,
affects her high school choice outcomes.

Specifically, we quantify the extent to which this effect occurs by causing students to prior-
itize different aspects of high schools, such as value-added (Friedman, 1955; Rothstein, 2006;
Abdulkadiroğlu, Pathak, Schellenberg, and Walters, 2020), rather than by altering their qualifications
for different high schools. Quantifying the relative importance of these two potential channels
of dynamic linkage in school choices is crucial for policy implications, which is facilitated by
the rich administrative data on households’ choices and school admissions rules available in our

1Examples include Baltimore, Boston, Denver, Lee (FL), New York City, Newark, New Orleans, Oakland (CA),
San Francisco in the US, and Chile, England, Hungary, Paris, Taiwan, Turkey and many more.
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context. If student-school match is primarily determined by demand pressure rather than the schools’
admissions rules, any admissions reform targeting only high schools (e.g., affirmative action in
high schools) might only marginally change student-school match. In contrast, efforts to influence
families’ demands could prove more effective in achieving policy goals, whether for efficiency or
equity. Our second question explores the possibility of an admissions reform at an earlier stage as a
means to shape demand pressure in the subsequent school assignment processes.

We start by presenting empirical evidence of the impact middle schools have on students’ high
school applications and assignments. To obtain causal estimates, we leverage the quasi-random
assignments induced by tie-breaking rules applied to applicants who hold identical preferences and
priorities, following Abdulkadiroğlu, Angrist, Narita, and Pathak (2022).

Our two-stage least squares (2SLS) estimates reveal that attending middle schools recognized
as “Well-Developed”—the highest Quality Review Score by the Department of Education and
confirmed to have high value-added in Section 3—significantly causes students to apply to high
schools with better academic performance. Treated students apply to high schools with higher
college matriculation rates by 3 percentage points and with higher value-added by 1.4 percentage
points. Moreover, these high-performing middle schools boost the likelihood of students’ being
assigned to even higher-caliber high schools. Notably, the middle school effects we identify are
more than two times larger than the effects of an information intervention in the same context
conducted by Corcoran, Jennings, Cohodes, and Sattin-Bajaj (2022). This suggests that attending a
high-quality middle school constitutes a more intensive intervention than providing students with
information about proximate high schools’ characteristics.

Motivated by the empirical evidence, we turn to a dynamic framework of school choice. The
model captures two primary channels through which middle schools influence students’ high school
choice outcomes. First, it allows families’ demand for high schools to depend on the middle schools
they attend (the application channel). Second, students’ admissions chances at high schools also
depend on the middle schools they attend (the priority channel). Families take these into account
when applying to middle schools.

Our model innovates upon the static framework commonly employed in the school choice
literature by extending it to a dynamic framework. The main challenge lies in characterizing the
continuation value of attending a particular middle school, i.e., the expected payoff of a student’s
future high school choice that varies across middle schools. To address this challenge, we combine
large market matching theory with the dynamic discrete choice framework. We assume the stability
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of high school assignments—each student is assigned to her most preferred feasible school—which
is justified in a large enough economy (Azevedo and Leshno, 2016; Fack, Grenet, and He, 2019;
Artemov, Che, and He, 2021; Che, Hahm, and He, 2023). This approach enables us to succinctly
characterize the continuation value by interpreting each student’s high school assignment and
feasible schools (both of which depend on her attended middle school) as her choice and choice
set, respectively, as in a standard discrete choice framework. Combined with the distributional
assumption on the idiosyncratic preference shocks, this allows us to utilize techniques from the
dynamic discrete choice literature.

The main objective of estimation is to separately identify middle school effects through the
application channel from the serially correlated unobserved heterogeneity in school demand. To
achieve this, we exploit the panel structure of our middle and high school application data and the
quasi-random variation in middle school assignments. We estimate the model using the expectation-
maximization algorithm with a sequential maximization step (Arcidiacono and Jones, 2003) and
validate model estimates by comparing simulated middle school effects with our reduced-form
estimates.

Using the model, we first show that the effect of middle schools on high school choice outcomes
mainly operates through the application channel. In our decomposition exercise, we alternatively
shut down the application and the priority channel one at a time. Of the average treatment effects of
attending a Well-Developed middle school on the college enrollment rate of assigned high schools,
which is 2.6 percentage points, four-fifths can be attributed solely to the application channel.

Next, we design and evaluate counterfactual policies considering the dynamic relationship
between school choices across different education levels. While any student-school matching is
determined by both households’ demand and schools’ supply of seats, policymakers often find it
challenging to influence the demand side. Consequently, most school choice policies have focused
on reforming only the supply side.2 However, recent evidence suggests that the supply-side-only
interventions minimally change the student-school matching, largely due to the marked heterogeneity
in school demand across students (Oosterbeek, Sóvágó, and van der Klaauw, 2021; Laverde, 2023).
Our reduced-form findings and model estimates suggest that supply-side reforms of middle school
choice, such as changing the admissions rule of middle schools, should influence students’ demand

2For example, Chicago exam schools (Ellison and Pathak, 2021) use an affirmative action policy that prioritizes
students based on the socioeconomic status of the neighborhood they reside in. Recently, Boston exam schools adopted
a similar admissions policy reform (Barry, Ellen, “Boston Overhauls Admissions to Exclusive Exam Schools”, New
York Times, 15 July 2021).
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or application for high schools by altering students’ middle school assignments.
To quantify this, we evaluate a series of admissions reforms by varying the timing of their

implementation. We examine a counterfactual policy in which the city eliminates the geography-
based eligibility criteria for Well-Developed middle schools and/or high-college-enrollment-rate
high schools, which are predominantly concentrated in a few school districts in the city.

To begin with, the high school admissions reform increases the average college enrollment rate
of students’ attended high schools by 1%, and reduces racial and income disparities in it by 4.6%
and 9.7%, respectively. More importantly, the middle school reform results in efficiency and equity
gains of a similar magnitude in high school assignments to those of the high school admissions
reform. Additionally, we find that the two reforms are substitutable; the effects of high school reform
increase by up to 50% when implemented in conjunction with a similar middle school admissions
reform. These findings suggest that policymakers should consider that intervention on the supply
side of an earlier school choice induces changes in the demand side of subsequent school choice
stages. Also, taking into account administrative costs or political burdens, admissions reform at
alternative stages can be utilized to design policies targeting specific stages of school choice.

Related Literature The paper is primarily related to three strands of the literature. First, we
contribute to the school choice literature by explicitly studying the dynamic relationship between
school choice at different educational levels. To this end, we extend the static framework used
in the literature to a dynamic framework of school choices at multiple stages. The literature has
studied the factors that influence the outcomes of school choice, such as the assignment mechanism
(Abdulkadiroğlu, Agarwal, and Pathak, 2017; He, 2017; Agarwal and Somaini, 2018; Calsamiglia,
Fu, and Güell, 2020); information provision (Hastings and Weinstein, 2008; Hoxby and Turner, 2015;
Ajayi, Friedman, and Lucas, 2017; Luflade, 2017; Corcoran, Jennings, Cohodes, and Sattin-Bajaj,
2022; Kapor, Neilson, and Zimmerman, 2020; Grenet, He, and Kübler, 2022; Ainsworth, Dehejia,
Pop-Eleches, and Urquiola, 2023; Campos, 2023); or consideration set (Lee and Son, 2022). A
notable exception is Narita (2018), who studies how families’ underlying demand changes due to
some learning between the main and the supplementary round of NYC’s high school choice system.
We turn our attention to the schools students attend in earlier educational stages, which directly
affect their demand for subsequent schools and admissions chances.3

3In the broader empirical market design literature, several papers have considered dynamics such as on a kidney
waitlist (Zhang, 2010; Agarwal, Ashlagi, Somaini, and Waldinger, 2018; Agarwal, Ashlagi, Rees, Somaini, and
Waldinger, 2021); public housing (Waldinger, 2021); and dynamic college admissions (Larroucau and Rios, 2020b)
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Second, our paper also belongs in the broader literature on the effects of schools on students’
future outcomes. Our paper reveals an important mechanism behind the school effects on longer-run
outcomes studied in prior studies: the subsequent education choices, which we measure by leveraging
rich school application data, are largely determined by earlier education choices. Many researchers
have studied the effects on outcomes such as academic performance, including test scores and
graduation and college outcomes (Altonji, Elder, and Taber, 2005; Hastings and Weinstein, 2008;
Pop-Eleches and Urquiola, 2013; Deming, Hastings, Kane, and Staiger, 2014; Abdulkadiroğlu,
Angrist, and Pathak, 2014) and labor market outcomes, such as occupation or wages (Card and
Krueger, 1992a,b; Betts, 1995; Clark and Bono, 2016), among many others. Meanwhile, we study
the effects of schools on students’ future academic choices in a K-12 context.

Lastly, by drawing on the literature that leverages quasi-experimental features built in school
assignments, we estimate schools’ causal effects on subsequent school choice behavior/assignments,
outcomes that are less studied. Previous studies used lotteries in charter school admissions (Hoxby
and Rockoff, 2004); the tie-breaking features of centralized assignments (Deming, Hastings, Kane,
and Staiger, 2014; Abdulkadiroğlu, Angrist, Narita, and Pathak, 2017, 2022); and test score cutoffs
(Pop-Eleches and Urquiola, 2013; Abdulkadiroğlu, Angrist, and Pathak, 2014). Of these, we adopt
the methodology of Abdulkadiroğlu, Angrist, Narita, and Pathak (2017, 2022).

2 Institutional Background and Data

2.1 Public School Choice in NYC
NYC is one of the largest school districts worldwide that use centralized school choice to assign

students to public schools. School choice starts with 3-year-olds, and students/parents participate
in the choice process at subsequent levels: pre-K, kindergarten, elementary, middle, and high
school. Schools that are part of the centralized choice system are governed and funded by the NYC
Department of Education (DOE).

This paper focuses on middle and high school choices in NYC. The public middle school
system consists of nearly 700 programs at around 500 middle schools. Multiple programs may be
offered in one school. Similarly, the public high school system consists of nearly 800 programs at
around 400 high schools.4 Since the unit of admission is a program instead of a school, we can

among many others.
4Also, there are 9 specialized high schools in NYC, such as Stuyvesant High School or Bronx High School of

Science. We exclude these specialized high schools from our analyses since they have a separate admissions process
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consider each program a separate school. In the following, we use the terms “program” and “school”
interchangeably when there is no risk of confusion.

Both middle and high school systems use the student-proposing deferred acceptance (DA)
algorithm (Gale and Shapley, 1962), which takes students’ applications, schools’ ranking over
students, and the preannounced number of seats as main inputs and produces at most one assignment
for each student (see Appendix A for details).

Students apply to programs by submitting a rank-ordered list (ROL). In middle school choice,
students can rank however many programs they are eligible for. In high school choice, students
can rank up to 12 programs.5Schools rank students by preannounced admissions rules, which
consist of three layers. First, students are considered only by schools they are eligible for. Second,
eligible applicants are classified into a small number of priority groups, such as “students or
residents of Manhattan”. A program considers all students in the higher priority group prior to
any student in lower priority groups. When there is no confusion, we use priority to denote both
eligibility and priority groups. Lastly, schools use tie-breaking rules to decide which applicants
to admit among those in the same priority group. Some programs actively screen students using
nonrandom tie-breakers, constructed from the previous year’s GPA, statewide standardized test
scores, attendance, and punctuality. Other programs break ties using a random lottery that is applied
to each student across all such programs in the same fashion (a single tie-breaking rule). We leverage
the quasi-random assignments that result from these tie-breakers to obtain the effects of middle
schools on high school application and assignment in Section 3. Middle and high school programs
are classified into subgroups depending on details of their admissions method, which is explained in
Appendix A.

Throughout the paper, we focus on the effect of attending “Well-Developed” middle schools,
the highest grading from the NYC DOE Quality Review of schools, on high school choice. The
Quality Review evaluates how well schools are organized to support student learning and teacher
practice. This is the most recent form of a school accountability system that was introduced
in 2007. Experienced educators conduct a 2-day school visit to observe classrooms and speak

using a test called the Specialized High Schools Admissions Test (SHSAT). Similarly, we exclude public charter schools
because they have separate admissions processes outside of the centralized school choice system.

5In this regard, the algorithm used for high school assignment is a modified version of DA with a limit on the
number of choices, which alters the nature of DA (Haeringer and Klijn, 2009; Calsamiglia, Haeringer, and Klijn, 2010).
For example, strategyproofness does not hold. However, we do not rely on the strategyproofness of DA throughout this
paper.
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with school leaders, teachers, students, and parents/caregivers to give feedback and ratings across
30 sub-indicators of the NYC School Quality Rubric. Schools are grouped into four categories
according to the average of schools’ ratings across all sub-indicators: Well-Developed, Proficient,
Developing, and Underdeveloped. We consider end-of-high school academic outcomes as the high
school characteristics of our special interest. Such outcomes include the graduation rate within 4
years, college enrollment rate, PSAT scores, and SAT scores.

Well-Developed status and end-of-high school academic outcomes are good proxies for school
quality. For example, Table 1 demonstrates that the Well-Developed status of middle schools is
highly correlated with students’ baseline characteristics such as mean test scores. Moreover, we find
that Well-Developed middle schools enhance students’ standardized math test scores by 0.18 standard
deviation (Table 3), when we we estimate value-added leveraging quasi-random assignments (see
Section 3 for details on the empirical strategy).

More importantly, those characteristics were the main facts included in the middle and high
school directories, respectively. A school directory is a widely used handbook that provides parents,
students, and teachers with a wide variety of information on schools to help them navigate the
admissions process. Although the Quality Review process continues to be used today, the scores
were not included in the 2017-18 high school directory.

2.2 NYC School Choice Data
Our analysis sample consists of 47,952 students who participated in the middle school (MS)

application process in the academic year 2014-15 and then participated in the high school (HS)
application process in the academic year 2017-18.6 For each student, we have panel data on
their middle school and high school applications/assignments. We focus on the applications and
assignments of the main round of the admission process. Appendix B provides more details on data
sources and sample restrictions.

Table 1 shows that students attending Well-Developed middle schools differ in observable
characteristics from students attending other middle schools, which suggests that students sort into
schools. For example, the average baseline mean student test scores among all middle schools
is -0.11, while it is 0.58 among Well-Developed middle schools. More importantly, the last row
of Panel B shows that while 20% of students attending an average high school graduated from a
Well-Developed middle school, 30% of students attending an average “high-college rate” high school

6Students in our analysis sample have characteristics similar to the whole sample of middle school applicants
(Appendix Table B.1).
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Table 1: Summary Statistics of Middle and High School Program Characteristics
(1) (2) (3) (4)

Variables Mean Std Mean Std

Panel A: Middle School Program All Schools (N=670) Well-Developed (N=150)

Baseline Mean Test Score -0.11 1.10 0.58 1.21
% White 14.17 20.88 23.28 27.51
% Black/Hispanic 70.92 30.51 57.18 35.56
% Free/Reduced-price Lunch 76.09 19.06 68.00 23.01
Cohort Size 98.30 90.67 105.10 92.32
Broadly eligible? 0.06 0.23 0.09 0.29
Use Nonrandom Tie-breaker? 0.40 0.49 0.48 0.50

Panel B: High School Program All Schools (N=745) High-College Rate (N=248)

College Enrollment Rate (%) 58.38 17.13 78.06 7.93
4yr Graduation Rate (%) 73.19 15.98 88.72 7.27
Baseline Mean Test Score -0.20 0.42 0.13 0.41
% White 10.41 15.56 15.28 18.10
% Black/Hispanic 76.58 23.40 66.24 26.93
% Free/Reduced-price Lunch 80.13 15.33 72.72 18.05
Cohort Size 83.04 82.66 110.50 105.30
Broadly eligible? 0.85 0.36 0.86 0.35
Use Nonrandom Tie-breaker? 0.38 0.49 0.59 0.49
Priority to Feeder Schools? 0.14 0.34 0.21 0.41

% From Well-Developed MS 0.20 0.19 0.30 0.24
Note: A high school is considered to have a “high-college rate” if the college enrollment rate of the 2016-17 graduating cohort is greater than the 66th
percentile among all high schools. Schools are labeled as “broadly eligible” if they are open to all students from the borough or the city. Other schools
are open only to students from the district or attendance zone. The test score is a mean of ELA (English Language Arts) and math test scores. We
standardized ELA and math scores, respectively, within each cohort, to have a mean of 0 and a standard deviation of 1. For middle schools, we take
the average test scores of 6th-grade students attending the school. For high schools, we take the average of the 8th-grade test scores of 9th-grade
students attending the school, since students take NYS tests from 3rd and 8th grades.

did so, in which a high school is labeled as “high-college rate” if the 2016-17 graduating cohort’s
college enrollment rate is greater than the 66th percentile among all schools. This pattern suggests
two possibilities. First, students may have consistent tastes for middle and high school program
characteristics.7 Second, which middle school a student attends may change how she applies and
is assigned to high schools. Our aim in the following sections is to explore and distinguish these
possibilities.

Many high schools employ selective admissions criteria that potentially depend on students’
middle schools, which again suggests that students’ middle schools play an important role in
determining their high school priority standings. Fifty-nine percent of high-college rate high schools

7For example, one reason for the consistency could be that geographically close middle and high schools have
similar characteristics, and students usually have the same residential location when they apply to middle and high
school. We control for the borough of residence in Section 3 and the distance to each school in Section 4.
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adopt nonrandom tie-breakers relative to the average of 38% across all high schools. Since one
important factor in nonrandom tie-breakers is students’ middle school academic performance,
nonrandom tie-breakers potentially depend on the middle school students attended. Notably, 21% of
high-college rate high schools also explicitly gave admissions priorities to students who graduated
from certain middle schools, while 14% of all high schools did so.

For interested readers, we present average school characteristics by rank on students’ ROLs of
middle and high schools in Appendix F.1.

3 Effects of Middle Schools on High School Choice
In this section, we aim to estimate the causal effects of middle school attendance on high

school applications and assignments. We first describe our empirical strategy, which uses the
quasi-experimental feature built in the centralized assignment system, and present our empirical
findings.

3.1 Empirical Strategy
Our main identification concern is that students may sort into different middle schools based

on factors unobserved by the researcher, which could simultaneously affect how students choose
high schools and where they are assigned. For example, a student who prefers a high-quality
middle school more than her peers of the same observable characteristics will likely also prefer a
high-quality high school. To deal with this selection issue, we adopt the research design introduced
by Abdulkadiroğlu, Angrist, Narita, and Pathak (2017, 2022), which builds on the quasi-experimental
variation embedded in DA. We briefly explain the empirical strategy below and recommend that
interested readers consult the original papers for details.

Recall that students’ applications, priorities, and tie-breakers—either lotteries or program-
specific nonrandom tie-breakers—are the only factors that determine assignment (see Section 2).
In programs that use lotteries, students’ assignments are random after controlling for student
application and priority (Abdulkadiroğlu, Angrist, Narita, and Pathak, 2017). For programs that
use nonrandom tie-breakers, the concern is that nonrandom tie-breakers might be correlated with
students’ unobserved abilities or preferences, and thus assignments are no longer random even
after controlling for application and priority. To deal with this, Abdulkadiroğlu, Angrist, Narita,
and Pathak (2022) take a nonparametric regression discontinuity approach and exploit a subset
of assignments that are as good as random. Applicants whose composite scores of priority and

10



tie-breaker are in the small neighborhood around the program’s cutoff have a constant risk of clearing
the cutoffs of 1/2 (Proposition 1 of Abdulkadiroğlu, Angrist, Narita, and Pathak, 2022), and hence
their assignments are as good as random.

In practice, we control for the propensity score—the probability of being assigned to treatment
schools—rather than all observed cases of student applications and priorities. This is because there
are as many unique combinations of applications and priorities as the number of students, and the
propensity score reduces the dimension effectively (Rosenbaum and Rubin, 1983). Abdulkadiroğlu,
Angrist, Narita, and Pathak (2022) formally show that DA-generated assignments are independent
of any variables unaffected by the treatment after conditioning on the propensity score.8

The treatment effect of interest, the effect of attending a certain type of middle school, is
estimated from a 2SLS model in which DA assignment is used as an instrumental variable for actual
attendance.

Yi = α0 + βCi +
∑
x

α1(x)di(x) + g(Ri) + δ′Zi + ηi (1)

Ci = α̃0 + γDi +
∑
x

α2(x)di(x) + h(Ri) + τ ′Zi + νi (2)

Equation (1) is our main equation, where β is the treatment effect of interest, and Equation (2) is
the respective first-stage regression. Yi is our outcome of interest and describes student i’s high
school choice behavior or outcomes, and Ci is the treatment variable, which equals 1 if i attended
any Well-Developed middle school and 0 otherwise. Di is the instrumental variable which equals
1 if i was assigned to any Well-Developed middle school and 0 otherwise. We also include Zi,
the vector of student observable characteristics (ELL, ethnicity, FRL, gender, baseline test scores,
and borough of residence) when they were 5th graders—i.e., before applying to middle schools.
di(x) is a dummy variable that equals 1 if i’s propensity score equals x and 0 otherwise, and the set
of parameters α1(x) and α2(x) provide a saturated nonparametric control for all possible values
of the propensity score for the DA assignment Di.9 g(Ri) and h(Ri) are local linear controls for

8It is important to note that propensity scores in this context denote the odds of being assigned to a certain type of
middle school as a function of student application, priority group, and cutoffs, which have an analytic formula. We
can calculate the propensity score for each middle school program for each student without relying on estimating it by
imposing a parametric assumption. Since DA produces at most one assignment for each student, summing the propensity
scores across middle school programs that belong to a certain group yields the propensity score of being assigned to
such a group of middle schools. If a student does not apply to middle schools of a certain group, the propensity score is
zero. Theorem 1 of Abdulkadiroğlu, Angrist, Narita, and Pathak (2022) provides a compact characterization of such
propensity scores using a large market approximation. We provide a simple example of the calculation of the propensity
scores in Appendix C.

9This is possible since the support of the propensity scores is finite. See Abdulkadiroğlu, Angrist, Narita, and
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nonrandom tie-breakers at each program that uses such tie-breakers.10 ηi and νi are error terms in
the main and the first-stage regressions, respectively, and we report robust standard errors.11

To interpret β as causal, we argue that the exclusion restriction holds. That is, after controlling
for propensity scores and nonrandom tie-breakers, DA assignments Di are random and do not affect
outcomes Yi other than by affecting the actual attendance Ci.12 To support this assumption, we
provide balance test results in Appendix F.2. The instrumental variable balances the covariates
of students who are assigned to the treatment middle schools by DA and those who are not, after
controlling for the propensity score and nonrandom tie-breakers among students with non-degenerate
risk of being offered admission (i.e., whose propensity score is in the interval (0, 1) and hence subject
to randomization). Based on the balance test result, our preferred specification in the following uses
non-degenerate risk samples, controlling for propensity scores and nonrandom tie-breakers.13

In the following, we focus on the effect of Well-Developed middle school attendance, although
the quasi-experiment is in principle at each middle school level. That is, we consider Ci =

1(attended any Well-Developed middle school) andDi = 1(assigned to any Well-Developed middle
school). This is not only because Well-Developed status is a salient and good proxy for middle
school quality (Section 2), but also because many middle schools have only a handful of applicants.
Appendix Table F.6 shows that the effects of attending an alternative middle school type, i.e.,
high-score middle schools whose average of 6th-grade students’ standardized test scores is above
the 66th percentile among all schools are very similar to those from our main specification.

Pathak (2022) for more details.
10We include a local linear function for each of 531 types of nonrandom tie-breakers in the data. We also include

a set of dummy variables that corresponds to each nonrandom tie-breaker to deal with students who did not apply
to a school using that nonrandom tie-breaker, or students who applied but whose tie-breakers are far from the cutoff
following Abdulkadiroğlu, Angrist, Narita, and Pathak (2022). We use the IK bandwidth (Imbens and Kalyanaraman,
2012) separately for each program, as suggested by Abdulkadiroğlu, Angrist, Narita, and Pathak (2022).

11According to Abadie, Athey, Imbens, and Wooldridge (2023)’s framework, we observe the population of our
sample and our treatment probability is determined at individual level. Abdulkadiroğlu, Angrist, Narita, and Pathak
(2022) also report robust standard errors for the same reason.

12In principle, controlling the propensity scores {di(x)} is enough for the exclusion restriction by Theorem 1 of
Abdulkadiroğlu, Angrist, Narita, and Pathak (2022). We further control for student characteristics and nonrandom
tie-breakers to get a more precise estimate of the treatment effect β.

13Such sample restriction comes with the cost of losing many observations. We find that students with non-degenerate
risk and those with degenerate risk are quite different: Students with non-degenerate risk on average have higher test
scores and are more likely to be White. This reconfirms that the 2SLS estimates are a local average treatment effect
(LATE). Appendix Figure F.5 presents the mean difference between those with non-degenerate offer risk and degenerate
offer risk.
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3.2 Empirical Results
Table 2 shows that attending a Well-Developed middle school causes students to apply to and be

assigned to high schools with better academic outcomes.14 15 Each panel in the table corresponds
to different high school characteristics as the outcome variable. In columns (1)-(3), we focus on
the characteristics of the top-ranked high school program.16 Column (1) presents OLS estimates,
column (2) presents 2SLS estimates with the full sample, and column (3) presents our preferred
specification—2SLS with the non-degenerate risk sample.

Most importantly, we find that attending a Well-Developed middle school causes students to
apply to high school programs in a way that puts more weight on end-of-high school academic
outcomes (panels A and B) than on student body composition (panels C and D). Students attending
a Well-Developed middle school list high schools with 3.09 percentage points higher college
enrollment rates as their top choices (column (3) of panel A). However, there is no such effect on
the proportion of Whites in top-ranked high schools (column (3) of panel D). Panel B confirms
that students from Well-Developed middle schools apply to high schools with higher value-added
on college enrollment, not only the level of college enrollment rate. Appendix Table F.10 shows
results with other dimensions of high school characteristics (e.g., graduation rate, % Asian), which
confirms that the main results are not driven by the choice of high school characteristics.17 18 19

Next, columns (4)-(6) illustrate that attending a Well-Developed middle school also changes
the assignment outcome, not only the application behavior. Attending a Well-Developed middle

14In Table F.6, we explore the effects of differently-defined treatment—i.e.,attending high-score middle schools,
whose average of 6th-grade students’ baseline test scores is above the 66th percentile across schools. The main story
remains the same.

15We present Well-Developed middle school attendance effects on the length of the application list and the rank of
the assigned school in the Table F.8.

16We present Well-Developed middle school attendance effects on top-three ranked and top-five ranked high school
programs in Table F.7.

17We consider a constant-effects value-added model that controls for students’ lagged test scores (Deming, Hastings,
Kane, and Staiger, 2014; Chetty, Friedman, and Rockoff, 2014a,b). Details are provided in Appendix D.2.

18The panel D shows that OLS overestimates the effects of attending a Well-Developed middle school as one might
be concerned. While students from a Well-Developed middle school apply to high schools with more White students
(column (1) of panel D), 2SLS estimates show that this is not the effect of Well-Developed middle school attendance
(column (3) of the same panel). Rather, it is because students who would apply to those high schools have already
sorted into Well-Developed middle schools.

19The estimates in columns (2) and (3) differ due to changes in estimates of other covariates. The coefficients of
interest for the full sample (in column (2)) vary by whether we control for other covariates, while those with the NDR
sample (in column (3)) remain stable (Table F.11). This is because covariates differ between treated and untreated
students in the full sample even after controlling for the full set of propensity score dummies Appendix F.2. This
confirms the importance of the common support assumption, and in turn, our choice of column (3) as the most preferred
specification.
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Table 2: Well-Developed MS Attendance Effects on HS Application and Assignment
(1) (2) (3) (4) (5) (6)

Characteristics of Top-ranked HS Assigned HS

Model OLS 2SLS 2SLS OLS 2SLS 2SLS
Sample All All NDR All All NDR

Panel A: College Enrollment Rate (%)
From Well-Developed MS 1.120*** 1.820*** 2.961*** 2.118*** 3.851*** 4.628***

(0.139) (0.508) (0.616) (0.156) (0.560) (0.678)
N 44489 44489 6320 42055 42055 5975
R2 0.275 0.310 0.441 0.259 0.301 0.419
ȳ 73.724 73.724 76.096 66.325 66.325 69.040

Panel B: Value-added on College Enrollment Rate (%)
From Well-Developed MS -0.218* 0.762* 1.378*** 0.262** 1.959*** 2.481***

(0.088) (0.325) (0.396) (0.101) (0.375) (0.451)
N 44401 44401 6311 42126 42126 5985
R2 0.049 0.091 0.246 0.040 0.088 0.249
ȳ 2.748 2.748 3.381 1.164 1.164 2.335

Panel C: % High-Baseline-Score 9th-Graders
From Well-Developed MS 2.034*** 2.606** 2.480* 2.480*** 3.146*** 2.568**

(0.245) (0.858) (1.045) (0.210) (0.745) (0.847)
N 45081 45081 6393 43019 43019 6097
R2 0.342 0.392 0.547 0.363 0.420 0.546
ȳ 43.914 43.914 46.963 33.040 33.040 35.797

Panel D: % White
From Well-Developed MS 2.137*** 1.731** -0.242 3.119*** 1.778*** -0.321

(0.163) (0.569) (0.614) (0.152) (0.520) (0.532)
N 45081 45081 6393 43019 43019 6097
R2 0.444 0.507 0.603 0.523 0.581 0.657
ȳ 19.129 19.129 20.657 14.833 14.833 16.394

First-stage F-stat 411.74 287.42 411.74 287.42
Note: Each panel presents Well-Developed MS attendance effects on different characteristics of high schools that students first-ranked (columns
(1)-(3)) or are assigned to (columns (4)-(6)). To construct the outcome in Panel C, we define students to be high-baseline-score if their standardized
NYS test score is above the 66th percentile. In columns (3) and (6), we restrict the sample to students with non-degenerate risk of being offered (i.e.,
whose propensity score is in the interval (0, 1) and hence subject to randomization) from any Well-Developed middle school. Robust standard errors
are in parentheses. All regressions control for student ethnicity, gender, English Language Learner status, Free/Reduced-price Lunch eligibility,
Special Education status, standardized test score in 5th grade, and residential borough in 5th grade. Columns (2)-(3) and (5)-(6) control for dummy
variables for all possible values of propensity score of being assigned to a Well-Developed MS, and local linear control for nonrandom tie-breakers.
+p<0.1, *p<0.05, **p<0.01, ***p<0.001.

school changes the level and the value-added of college enrollment rate of assigned high schools, by
4.60 and 2.48 percentage points, respectively (column (6)). Notably, when compared to column (3),
the effect is larger on the characteristics of assigned programs than on that of top-ranked programs.
Since a student’s school assignment is determined by not only her application but also priority
standings at each school, this implies that attending a Well-Developed middle school changes
not only how students value different programs but also how a student is ranked by programs in
admissions. We also present more direct evidence that students’ priority standings at high schools
on their application lists improve by attending a Well-Developed middle school in the Table F.9.
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Accordingly, our model in Section 4 includes a channel through which middle schools affect students’
priority standings in high school admissions.

One potential channel for the effects in Table 2 is that Well-Developed middle schools increase
students’ test scores. For example, attending Well-Developed middle schools increases students’
standardized math test scores by 0.18 standard deviation (Table 3). This not only puts students
in a better position for admissions20 but may also affect their applications, as has been widely
documented in the literature that students put different weights on school characteristics based on
their own test scores (e.g., Abdulkadiroğlu, Agarwal, and Pathak, 2017).

Table 3: Well-Developed MS Attendance Effects on Test Score
(1) (2) (3)

Model OLS 2SLS 2SLS
Sample All All NDR

Panel A: 8th Grade Z-Math Score
From Well-Developed MS 0.136*** 0.199*** 0.182***

(0.031) (0.033) (0.042)
N 32841 32841 4573
R2 0.573 0.592 0.686
ȳ 0.040 0.040 0.141

Panel B: 8th Grade Z-ELA Score
From Well-Developed MS 0.071*** 0.069** 0.037

(0.018) (0.025) (0.030)
N 43353 43353 6124
R2 0.610 0.623 0.685
ȳ 0.096 0.096 0.214

First-stage F-stat 411.74 287.42
Note: Robust standard errors are in parentheses. In column (3), we restrict the sample to students with non-degenerate risk of being offered (i.e.,
whose propensity score is in the interval (0, 1) and hence subject to randomization) from any Well-Developed middle school. All regressions control
for student ethnicity, gender, English Language Learner status, Free/Reduced-price Lunch eligibility, Special Education status, standardized test score
in 5th grade, and residential borough in 5th grade. Columns (2)-(3) control for saturated dummy variables for all possible values of propensity score
of being assigned to a Well-Developed MS, and local linear controls for nonrandom tie-breakers. +p<0.1, *p<0.05, **p<0.01, ***p<0.001.

However, appendix Table F.12 shows that additionally controlling for end-of-middle-school test
scores barely changes the main treatment effect of attending Well-Developed middle schools. We
take this as suggestive evidence that middle schools affect students’ high school application behavior
through other channels beyond the evolution of test scores. Notably, since end-of-middle-school test
score is an endogenous variable determined after middle school assignments, this is a “bad control”

20Table F.9 shows that Well-Developed middle schools cause students’ priority scores for a high school to be higher.
Well-Developed middle schools change priority scores not only based on test scores, but also on punctuality, GPA, and
middle-school-based priority groups.
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(Angrist and Pischke, 2009). Thus, we turn to a structural model to decompose the channels of
middle school effects in which the model includes a separate channel through which middle schools
affect students’ high school application beyond the evolution of test scores.

To put our findings in context, we compare our estimates with those of Corcoran, Jennings,
Cohodes, and Sattin-Bajaj (2022). They conducted a school-level randomized trial in which students
attending treated middle schools were provided with information on proximate high schools, such as
whether the graduation rate of the school is below the city median (75%). While treated students
did not list high schools with higher graduation rates in their top 3 choices, they avoided high
schools with low graduation rates (<70%) and their within-application variability in graduation
rates decreased. Consequently, treated students were matched to high schools with 1.5 pp higher
graduation rates. Our estimates of the Well-Developed middle school attendance effect are larger;
students attending a Well-Developed middle school apply to high schools with a 1.8 pp higher
graduation rate (p<0.01) and are assigned to schools with 3.4 pp higher graduation rate (p<0.01)
(Appendix Table F.10).

We attribute this to the fact that our treatment, attending a Well-Developed middle school, can
be viewed as a more intensive intervention. For example, middle schools may directly change
students’ intrinsic tastes for high schools, not only provide students with certain information about
high schools. Students attending Well-Developed middle schools may acquire more information on
the high school choice process itself, beyond the characteristics of high schools nearby. Middle
schools also shape students’ academic outcomes differently, which affects how students weigh
various aspects of high schools as well as how students are ranked by high schools.

4 A Dynamic Model of Middle and High School Choices
We now turn to a two-period dynamic model of middle and high school choices. The first period

corresponds to middle school applications and assignments, and the second period to high school
applications and assignments.

Our findings in Section 3 can be summarized in two points. First, a student’s attended middle
school affects her high school application, beyond what can be explained through the change in
end-of-middle-school test scores. Second, the treatment effect is larger in magnitude for assignments
than for applications, which suggests that there is an additional role middle schools play through the
change in students’ priority standings for each high school. We incorporate these findings in our
model using the following three key features.
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First, the model explicitly allows students’ demand for high schools that underlie their applications
to depend on the middle school they attend (application channel). Students’ test scores may change
by attending middle schools with different effectiveness, and students may put more/less weight on
some high school characteristics depending on their academic preparedness (Hastings, Kane, and
Staiger, 2005; Abdulkadiroğlu, Agarwal, and Pathak, 2017). Furthermore, our model allows for
the possibility that middle schools could also change students’ high school applications through
channels other than test scores.

Second, how a student is prioritized by each high school program for admissions also depends
on the middle school she attended (priority channel). Attending different middle schools may result
in different end-of-middle-school test scores, which in turn affects students’ admissions chances
at high school programs that use test scores for admissions. In addition, some high schools give
eligibility/priority depending on which middle school a student attends (Table 1).21

Third, students may be forward-looking: They may consider those application and priority
channels when they apply to middle schools. More concretely, students form expectations on
how they will benefit in the high school choice process from attending a particular middle school,
which in turn affects how they value different middle school programs. Note that while it is not
standard to model changes in demand over time, we view our model as capturing the shift in
decision-making authority from parents to students between middle and high school choice, i.e.,
knowing that their children will be in charge of the decision in 3-years, parents apply to middle
schools while considering how their children’s demand will be shaped by middle schools. Although
it goes beyond the scope of this paper to fully model the within-household decision, previous studies
have documented that the interaction between parent and child plays an important role in educational
choices (Giustinelli, 2016).

The need for a model is twofold. First, students’ school assignments are determined as an
equilibrium outcome; how all students act jointly determines the assignments. The effect we
identified in the previous section is marginal for each treated student. We aim to examine the effects
of counterfactual admissions policies and how they interact across schooling levels, which will
trigger a change in the behavior of all students, and in turn, change the equilibrium. Second, having
identified the effects of middle schools on high school choice, we are also interested in exploring
how these effects occur. A model is useful for decomposing the channels through which middle

21Since schools rank students by preannounced admission rules, we assume that schools are passive players, as is
typical in the literature. This in turn enables us to separately identify the application channel from the priority channel.
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schools affect high school choice and quantifying each channel’s relative importance.
It is useful to define a few terms before describing our theoretical framework. Intrinsic priority

is each student’s priority at each program that is known exante (e.g., the priority group a student
belongs to). Each student with intrinsic priority realizes an expost score at each program that is
used by programs to rank students for admissions. For example, in our context, the expost score is
the summation of a student’s priority group and the realized lottery draw for the student. A student
with a higher score has a higher priority for admissions at each program. Given any matching
of students and programs, a program’s expost cutoff is defined as the lowest expost score of the
admitted students if the seats are filled and −∞ otherwise. Finally, a program is feasible for the
student if she has a higher expost score than the expost cutoff, regardless of whether or where in the
list she ranks it.22

4.1 Theoretical Framework: A Two-period Model
In the following, denote each student as i ∈ {1, · · · , I} = I, middle school programs as

m ∈ {1, · · · ,M} = M, and high school programs as j ∈ {1, · · · , J} = J . We start from period
2 and work backward.

4.1.1 Period 2: High School Application
High School Application Consider student i who is enrolled in middle school program m(i).
Student i has perceived utility Vij from enrolling in high school program j ∈ J ,

Vij = v
(
X̃j, Z

H
i (m(i)), d̃ij, γ

H
i ;m(i)

)
+ ξ̃j + ηij,

where X̃j is the vector of observable characteristics of high school program j, ZH
i (m(i)) is the

vector of student observable characteristics when applying to high schools, and d̃ij is the distance
between student i’s residence and program j’s location. γH

i is the vector of student i’s unobserved
tastes for X̃j , and ξ̃j captures the unobserved vertical quality of j. ηij is an idiosyncratic preference
shock that is iid for each i and j. As noted earlier, Vij may depend on the student’s middle school
m(i) through the change in observable characteristics ZH

i (m(i)) as well as other channels.
Student i has perceived utility Vi0h from the outside option 0h. The outside option includes

private schools, homeschooling, public charter schools, etc.
Based on the utilities and intrinsic priorities, each student submits an ROL, and DA is run with

all students’ submitted ROLs and expost scores to produce high school program assignments (and
cutoffs).

22In other words, a feasible program will accept the student should she top-rank the program.
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Behavioral Assumption In a school choice situation, each student is playing an incomplete
information game: Each student’s assignment is uncertain from a student’s point of view because it is
determined not only by her ROL and priorities but also by (i) other students’ ROLs and priorities and
(ii) tie-breaking lottery realizations, which are both unknown exante. Hence, we need an assumption
on the equilibrium behavior of students to interpret the school choice data we observe. We assume
that in both periods 1 and 2, students submit ROLs that satisfy expost stability in each realization
of the uncertainty (Che, Hahm, and He, 2023).23 Namely, the assigned program of a student is
her favorite program among the expost feasible programs.24 Expost stability is consistent not only
with the implication of the truth-telling assumption based on the strategyproofness of DA (e.g.,
Abdulkadiroğlu, Agarwal, and Pathak, 2017) but also with students’ deviations from truth-telling
even in a strategyproof environment.25 Therefore, we use expost stability as our preferred assumption
since it imposes a weaker assumption on student behavior.

Expost stability plays a significant role in simplifying a rather complicated game situation. In
particular, we can focus on outcomes rather than strategies. That is, it enables us to interpret the
school choice data such that for each student, her assigned program gives the maximum utility
among the programs that were feasible for the student without knowing the exact strategy the
student employed to submit her ROL. Without expost stability, we need to fully solve the game of
incomplete information where each student is facing by enumerating all possible ROLs and finding
the optimal strategy profile among them, which would render estimation of the model difficult in
terms of computation. Expost stability essentially enables us to interpret the data using a conditional
multinomial choice model, in which a student’s choice is the assigned program, and the choice set is
the expost feasible set.26 Furthermore, it helps us simplify the continuation value of a given middle

23Che, Hahm, and He (2023) show that a robust equilibrium—a weakening of the weakly dominant strategies
equilibrium that allows students’ deviations from truthful reporting—satisfies asymptotic stability. This means that as
the size of the economy grows, the proportion of students who are assigned their favorite feasible school given each
realization of the uncertainty (e.g., tie-breaking lottery) they face converges in probability to 1. Expost stability is
implied by asymptotic stability in a large market.

24Asymptotic stability (and hence expost stability) may be violated when there is a limit on the length of the ROL
students can submit and hence the risk of being unassigned is not negligible. In such a case, we need to guarantee that
there are enough choices ranked to hedge against the risk of being unassigned. In our data, (i) students on average rank
7.6 high school programs, which is lower than the limit of 12 (recall that only a high school ROL has a length limit) and
(ii) the proportion of unassigned students is small (6.5%). Both indicate that the limit on the length of the ROL and
hence the violation of stability are unlikely to be an issue in our context.

25Such deviations are often regarded as strategic mistakes in the literature. See Larroucau and Rios (2020a); Artemov,
Che, and He (2021); Hassidim, Romm, and Shorrer (2021); Shorrer and Sóvágó (2023) for examples of such mistakes
in real-world and lab experiment settings.

26The exogeneity of the choice set is satisfied by assuming a large market—i.e., the market is large enough that each
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school to what is known as the “Emax” term in the dynamic discrete choice literature, as will be
seen in the description of the first period.

4.1.2 Period 1: Middle School Application
Forward-looking Behavior Each student is forward-looking. In the first period, each student
takes into account that enrolling in a particular middle school program may affect her second-period
payoffs. Hence, we need to model how she forms expectations on the “continuation value” of each
middle school program.

The key concept is expost stability. Due to expost stability, the exante uncertainties that determine
the expost scores and cutoffs (in our context, the tie-breaking lottery draws) are sufficient statistics
of the uncertainties present in the economy that affect students’ payoffs at their assigned programs.
To see this, imagine that a draw of lottery tie-breakers is realized and assigned to each student.
DA is then run with the resulting expost scores and submitted ROLs, creating expost cutoffs of
high school programs. Expost stability implies that each student is assigned to her favorite high
school program among the expost feasible high school programs, and hence knowing the lottery
realizations is sufficient to know each student’s payoff at the assignment.

To this end, let ω denote the uncertainty that determines the expost scores and cutoffs in the
second period (high school application) with some known distribution H(ω) where ω is unknown
exante. Across different realizations of ω, the high school flow utility Vij is invariant, but the
feasibility of a high school program varies, and thus ω affects the expected payoff from high school
choice. Let Oi(Z

H
i ,m;ω) denote student i’s expost feasible set of high school programs given

realization of the uncertainty ω. To capture the aforementioned priority channel, Oi(Z
H
i ,m;ω) is

explicitly a function of ZH
i (which may depend on m) and the middle school attendance m.27

Middle School Application Now we are ready to describe the first period. Each student i submits
ROLs on middle school programs satisfying expost stability, based on the perceived utilities

Uim = u
(
Xm, Z

M
i , dim, γ

M
i

)
+ ξm + ϵim︸ ︷︷ ︸

Flow utility of attending m

+δ EγH
i ,ω,ηi,ZH

i

[
max

j∈Oi(ZH
i ,m;ω)

Vij

∣∣∣∣∣ZM
i , γM

i , ϵi,m

]
︸ ︷︷ ︸

Continuation value of attending m

(3)

student cannot affect the cutoffs.
27Recall that the priority channel includes two possible effects of a given middle school. First, the change in test

scores, which can influence a student’s standings at programs that actively screen applicants based on test scores, and
second, the change in eligibility or priority group. The former is captured by ZH

i , and the latter by the additional
inclusion of m in the notation.
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when student i enrolls in middle school program m. Xm is the vector of observable characteristics
of middle school program m, ZM

i is the vector of student observable characteristics when they apply
to middle schools, and dim is the distance between student i’s residence and program m’s location.
γM
i is the vector of student i’s unobserved tastes for Xm, and ξm captures the unobserved vertical

quality of m. ϵim is an idiosyncratic preference shock that is iid for each i and m. δ describes how
much each student values the future relative to the current flow payoff, which we later calibrate to a
specific number. There is also a middle school outside option 0m, whose utility is denoted as Ui0m .
Similar to high school choice, the outside option includes private schools, homeschooling, public
charter schools, etc.

Note that Uim includes the continuation value of attending m in addition to the flow utility
of attending m. By expost stability, given ω, student i who attended m will be assigned to the
high school program that gives her the maximum utility among those in the expost feasible set
Oi(Z

H
i ,m;ω). Hence, the continuation value of attending m is the conditional expectation of

maxj∈Oi(ZH
i ,m;ω) Vij , where the expectation is with respect to the state variables in the second period

(including ω) that are unknown to the student in the first period, and conditional on the state variables
known in the first period as well as the middle school program m. Table 4 summarizes what is
known to student i in each period.28 Appendix D.3 provides assumptions on the unobservables
and explains how those assumptions help simplify the expression of the continuation value when
combined with the expost stability of high school match outcome. This simplification is the key
trick that enables us to estimate the multistage school choice model.

Based on the utilities and intrinsic priorities, each student submits an ROL, and DA is run with
all students’ submitted ROLs and expost scores to produce middle school program assignments (and
cutoffs).

4.1.3 Equilibrium
We assume a large market and define an equilibrium using the uniqueness of stable matching in

a large market (Azevedo and Leshno, 2016; Che, Hahm, and He, 2023).29 An equilibrium is a tuple

28We assume high school program characteristics are exogenous and fixed which are known to students in the first
period. This is supported by the fact that school characteristics are stable over the years. Also, we assume a student has
perfect foresight on what ZH

i she will have by attending m. Appendix D.2 provides details on how we estimate each
middle school’s production function of ZH

i using a value-added model.
29The demand and supply framework using stable matching was pioneered by Azevedo and Leshno (2016). Che,

Hahm, and He (2023) consider a weaker equilibrium concept called robust equilibrium and establish the uniqueness of
stable matching in a continuum economy, as well as the asymptotic stability result, which is our key assumption of
student behavior.
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Table 4: Information Available to a Student in Each Period
Unobserved Taste
on School Char.

Idiosyncratic
Preference Shock

Program
Characteristics

Student’s own
Characteristics

Uncertainty in
High School Choice

γM
i γH

i ϵim ηij Xm, X̃j , ξm, ξ̃h ZM
i , ZH

i ω

1st Period
(Middle School

Application)
✓ ✓ ✓ ✓

2nd Period
(High School
Application)

✓ ✓ ✓ ✓ ✓ ✓

Note: We assume high school program characteristics are exogenous, fixed, and known to students in the first period. This is supported by the fact
that school characteristics are stable over the years. Also, we assume a student has perfect foresight on what ZH

i she will obtain by attending each m.

of cutoffs {cHj }, {cMm } and a tuple of decisions {mi}, {ji} that clears the market:

1. Given cutoffs, Sm = Dm({cHj }, {cMm }), where

Dm({cHj }, {cMm }) =
∫
i

1(mi = argmaxm′∈OM
i ({cMm };ρM )Uim′({cHj }))di. (4)

2. Given cutoffs and {mi} that satisfies the above, Sj = Dj({cHj }, {cMm }), where

Dj({cHj }, {cMm }) =
∫
i

1(ji = argmaxj′∈OH
i ({cHj },mi;ρH)Vij′(mi)di, (5)

where Sm and Sj are the capacities of middle school program m and high school program j,
respectively, OM

i and OH
i are student i’s feasible sets depending on the cutoffs {cHj }, {cMm } and the

lottery draws ρM , ρH . Note that OH
i and Vij′ are functions of the middle school attended mi and that

Uim′ is a function of {cHj } through its dependence on the expected utility from high school choice.
Using the large market assumption, we can calculate demand as the sum of the probability of school
j being the most preferred feasible one across all students. For example, the aggregate demand for
high school j is

Dj = Σi1(j ∈ Oi({cHj′′})
∫
ρ

exp(vij(·))
Σj′∈Oi{cHj′′}

exp(vij′(·))
dρ. (6)

{cHj′′} is high school cutoffs. The demand for middle schools is defined analogously.

4.2 Estimation
Parameterization: Preferences We parameterize the payoff functions using a random coefficient
model.

22



First, the flow utilities in each period are

u
(
Xm, Z

M
i , dim, γ

M
i

)
= ũ

(
Xm, Z

M
i , γM

i

)
− λMdim (7)

= X ′
mβ

M
i − λMdim (8)

v
(
X̃j, Z

H
i , d̃ij, γ

H
i ;m(i)

)
= ṽ

(
X̃j, Z

H
i , γH

i ;m(i)
)
− λH d̃ij (9)

= X̃ ′
jβ

H
i + ατ(m(i)) − λH d̃ij, (10)

where λM and λH capture the disutility of traveling, and βM
i , βH

i allow students’ tastes for program
observable characteristics to be heterogeneous across i. ατ(m(i)) allows a student who attended a
middle school of a certain type to assign a different overall attractiveness value to schools in the
choice system, where τ(m(i)) is the type of i’s middle school attended m(i). We normalize the
location of the utilities by setting ũ(·) = ṽ(·) = 0 if all of their arguments are equal to zero. Also,
we assume that (γM

i , ϵim) ⊥ dim
∣∣Xm, Z

M
i , ξm and (γH

i , ηij) ⊥ d̃ij
∣∣X̃j, Z

H
i , ξ̃j,m(i), which together

with the additive separability of dim, d̃ij provide nonparametric identification of the utilities ũ and ṽ

(Agarwal and Somaini, 2018).
Let the dimension of Xm, X̃j , and consequently that of βM

i , βH
i , be L. For the l-th program

characteristic, we parameterize the random coefficients as

βM
i,l = ZM ′

i βM
Z,l + γM

i,l

βH
i,l = ZH′

i (m(i))βH
Z,l +

T∑
τ=1

ρτ,l1 (τ(m(i)) = τ)︸ ︷︷ ︸
Middle school type effect

+γH
i,l

for each l = 1, 2, · · · , L. The interaction terms ZM ′
i βM

Z,l and ZH′
i βH

Z,l allow individual tastes to
depend on individual observable characteristics ZM

i and ZH
i , respectively.

Student i’s taste over high school characteristics, βH
i,l , is a function of the student’s middle

school m(i). The student’s test score evolves differently depending on m(i), which is captured by
ZH

i (m(i)). More importantly,
∑T

τ=1 ρτ,l1(τ(m(i)) = τ) is what we call the middle school type
effect. It allows students who attend middle schools with some type τ = 1, · · · , T to have a different
mean valuation of high school program characteristics. ρτ,l plays a role similar to the treatment
effect β in Equation (1) when the outcome variables are the characteristics of the programs students
applied to. We discuss in more detail what channels this “lumpsum” parameter could capture in
Section 4.3.

γM
i = (γM

i,1, · · · , γM
i,L) and γH

i = (γH
i,1, · · · , γH

i,L) capture students’ unobservable tastes for middle
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and high school program characteristics. They are serially correlated, which generates a source of
sorting across two periods. We assume γM

i and γH
i are jointly distributed according to some discrete

distribution G. We do not impose any structure on G, and hence γM
i and γH

i can be arbitrarily
correlated.30

Next, we assume the unobserved vertical qualities ξm and ξ̃j depend on the programs’ borough,
admissions method, and program focus area. That is,

ξm = ξ1,b(m) + ξ2,a(m) + ξ3,f(m)

ξ̃j = ξ̃1,b(j) + ξ̃2,a(j) + ξ̃3,f(j),

where b(·), a(·), f(·) denote a program’s borough, admissions method, and focus area, respectively.
We further assume that the idiosyncratic preferences ϵim and ηij both follow Extreme Value

Type-I (EVT1) distribution. Together with the assumption on the unobservables, this implies that
the continuation value expression can be further simplified to a convenient form (see Appendix D.3).

Finally, we model the utility from the outside options as follows.

Ui0m = ϑmi + ϵi0m (11)

= αM
0 + ZM ′

i αM
Z + ϵi0m (12)

Vi0h = ϑhi + ηi0h (13)

= αH
0 + ZH′

i αH
Z + ηi0h (14)

where ϵi0m , ηi0h both follow EVT1. Thus, we allow the attractiveness of the outside options to vary
by students’ observed heterogeneity. In practice, to keep the computation manageable, we set Zi

as ethnicity. To be clear, ατ in Equation (10) captures the fact that middle schools can change the
propensity to opt out of students’ high school assignments.31

Source of Identification Our primary identification concern is to distinguish the causal effect
of the type of middle school on tastes for high schools ({ρτ}τ ) from students’ unobservable tastes
(γH

i ). The data show a large correlation between the high school characteristics a student applies

30In practice, we estimate four types in total, with two types for γM
i and γH

i , respectively. The main concern
regarding having a small number of types is that we may not sufficiently control for the unobserved heterogeneity in
school demand by doing so. However, our model estimates fit the data well (Section 4.4.2). In particular, our estimates
generate a Well-Developed middle school attendance effect of a magnitude similar to that from the reduced-form analysis.
In addition, in Appendix E, we show that average treatment effect estimates from the model with nine types—and thus
three types each for γM

i and γH
i —are very similar to those from our main specification.

31For the purpose of normalization, we can have such a term only in either Equation (10) or Equation (14). Note that
our model assumes away from non-compliance to another school within the system while incorporating non-compliance
by choosing outside options.
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and is assigned to and the characteristics of the middle school she attends (see Table 1). A large part
of this relationship can be explained by students’ observable characteristics that are constant over
time. However, even conditional on observable characteristics, there still is a positive correlation as
seen in our reduced-form analysis in Section 3 (see Table 2). This could be attributable to either
the consistency of the individual student’s unobserved tastes over time (i.e., γM

i and γH
i ) or the

treatment effect of attending a particular type of middle school ({ρτ}τ ).
The key to distinguishing between these explanations comes from the panel structure of the data.

That is, we observe each student’s middle and high school ROLs. First, the correlation between the
unobservable tastes across periods is identified by the degree to which the same student’s middle
and high school applications are similar after controlling for her observable characteristics.

Next, the identification of ρτ relies on the quasi-random variation in school assignments generated
by the tie-breaking rule. ρτ is identified by how similar the high school applications are across
students attending middle schools of the same type, and the quasi-random assignments generate
variation in what type of middle school a student attends beyond her middle school application and
intrinsic priorities. Without the quasi-randomness generated by tie-breaking, observably similar
students’ attending different middle schools would be all attributable to the difference in γM

i once we
assume nonparametric identification of the unobserved taste γM

i .32 The quasi-random assignments
together with the distributional assumption on the unobserved tastes generate variations in which
type of middle school a student attends beyond what can be explained by students’ observable
characteristics and unobserved tastes. Instead of explicitly targeting the reduced-form estimates in
the model estimation, we use the reduced-form estimates to validate our model by comparing them
with the Well-Developed middle school attendance effects simulated from our model (Section 4.4.2).

Meanwhile, the marginal distribution of unobserved tastes (γM
i and γH

i ) is identified by the
variation in the choice sets across students, together with the distributional assumption (logit error)
on the idiosyncratic preference shocks, ε and η. The choice sets (=feasible set) are assumed to
be exogenously given to individual students given the assumption that the market is large. Then
to what extent choices of observably similar students with different choice sets deviate from the
independence of irrelevant alternatives assumption identifies the unobserved heterogeneity (Train,
2009).33

32Note that priority is also determined based on students’ observable characteristics.
33While fully leveraging ROL would have enabled us to nonparametrically identify the marginal distribution of

unobserved heterogeneity, we have had to impose the truth-telling assumption.
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We set δ = 0.75. An alternative version with δ = 0.9 yields a similar model prediction.
Identifying the discounting factor is known to be hard (Rust, 1987), and similarly, in our case,
we lack variation that changes the continuation value independent of middle schools’ observed
and unobserved characteristics. Varying the value of δ mainly changes the coefficient of middle
school characteristics, βM

i , but the model prediction—the average characteristics of assigned middle
schools by students’ observable characteristics—remains the same, as shown in Appendix E.3.
Given the limitation that we do not identify δ, we consider counterfactual scenarios in which high
school admissions reform is announced after students choose middle schools in Section 5.2.34

Estimation Our estimation sample consists of 30,968 students who participated in the 2014-15
middle school application process, and the 2017-18 high school application process 3 years later.
For middle school program characteristics, we include a dummy variable of being Well-Developed
according to the Quality Review, the proportion of high-performers, the proportion of White/Asian
students, and the proportion of non-Free/Reduced-price Lunch (FRL) eligible students. We construct
the last three variables from the characteristics of the 6th graders in 2014-15, the previous application
cohort. For high school program characteristics, we include the college enrollment rate of the
2016-17 graduation cohort, the proportion of high-performers, White/Asian students, and non-
Free/Reduced-price Lunch (FRL) eligible students among the previous application cohort. For the
student characteristics, we use ethnicity dummy variables (Black or Hispanic), FRL status, and the
average of most recent math and ELA standardized test scores (normalized to mean 0 and std 1).

We aim to jointly estimate all stages of the model to address the serial correlation in unobserved
middle school demand and high school demand (γM

i , γH
i ). To circumvent the computational burden

of full information maximum likelihood, we employ the expectation-maximization algorithm with a
sequential maximization step proposed by Arcidiacono and Jones (2003). In summary, the idea is
to (1) reformulate the full information likelihood function into additive separable terms, each of
which represents the likelihood of each stage; (2) update estimates of each stage; and (3) iterate
the procedure until convergence. Appendix D provides more details on the procedure we use to
estimate our model.

34In Online Appendix E.1, we also estimate a static model without the dynamic components of our main model. In
particular, δ is set equal to 0 so that students are myopic. Since the static model is a nested model of the full dynamic
model, we can perform a likelihood ratio (LR) test, which strongly rejects the static model in favor of our main dynamic
model (p < 0.001).
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4.3 Discussion
Middle School Effect Parameter ρτ We allow middle schools to affect students’ high school
applications through channels other than test scores, which we capture as a lumpsum parameter ρτ .
Specifically, ρτ captures the changes in the weight students assign to high school characteristics
as functions of the middle schools attended. Potential channels include changes in preference,
information friction on school characteristics and admissions probability, and limited attention,
each of which has been studied in the literature (Kapor, Neilson, and Zimmerman, 2020; Arteaga,
Kapor, Neilson, and Zimmerman, 2022; Lee and Son, 2022; Campos, 2023). Further distinguishing
among these possibilities goes beyond the scope of this paper, since we are interested in the effect of
middle schools as a package, and we conduct a set of decomposition and counterfactual exercises
that change the allocation of middle school seats rather than specific aspects of middle schools. One
potential channel we expect to be of little importance is that students might apply to high schools
in order to attend the same high school as their middle school peers. Evidence from surveys and
regression analysis shows that this is not a main priority for students when they apply to high schools
(Mark, Corcoran, and Jennings, 2021).

Value-added Estimation We also allow middle schools to affect their high school applications
through the change in baseline test scores. Appendix D.2 provides details on how we estimate each
middle school’s production function of ZH

i using a value-added model. We estimate the value-added
via OLS, due to the fact that we are underpowered to leverage lottery variation for many middle
schools because the number of applicants with admissions probability strictly between 0 and 1
(non-degenerate risk sample) for each school is often small. However, we find that the OLS estimates
and the lottery estimates for a subset of schools are reasonably correlated (=0.56 (p<0.001) for math
score; details are in Appendix D.2). We also assume a student has perfect foresight on what ZH

i she
will have as a result of attending each m.

Expost Stability By using expost stability in our model, we implicitly assume that students
are aware not only of all the options and their attributes but also the distribution of admissions
probabilities at each program. However, in real life, students’ preferences on programs and also
middle school type effects may operate through information frictions (Luflade, 2017; Neilson,
Allende, and Gallego, 2019; Lee and Son, 2022). As a result, we follow Allende (2019) and do
not interpret our parameter estimates as deep structural preferences but as weights students assign
on school attributes. Since it is unlikely that these weights will change under the counterfactual
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scenarios we consider in Section 5.2, the model can be used to predict behaviors. On the other hand,
we do not focus on welfare analysis for the reason explained above.

Residential Choice We assume that households’ residential locations, and thus distances to schools,
are uncorrelated with unobserved heterogeneity conditional on their observable characteristics.
Recent papers using a more unified framework of a family’s residential and school choice have
explored this possibility (Agostinelli, Luflade, and Martellini, 2021; Park and Hahm, 2023). The
most relevant concern for the purpose of this paper is that households’ moving decisions might also
be affected by which middle school students attend. If this is the case, the application channel would
be affected by the additional force of changing locations. Table F.14 shows that Well-Developed
middle schools do not shift households’ propensity to move across boroughs, school districts, or
Census tracts.35

Preference for Peers While the analysis of peer effects in both value-added and school demand is
interesting, it is not the main focus of our model. Rather, we use the previous cohort’s composition
as school characteristics following the literature (Abdulkadiroğlu, Agarwal, and Pathak, 2017;
Calsamiglia, Fu, and Güell, 2020).36 Endogenizing peer composition in students’ school demands
particularly complicates the counterfactual analysis, since it involves the multiple equilibria issue.
While this assumption does not cause concern in interpreting our middle school effects and
decomposition results, predictions for the counterfactual policy might be of concern. Accordingly,
we interpret our counterfactual exercise as partial equilibrium changes although we endogenously
solve new admissions cutoffs.

4.4 Results
4.4.1 Model Estimates

Table 5 provides the selected model estimates where the full set of estimates are reported in
Appendix Table F.13. Most importantly, we reconfirm that middle schools affect how students value
different high school characteristics, as shown by the estimate of the middle school type effect ρτ
being significantly different from zero. All else equal, attending a Well-Developed middle school
causes a student to be willing to travel 0.14 miles more to attend a high school with one standard
deviation increase (=14.4 pp) in the college matriculation rate, which amounts to a 6.4% increase

35Meanwhile, overall mobility is quite high; 23% of households changed their residential Census tracts in between
middle and high school application processes. Thus, we measure the distances to middle and high schools from students’
residential Census tracts in their 5th and 8th grades, respectively.

36Allende (2019); Idoux (2022) are few exceptions.
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from the average commuting distance of high school students.37 Meanwhile, students who attend a
Well-Developed middle school consider outside options, either public charter schools or non-public
schools, to be more attractive. (ατ = −0.939).38 Also, as expected, non-minority students have
higher values of the outside options in both middle and high school choices (e.g., private schools,
homeschooling, public charter schools.)

Table 5: Selected Demand Estimates
Middle Schools High Schools
est se est se

Panel A: Middle School Type Effects
Attending Well-Developed Middle School

Proportion of White/Asian/Other 0.441 (0.082)
Proportion of non-FRPL 0.458 (0.149)

Proportion of High-Performers 1.151 (0.145)
Proportion of College Enrollment Rate 0.471 (0.113)

Panel B: Other Parameters
ατ -0.939 (0.071)
Outside option (White/Asian/Other) 5.291 (0.123) 6.016 (0.095)
Outside option (Black/Hispanic) 3.378 (0.084) 4.049 (0.091)
Distance -0.655 (0.023) -0.556 (0.004)

Note: We report a selected subset of preference estimates in Appendix Table F.13. School characteristics “Proportion of White/Asian/Other,”
“Proportion of non-FRPL,” “Proportion of High-Performers,” “College Enrollment Rate” are between 0 and 1. Standard errors acquired from 50
bootstrap samples are reported in parentheses.

The coefficients that represent the characteristics of middle and high schools, along with observed
heterogeneity, align with anticipated patterns. Specifically, there is pronounced demand among
students for middle schools categorized as Well-Developed and for high schools that exhibit higher
college matriculation rates. There is also a marked preference for schools that boast a student
population with baseline test scores above the 66th percentile. Notably, this tendency is more
pronounced among applicants who themselves have higher baseline test scores.

37We report the willingness to travel by dividing the coefficient of interest by the coefficient of distance. The average
commuting distance to each assigned high school in the data is 2.24 miles.

38One might think that this can be attributed to Well-Developed middle school graduates’ being more often assigned
to specialized exam high schools, rather than public charter schools or non-public schools. There are 8 specialized high
schools in the city (e.g., Stuyvesant and Bronx High School of Science) excluding Fiorello H. LaGuardia High School
of Music & Art and Performing Arts, and they admit students based on the Specialized High Schools Admissions
Test (SHSAT) score. These specialized high schools have their own centralized school assignment system, separate
from the regular high schools that comprise our estimation sample. By running Equation (1), we find no evidence that
Well-Developed middle schools cause students to take the SHSAT more or get an offer from specialized high schools
more. Results are presented in Table F.15
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4.4.2 Model Validation
We evaluate how well the model fits the observed data by comparing measures calculated

using the data with those calculated using the simulations based on our model estimates along two
dimensions: the treatment effects of middle school attendance on high school assignments and the
average characteristics of assigned programs.39 We find that measures based on model simulations
well match those based on the observed data, and hence our dynamic model can be credibly used to
predict the impacts of counterfactual policies in Section 5.2.

Treatment Effects of Middle School Attendance on High School Assignments The effects
of attending Well-Developed middle schools based on our model simulation closely match the
causal estimates from quasi-random assignment using data. The leftmost numbers (2SLS, NDR)
in each subplot of Figure 1 are the 2SLS estimates from Table 2 panel A, column (6), which is
essentially the local average treatment effect (LATE) among compliers—i.e., students who attended
Well-Developed middle schools because they were assigned to those.

Figure 1: Effects of Middle Schools on High School Assignments: Data vs. Model
(a) % College of High School (pp) (b) % High-performer of High School (pp)

Note: The figure plots middle school effects on high school assignments from the data and the simulation. Figure (a) plots the effect on the college
enrollment rate of assigned high schools. Figure (b) plots the effect on the proportion of high-performers of assigned high schools. Students are
labeled to be high-performing if their standardized test score is above the 66th percentile of their cohort in the system. In each subfigure, we plot
2SLS estimates, average treatment effects (ATE) on the subsample, simulated average treatment effect (ATE) on the subsample, and simulated average
treatment effect (ATE) of all students. We explain in the text which students are included in the subsample and how we calculate the ATE of this
subsample from the data. We present 95% confidence intervals of treatment effects calculated from the data. For the model simulation, we assign
each student to her most preferred Well-Developed middle school and non-Well-Developed middle school, respectively, and compare the assigned
high schools’ characteristics in each scenario. We simulate over 10,000 high school lotteries for each scenario.

In each subplot, the second number (ATE, NDR, C=D) is the average treatment effect (ATE) for
a subset of students for whom we can calculate it as the inverse probability weighting (IPW) estimate.

39We do not calculate the effects on high school applications, since our model does not pin down a unique strategy
(i.e., application) of a student as long as it satisfies expost stability.
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The subset includes students whose Well-Developed middle school admissions probability is strictly
between 0 and 1, and who enrolled in a Well-Developed middle school after being assigned. (see
Appendix D.5 for more detail).

Then, for the same subset of students, we simulate the ATE using our model estimates. For each
student, we counterfactually assign one student at a time to her most preferred Well-Developed
middle school and non-Well-Developed middle school, respectively, and compare the high school
assignment results. We calculate the average difference across students and label it as “Model ATE,
NDR, C=D”.40 The third column in Figure 1 plots the model ATEs. Both for college enrollment
rate and proportion of high-performers, the model ATEs are within the confidence interval of ATEs
from the data. This confirms that our model fits the data well, even though we do not directly target
the ATEs from the data in the model estimation.

Furthermore, we can calculate the ATEs for the whole sample using the model estimates because
we model the unobserved heterogeneity and its serial correlation. The fourth column illustrates
ATEs for the whole sample (Model ATE, All) and we find that they are in magnitude similar to the
ATEs for the subset. In the following Section 5.1, we decompose the source of this ATE for the
whole sample.

Average Characteristics of Assigned Programs In Table 6, we also calculate the average
characteristics of assigned programs, for the entire sample and by students’ observable characteristics.
We find that the average characteristics of the assigned schools for each type of student are very
similar between the data and model simulations for both middle and high schools.

5 Sources of Middle School Effects and Policy Analysis
Using model estimates, we conduct a decomposition exercise to quantify the relative importance

of the application channel and the priority channel, through which the middle school effects on high
school assignments operate in our model. This is essentially a partial equilibrium exercise in which
we switch the middle school assignment of one student at a time, holding other students fixed.

Next, we conduct a series of counterfactual policy analyses in which we compare the equilibrium
effects of interventions with different timings. We consider that a policy reform would induce
changes in many students’ middle and high school applications/assignments, and thus affect middle

40Essentially, this procedure treats each student as a “price-taker” who takes the current equilibrium as given and
considers how her high school assignment will change when only her middle school changes. Exogenously assigning a
student to a benchmark school enables us to be free of students’ sorting into middle schools based on unobservables.
These facilitate the interpretation of the average difference we calculate as ATE.
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Table 6: Goodness of Fit

All By Racial Group By FRL Status
Black/Hispanic White/Asian/Other FRL Non-FRL

Data Model Data Model Data Model Data Model Data Model

Panel A: Middle School Characteristics
Proportion of White/Asian/Other 0.33 0.32 0.19 0.19 0.61 0.60 0.28 0.28 0.48 0.45
Proportion of Non-FRL 0.24 0.23 0.19 0.19 0.34 0.33 0.21 0.20 0.35 0.33
Proportion of High Performers 0.30 0.29 0.23 0.23 0.44 0.44 0.27 0.27 0.40 0.39
1(Grade A) 0.25 0.25 0.21 0.20 0.35 0.35 0.24 0.24 0.30 0.29

Panel B: High School Characteristics
Proportion of White/Asian/Other 0.30 0.26 0.20 0.18 0.51 0.45 0.27 0.24 0.42 0.32
Proportion of Non-FRL 0.21 0.18 0.17 0.16 0.28 0.23 0.19 0.17 0.28 0.22
Proportion of High Performers 0.27 0.25 0.23 0.22 0.36 0.34 0.26 0.24 0.33 0.29
College Enrollment Rate 0.62 0.57 0.59 0.55 0.67 0.62 0.61 0.57 0.66 0.58

Note: For model-based simulations, we report the average result from multiple simulations using 100 draws of middle school lotteries and 10,000
high school lotteries. For a given draw of the lottery, we assign a student to her most preferred feasible middle school and high school, respectively.
Students are labeled as high-performing if their standardized test score is above the 66th percentile of their cohort in the system.

and high school equilibrium cutoffs. Therefore, we recalculate the equilibrium using our model
estimates. Meanwhile, we assume that students apply to middle and high schools taking school
characteristics as fixed. Thus, we interpret our predictions as short-run effects.

5.1 Decomposition of Effects of Middle Schools
The model allows two channels of middle school effects on high school assignments: the

application channel and the priority channel. To see the relative importance of the two, we assign
students to their most preferred eligible non-Well-Developed middle schools and change their
assignment to their most preferred eligible Well-Developed middle school, one student at a time.
Then we simulate their high school assignments in each case in the following alternative scenarios.

1. Full: both application and priority channels are active.

2. Application: shut down the priority channel. That is, we do not allow a student’s priorities at
each high school to change depending on the middle school she attends.

3. Priority: shut down the application channel. That is, we do not allow a student’s tastes for
high school programs to change depending on the middle school she attends.

We track how students’ high school assignments change compared with when they attend a non-
Well-Developed middle school in each scenario. We first evaluate the effect in Full (the total
effect of exogenously changing middle schools). Note that this corresponds to Model ATE, All in
Figure 1. We then investigate to what extent that effect can be explained by the application channel
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(Application) or by the priority channel (Priority). Similar to calculating the model ATEs in
Section 4.4.2, this procedure treats each student as a “price-taker” who takes the current equilibrium
as given, and hence gives us the interpretation as a partial equilibrium exercise.

Figure 2: Decomposition of Effects of Middle Schools on High School Assignments
(a) % College of High School (pp) (b) % High-performer of High School (pp)

Note: We report the decomposition of middle school effects on high school assignments using the model estimates in Table F.13. We assign each
student to her most preferred Well-Developed and non-Well-Developed middle school, respectively, and simulate her high school assignment in each
case. 10,000 high school lotteries are drawn and we plot the average across simulations.

Figure 2 reports the results. We find that the application channel is quantitatively more important
than the priority channel. In Figure 2(a), we find that about 80% of the full ATE effect on the
college enrollment rate of assigned high schools can be explained by the application channel. In
comparison, the priority channel only explains about 15%. In the third and the fifth bars, we further
shut down changes in the end-of-middle-school test scores for the application and priority scenario,
respectively. Overall, the results validate that the modest impact of test scores observed in our
reduced-form section (Table F.12) also extends to the ATE. The third bar illustrates that the influence
stemming from the application channel primarily originates from the non-score middle school
effect ρτ . Likewise, approximately 70% (0.3/0.42) of the influence attributed to the priority channel
is ascribed to the non-test score aspect—i.e., high schools granting direct admissions priority to
graduates from specific middle schools. The overall results are very similar when we use other high
school characteristics, such as the proportion of high-performers as illustrated in Figure 2(b).

5.2 Policy Analysis
The decomposition results suggest that the effects of middle schools primarily manifest through

the application channel, which implies that reforms in middle school admissions could influence
high school matching outcomes by altering how students apply to high schools. This possibility is
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examined in this current section.

Outcomes of Interest We examine the effects of potential policy changes on three key metrics: the
average college enrollment rate of the high schools to which students are assigned, the disparity in
this enrollment rate linked to students’ free or reduced-price lunch (FRL) status, and the disparity in
the same measure between Black/Hispanic and White/Asian/Other students. The latter two metrics
are chosen due to the pronounced disparities in high school quality attended by students based on
ethnicity and socioeconomic status in this context (see Table 6 for more details).

Importantly, these gaps may originate as early as middle school placements. Our data show that
only 21% of Black and Hispanic students enroll in a Well-Developed middle school, compared with
35% of their White and Asian peers. Likewise, 24% of FRL students attend a Well-Developed
middle school, in contrast to 30% of non-FRL students. These statistics highlight the importance of
understanding how such trends might evolve under different policy interventions.

Counterfactual Policies We examine a counterfactual policy in which the city abolishes the
eligibility criteria for selected middle and high schools—specifically, Well-Developed middle
schools and high schools with college enrollment rates above the 66th percentile. Under this policy,
students who would have been ineligible in the baseline scenario are considered the lowest priority
group for these targeted schools. Within our study period, 9% of targeted middle schools and 85%
of targeted high schools were accessible to students from either the borough or the city as a whole
(Table 1), with the remainder open exclusively to those within certain school districts or attendance
zones.41

The fact that even academically distinguished schools are not operating at full capacity suggests
that this counterfactual policy could lead to gains in the average quality of the schools students
attend. During the period we studied, Well-Developed middle schools had 4.5 vacant seats on
average, and accounted for a total of 530 vacant seats across such schools. These vacancies may
persist under the current system due to the eligibility restriction, even though there are students
who, if eligible, would likely apply and gain admission to these Well-Developed schools. Crucially,
our findings in previous sections suggest that, when more students attend Well-Developed middle
schools, they in turn apply to high schools with higher college matriculation rates. This higher
demand for such high schools can be reflected in student placements, given that these high schools
also had on average 4.5 empty seats, totaling 3,097 seats citywide.

41See Appendix A for further information on geographic divisions within the city.
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Figure 3: Location of Well-Developed Middle Schools

Note: The figure plots the spatial distribution of all middle schools in 2014-15. Red stars denote Well-Developed middle schools.

Also, the unequal spatial distribution of Well-Developed middle schools suggests that citywide
middle school choice could reduce the disparity in school characteristics among students from
different socioeconomic backgrounds. As illustrated in Figure 3, some districts, such as Districts 3,
20, or 25, have a higher number of Well-Developed schools, while areas like the northern Bronx
and southern Brooklyn and Queens have fewer of these schools. Students from underrepresented
districts could gain access to Well-Developed middle schools outside of their districts under the
policy, and subsequently their high school match outcomes could change.

Notably, the NYC Department of Education (DOE) plans to implement this policy at the middle
school level starting with the 2025-26 application cohort, motivated by these potential gains.42

Our subsequent analysis aims to gauge the potential changes in high school matching outcomes
driven by this comparatively moderate policy shift, by experimenting with the timing of the policy’s
implementation. Specifically, we assess the impact of three intervention scenarios with alternative
timings:

1. HS: Remove eligibility rules for high schools only.

2. MS: Remove eligibility rules for middle schools only.

42Since this proposal does not alter the priorities of currently eligible students, it has been met with relatively less
opposition than more extensive reforms, such as abolishing all admissions rules. Prompted by this, the city introduced a
scaled-down version in Bronx middle schools in 2019. To be specific, the city abolished school-district eligibilities
and opened all middle schools in the Bronx to all Bronx students (Zingmond, Laura, Bronx Middle School Best Tets,
InsideSchools, October 20, 2020).
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3. MSHS: Remove eligibility rules for both middle and high schools.

For each scenario, we determine a new equilibrium based on our model estimates and compare
how students’ high school assignments change compared to the status quo (Current). In each
scenario, for targeted schools using nonrandom tie-breakers, we predict the values of a tie-breaker
for the newly eligible students using the methodology outlined in Appendix D.

We proceed under the assumption that any reform of high school admissions is announced only
after students have submitted their middle school applications. This is because we do not have a
causal estimate of δ, the parameter that quantifies the importance of the continuation value relative
to other middle school attributes. Also, we assume that school characteristics remain constant under
the current system (Current), which means that our predictions should be interpreted as indicative
of short-term effects only.

Equilibrium Simulation and Selection For each counterfactual scenario, we recalculate the
admissions cutoffs. We search for middle and high school cutoffs such that the demand for each
school is weakly smaller than the supply according to our notion of equilibrium in Section 4.1.3.
Specifically, we search for middle and high school cutoffs as fixed points of Equation (6) (and of its
analogous version for middle schools).

Even though we do not uniquely pin down students’ equilibrium strategies, our large market
assumption, together with the uniqueness of stable matching in a large market (Azevedo and Leshno,
2016; Che, Hahm, and He, 2023), uniquely predicts the matching outcomes, which are our main
interest.

Results In Table 7, we present the main characteristics of middle and high schools that students
are assigned to in the baseline scenario in column (1), and the percent change in the outcomes of
interest in each policy scenario in columns (2)-(4).

First of all, we find that the middle school-only admissions reform (MS, column (3) of table
Table 7) changes high school match outcomes almost as effectively as the high school-only admissions
reform (HS, column (2) of table Table 7). As expected, in scenario MS, changes in the middle school
match precede, as shown in Panel C. This initiates the change through the application and priority
channels of middle schools to shape students’ high school matches. The similarity in the size of
the effects between the two scenarios can be attributed to the fact that 91% of the targeted middle
schools were only accessible to students from the same district or an even smaller geographical area,
whereas this was the case for only 15% of the targeted high schools. This result suggests that even
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Table 7: Simulation of Policy Effects
(1) (2) (3) (4)

Current HS MS MSHS
pp % Change from (1)

Panel A: % College of High School
Mean 64.83 +1.66% +1.03% +1.61%
Racial Gap 9.91 -4.52% -4.56% -7.97%
Income Gap 3.89 -9.45% -9.68% -13.57%

Panel B: % High-performer of High School
Mean 34.44 +1.34% +0.70% +1.14%
Racial Gap 23.45 -5.74% -4.97% -6.23%
Income Gap 9.85 -8.46% -3.03% -4.05%

Panel C: 1(Assigned to a Grade A Middle School)
Mean 0.26 - +5.88% +5.88%
Racial Gap 0.15 - -3.40% -3.40%
Income Gap 0.05 - -14.03% -14.03%

Note: The table reports changes in the main outcomes of interest in each counterfactual policy analysis. Column (1) presents the main characteristics
of middle and high schools that students are assigned to in the baseline scenario, and columns (2)-(4) the percentage change in the outcomes of
interest in each policy scenario. The racial gap is measured as the difference in the averages of outcome variables between Black and Hispanic
students and others. Similarly, the income gap is measured between Free-or-educed-lunch-eligible students and others.

when high school choice is already saturated, leaving little room for reforms, policymakers can
leverage the dynamics in school choice to bring about meaningful changes.

Furthermore, the combined intervention at both the middle school and high school level (MSHS)
yields larger effects on high school assignments compared with the intervention at the high school
level only (HS). Specifically, when focusing on the percentage of college enrollment in assigned
high schools, the HS intervention increases the overall mean by 1.66% and reduces racial and
income gaps by 4.52% and 9.45%, respectively. In contrast, the MSHS intervention increases the
overall mean by 1.61% and reduces the gaps by 7.97% and 13.57%. However, the marginal gain of
MS→MSHS (HS→MSHS) is smaller than that of Current→HS (Current→MS), which suggests
a possible substitutability between MS and HS interventions.

6 Policy Implication and Conclusion
Policy Implication Our counterfactual analysis emphasizes the importance of considering the
dynamics of school choice in designing school choice reforms. While many existing policies focus
on reforming the admissions criteria—supply side reforms— recent studies have shown that students’
middle or high school assignments remain unchanged largely because of marked heterogeneity
in school demand or location across students (Oosterbeek, Sóvágó, and van der Klaauw, 2021;
Laverde, 2023; Idoux, 2022). We suggest that by bringing the timing dimension of such reforms into
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the main consideration, policymakers can design more effective admissions reform. We found in
Sections 3 and 4 that students’ high school assignments are largely affected by which middle schools
they attend, mainly by changing their applications to high schools. Also, the counterfactual analysis
showed that intervening in middle schools alone can induce changes in high school assignments as
well as middle school assignments. In addition, there is still room to further change the type of high
schools students attend by intervening at the middle school level even after intervening at the high
school level, although the interventions at these two timings are substitutable in our context.

Taken together, our findings imply that large school districts can design a policy with larger
effects by leveraging the fact that intervention on the supply side of an earlier school choice induces
changes in the demand side of subsequent school choice stages.

Concluding Remarks This paper extends a static framework of school choice to a dynamic
framework of school choices at multiple stages. We showed that top-rated middle schools cause
students to be matched to higher achievement high schools, mainly by changing families’ high
school application behavior. We argued that this dynamic relationship in school choice behavior
should be considered in designing school choice policies since a reform targeting one stage can
affect student-school match in other stages.

We conclude by suggesting two avenues for future research. First, having confirmed the dynamic
relationship between middle school choice and high school choice, we may further directly test
for the dynamic complementarity of human capital investments at different educational stages
(Cunha and Heckman, 2007; Heckman, 2007). While a credible quasi-randomization at multiple
times for a given individual is hard to find, the fact that students are exposed to centralized school
choice multiple times provides a suitable research design. Second, given the importance of the
dynamic relationship of school choices, we can consider it in designing assignment mechanisms.
For example, one may explore ways to design a student assignment mechanism that considers the
dynamic relationship of school choices to achieve more equitable outcomes.
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Shorrer, R. I., and S. Sóvágó (2023): “Dominated Choices in a Strategically Simple College
Admissions Environment,” Journal of Political Economy Microeconomics. 19

Smith, J. A., and P. E. Todd (2005): “Does matching overcome LaLonde’s critique of nonexperi-
mental estimators?,” Journal of Econometrics, 125(1-2), 305–353. 4

Train, K. E. (2009): Discrete choice methods with simulation. Cambridge University Press. 25

Waldinger, D. (2021): “Targeting in-kind transfers through market design: A revealed preference
analysis of public housing allocation,” American Economic Review, 111(8), 2660–96. 5

Zhang, J. (2010): “The sound of silence: Observational learning in the US kidney market,”
Marketing Science, 29(2), 315–335. 5

44



(For Online Publication)

Online Appendix to

A Dynamic Framework of School Choice:
Effects of Middle Schools on High School Choice

Dong Woo Hahm Minseon Park
March 2024

A Details of NYC School Choice Process
A.1 Student-proposing Deferred Acceptance Algorithm

In detail, DA works as follows (Gale and Shapley, 1962; Abdulkadiroğlu and Sonmez, 2003):

• Step 1
Each student proposes to her first choice. Each program tentatively assigns seats to its
proposers one at a time, following their priority order. The student is rejected if no seats are
available at the time of consideration.

• Step k ≥ 2

Each student who was rejected in the previous step proposes to her next best choice. Each
program considers the students it has tentatively assigned together with its new proposers and
tentatively assigns its seats to these students one at a time following the program’s priority
order. The student is rejected if no seats are available when she is considered.

• The algorithm terminates either when there are no new proposals or equally when all rejected
students have exhausted their preference lists.

DA produces student-optimal stable matching and is strategyproof—i.e., truth-telling is a weakly
dominant strategy for students.

A.2 NYC School Admission Methods
Depending on the eligibility criteria, middle schools are classified into three types—district

schools, borough schools, and citywide schools. The city is divided into 5 boroughs and 32
community school districts. A student’s residence or elementary school decides eligibility at each
type of school. In the academic year 2014-2015, 14, 39, and the rest were citywide, borough, and
district programs, respectively, among 670 programs. By contrast, the high school choice is fully
citywide—all students were eligible for more than 95% of high school programs in NYC in the
academic year 2017-18. Figure A.1 illustrates geographic divisions of the city.
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Figure A.1: Geographic Division of NYC

Middle school programs use a variety of admission methods—Unscreened, Limited Unscreened,
Screened, Screened: Language, Zoned, and Talent Test. Unscreened programs admit students
by a random lottery number, and Limited Unscreened programs use rules that give priority to
those who attend information sessions or open houses. Screened programs as well as Screened:
Language programs select students by individually assorted measures such as elementary school
GPA, statewide test scores, punctuality, and interviews. Zoned programs guarantee admissions or
give priority to students who reside in the school’s zone, and Talent Test programs use auditions as
the main criteria.

High school programs use admission methods similar to middle schools—Unscreened, Limited
Unscreened, Screened, Screened: Language, Screened: Language & Academics, Zoned, Audition,
Educational Option, and Continuing 8th Graders. Audition programs are similar to Talent Test
middle school programs, and Educational Option is a mixture of Unscreened and Screened.A-1

Continuing 8th Graders programs are open only to continuing 8th graders in the same school. Other
admissions methods are similar to middle school choice.

A.3 Timeline of The Admission Process
The timeline of the admission process is as follows (Corcoran and Levin (2011), Directory

of NYC Public High Schools). By December, students are required to submit their ROLs. By
March, DA algorithms are run that determine students’ assignments. Students who accept their
offer finalize, and if a student rejects an offer she goes to the next round. This describes the main

A-1Educational Option programs have the purpose of serving students at diverse academic performance levels. These
programs divide students into high (highest 16%), middle (68%), and low ELA (lowest 16%) levels. 50% of the seats
in each group are filled using school-specific criteria like a screened program and the other 50% are filled randomly,
similar to an unscreened program (NYC DOE Introduction to High School Admissions).
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round of the entire system. A majority of students finalize in the main round (about 85% each year).
Students who are not assigned in the main round or rejected the assignment go to the Supplementary
round, which is organized similarly to the main round and includes schools/programs that did not
fill their capacities in the main round, or programs that are newly opened. Finally, there is an
administrative round in which students who are not assigned a school even after the second round
are administratively assigned to a school.

B Data and Sample Restriction
B.1 Data Sources

The main data used are administrative data from the New York City Department of Education,
focusing on the 8th grade cohort in the academic year 2017-2018. This cohort applied to middle
schools in the academic year 2014-15 and to high schools in the academic year 2017-18.

Four sets of data are used to construct information on students. First, high school application
(HSAP) data include information on each round of the application process (ROL, rank, priority,
eligibility, assignment, etc.) related to high school application and standardized test score information.
Second, middle school application (MSAP) data includes variables similar but for middle school
applications. Third, yearly June biographic data includes more comprehensive biographic data on
students, including ethnicity, gender, and disability status, as well as information on attendance
and punctuality. Lastly, Zoned DBN data include information on students’ residence (Census tract
level)A-2 and which elementary, middle, and high schools the students are zoned to. We merge all
data sets using a unique student ID.

School information is constructed using the 2014-15 NYC Middle School Directory and 2017-18
NYC High School Directory, which are published every year before the application process starts.
The School Directory includes each program’s previous year’s capacity and the number of students
who applied in the previous year, admission criteria (eligibility and priority), accountability data
such as progress reports, graduation rate, college enrollment rate, types of language classes offered,
etc. Other variables for current 6th graders in middle schools and 9th graders in high schools, such
as the composition of ethnicity or the proportion of high-performing students, are constructed using
the previous year’s student-level data.

A-2In the current data set, the finest level of geographic information of a student is Census-tract level. The distance
between students and schools is calculated as follows. For each Census tract in NYC, we use the latitude and longitude
coordinates of the centroid from the corresponding year’s US Census gazetteer file. School’s coordinates are calculated
using their exact street addresses with Google API. Next, we calculate the distance between the coordinates of the exact
school location and the students’ census tract of residence centroid based on the Haversine formula.
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B.2 Sample Restriction
We start with 72,318 observations in the middle school application data. Out of 72,318 students,

67,153 participated in the main round of the middle school application. We drop students with
missing demographic characteristics or invalid standardized test scores and are left with 62,972
students. Among the remaining students, 54,012 students participated in high school application
after 3 years.A-3 We present summary statistics and balance test results for these 54,012 students in
Section 2.A-4 For new middle and high schools, school characteristics are missing. After excluding
students who went to a new middle school and whose high school rank-ordered list is filled only
with new high schools, we have 44,237 students. Estimates in Table 2 are based on this sample.

Table B.1 presents summary statistics of baseline student characteristics. Columns (1)-(2) present
summary characteristics of all middle school applicants (whole sample, N = 47, 952), and Columns
(3)-(4) present those of middle school applicants net of attrition (main sample, N = 45, 833). The
majority of students are either Black (23%) or Hispanic (41%) and Free/Reduced-price Lunch (FRL)
eligible (75%), and 30% of students ranked a Well-Developed middle school as their first choice.
While a student lists 0.91 Well-Developed middle schools on average, there is remarkable variation
from one student to another, which is captured by the sizable standard deviation.

C An Example of Calculating Propensity Scores
The following example illustrates how to calculate propensity scores (=admission probabilities)

following Abdulkadiroğlu, Angrist, Narita, and Pathak (2017, 2022).A-5

Consider student i who submits a rank-ordered list A-B-C where A is her most preferred option
and C is her least preferred option. The priority score used for admissions is a sum of priority group
and a tie-breaker, where the priority group lexicographically dominates tie-breakers. That is, student
i’s score at program j is

scoreij = PGij︸︷︷︸
priority group∈N

+ TBij︸︷︷︸
tie-breaker∈[0,1]

(C.1)

where i has higher priority than i′ at j if and only if scoreij > scorei′j . Programs A and B share
a random tie-breaker TBiA = TBiB

iid∼ U [0, 1], and program C uses a nonrandom tie-breaker

A-3Those who participated in the middle school choice but did not participate in the high school choice do not appear
in the data afterward. Examples might include drop-outs, those who attend private or charter high schools, and those
who moved out of NYC. These are more likely to be low-performers, subsidized lunch status, or Black students.

A-4801 students applied only to new middle schools, for which there are no characteristics of the previous cohort. We
present summary statistics and balance test results on middle school application behavior for the rest (n=53,211).

A-5Note that the propensity score in this context denotes the exact probability of being treated, and involves no
prediction of the odds by estimating a logit or a probit model, which is typically found in papers with propensity score
matching (for example, Dehejia and Wahba, 2002; Smith and Todd, 2005).
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Table B.1: Summary Statistics of Student Characteristics

(1) (2) (3) (4)
Variables Mean Std Mean Std

All MS Applicants Both MS and HS Application
(Whole Sample) (Main Sample)

Panel A: Demographics
5th Grade ELA Z-score -0.01 0.991 0.009 0.984
5th Grade Math Z-score 0.004 0.988 0.025 0.981
English Language Learner (ELL) 0.064 0.244 0.061 0.241
Free/Reduced-price Lunch (FRL) 0.757 0.429 0.753 0.431
Asian 0.178 0.383 0.182 0.386
Black 0.238 0.426 0.235 0.424
Hispanic 0.417 0.493 0.414 0.493
White 0.150 0.358 0.153 0.360

Panel B: Middle School Application Behavior
Ranked Well-Developed MS 1st? 0.305 0.460 0.304 0.460
# of Well-Developed MS Ranked 0.911 1.223 0.912 1.232
N 47,952 45,833

Note: Summary statistics of student characteristics in 5th grade.

TBiC ∼ Fi, where Fi is unknown and potentially depends on the student and has a support on [0,1].
A cutoff of program j is given by the minimum of scores of admitted students at j if all seats are
filled, and −∞ if some seats are left unfilled. Let us assume a large market (Azevedo and Leshno,
2016; Fack, Grenet, and He, 2019; Calsamiglia, Fu, and Güell, 2020) and denote each program’s
degenerate large market cutoff by cutoffj . Student i is admitted to program j if scoreij ≥ cutoffj

and at the same time rejected from all programs ranked above j.

Table C.2: Example of Propensity Score

Programs A B C

PGij 1 1 2
Cutoff 2.2 1.4 2.6

Admission Prob. 0 1×0.6 1× 0.4× (1−Fi(0.6))

Local Admission Prob. 0 1×0.6 1× 0.4× 0.5

Table C.2 illustrates how to calculate the propensity score for student i in this example. Student
i has no chance of being admitted to program A since no realization of the tie-breaker is large
enough to clear the cutoff of program A. Next, the probability of being assigned to program B is
the probability of being rejected from program A (=1) times the probability of getting accepted
to program B. The cutoff of B is 1.4, so i can be assigned to program B as long as her lottery
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number is greater than 0.4, which happens with a probability of 0.6. Hence, student i’s admission
probability at program B is 1× 0.6 = 0.6. Next, i gets assigned to program C if she is rejected by
all previous options (which happens with probability 1×0.4) and then clears the cutoff of program
C. While it is impossible to get the exact probability of clearing the cutoff, 1− Fi(0.6), Theorem 1
of Abdulkadiroğlu, Angrist, Narita, and Pathak (2022) suggests that i clears the cutoff with half
a chance if i’s tie-breaker TBiC is close enough to the cutoff. In that case, the local admission
probability is given by 1× 0.4× 0.5.

D Additional Procedures for Computation
D.1 Constructing Priority Scores and Simulating Uncertainties

Each student’s priority scores for each middle and high schools are necessary to use expost
stability. First, to interpret data as a conditional multinomial logit model, we need to construct
the feasible set of programs for each student, regardless of whether she ranked them. Second, to
calculate the continuation value, we need to describe how students’ priority scores at high schools
would change by which middle school they attend.

In NYC, priority scores consist mainly of three ingredients: eligibility, priority group, and
priority ranks at programs that involve screening. First, eligibility and priority groups are determined
in a deterministic manner, based on the preannounced rule in the NYC Middle School Directory and
NYC High School Directory published every year before public school applications.

Next, when it comes to priority ranks, while the data set includes the priority rank of applicants
to each program, there is no information on the ranks of those who did not apply to that particular
program. In addition, the exact formula each program uses is not available. Therefore, we estimate
the priority ranks for Screened; Screened: Language; Screened: Language & Academics; and the
screened part of Education Option programs. To this end, we assume there exists a program-specific
latent variable as a function of various student characteristics, which determines the rank of students
in each program. Specifically, let wij be the latent variable of i at an actively ranking program j as a
function of student characteristics Zi. We assume:

wij = βjZi + eij and i is ranked higher than i′ if and only if wij > wi′j

where Zi includes standardized statewide math and ELA exam scores; math, social sciences, english,
and science GPA; and days absent and days late. We assume eij is iid as EVT1. From the data, we
gather all possible pairs of applicants to program j, and maximize the following likelihood:

∑
i>i′,i,i′∈Ij

log

(
exp(wij)1{i is ranked higher than i′}+ exp(wi′j)1{i′ is ranked higher than i}

exp(wij) + exp(wi′j)

)
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where Ij is the set of applicants to program j, which is observed in the data. Using the estimates β̂j ,
we predict ŵij = β̂jZi for all i and reconstruct the priority ranks based on ŵij .

Finally, we describe how to simulate the uncertainties in the economy, ω. We draw 40,000 sets
of lotteries and run DA 40,000 times. To also account for the uncertainty in other students’ types, we
repeat the procedure by bootstrapping 200−1 times from the data and creating multiple economies.
We use the resulting empirical distribution as the distribution of ω.

D.2 Evolution of Test Scores
Some of the student characteristics are time-invariant, while others change—especially as

functions of the middle school a student attends. In particular, a student’s test scores may change
depending on the middle school she attends, because different middle schools may have different
effectiveness. We consider a constant-effects value-added model that controls for students’ lagged
test scores. To ensure enough sample size, we estimate the value-added of each middle school
instead of the middle school program.

Specifically, let yHi,m be the potential end-of-middle-school test score when student i attends
middle school m. We assume “selection on observables”:

yHi,m = αm + ZM ′
i β + ui, m ∈ M

and estimate via OLS of yHi,m(i) on school indicators where m(i) is the actual middle school
attendance in the data and yHi,m(i) is the observed yHi in the data. ZM ′

i β includes baseline test
scores, sex and ethnicity dummy variables, English Language Learner status, disability status, and
free/reduced-price lunch status in ZM

i .
In principle, we can leverage the lottery variation built in the DA assignment system in NYC.

However, we are underpowered to do so for many middle schools because the number of applicants
with admissions probability strictly between 0 and 1 (non-degenerate risk sample) for each school is
often small.

Thus, we estimate middle schools’ value-added by relying on the standard selection-on-observable
assumption. However, we also estimate value-added using the lottery variation for a subset of
middle schools whose number of applicants with non-degenerate risk is equal to or greater than 150.
For this subset of middle schools, we estimate value-added using the lottery variation following
Equation (1), by changing treatment, instrumental variables, and propensity scores accordingly (for
example, Ci = 1(i attends schoolm)). Figure D.2 shows that the value-added estimates from the
OLS model are highly correlated with the value-added estimates that leverage the lottery variation.

We also estimate high schools’ value-added on the college enrollment rate using OLS with the
selection-on-observable assumption.
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Figure D.2: Validation of Value-added Estimates from the OLS Model

Note: The figure plots middle schools’ value-added on math and ELA scores for schools whose number of applicants with non-degenerate risk is
equal to or greater than 150. The y-axis shows the value-added estimated using lottery variation and the x-axis shows the value-added estimated by
relying on the standard selection-on-observable assumption, with students’ lagged test scores controlled for.

D.3 Assumptions on Unobservables and Computation of Continuation Value
Collect the first-stage state variables and middle school option m in:

Ψ1i = (ZM
i , γM

i , ϵi,m)

where ϵi = (ϵi1, · · · , ϵiM). Ψ1i contains variables conditional on which student i takes the expectation
of the second-period payoff in calculating the continuation value of m. Note that m is not the actual
student’s middle school attendance but is an exogenous option given to the student in the middle
school choice.

We assume the following relationships on the unobservables.

ηij ⊥ ϵim
∣∣γM

i , γH
i , ∀i, j,m (D.2)

γH
i ⊥ ηi

∣∣Ψ1i, ∀i (D.3)

ηi ⊥Ψ1i, ∀i (D.4)

F (γH
i

∣∣Ψ1i) = G(γH
i

∣∣γM
i ) (D.5)

ω ⊥ (γH
i , ηij)

∣∣Ψ1i and ω ⊥ Ψ1i, ∀i, j,m (D.6)

The first assumption states that conditional on the unobserved tastes γM
i and γH

i and the
idiosyncratic preferences in each period, ϵim and ηij , are independent for all i, j,m. The second
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assumption states that conditional on the first-period state variables, the unobserved tastes in
the second period and the second-period idiosyncratic preferences are independent. The third
assumption states that the second-period idiosyncratic preferences and the first-period state variables
are independent.A-6 The fourth assumption states that the distribution of the unobserved tastes in the
second period depends on the first-period state variables only through the first-period unobserved
tastes, where F denotes a generic cdf function of its arguments.

Finally, the fifth assumption states that ω, the uncertainty that determines high school feasibility,
is independent of the unobservable tastes for high school programs and the idiosyncratic preferences
in the second period, conditional on the state variables in the first period and middle school
attendance m. In addition, ω is independent of the state variables in the first period and middle
school attendance m. This assumption is valid as long as the economy is large enough so that each
student acts like a “price-taker” and cannot affect the cutoffs of high schools.

Given the assumptions, the continuation value of middle school program m in Equation (3) can
be simplified as

EγH
i ,ω,ηi,ZH

i

[
max

j∈Oi(ZH
i ,m;ω)

Vij

∣∣∣∣∣Ψ1i

]

=EγH
i ,ω,ηi

[
max

j∈Oi(ZH
i ,m;ω)

Vij

∣∣∣∣∣Ψ1i

]
: ZH

i is perfectly predictable

=

∫
ω

EγH
i ,ηi

[
max

j∈Oi(ZH
i ,m;ω)

Vij

∣∣∣∣∣Ψ1i

]
dH(ω) : (D.6)

=

∫
ω

∫
(γH

i ,ηi)

max
j∈Oi(ZH

i ,m;ω)
VijdF (ηi, γ

H
i |Ψ1i)dH(ω)

=

∫
ω

∫
γH
i

(∫
ηi

max
j∈Oi(ZH

i ,m;ω)
VijdF (ηi)

)
dG(γH

i |γM
i )dH(ω) : (D.3),(D.4),(D.5)

=

∫
ω

∫
γH
i

µ+ log

 ∑
j∈Oi(ZH

i ,m;ω)

exp(vij)

 dG(γH
i |γM

i )dH(ω) : ηij
iid∼ EV T1

where vij ≡ Vij − ηij and F denotes a generic cdf function of its argument and µ is the Euler-
Mascheroni constant.

In the final expression, the first integral over ω is calculated by using the empirical distribution
of ω as described in Appendix D.1. We use students’ residence in the first period to calculate the

A-6Recall that the first- and second-period unobserved tastes can be arbitrarily correlated. By the first three assumptions,
we effectively assume that the correlation in the unobserved tastes is enough to model students’ tastes that are consistent
over the two periods but not captured by observable characteristics.
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distance to each high school program in calculating the continuation value.

D.4 EM Algorithm
First of all, we derive the full likelihood function as follows. Let student i’s assigned middle and

high school programs be mi, ji, and the respective feasible sets be Om
i , O

h
i . Note that mi ∈ Om

i

and ji ∈ Oh
i . Let uim and vij denote the part of Uim and Vij excluding the idiosyncratic preference

terms ϵim and ηij . Also, denote the parameters to be estimated as

θ =
(
βM
0 , βM

Z , βH
0 , βH

Z , {ατ}τ , ξm, ξ̃j, {γM,p}, {γH,q}, {G(p, q)}p,q, {ρτ}τ , ϑm, ϑh, λ
M , λH

)
where, with some abuse of notation, G(p, q) is the probability that γM

i and γH
i equal the γM,p, γH,q,

the p-th and q-th types, respectively. Then for student i, conditional on γM
i , γH

i ,

Pi(θ, γ
M
i , γH

i ) = P (observe mi, ji|γM
i , γH

i , θ)

= P

(
Uimi

= maxm∈Om
i
Uim and

Viji = maxj∈Oh
i
Vij given mi

∣∣∣∣∣γM
i , γH

i , θ

)

=
exp(uimi

(γM
i , θ))∑

m∈Om
i
exp(uim(γM

i , θ))

exp(viji(γ
H
i , θ;mi))∑

j∈Oh
i
exp(vij(γH

i , θ;mi))
: (D.2)

where the second equality comes from the expost stability and the third equality comes from the
distributional assumptions on the unobservables. Then,

Pi(θ) =

∫
(γM

i ,γH
i )

Pi(θ, γ
M
i , γH

i )dG(γM
i , γH

i )

=
∑
p,q

G(p, q)Pi(θ, γ
M,p, γH,q)

and hence
∏

i Pi(θ), or
∑

i logPi(θ) is the final likelihood function to be maximized.
To overcome the computational challenge coming from our dynamic model with many parameters,

we estimate our model using the expectation-maximization algorithm with a sequential maximization
step proposed by Arcidiacono and Jones (2003). First, we reformulate the full likelihood function in
the following expectation form.

E(P, γ, θ | P̂ , γ̂, θ̂) = ΣiΣpΣqh
(
p, q | P̂ , γ̂, θ̂

)
logP (p, q) (D.7)

+ ΣiΣpΣqh
(
p, q | P̂ , γ̂, θ̂

)
logPM

i (p; θMS, θHS, γm, γh, P ) (D.8)

+ ΣiΣpΣqh
(
p, q | P̂ , γ̂, θ̂

)
logPH

i

(
q; θHS, γh

)
(D.9)
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where h
(
p, q | P̂ , γ̂, θ̂

)
=

P̂ (p,q)P̂M
i (p)P̂H

i (q)

Σp′Σq′ P̂ (p′,q′)P̂M
i (p′)P̂H

i (q′)
. Then we take the following steps.

Steps

1. Start with an initial guess and calculate the conditional probability h0

2. Update P̂1(p, q) =
1
I
Σih0

(
p, q | P̂0, γ̂0, θ̂0

)
3. Update (θHS, γh) by maximizing fh ≡ Σif

h
i ≡ ΣiΣpΣqh0 (p, q) logP

H
i (q; θHS, γh)

• Outer loop for nonlinear parameters

• Inner loop for αH
s

– For s = 2, · · · , Jschh,

∂fh
i

∂αM
s

=
∑
p

∑
q

h0(p, q)

(
∂PH

i (q)

∂αH
s

/
PH
i (q)

)

=
∑
p

∑
q

h0(p, q)

PH
i (q)

∂viji(q, τ(mi))

∂αH
s

− 1∑
j∈BH

i
exp(vij(q))

∑
j∈BH

i

Aj

/PH
i (q)


=
∑
p

∑
q

h0(p, q)

∂viji(q, τ(mi))

∂αH
s

− 1∑
j∈BH

i
exp(vij(q))

∑
j∈H

i

Aj


=
∑
p

∑
q

h0(p, q)

[
1{s(ji) = s} −

∑
j∈BH

i &s(j)=s exp(vij(q))∑
j∈BH

i
exp(vij(q))

]
,

where Aj = exp(vij(q))
∂vij(q,τ(mi))

∂αH
s

. Then,

∂fh

∂αM
s

=
∑

i:s(ji)=s

(∑
p

∑
q

h0(p, q)

[
1−

∑
j∈BH

i &s(j)=s exp(vij(q))∑
j∈BH

i
exp(vij(q))

])

−
∑

i:s(ji )̸=s

(∑
p

∑
q

h0(p, q)

∑
j∈BH

i &s(j)=s exp(vij(q))∑
j∈BH

i
exp(vij(q))

)

so that the FOC leads to

∑
i:s(ji)=s

∑
p

∑
q

h0(p, q) =
∑
i

(∑
p

∑
q

h0(p, q)

∑
j∈BH

i &s(j)=s exp(vij(q))∑
j∈BH

i
exp(vij(q))

)
(D.10)

4. Update (θMS, γm) by maximizing fm ≡ Σif
m
i ≡ ΣiΣpΣqh0 (p, q) logP

M
i (θMS, θ̂HS

1 , γm, γ̂h,1, P̂1)
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• Calculate EU with up-to-date estimates P̂1, θ̂
HS
1 , γ̂h,1

• Outer loop for nonlinear parameters

• Inner loop for αM
s : similarly to step 3

5. Iterate until convergence

D.5 Average Treatment Effect for a Subset
Abdulkadiroğlu, Angrist, Narita, and Pathak (2022) shows that the following conditional

independent assumption (CIA) holds for students whose Well-Developed middle school admissions
probability is strictly between 0 and 1:

(Yi1, Yi0) ⊥ Di|{di(x)},Ri, (D.11)

where Yi1 is the outcome of student i when she attends a Well-Developed middle school, Yi0 is
the outcome when she does not attend any Well-Developed middle school, di(x) is a full set of
dummies for each value of the propensity score, and Ri is the local linear control for nonrandom
tie-breakers of middle schools. Further restricting the sample to those with Ci = Di,

(Yi1, Yi0) ⊥ Ci|{di(x)},Ri, Ci = Di, (D.12)

where Ci = 1(Assigned to a Well-Developed middle school), and Di = 1(Attended a Well-
Developed middle school). Using this independence assumption, we can obtain the ATE using the
IPW for this subset, where we use the probability of being assigned to a Well-Developed middle
school as the weight while controlling for Ri. Note that this subset includes not only the compliers
but also the always-takers who are assigned to a Well-Developed middle school and the never-takers
who are not assigned to any Well-Developed middle school.

E Alternative Specifications
E.1 Static Model

Recall the key features of the dynamic model: forward-looking agents, serial correlation of
unobservable tastes, and middle school-type effects. To highlight the importance of including
those features in the model, we estimate a restricted static model without the dynamic components
of the model. The static model has the same main components as the main model but with
three marked differences. First, we assume students are myopic so that they do not consider the
high school application when making middle school choices (δ = 0). Second, we do not allow
the unobserved tastes for program characteristics to be serially correlated. That is, we assume
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G(p, q) = GM(p)GH(q),∀p, q, where GM , GH are the marginal distributions of unobserved tastes
in middle and high schools, respectively. Third, middle school type effects are absent—i.e.,
ρτ = ατ = 0,∀τ . Since the static model is a nested model of the full dynamic model in which the
above restrictions are imposed, we can perform a likelihood ratio (LR) test. The static model is
strongly rejected in favor of our main dynamic model (p < 0.001), which reconfirms the importance
of modeling the dynamics.

E.2 More Unobserved Types
The benefit of potentially having more unobserved types in the model is that by doing so, we can

more flexibly control for the unobserved heterogeneity. However, it comes with a larger computing
burden. While our four-type model already fits the treatment effect estimate from the data well
(Section 4.4.2), we also estimated a nine-type model as a robustness check. Figure E.3 shows that
the treatment effects from the nine-type model are similar to those from the four-type model. This
reassures that the four-type model captures the unobserved heterogeneity in our data reasonably
well.

Figure E.3: Effects of Middle Schools on High School Assignments: Data vs. Model with 9 Types

(a) % College of High School (pp) (b) % High-performer of High School (pp)

Note: The figure plots middle school effects on high school assignments from the data and the simulation. Figure (a) plots the effect on the college
enrollment rate of assigned high schools. Figure (b) plots the effect on the proportion of high-performers in assigned high schools. Students are
labeled to be high-performing if their standardized test score is above the 66th percentile of their cohort in the system. In each subfigure, we plot
2SLS estimates, average treatment effects (ATE) on the subsample, simulated average treatment effect (ATE) on the subsample, and simulated average
treatment effect (ATE) of all students. We explain in the text which students are included in the subsample and how we calculate the ATE of this
subsample from the data. We present 95% confidence intervals of treatment effects calculated from the data. For the model simulation, we assign
each student to her most preferred Well-Developed middle school and non-Well-Developed middle school, respectively, and compare the assigned
high schools’ characteristics in each scenario. We simulate over 10,000 high school lotteries for each scenario.

E.3 Alternative Values of the Discount Factor
As discussed in the main text, we set δ = 0.75 due to the lack of variation in the data to identify

the discount factor. As a robustness check, we estimated the model with an alternative choice of
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δ = 0.9. It leads to model predictions similar to the version with δ = 0.75, as demonstrated by the
model fit in terms of the average characteristics of assigned middle schools. See Table E.3.

Table E.3: Goodness of Fit: δ = 0.9

All By Racial Group By FRL Status
Black/Hispanic White/Asian/Other FRL Non-FRL

Data Model Data Model Data Model Data Model Data Model

Middle School Characteristics
Proportion of White/Asian/Other 0.33 0.32 0.19 0.19 0.61 0.60 0.28 0.28 0.48 0.45
Proportion of Non-FRL 0.24 0.23 0.19 0.19 0.34 0.33 0.21 0.20 0.35 0.33
Proportion of High Performers 0.30 0.30 0.23 0.23 0.44 0.44 0.27 0.27 0.40 0.39
1(Grade A) 0.25 0.25 0.21 0.20 0.35 0.35 0.24 0.24 0.30 0.29

High School Characteristics
Proportion of White/Asian/Other 0.30 0.29 0.20 0.20 0.51 0.48 0.27 0.27 0.42 0.39
Proportion of Non-FRL 0.21 0.20 0.17 0.17 0.28 0.27 0.19 0.19 0.28 0.26
Proportion of High Performers 0.27 0.26 0.23 0.22 0.36 0.34 0.26 0.25 0.33 0.29
College Enrollment Rate 0.62 0.58 0.59 0.56 0.67 0.63 0.61 0.58 0.66 0.60

Note: For model-based simulations, we report the average result from multiple simulations using 100 draws of middle school lotteries and 10,000
high school lotteries. For a given draw of the lottery, we assign a student to her most preferred feasible middle school and high school, respectively.
Students are labeled high-performing if their standardized test score is above the 66th percentile of their cohort in the system.

F Additional Tables and Figures
F.1 Additional Tables and Figures from Section 2
Average School Characteristics by Rank on Students’ ROL Tables F.4 and F.5 summarize the
averages of school characteristics by rank on students’ ROLs of middle schools and high schools,
respectively. There are three main patterns. First, students tend to rank schools distant from their
homes lower on their ROLs. Notably, the average distance of ranked programs is larger for high
school programs than for middle school programs. As stated before, this possibly reflects that high
school application has a higher degree of citywide school choice. Next, students rank schools with
high student achievement higher on their ROLs. Third, students rank schools with a high proportion
of subsidized lunch status, Black/Hispanic students lower on their ROLs.

F.2 Additional Tables and Figures from Section 3
Balance Test We present students’ test scores, demographic characteristics, and variables that
describe the middle school application behavior of students who are assigned to treatment middle
schools by DA (offered students) and those who are not (non-offered students).

First, Raw Difference shows the sharp raw difference of covariates between offered and
non-offered students. The offered have higher test scores and are less likely to be FRL, ELL,
Black/Hispanic, or need special education, all with statistically significant differences. They also rank
more high-achievement middle schools (recall this is our treatment of interest) than the non-offered
students and are more likely to list them first on their ROLs, which makes sense because such
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Table F.4: Middle School Program Characteristics on ROLs

1 2 3 4 5 6 7 8 9 10 11 12 or
longer

# Students Ranked 52789 40428 33980 24435 13419 7439 4131 2859 2013 1557 961 729
% Students Ranked 97.7 74.9 62.9 45.2 24.8 13.8 7.6 5.3 3.7 2.9 1.8 1.3
Distance (miles) 1.4 1.7 1.8 1.9 1.9 2 2.1 2.3 2.4 2.6 3 3.2
Mean Score (6th grade) 308.2 307.7 305.8 305.1 305.7 305.8 306.2 306.2 305.3 305.8 306.8 304.2
Mean Score (8th grade) 300.7 300.4 299.2 298.5 299.1 299.6 300.7 300.3 299.3 299.2 299.6 296
% Black/Hispanic 63.8 65.9 69.5 69.2 67.3 67.5 66.5 65.6 65.7 68.2 63.8 70.3
% Female 49.9 50.3 50.1 50.1 49.7 49.9 49.9 49.6 49.4 49.6 50.2 49.9
% Free/Reduced-price Lunch 69.4 69.9 71.6 72.2 72.7 73.7 74 73.9 75.1 73.8 71.8 73
6th Grade Size (100s) 1.6 1.3 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1 1.1 0.9

Note: The table calculates the average characteristics of middle school programs on students’ ROLs, by the rank on the ROL (N=54,012). %
Black/Hispanic, % Female, and % Free/Reduced-price Lunch are calculated using the characteristics of currently enrolled 6th graders in AY 2014-15.
Mean Score (6th grade) and Mean Score (8th grade) are calculated using the average of the statewide standardized math and ELA exams for currently
enrolled 6th graders and 8th graders in AY 2014-15, where the scale is from 110 to 410.

Table F.5: High School Program Characteristics on ROLs

1 2 3 4 5 6 7 8 9 10 11 12

# Students Ranked 53187 49070 47234 44381 41062 37011 32413 28235 23943 20435 16952 13402
% Students Ranked 98.5 90.9 87.5 82.2 76.0 68.5 60.0 52.3 44.3 37.8 31.4 24.8
Distance (miles) 3.2 3.4 3.5 3.6 3.7 3.8 3.9 3.9 4.0 4.0 4.0 3.9
Mean Score (9th grade) 312.7 310.8 309.1 307.9 307.1 306.0 305.6 304.7 304.1 303.2 302.5 301.2
4yr Grad Rate (%) 85.4 84.1 83.4 82.8 82.5 82.1 82.0 81.6 81.4 80.9 80.2 79.2
Enroll in College (%) 73.8 72.3 71.3 70.7 70.2 69.7 69.6 69.1 68.8 68.1 67.3 66.1
% Black/Hispanic 58.2 59.5 60.7 62.4 63.5 65.0 66.0 67.4 68.5 69.9 70.7 71.6
% Female 53.4 51.9 51.1 50.7 50.4 50.2 50.1 50.0 49.7 49.8 49.7 49.5
% Free/Reduced-price Lunch 69.8 71.2 72.2 73.3 73.8 74.5 74.9 75.5 76.0 76.6 77.4 78.0
9th Grade Size (100s) 1.7 1.5 1.5 1.4 1.4 1.3 1.3 1.3 1.3 1.2 1.2 1.3

Note: The table calculates the average characteristics of high school programs on students’ ROLs, by the rank on the ROL (N=54,012). %
Black/Hispanic, % Female and % Free/Reduced-price Lunch are calculated using the characteristics of the currently enrolled 9th graders in AY
2017-18. Mean Scores (9th grade) are calculated using the average of the 8th grade statewide standardized math and ELA exams for currently enrolled
9th graders in AY 2017-18, where the scale is from 130 to 400. 4-year Grad Rate and Enroll in College are calculated using the average of the
graduating cohort in AY 2017-18.

behavior will unambiguously increase the odds of being offered such schools.
Next, we control for the propensity scores and include local linear control of tie-breakers in the

following two specifications denoted by Propensity Score Controlled, All Sample and Propensity
Score Controlled, NDR Sample in Figure F.4. Specifically, we run

Wi = α0 + γDi +
∑
x

α1(x)di(x) + h (Ri) + ei (F.13)

where Wi is the student covariates which we test balance on, and Di, {di(x)}x and h(Ri) are the
same as in our main specification Equation (1).

Propensity Score Controlled, All Sample in Figure F.4 presents estimates on γ with students
with all possible propensity scores, including 0 and 1. Controlling for the propensity score and
nonrandom tie-breakers effectively balances covariates. Next, Propensity Score Controlled, NDR
Sample shows the γ only for students with non-degenerate risk of being offered—i.e., subject to
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Figure F.4: Covariate Balance Test: Offered Students vs. Non-offered Students

Note: Raw Difference shows the t-test results of covariate mean difference between the offered and the non-offered. Propensity Score Controlled,
All Sample shows the coefficient of the offered when we regress the covariate on the offered dummy variables, the nonparametric controls for
propensity score, and the local linear function of nonrandom tie-breaker, using the entire sample. Propensity Score Controlled, NDR Sample is
similar to Propensity Score Controlled, All Sample but we only include the sample whose propensity score is neither 0 nor 1. We plot the relative
difference of each covariate of the offered students to that of the non-offered students, and the unit is the standard deviation for the left panel and
proportion for the middle and right panels. Markers show the exact estimates, and 95% CIs are presented. Robust standard errors are estimated.
N=6,610 for Propensity Score Controlled, NDR Sample, and N=46,618 for other estimates.

randomization. Further restricting the sample to those with non-degenerate risk provides an almost
perfect balance between the offered and the non-offered groups.

Figure F.5 presents the mean difference between those with non-degenerate offer risk and
degenerate (0 or 1) offer risk when the treatment variable is “attended a high-achievement middle
school”. In our data, 2/3 of the degenerate risk sample have a propensity score equal to 0, which
means they did not apply to any of the high-achievement middle schools or had zero chance of
getting in conditional on applying, which suggests that they are different from the non-degenerate
risk sample. Indeed, we find that students with non-degenerate risk and those with degenerate risk
are quite different: Students with non-degenerate risk have higher test scores, are less likely to be
Black/Hispanic, and obviously ranked many treatment middle schools. This reconfirms that the
2SLS estimates we find in Section 3.2 are local average treatment effects (LATE).
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Figure F.5: Covariate Balance Test: Non-degenerate vs. Degenerate Risk Samples

Note: This table shows the t-test results of covariate mean difference between those with non-degenerate offer risk and those with degenerate offer
risk. Markers show the exact estimates, and 95% CIs are presented. Robust standard errors are estimated (N=46,618).

Additional Specifications of the Main Results Table F.6 presents high-score middle school
attendance effects on the characteristics of high schools to which students apply and get assigned.
We define a middle school to be high-score if the average of 6th-grade students’ baseline test scores
is above the 66th percentile across schools. Similar to the effect of Well-Developed middle schools
in Table 2, attending middle schools with high baseline student test scores causes students to apply to
and get matched to high schools with better academic peformance in both level and in value-added.

Table F.7 presents Well-Developed middle school attendance effects on the mean characteristics
of top 3-ranked and top 5-ranked high schools. We find smaller effects, and in particular the mean of
college enrollment rates does not seem to change. This is because Well-Developed middle schools
motivate students to submit shorter lists (Table F.8), and thus many students from Well-Developed
middle schools are dropped from these regressions. Notably, Well-Developed middle school
graduates’ shorter lists does not come at the expense of the probability of being assigned to any
school on their lists. Rather, the probability of being assigned to any school in the main round
increases by 2.3 pp, and the probability of being assigned to their first-ranked school increases by
8.6 pp (Table F.8).

The fact that students attending Well-Developed middle schools submit shorter high school
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Table F.6: High-Score MS Attendance Effects on HS Application and Assignment

(1) (2) (3) (4) (5) (6)
Characteristics of Top-ranked HS Assigned HS

Model OLS 2SLS 2SLS OLS 2SLS 2SLS
Sample All All NDR All All NDR

Panel A: College Enrollment Rate (%)
From High-Score MS 2.634*** 2.377*** 2.107** 4.133*** 4.250*** 3.764***

(0.147) (0.722) (0.806) (0.163) (0.780) (0.891)
N 39360 39360 6826 37237 37237 6460
R2 0.277 0.316 0.442 0.262 0.309 0.411
ȳ 73.382 73.382 76.524 66.008 66.008 69.129

Panel B: Value-added on College Enrollment Rate (%)
From Well-Developed MS 0.134 0.949* 1.140* 0.792*** 1.643** 1.635**

(0.089) (0.457) (0.519) (0.105) (0.512) (0.593)
N 39275 39275 6818 37282 37282 6475
R2 0.053 0.099 0.239 0.044 0.099 0.262
ȳ 2.659 2.659 3.317 1.089 1.089 2.185

Panel C: % High-Baseline-Score 9th-Graders
From Well-Developed MS 5.670*** 3.824** 2.927* 6.894*** 6.240*** 5.936***

(0.242) (1.181) (1.342) (0.201) (0.981) (1.068)
N 39844 39844 6900 38017 38017 6592
R2 0.362 0.413 0.505 0.388 0.445 0.508
ȳ 43.743 43.743 48.036 33.025 33.025 36.423

Panel D: % White
From Well-Developed MS 5.173*** 1.156 -0.026 5.756*** 0.824 -0.342

(0.156) (0.748) (0.789) (0.137) (0.677) (0.703)
N 39844 39844 6900 38017 38017 6592
R2 0.475 0.537 0.575 0.556 0.612 0.627
ȳ 19.303 19.303 20.262 15.096 15.096 15.508

First-stage F-stat 189.44 129.94 189.44 129.94

Note: Each panel presents High-Score MS attendance effects on different characteristics of high schools that students first-ranked (columns (1)-(3)) or
are assigned to (columns (4)-(6)). We define a middle school to be high-score if the average of 6th-grade students’ baseline test score is above the 66th
percentile across schools. To construct the outcome in Panel D, we define students to be high-baseline-score if their standardized NYS test score is
above the 66th percentile. In columns (3) and (6), we restrict the sample to students with non-degenerate risk of being offered (i.e., whose propensity
score is in the interval (0, 1) and hence subject to randomization) from any Well-Developed middle school. Robust standard errors are in parentheses.
All regressions control for student ethnicity, gender, English Language Learner status, Free/Reduced-price Lunch eligibility, Special Education status,
standardized test score in 5th grade, and residential borough in 5th grade. Columns (2)-(3) and (5)-(6) control for dummy variables for all possible
values of propensity score of being assigned to a High-Score MS and local linear control for nonrandom tie-breakers. +p<0.1, *p<0.05, **p<0.01,
***p<0.001.

application lists yet are more likely to be matched with schools ranked high on their list suggests
that their priority standing at the high schools they applied to should improve as a result of
Well-Developed middle school attendance. In Table F.9, we use priority score (Equation (C.1)) to
confirm this.

Table F.10 shows results with other dimensions of high school characteristics (e.g., graduation
rate, % Asian), which confirms that the main results—attending a Well-Developed middle school
makes students apply to high school programs in a way that puts more weight on the end-of-high
school academic outcomes than students’ body composition— are not driven by the choice of high
school characteristics.
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Table F.7: Well-Developed MS Attendance Effects on HS Application

(1) (2) (3) (4) (5) (6)
Characteristics of Top3-ranked HS Top5-ranked HS

Model OLS 2SLS 2SLS OLS 2SLS 2SLS
Sample All All NDR All All NDR

Panel A: College Enrollment Rate (%)
From Well-Developed MS 0.758 1.275+ 1.307 0.589 1.491* 0.858

(0.488) (0.686) (0.800) (0.546) (0.731) (0.939)
N 39471 39471 5408 34222 34222 4662
R2 0.209 0.243 0.387 0.185 0.223 0.379
ȳ 71.334 71.334 72.992 70.354 70.354 71.947

Panel B: Value-added on College Enrollment Rate (%)
From Well-Developed MS 0.155 -0.207 -0.325 -0.046 0.159 0.248

(0.301) (0.401) (0.489) (0.297) (0.443) (0.542)
N 39401 39401 5400 34180 34180 4660
R2 0.040 0.073 0.219 0.034 0.068 0.227
ȳ 2.741 2.741 3.096 2.795 2.795 3.066

Panel C: % High-Baseline-Score 9th-Graders
From Well-Developed MS 1.934* 3.153** 2.937** 1.849* 3.431* 2.719*

(0.863) (1.029) (1.005) (0.841) (1.378) (1.381)
N 40041 40041 5471 34799 34799 4734
R2 0.265 0.313 0.445 0.231 0.283 0.441
ȳ 39.740 39.740 41.890 37.824 37.824 40.402

Panel D: % White
From Well-Developed MS 1.453+ 0.956 1.166 0.989 2.230* 1.645+

(0.758) (0.812) (0.758) (0.610) (1.041) (0.948)
N 40042 40042 5471 34799 34799 4734
R2 0.368 0.425 0.550 0.288 0.349 0.507
ȳ 17.604 17.604 20.393 15.751 15.751 18.608

First-stage F-stat 411.74 287.42 411.74 287.42

Note: Each panel presents Well-Developed MS attendance effects on different characteristics of high schools that students top 3-ranked (columns
(1)-(3)) or top 5-ranked (columns (4)-(6)). To construct the outcome in Panel D, we define students to be high-baseline-score if their standardized
NYS test score is above the 66th percentile. In columns (3) and (6), we restrict the sample to students with non-degenerate risk of being offered (i.e.,
whose propensity score is in the interval (0, 1) and hence subject to randomization) from any Well-Developed middle school. Robust standard errors
are in parentheses. All regressions control for student ethnicity, gender, English Language Learner status, Free/Reduced-price Lunch eligibility,
Special Education status, standardized test score in 5th grade, and residential borough in 5th grade. Columns (2)-(3) and (5)-(6) control for dummy
variables for all possible values of propensity score of being assigned to a Well-Developed MS and local linear control for nonrandom tie-breakers.
+p<0.1, *p<0.05, **p<0.01, ***p<0.001.

The estimates in columns (2) and (3) in Table 2 differ due to changes in estimates of other
covariates. The coefficients of interest with the full sample (in column (2)) vary by whether we
control for other covariates or not, while those with NDR sample (in column (3)) remain stable
(Table F.11). This is because covariates differ between treated and untreated student in the full
sample even after controlling for the full set of propensity score dummies Appendix F.2. This
reassures the importance of common support assumption, and in turn, our choice of column (3) as
most preferred specification.

Table F.12 shows that additionally controlling for end-of-middle-school test scores barely changes
the main treatment effect of attending Well-Developed middle schools. We take this as a suggestive
evidence that middle schools affect students’ high school application behavior through other channels
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Table F.8: Well-Developed MS Attendance Effects on HS Application and Assignment—Other
Outcomes

(1) (2) (3) (4)
Length of List 1(Unassigned) Rank of Assigned Program 1(Assigned to Top-rank)

From Well-Developed MS -1.479*** -0.023+ -0.165 0.86***
(0.181) (0.012) (0.107) (0.241)

N 6413 6413 5988 6413
R2 0.345 0.149 0.210 0.223
ȳ 7.394 0.066 2.524 44.160

Note: The table presents Well-Developed MS attendance effects on four outcomes. The outcome variable in column (1) is the total number of
programs included in students’ rank-ordered list, in column (2) is an indicator of whether the student is unassigned to any school on her list, in column
(3) is the rank of matched school on her rank-ordered list, and in column (4) is an indicator of whether the student is assigned to her top-ranked
school. We restrict the sample to students with non-degenerate risk of being offered (i.e., whose propensity score is in the interval (0, 1) and hence
subject to randomization) from any Well-Developed middle school. Robust standard errors are in parentheses. All regressions control for student
ethnicity, gender, English Language Learner status, Free/Reduced-price Lunch eligibility, Special Education status, standardized test score in 5th
grade, and residential borough in 5th grade. All columns control for dummy variables for all possible values of propensity score of being assigned to a
Well-Developed MS and local linear control for nonrandom tie-breakers. +p<0.1, *p<0.05, **p<0.01, ***p<0.001.

Table F.9: Well-Developed MS Attendance Effects on HS Priority Score

(1) (2) (3) (4) (5)
Score at 1st ranked Score at 2nd ranked Score at 3rd ranked

From Well-Developed MS -0.209*** -0.057* -0.064* -0.031 -0.009
(0.034) (0.025) (0.025) (0.025) (0.025)

Application FEs 1st-ranked 2nd-ranked Up to 2nd-ranked 3rd-ranked Up to 3rd-ranked
N 6413 5688 5688 5474 5474
R2 0.661 0.828 0.858 0.840 0.897
ȳ 1.318 1.417 1.417 1.459 1.459

Note: The table presents Well-Developed MS attendance effects on priority scores at high schools students applied to. Priority score is constructed as
in Equation (C.1); the integer maps onto the priority group and the decimal part maps onto nonrandom tie-breaker. The lower the value, the higher
the priority standing. The outcome variable in column (1) is the priority score at students’ first-ranked high schools. In columns (2)-(3), it is the
priority score at their second-ranked high schools, and the third-ranked high schools in columns (4)-(5). To control for the fact that different high
schools use different priority groups and tie-breaking rules, we control for the full set of dummy variables for Nth-ranked high schools (columns (1),
(2), (4)) or up to Nth-ranked high schools (columns (3) and (5)). We restrict the sample to students with non-degenerate risk of being offered (i.e.,
whose propensity score is in the interval (0, 1) and hence subject to randomization) from any Well-Developed middle school. Robust standard errors
are in parentheses. All regressions control for student ethnicity, gender, English Language Learner status, Free/Reduced-price Lunch eligibility,
Special Education status, standardized test score in 5th grade, and residential borough in 5th grade. All columns control for dummy variables for all
possible values of propensity score of being assigned to a Well-Developed MS and local linear control for nonrandom tie-breakers. +p<0.1, *p<0.05,
**p<0.01, ***p<0.001.

beyond the evolution of test scores.

F.3 Additional Tables and Figures from Section 4
F.3.1 Demand Estimates

Table F.13 reports demand estimates.

F.3.2 Discussion of the Modeling Choice and Relevant Data Patterns
The Null Grade A Attendance Effect on Moving Table F.14 shows that Well-Developed middle
schools did not shift households’ propensity to move across boroughs, school districts, or Census
tracts. We run Equation (1) with the same set of students as in the main empirical pattern in Table 2.
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Table F.10: Well-Developed MS Attendance Effects on HS Application and Assignment

(1) (2) (3) (4) (5) (6)
Characteristics of Top-ranked HS Assigned HS

Model OLS 2SLS 2SLS OLS 2SLS 2SLS
Sample All All NDR All All NDR

Panel A: Graduation Rate (%)
From Well-Developed MS 0.648*** 1.207** 1.757*** 1.480*** 2.935*** 3.467***

(0.113) (0.415) (0.512) (0.129) (0.462) (0.565)
N 44522 44522 6324 42139 42139 5982
R2 0.209 0.244 0.375 0.215 0.254 0.380
ȳ 85.443 85.443 86.897 79.675 79.675 81.453

Panel B: Value-added on Graduation Rate (%)
From Well-Developed MS -0.448*** 0.329 0.507 -0.172* 1.136*** 1.467***

(0.071) (0.259) (0.328) (0.080) (0.297) (0.358)
N 44401 44401 6311 42126 42126 5985
R2 0.143 0.184 0.372 0.024 0.071 0.236
ȳ 0.904 0.904 0.592 1.149 1.149 1.198

Panel C: % White or Asian
From Well-Developed MS 2.032*** 1.449+ 0.047 3.230*** 1.860** -0.392

(0.218) (0.772) (0.905) (0.209) (0.698) (0.750)
N 45081 45081 6393 43019 43019 6097
R2 0.496 0.547 0.655 0.519 0.579 0.693
ȳ 41.282 41.282 43.952 33.308 33.308 35.540

Panel D: % Free-or-Reduced Lunch Eligible
From Well-Developed MS -1.112*** -2.133*** -0.427 -1.713*** -2.323*** -0.421

(0.169) (0.600) (0.675) (0.146) (0.508) (0.514)
N 45081 45081 6393 43019 43019 6097
R2 0.373 0.447 0.562 0.430 0.509 0.608
ȳ 70.100 70.100 68.039 75.696 75.696 73.836

First-stage F-stat 411.74 287.42 411.74 287.42
Note: Each panel presents Well-Developed MS attendance effects on different characteristics of high schools that students first-ranked (columns
(1)-(3)) or are assigned to (columns (4)-(6)). To construct the outcome in Panel C, we define students to be high-baseline-score if their standardized
NYS test score is above the 66th percentile. In columns (3) and (6), we restrict the sample to students with non-degenerate risk of being offered (i.e.,
whose propensity score is in the interval (0, 1) and hence subject to randomization) from any Well-Developed middle school. Robust standard errors
are in parentheses. All regressions control for student ethnicity, gender, English Language Learner status, Free/Reduced-price Lunch eligibility,
Special Education status, standardized test score in 5th grade, and residential borough in 5th grade. Columns (2)-(3) and (5)-(6) control for dummy
variables for all possible values of propensity score of being assigned to a Well-Developed MS and local linear control for nonrandom tie-breakers.
+p<0.1, *p<0.05, **p<0.01, ***p<0.001.

The Null Grade A Attendance Effect on Specialized High School Match Table F.15 shows that
Well-Developed middle schools did not shift students’ propensity to take the SHSAT more or to get
an offer from specialized high schools more. We run Equation (1) with the same set of students in
the main empirical pattern in Table 2. There are 11 specialized high schools in the city, including
Stuyvesant and the Bronx High School of Science, and they admit students based on the SHSAT
score. These 11 high schools have their own centralized school assignment system, separate from
those of district schools, which comprise our estimation sample.
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Table F.11: Estimates With and Without Covariates

(1) (2) (3) (4)
Dependent Variable: College Enrollment Rate of Top-ranked HS Assigned HS

Model 2SLS 2SLS 2SLS 2SLS
Sample All NDR All NDR

Panel A: With Covariates
From Well-Developed MS 1.820*** 2.961*** 3.851*** 4.628***

(0.508) (0.616) (0.560) (0.678)
N 44489 6320 42055 5975
R2 0.310 0.441 0.301 0.419
ȳ 73.724 76.096 66.325 69.040

Panel B: Without Covariates
From Well-Developed MS 2.588*** 3.040*** 4.949*** 4.890***

(0.531) (0.637) (0.590) (0.696)
N 46391 6623 43875 6268
R2 0.145 0.362 0.167 0.352
ȳ 73.643 76.063 66.271 69.038

Note: The dependent variables are college enrollment rates of top-ranked high schools (columns (1) and (2)) and those of assigned high schools
(columns (3) and (4)). In columns (2) and (4), we restrict the sample to students with non-degenerate risk of being offered (i.e., whose propensity
score is in the interval (0, 1) and hence subject to randomization) from any Well-Developed middle school. Robust standard errors are in parentheses.
Panel A controls for student ethnicity, gender, English Language Learner status, Free/Reduced-price Lunch eligibility, Special Education status,
standardized test score in 5th grade, and residential borough in 5th grade. Panel B does not include those covariates. All columns control for dummy
variables for all possible values of propensity score of being assigned to a Well-Developed MS and local linear control for nonrandom tie-breakers.
+p<0.1, *p<0.05, **p<0.01, ***p<0.001.

Table F.12: Controlling For 8th Grade Test Scores

(1) (2) (3) (4)
Dependent Variable College Enrollment Rate (%) VA on College Enrollment Rate (%)

Characteristics of Top-ranked Assigned Top-ranked Assigned

From Well-Developed MS 3.572*** 4.738*** 1.970*** 2.369***
(0.859) (0.924) (0.554) (0.627)

8th Grade ELA Score 1.385*** 1.919*** 0.019 0.632*
(0.378) (0.387) (0.230) (0.260)
(0.354) (0.369) (0.228) (0.252)

8th Grade Math Score 2.163*** 1.977*** -0.017 0.592*
(0.351) (0.389) (0.219) (0.254)

N 4492 4263 4485 4267
R2 0.404 0.425 0.259 0.295
ȳ 73.617 66.456 3.563 1.897

Note: All columns show 2SLS estimates with NDR sample. Robust standard errors in parentheses. All regressions control for student ethnicity,
gender, English Language Learner status, Free/Reduced-price Lunch eligibility, Special Education status, standardized test score in 5th grade, and
residential borough in 5th grade. All columns also control for dummy variables for all possible values of propensity score of being assigned to a
Well-Developed MS and local linear controls for nonrandom tie-breakers. +p<0.1, *p<0.05, **p<0.01, ***p<0.001.
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Table F.13: Demand Estimates

Middle Schools High Schools
est se est se

Panel A: Preference Estimates
Proportion of White/Asian/Other

Black/Hispanic -1.661 (0.125) -2.477 (0.085)
FRPL 0.191 (0.146) -0.462 (0.081)

5th Grade Test Score 0.106 (0.156) -0.023 (0.037)
Proportion of non-FRPL

Black/Hispanic 0.902 (0.232) -2.136 (0.171)
FRPL -1.207 (0.199) -1.205 (0.214)

5th Grade Test Score -0.351 (0.086) -0.571 (0.088)
Proportion of High-Performers

Black/Hispanic 0.004 (0.175) 0.285 (0.140)
FRPL 0.207 (0.159) 0.376 (0.150)

5th Grade Test Score 0.735 (0.065) 1.182 (0.059)
1(Well-Developed Middle School)

Black/Hispanic -0.083 (0.065)
FRPL 0.182 (0.064)

5th Grade Test Score -0.016 (0.027)
College Enrollment Rate

Black/Hispanic -0.327 (0.113)
FRPL 0.686 (0.092)

5th Grade Test Score -0.662 (0.036)

Panel B: Middle School Type Effects
Attending Well-Developed Middle School

Proportion of White/Asian/Other 0.441 (0.082)
Proportion of non-FRPL 0.458 (0.149)

Proportion of High-Performers 1.151 (0.145)
Proportion of College Enrollment Rate 0.471 (0.113)

Panel C: Unobservable Tastes
Type 1: Proportion of White/Asian/Other 2.552 (0.470) 3.775 (0.105)

Proportion of non-FRPL 2.102 (0.407) 5.047 (0.196)
Proportion of High-Performers 3.125 (0.181) 0.894 (0.166)
Proportion of College Enrollment

Rate
0.362 (0.091) 4.145 (0.123)

Type 2: Proportion of White/Asian/Other -1.207 (38.251) 14.752 (0.801)
Proportion of non-FRPL 0.216 (68.322) 15.032 (0.823)
Proportion of High-Performers 3.027 (27.741) -12.292 (1.513)
Proportion of College Enrollment

Rate
-0.045 (10.120) -13.341 (0.820)

Panel D: Unobservable Tastes Probabilities
Pr(MS type=1 & HS type=1) 0.649 (0.110)
Pr(MS type=1 & HS type=2) 0.049 (0.007)
Pr(MS type=2 & HS type=1) 0.275 (0.105)
Pr(MS type=2 & HS type=2) 0.027 (0.010)

Panel E: Other Parameters
ατ -0.939 (0.071)
Outside option (White/Asian/Other) 5.291 (0.123) 6.016 (0.095)
Outside option (Black/Hispanic) 3.378 (0.084) 4.049 (0.091)
Distance -0.655 (0.023) -0.556 (0.004)

Note: We report the preference estimates of the main model described in Section 4. School characteristics “Proportion of White/Asian/Other,”
“Proportion of non-FRPL,” “Proportion of High-Performers,” “College Enrollment Rate” are between 0 and 1, and “1(Well-Developed Middle
School)” is an indicator variable. Panel A reports coefficients on the interactions of each school characteristics with Black/Hispanic, FRPL status, and
5th Grade Test Score. Standard errors acquired from 50 bootstrap samples are reported in parentheses. We do not report the fixed effects estimates.
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Table F.14: Well-Developed MS Attendance Effects on Moving

(1) (2) (3)
1(Across Boroughs) 1(Across Districts) 1(Across Census Tracts)

From Well-Developed MS 0.004 -0.006 -0.017
(0.009) (0.016) (0.021)

N 6371 6371 6371
R2 0.231 0.189 0.153
ȳ 0.038 0.117 0.235

Note: The table presents Well-Developed MS attendance effects on the propensity to move across boroughs, school districts, and Census tracts. There
are 5 boroughs, 32 school districts, and 2,164 Census tracts in the city. We restrict the sample to students with non-degenerate risk of being offered
(i.e., whose propensity score is in the interval (0, 1) and hence subject to randomization) from any Well-Developed middle school. Robust Ssandard
errors in parentheses. All regressions control for student ethnicity, gender, English Language Learner status, Free/Reduced-price Lunch eligibility,
Special Education status, standardized test score in 5th grade, and residential borough in 5th grade. All columns control for dummy variables for all
possible values of propensity score of being assigned to a Well-Developed MS and local linear control for nonrandom tie-breakers. +p<0.1, *p<0.05,
**p<0.01, ***p<0.001.

Table F.15: Well-Developed MS Attendance Effects on Specialized High School Offer

(1) (2)
1(Took SHSAT) 1(Offer from any Specialized High School)

From Well-Developed MS 0.022 0.003
(0.019) (0.010)

N 6413 6413
R2 0.485 0.449
ȳ 0.397 0.091

Note: The table presents Well-Developed MS attendance effects on the propensity to take the specialized High Schools Admissions Test (SHSAT) or
receive an offer from one of the Specialized high schools. There are 11 specialized high schools in NYC, including Stuyvesant and Bronx High
School of Science, and students must take the SHSAT to apply to one of those schools. We restrict the sample to students with non-degenerate risk of
being offered (i.e., whose propensity score is in the interval (0, 1) and hence subject to randomization) from any Well-Developed middle school.
Robust standard errors in parentheses. All regressions control for student ethnicity, gender, English Language Learner status, Free/Reduced-price
Lunch eligibility, Special Education status, standardized test score in 5th grade, and residential borough in 5th grade. All columns control for dummy
variables for all possible values of propensity score of being assigned to a Well-Developed MS and local linear control for nonrandom tie-breakers.
+p<0.1, *p<0.05, **p<0.01, ***p<0.001.
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