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Abstract

We obtain a necessary and sufficient condition under which random-coefficient discrete

choice models, such as mixed-logit models, are rich enough to approximate any nonpara-

metric random utility models arbitrarily well across choice sets. The condition turns out

to be the affine-independence of the set of characteristic vectors. When the condition fails,

resulting in some random utility models that cannot be closely approximated, we identify

preferences and substitution patterns that are challenging to approximate accurately. We

also propose algorithms to quantify the magnitude of approximation errors.
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1 Introduction

Random-coefficient discrete choice models are workhorse models in many empirical ap-

plications. These models are commonly used to approximate various preferences and

capture rich substitution patterns. However, the exact degree of flexibility and the limi-

tations of the random-coefficient models have not been fully understood.1 In this paper,

we obtain a necessary and sufficient condition under which random coefficient models can

approximate the choice behavior generated by any nonparametric random utility model

arbitrarily well. Our results suggest that some widely-used empirical models may not be

flexible enough to capture important economic quantities, such as substitution patterns.

In such instances, we introduce methods to pinpoint preferences that are particularly

difficult to approximate with precision. Additionally, we propose algorithms designed to

quantify the magnitude of these approximation errors. Our results help researchers assess

if the models can capture choice behaviors relevant to the research problem at hand.

We consider the standard setup (e.g. in Train (2009)). Let J be the set of all alter-

natives. For each alternative j, xj ∈ RK is the vector of characteristics of alternative j,

where K is the number of explanatory variables. With an additive random utility model

(ARUM), the choice probability of an alternative j in a choice set D ⊂ J is given by

ρ(D, j) = µ({ε|β · xj + ηj + εj > β · xl + ηl + εl ∀l ∈ D \ {j}}), where β is a determin-

istic vector capturing an agent’s preferences, η is a vector of fixed effects, which captures

unobserved characteristics of alternatives, and ε is a random utility shock that follows a

probability measure µ.2 The class of the ARUMs is general and includes the probit, logit,

and nested-logit models as special cases. The random-coefficient version of the ARUM is

defined as follows. The choice probability is given by

ρ(D, j) =

∫
µ({ε|β · xj + ηj + εj > β · xl + ηl + εl,∀l ∈ D \ {j}})dm(β), (1)

where m is a probability measure over β. In the standard interpretation, the distribution

1An important early work in this direction is McFadden and Train (2000). See the section on related literature
for details.

2In this paper, we assume that µ is absolutely continuous with respect to the Lebesgue measure and the
support is convex.
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m captures the heterogeneity of preferences among the population of agents.3 When µ is

an iid type-I extreme-value distribution, then ρ reduces to a mixed-logit model, which is

one of the widely used random-coefficient models.

Given the popularity of the random-coefficient ARAMs, it is important to understand

its flexibility and limitations. For this purpose, we obtain a necessary and sufficient con-

dition under which the random-coefficient ARUMs are rich enough to approximate any

choice probabilities generated by nonparametric random utility models arbitrarily well

across choice sets. For the approximation target, we choose the random utility models,

which are defined as probability measures over strict preference rankings over alterna-

tives. We choose this class of models because it is the most general and agnostic class of

models assuming individuals’ rational behavior. We study approximation across choice

sets because many questions of interest (such as substitution patterns) rely on analyzing

behaviors across choice sets. Moreover, choice data across choice sets are widespread in

the fields of marketing, empirical industrial organization, environmental economics, and

political science.

In our main theorem (Theorem 1), we state that the necessary and sufficient condition

is the affine-independence of the set {xj ∈ RK |j ∈ J}.4 To interpret the condition,

consider a typical setup, in which a researcher first fixes one probability measure µ over the

shock ε; then the researcher estimates the distribution m over coefficients β and the fixed

effects η after observing a dataset. If the affine-independence condition is satisfied, then

the researcher should be able to approximate any given dataset by using some random-

coefficient ARUMs arbitrarily well across choice sets. On the other hand, if the affine-

independence condition is violated, there exists a dataset generated by a random utility

model that cannot be approximated arbitrarily well by any random-coefficient ARUM,

no matter which random-coefficient distribution m as well as fixed effects η we use. The

affine-independence condition is easy to test: the condition is generically equivalent to a

further simpler condition: K ≥ |J | − 1, where |J | is the number of alternatives and K is

3Notice that the roles of β and η are different. The probability measure m is only on β but not on η.
4A set Y ≡ {y1, . . . , yn} is affinely independent if for any yi ∈ Y , there exists no real number {µj}j 6=i

such that yi =
∑
j 6=i µjyj and

∑
j 6=i µj = 1. A set Y ≡ {y1, . . . , yn} is affinely independent if and only if

{y2 − y1, . . . , yn − y1} is linearly independent, where y1 can be replaced by any yi.
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the number of characteristics observed for each alternative.

In many empirical papers, researchers use the mixed-logit models that are linear in the

original characteristics and do not contain additional terms such as polynomials. We call

such models linear mixed-logit models. In these papers, we often observe a deviation from

the condition K ≥ |J | − 1, resulting in the violation of the affine-independence condition.

This means that the linear mixed-logit models may not be rich enough to approximate the

true substitution pattern arbitrarily well across subsets of J , no matter how one chooses

the distribution m and the fixed effects η.

When the affine-independence condition is violated, our theorem shows that there

exists random utility model that cannot be approximated arbitrarily well; moreover, our

result implies that this happens because there are strict preference rankings that cannot be

approximated arbitrarily well. Given this result, we introduce a tractable method to iden-

tify such strict preference rankings: this method can be efficiently implemented through

straightforward linear programmings. To further quantify the flexibility of the random-

coefficient ARUMs under researchers’ consideration, we calculate the approximation error

to degenerate stochastic choice funcition corresponding to the strict preference rankings

that are challenging to approximate precisely. We also calculate the maximal substitution

patterns allowed in the class of random-coefficient ARUMs. To calculate these quantities,

we introduce two algorithms. One algorithm is a variant of the greedy algorithm proposed

in Barron et al. (2008). The other algorithm is the EM (Expectation-Maximization) al-

gorithm drawn from Dempster et al. (1977). The outputs of the algorithms can help

researchers identify choice behaviors that are failed to be captured, and researchers can

assess whether these behaviors are empirically relevant.

We apply our theorem and the two algorithms to a dataset of fishing-site choices

(Thomson and Crooke, 1991). In the dataset, there are four alternatives (i.e., |J | = 4)

and two characteristic variables (i.e., K = 2): price pj and a quality measure qj of

each fishing site. We find that the affine-independence condition is violated with the

original characteristics (i.e., xj = (pj , qj)) because K = 2 6≥ 3 = |J | − 1. By using our

methods, we find that half of the preferences cannot be approximated arbitrarily well.

With our two algorithms, we measure the approximation errors to these preferences by

4



the class of linear mixed-logit models. Regardless of the algorithm used, we find that

the approximation errors are large. Specifically, the choice probabilities predicted by

the closest linear mixed-logit model sometimes deviate from the true ones by over 70

percentage points. Moreover, we identify substitution patterns that cannot be captured

well.5 We find that the class of linear mixed-logit models limits the largest substitution

pattern from one alternative to another to be at most 12 percentage points, no matter

how the parameters of the linear mixed-logit models are chosen.

The structure of the paper is as follows. In Section 2, we introduce the models under-

pinning our analysis. Section 3 presents the key theorems of the paper. A sketch of the

proof is detailed in Section 4. In Section 5, we elaborate on the methodologies employed

for measuring approximation errors. Finally, Section 6 applies our theoretical framework

to an empirical context, utilizing a real-world dataset for illustration.

Related Literature

The work most closely related to our paper are Dagsvik (1994) and especially McFadden

and Train (2000), who show that any given (nonparametric) continuous random utility

model can be approximated arbitrarily well by a mixed-logit model.6 Nevertheless, there

are important differences to note. In particular, our result holds for a much more general

class of random-coefficient ARUMs, including but not confined to mixed-logit models.

Second, our result is not only sufficient but also necessary. This is crucial given our

purpose of clarifying the exact extent of flexibility and limitations of the random-coefficient

ARUMs. Moreover, through our condition, our results provide a tight bound on how many

parameters we need for an arbitrarily good approximation. Third, the setup of McFadden

and Train (2000) and our setup differ in that McFadden and Train (2000) focus on the

case where the set of characteristics is continuous. Hence, neither result implies the other.

A recent paper by Lu and Saito (2021) also studies the extent to which the approximation

of a continuous random utility model (i.e., pure characteristics model) is possible by using

5In this context, we define the substitution pattern as the largest increase of the choice probabilities of one
alternative when another alternative becomes unavailable.

6Our result is consistent with their result: heuristically speaking, the result by McFadden and Train (2000)
corresponds to the case when the researcher use arbitrarily higher order polynomials (i.e., K → ∞), which
satisfies our condition that K ≥ |J | − 1.
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mixed-logit models.

Another paper closely related to ours is Norets and Takahashi (2013). They study

whether ARUMs can represent any stochastic choice (i.e., market shares). However, their

analysis focuses on a fixed choice set while our paper studies approximation across var-

ious choice sets. Other related papers also focus on a fixed choice set. In particular,

Berry (1994) provides an earlier and classical inversion result useful for representing any

stochastic choice on a given choice set. Athey and Imbens (2007) investigate how a rich

specification of the unobserved components is needed to represent any stochastic choice

function in a fixed choice set.

Our analysis shares some of its spirit with the growing literature that identifies and

estimates flexible discrete choice models under minimal assumptions. See, for example,

Berry and Haile (2014), Compiani (2022), and Tebaldi et al. (2023). Despite the similarity

in the spirit, our problem is different from the standard econometric problems. We are

not concerned with statistical estimation or identification problems, i.e. recovering model

parameters in either sampled or population setting. In contrast, our primary goal is to

explore the limitations of common modeling strategies within the discrete choice literature:

our work focuses on a specification or approximation question rather than identification,

estimation, or inference.

In the decision theory literature, there are two interpretations of stochastic choice.

The first interpretation is based on the observation that even a single agent may make

stochastic choices, as observed in recent experiments (see Agranov and Ortoleva (2017)).

The second interpretation suggests that stochasticity arises from unobserved heterogeneity

among a population of agents, as typically assumed in the empirical literature. Although

our paper aligns with this latter perspective, we know of no research that directly relates

to our papers.

Historically, logit models and random utility models have been analyzed extensively

ever since Luce (1959) and Block and Marschak (1960). Recent studies, such as those

by Apesteguia and Ballester (2018) and Frick et al. (2019), highlight the distinctions in

choice behavior between random utility models and logit models.

Furthermore, a few recent studies examine the substitution property in discrete choice
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analysis. Horan and Adam (2023) discusses the substitution patterns captured by random

utility models. Allen and Rehbeck (2020) analyze aggregate complementarity in latent

utility models used in discrete choice.

2 Model

2.1 Setup

Set of alternatives: The set of all alternatives is denoted by J . J is assumed to be

finite.

Choice sets: Let D ⊂ 2J \ {∅} be the set of choice sets. Notice that D can be a proper

subset of 2J \∅. Unless otherwise noted, throughout the paper we assume that D contains

all binary and ternary choice sets: {j, l} ∈ D and {j, l, r} ∈ D for any j, l, r ∈ J . In a

part of the paper (i.e., Section 3.1), however, we drop this assumption and assume that

D = {J} when we consider the case in which the researcher’s purpose is fitting a model

to the observed choice probabilities from the single choice set.

The set D may contain both observed choice sets as well as hypothetical choice sets

the researcher is interested in. For example, even when the researcher observes consumers’

choices only over {train,bus, car}, he may also be interested in choices over {train,bus},

{train, car}, and {bus, car} to learn the consumers’ substitution pattern.

Explanatory variables: An alternative j ∈ J is described by a real vector xj ∈ RK of

explanatory variables, where K is the number of the explanatory variables. For instance,

if an alternative j is a consumption good, the alternative may be described by its price

pj and its quality index qj ; in that case xj = (pj , qj). Moreover, the researcher can

include functions of original characteristics in xj . Empirical applications often include

higher order polynomials as well as splines or wavelets (Chen, 2007). For example, with

the original characteristics (pj , qj) of alternative j, the researcher may include higher

order polynomials such as p2
j , q

2
j , pjqj in the characteristic vector xj and can make the

number K of characteristic vectors larger. If the researcher includes all terms, then

xj = (pj , qj , p
2
j , q

2
j , pjqj) and K = 5.

Stochastic choice function: A function ρ : D × J → [0, 1] is called a stochastic choice

function if
∑

j∈D ρ(D, j) = 1 and ρ(D, j) = 0 for any j 6∈ D. The set of stochastic choice
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functions is denoted by P. For each (D, j) ∈ D×J , the number ρ(D, j) is interpreted as the

probability that an alternative j is chosen from a choice set D. In the context of discrete

choice analysis, for example, ρ(D, j) can be interpreted as the market share of product j

in a market in which the set of available products is D. In such cases, we interpret the

stochastic choice function ρ as aggregate choice probabilities across individuals.

Rankings: Let Π be the set of bijections between J and {1, . . . , |J |}, where |J | is the

number of elements of J . For any element π ∈ Π, if π(j) = i, then we interpret alternative

j to be the |J | + 1 − i-th best element of J with respect to π. If π(j) > π(l), then j is

better than l with respect to π. An element π of Π is called a ranking over J . A ranking

describes an agent’s strict preference relation.7

For all (D, j) ∈ D×J such that j ∈ D, if π(j) > π(l) for all l ∈ D \ {j}, then we often

write π(j) ≥ π(D). There are |J |! elements in Π.

2.2 Models

We denote the set of probability measures over Π by ∆(Π). Since Π is finite, ∆(Π) ={
(ν1, . . . , ν|Π|) ∈ R

|Π|
+

∣∣∑|Π|
i=1 νi = 1

}
, where R+ is the set of nonnegative real numbers.

We now introduce the definition of random utility models:

Definition 1. A stochastic choice function ρ is called a random utility model if there

exists a probability measure ν ∈ ∆(Π) such that for all (D, j) ∈ D × J , if j ∈ D, then

ρ(D, j) = ν({π ∈ Π|π(j) ≥ π(D)}).

The set of random utility models is denoted by Pr.8

Notice that when D = {J}, the restriction of random utility is vacuous: any stochastic

choice function is a random utility model (i.e., Pr = P).9

7Alternatively, a ranking can be defined as a binary relation that is complete, transitive and irreflexive. The
relation is often called a linear order.

8While the function above is often called a random ranking function, a random utility model is often defined
differently by using the existence of a probability measure µ over utilities such that for all (D, j) ∈ D × J , if
j ∈ D, then ρ(D, j) = µ({u ∈ RJ |u(x) ≥ u(D)}). Block and Marschak (1960)’s Theorem 3.1 proves that the
two definitions are equivalent.

9To see this, observe that Pr ⊂ P by definition. We show the converse. For any j ∈ J , let πj ∈ Π such that
πj(j) > πj(l) for all l ∈ D \ {j}. Then ρπj (l) = 1j(l) for any l ∈ J , where 1j(l) = 1 if l = j and 1j(l) = 0 if
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In certain scenarios, researchers might want to exclude rankings deemed unreasonable

and restrict the set of rankings. We consider such a case in Section A in the appendix.

In both theoretical and empirical literature, modeling assumptions are imposed to

approximate the random utility models. Two important classes are defined as follows.

First we introduce one definition.

Definition 2. A Borel probability measure µ on the Borel σ-algebra of R|J | is said to be

a standard probability measure if µ is absolutely continuous with respect to the Lebesgue

measure and the support is convex.10 Let M be the set of all standard probability

measures.

In the following, we denote the inner product of two vectors x and y by x · y.

Definition 3. Let η ∈ R|J | be a real vector. A stochastic choice function ρ is called a

random-coefficient additive-random utility model (random-coefficient ARUM) with fixed

effects η if there exist a standard probability measure µ and a Borel probability measure

m such that for all (D, j) ∈ D × J , if j ∈ D, then

ρ(D, j) =

∫
µ({ε|β · xj + ηj + εj > β · xl + ηl + εl∀l ∈ D \ {j}})dm(β).

The random vector (εj)j∈J ∈ R|J | follows the distribution µ. When the support of m has

only one point, the stochastic choice function ρ is called an additive-random utility model

(ARUM) with fixed effects η: for all (D, j) ∈ D × J , if j ∈ D, then

ρ(D, j) = µ({ε|β · xj + ηj + εj > β · xl + ηl + εl for all l ∈ D \ {j}}).

The set of random-coefficient ARUMs is denoted by Pra(η|µ) and the set of ARUMs

by Pa(η|µ). When the context makes clear which standard probability measure µ we

consider, we do not specify the standard probability measure µ.

l 6= j. (For the definition of ρπ, see definition (4) in Section 3.3.) For any ρ ∈ P, define ρ′ =
∑
j∈J ρ(j)ρπj .

Then, ρ′ ∈ Pr and ρ′(j) = ρ(j) for any j ∈ J , as desired. Hence, P ⊂ Pr. In general, we have Pr ( P and the
random utility models have some testable implication. For example, when D = 2J \ ∅, random utility models
are characterized by the non-negativity of the Block-Marschak polynomials.

10Remember that the support supp.µ is defined as {ε ∈ R|J||µ(Nε) > 0 for any open neighborhood Nε of ε}.
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The term β · xj is the systematic part of the utility of alternative j captured by the

observed characteristics xj . The vector β captures preferences of an agent and the distribu-

tion m over coefficients β describes the heterogeneity of preferences among the population

of the agents. The constant ηj is called a fixed effect that captures the utility of alternative

j from the unobserved characteristics; εj is the shock to the utility of alternative j.

Almost all probability measures used in practice are standard. For a mixed-logit

model, µ is an iid extreme-value type-I distribution; for a probit model, µ is the multi-

variate standard normal distribution. Note that in most empirical applications of these

models, the mixing distribution m is a parametric distribution like a multivariate normal

distribution. In our case, the mixing distributions of the random coefficients do not come

from a particular parametric family.

For the exposition later, we define the mixed-logit models formally as follows:

Definition 4. Let η ∈ R|J | be a real vector. A stochastic choice function ρ is called a

mixed-logit model with fixed effects η if there exists a Borel probability measure m such

that for all (D, j) ∈ D × J , if j ∈ D, then

ρ(D, j) =

∫
exp(β · xj + ηj)∑
l∈D exp(β · xl + ηl)

dm(β). (2)

The set of mixed-logit models with fixed effects η is denoted by Pml(η). When m puts the

unit mass on a particular β in (2), then ρ is called a logit model. The set of logit models

with fixed effects η is denoted by Pl(η).

We give a few remarks on the models. First, we consider the models with fixed effects

given their popularity in empirical applications. Fixed effects are used frequently to

capture the unobserved characteristics of alternatives (Berry et al., 1995). As we are

interested in approximating choice data for the same population, we consider the case

where fixed effects do not change across choice sets. While there is a common presumption

that utilizing fixed effects enables us to depict any behavior generated by the random

utility model, we demonstrate that this may not hold when there are multiple choice sets.

Each of our results is stated with and without fixed effects.

Second, in the models above, following McFadden and Train (2000) as well as many
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other papers in discrete choice analysis, we write the systematic part of utility by β ·

xj . Although we have a linear structure in the explanatory variables xj , it is important

to remember that xj can be a function of original characteristics such as higher order

polynomials of original characteristics as used in the proof of McFadden and Train (2000).

Since any continuous function can be approximated by polynomials, our models are general

enough to allow for flexible systematic parts of utility functions.

Finally, we review essential mathematical concepts. A polytope is a convex hull of

finitely many points. The closure of a set C is denoted by cl.C with respect to the

standard finite dimensional Euclidean topology. The affine hull of a set C is the smallest

affine set that contains C, and it is denoted by aff.C. The convex hull of a set C is denoted

by co.C. The relative interior of a convex set C is the interior of C in the relative topology

with respect to aff.C. The relative interior of C is denoted by rint.C.

3 Main Result

To state the main result of the paper, we review a basic concept in geometry: A set

{xj ∈ RK |j ∈ J} is affinely independent if no xj can be written as an affine combination

of the other elements {xl}l 6=j . Formally, for any j ∈ J , there exists no real numbers

{αl}l∈J\{j} such that xj =
∑

l∈J\{j} αlxl and
∑

l∈J\{j} αl = 1.11

Theorem 1. (i) Let µ be any standard probability measure. If the set {xj ∈ RK |j ∈ J}

is affinely independent, then any random utility model can be approximated arbitrar-

ily well by a random-coefficient ARUM; moreover, the approximation can be done

without fixed effects (i.e., η = 0). That is,

∀ρ ∈ Pr ∃{ρn}∞n=1 ⊂ Pra(0|µ),∀D ∈ D and ∀j ∈ D, [ lim
n→∞

ρn(D, j) = ρ(D, j)]

(ii) If the set {xj ∈ RK |j ∈ J} is not affinely independent, then there exists a random

utility model that cannot be approximated arbitrarily well by any random-coefficient

ARUM with any sequence of fixed effects and with any standard probability measure

11It is easy to see that a set {xj ∈ RK |j ∈ J} is affinely independent if and only if {xl−xj}l∈J\{j} is linearly
independent for any j.
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µ. That is,

∃ρ ∈ Pr ∀µ ∈M, ρ 6∈ cl.
⋃

η∈R|J|
Pra(η|µ).

We provide a sketch of the proof in Section 4 and the formal proof in the appendix.

To interpret the main theorem, consider a typical practice where the shock distribution

µ over ε is fixed a priori by a researcher; then he or she estimates the distribution m over

coefficients β as well as the fixed effects η ∈ RK after seeing a dataset ρ generated from

a random utility model.

Statement (i) shows that if the set {xj ∈ RK |j ∈ J} is affinely independent, then the

researcher should be able to approximate the given dataset ρ arbitrarily well across choice

sets D ∈ D by choosing an appropriate distribution m over coefficients β. This direction

builds upon the classical result of McFadden and Train (2000).

Statement (ii) shows that if the affine-independence condition fails, then there exists

a random utility model that cannot be approximated arbitrarily well by any random-

coefficient ARUM, no matter how the researcher changes the distribution m over coef-

ficients β as well as the fixed effects η, given the arbitrary chosen standard probability

measure µ over ε. This direction is novel, which has not been studied in McFadden and

Train (2000). Moreover, note that the result allows a general class of utility-shock distri-

butions, not confining to the type-I extreme-value distribution or a particular choice of

mixing distributions. For example, the approximation is impossible using any mixed-logit

model nor any random-coefficient probit-model. In Propositions 2 and 3 in Section 3.3, we

will give examples of the random utility models that cannot be approximated arbitrarily

well.

The affine-independence condition can be simplified further to a generically equivalent

condition. To see this, remember the following basic facts: (i) if |J | > K + 1, then {xj ∈

RK |j ∈ J} is not affinely independent; (ii) if |J | ≤ K+1, then the set is generically affinely

independent.12 Given these observations, Theorem 1 implies the following corollary:13

12This is a standard concept of genericity in the literature of discrete geometry. Even if the set is not affinely
independent, as long as |J | ≤ K + 1, for any ε > 0, there exists an affinely independent set X ′, obtained from
X by moving each point by a distance of at most ε (see Section 3 of Matousek (2013)).

13One caveat of the result is that even though the generic condition holds, the original condition of the affine
independence may not hold when explanatory variables include zeroes and ones. In that case, one should check
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Corollary 1. Let K be the number of explanatory variables and |J | be the number of

alternatives.

(i) If K ≥ |J | − 1, then the statements in Theorem 1 (i) hold generically.

(ii) If K < |J | − 1, then the statements in Theorem 1 (ii) hold.

We now mention a few remarks on the results. First, to understand the results cor-

rectly, it is crucial to understand the space that we consider for the approximation. In

Theorem 1, we study approximation across coordinates (D,x) such that x ∈ D ∈ D,

which has very high dimensionality. On the other hand, in Proposition 1 of the following

section, we consider a fixed choice set D = {J}. Thus the underlying dimension is much

smaller.

Second, as mentioned earlier, to increase the number K of explanatory variables,

researchers may include additional terms such as higher order polynomials (McFadden

and Train (2000)) as well as splines or wavelets (Chen, 2007). In their proof, McFadden

and Train (2000) use higher order polynomials of arbitrarily high degrees to approximate

continuous random utility model. In particular, in their construction, xj is a vector of

monomials of any degree of original characteristics (yj1, · · · , yjn):

xj = (yj1, · · · , yjn︸ ︷︷ ︸
1st order terms

, y2
j1, · · · , y2

jn︸ ︷︷ ︸
2nd order terms

, y3
j1, · · · , y3

jn, ....) ∈ RK ,

where K →∞. Their result is thus consistent with the sufficiency part of our result: we

proved that K ≥ |J | − 1 is sufficient in our setup.

Finally, in the theorem, following Mcfadden and Train (2000), we consider all possible

random utility models (i.e., probability distributions over all rankings) as the predic-

tion target mainly for simplicity. As mentioned after Definition 1, in some cases, the

researchers may want to restrict the set of rankings by excluding those deemed unreason-

able. In Section A of the appendix, we provide a necessary and sufficient condition for

the approximation of the restricted random utility model.

the affine-independence of {xj ∈ RK |j ∈ J}, rather than the generic condition.
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3.1 Additional Result for Single Choice Set Case

In the following, we provide a supplemental result for the case in which D = {J}. Such a

case corresponds to a situation in which the researcher is interested only in the observed

choice probabilities (i.e., market shares) on a single set J (but not on its subsets).

Proposition 1. Assume that D = {J}.

(i) Let µ be any standard probability measure. If the set {xj ∈ RK |j ∈ J} is convex-

independent (i.e., if xj 6∈ co.{xl|l ∈ J \ {j}} for any j ∈ J), then any random

utility model can be approximated arbitrarily well by a random-coefficient ARUM;

moreover, the approximation can be done without fixed effects (i.e., η = 0). That is,

∀µ ∈M, ∀ρ ∈ Pr, ∃{ρn}∞n=1 ⊂ Pra(0|µ), ∀j ∈ J lim
n→∞

ρn(J, j) = ρ(J, j).

(ii) (a) If the set {xj ∈ RK |j ∈ J} is not convex-independent, then there exists a random

utility model that cannot be approximated arbitrarily well by any random-coefficient

ARUM with any standard probability measure µ and without fixed effects (i.e., η = 0).

That is, ∃ρ ∈ Pr, ∀µ ∈M, ρ 6∈ cl.Pra(0|µ).

(b) However, if fixed effects are used, any random utility model can be approximated

arbitrarily well by an ARUM with any standard probability measure µ.

Note that the convex-independence condition is weaker than the affine-independence

condition. This makes sense because the convex-independence condition guarantees the

approximation only on the single choice set (i.e., {J}), while the affine-independence

condition guarantees the approximation across all subsets D ∈ D of J (including J itself).

The implications of Theorem 1 and Proposition 1 are similar. One important difference

arises when the conditions (i.e., the affine-independence condition in Theorem 1 and the

convex-independence condition in Proposition 1) are violated. In both cases, there exists

a random utility model that cannot be approximated arbitrarily well without using fixed

effects. However, as stated in Proposition 1 (ii)(b), if fixed effects are used, any random

utility model can be approximated arbitrarily well on one particular choice set J . (This

result directly follows from Norets and Takahashi (2013).) This is in contrast to Theorem

14



1 (ii), which claims that there exists a random utility model that cannot be approximated

arbitrarily well even using fixed effects across choice sets D.14

Unlike the affine-independence, the convex-independence does not restrict the number

of elements in a convex-independent set.15 So there exists no counterpart of Corollary 1.

3.2 Implications of Theorems and Propositions

In this section, we mention the implications of the theorem and the proposition to the

empirical literature. Many empirical papers use the mixed logit models that are linear in

original characteristics and do not contain additional terms such as polynomials. We call

such models linear mixed-logit models. In the papers, the convex-independence condition

is usually satisfied. That is, it is often the case that any alternative xj lies outside the

convex hull co.({xl|l ∈ J \ {j}) of the other alternatives. In fact, we will see this is the

case in a real dataset in Section 6.

On the other hand, the condition that K ≥ |J | − 1 is frequently violated in various

contexts, which in turn results in the breach of the affine-independence condition. Re-

member that |J | is the number of alternatives and K is the number of characteristics.

There are many choice situations in which |J | is very large such as choices of groceries,

hospitals, cars, schools, or restaurants etc. In such a dataset, the condition is likely to be

violated. This means that the class of linear mixed-logit models is rich enough to describe

the choice data from a single choice set J ; however, the class of the models may not be

rich enough to approximate the true substitution pattern across choice sets, no matter

how one chooses parameters and fixed effects.16

3.3 Preferences that Cannot be Approximated Well

When the affine-independence condition is violated, there exist random utility models that

cannot be approximated arbitrarily well. Our results in Section 4 show hat this happens

because the ARUMs cannot approximate some rankings arbitralily well. In the following,

14This difference originates from the fact that we require approximation on all D ∈ D in Theorem 1, while in
Proposition 1, we require approximation only on J .

15For example, in three-dimensional space (x, y, z), consider a circumference of radius one whose origin is
(0, 0, 1) on a hyperplane of z = 1. The number of points on the circumference is a continuum. However, the set
of points on the circumference is convex-independent.

16By substitution patterns, in general, we mean how choice probabilities change in different choice sets. In
Section 6.2.1, we provide a more specific definition of substitution patterns.
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we propose a method to identify such rankings that are difficult to approximate precisely.

The following definition is crucial:

Definition 5. A ranking π ∈ Π is representable in choice sets D if there exists a real

vector β such that, for all D ∈ D and j ∈ D,

π(j) > π(l) for all l ∈ D \ {j} if and only if β · xj > β · xl for all l ∈ D \ {j}. (3)

If π is not representable in D, we say that π is unrepresentable in D.

The proposition below demonstrates that the failure of the affine-independence con-

dition leads to the existence of unrepresentable rankings, which are exactly the rankings

challenging to approximate accurately. To determine the representability of a specific

ranking π, one can employ linear programming techniques.17 In Section 6, utilizing a real

dataset, we identify such unrepresentable rankings, as detailed in Table 1 of that section.

The identification of these rankings enables researchers to evaluate which substitution

patterns are challenging to capture within their models.

Notice that the requirement (3) depends both on the specification of the characteristic

vectors {xj}j∈J as well as the set D of choice sets. The requirement (3) becomes less

restrictive as the characteristic vector xj becomes longer because it becomes easier to

find the desired β with additional characteristic variables; the requirement (3) becomes

more restrictive as the set D of choice sets becomes richer, simply because the number of

inequalities to be satisfied becomes larger. As mentioned earlier, we usually consider the

general choice sets D, while in some places, we assume a simpler case in which D = {J}.

In the rest of this section, we consider the general D. When there is no risk of confusion,

we will simply say that a ranking π ∈ Π is representable without specifying choice sets D.

To show the proposition, for each ranking π ∈ Π, define

ρπ(D, j) =

 1 if π(j) > π(l) for all l ∈ D \ j;

0 otherwise.
(4)

17The ranking π(1) > π(2) > ... > π(J) is representable if and only if the linear programming problem:
maxβ∈RK ,t∈R t subject to β · (xj − xj+1) ≥ t for each j = 1, ..., J − 1 has the optimal value ∞. If the ranking
is unrepresentable, the problem has the optimal value 0.
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The function ρπ gives probability one to the best alternative x in a choice set D according

to the strict ranking π.

Proposition 2. The set {xj ∈ RK |j ∈ J} is not affinely independent if and only if there

exists a ranking π ∈ Π that is not representable in D. For any unrepresentable ranking

π and any standard probability measure µ, there exists a neighborhood U of ρπ such that

any random utility model that belongs to U cannot be approximated arbitrarily well by any

random-coefficient ARUM without fixed effects.

Remember that so far we have assumed no fixed effects (i.e., η = 0). In the following,

we consider the case with fixed effects. As we explain in the next section, by using fixed

effects, we can approximate any ρπ. However, when the affine-independence condition

fails, there still exist some random utility models that cannot be approximated well. The

next proposition provides such random utility models:

Definition 6. For any ranking π ∈ Π, define π− ∈ Π such that π(j) > π(l) if and only if

π−(l) > π−(j) for any j, l ∈ J . The ranking π− is called the reverse ranking of π.

Note that if a ranking π is representable, then π− is also representable. The next

proposition shows that when the affine-independence condition fails, approximating a

mixture of ρπ and ρπ
−

is impossible even using fixed effects when π is not representable.

Proposition 3. Suppose that {xj ∈ RK |j ∈ J} is not affinely independent. For any

unrepresentable ranking π ∈ Π, any standard probability measure µ, and any α ∈ (0, 1),

there exists a neighborhood U of αρπ +(1−α)ρπ
−

such that any random utility model that

belongs to U cannot be approximated arbitrarily well by any random-coefficient ARUM

with any sequence of fixed effects and the probability measure µ.

4 Sketch of Proof

In this section, we provide a proof sketch. Readers who are not interested in the proofs

may skip this section and go directly to the empirical sections (Sections 5 and 6).
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We prove Theorem 1 and Proposition 1 by using the five lemmas below. As byproducts,

we obtain Propositions 2 and 3.18

Lemma 1 states a general condition for approximating random utility models with

random coefficient ARUMs. Lemmas 2 and 3 translate the condition to a condition on

the dimension of characteristics, which is easy to check in practice. Lemma 4 provides

a class of random utility models that is hard to approximate even with the help of fixed

effects. Lemma 5 states an important geometric insight that appears in the proof of

Lemma 4.

We first consider models without fixed effects (i.e., η = 0). The following fact is

elementary but fundamental:

Observation: The set Pr of random utility models is a polytope, that is, Pr = co.{ρπ|π ∈

Π}.

The observation holds because for any random utility model ρ ∈ Pr, we have ρ =∑
π∈Π ν(π)ρπ, where ν is the probability measure on Π rationalizing the random utility

model. The hexagons in Figure 2 below illustrate the polytope.19

Lemma 1. Pr ⊂ cl.Pra(0|µ) if and only if ρπ ∈ cl.Pa(0|µ) for any π ∈ Π.

Lemma 1 gives a necessary and sufficient condition under which any random utility

models can be approximated arbitrarily well by random coefficient ARUMs (i.e.,Pra(0|µ))

without fixed effects (i.e., η = 0). The condition is that ρπ ∈ cl.Pa(0|µ) for any π ∈ Π,

which means that ρπ can be approximated by a sequence of ARUMs without fixed effects

(i.e., a sequence of elements of Pa(0|µ)).

The next lemma makes it easier for us to check the conditions of Lemma 1.

Lemma 2. For any ranking π ∈ Π, the following statements hold:

1. If π is representable in D, then for any µ ∈M, ρπ ∈ cl.Pa(0|µ).

18Proposition 2 follows from Corollary 2-(ii) and Lemma 3, and Proposition 3 follows from Lemma 3 and
Lemma 4.

19Although the geometric intuition is useful, it is important to notice that the figure oversimplifies the reality
since the number (i.e., |J |!) of vertices and the dimension of a random utility model can be very large. To see
why the dimension of a random utility model can be very large, remember that it assigns a number for each
pair of (D, j) ∈ D × J . As mentioned, we calculate the dimension later in Proposition 5 in Section A.2 of the
appendix.
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2. If π is not representable in D, then there exists no standard probability measure µ

such that {ρπ, ρπ−} ∈ cl.Pra(0|η).

Lemmas 1 and 2 imply the following:

Corollary 2.

(i) Let µ be any standard probability measure. If any ranking π ∈ Π is representable in

D, then any random utility model can be approximated arbitrarily well by a random-

coefficient ARUM. Moreover, the approximation can be done without fixed effects

(i.e., η = 0.) That is, Pr ⊂ cl.Pra(0|µ).

(ii) If some ranking π ∈ Π is not representable in D, then there exists a random utility

model that cannot be approximated arbitrarily well by any random-coefficient ARUM

without fixed effects. That is, Pr 6⊂ cl.Pra(0|µ).

Corollary 2 offers a testable condition for determining if the random-coefficient ARUMs,

without fixed effects, can adequately approximate any random utility model.20

As mentioned earlier, checking the representability of a particular ranking is easy.

However, checking the representability of all rankings may be computationally demanding.

This is because the number of rankings equals |J |! and can be large. To overcome this

problem, we obtain a simpler necessary and sufficient condition for any ranking π ∈ Π to

be representable:

Lemma 3.

1. Any ranking is representable in D if and only if the set {xj ∈ RK |j ∈ J} is affinely

independent.

2. Any ranking is representable in {J} if and only if the set {xj ∈ RK |j ∈ J} is

convex-independent.

To understand Lemma 3 (1) geometrically, see Figure 1. In the figure, we assume

that there are two original characteristic variables, say (pj , qj) for each alternative j ∈ J .

In Figure 1 (a) and (b), we consider the models with the original characteristics (i.e.,

20In Section A of the appendix, we provide a generalization of Corollary 2 for the case in which a researcher
wishes to omit certain rankings from their analysis and restrict the set of possible rankings.
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K = 2 and xj = (pj , qj) for each j ∈ J). In Figure 1 (a), the set {x1, x2, x3} is affinely

independent. Thus, by Lemma 3 (1) (the “if” part), any ranking is representable. For

example, the ranking π(1) > π(2) > π(3) is representable by β ∈ R2, which defines

the parallel hyperplanes (indifference curves) in Figure 1 (a). On the other hand, in

Figure 1 (b), the set {x1, x2, x3, x4} is not affinely independent. The ranking π(1) >

π(4) > π(3) > π(2) is not representable. As the figure shows, no matter how one chooses

β ∈ R2 and draws parallel hyperplanes as indifference curves, it does not hold that

β · x1 > β · x4 > β · x3 > β · x2. The existence of such an unrepresentable ranking is

implied by the “only if” part of Lemma 3 (1).21

If we use ellipses as indifference curves, however, we can represent the ranking π(1) >

π(4) > π(3) > π(2) as in Figure 1 (c).22 The existence of such curves is again implied

by the “if” part of Lemma 3 (1) since ellipses can be defined with the quadratic polyno-

mials β · xj with xj = (pj , qj , p
2
j , q

2
j , pjqj). Moreover the generic condition with quadratic

polynomials is satisfied (i.e., K = 5 ≥ 3 = |J | − 1 ) in this example.23

x2

x1

x3

(a)

x3 x4

x2x1

(b)

x3 x4

x2x1

(c)

Figure 1: Illustration of the affine-independence condition.

Lemma 3 (2) is more straightforward. To see this, notice that when D = {J}, any

π ∈ Π is representable in {J} if and only if, for any j ∈ J , there exists β such that

β · xj > β · xl for all l ∈ J \ j, which means that J is convex-independent. By using

Lemmas 1, 2, and 3, we obtain statement (i) of Theorem 1 and Proposition 1.

21The slope of the “indifference” line must be steeper than the slope of the line segment (x4, x2) (because
π(4) > π(2)) and less steep than the slope of the line segment (x4, x1) (because π(1) > π(4)), which together
imply that β · x4 > β · x3.

22As the radius of the ellipses becomes larger, the ranking becomes better.
23In fact, we verified that the affine-independence condition is satisfied with quadratic polynomials.
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Remember that so far we have assumed no fixed effects (i.e., η = 0). In the following,

we analyze the extent to which random utility models can be approximated arbitrarily

well by using fixed effects. In particular, we show that if the affine independence condition

fails then there exists a random utility model that cannot be approximated arbitrarily well

even with using fixed effects.

First, we will see the usefulness of the fixed effects. It is easy to observe that when D =

{J}, any stochastic choice can be approximated arbitrarily well by using fixed effects.24

Even for general D, the following holds:

Observation: For any ranking π, there exists an ARUM with fixed effects that can ap-

proximate ρπ (i.e., vertices of polytope) arbitrarily well.25

However, this is not enough to approximate any random utility model arbitrarily well

across choice sets. As an illustration, consider two fixed effects, η1 and η2, and see Figure 2

below. Remember that in the heuristic figure, the hexagon represents Pr = co.{ρπ|π ∈ Π}.

The two convex sets in the hexagon correspond to Pra(η1|µ) and Pra(η2|µ) shaded pink and

blue, respectively.26 Notice that all vertices in the figure can be approximated arbitrarily

well by elements of Pra(η1|µ) or Pra(η2|µ). However, some areas of the hexagon are not

covered by either Pra(η1|µ) or Pra(η2|µ).

ρπ1ρπ2

ρπ3

ρπ4 ρπ5

ρπ6

Figure 2: Illustration of Pra(η1|µ) and Pra(η2|µ)

In reality, the problem is more complicated since we need to consider the union of

all possible values of fixed effects, and thus the union of the continuum of convex sets

24This is intuitive since we can choose |J | parameters (i.e., (ηj)j∈J) to fit |J | data points (i.e., (ρ(J, j))j∈J).
25To see this, fix π and choose η ∈ RJ such that ηj > ηl if and only if π(j) > π(l). Then, it can be shown

that an ARUM ρn defined by ρn(D, j) = µ({ε|nηj + εj ≥ nηl + εl for all l ∈ D \ {j}}) converges to ρπ(D, j) as
n→∞.

26To see this remember that an element of Pra(η|µ) belongs to Pr and the set Pra(η|µ) is convex.
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Pra(η|µ) across all values of η ∈ R|J |.27 Moreover, we need to consider all possible

standard probability measure µ ∈ M. Nevertheless, Lemma 4 provides a clear answer

and states that if there exists a unrepresentable ranking, then there exists a class of

random utility models that cannot be approximated arbitrarily well, no matter which

fixed effects and probability distribution we use.

Lemma 4. Let µ be a standard probability measure. For any α ∈ (0, 1) and any ranking

π that is not representable, there exists a neighborhood U of αρπ + (1 − α)ρπ
−

such that

any random utility model that belongs to U cannot be approximated arbitrarily well by any

random-coefficient ARUM with any fixed effects.

To prove the lemma, we need to prove the following two statements: (a) any strict

convex combination between ρπ and ρπ
−

cannot be approximated arbitrarily well by a

degenerate ARUM with fixed effects; and (b) moreover it cannot be approximated arbi-

trarily well by a nondegenerate random-coefficient ARUM even with any fixed effects. We

prove statement (a) in the appendix. To show statement (b), we introduce the following

concept:

Definition 7. The two rankings π and π′ are adjacent if there exists t ∈ R|D|×|J | and

a ∈ R such that (i) ρπ · t = ρπ
′ · t = a, and (ii) for any π̂ ∈ Π, if π 6= π̂ 6= π′, then

ρπ̂ · t > a.28

For example, in Figure 2, ρπ1 and ρπ6 as well as ρπi and ρπi+1 for each i ≤ 5 are

adjacent and no other pairs are adjacent. Since π and π− are reversed with each other,

ρπ and ρπ
−

seem very different. It turns out, however, that they are adjacent:29

Lemma 5. For any ranking π ∈ Π, ρπ and ρπ
−

are adjacent.

The characterization of adjacency of vertices for the case D = 2J \∅ appears in Doignon

and Saito (2023). Lemma 5 holds even for the case in which D 6= 2J \ ∅ as long as D
27More formally, the difficulty arises because the set of all ARUMs with probability measure µ and with any

fixed effects (i.e.,
⋃
η∈RJ Pra(η|µ)) may not be convex, although given η, each set Pra(η|µ) is convex. This

is because mixtures can be taken only over β but not over η. Thus approximating vertices is not enough for
approximation over the polytope of random utility models.

28t ∈ R|D|×|J| is a vector that gives a real number for each pair of (D, j) ∈ D × J . For any ρ ∈ P,
ρ · t =

∑
(D,j)∈D×J ρ(D, j)t(D, j).

29Our discussions with Jean-Paul Doignon and Haruki Kono were very helpful for obtaining this result.
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contains all binary and trinary sets.30 The lemma allows us to complete the proof of

Lemma 4 as follows. If π is not representable, then π− is also not representable. Although

fixed effects are powerful enough to approximate each vertex ρπ, we will prove that it is

not powerful enough to approximate both ρπ and ρπ
−

by using the same fixed effects,

intuitively because ρπ and ρπ
−

are reversed. Thus, no strict convex combination of ρπ

and ρπ
−

can be approximated arbitrarily well by the random-coefficient ARUMs with

standard probability measure µ, no matter which fixed effects we use. Notice that this

conclusion does not follow if ρπ and ρπ
−

are not adjacent since a strict convex combination

of ρπ and ρπ
−

may be represented in a different way. This proves statement (b) and thus,

Lemma 4. Lemmas 1, 2, 3, and 4 prove statement (ii) of Theorem 1, as the proof in the

appendix formalizes.

5 Measuring Approximation Errors

Propositions 2 and 3 in Section 3.3 show that the approximation errors to some random

utility models may not be negligible when the affine-independence condition fails. In

this section, we provide a way to quantify the approximation errors. We first define the

distance function as follows: For any ρ̂, ρ ∈ Pr, define

d(ρ̂, ρ) ≡

√∑
D∈D

∑
j∈D (ρ(D, j)− ρ̂(D, j))2

|D|
.

In our analysis, ρ̂ is a given random utility model; ρ is a random-coefficient ARUM by

which we approximate ρ̂. We divide the norm by
√
|D| to make the distance independent

from the number of choice sets.31 Notice that the maximal distance is 2. For example,

d(ρπ, ρπ
−

) = 2 for any ranking π.

Given an approximation target ρ̂ ∈ Pr and a standard probability measure µ, when

30We are grateful to Haruki Kono for pointing out this fact.
31d(ρ̂, ρ) can be written as ‖ρ− ρ̂‖/

√
|D|, where ‖·‖ is the Euclidean norm (i.e., l2 norm). One can consider an

alternative distance function based on l1 norm as follows: d1(ρ̂, ρ) ≡ (
∑

(j,D)∈J×D |ρ̂(D, j)−ρ(D, j)|)/|D|. Since√∑
(j,D)∈J×D(ρ̂(D, j)− ρ(D, j))2 ≤

∑
(j,D)∈J×D |ρ̂(D, j)− ρ(D, j)|, we can show that d(ρ̂, ρ)/

√
|D| ≤ d1(ρ̂, ρ)

for any ρ and ρ̂. So our approximation error divided by
√
|D| will provide a lower bound of an alternative

approximation error measured by d1. We use our distance function d rather than d1 because of the convexity
of d is useful for constructing an algorithm.
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researchers use random-coefficient ARUMs with fixed effects η, the approximation error

is defined as:

inf
ρ∈Pra(η|µ)

d(ρ̂, ρ). (5)

We call (5) the approximation error to ρ̂ by random-coefficient ARUMs with fixed effects

η. Proposition 2 shows that the approximation error to ρπ is nonzero if π is not repre-

sentable. In Section 6 below, we find that the approximation error can be large for some

unrepresentable rankings in a real dataset.

Given ρ̂, we propose two algorithms to solve (5) and compute the approximation

errors. The first is the standard EM (Expectation-Maximization) algorithm (Dempster

et al., 1977) to estimate the best possible finite-mixture logit model. It is known, however,

that the EM algorithm may not converge to the global optimum. To alleviate this concern,

we propose a second greedy algorithm inspired by Barron et al. (2008). This algorithm

solves a sequence of optimization problems to converge to the global optimal solution.

The structure of the random-coefficient RUMs is important for the proof. We provide

explanations of these algorithms in Section A of the online appendix.

6 Application to Data

In this section, we measure approximation errors with and without fixed effects by using a

dataset on fishing-site choices from Thomson and Crooke (1991).32 The dataset has been

used by Herriges and Kling (1999) and Cameron and Trivedi (2005) (p.464).

In the dataset, 1182 individuals choose among 4 fishing modes, namely, J = {beach, boat,

charter,pier}, which denote fishing from the beach, a private boat, a charter boat or a

pier, respectively. Each alternative j ∈ J is described by a vector of two characteristics

(pj , qj). The first characteristic pj is the fishing mode j’s price. The other characteristic

qj is the catch rate, defined as a per-hour-fished basis for major species by fishing mode

j.33

Our empirical analysis concentrates primarily on mixed-logit models. This focus is

32The dataset is taken directly from the R package ‘mlogit’ by Croissant (2020).
33In the original study, the values of pj and qj depend on each individual. For our analysis, we aggregate

them by taking the average over individuals.
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motivated by the widespread application and acceptance of these models in contemporary

research. In particular, we consider two specifications of mixed-logit models. The first

one is the linear mixed-logit models, the mixed logit models that are linear in the original

characteristics (i.e., xj = (pj , qj) for each j ∈ J). The second one is the mixed-logit model

defined with quadratic polynomials (i.e., xj = (pj , qj , p
2
j , q

2
j , pjqj) for each j ∈ J). We call

the model quadratic mixed-logit model.

We assume that D = 2J \∅. Propositions 4 and 5 in Section A.2 of the online appendix

imply that in order to obtain the best approximating random-coefficient model to the

observed choice probabilities, it is sufficient to consider finite mixture models with at

most (dimPr) + 1 = 1 +
∑

D∈D(|D| − 1) = 18 mixtures. See Section A.2 of the online

appendix for the details.

6.1 Application of Theorem 1

The dataset contains four alternatives (i.e., |J | = 4). If we use original characteristics as

explanatory variables (i.e., xj = (pj , qj)), then K = 2 and the condition in Corollary 1

is violated (i.e., K = 2 6≥ 3 = |J | − 1); thus the set {(pj , qj) ∈ R2|j ∈ J} is not affinely

independent. Thus, by Theorem 1, the linear mixed-logit models with fixed effects is not

flexible enough to approximate some random utility models. This observation motivates

us to compute approximation errors of the linear logit models without fixed effects (in

Section 6.2) and the errors with fixed effects (in Section 6.3).

On the other hand, with quadratic polynomials, the generic condition for representabil-

ity in Corollary 1 is satisfied, since K = 5 ≥ 3 = |J | − 1.34 In fact, we verified

that {(pj , qj , p2
j , q

2
j , pjqj) ∈ R5|j ∈ J} is affinely independent. Thus, by Theorem 1,

the quadratic mixed-logit models are flexible enough to approximate any random utility

model. This theoretical implication is also numerically verified below.

6.2 Approximation Errors without Fixed Effects

In this section, we detail approximation errors without fixed effects. We say that a ranking

π is linearly representable if π is representable in D with xj = (pj , qj); π is linearly

unrepresentable if π is not linearly representable.

34Given the increasing number of characteristic variables, a natural concern is the overfitting problem. We
investigate this concern in Section B.1 of the online appendix.
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Since the affine-independence condition fails in the dataset with xj = (pj , qj), it follows

from Proposition 2 that there exists a ranking π that is linearly unrepresentable. Thus

the corresponding deterministic choice functions ρπ cannot be approximated by any linear

mixed-logit model without fixed effects. Since there are four alternatives, there are twenty

four rankings. Among them, we find that twelve rankings are not representable, and thus

cannot be approximated arbitrarily well by linear mixed-logit models, as shown in Table

1.

Table 1: Approximation errors to ρπ

Ranking π
Linear mixed-logit Quadratic mixed-logit
Greedy EM Greedy EM

(1) (2) (3) (4) (5)
Linearly Unrepresentable Rankings

π(1) > π(2) > π(3) > π(4) 0.723 0.753 0.000 0.000
π(1) > π(2) > π(4) > π(3) 0.670 0.700 0.000 0.000
π(1) > π(3) > π(2) > π(4) 0.425 0.381 0.000 0.000
π(1) > π(4) > π(2) > π(3) 0.418 0.547 0.000 0.000
π(2) > π(1) > π(3) > π(4) 0.458 0.488 0.000 0.000
π(2) > π(1) > π(4) > π(3) 0.391 0.408 0.000 0.000
π(3) > π(2) > π(4) > π(1) 0.302 0.318 0.000 0.000
π(3) > π(4) > π(1) > π(2) 0.401 0.425 0.000 0.000
π(3) > π(4) > π(2) > π(1) 0.494 0.531 0.000 0.000
π(4) > π(2) > π(3) > π(1) 0.375 0.381 0.000 0.000
π(4) > π(3) > π(1) > π(2) 0.521 0.514 0.000 0.000
π(4) > π(3) > π(2) > π(1) 0.604 0.614 0.000 0.000

Linearly Representable Rankings 0.000 0.000 0.000 0.000

Notes: The numbers in the table show the approximation errors for each ρπ , where each ranking π is defined in Column (1).

Alternative numbers 1, 2, 3, 4 denote beach, boat, charter, and pier, respectively. For each ranking, columns (2) and (3) show

the approximation errors of the linear mixed-logit models computed by the greedy algorithm and the EM algorithm, respectively.

Columns (4) and (5) show the approximation errors of the quadratic mixed-logit models calculated by each algorithm. All numbers

are rounded to three decimal places. For the greedy algorithm we set the number of iterations to 1000. For the EM algorithm we

set the number of random initial points to 10. The greedy algorithm sometimes produces larger approximation errors than the EM

algorithm, which is possible with finitely many steps.

The table shows the approximation errors of the linear or quadratic mixed-logit mod-

els. We calculated the errors by the greedy algorithm and the EM algorithm. In both

algorithms, approximation errors for representable rankings π shown in the bottom row of

the table are always zero, as the theorem predicts. On the other hand, the approximation

errors for unrepresentable rankings π are almost always larger than 0.4, which means that
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even the best possible linear mixed-logit model deviates from the corresponding choice

probabilities ρπ by 40 percentage points or more on average. Some errors are much larger.

For example, the approximation errors of the two rankings π(1) > π(2) > π(3) > π(4)

and π(1) > π(2) > π(4) > π(3) by the linear models are more than 0.67. This suggests

that the substitution from alternative 1 to 2 would be difficult to capture. To see this

notice that these two rankings are the only rankings in which alternative 1 is the best and

alternative 2 is the second-best. See the next subsection for more detail.

Note that the approximation errors by quadratic mixed-logit models are zero, as shown

in columns (4) and (5) in the table. This finding is also consistent with the theorem.

6.2.1 Maximal Substitution

Our attention now turns to substitution patterns. We quantify how flexible the linear

mixed-logit models are, by measuring the maximal substitution patterns that can be

generated by the models. Specifically, for two alternatives j and l, we calculate the

following quantity:

sup
ρ∈Pra(0|µ)

(
ρ(J \ {j}, l)− ρ(J, l)

)
(6)

Since ρ is a random utility model, we have ρ(J \ {j}, l) ≥ ρ(J, l).35 Thus the quantity in

(6) can be any nonnegative number that is less than or equal to one. The quantity ρ(J \

{j}, l)− ρ(J, l) describes how consumers would substitute to alternative l if alternative j

becomes unavailable. The supremum of such quantities captures the maximal substitution

pattern that can be generated by mixed-logit models without fixed effects.36 We use the

greedy algorithm to solve (6), as detailed in section A.4 of the online appendix.37 Conlon

and Mortimer (2021) analyze similar concepts called diversion ratios, which measure the

fraction of consumers who switch their choices from alternative j to l after the price of

alternative j increases marginally. Our measure (6) corresponds to the limit of diversion

35The property is called monotonicity or regularity.
36The quantity in (6) is always 1 when we can choose fixed effects freely. This is because we can always choose

fixed effects large enough to approximate degenerate preferences.
37We do not use the EM algorithm as it cannot be easily transformed to solve the problem in (6). We note

that we can replace the sup in (6) with inf, for which we calculate the minimal substitution pattern. This
problem can also be solved by the greedy algorithm. We omit the detail since the dataset satisfies the convex
independence, so the minimal substitution pattern is 0.
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ratios in which the price of alternative j increases to the infinity.38

Table 2: Maximal substitution of the linear mixed-logit models

j (drop)
l (choose)

1 2 3 4

1 - 0.120 0.998 0.998
2 0.317 - 1.000 0.997
3 0.998 1.000 - 0.286
4 0.994 0.998 0.137 -

Notes: The numbers in the table show the value of (6) for each j, l ∈ {1, 2, 3, 4} s.t. j 6= l. Alternative numbers 1, 2, 3, 4 denote

beach, boat, charter, pier, respectively. All numbers are rounded to three decimal places.

Table 2 shows the values of maximal substitution between the two alternatives j and

l. Some numbers in the table are close to one, which implies that the linear mixed-logit

models are rich enough to capture flexible substitution from j to l. Some other numbers

are smaller. In particular, the maximal substitution between alternative 1 (i.e., beach)

and 2 (i.e., private boat) as well as the substitution between alternative 3 (i.e., charter)

and 4 (i.e., pier) are at most 0.3. In fact, the maximal substitution from 1 to 2 is 0.12.

This means that no matter how the parameters of a linear mixed-logit model are chosen,

the maximal substitution from alternative 1 to alternative 2 is very limited.

This finding aligns with the result presented in Table 1, where we observe substantial

approximation errors for the two specific rankings: π(1) > π(2) > π(3) > π(4) and

π(1) > π(2) > π(4) > π(3) are very large. In this way, identifying preferences that are

hard to approximate with precision helps researchers in evaluating whether their models

successfully capture relevant economic behaviors such as substitution patterns.

6.3 Approximation Errors with Fixed Effects

What remains to be explored is the approximation errors with fixed effects. By using

fixed effects, we can approximate ρπ for any ranking π. By Proposition 3, however,

for each unrepresentable ranking π and each α ∈ (0, 1), any random utility model in a

neighborhood of αρπ + (1− α)ρπ
−

cannot be approximated arbitrarily well by the linear

38Precisely speaking, our measure corresponds to the limit of the numerator of the diversion ratio. Some
recent papers study the substitution and complementarity property in the discrete choice analysis. See Horan
and Adam (2023) and Allen and Rehbeck (2020).
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Table 3: Approximation errors to random utility models 1
2
ρπ + 1

2
ρπ
−

Ranking π
Linear mixed-logit Quadratic mixed-logit
Greedy EM Greedy EM

(1) (2) (3) (4) (5)
Linearly unrepresentable rankings

π(1) > π(2) > π(3) > π(4) 0.229 0.255 0.000 0.000
π(1) > π(2) > π(4) > π(3) 0.229 0.250 0.000 0.000
π(1) > π(3) > π(2) > π(4) 0.163 0.217 0.000 0.000
π(1) > π(4) > π(2) > π(3) 0.163 0.173 0.000 0.000
π(2) > π(1) > π(3) > π(4) 0.192 0.238 0.000 0.000
π(2) > π(1) > π(4) > π(3) 0.192 0.198 0.000 0.000

Linearly representable rankings 0.000 0.000 0.000 0.000

Notes: The numbers in the table show the approximation errors to 1
2
ρπ + 1

2
ρπ

−
, where π is defined in Column (1). All numbers

are rounded to three decimal places. For the greedy algorithm we set the number of iterations to 1000. For the EM algorithm we

set the number of random initial points to 10.

mixed-logit models with fixed effects. In Table 3, we show the approximation error to

1
2ρ
π + 1

2ρ
π− for each unrepresentable ranking.

In both algorithms, the approximation errors to 1
2ρ

π + 1
2ρ
π− are always around 0.2 if

π is not representable. This means that even the best possible linear mixed-logit model

deviates from 1
2ρ
π + 1

2ρ
π− by 20 percentage points or more on average.

On the other hand, the approximation errors to 1
2ρ
π + 1

2ρ
π− are almost zero if π

is representable, as the theorem predicts. Also, the approximation errors by quadratic

mixed-logit models are also almost zero, as the theorem again predicts.

7 Concluding Remark

In Section 6, we applied our theorem and algorithms to a real dataset. The results

summarized in Tables 1-3 demonstrate how the affine-independence condition and its

generic condition K ≥ |J |−1 serve as straightforward indicators for evaluating the efficacy

of random-coefficient models in approximating random utility models.

When the affine condition is not met, as observed in our dataset utilizing the linear

mixed-logit model, our methodology enables the quantification of approximation errors.

This quantification is detailed in Tables 1 and 3, where errors are often significant. Fur-

thermore, our analysis extends to assessing the limitations in the substitution patterns
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generated by random coefficient models, as described in Table 2. Additionally, consistent

with the predictions of our theorem, we confirm that all approximation errors are zero

(up to rounding errors) when employing quadratic models. We believe that these results

provide researchers with useful tools for determining the extent to which a given model

accurately reflects choice behaviors.

Appendix

A Generalization: Restricting Possible Rankings

As highlighted earlier, there are situations where researchers might deem certain rankings

as unreasonable, leading them to constrain the possible set of rankings to Π̂ ⊂ Π. To

accommodate this case, define Pr(Π̂) ≡ co.{ρπ|π ∈ Π̂}. We call an element of Pr(Π̂) a

random utility model on Π̂.

Following McFadden and Train (2000), in our main results (Theorem 1 and Proposition

1), we considered that case where Π̂ = Π for simplicity. In this section, we provide a

necessary and sufficient condition for the approximation of the random utility models on

Π̂.

Since the set Pr(Π̂) of random utility models on Π̂ is also a polytope, we can generalize

Lemma 1 for Pr(Π̂) by simply changing Π to Π̂. That is, we have the following result:

Lemma 6. Let Π̂ ⊂ Π. Then Pr(Π̂) ⊂ cl.Pra(0|µ) if and only if ρπ ∈ cl.Pa(0|µ) for any

π ∈ Π̂.

This result together with Lemma 2 implies that the following generalization of Corollary

2.

Corollary 3. Let Π̂ ⊂ Π.

(i) Let µ ∈ M. If any ranking π ∈ Π̂ is representable in D, then any random utility

model on Π̂ can be approximated arbitrarily well by a random-coefficient ARUM.

Moreover, the approximation can be done without fixed effects (i.e., η = 0). That is,

Pr(Π̂) ⊂ cl.Pra(0|µ).

(ii) If some ranking π ∈ Π̂ is not representable, then there exists a random utility model
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on Π̂ that cannot be approximated arbitrarily well by any random-coefficient ARUM

without fixed effects with any µ ∈M. That is, Pr(Π̂) 6⊂ cl.Pra(0|µ) for any µ ∈M.

Corollary 3 offers a testable condition for determining if the random-coefficient ARUMs,

without fixed effects, can adequately approximate any random utility model on Π̂ ⊂ Π.

Should the researcher wish to omit certain rankings from their analysis, this Corollary

may prove more beneficial than both Theorem 1 and Proposition 1.

B Proofs

In Corollary 4 of Section A.2 of the online appendix, we prove that Pra(η|µ) = co.Pa(η|µ)

for any µ ∈ M and η ∈ R|J |, where co. denotes the convex hull. We use this results

throughout the proof.

B.1 Proof of Theorem 1

The affine independence of {xj |j ∈ J} implies that all rankings are representable (by

Lemma 3) and thus can be approximated by a sequence of ARUMs (by Lemma 2 (1)).

Applying Lemma 1 proves Theorem 1-(i).

When the affine-independence condition fails, Lemma 3 (1) implies a ranking and its

reverse ranking are not representable. Lemma 4 gives examples of random utility models

that cannot be approximated by random-coefficient ARUMs no matter how one chooses

fixed effects.

B.2 Proof of Proposition 1

Lemma 1,2, and 3 (2) imply statement (i) and parts of statement (ii) of Proposition 1.

The last statement of statement (ii) can be proved as follows. Consider any stochastic

choice function ρ on {J}. Then there exists a sequence of stochastic choice functions {ρn}

such that ρn → ρ and ρn(J, j) > 0 for any j ∈ J . Fix µ ∈ M. Note that our assumption

of the convexity of the support implies the connectedness. By Corollary 1 of Norets and

Takahashi (2013), ρn can be represented as the ARUMs.

B.3 Proof of Lemma 1 and 6

We prove Lemma 6, which implies Lemma 1 with Π̂ = Π.
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We first prove the if direction. Suppose that ρπ ∈ cl.Pa(0|µ) for all π ∈ Π̂. Then

co.{ρπ|π ∈ Π̂} ⊂ co.cl.Pa(0|µ). By the fact that Pa(0|µ) is bounded, it follows from

Theorem 17.2 of Rockafellar (2015) that cl.co.Pa(0|µ) = co.cl.Pa(0|µ). Thus, Pr(Π̂) ⊂

cl.co.Pa(0|µ) ⊂ cl.Pra(0|µ). (We used the fact that Pra(0|µ) = co.Pa(0|µ) for any µ ∈

M.39)

We now prove the only-if direction. By assumption, Pr(Π̂) ⊂ cl.co.Pa(0|µ) = co.cl.Pa(0|µ),

where the equality holds by the previous argument. Since Pr(Π̂) ⊂ co.cl.Pa(0|µ), for any

π ∈ Π̂, there exist positive numbers {λi}mi=1 and ρi ∈ cl.Pa(0|µ) for all i ∈ {1, . . . ,m}

such that
∑m

i=1 λi = 1 and
∑m

i=1 λiρ
i = ρπ. Note that ρi ∈ cl.Pa(0|µ) ⊂ Pr(Π) for each i

because Pr(Π) is compact. Since ρπ is a vertex of Pr(Π), thus ρπ is an exposed point.40

Hence,
∑m

i=1 λiρ
i = ρπ implies ρi = ρπ for all i. This means that ρπ ∈ cl.Pa(0|µ) for all

π ∈ Π̂.

B.4 Proof of Lemma 2

Lemma 2 (1) is easy to prove.

Step 1: For any π ∈ Π and any µ ∈ M, if a ranking π is representable, then there

exists a sequence {ρn} of Pa(0|µ) such that ρn → ρπ.

Proof. Assume that a ranking π is representable. This implies that if j is the dominating

alternative in D, then β ·xj−maxl∈D\{j} β ·xl > 0. If j is dominated by another alternative

in D, then β · xj −maxl∈D\{j} β · xl < 0.

Let ρn be the sequence of ARUMs with coefficient nβ. For any positive integer n and

any (D, j) ∈ D × J such that j ∈ D, note

ρn(D, j) ≥
∫

1
{
n

(
β · xj − max

l∈D\j
β · xl

)
≥ max

l∈D\j
εl − εj

}
dµ,

39See Corollary 4 of Section A.2 of the online appendix.
40A point of a convex set is an exposed point if there is a supporting hyperplane which contains no other

points of the set (Rockafellar (2015), Page 162)
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where 1{·} is the indicator function.41 By the dominated convergence theorem,

lim
n→∞

ρn(D, j) ≥
∫

lim
n

1
{
n

(
β · xj − max

l∈D\j
β · xl

)
≥ max

l∈D\j
εl − εj

}
dµ = 1.

Since elements for each choice set are nonnegative and sum to 1. This implies ρn →

ρπ. �

We prove the contrapositive of Lemma 2 (2). We first show that the existence of a

converging sequence of ARUMs to ρπ implies the representability of π (Step 2). Step 3

shows that such a converging sequence of ARUMs exists if a sequence of random coefficient

ARUMs converges to ρπ.

Step 2: If there exists a µ ∈ M and sequences {ρn} and {ρ′n} of Pa(0|µ) such that

ρn → ρπ and ρ′n → ρπ
−

, then π and π− are representable.42

Proof. Let βn and β′n be the coefficient vectors of ρn and ρ′n, respectively. We argue that

for n large enough, βn − β′n can represent the ranking π.

Consider a binary choice set {j, l}. Define γn ≡ βn · (xj − xl) and γ′n ≡ β′n · (xl − xj).

Without loss of generality, assume π(j) > π(l). Note that γn and γ′n must be bounded

below.43 There are two cases.

Case 1: Consider the case where at least one of γn or γ′n is unbounded above. Sine

both of them are bounded below, γn + γ′n is unbounded above, then there exists Njl such

that for any n > Njl, (βn − β′n) · (xj − xl) = γn + γ′n > 0.

Case 2: Both γn or γ′n are bounded above (and below). Thus there exist convergent

41Note that ρn(D, j) ≡ µ({ε|nβ · xj + εj ≥ maxl∈D\j{nβ · xl + εl}}) ≥ µ({ε|nβ · xj + εj ≥ maxl∈D\j nβ ·
xl + maxl∈D\j εl}) = µ({ε|n(β · xj −maxl∈D\j β · xl) ≥ maxl∈D\j εl − εj}) =

∫
1{n(β · xj −maxl∈D\j β · xl) ≥

maxl∈D\j εl − εj}dµ.
42The statement that “if ρn → ρπ then π is representable” is incorrect. Suppose that εj > εl a.s. if and only

if π(j) > π(l). In this case, even if π is not representable, it is possible that ρn = ρπ for sufficiently large n.
Note also that π is representable if and only if π− is representable.

43This can be proved by contradiction. Firstly, note that εl−εj is a well-defined random variable by definition.
Hence, it is tight: for each δ ∈ (0, 1), there exists a positive number Nδ such that µ (ε|εl − εj ∈ (−Nδ, Nδ)c) < δ.
Now, if {γn}n=1 is not bounded below, we can choose δ < 1 and find a subsequence {γnk

}k=1 such that γnk
<

−Nδ for all k. On this subsequence we have ρnk
({j, l}, j) = µ

(
ε|γn ≥ εl − εj

)
≤ µ

(
ε| −Nδ > εl − εj

)
≤ δ < 1.

Clearly, ρnk
({j, l}, j) does not converge to 1 = ρπ({j, l}, j), a contradiction. Thus we must have that {γn}n=1

is bounded below.
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subsequences {γnk} and {γ′nk}. By the dominated convergence theorem

1 = lim
nk

ρnk({j, l}, j) = µ(ε| lim
nk

γnk > εl−εj), 1 = lim
nk

ρ′nk({j, l}, l) = µ(ε|εl−εj > − lim
nk

γ′nk).

We drop the equalities by the absolute continuity of µ. This implies that limnk βnk · (xj −

xl) = limnk γnk > − limnk γ
′
nk

= − limnk β
′
nk
·(xl−xj) so that limnk(βnk−β′nk)·(xj−xl) > 0.

It follows that there exists Njl such that for any nk > Njl, limnk(βnk−β′nk) · (xj−xl) > 0.

Finally, although Njl depends on a particular binary choice set, we have a finite number

of binary choice sets. Thus, if necessary, we can consider a subsequence {(βm−β′m) · (xj−

xl)} that works for all j, l ∈ J . Taking the maximum N∗ of Njl among all binary choice

sets, we proved that π is representable. This also implies that π− is representable. �

In the following, we again use the fact that Pra(0|µ) = co.Pa(0|µ) for any µ ∈M.44

Step 3: If there exists µ ∈ M and a sequence {ρn} of co.Pa(0|µ) such that ρn → ρπ,

then there exists a sequence {ρ′n} of Pa(0|µ) such that ρ′n → ρπ.

Proof. Fix π ∈ Π. Suppose that there exists a sequence ρn of co.Pa(0|µ) such that

ρn → ρπ as n → ∞. Let M = dim co.Pa(0|µ). Then for each ρn, by Caratheodory’s

theorem, there exist {ρin}M+1
i=1 ⊂ Pa(0|µ) and nonnegative numbers {αin}M+1

i=1 such that

ρn =
∑M+1

i=1 αinρ
i
n and

∑M+1
i=1 αin = 1. Denote (αin)M+1

i=1 by αn. Then αn belongs to a

compact set (i.e., M -dimensional simplex). There exists a convergent subsequence {αn′}.

Thus ρ′n ≡
∑M+1

i=1 αin′ρ
i
n′ is a subsequence of {ρn}. For each i, let αi∗ be the limit of {αin′}.

Since
∑M+1

i=1 αin′ = 1 for all n′, we have
∑M+1

i=1 αi∗ = 1, so that there must exist i∗ such

that αi
∗
∗ 6= 0.

In the following, we will show that ρi
∗
n′ → ρπ as n′ →∞. To show the claim, we prove

that if ρi
∗
n′ 6→ ρπ, then αi

∗
n′ → 0, which is a contradiction. Assume that ρi

∗
n′ 6→ ρπ. Then

there exist D ∈ D, j ∈ D, and ε > 0 such that for any integer N there exists n′ > N

such that |ρi∗n (D, j)− ρπ(D, j)| > ε. This implies that for any N there exists n′ > N such

that
∣∣∣∑M+1

i=1 αin′ρ
i
n′(D, j) − ρπ(D, j)

∣∣∣ =
∑M+1

i=1 αin′ |ρin′(D, j) − ρπ(D, j)| ≥ αi
∗
n′ε, where

the first equality holds because if π(j) ≥ π(D) then ρin′(D, j) − ρπ(D, j) ≤ 0 for all i; if

π(j) ≥ π(D) does not hold (i.e., j is worse than another alternative i ∈ D with respect to

44See Corollary 4 of Section A.2 of the online appendix.
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π), then ρin′(D, j) − ρπ(D, j) ≥ 0 for all i. Since
∑M+1

i=1 αin′ρ
i
n′(D, j) → ρπ(D, j), it must

hold that αi
∗
n′ → 0. �

Steps above show that if there exists a sequence {ρn} of co.Pa(0|µ) such that ρn → ρπ,

then π is representable. The contraposition of this statement is the second statement of

Lemma 2.

B.5 Proof of Corollary 2 and 3

We prove Corollary 3, which implies Corollary 2 with Π̂ = Π. Statement (i) follows from

Lemma 1 and Lemma 2 (1). To Prove Statement (ii), suppose that there exists a ranking

π ∈ Π̂ that is not representable. Then, by Lemma 2 (1), we have that for any µ ∈ M,

{ρπ, ρπ−} 6∈ cl.Pra(0|µ).

B.6 Proof of Lemma 3

B.6.1 Proof of Statement (1)

We use the following lemma:

Lemma 7. Let A be an r × n real matrix, B be an l × n real matrix, and E be an real

m× n matrix. Exactly one of the following alternatives is true.

1. There is u ∈ Rn such that Au = 0, Bu ≥ 0, Eu� 0.

2. There is θ ∈ Rr, η ∈ Rl, and λ ∈ Rm such that θA + ηB + λE = 0, λ > 0 and

η ≥ 0,

where � 0 means all entries are positive, > 0 means all entries are nonnegative and

positive for some entry, and ≥ means all entries are nonnegative.

See Theorem 1.6.1 of Stoer and Witzgall (2012) for the proof.

For simplicity of notation, let J = {1, 2, . . . , |J |}. For any ranking π ∈ Π, by relabeling

J if necessary, we assume that π(i) > π(i+ 1) for all i ≤ |J | − 1 without loss of general-

ity. We label the following condition as Condition (∗): if λ1x1 +
∑|J |−1

i=2 (λi − λi−1)xi −

λ|J |−1x|J | = 0 and λi ≥ 0 for all i ∈ {1, . . . , |J |−1}, then λi = 0 for all i ∈ {1, . . . , |J |−1}.

Step 1: For each π ∈ Π, Condition (∗) holds if and only if π is representable.
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Proof. Since D contains all binary sets, π ∈ Π is representable if and only if there exists

β such that for any j, l ∈ J , π(j) > π(l)⇔ β · xj > β · xl. Fix π ∈ Π.

∃β
[
x1 · β > x2 · β > · · · > x|J |−1 · β > x|J | · β

]
⇐⇒ ∃β

[
(x1 − x2) · β > 0, . . . , (x|J |−1 − x|J |) · β > 0

]
⇐⇒ ∃β [Eβ � 0]

⇐⇒6 ∃λ ∈ R|J |−1 [λ > 0, λE = 0]⇐⇒6 ∃λ ∈ R|J |−1
[
λ > 0,

∑|J |−1
i=1 λi(xi − xi+1) = 0

]
⇐⇒6 ∃λ ∈ R|J |−1

[
λ > 0, λ1x1 +

∑|J |−1
i=2 (λi − λi−1)xi − λ|J |−1x|J | = 0

]
⇐⇒ Condition(∗),

where λ ≡ (λ1, ..., λ|J |−1) and the third equivalence is obtained by using Lemma 7 with

A,B = 0 and E ≡ (x1 − x2; . . . ;x|J |−1 − x|J |) ∈ R(|J |−1)×K . �

Step 2: The set {xj |j ∈ J} is affinely independent if and only if Condition (∗) holds

for any π ∈ Π.

Proof. We first show that the only if part. Fix any π ∈ Π. Without loss of generality

assume that π(i) > π(i+ 1) for all i ≤ |J |−1. Suppose that λ1x1 +
∑|J |−1

i=2 (λi−λi−1)xi−

λ|J |−1x|J | = 0 and λi ≥ 0 for all i. Then, λ1x1+
∑|J |−1

i=2 (λi−λi−1)xi−λ|J |−1x|J | = 0. Define

µ1 = λ1, µi = λi−λi−1 for all i ∈ {2, . . . , |J |−1}, and µ|J | = −λ|J |−1. Then
∑|J |

i=1 µixi = 0,

and,
∑|J |

i=1 µi = λ1 +
∑|J |−1

i=2 (λi−λi−1)−λ|J |−1 = 0. If {xj |j ∈ J} is affinely independent,

then µi = 0 for all i ∈ {1, . . . , |J |}. Hence, λi = 0 for all i ∈ {1, . . . , |J | − 1}. This implies

Condition (∗).

Next we show the if part. Choose any real numbers {µi}|J |i=1 such that
∑|J |

i=1 µixi = 0

and
∑|J |

i=1 µi = 0. Order µi by its value so that (after relabelling J) we have µ1 ≥

µ2 ≥ · · · ≥ µ|J |. Let µ ≡ (µ1, ..., µ|J |). Define λ1 = µ1 and λi =
∑i

j=1 µj for all

i ∈ {2, . . . , |J | − 1}.

First we show that λi ≥ 0 for all i ∈ {1, . . . , |J | − 1}. Suppose by way of contradiction

that λi < 0 for some i ∈ {1, . . . , |J | − 1}. Then µi < 0 because µ1 ≥ · · · ≥ µi. Since 0 >

µi ≥ µj for all j ≥ i, we have
∑|J |

j=i+1 µj < 0. It follows that
∑|J |

j=1 µj = λi+
∑|J |

j=i+1 µj < 0.

This contradicts that
∑|J |

j=1 µj = 0. Therefore, λi ≥ 0 for all i ∈ {1, . . . , |J | − 1}.

Now we show µ = 0. Notice that λ1x1 +
∑|J |−1

i=2 (λi − λi−1)xi − λ|J |−1x|J | = µ1x1 +∑|J |−1
i=2 µixi −

∑|J |−1
i=1 µix|J | =

∑|J |
i=1 µixi = 0, where the second to the last equality holds
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because
∑|J |

i=1 µi = 0. Therefore, by Condition (∗), λi = 0 for all i ∈ {1, . . . , |J |−1}. This

implies µ = 0. �

B.6.2 Proof of Statement (2)

For any j ∈ J , xj 6∈ co.({xl|l ∈ J \ {j}}) ⇔ xj is an extreme point of co.({xl|l ∈ J}) ⇔

xj is an exposed point of co.({xl|l ∈ J}) ⇔ ∃β ∀l ∈ J \ {j}[β · xj > β · xl]⇔ all rankings

π on {J}, whose best alternative is j, is representable. The first and third equivalences

are by the definitions of extreme points and exposed points, respectively, while the second

equivalence is by the fact that co.({xl|l ∈ J}) is a polytope.

B.7 Proof of Lemma 5

In this section, we prove Lemma 5. We will prove Lemma 4 later by using Lemma 7-9.

For each positive integer n, define Jn = {1, . . . , n}. We prove the lemma by an induc-

tion on n. Let Πn be the set of all rankings on Jn.

Let πn be a ranking over Jn such that πn(i) > πn(i+ 1) for any i ≤ n − 1. We will

prove that ρπn and ρπ
−
n are adjacent. In particular, we will find tn ∈ R|Dn|×|Jn| such that

ρπn · tn = ρπ
−
n · tn = 0, and ρσn · tn > 0 for any σn ∈ Πn \ {πn, π−n }.

Induction Base: Let us consider the case of n = 3. (Remember that all binary

and ternary choice sets are in Dn. The cases for n = 1 and n = 2 are trivial.) WLOG

we consider π(1) > π(2) > π(3) and its reverse. For b > a > 0, let t3({1, 2}, 1) = a,

t3({2, 3}, 2) = −b, t3({1, 3}, 1) = b− a, and t3({1, 2, 3}, 2) = a+ b. For all other (D, j) ∈

D×J , t3(D, j) = 0. A direct calculation shows that ρπ3 · t3 = ρπ
−
3 · t3 = 0, and ρσ3 · t3 > 0

for any σ3 ∈ Π3 \ {π3, π
−
3 }.

Assume that n ≥ 4. For each i such that 3 ≤ i ≤ n−1, we define a set of sets Di ⊂ 2Ji\∅

such that (i) Di ⊂ Di+1 and Dn = D; (ii) for each i, {j, l} ∈ Di and {j, l, r} ∈ Di for any

j, l, r ∈ Ji.

Induction Step: WLOG, let πn−1 be the ranking over Jn−1 such that πn−1(i) >

πn−1(i+ 1) for any i ≤ n−2. By the induction hypothesis there exists tn−1 ∈ R|Dn−1|×|Jn−1|

such that ρπn−1 ·tn−1 = ρπ
−
n−1 ·tn−1 = 0, and ρσn−1 ·tn−1 > 0 for σn−1 ∈ Πn−1\{πn−1, π

−
n−1}.

Choose a positive number εn−1 such that 0 < εn−1 < minσn−1∈Πn−1\{πn−1,π
−
n−1}

ρσn−1 ·tn−1.
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We define tn ∈ R|Dn|×|Jn| as follows: For each (D,x) ∈ Dn × Jn

tn(D, j) =



tn−1(D, j) if (D,x) ∈ (Dn−1 × Jn−1) \ {({1, 2}, 1)},

tn−1(D, j) + εn−1 if (D, j) = ({1, 2}, 1),

−εn−1/(n− 1) if (D, j) = ({i, n}, i) for some i ∈ {1, · · · , n− 1},

2εn−1 if (D, j) = ({n− 2, n− 1, n}, n− 1),

0 otherwise.

It is clear that ρπn · tn = ρπ
−
n · tn = 0. Fix σn ∈ Πn \ {πn, π−n }. Let j ∈ {1, · · · , n}

be such that the element n is jth best element in σn. There exists σn−1 ∈ Πn−1 such

that the ranking σn can be written as (σ−1
n−1(n − 1), · · · , σ−1

n−1(n − (j − 1)), n, σ−1
n−1(n −

j), · · · , σ−1
n−1(1)) in decreasing order of the ranking if 2 ≤ j ≤ n − 1. (If j = 1, then n is

the best element in σn. If j = n, then n is the worst element in σn.)

First notice that by the definition of tn and ρσn−1 = ρσn on {1, 2}, ρσn · tn = ρσn−1 ·

tn−1 + εn−1ρ
σn−1({1, 2}, 1)− εn−1

n− 1
(j − 1) + 2εn−1ρ

σn({n− 2, n− 1, n}, n− 1), where the

second term of the right hand side follows since in σn, there are j − 1 elements that are

better than n.

Case 1: σn−1 = πn−1. Note that ρσn−1({1, 2}, 1) = ρπn−1({1, 2}, 1) = 1, and also

ρσn({n− 2, n− 1, n}, n− 1) = 0. Thus, ρσn · tn = 0 + εn−1 −
εn−1

n− 1
(j − 1) + 0 > 0,

where the last inequality holds because j < n. (If j = n, then σn−1 = πn−1 implies that

σn = πn.)

Case 2: σn−1 = π−n−1. Note that ρσn−1 · tn−1 = ρπ
−
n−1 · tn−1 = 0 and ρσn−1({1, 2}, 1) =

ρπ
−
n−1({1, 2}, 1) = 0. Note also that ρσn({n− 2, n− 1, n}, n− 1) = 1 because n− 1 is the

best element in σn (except the case in which n is the best element in σn and σn−1 = π−n−1,

then the ranking in σn coincides with π−n ). Thus, ρσn ·tn = 0+0− εn−1

n− 1
(j−1)+2εn−1 > 0.

Case 3: σn−1 6∈ {πn−1, π
−
n−1}. Thus, ρσn · tn > εn−1 −

εn−1

n− 1
(j − 1) > 0, where the

first inequality holds by ρσn−1 · tn−1 > εn−1 and the second inequality holds by j ≤ n.

B.8 Proof of Lemma 4

To prove the lemma, we prove the following lemmas. Fix a ranking π that is not repre-

sentable. For any α ∈ (0, 1), define ρπα ≡ αρπ + (1− α)ρπ
−

. We first will show statement
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(a) mentioned after Lemma 4 in Section 4.

Lemma 8. Let µ ∈M. For any α ∈ (0, 1), ρπα 6∈ cl.
⋃
η Pa(η|µ).

Proof. Choose any j, l, r ∈ J such that π(j) > π(l) > π(r). Suppose by contradiction

that ρπα ∈ cl.
⋃
η Pa(η|µ). This implies that there exists a sequence {ρn}∞n=1 ⊂

⋃
η Pa(η|µ)

converging to ρπα. Let (ηn, βn) be the fixed-effects-coefficients pair corresponding to ρn.

Define γn,jl ≡ βn · (xj − xl) + ηnj − ηnll. Define γn,jr, γn,lr, γn,lj , γn,rl and γn,rj similarly.

First consider the sequence {γn,jl}∞n=1.

Step 1: The sequence {γn,jl}∞n=1 is uniformly bounded.

Proof. We prove this by contradiction. Firstly, note that εl−εj is a tight random variable:

for each δ > 0, there exists a positive number Nδ such that µ (ε|εl − εj ∈ (−Nδ, Nδ)
c) < δ.

Now, if {γn,jl}∞n=1 is not a bounded sequence, we choose δ = min{α2 , 1− α− ε}, for some

0 < ε < 1 − α, and find a subsequence {γnk,jl}∞k=1 such that |γnk,jl| > Nδ. On this

subsequence we either have ρnk({j, l}, j) = µ
(
ε|γnk,jl > εl − εj

)
≥ µ

(
ε|Nδ > εl − εj

)
≥

1−δ ≥ α+ε > α or ρnk({j, l}, j) = µ
(
ε|γnk,jl > εl−εj

)
≤ µ

(
ε|−Nδ > εl−εj

)
≤ δ ≤ α

2 < α.

Clearly, ρnk({j, l}, j) does not converge to α = ρπα({j, l}, j). We reach a contradiction and

thus{γn,jl}∞n=1 must be uniformly bounded. �

Similar conclusions hold for γn,jr, γn,lr, γn,lj , γn,rl, γn,rj . Given Step 1, we can se-

lect convergent subsequences {(γnk,jl, γnk,jr, γnk,lr, γnk,lj , γnk,rj , γnk,rl)}k∈N. We denote the

limits as (γ∗jl, γ
∗
jr, γ

∗
lr, γ

∗
lj , γ

∗
rj , γ

∗
rl). We consider the corresponding stochastic choice func-

tions ρnk . Note that, by definition, limnk ρnk = ρπα.

For any s, t ∈ {j, l, r} and a nonnegative number n, define En,st = {ε|γn,st > εt − εs},

Est = {ε|γ∗st ≥ εtεs}, and E′st = {ε|γ∗st > εt − εt}. Since µ ∈ M is absolutely continuous

with respect to the Lebesgue measure, µ{ε|γ∗st = ε(t)− ε(s)} = 0. Thus µ(Est) = µ(E′st).

Step 2: (i) Ejl = Ejr and Erl = Erj up to a measure zero set; (ii) µ(Ejl ∩ Ejr) = α

and µ(Erl ∩ Erj) = 1− α.

Proof. By Fatou’s lemma i) α = ρπα({j, l, r}, j) = lim sup ρn({j, l, r}, j) = lim sup

µ(En,jl ∩ En,jr) ≤ µ(lim sup(En,jl ∩ En,jr)) ≤ µ(Ejl ∩ Ejr), and, (ii) α = ρπα({j, l}, j) =

lim inf µ(En,jl) ≥ µ(lim inf En,jl). By definition, lim inf En,jl ≡
⋃∞
n=1

⋂∞
i=nEi,jl, and we

have E′jl ⊂ lim inf En,jl ⊂ Ejl. Since µ(E′jl) = µ(Ejl), it follows that α ≥ µ(lim inf En,jl) =
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µ(Ejl). In the same way, we have α ≥ µ(Ejr). Thus we have µ(Ejl∩Ejr) ≥ α ≥ µ(Ejl) =

µ(Ejr). It follows that Ejl = Ejr up to a measure zero set and µ(Ejl ∩ Ejr) = α. By

symmetry, we obtain Erl = Erj up to a measure zero set and µ(Erl ∩ Erj) = 1− α. �

Define a column vector ε = (εj , εl, εr) ∈ R3. Define Ω to be the support of µ projected

onto the coordinates (εj , εl, εr). Define µΩ to be the measure µ restricted on (εj , εl, εr):

for any Borel measurable set S on R3, µΩ({(εj , εl, εr) ∈ S}) = µ(S × R|J |−3). Further

define A =
{

(εj , εl, εr)
∣∣Uε ≥ c} and B =

{
(εj , εl, εr)

∣∣Uε ≤ c}, where

U =

1 −1 0

0 1 −1

 , c =

γ∗lj
γ∗rl

 . (7)

Step 3: µΩ(A) = α, µΩ(B) = 1− α, and µΩ(A ∪B) = 1.

Proof. By Step 2, µ(Ejl ∩ Ejr) = α and µ(Erl ∩ Erj) = 1 − α. Remember Est is the

event that s is chosen over t in the binary set {s, t}. Notice Ejl ∩Ejr and Erl ∩Erj have

measure zero intersections by the transitivity of rankings, so the two events partition the

probability space (ignoring measure zero events).

Notice that α = ρπα({r, l}, r) = µ(Erl). Since the event Ejr is incompatible with the

event Erl∩Erj up to a measure zero set, Ejr must completely lie within the event Ejl∩Ejr.

Moreover, since µ(Ejr) = α = µ(Ejl∩Ejr), the event Ejr coincides with the event Ejl∩Ejr

(ignoring measure zero events). Finally, notice the event A is the intersection of Ejl ∩Ejr

and Ejr. Thus, µΩ(A) = α. In a similar way, we can show that µΩ(B) = 1− α. Thus we

have µΩ(A ∪B) = 1.45 �

Remember Ω ⊂ A ∪B.46 Define A′ ≡ {ε |Uε > c} and B′ ≡ {ε |Uε < c}. Notice that

the sets A′ and B′ are two disjoint sets determined by two half spaces.47

Step 4: There exists εa ∈ A′∩Ω and εb ∈ B′∩Ω such that ελ ≡ λεa+(1−λ)εb 6∈ A∪B
45First we can show that notice that 1−α = ρπα({j, l}, l) = µ(Elj). Since the event Elj is not compatible with

the event Ejl ∩ Ejr, Elj must coincide with the event Erl ∩ Erj (ignoring measure zero events). Finally notice
that the event B is the intersection of Erl ∩ Erj and Elj , up to a measure zero events. Thus µΩ(B) = 1− α.

46If not, there exists a point x 6∈ A ∪ B and δ > 0 such that the ball centers around x with radius δ, Bδ(x),
satisfies µ(Bδ(x)) > 0 and Bδ(x)∩ (A∪B) = ∅. This is a contradiction since µΩ(Bδ(x)) + µΩ(A) + µΩ(B) > 1.

47Consider two hyperplanes H1 ≡ {(εj , εl, εr)|εj − εl = γ∗lj} and H2 ≡ {(εj , εl, εr)|εl − εr = γ∗rl}. Notice

that the set A′ is the intersection of two half spaces H+
1 ∩ H

+
2 ; similarly, B′ = H−1 ∩ H

−
2 , where H+

1 ≡
{(εj , εl, εr)|εj − εl > γ∗lj} and H−1 ≡ {(εj , εl, εr)|εj − εl < γ∗lj}. (H+

2 and H−2 can be defined in a similar way.)
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for some λ ∈ [0, 1].

Proof. We prove by contradiction. For any (εa, εb) ∈ A′ ∩ Ω × B′ ∩ Ω, define ελ ≡

λεa + (1−λ)εb ∈ A∪B for all λ ∈ [0, 1]. Consider the line segment {ελ}λ∈[0,1] and denote

it by l(εa, εb). The line segment l(εa, εb) must intercept with the line A∩B = {ε |Uε = c}

for any (εa, εb) ∈ (A′ ∩ Ω)× (B′ ∩ Ω). This is because A′ and B′ are two disjoint sets.

We choose two arbitrary pairs (ε∗a, ε
∗
b) and (ε∗a′ , ε

∗
b) such that ε∗a, ε

∗
a′ and ε∗b are not

collinear.48 The points ε∗a, ε
∗
a′ and ε∗b together determine a hyperplane. Denote the

hyperplane by H. Notice that the line A∩B belongs to H because l(ε∗a, ε
∗
b) and l(ε∗a′ , ε

∗
b)

intercept with A ∩B at two different points, say ε1 and ε2 . Since l(ε1, ε2) ⊂ H, we have

A ∩ B ⊂ H because l(ε1, ε2) ⊂ A ∩ B and the affine hull of l(ε1, ε2) is A ∩ B and H is

affine.

Secondly, we show that B′ ∩ Ω belongs to H. To show this choose any εb′ ∈ B′ ∩ Ω.

Denote the intersection of l(ε∗a, εb′) and A∩B by ε̂. By the above argument ε̂ ∈ H because

ε̂ ∈ A ∩B. Moreover ε∗a ∈ H. Thus εb′ ∈ H because εb′ = ε∗a + λ(ε∗a − ε̂) for some λ ∈ R.

In the same way, we can show that A′ ∩ Ω ⊂ H. Since A ∩ B ⊂ H, A′ ∩ Ω ⊂ H, and

B′ ∩ Ω ⊂ H, we have A ∩ Ω ⊂ H and B ∩ Ω ⊂ H. Since Ω ⊂ A ∪B as noted before Step

4, we have Ω ⊂ H. It follows that the support of µ is contained in H ×R|J |−3. The set

H×R|J |−3 has the Lebesgue measure 0. By the absolute continuity of µ, this implies that

µ has zero total measure. This is a contradiction because µ is a probability measure. �

Using the εa and εb shown to exist in Step 4, and the assumption that supp.µ is convex,

we have ελ ∈ supp.µ∩ (A∪B)c for some λ ∈ [0, 1]. Moreover, (A∪B)c is open. It follows

from the definition of the support that there exists r > 0 such that the ball centers around

ελ with radius r, Br(ελ), satisfies µ(Br(ελ)) > 0 and Br(ελ) 6⊂ A ∪ B. This contradicts

with µ(A ∪B) = 1. �

Given Lemma 8, in order to prove Lemma 4, it suffices to show that even with using

mixtures, it is impossible to approximate ρπα. We need two more lemma.

Lemma 9. (i)For any ρ ∈ cl.
⋃
η Pa(η|µ), if ρ 6∈ {ρπ, ρπ−} then ρ 6∈ {ρπα|α ∈ [0, 1]};

(ii) Let (t, a) be as in Definition 7 with a pair (ρπ, ρπ
−

) of adjacent rankings. For any

48This is possible because if we cannot find such two pairs, it implies that A ∩ Ω is a line and hence has
µ-measure 0 by absolute continuity. This is a contradiction since µΩ(A ∩ Ω) = α.
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ρ ∈ cl.
⋃
η Pa(η|µ), if ρ 6∈ {ρπ, ρπ−} then ρ · t > a.

Proof. To show (i), suppose by way of contradiction that ρ ∈ {ρπα|α ∈ [0, 1]}. Since

ρ 6∈ {ρπ, ρπ−}, ρ = ρπα for some α ∈ (0, 1). By Lemma 8, ρ 6∈ cl.
⋃
η Pa(η|µ), which is a

contradiction.

Now we will show (ii) by using (i). Since ρ ∈ Pr, it can be written as a convex

combination of ρπs: ρ =
∑

σ∈Π µ(σ)ρσ = µ(π)ρπ + µ(π−)ρπ
−

+
∑

σ∈Π\{π,π−} µ(σ)ρσ. By

(i), ρ ∈ cl.
⋃
η Pa(η|µ) and ρ 6∈ {ρπ, ρπ−} implies that ρ 6∈ {ρπα|α ∈ [0, 1]}. Thus, we must

have one of weights µ(σ)s in the third term is positive. By definition for any σ 6∈ {π, π−},

ρσ · t > a = ρπ · t = ρπ
− · t. Thus we can conclude that ρ · t > a. �

Lemma 10. Let µ ∈ M. If there exists a sequence of random-coefficient ARUMs with

fixed effects ηn converging to ρπα for some α ∈ (0, 1), then there exists two sequences of

ARUMs with fixed effects ηn that converge to ρπ and ρπ
−

, respectively.

Proof. Since
⋃
η Pra(η|µ) =

⋃
η co.Pa(η|µ) by Corollary 4 in the online appendix, there

exists
∑M+1

i=1 µniρni → ρπα, where M = dimPr + 1 (allowing µni = 0 for some i). Since the

sets of weights and random utility models are compact, we can extract converging subse-

quences such that for all i, µnki → µ∗i and ρnki → ρ∗i as nk → ∞. Thus,
∑

i µnkiρnki →∑
i µ
∗
i ρ
∗
i = ρπα. Moreover, since ρnki ∈

⋃
η Pa(η|µ), we have ρ∗i ∈ cl.

⋃
η Pa(η|µ).

We argue that there exist some i, j such that ρ∗i = ρπ and ρ∗j = ρπ
−

. Suppose, by

contradiction and without loss of generality, that ρ∗i 6= ρπ for any i.49

Let (t, a) be as in Definition 7 with a pair (ρπ, ρπ
−

) of adjacent rankings.

We will consider two cases.

Case 1: ρ∗i 6= ρπ
−

for any i. For all i, ρ∗i ∈ cl.
⋃
η Pa(η|µ) and ρ∗i 6∈ {ρπ, ρπ

−}. Then,

by Lemma 9 (ii), ρ∗i · t > a for all i. Thus,
(∑

i µ
∗(i)ρ∗i

)
· t =

∑
i µ
∗(i)ρ∗i · t > a. On the

other hand by Definition 7,
(∑

i µ
∗(i)ρ∗i

)
· t = ρπα · t = a. This is a contradiction.

Case 2: ρ∗i = ρπ
−

for some i. Define I = {i ∈ {1, . . . ,M + 1}|ρ∗i = ρπ
−}. First

notice that there exists i ∈ {1, . . . ,M + 1} \ I such that µ∗(i) > 0. (If such i does

not exist, then ρπ
−

=
∑

i µ
∗(i)ρ∗i = ρπα, which contradicts with α 6∈ {0, 1}.) Then,

a = ρπα · t =
∑

i µ
∗(i)ρ∗i · t =

∑
i∈I µ

∗(i)ρπ
− · t+

∑
i 6∈I µ

∗(i)ρ∗i · t > a. �

49The proof for the other case is exactly the same after changing ρπ
−

to ρπ and ρπ to ρπ
−

.
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B.8.1 Main Proof of Lemma 4 by Using Lemma 8, 9, 10

As mentioned, given Lemma 8, it suffices to show that even with using mixtures, it is

impossible to approximate ρπα.

Let π be a ranking that is not representable. By Lemma 5, ρπ and ρπ
−

are adjacent.

Now suppose by way of contradiction that there exists a sequence of random-coefficient

ARUMs with fixed effects that approximates ρπα for some α ∈ (0, 1). Then by Lemma 10,

there exist two sequences {ρn} and {ρ′n} such that (i) ρn → ρπ and (ii) ρ′n → ρπ
−

. Let ηn

be the sequence of fixed effects, βn the sequence of coefficients associated with ρn, and β′n

the sequence of coefficients associated with ρ′n.

Given (i), by exactly the same argument as Step 2 of Lemma 2, we can prove that

there exists a large positive integer N1 such that for any n ≥ N1, we have βn ·xj +ηn(j) >

βn · xl + ηn(l) for any j, l ∈ J such that π(j) > π(l). Similarly by (ii), there exists a large

N2 such that for any n ≥ N2, we have β′n ·xj + ηn(j) > β′n ·xl + ηn(l) for any j, l ∈ J such

that π−(j) > π−(l).

Fix any j, l ∈ J such that π(j) > π(l). Fix any number njl ≥ max{N1, N2}. Then

for nay n ≥ njl, we have βn · xj + ηn(j) > βn · xl + ηn(l). Since π−(l) > π−(j), we have

−β′n ·xj−ηn(j) > −β′n ·xl−ηn(l). Summing the two inequalities, we have (βn−β′n) ·xj >

(βn − β′n) · xl. Because the number of binary choice sets is finite, we can find n∗ > njl for

any j, l ∈ J with π(j) > π(l), such that (βn∗−β′n∗) ·xj > (βn∗−β′n∗) ·xl. This contradicts

with the fact that π is not representable.
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A Algorithms to Compute Approximation Errors

A.1 EM Algorithm

To compute approximation errors in Table 1, we fit a finite-mixture logit model to each

deterministic ranking by the method of maximum likelihood. The data input is the

stochastic choice function ρ̂(D, j) and characteristics of each alternative j. We choose

the number of mixtures, M = 18, according to the theoretical upper bound suggested

by Corollary 4 in section A.2. Given the number of mixtures, the model has two sets

of parameters: (1) mixture weights {λi}Mi=1 and (2) coefficients for each mixture {βi}Mi=1.

The log-likelihood function of a finite mixture model with M mixtures is

L({λi}Mi=1, {βi}Mi=1) ≡
∑
D∈D

∑
j∈D

ρ̂(D, j) log
M∑
i=1

λi
exp(βi · xj)∑
l∈D exp(βi · xl)

.

We estimate the parameters by the EM algorithm (Dempster et al., 1977; Train, 2009).

We implement the algorithm according to Chapter 14 in Train (2009). We terminate the

algorithm when the change of the implied l2 distance between the estimated choice prob-

ability and the target choice probability becomes smaller than 1
106

between two successive

runs.

Our use of the maximum likelihood method with the EM algorithm is motivated by

the following observation: if the affine-independence condition is satisfied and the target

choice probability is an interior random utility model ρ̂ ∈ rint.Pr, then the model that

maximizes the likelihood will yield a perfect fit to the target probability. Maximum

likelihood method therefore minimizes the approximation error metric in (5).

To see this, notice that under the affine-independence condition, Proposition 4 and
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5 in the next section imply that any interior random utility model can be represented

by a finite mixture of logit models with M =
∑

D∈D(|D| − 1) + 1 mixtures. That is,

if M =
∑

D∈D(|D| − 1) + 1, there exists a set of parameters {(β∗i , λ∗i )}Mi=1 such that∑M
i=1 λ

∗
i

exp(β∗i · xj)∑
l∈D exp(β∗i · xl)

= ρ̂(D, j) for any D ∈ D, j ∈ D. The choice probability

generated by this set of parameters yields a perfect fit of the target probability. Hence

this set of parameters maximizes the likelihood.50

A.2 Bounding the Number of Mixtures in the EM Algo-

rithm

This section provides a theoretical result that upper-bounds the number of mixtures re-

quired for best possible approximation. Results in this section stipulate the number of

mixtures to be used in the EM algorithm.

The first proposition (Proposition 4) implies that any random-coefficient ARUMs can

be represented as a finite mixture of ARUMs. The second proposition (Proposition 5)

gives us an upper bound on the number of mixtures required by calculating the dimension

of the set of the random utility models. To prove Proposition 4, we need the following

lemma:

Lemma 11. Let K be a fixed integer. For any bounded Borel set C ⊂ RK , let ∆(C) denote

the set of Borel probability measures over C.51 Then, co.C =
{ ∫

xdm(x)|m ∈ ∆(C)
}

,

where
∫
xdm(x) denotes K-dimensional vector whose l-th element is

∫
x(l)dm(x) for any

l ∈ {1, . . . ,K}.

The proof is in the next section.52 Recall the definition of Pra(η|µ) and Pa(η|µ) from

50Recall that for any other stochastic choice function ρ, the likelihood
∑
D∈D

∑
j∈D ρ̂(D, j) log(ρ(D, j)).

ρ̂ maximizes the likelihood since∑
D∈D

∑
j∈D ρ̂(D, j)(log(ρ̂(D, j))− log(ρ(D, j))) =

∑
D∈D

∑
j∈D ρ̂(D, j) log ρ̂(D,j)

ρ(D,j)

= −
∑
D∈D

∑
j∈D ρ̂(D, j) log ρ(D,j)

ρ̂(D,j) ≥ −
∑
D∈D

∑
j∈D ρ̂(D, j)(ρ(D,j)ρ̂(D,j) − 1)

= −
∑
D∈D

∑
j∈D ρ(D, j) +

∑
D∈D

∑
j∈D ρ̂(D, j) = −|D|+ |D| = 0,

where we use the fact − log(x) ≥ −(x− 1) when x ≥ 0.
51In particular, m(C) = 1 for any m ∈ ∆(C).
52We note that the result is not true in an infinite dimensional space. To see this, let {ei}∞i=1 be the base of
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Definition 3. By using Lemma 11, we can show the following results that we use in the

main body of the paper.

Proposition 4. For any (η, µ), Pra(η|µ) = co.Pa(η|µ) =
{∑dimPr+1

m=1 λmρm

∣∣∣ρm ∈ Pa(η|µ), λm ≥

0,∀m = 1, . . . ,dimPr + 1,
∑dimPr+1

m=1 λm = 1
}

.

Proof. The second equality follows from the Caratheodory’s theorem. To show the first

equality, fix (η, µ). Since co.Pa(η|µ) ⊂ Pra(η|µ) because a discrete probability measure is

a Borel probability measure.

To show Pra(η|µ) ⊂ co.Pa(η|µ), let Pa(η|µ) = C in Lemma 11, then we have co.Pa(η|µ) ={ ∫
ρdm(ρ)|m ∈ ∆(Pa(η|µ))

}
.53 Thus, it suffices to show Pra(η|µ) ⊂

{ ∫
ρdm(ρ)|m ∈

∆(Pa(η|µ))
}

. To prove this define a mapping F : RK → Pa(η|µ) ⊂ R|D|×J by F (β)(D, j) =

µ(ε|β ·xj+ηj+εj > β ·xl+ηl+εl∀l ∈ D\j). The mapping is continuous by the dominated

convergence theorem given the fact that µ is absolutely continuous with respect to the

Lesgesgue measure. Fix m ∈ ∆(RK) to show
∫
ρβdm(β) ∈

{ ∫
ρdm(ρ)|m ∈ ∆(Pa(η|µ))

}
,

where ρβ ∈ Pa(η|µ). For any every Borel set C ⊂ Pa(η|µ), define m̂(C) = m(F−1(C)),

where F−1(C) is a Borel set because F is continuous. Then, m̂ ∈ ∆(Pa(η|µ)); moreover,

we have
∫
ρβdm(β) =

∫
ρdm̂(ρ), as desired. �

We now calculate the number dimPr. We note that the set Pr defined in Definition 1

is associated with a set of choice sets D.

Proposition 5. dimPr =
∑

D∈D(|D| − 1).

The proof is in a latter section. Propositions 4 and 5 imply that in order to obtain

the best approximating random-coefficient model to the observed choice probabilities, it

is sufficient to consider finite mixture models with at most 1 +
∑

D∈D(|D| − 1) mixtures.

For example, in Section 6, we analyze a choice data with |J | = 4 with D = 2J \ ∅. These

results imply that it is enough to consider the finite mixture models with at most 18

mixtures if one considers the whole choice sets.

the infinite dimensional real space. Define C = {ei}∞i=1. Define a measure m on C such that m(ei) = (1/2)i for
each i. Then,

∑∞
i=1m(ei) = 1, so that m is a probability measure on C.

∫
xdm cannot be represented as any

finite mixture of elements of C. For any y ∈ co.C, there exists i such that y(ei) = 0.
53To see that Pa(η|µ) is a Borel set, fix a standard distribution µ. The set Pa(η|µ) is the image of the

continuous mapping F from RK to R|D|×J defined in the proof. In particular, Pa(η|µ) is the countable union
of closed images of continuous mapping of compact cubes. Thus Pa(η|µ) is a Borel set.
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A.2.1 Proof of Lemma 11

By definition, co.C is a subset of {
∫
xdm(x)|m ∈ ∆(C)}. To show the reverse direction,

we first establish a relaxed statement:
{∫

xdm(x)|m ∈ ∆(C)
}
⊂ cl.co.C. Suppose by

way of contradiction that
∫
xdm(x) 6∈ cl.co.C for some m ∈ ∆(C). By the separating

hyperplane theorem (Corollary 11.4.2 of Rockafellar (2015)), there exist a t ∈ RK \ {0}

and α ∈ R such that (
∫
xdm(x)) · t = α > x · t for any x ∈ cl.co.C. This is a contradiction

because α = (
∫
xdm(x)) · t =

∫
(x · t)dm(x) <

∫
αdm(x) = α.

We now prove
{∫

xdm(x)|m ∈ ∆(C)
}
⊂ co.C by an induction on the dimension of

co.C.

Induction Base: If dim co.C = 1, there exist y = inf{x|x ∈ co.C} and z = sup{x|x ∈

co.C} such that co.C can be represented as the line segment between y and z. We consider

the case where the line segment does not contain both y and z. Proofs for the other cases

are similar. For any x ∈ C, there exists a weighting function α(x) = z−x
z−y ∈ (0, 1) such

that x = α(x)y + (1− α(x))z. The function α is bounded, nonegative, and continuous in

x. Hence it is measurable and integrable.

Choose any m ∈ ∆(C). By the monotone convergence theorem, there exists l and u

such that y < l < u < z and m({x|x ∈ (l, u)}) ≥ 1− ε for some ε < 1.54 Note that α(x)

is uniformly bounded away from 0 and 1 for x ∈ (l, u). Then it follows that
∫
αdm =∫

α(x)dm(x) exists and 0 <
∫
α(x)dm(x) < 1. Then,

∫
xdm(x) =

∫
α(x)dm(x) × y +∫

(1− α(x))dm(x)× z ∈ co.C, as desired.

Let l ≥ 2 be an integer.

Induction Step: Suppose that
{∫

xdm(x)|m ∈ ∆(C)
}
⊂ co.C holds for any C such

that dimC ≤ l. Then it holds for any C such that dimC = l + 1.

To prove the step, choose any m ∈ ∆(C). We have
∫
xdm(x) ∈ cl.co.C. First consider

the case where
∫
xdm(x) ∈ rint.cl.co.C. Since rint.cl.co.C = rint.co.C (by Theorem 6.3 of

Rockafellar (2015)), we have
∫
xdm(x) ∈ co.C, as desired.

Next consider the case where
∫
xdm(x) 6∈ rint.cl.co.C. Then,

∫
xdm(x) ∈ ∂cl.co.C

and by the supporting hyperplane theorem (Corollary 11.4.2 of Rockafellar (2015)), there

exists a supporting hyperplane H of cl.co.C at
∫
xdm(x). There exist t ∈ RK \ {0} and

54Note here we use the fact that m(C) = 1 and m({y}) = m({z}) = 0
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α ∈ R such that H = {x|x · t = α} and
∫
xdm(x) · t = α > x · t for any x ∈ cl.co.C ∩Hc.

This implies that m(H) = 1 and hence m(H∩C) = 1. Since H is a supporting hyperplane

and cl.co.C 6⊂ H, we obtain dim(H ∩ aff.C) ≤ l. Hence, dim(H ∩ C) ≤ l. Therefore, the

induction hypothesis shows that
∫
xdm(x) ∈ co.(H ∩ C) ⊂ co.C, as desired.

A.2.2 Proof of Proposition 5

To prove Proposition 5, we prove two lemmas. Lemma 12 is a technical lemma that

facilitates the characterization of the affine hull of random utility polytopes in Lemma 13.

Dimension of a set is defined as the dimension of its affine hull, and Proposition 5 follows.

Lemma 12. For any t ∈ R|D|×|J |, ρπ · t = ρπ
′ · t for all π, π′ ∈ Π if and only if t(D, j) =

t(D, l) for all D ∈ D and j, l ∈ D.55

Proof. To prove the if part, assume t(D, j) = t(D, l) for all D ∈ D and j, l ∈ D. Define

t(D) = t(D, j) for any j ∈ D. Then for any π ∈ Π, ρπ · t =
∑

D∈D
∑

j∈D ρ
π(D, j)t(D, j) =∑

D∈D t(D)
∑

j∈D ρ
π(D, j) =

∑
D∈D t(D), completing the proof of the if part.

The only-if direction is trivially true when the set D contains only one element. We

prove the only-if direction for the remaining D, |D| ≥ 2, by induction. Consider the sets

in D with a size greater or equal to 2. Let m be the smallest cardinality of the sets:

m ≡ min{|D|
∣∣D ∈ D, |D| ≥ 2}.56

Induction Base: For any D ∈ D such that |D| = m and any j, l ∈ D, t(D, j) =

t(D, l).

Proof. To prove the claim, choose any π, π′ ∈ Π such that for π(J \D) > π(j) > π(l) >

π(D \ {j, l}), and π′(J \D) > π′(l) > π′(j) > π′(D \ {j, l})

Note that the choice sets that have different choice probabilities under π and π′ are

those that contain both j and l, and have j dominate all elements in the set under π. The

set of those sets can be written as E = {E
∣∣E ∈ D, {j, l} ⊂ E, π(j) ≥ π(E)}. In particular

for each E ∈ E , ρπ(E, j) = 1, ρπ(E, r) = 0 for any r ∈ E \ {j} and ρπ
′
(E, l) = 1,

ρπ
′
(E, r) = 0 for any r ∈ E \ {l}.

55We are identifying each ρ ∈ P as an element of RD×J .
56Note we do not induct from |D| = 1 because D may not contain any set with one element.
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The choice probabilities of other choice sets are the same for both π and π′ because

either only one of j or l is in the set, or there exists a element that dominates j and l

under both π and π′.

Since t · ρπ = t · ρπ′ ,

0 =
∑

(E,r)∈D×J t(E, r)(ρ
π(E, r)− ρπ′(E, r)) =

∑
(E,r)∈E×J t(E, r)((ρ

π(E, r)− ρπ′(E, r))

=
∑

E∈E(t(E, j)− t(E, l)) = t(D, j)− t(D, l),

where the last equality holds because if E contains both j and l, π(j) ≥ π(E), and has

cardinality bigger and equal to |D|, then E must be equal to D. So t(D, j) = t(D, l) and

this completes the proof of the induction base. �

Let k ≥ m.

Induction Step: Suppose that for any D ∈ D such that |D| ≤ k and any j, l ∈ D,

t(D, j) = t(D, l). Then the same claim holds for any D ∈ D such that |D| = k + 1.

Proof. By the induction hypothesis, for any E ∈ D, if |E| ≤ k then t(E, j) = t(E, l) for

any j, l ∈ E. Repeat the proof above by considering the choice sets D \ {E|E ∈ D, |E| ≤

k}. �

�

Lemma 13. The affine hull of Pr is P± ≡
{
q ∈ R|D|×|J |

∣∣(i)
∑

j∈D q(D, j) = 1∀D ∈

D; (ii) q(D, j) = 0 ∀j 6∈ D ∈ D
}

.

Proof. The set P± is affine. So it suffices to show that for any affine set A, if Pr ⊂ A,

then P± ⊂ A. For any affine set A, by Theorem 1.4 of Rockafellar (2015), it has a

representation A = {q ∈ R|D|×|J ||Bq = b}, where B is a L × (|D| × |J |) matrix, b is a

L-dimensional vector, and L is an arbitrary positive integer.

For any l ∈ {1, . . . , L}, let Bl(D, j) denote the (l, (D, j)) entry of B. Note that each

column of B is associated with a (D, j) ∈ D×J . So Bq = b means that for any row index

l ∈ {1, . . . , L}, ∑
D∈D

∑
j∈J

Bl(D, j)q(D, j) = bl. (8)

By assuming Pr ⊂ A = {q ∈ RD×J |Bq = b}, we will show that if q satisfies (i) and
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(ii), then (8) holds for any l ∈ {1, . . . , L}.

Step 1: We show that Bl(D, j) = Bl(D, r) for any l ∈ {1, . . . , L}, D ∈ D, and j, r ∈ D.

For any π ∈ Π, ρπ ∈ Pr ⊂ A = {q ∈ RD×J |Bq = b}. Hence, (8) holds with q = ρπ for any

π ∈ Π. Thus ρπ ·Bl = ρπ
′ ·Bl for any π, π′ ∈ Π for any l. By Lemma 12, this implies that

Bl(D, j) = Bl(D, r) for any D ∈ D, and j, r ∈ D.

By Step 1, we can define Bl(D) = Bl(D, j) for any j ∈ D.

Step 2: If q satisfies property (i) and (ii), choose any π ∈ Π and l ∈ {1, . . . , L}. Since

ρπ ∈ A, then by (8),

bl =
∑
D∈D

∑
r∈J

Bl(D, r)ρ
π(D, r) =

∑
D∈D

Bl(D), (9)

where the second equality holds by ρπ(D, r) = 1 if π(r) ≥ π(D) and ρπ(D, r) = 0 other-

wise. Finally, by using these equalities, for each l ∈ {1, . . . , L}, we obtain the following

equations:

∑
D∈D

∑
r∈J Bl(D, r)q(D, r) =

∑
D∈D

∑
r∈D Bl(D, r)q(D, r) (by property (ii))

=
∑

D∈D
∑

r∈D Bl(D)q(D, r) (by Step 1)

=
∑

D∈D Bl(D)
∑

r∈D q(D, r)

=
∑

D∈D Bl(D) = bl. (by property (i) and (9))

This establishes that aff.Pr = {q ∈ RD×J |(i) and (ii)}.

The equalities in (i) and (ii) are independent. The dimension of {q ∈ RD×J |(ii)}

is
∑

D∈D |D|. The number of equalities of (i) is |D|. Hence, the dimension of Pr is

(
∑

D∈D |D|)− |D| =
∑

D∈D(|D| − 1).

�

Proposition 5 follows from Lemma 12 and Lemma 13.

A.3 Greedy Algorithm

It is known that the EM algorithm may not converge to the global optimum. To alleviate

this concern, we propose a second greedy algorithm inspired by Barron et al. (2008).

A-7



This algorithm has the useful feature that, given the setup of our problem, it solves a

sequence of optimization problems to converge to the global optimal solution (up to small

approximation errors which can be made arbitrarily small by increasing the number of

steps). The structure of the random-coefficient RUMs is important for the proof.

The algorithm takes a stochastic choice function ρ̂ and a fixed effects vector η as input

and returns a solution to (5). The algorithm is iterative: each step seeks to optimize based

on the results of previous steps:

• Step 1: Given ρ̂, choose ρ1 such that ρ1 = arg infρ∈cl.Pa(η|µ) ||ρ̂− ρ||2.

• Step n, n ≥ 2:

– Consider a set of grids αn = { 2
i+1}

n
i=1.

– Find (α∗n, ρ
∗
n) = arg inf(α,ρ)∈αn×cl.Pa(η|µ) ||ρ̂− (1− α)ρn−1 − αρ||2.

– Define ρn = (1− α∗n)ρn−1 + α∗nρ
∗
n and let ρout = ρn.

• Stop if a terminating criterion is reached.

• Return ρout at the final step.

The next proposition shows that the algorithm will converge for our problems in Section

5. Define d(ρ, ρ̂) as in (5).

Proposition 6. Let ρ̂ ∈ P be any stochastic function, η ∈ R|J |, and µ ∈ M. Define

d∗ = infρ∈Pra(η|µ) d(ρ, ρ̂). Let n denote the number of steps and ρn denote the output after

the completion of the n-th step of the algorithm. Then,

d(ρn, ρ̂)− d∗ ≤
√

8

n+ 1
. (10)

For our implementation, the terminating criterion is when the number of steps taken

reaches 1000. With 1000 steps, (10) implies the margin of error is within 0.09.57 When

we approximate ρ̂ without fixed effects, we let η = 0. When we approximate ρ̂ with fixed

effects, we couple the algorithm with a grid of fixed effects to search for the minimum.

57This is calculated by noting
√

8/1001 ≈ 0.09.
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Proof. Since the set cl.co.Pa(η|µ) is compact and convex, ρ∗ = arg infρ∈cl.co.Pa(η|µ) d(ρ, ρ̂)

= arg infρ∈cl.co.Pa(η|µ) ||ρ − ρ̂||22 exists and it can be written as a convex combination of

elements of cl.Pa(η|µ). By Caratheodory’s theorem, it can be written as ρ∗ =
∑M

i=1 λiρi,

where λi ≥ 0,
∑

i λi = 1 and ρi ∈ cl.Pa(η|µ), M = dimPr + 1. For each step n, define

En = ‖ρ̂−ρn‖2−‖ρ̂−ρ∗‖2. For each step n, let α∗n and ρ∗n be the minimizers over the grids

{αn} and cl.Pa(η|µ), respectively. Define C =
∑

i λi‖ρi − ρ∗‖2 and T = max{2E1, 4C}.

Note that E1 can be upper bounded by 2||ρ̂||2 + 2||ρn||2 ≤ 4|D| and similarly C ≤ 2|D|.

Thus we can chooce T = 8|D|.

Then, for each step n and let αn = 2
n+1 , we have the following:

En = ‖ρ̂− (1− α∗n)ρn−1 − α∗nρ∗n‖2 − ‖ρ̂− ρ∗‖2

≤
∑

i λi‖ρ̂− (1− αn)ρn−1 − αnρi‖2 − ‖ρ̂− ρ∗‖2

=
∑

i λi{(1− αn)2‖ρ̂− ρn−1‖2 + 2αn(1− αn)
(
(ρ̂− ρn−1) · (ρ̂− ρi)

)
+ α2

n‖ρ̂− ρi‖2}

−‖ρ̂− ρ∗‖2

= (1− αn)2‖ρ̂− ρn−1‖2 + 2αn(1− αn)
(
(ρ̂− ρn−1) · (ρ̂−

∑
i λiρi)

)
+α2

n

∑
i λi‖ρ̂− ρi‖2 − ‖ρ̂− ρ∗‖2

≤ (1− αn)2‖ρ̂− ρn−1‖2 + αn(1− αn)(‖ρ̂− ρn−1‖2 + ‖ρ̂− ρ∗‖2)− ‖ρ̂− ρ∗‖2

+α2
n

∑
i λi‖ρ̂− ρi‖2

≤ (1− αn)2‖ρ̂− ρn−1‖2 + αn(1− αn)(‖ρ̂− ρn−1‖2 + ‖ρ̂− ρ∗‖2)− ‖ρ̂− ρ∗‖2

+α2
n

∑
i λi‖ρi − ρ∗‖2 + α2

n‖ρ∗ − ρ̂‖2

= (1− αn)‖ρ̂− ρn−1‖2 − (1− αn)‖ρ̂− ρ∗‖2 + α2
n

∑
i λi‖ρi − ρ∗‖2

= (1− αn)En−1 + α2
n

∑
i λi‖ρi − ρ∗‖2.

Thus we have

En ≤ (1− αn)En−1 + Cα2
n. (11)

In the following, we will show En ≤ T
n+1 for each n. We prove this by induction. The

inequality holds with n = 1. Fix n. Suppose En−1 ≤ T
n . By substituting αn = 2

n+1

to (11), we have (i): En ≤ T
n+1 .58 Let dn = d(ρ̂, ρn) and d∗ = d(ρ̂, ρ∗). Since En =

|D|((dn)2 − (d∗)2), we have (ii): (dn)2 − (d∗)2 ≤ T ′

n+1 , where T ′ = T
|D| = 8. Then we have

58En ≤
n− 1

n+ 1

T

n
+ C

4

(n+ 1)2
=

(n2 − 1)T + 4Cn

(n+ 1)2n
≤ (n2 − 1)T + Tn

(n+ 1)2n
≤ n2T + Tn

(n+ 1)2n
=
Tn(n+ 1)

(n+ 1)2n
=

T

n+ 1
.
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(dn − d∗)2 ≤ (dn − d∗)(dn − d∗) + (dn − d∗)2d∗ = (dn − d∗)(dn + d∗) ≤ 8
n+1 , where we use

the fact that dn ≥ d∗ and d∗ ≥ 0. This implies dn − d∗ ≤
√

8
n+1 .59 �

A.4 Calculating the Maximal Substitution in (6)

To calculate the maximal substitution (6), we consider the problem

inf
ρ∈Pra(0|µ)

( ∑
r∈J\{j,l}

ρ(J \ {j}, r) + ρ(J, l)

)2

, (12)

which can be readily solved by the greedy algorithm.60 Taking 1 minus the squared root

of the minimized value in (12) gives the solution to the problem in (6). To see this, notice

sup
ρ∈Pra(0|µ)

(ρ(J \ {j}, l)− ρ(J, l)) = 1− inf
ρ∈Pra(0|µ)

( ∑
r∈J\{j,l}

ρ(J \ {j}, r) + ρ(J, l)

)
.

Because
∑

r∈J\{j,l} ρ(J \ {j}, r) + ρ(J, l) is nonnegative, minimizer(s) of
∑

r∈J\{j,l} ρ(J \

{j}, r) + ρ(J, l) is the same as the minimizer(s) of the problem when the criterion is

squared. It can also be shown that the greedy algorithm converges to the global optimal

solutions after solving a sequence of optimization problems.

We modify the greedy algorithm for maximal substitution as follows:

• Step 1: Choose ρ1 as a solution of infρ∈Pra(0|µ)

( ∑
r∈J\{j,l}

ρ(J \ {j}, r) + ρ(J, l)

)2

.

• Step n, n ≥ 2:

– Consider a set of grids αn = { 2
i+1}

n
i=1.

– Find (α∗n, ρ
∗
n) as a solution of

inf
(α,ρ)∈αn×cl.Pml(0)

(
(1−α)

( ∑
r∈J\{j,l}

ρn−1(J\{j}, r)+ρn−1(J, r)
)

+α
( ∑
r∈J\{j,l}

ρ(J\{j}, r)+ρ(J, r)
))2

.

– Define ρn = (1− α∗n)ρn−1 + α∗nρ
∗
n and let ρout = ρn.

59We comment that we can upper bound E1 and C by the squared diameter of the random utility polytope.
For example C ≤

∑
i λi||ρi − ρ∗||2 ≤ supρ,ρ̂∈Pr

||ρ − ρ̂||22 = 2 × the number of choice sets. The extremum is
achieved by selecting x to be a degenerate ranking and y its reverse ranking. Similarly we can bound E1. Notice
this implies T = 8× (the number of choice sets).

60Note that the objective function can be viewed as a distance metric.
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• Stop if a terminating criterion is reached.

• Return ρout at the final step.

B Additional Empirical Results

B.1 In-sample and Out-of-sample Fit

In this section, we evaluate in-sample and out-of-sample fit of our model. We show that

our method performs better or equally well compared to standard methods, not only in

terms of in-sample fit but also in terms of out-of-sample fit. We use the same fishing choice

dataset used in Section 6 and predict choice probabilities using aggregated characteristics.

We estimate a random-coefficient logit model with arbitrary mixing distributions. In

the dataset, we have four alternatives and we consider only one choice set D = {J}. Thus

by Proposition 5 and Corollary 4, it suffices to mix four logit models without fixed effects

to represent any random utility model. We refer to a 4-mixture mixed-logit model as

our method hereafter. We also estimate several standard models for comparison. They

include 1) a multinomial logit model, 2) nested logit model with two nests (charter and the

rest), 3) a nested logit model with two nests (boat and the rest), 4) a random coefficient

logit model with a log-normal mixing distribution for each variable, 5) a multinomial

logit model with alternative fixed effects, 6) and a random coefficient logit model with

log-normal mixing distributions and alternative fixed effects. We detail the definition of

each specification in Section B.2.

To evaluate in-sample and out-of-sample fits, we adopt the following strategy. We

randomly divide individuals in the sample into a training sample and a test sample

of equal sizes. Separately for the training and testing samples, we average individual

choices and characteristics to obtain aggregate data on choice probabilities and char-

acteristics. We then estimate the models using the training sample. The models are

estimated by maximizing the log-likelihoods. That is, for each model, we solve the prob-

lem maxθ∈Θ
∑|J |

j=1 ρ̂j log ρ(j|θ), where j indexes fishing modes, θ is the parameter vector

of the model, Θ denotes the set of possible parameter vectors, ρ̂j is the observed market
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share for fishing mode j in the training data, and ρ(j|θ) is the model-predicted choice

probability for fishing mode j with characteristic vector xj . See Section B.2 for a likeli-

hood expression for each model. For the standard models, we maximize the likelihoods

with the nonlinear optimization package in R (Ghalanos and Theussl, 2015; Ye, 1987).

For our model, we use the EM algorithm.61

To evaluate the in-sample fit performance, we compute the predicted choice prob-

abilities in the training sample ρ̂train ∈ R|J | and compare it with the observed choice

probabilities in the training sample ρtrain ∈ R|J |.62 For this comparison, we calculate the

l2 distance between the predicted choice probabilities and the aggregated observed choice

probabilities ||ρ̂train − ρtrain||2. Similarly, to evaluate the out-of-sample performance, we

compute the predicted choice probabilities using the testing sample ρ̂test ∈ R|J | and com-

pare it with the aggregated observed choice probabilities in the testing sample ρtest ∈ R|J |.

We use the l2 metric ||ρ̂test − ρtest||2 for this comparison as well.

We repeat this exercise with 50 random splits. The results for in-sample fits are

reported in Table A.1. The results for out-of-sample fits are in Table A.2.

As expected, the in-sample fit of our model is perfect. Several standard models,

especially those without fixed effects, exhibit imperfect in-sample fit. For example, the

random coefficient logit model with the log normal distributions has the l2 prediction error

0.038.

Table A.2 shows that the out-of-sample prediction error of our model is positive but

small. Standard models without alternative fixed effects have out-of-sample prediction

errors substantially larger than our model. The two alternative models with fixed effects

have out-of-sample prediction errors comparable to ours. This result suggests that even

without using the fixed effects, our model performs better or equally well compared to

standard models in this simulation, not only in terms of in-sample fit but also in terms of

out-of-sample fit.

61We prefer the EM algorithm over the greedy algorithm here because the EM algorithm is faster.
62We only consider the single choice set case in this simulation. So the choice probability vector has length
|J |.
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Table A.1: In-Sample Fit

Model
Choice probabilities Prediction error

Beach Boat Charter Pier
(1) (2) (3) (4) (5) (6)

Our method 0.114 0.353 0.383 0.151 0.000
(0.009) (0.015) (0.017) (0.010) (0.000)

Multinomial logit 0.141 0.355 0.378 0.126 0.038
(0.007) (0.015) (0.017) (0.007) (0.009)

Nested logit 0.114 0.353 0.383 0.150 0.001
(charter and others) (0.010) (0.015) (0.017) (0.011) (0.002)

Nested logit 0.141 0.355 0.378 0.126 0.038
(boat and others) (0.007) (0.015) (0.017) (0.007) (0.009)
Mixed logit with 0.142 0.354 0.378 0.126 0.038

log normal distribution (0.008) (0.015) (0.017) (0.007) (0.009)
Multinomial logit 0.113 0.353 0.383 0.151 0.000
with fixed effects (0.009) (0.015) (0.017) (0.010) (0.000)

Mixed logit with log normal 0.114 0.353 0.383 0.151 0.000
distribution and fixed effects (0.009) (0.015) (0.017) (0.010) (0.000)

Notes: Table A.1 summarizes the in-sample fit of different models. The row “our method” presents choice probabilities predicted

by the four-mixture mixed-logit model and the prediction error. The remaining rows present in-sample predicted choice probabilities

and prediction errors obtained by standard models. In parentheses are standard deviations obtained by repeating the same analyses

50 times.

B.2 Definitions of Other Models

In each of the standard models used in our empirical section, the choice probability

ρ(J, j) ≡ ρj of alternative j from J is specified as follows:

• Multinomial logit: ρj =
exp (β · xj)∑

j′∈J exp (β · xj ′)

• Nested logit (charter and others): the choice probability of alternative j that belongs

to nest Jg is specified as

ρj =
exp (β · xj/λ)∑

j′∈Jg exp (β · xj ′/λ)
×

[∑
j′∈Jg exp (β · xj ′/λ)

]λ
∑

g′∈G

[∑
j′∈Jg′

exp (β · xj ′/λ)
]λ .

The nest is defined by the partition G = {{charter} , {beach, boat, pier}} .

• Nested logit (boat and others): the nested logit model specified above, with the nest

defined by G = {{boat} , {beach, charter, pier}} .
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Table A.2: Out-Sample Fit

Model
Choice probabilities Prediction error

Beach Boat Charter Pier
(1) (2) (3) (4) (5) (6)

Our method 0.114 0.353 0.383 0.151 0.049
(0.009) (0.015) (0.017) (0.010) (0.017)

Multinomial logit 0.143 0.353 0.377 0.127 0.058
(0.011) (0.017) (0.022) (0.011) (0.019)

Nested logit 0.115 0.350 0.383 0.152 0.050
(charter and others) (0.012) (0.022) (0.018) (0.014) (0.020)

Nested logit 0.143 0.353 0.377 0.127 0.058
(boat and others) (0.011) (0.017) (0.022) (0.011) (0.019)
Mixed logit with 0.143 0.352 0.377 0.127 0.058

log normal distribution (0.010) (0.016) (0.021) (0.010) (0.018)
Multinomial logit 0.116 0.350 0.380 0.154 0.048
with fixed effects (0.014) (0.019) (0.022) (0.019) (0.022)

Mixed logit with log normal 0.113 0.353 0.383 0.151 0.048
distribution and fixed effects (0.008) (0.015) (0.018) (0.010) (0.017)

Notes: Table A.2 summarizes the out-sample fit of different models. The row “our method” presents choice probabilities predicted

by the four-mixture mixed-logit model and the prediction error (5). The remaining rows present out-of-sample predicted choice

probabilities and prediction errors obtained by standard models. In parentheses are standard deviations obtained by repeating the

same analyses 50 times.

• Mixed logit: ρj =
∫ exp (β · xj)∑

j′∈J exp (β · xj ′)
f(β)dβ where f is the density of the distri-

bution of random coefficients. We use independent log-normal distributions for each

coefficient. To evaluate the integral, we randomly draw 100 realizations from the

random coefficient distribution.

• Multinomial logit with fixed effects: the above multinomial logit model with x in-

cluding dummies for each alternative (except for beach).

• Mixed logit with fixed effects: the random coefficient logit model with log normal

distributions. We also include fixed effects for each alternative (except for beach). To

evaluate the integral, we randomly draw 100 realizations from the random coefficient

distribution.

C Notation
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Notation Meaning Def.
J the set of alternatives 2.1
D a generic choice set 1
D the set of generic choice sets 2.1
M the set of standard probability measures 2.2
K the dimension of explanatory variables 2.1
P the set of stochastic choice functions 2.1
Pr the set of random utility models 2.2
ρ a generic stochastic choice function 2.1
Π the set of rankings 2.1

co.C the convex hull of a set C 2.2
rint.C the relative interior of C 2.2
cl.C the closure of C 2.2

Pra(η|µ)
the set of random-coefficient ARUMs with fixed effects η

and a probability measure µ
2.2

Pa(η|µ) the set of ARUMs with fixed effects η and a probability measure µ 2.2
Pml(η) the set of mixed logit models with fixed effects η 2.2
Pl(η) the set of logit models with fixed effects η 2.2

Notes: The Def. column indicates the (sub)section in which the definition of the notation appears.
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