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Abstract

This paper considers nonparametric estimation and inference in first-order autore-
gressive (AR(1)) models with deterministically time-varying parameters. A key feature
of the proposed approach is to allow for time-varying stationarity in some time periods,
time-varying nonstationarity (i.e., unit root or local-to-unit root behavior) in other pe-
riods, and smooth transitions between the two. The estimation of the AR parameter at
any time point is based on a local least squares regression method, where the relevant
initial condition is endogenous. We obtain limit distributions for the AR parameter
estimator and t-statistic at a given point τ in time when the parameter exhibits unit
root, local-to-unity, or stationary/stationary-like behavior at time τ. These results are
used to construct confidence intervals and median-unbiased interval estimators for the
AR parameter at any specified point in time. The confidence intervals have correct
asymptotic coverage probabilities with the coverage holding uniformly over stationary
and nonstationary behavior of the observations.
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1 Introduction

Autoregressive models — stationary or nonstationary — are workhorse models in econo-
metric time series. In this paper, we consider a deterministically time-varying parameter
(TVP) autoregressive model that allows for stationary and non-stationary behavior at dif-
ferent points in the time period of interest. Thus, the level of persistence of the time series
can change over the time period. The motivation for considering such a model is that the
economy is in continual transition due to technological, institutional, political, and demo-
graphic changes. The model considered allows for the intercept and error variance of the
model also to be time-varying, not just the AR parameter.

The estimation method employed is local least squares, which depends on a tuning param-
eter h that determines the local neighborhood that is considered. We construct a confidence
interval (CI) for the value of the AR parameter at a time point τ via the inversion of tests,
as is common in the literature for constant parameter AR models, e.g., see Stock (1991),
Andrews (1993), Hansen (1999), Mikusheva (2007), and Andrews and Guggenberger (2014).
We show that the CI’s have correct uniform asymptotic coverage probability for a parameter
space that allows the time series to be stationary in parts of the time period and nonstation-
ary in other parts, using the approach in Andrews, Cheng, and Guggenberger (2020). We
also construct asymptotically median-unbiased interval estimators (MUE’s) in an analogous
fashion.

In the TVP case, the initial condition is endogenous due to the choice of the local neigh-
borhood and depends on the potentially different behavior of the time series prior to the
local neighborhood. For a given time point τ of interest, we find that the asymptotic dis-
tributions of the LS estimator and t-statistic depend on the endogenous initial condition in
the local-to-unity case. This is analogous to the asymptotic effect of the initial condition–
under certain assumptions on the initial condition–in constant parameter AR models, see
Elliott (1999), Elliott and Stock (2001), and Müller and Elliott (2003). On the other hand,
the endogenous initial condition does not affect the asymptotic distributions when the AR
coefficient at time τ is more distant from one than local-to-unity.

We note that whether a time series is local-to-unity at time τ, or not, depends on τ and
the chosen bandwidth h. It is important to provide asymptotic results that hold uniformly
over a parameter space that does not depend on h, which we do.

We introduce a method for determining the tuning parameter h based on a forecast-error
criterion. We provide conditions under which this data-dependent choice of h is asymptoti-
cally equivalent to an infeasible choice that minimizes the unobserved “empirical loss.” These
results are similar to results for i.i.d. models given in Li (1987) and Andrews (1991).
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We provide Monte Carlo simulation results for the methods introduced in the paper. We
consider true autoregressive functions whose shapes are sin, linear, partly flat/partly linear,
flat, and kinked linear. We consider cases where the functions are close, or equal, to one in
some regions, but different from one by varying amounts in other regions. We find that the
proposed CI has reasonably good coverage probabilities and short average lengths for most
of the data-generating processes considered. For example, nominal 95% CI’s are found to
have finite-sample coverage probabilities ranging from 92.5% to 96% in 88.8% of the cases,
across 205 cases. The lowest coverage probabilities, in the range from 87.5% to 90%, occur
only in 2.0% of the cases. The MUE’s are found to have very small finite-sample median
bias across the different cases considered. The magnitude of the data-dependent choice of h
varies widely depending upon the shape of the autoregressive function, as desired.

We provide some empirical applications of the methods to monthly inflation and real
exchange rates in several countries using data from the IMF International Financial Statistics
database. We find that the inflation series exhibit noticeable time variation of the AR
parameter across the time period considered. We discuss how this relates to the literature
on the persistence properties of inflation. On the other hand, we find that the real exchange
rate series have nearly constant AR values across time that are equal to, or close to, one.
Hence, the TVP methods are capable of producing constant AR values when it is appropriate
to do so. We discuss how these results relate to the literature on the persistence of exchange
rates. In Section E of the Supplemental Material, we also report results for interest rates
for several countries and results for a number of US macroeconomic time series using the
Federal Reserve Economic Database (FRED).

The results of the paper apply to a TVP-AR(1) model. For some time series, a TVP-
AR(p) model with p > 1 may be more appropriate than a TVP-AR(1) model. The methods
introduced in the paper can be extended to a TVP-AR(p) model, see Section D of the
Supplemental Material for details.

Relative to the literature, the contribution of this paper is to develop methods for a deter-
ministically time-varying parameter (TVP) AR(1) model that allows time-varying station-
arity in some time periods and time-varying nonstationarity in other periods. The resulting
model is much more flexible than a constant parameter model. No paper in the existing
literature does this. The methods we employ are quite similar to those employed in constant
parameter AR(1) models that impose stationarity or nonstationarity across the whole time
period, such as those referenced above. In particular, we invert tests of null hypotheses
concerning the AR coefficient (at a particular point in time) and utilize the nonstandard
asymptotic distributions of the t-statistics for such null hypotheses to obtain critical values.
Our results differ from those obtained for constant parameter AR(1) models in that (i) we
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consider a local neighborhood of the time point of interest τ, indexed by a bandwidth param-
eter h, and within that time period the AR coefficient changes with time, which causes biases
that have to be accounted for, (ii) the initial condition of the local neighborhood depends on
the choice of the local neighborhood and on the past behavior of the TVP-AR(1) process,
which may differ from its current behavior, which needs to be accounted for, and (iii) we
use the data to select a suitable local neighborhood using a forecast-error criterion function.
None of these features arise in a constant parameter model.

The literature contains numerous papers that consider time-varying parameter AR mod-
els. Some of these papers consider deterministic TVP’s, as in this paper, but they do not
allow for stationarity in some time periods and nonstationarity in others. References for
stationary (i.e., short-range dependent) TVP AR models include Subba Rao (1970), Gre-
nier (1983), Dahlhaus (1996, 1997), Dahlhaus and Giraitis (1998), Dahlhaus, Neumann, and
Sachs (1999), Moulines, Priouret, and Roueff (2005), Xu and Phillips (2008), Ding, Qiu, and
Chen (2017), van Delft and Eichler (2018), and Karmakar, Richter, and Wu (2022). Refer-
ences for nonstationary (i.e., long-range dependent) TVP AR models include Bykhovskaya
and Phillips (2018, 2020), which focus on tests of a unit root null hypothesis against func-
tional local-to-unity alternatives, as opposed to CI’s for an AR parameter, which is the focus
of this paper. No papers in the literature consider CI’s for an AR parameter in nonstationary
TVP AR models.

The literature also includes papers on random coefficient (RC) AR models and functional
coefficient (FC) AR models (in which the AR coefficient depends on observable variables).
References for stationary RC AR models includes Nicholls and Quinn (1980), Quinn and
Nicholls (1981), Doan, Litterman, and Sims (1984), and Cogley and Sargent (2005). Ref-
erences for papers on RC AR models with random coefficients that follow a nonstationary
process include Föllmer and Schweizer (1993), Giraitis, Kapetanios, and Yates (2014, 2018),
and Tao, Phillips, and Yu (2019). A reference for stationary FC AR models is Cai, Fan, and
Yao (2000). References for nonstationary FC AR models includes Juhl (2005), Lieberman
(2012), and Lieberman and Phillips (2014, 2017, 2018).

This paper is organized as follows. Section 2 introduces the TVP-AR(1) model. Section
3 introduces the CI and MUE for the AR parameter at time τ. Section 4 introduces the
data-dependent method for choosing the bandwidth parameter h based on a forecast-error
criterion. Section 5 presents the Monte Carlo simulation results. Section 6 presents the
empirical results. Section 7 shows that the CI has correct uniform asymptotic coverage
probability, the MUE is asymptotically median unbiased, and the data-dependent method
for choosing the bandwidth parameter h has some some desirable asymptotic properties. It
also provides the asymptotic behavior of the local least squares estimator and t-statistic under
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a variety of drifting sequences of distributions, which are used in the proof of the uniform
asymptotic coverage probability results and the asymptotic median unbiasedness results.
The Supplemental Material includes the critical values of the limiting distribution of our t-
statistic in Section A, the proofs of the results of the paper in Section B, additional simulation
results in Section C, a description of how to extend the methods to TVP-AR(p) models for
p > 1 in Section D, and information about the empirical applications and additional empirical
results in Section E.

All limits in this paper are as n → ∞. For notational simplicity, but with some abuse of
notation, we let ·/nh denote ·/(nh) throughout the paper.

2 Model

The TVP-AR(1) model we consider is

Yt = µt + Y ∗
t and

Y ∗
t = ρtY

∗
t−1 + σtUt, for t = 1, ..., n, (2.1)

where ρt ∈ [−1 + ε1, 1] for some 0 < ε1 < 2. The autoregressive parameter ρt is allowed to
vary with time t. A key feature of the model is that it allows for stationary, unit root, or local-
to-unity behavior at different points in time. The errors {Ut : t = 0, 1, ..., n} are a stationary
martingale difference sequence under F with EF (Ut| Gt−1) = 0 a.s., EF (U2

t | Gt−1) = 1 a.s.,
and EF (U4

t | Gt−1) < M a.s. for some M ∈ (0,∞), where Gt is some non-decreasing sequence
of σ-fields for which σ (U0, ..., Ut, Y

∗
0 ) ⊆ Gt for t = 1, ..., n.

We assume ρt, µt, and σ2
t satisfy

ρt := ρ (t/n) , µt := µ (t/n) , and σ2
t := σ2 (t/n) , (2.2)

respectively, where ρ (·) is a twice continuously differentiable function on [0, 1] and µ (·) and
σ2 (·) are Lipschitz functions on [0, 1]. Given (2.2), Yt, Y ∗

t , ρt, µt, and σt depend implicitly
on n.

Let τ ∈ (0, 1). We consider estimation and inference concerning

ρ(τ), (2.3)

which is the value of the autoregressive function ρ(·) at the τ fraction of the way through
the sample.

For ease of reading, the definition of the parameter space of functions ρ (·), µ (·) , and
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σ2 (·) that is considered, which includes some structure on the ρ (·) and µ (·) functions, is
given in Section 7.1 below.

3 Confidence Interval for the Autoregressive
Parameter ρ(τ )

3.1 Local Least Squares Estimator of ρ(τ )

We employ a LS estimator of ρ(τ) based on the time periods t = T1, ..., T2, where

T1 = ⌊nτ⌋ − ⌊nh/2⌋ and T2 = ⌊nτ⌋ + ⌊nh/2⌋, (3.1)

for a bandwidth parameter h. The total number of periods in [T1, T2] is within one of nh.
For this range of time periods, the initial condition time period is T0 := T1 − 1.

For the asymptotic results given below the bandwidth h satisfies h → 0 and nh → ∞ as
n → ∞. In Section 4 below, we introduce a data-dependent bandwidth that is smaller or
larger depending on how wiggly or flat the true ρ (·) and µ (·) functions are.

Define
Y nh := 1

nh

T2∑
t=T1

Yt and Y nh,−1 := 1
nh

T2∑
t=T1

Yt−1. (3.2)

To estimate ρ (τ), we regress Yt on a constant and Yt−1. The resulting local LS estimator
ρ̂nτ is

ρ̂nτ =
∑T2
t=T1

(
Yt−1 − Y nh,−1

) (
Yt − Y nh

)
∑T2
t=T1

(
Yt−1 − Y nh,−1

)2 . (3.3)

3.2 Confidence Interval for ρ(τ )

The CI for ρ (τ) that we consider is obtained by inverting tests of null hypotheses of the
form H0 : ρ (τ) = ρ0 for different values ρ0 ∈ [−1 + ε1, 1].

The estimator of the time-varying variance σ2 (·) at t/n = τ is defined to be

σ̂2
nτ := (nh)−1

T2∑
t=T1

[
Yt − Y nh − ρ̂nτ

(
Yt−1 − Y nh,−1

)]2
. (3.4)

For arbitrary ρ0 ∈ (−1, 1], the t-statistic that is used to construct the CI for ρ(τ) is

Tn (ρ0) := (nh)1/2 (ρ̂nτ − ρ0)
ŝnτ

, where ŝ2
nτ := σ̂2

nτ/ (nh)−1
T2∑
t=T1

(
Yt−1 − Y nh,−1

)2
. (3.5)
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Let B(·) denote a standard Brownian motion on [0, 1]. Let Z1 be a standard normal
random variable that is independent of B (·). Define

Iψ (s) :=
∫ s

0
exp {− (s− r)ψ} dB (r) ,

I∗
ψ (s) :=


Iψ (s) + 1√

2ψ exp (−ψs)Z1 for ψ > 0

B (s) for ψ = 0, and

I∗
D,ψ (s) :=I∗

ψ (s) −
∫ 1

0
I∗
ψ (r) dr. (3.6)

The stochastic process Iψ (s) is an Ornstein-Uhlenbeck process on [0, 1] with parameter ψ.
Below we consider sequences of functions {ρn (·) , µn (·) , σn (·)}n≥1 and null hypotheses

H0 : ρn (τ) = ρ0,n, where the null hypotheses values ρ0,n depend on n for n ≥ 1. For suitable
sequences {ρ0,n}n≥1, we show that under H0,

Tn (ρ0,n) →d Jψ for ψ ∈ [0,∞] , (3.7)

where Tn (ρ0,n) is defined with ρ0,n in place of ρ0 in (3.5), ψ depends on the sequence
{ρ0,n}n≥1 , and Jψ is defined as follows. For ψ = ∞, which corresponds to a “station-
ary” sequence {ρ0,n}n≥1, Jψ has a N(0, 1) distribution. For ψ ∈ [0,∞), which corresponds
to a local-to-unity or unit root sequence {ρ0,n}n≥1,

Jψ :=
(∫ 1

0
I∗2
D,ψ (s) ds

)−1/2 ∫ 1

0
I∗
D,ψ (s) dB (s) . (3.8)

For α ∈ (0, 1), let cψ (α) denote the α quantile of the distribution of Jψ. For given α, we
compute cψ (α), the α-quantile of Jψ in (3.8), by simulating the asymptotic distribution Jψ.
To do so, B = 300, 000 independent constant coefficient AR(1) sequences are generated with
innovations Ut ∼iid N (0, 1), stationary start-up, n = 25, 000, and ρ = 1 − ψ/n. For each
sequence, the test statistic Tn (ρ) defined in (3.5) is calculated. Then the simulated estimate
of cψ (α) is the α-quantile of the empirical distribution of the B = 300, 000 realizations of
the test statistic Tn (ρ).

The nominal 1 − α equal-tailed two-sided CI for ρ(τ) is

CIn,τ :=
{
ρ0 ∈ [1 − ε1, 1] : cψnh,ρ0

(α/2) ≤ Tn(ρ0) ≤ cψnh,ρ0
(1 − α/2)

}
, where

ψnh,ρ0 := −nh ln (ρ0) for ρ0 > 0 and ψnh,ρ0 := ∞ for ρ0 ≤ 0. (3.9)

The CI CIn,τ can be computed by taking a fine grid of values ρ0 ∈ [−1 + ε1, 1] and
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comparing Tn (ρ0) to cψnh,ρ0
(α/2) and cψnh,ρ0

(1 − α/2) . Table SM.1 provides the critical
values cψnh,ρ0

(α/2) and cψnh,ρ0
(1 − α/2) for α = .05, and .1. Given these critical values,

computation of equal-tailed two-sided 90% and 95% CI’s for ρ(τ) is fast.
The correct asymptotic size and asymptotic similarity of the CI CIn,τ are established in

Theorem 7.1 in Section 7 below.

3.3 Median-Unbiased Interval Estimator of ρ(τ )

By definition, an estimator θ̂n of a parameter θ is median unbiased if P
(
θ̂n ≥ θ

)
≥ 1/2

and P
(
θ̂n ≤ θ

)
≥ 1/2. Here we introduce a median-unbiased interval estimator of ρ (τ) that

satisfies an analogous condition. Also, with probability close to one, the estimator is a single
point.1 Let CIupn,τ (.5) and CI lown,τ (.5) denote level .5 one-sided upper-bound and lower-bound
CIs for ρ (τ), respectively. By definition,

CIupn,τ (.5) :=
{
ρ0 ∈ [1 − ε1, 1] : cψnh,ρ0

(.5) ≤ Tn (ρ0)
}

and

CI lown,τ (.5) :=
{
ρ0 ∈ [1 − ε1, 1] : Tn (ρ0) ≤ cψnh,ρ0

(.5)
}

for ψnh,ρ0 as in (3.9). (3.10)

The median-unbiased interval estimator ρ̃nτ of ρ (τ) is defined by

ρ̃nτ = [ρ̃nτ,low, ρ̃nτ,up] , where

ρ̃nτ,up = max
{
ρ0 : ρ0 ∈ CIupn,τ (.5)

}
and

ρ̃nτ,low = min
{
ρ0 : ρ0 ∈ CI lown,τ (.5)

}
. (3.11)

By construction, ρ̃nτ,low ≤ ρ̃nτ,up.
2 In addition, ρ̃nτ is a singleton whenever the set{

ρ0 ∈ [1 − ε1, 1] : Tn (ρ0) = cψnh,ρ0
(.5)

}
contains a single point, in which case ρ̃nτ equals this

point. Simulations show that ρ̃nτ is a singleton with probability close to one and a very short
interval when it is not a singleton. Table SM.1 provides the critical values cψnh,ρ0

(.5) for a
wide range of ψ. Given these critical values, computation of ρ̃nτ is fast.

The estimator ρ̃nτ has the following median-unbiasedness property

lim inf
n→∞

P (ρ̃nτ,up ≥ ρ (τ)) ≥ 1/2 and

lim inf
n→∞

P (ρ̃nτ,low ≤ ρ (τ)) ≥ 1/2. (3.12)

1If the .5 quantile of the asymptotic null distribution of the t-statistic was strictly decreasing in ρ0, or
equivalently, cψ (.5) was strictly increasing in ψ, then the proposed interval estimator would be a point
estimator with probability one. Because this condition fails to hold exactly, but almost holds, there is a very
small probability that the estimator is a short interval, rather than a point.

2This holds because ρ̃nτ,up ≥ sup
{
ρ0 ∈ [1 − ε1, 1] : cψnh,ρ0

(.5) = Tn (ρ0)
}

and ρ̃nτ,low is less than or equal
to the infimum of the values in the same set.
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Furthermore, as shown in Corollary 7.1 in Section 7 below, these asymptotic properties hold
in a uniform sense over the parameter space. This property is important for ensuring that
the asymptotic properties of ρ̃nτ reflect its finite-sample properties.

4 Data-dependent Bandwidth Parameter h

The CI for ρ (τ) proposed in Section 3.2 requires a tuning parameter h that determines the
interval of observations used to construct the CI. This section introduces a data-dependent
method of selecting h that minimizes a forecast-error criterion. We present its asymptotic
properties in Section 7.6 under somewhat high-level conditions.

The forecast-error criterion is the average over t = 1, ..., n of the squared errors from
forecasting Yt using the predicted value Ŷt. Specifically, for t > ⌊nh⌋, let (µ̂t−1(h), ρ̂t−1(h))
denote the LS estimator of (µt, ρt) from the regression of Ys on a constant and Ys−1 using
the nh observations s = t − ⌊nh⌋, ..., t − 1. For t ≤ ⌊nh⌋, since there are fewer than ⌊nh⌋
observations, (µt, ρt) is estimated using the LS estimator (µ̂t−1(h), ρ̂t−1(h)) based on the
⌊nh⌋ observations s = 1, ..., t − 1, t + 1, ..., ⌊nh⌋ + 1. The observation Yt is predicted by
µ̂t−1(h) + Yt−1ρ̂t−1(h) for t = 1, ..., n. The forecast-error criterion is

FEn(h) := n−1
n∑
t=1

(Yt − µ̂t−1(h) − Yt−1ρ̂t−1(h))2. (4.1)

We assume that h is chosen from a finite set Hn, which depends on n and whose cardinality
may depend on n. By definition, the data-dependent choice of h, ĥ, minimizes FEn(h) over
Hn: 3

ĥ := arg min
Hn

FEn (h) . (4.2)

Remark 4.1. The criterion FEn(h) has the desirable property of being an average of unbi-
ased risk estimators for t > ⌊nh⌋. This holds because

E(Yt − µ̂t−1(h) − Yt−1ρ̂t−1(h))2

= E(Ut − (µ̂t−1(h) − µt) + Yt−1(ρ̂t−1(h) − ρt)))2

= EU2
t − 2EUt(µ̂t−1(h) − µt + Yt−1(ρ̂t−1(h) − ρt)) + E(µ̂t−1(h) − µt + Yt−1(ρ̂t−1(h) − ρt))2

= EU2
t + E(µ̂t−1(h) − µt + Yt−1(ρ̂t−1(h) − ρt))2, (4.3)

where the third equality holds for t > ⌊nh⌋ since (µ̂t−1(h), ρ̂t−1(h)) is a function of the
3If the argmin is not unique, for specificity ĥ, is taken to be the largest argmin. But, non-uniqueness

occurs with probability zero provided the innovations have a continuous component.
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innovations indexed by s ≤ t − 1 and E(Ut|Ut−1, ..., U1, Y
∗

0 ) = 0. For the relatively small
number of initial observations with t ≤ ⌊nh⌋, the third equality does not hold because
ρ̂t−1(h) depends on observations s with s ≥ t.

In terms of computation, the criterion FEn(h) has the advantage that the same ĥ is
employed for multiple ⌊nh⌋ values of interest. It also avoids introducing additional tuning
parameters, such as the length of a forecasting period.

Remark 4.2. In Section 7.6, we show that the data-dependent ĥ value achieves the asymp-
totically optimal trade-off between bias and variance obtained by the infeasible ĥopt which
minimizes the “empirical loss” as a function of h defined in (7.22) below. In consequence,
undersmoothing ĥ should yield a value of h for which the bias is dominated by the variance
asymptotically, the CI’s defined above have correct asymptotic size, and the median-unbiased
interval estimator is asymptotically median unbiased. We employ a relatively sophisticated
undersmoothing method. The objective of undersmoothing (i.e., making ĥus smaller than
ĥ) is to reduce the bias. The cost of undersmoothing is an increase in variance. We want to
undersmooth more when the cost of doing so in terms of increasing the variance is relatively
small, and we want to undersmooth less when the cost is larger. This means that we need
to take account of the shape of the FEn(h) function. When it is flatter at its minimum, we
want to undersmooth more. This leads to the following definition:

ĥus0 = min {h∈ Hn : FEn(h) ≤ Qc1(FEn)} , (4.4)

where Qc1(FEn) is the c1 quantile of FEn among h∈ Hn and we take c1 = .2 in the simu-
lations and applications. This definition does not guarantee that ĥus0 is of a smaller order
than ĥ, which is necessary to ensure proper asymptotics. In consequence, we modify the
definition as follows:

ĥus = min
{
ĥus0, ĥus1

}
, (4.5)

where ĥus1 = c2n
−aĥ for c2, a > 0. In the simulations and applications, we use c2 = 1.5 and

a = 1/10.

5 Monte Carlo Simulations

In this section, we analyze the finite-sample performance of the methods introduced above
using Monte Carlo simulations. First, we describe the data generating processes (DGP’s)
considered and how the CI and MUE are implemented. Then, we report the results. We find
that the proposed CI has reasonably good coverage probabilities and short average lengths
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for most of the DGP’s considered. We also find that the MUE performs quite well both
when the true DGP of ρt is time-varying and flat.

5.1 Simulation Setup and Methodology

We consider 21 DGP’s for ρt. The graphs of the ρt functions are given in Figures 1–3 and
Figures SM.1–SM.4, which appear in the Supplemental Material. There are five categories of
ρt functions: sin, linear, flat linear, flat, and kinked linear. For the sin functions, we consider
sin functions for ρt with 6 different ranges and shapes. For example, “sin 1.00-0.90-1.00”
corresponds to the sin function where ρt first achieves its maximum of 1.00 at t/n = .20,
then drops to 0.90 at t/n = .60 and finally increases to 1.00 at t/n = 1, with a frequency
of 2.5π. For linear functions, we consider 4 different linear DGP’s for ρt corresponding to
different values of the slopes and intercepts. For flat linear functions, the first half of ρt is
flat and the second half is linear, and 4 different cases are considered. For example, “flat-lin
0.90-0.99” means

ρt = ρ(t/n) =

.90 for t/n ∈ [0, 1/2] ,

.18t/n+ .81 for t/n ∈ (1/2, 1].

For the flat functions, we consider 3 values .75, .90, and .99. In the Supplemental Material,
we also report results for kinked linear functions, where the first and second halves of ρt are
linear, but with slopes of different signs. For example, “kinked 1.00-0.80-1.00” is a DGP for
ρt where the first half of ρt decreases linearly from 1 to .80 while the second half increases
linearly from .80 to 1. We consider 4 different cases in this category.

For each of the 21 DGP’s for ρt, we consider both constant and time-varying DGP’s for
µt and σt in (2.1) except for that of “sin 1.00-0.90-1.00” with constant µt and σt to present
the legend for all the figures. Define µ∗

t = (1 − ρt)µt, which allows one to rewrite (2.1) as

Yt = µ∗
t + ρtYt−1 + σtUt, for t = 1, 2, ..., n. (5.1)

When µt and σt are constant, we take µt = 0 and σt = 1, which implies µ∗
t = 0. When µt

and σt are time-varying, we generate µt such that µ∗
t increases linearly from -.1 to .1, and σt

increases linearly from .95 to 1.05 as t/n goes from 0 to 1. In consequence, there are a total
of 41 (= 21 × 2 − 1) DGP’s for (ρt, µ∗

t , σt). We take Ut to be i.i.d. N (0, 1), initialize Y0 by
drawing it from a N (0, σ2

n) distribution, where σn = 1/ (1 − ρ2
n) and ρn = n−1 ∑n

t=1 ρt, and
form the Yt sequence as in (5.1).

We compute a nominal .95 two-sided CI and MUE for ρ(τ) for each of 5 time points
of interest, indexed by τ ∈ {.2, .4, .6, .8, 1}. The CI and MUE are implemented as follows.
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First, we compute ĥ based on the method described in Section 4 and take the undersmoothed
ĥus to be as defined in (4.5) with c1 = .2, c2 = 1.5, and a = 1/10. In this step, the set of
nh values based on Hn is {140, 155, ..., 500, 650, ..., 1500}. Next, for each candidate value
ρ0 ∈ {−1,−.995, ..., .945, .95, .951, .952, ..., 1}, we calculate the t-statistics Tn (ρ0) defined in
(3.5) from the regression of Yt on a constant and Yt−1 using the nĥus observations centered
around nτ . When nτ is close to the boundary, we use nĥus/2 observations to the side that has
abundant data, and as many observations as available to the other side until the boundary
is hit. In consequence, a different number of observations for different τ may be used even
though the nĥus value is the same. Comparing the Tn (ρ0) values with corresponding critical
values cψnh,ρ0

(α/2) and cψnh,ρ0
(1 − α/2) (for ψnh,ρ0 defined in (3.9)) at each candidate ρ0

gives the nominal 1 − α equal-tailed two-sided CI for ρ(τ) as defined in (3.9). We compute
coverage probabilities and average lengths of the CI’s across all simulations for each point of
interest for each DGP.

To calculate the MUE for ρ(τ), we follow the procedure described in Section 3.3 and
use ρ̃nτ as the MUE of ρ (τ) when ρ̃nτ is a singleton. When ρ̃nτ,up ̸= ρ̃nτ,low, we take ρ̃nτ,up
as the MUE for ρ (τ) based on two considerations. First, using the upper bound ρ̃nτ,up

has the theoretical property that it is not median-biased towards zero for positive ρ (τ)
values because, by Corollary 7.1, lim infn→∞ infλ∈Λn Pλ (ρ̃nτ,up ≥ ρ (τ)) ≥ 1/2. Second, in
the simulations we find that ρ̃nτ is much more likely to be an interval when the true ρ (τ) is
close to one. We report the absolute median biases of the MUE and the range of the MUE
values across the simulations for each time point of interest for each DGP in the figures.

For each of the 41 DGP’s for Yt, we run M = 5, 000 simulations. The length of the Yt
sequence is n = 1, 500. Given the 41 DGP’s and 5 time points of interest for each one, a
total of 205 cases are considered.

5.2 Discussion of Results

First, Table 1 summarizes the CP results by reporting the number and percentage of
times that the CI CP’s lie in different ranges across the 205 cases considered. The nominal
CP is .95. Table 1 shows that only in a small fraction of cases, 2.0%, is the CP quite low,
i.e., in [.875, .90). In the majority of cases, 92.2%, the CP is .925 or larger, which shows that
the proposed method has reasonably good CP regardless of whether the underlying DGP is
curvy or flat and whether the point of interest is in the middle or at the boundary of the
time period.

Second, we consider summary statistics for the absolute values of the median biases
(AMB) of the MUE, i.e., |median (ρ̃nτ,up − ρ (τ))|, across the 205 cases considered. The mean

11



Table 1: Distribution of CP’s Across 205 Cases

CP Range [.875,.90) [.90,.925) [.925,.94) [.94,.96) [.96,.965]
Number 4 12 34 148 7
Percent 2.0% 5.9% 16.6% 72.2% 3.4%

and median of the absolute median biases across all cases are .004 and .003, respectively.
The range is [.000, .023]. Thus, the magnitudes of the absolute median biases of the MUE
are generally small.

Third, we consider the values of nĥus selected by the data-dependent method. The mean,
median, and range are 212, 207, and [56, 433], respectively. The nĥus values vary depending
on the shape of the ρ function considered. The flatter is the true ρ function, the larger are
the nĥus values.

Now, we describe the simulation results for the different ρ functions considered. Figure 1
provides simulation results for five sin-shaped ρ functions with constant µ and σ2 functions.
The amplitudes of the sin functions increase as one moves down the rows. In the first
column of graphs, the ρ function’s maximum value occurs at τ = 1, which corresponds to
t = nτ = n. In the second column of graphs, the ρ function’s minimum value occurs at
τ = 1. Each graph consists of an “upper” and a “lower” graph. The “upper” graph shows
the true ρ function, the average CI lower and upper bounds at five points of interest τ = .2,
.4, .6, .8, 1.0, where t = nτ, and twice the average lower and upper absolute deviations of
the MUE (i.e., 2E|ρ̂t − ρt|1(ρ̂t < ρt) and 2E|ρ̂t − ρt|1(ρ̂t > ρt), respectively, whose sum is
somewhat analogous to two standard deviations) at each of these points of interest. The
difference between the average upper and lower CI bounds gives the average lengths (AL’s)
of the CI’s. The “lower” graphs report the CI coverage probabilities (CP’s) at the five points
of interest. The CI’s all have nominal CP .95.

The sin graphs in Figure 1 show the following: (i) All but three of the CP’s range from .925
to .965, which are close to the nominal CP of .95. (ii) The AL’s are shortest for ρ(τ) values
closest to one, and longest for ρ(τ) values farthest from one. This reflects the nh-consistency
of the LS estimator in the (temporally local) unit root and local-to-unity scenarios, and the
(nh)1/2-consistency of the LS estimator in the (temporally local) stationary scenarios. (iii)
The AL’s are larger for the τ = 1 than the τ < 1 cases because fewer observations are used to
construct the CI in the former cases, which reflects the need to reduce the boundary bias in
order to obtain a good CP. Combining this fact with point (ii), we find the largest AL’s occur
when τ = 1 and ρ(τ) is far from one (which occurs in the two graphs in the second column).
(iv) The magnitudes of the MUE average absolute deviations are roughly proportional to

12



(a) sin 1.00-0.90-1.00, constant µ and σ
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(b) sin 0.90-1.00-0.90, constant µ and σ
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(c) sin 1.00-0.80-1.00, constant µ and σ
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(d) sin 0.80-1.00-0.80, constant µ and σ
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(e) sin 1.00-0.60-1.00, constant µ and σ
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Legend for the Figures

True DGP
Points of Interest
Avg CI Bounds
MUE Range

Nominal CP
Actual CP

Figure 1: CP’s and AL’s of CI’s for ρ (τ) and MAD’s of the MUE of ρ (τ)
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the AL’s of the CI’s. (v) The simulation results for the sin functions with time-varying µ

and σ2 functions, which are given in Figure SM.1 in the Supplemental Material, are quite
similar to those in Figure 1.

Figure 2(a)-(d) provides results for linear ρ functions with constant µ and σ2 functions.
The results are similar to those for the sin functions, although all of the CP’s lie between
.925 and .955. Points (ii)-(v) above also apply to the linear functions in Figure 2. Results
for time-varying µ and σ2 are provided in Figure SM.2 in the Supplemental Material, and
are similar to those in Figure 2.

Figures 2(e)-(f) and 3(a)-(b) report results for flat-linear ρ functions with ρ(t) varying
between .90 and .99 in Figure 2(e)-(f) and between .80 and .99 in Figure 3(a)-(b). Figures
2(e) and 3(a) report results for constant µ and σ2; while Figures 2(f) and 3(b) report results
for time-varying µ and σ2. The CP results in Figures 2(e)-(f) and 3(a)-(b) lie between .932
and .956.

Figures SM.2(e)-(f) and SM.3(a)-(b) provide analogous results to those just discussed for
flat-linear ρ functions, but for the case where the flat part has value .99, rather than .80 or
.90, and the linear part has a negative slope, rather than a positive slope. The CP results
for these cases are lower than those for the flat-linear ρ functions in Figures 2 and 3. For
example, Figure SM.2(e) shows a CP of .905 at τ = .60. For the other four cases, the CP’s
are in the range of .917 to .957.

Figure 3(c)-(f) considers flat ρ functions. In Figure 3(c)-(d), ρ = .99 and the µ and σ2

functions are constant and time-varying, respectively. Figure 3(e)-(f) is analogous, but with
ρ = .90. Figure SM.3(c)-(d) also is analogous, but with ρ = .75. The CP’s in the flat ρ
function cases are all close to .95 and lie between .932 and .960. This occurs because there
is no bias accruing due to a time-varying ρ function. However, in the cases of flat ρ, µ, and
σ2 functions, the CI’s are not as short as the oracle CI’s that rely on knowledge that the
ρ, µ, and σ2 functions are all flat and take nh = n. For the case of ρ = .99 and flat µ and
σ2 functions, the AL’s of the TVP CI and the oracle CI are .022 and .012, respectively, at
τ = .2. For ρ = .90, they are .085 and .039 at the same τ . For ρ = .75, they are .124
and .062. There is a substantial increase in the average lengths in the flat cases using the
methods of this paper, in order to ensure good CP’s in the near flat cases.

Lastly, Figures SM.3(e)-(f) and SM.4(a)-(f) in the Supplemental Material provide results
for kinked ρ functions that either linearly increase until τ = .5 and then linearly decrease, or
linearly decrease until τ = .5 and then linearly increase. Both constant and time-varying µ
and σ2 functions are considered. In two cases, the CP’s are .904 and .906. In all other cases,
the CP’s are in the range of .930 to .953. When the difference between the minimum and
maximum ρ value considered is large, viz., .4, the AL’s of the CI’s are large. This occurs
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(a) linear 0.90-1.00, constant µ and σ
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(b) linear 1.00-0.90, constant µ and σ
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(c) linear 0.60-0.90, constant µ and σ
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(d) linear 0.90-0.60, constant µ and σ
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(e) flat-lin 0.90-0.99, constant µ and σ
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(f) flat-lin 0.90-0.99, time-varying µ and σ
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Figure 2: CP’s and AL’s of CI’s for ρ (τ) and MAD’s of the MUE of ρ (τ)
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(a) flat-lin 0.80-0.99, constant µ and σ
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(b) flat-lin 0.80-0.99, time-varying µ and σ
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(c) flat 0.99, constant µ and σ
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(d) flat 0.99, time-varying µ and σ
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(e) flat 0.90, constant µ and σ
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(f) flat 0.90, time-varying µ and σ
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Figure 3: CP’s and AL’s of CI’s for ρ (τ) and MAD’s of the MUE of ρ (τ)
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because the data-dependent choice of h is small in order to avoid bias.
Overall, the CP’s of the CI’s are quite good with only a few being as low as .88 or .89

out of the 205 cases considered. The AL’s vary substantially across scenarios depending on
how close ρ(τ) is to one and how much the ρ function varies with time, as is to be expected.

6 Empirical Applications

This section presents applications of the proposed methods to time series of inflation and
exchange rates in several countries. The data comes from the IMF (International Financial
Statistics (IFS)) database.

In the Supplemental Material, results are provided for some additional countries and for
interest rates. The Supplemental Material also provides applications to eight macroeconomic
series for the US, using the Federal Reserve Economic Data (FRED).

In terms of computation, we set nhmin = .2n and nhmax = 2n, where n is the sample size.
For nh values between nhmin and nhmid, where nhmid := .5n, we use a grid size of .02n, while
for nh values between nhmid and nhmax, we use a grid size of .05n because the range of nh
values is wider than between nhmin and nhmid.

6.1 Inflation

First, we apply our method to the monthly inflation data, defined as the percentage
change in CPI over the previous month, see Figure 4. We consider three countries: the US,
Canada, and Germany. The data span is Feb 1955 to Oct 2022, which contains n = 813
observations for each country. We compute the nĥus values based on (4.5). Given these, we
compute the MUE’s and 90% CI’s for ρ (t) at each t and for each country. As a robustness
check, we multiply the undersmoothed nĥus by 1.5 and present the results in the right column
of each figure. The final nĥus values used for the computations are listed in the titles of the
figures. For all of the inflation series, Ljung-Box tests based on six lags of the residuals from
the AR(1) model fail to reject the null hypothesis of no autocorrelation at the 5% significance
level, see Table SM.2.

For comparative purposes, we also fit a constant autoregression coefficient AR(1) model
to the data and report the estimated ρ̂ and its 90% CI in the same graph. To obtain the
constant parameter MUE’s denoted by the flat red solid lines and constant parameter CI’s
denoted by the flat red dotted lines, we fix nĥus = 2n and apply our method. Note that
the method to derive the constant parameter estimates is equivalent to Mikusheva’s (2007)
modification of Stock’s (1991) method. Mikusheva (2007) proves that these confidence sets
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(a) US Inflation, nĥus = 125
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(b) US Inflation, 1.5nĥus = 188
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(c) Canada Inflation, nĥus = 125
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(d) Canada Inflation, 1.5nĥus = 188
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(e) Germany Inflation, nĥus = 125
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(f) Germany Inflation, 1.5nĥus = 188
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Figure 4: Estimates and 90% CI’s for the AR(1) Coefficient in TVP-AR(1) Models: US,
Canada, and Germany Inflation. The solid black line is the MUE’s of ρ (t) in a TVP-AR(1)
model, with the 90% CI’s denoted by the dotted black line. The solid red line is the MUE’s
of the AR coefficient in a constant parameter AR(1) model, with the 90% CI’s denoted by
the dotted red line.
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are uniformly valid asymptotically for non-time-varying ρ ∈ (0, 1].
Inflation persistence in the US has been extensively studied with mixed results regarding

its extent and causes. Studies like those by Cogley and Sargent (2001) have noted a decrease
in inflation persistence following the early 1980s, attributing this change to shifts in monetary
policy, especially the Federal Reserve’s (Fed) increased focus on inflation targeting. This view
is supported by research that points to the Volcker disinflation period as a pivotal time when
the Fed’s credibility was enhanced, leading to a stabilization of inflation expectations, see
Sims (1992). We also find a sharp decline from .78 to .12 in inflation persistence in the US
measured by the MUE of the TVP-AR coefficient between 1983 and 1995 in Figure 4(a),
which is consistent with the above empirical results.

Entering the era of 2000s, inflation persistence remains a central topic in macroeconomic
research. One line of research (e.g., Eggertsson and Woodford (2003), Chung, Laforte, Reif-
schneider, and Williams (2012)) concerns zero lower bound (ZLB) effects when the Fed set
the interest rates close to zero. The theory predicts that at ZLB, monetary policy could
be less effective in controlling inflation, thereby potentially increasing inflation persistence if
not coupled with assertive non-traditional interventions. To overcome the challenges of the
ZLB effects on the effectiveness of its monetary policies, the Fed initiated a new practice
called “forward guidance,” where the future course of monetary policy is communicated to
the public by the central bank. Numerous studies (e.g., Campbell, Evans, Fisher, Justiniano,
Calomiris, and Woodford (2012), Del Negro, Giannoni, and Patterson (2023)) have suggested
that forward guidance is effective in enabling the Fed to better control inflation, which could
lead to lower inflation persistence. Along this line, Bernanke (2020) argues that forward
guidance combined with quantitative easing (QE) granted the Fed significantly more space
to provide accommodation when its standard policy rate was near zero. More recently, Cole,
Martinez-Garcia, and Sims (2023) argue that despite the significant efforts to make their
policy credible, the credibility of most central banks including the Fed has been generally
declining, making monetary policies aimed at controlling inflation less effective. A concrete
manifestation of their claim would be an increase in the inflation persistence over a longer
horizon.

We find an increase in inflation persistence in the US from .3 to .6 measured by the MUE
of TVP-AR coefficient between 2000 and 2008 in Figure 4(a), which seems to be mostly driven
by the ZLB effects despite the introduction of forward guidance during this period. Later on,
when more specific monetary policies (e.g., QE) were introduced to stimulate the economy
following the 2008 financial crisis, inflation persistence drops from .6 to .4 between 2010 and
2013, in line with the result of Bernanke (2020). With that said, we observe in Figure 4(a)
an upward trend in inflation persistence in the US over a longer horizon between 2000 and
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2022, which could be caused by a decline in the credibility of the Fed as claimed by Cole,
Martinez-Garcia, and Sims (2023). Overall, we conclude that while the Fed’s measures have
been effective in controlling inflation expectations and persistence, more nuanced policies are
needed to handle complications arising from the ZLB effects, heterogeneous beliefs (Andrade,
Gaballo, Mengus, and Mojon (2019)), structural changes (e.g., higher volatility and shifts in
consumer behavior and supply chains) caused by the Covid-19 and other factors.

We also apply our method to study inflation persistence in Canada and Germany and
obtain the following results. First, we find significant time variation in inflation persistence
as measured by the MUE’s of ρ (t) for both countries since 1980s. Given the magnitude of
the time-variation, our findings show that inflation persistence is more likely to be driven
by changes in the regime of monetary policy and credibility of central banks, rather than by
nominal or real frictions in the economy. Second, there seems to be a universal upward trend
since 2000 in inflation persistence for all countries under consideration, echoing the findings
of Cole, Martinez-Garcia, and Sims (2023), who argue that there is a decline in credibility in
central bank policies. Third, the introduction of the Euro in 1999 marked a significant shift
in inflation persistence in Germany, with the European Central Bank (ECB) taking over
monetary policy. Inflation rates remained relatively stable but were influenced by broader
Eurozone policies and economic conditions. The early 2000s saw moderate inflation, which
aligned closely with the ECB’s target. Our method captures this regime change by showing
drastically different patterns of inflation persistence before and after 1999, supporting the
conclusion above that inflation persistence is more likely to be driven by changes in the
regime of monetary policy and the credibility of central banks.

6.2 Real Exchange Rate

The second application concerns the real exchange rate. The results are given in Figure
5. We use US dollars (USD) as the benchmark currency, and calculate the bilateral real
exchange rate reit of country i at time t as rexit = nexit × CPIit

CPI0t
, where nexit is the nominal

exchange rate (USD per domestic currency) at time t, CPIit is the price level of country i

at time t, and CPI0t is the price level of the US at time t. Therefore, an increase in rexit

represents an appreciation of country i’s currency against USD. We report results for the
UK, Sweden, and Switzerland. The data span for the monthly real exchange rate dataset is
Jan 1957 to Aug 2022. Thus, n = 788 for each country. Similar to the inflation series, we
compute the nĥus values based on (4.5). Then, we compute the MUE’s and 90% CI’s for ρ (t)
at each t and for each country. For robustness purposes, we multiply the undersmoothed
nĥus by 1.5 and report the results in the right column of each figure. For the real exchange
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(a) UK Real Exchange Rate, nĥus = 823
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(b) UK Real Exchange Rate, 1.5nĥus = 1,234
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(c) Sweden Real Exchange Rate, nĥus = 823
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(d) Sweden Real Exchange Rate, 1.5nĥus = 1,234
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(e) Switzerland Real Exchange Rate, nĥus = 393
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(f) Switzerland Real Exchange Rate, 1.5nĥus =
590
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Figure 5: Estimates and 90% CI’s for the AR(1) Coefficient in TVP-AR(1) Models: UK,
Sweden, and Switzerland Real Exchange Rate
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rate series considered in this section, Ljung-Box tests based on six lags of the residuals from
the AR(1) model fail to reject the null hypothesis of no autocorrelation at the 5% significance
level, see Table SM.2.

It has been known in the literature that real exchange rates in developed countries tend
to be highly persistent, with deviations from the PPP level taking a long time to disappear
(Rogoff (1996), Engel (2014)). There are several explanations in the literature for the real
exchange rate persistence, including nominal price rigidities, interest rate inertia in monetary
policy (Benigno (2004)), heterogeneous dynamics in subcomponents (Imbs, Mumtaz, Ravn,
and Rey (2005)), Balassa–Samuelson effects (Balassa (1964), Samuelson (1964)), to name a
few. Figure 5 presents the results on real exchange rate persistence measured by the MUE’s
of ρ (t) for the UK, Sweden, and Switzerland. Across all three countries the MUE’s are close
to 1, showing that our method yields near constant graphs in scenarios where that seems
to be suitable. The 90% CI’s for ρ (t) are also very short. Chari, Kehoe, and McGrattan
(2002) report estimates from a constant parameter autoregressive process to lie between .76
and .87 for US bilateral real exchange rates against nine developed European countries using
data between 1972 and 1994. They developed a general equilibrium model where the firms
can only set price once per year, which implies a very high level of price stickiness in the
economy. Yet, their model cannot generate the level of persistence observed in the data.
Allowing for a time-varying parameter autoregressive process and using data from a longer
time horizon, our MUE’s of ρ (t) for the three currencies are even higher at close to one,
supporting their claim that nominal price rigidities are not enough to explain the high real
exchange rate persistence. Practitioners would need to seek other possible explanations such
as the Balassa–Samuelson effects or heterogeneous dynamics in subcomponents.

While high real exchange rate persistence seems prevalent, there is heterogeneity in the
pattern of persistence across the countries we consider. In particular, the MUE’s of ρ (t)
for Switzerland demonstrate a downward trend since early 1980s in Figure 5(e). The Swiss
National Bank (SNB) has adopted several significant monetary policy changes since the
1990s, including the shift to a three-fold target (price stability, 3-year inflation forecast, and
a range for the 3M Libor, see Jordan, Peytrignet, and Rossi (2010)) in the late 1990s and
the introduction of negative interest rates in 2015 when it was forced to abandon a policy
of defending the Swiss franc with a peg to the euro. These policies aim to stabilize price
levels and influence interest rates, which can affect exchange rate dynamics and potentially
reduce persistence by promoting quicker adjustments to shocks. In Figure 5(e) we observe
a sharp decline in the MUE of AR(1) coefficient between 1995 and 2002 and between 2015
and 2019, consistent with the timing of SNB’s monetary policy changes. Meanwhile, the
European debt crisis and subsequent economic turmoil in the Eurozone led to significant
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safe-haven flows into the Swiss franc, prompting the SNB to implement a cap on the franc’s
value against the euro in 2011. This cap was removed in 2015. Such a cap on the franc’s
value would increase its real exchange rate persistence since the price of the franc could have
fluctuated above the cap for the duration of the policy. We also find the real exchange rate
persistence to be slightly increasing between 2011 and 2015 in Figure 5(e). As shown by
these results, our method can capture the major events and policy changes that affect real
exchange rate persistence reasonably accurately.

7 Asymptotics

This section establishes the correct uniform asymptotic size and asymptotic similarity
of the confidence interval CIn,τ for ρ(τ), the median-unbiased property of ρ̃nτ , and some
asymptotic properties of the data-dependent bandwidth parameter ĥ. To prove these results,
this section provides asymptotic results for the LS estimator ρ̂nτ and t-statistic Tn (ρ0,n) under
drifting sequences of parameter values. All proofs of the results stated below are given in
Section B of the Supplemental Material.

7.1 Parameter Space

Let Ia,r := [a− r, a+ r] for a ∈ R and r > 0. Let ⌊x⌋ denote the integer part of x.
We impose the following structure on the ρ function: for some ε2, ε3 > 0,

ρ (s) = 1 − κ (s) /b (7.1)

for s ∈ Iτ,ε2 and some b ∈ [ε3,∞], where κ (·) is a nonnegative twice continuously differen-
tiable function on Iτ,ε2 .

The parameter space for (ρ, µ, σ2, κ, b, F ) is given by
Λn = {λ = (ρ, µ, σ2, κ, b, F ):
(i) ρ, µ, and σ2 are Lipschitz functions from [0, 1] to [−1 + ε1, 1] , [C2,L, C2,U ], and

[C3,L, C3,U ], respectively, with Lipschitz constants bounded by L1, L2, and L3, respectively;
(ii) ρ (s) = 1 − κ (s) /b for s ∈ Iτ,ε2 and b ∈ [ε3,∞], where κ (·) is a twice continuously

differentiable function from Iτ,ε2 to [0, C4] with Lipschitz constant bounded by L4 and κ(τ) ≥
ε4;

(iii) µ (s) = Cµ1 exp {−η (s) /b} + Cµ2 for s ∈ Iτ,ε2 and b ∈ [ε3,∞], where η (·) is a
nonnegative Lipschitz function with Lipschitz constant bounded by L5;

(iv) {Ut : t = 0, 1, ..., n} is a stationary martingale difference sequence under F with
EF (Ut| Gt−1) = 0 a.s., EF (U2

t | Gt−1) = 1 a.s., and EF [U4
t | Gt−1] < M a.s., where Gt is
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some non-decreasing sequence of σ-fields for which σ (U0, ..., Ut) ⊆ Gt and σ (Y ∗
0 ) ∈ Gt for

t = 1, ..., n;
(v) EF (Y ∗

0 )2 ≤ C5n;
for some constants 0 < ε1 < 2, ε2, ε3, ε4 > 0, −∞ < Cj,L ≤ Cj,U < ∞ for j = 2, 3,

C3,L > 0, 0 ≤ C4 < ∞, 0 ≤ C5 < ∞, Lj < ∞ ∀j ≤ 5, Cµ1, Cµ2 ∈ (−∞,∞) , and
M ∈ (0,∞)}.

Note that the dependence on n of Λn is only through part (v), which concerns the initial
condition Y ∗

0 .4

To establish the correct asymptotic size of the CI for ρ(τ), we need to consider sequences
of parameters {λn = (ρn, µn, σ2

n, κn, bn, Fn)}n≥1 in Λn. The parameter space Λn is defined to
allow the sequence {ρn(τ)}n≥1 to equal one for all n ≥ 1, converge to one at any rate, or be
bounded away from one. More specifically, by the definition of ρn(·),

ρn (τ) = 1 − κn (τ) /bn for some bn ∈ [0,∞] . (7.2)

If bn → ∞, then ρn (τ) is local to one. If lim supn→∞ bn < ∞, then ρn (τ) is bounded away
from one. Furthermore, Λn is defined so that, for points s ∈ [0, 1] other than τ, ρn (s) can
converge to one at any rate or be bounded away from one, and the distance-from-unity
behavior may differ between different s outside of Iτ,ε2 .

7.2 Correct Asymptotic Size of the Confidence Interval for ρ(τ )

The bandwidth h is assumed to satisfy the following assumptions.

Assumption 1 (Bandwidth h). h → 0 and nh → ∞ as n → ∞.

Assumption 2 (Order of h). nh5 → 0.5

Let Pλ (·) denote probability under λ ∈ Λn. The correct asymptotic size and asymptotic
similarity of the CI CIn,τ are established in the following theorem. The theorem’s proof
relies on the “drifting pointwise” asymptotic results given in Sections 7.3-7.5 below and the
generic asymptotic size results in Andrews, Cheng, and Guggenberger (2020).

4The parameter space Λn could be made independent of n by specifying that E (Y ∗
0 )2 ≤ C5. But,

allowing the bound on E (Y ∗
0 )2 to be C5n, allows the parameter space to expand with n and is in accord

with assumptions in the literature for AR models with a possible unit root or near unit root.
5Assumption 2 is used in the proofs of Lemmas 7.2(b), 7.2(c), 7.7, and 7.8(a) below.
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Theorem 7.1 (Correct Asymptotic Size of CIn,τ ). Under Assumptions 1 and 2,

lim inf
n→∞

inf
λ∈Λn

Pλ (ρ (τ) ∈ CIn,τ ) = lim sup
n→∞

sup
λ∈Λn

Pλ (ρ (τ) ∈ CIn,τ ) = 1 − α.

The median-unbiased interval estimator ρ̃nτ has the following median-unbiasedness prop-
erty. This result is a corollary to one-sided versions of Theorem 7.1.6

Corollary 7.1 (Asymptotic Median-Unbiasedness of ρ̃nτ ). Under Assumptions 1 and
2,

lim inf
n→∞

inf
λ∈Λn

Pλ (ρ̃nτ,up ≥ ρ (τ)) ≥ 1/2 and

lim inf
n→∞

inf
λ∈Λn

Pλ (ρ̃nτ,low ≤ ρ (τ)) ≥ 1/2.

7.3 Preliminaries

Define
ct,j :=

j−1∏
k=0

ρt−k for 1 ≤ j ≤ t, 1 ≤ t ≤ n, and ct,0 := 1. (7.3)

We consider the interval Inτ,nh/2 and decompose Y ∗
t into the sum of two parts

Y ∗
t = Y 0

t + ct,t−T0Y
∗
T0 , for t ∈ Inτ,nh/2, (7.4)

where Y 0
t is an AR(1) process with the same time-varying parameters ρt as Y ∗

t , but with a
zero initial condition at T0 := T1 −1, and ct,t−T0 is defined in (7.3). By recursive substitution
in (2.1), we have

Y 0
t =

t−T1∑
j=0

ct,jσt−jUt−j and Y ∗
t =

t−T1∑
j=0

ct,jσt−jUt−j + ct,t−T0Y
∗
T0 for t = T1, ..., T2. (7.5)

Then, from (2.1) and (7.4), we have

Yt = µt +
t−T1∑
j=0

ct,jσt−jUt−j + ct,t−T0Y
∗
T0 for t = T1, ..., T2. (7.6)

We consider sequences {λn = (ρn, µn, σ2
n, κn, bn, Fn) ∈ Λn}n≥1. The estimand of interest

is ρn (τ) for n ≥ 1.
6Corollary 7.1 holds because CIupn,τ (.5) and CI lown,τ (.5) both have coverage probabilities of 1/2 or greater

by the proof of Theorem 7.1 applied to these one-sided CIs and (ρ̃nτ ≥ ρ (τ))⊃ CIupn,τ (.5) and (ρ̃nτ ≤ ρ (τ)) ⊃
CI lown,τ (.5) .
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Let

ρn,t := ρn (t/n) , µn,t := µn (t/n) , σ2
n,t := σ2

n (t/n) ,

ρnτ := ρn (τ) , µnτ := µn (τ) , and σ2
nτ := σ2

n (τ) . (7.7)

By part (ii) of the definition of Λn, for t ∈ Inτ,nh/2,

ρn,t := ρn (t/n) = 1 − κn (t/n) /bn (7.8)

for n sufficiently large that h/2+1/n ≤ ε2. For notational simplicity, we drop the n subscripts
on ρn,t, µn,t, and σ2

n,t below.
We consider sequences of null hypotheses H0 : ρnτ = ρ0,n for n ≥ 1. As noted above, the

CI CIn,τ is defined by the inversion of tests of such null hypotheses.

For some results, we assume the functions κn (·), µn (·), and σ2
n (·) converge.

Assumption 3 (Limits of κn (·), µn (·), and σ2
n (·)). κn (·), µn (·) , and σ2

n (·) restricted
to Iτ,ε2 converge uniformly to some functions κ0 (·), µ0 (·) , and σ2

0 (·) on Iτ,ε2, respectively.

For some results, we assume that
{
bn/

(
nh1/2

)}
n≥1

converges.

Assumption 4 (Convergence of bn/
(
nh1/2

)
). bn/

(
nh1/2

)
→ w0 for some w0 ∈ [0,∞].

Assumptions 3 and 4 are innocuous because, to establish the uniform inference results in
Theorem 7.1, we show that it suffices to consider sequences {λn ∈ Λn}n≥1 that satisfy these
assumptions. Note that Theorem 7.1 and Corollary 7.1 do not impose Assumption 3 or 4.

The following lemma bounds the maximum intertemporal difference between the TVP
ρt and ρnτ for t ∈ [T1, T2].

Lemma 7.1 (Maximum Intertemporal Differences on [T1, T2]). Under Assumptions
1 and 3, for a sequence {λn = (ρn, µn, σ2

n, κn, bn, Fn) ∈ Λn}n≥1,

(a) maxt∈[T1,T2] |ρt − ρnτ | = O (h/bn),

(b) maxt∈[T1,T2] |σ2
t − σ2

nτ | = O (h),

(c) maxt∈[T1,T2] max0≤j≤t−T1 |ct,j − ρjnτ | = O (nh2/bn), and

(d) maxt∈[T1,T2] |µt − µnτ | = O (h/bn).
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The next lemma provides several bounds on the endogenous initial condition Y ∗
T0 .

Lemma 7.2 (Order of Y ∗
T0

). For a sequence {λn = (ρn, µn, σ2
n, κn, bn, Fn) ∈ Λn}n≥1, we

have

(a) Y ∗
T0 = Op

(
n1/2

)
under Assumption 1,

(b) Y ∗
T0 = op

(
bn/ (nh) 1/2

)
under Assumptions 1, 2, 3, and 4 and nh/bn → r0 = 0, and

(c) Y ∗
T0 = Op

(
b1/2
n

)
under Assumptions 1 and 2 and nh/bn → r0 = ∞.

Remark 7.1. Lemma 7.2(a) shows that part (v) of Λn implies that the endogenous initial
condition Y ∗

T0 is Op

(
n1/2

)
. Part (b) of the lemma is used in the “very local-to-unity” case in

which nh/bn → r0 = 0. It provides a better bound than part (a) when bn/
(
nh1/2

)
→ w0 < ∞

because, in that case, the bound op
(
bn/ (nh) 1/2

)
is op

(
n1/2

)
. Part (c) of the lemma provides

a better bound than part (a) in the “stationary” case in which nh/bn → r0 = ∞.

7.4 Asymptotics in the Local-to-Unity Case

The local-to-unity case is characterized by nh/bn → r0 ∈ [0,∞). In this section, we
determine the asymptotic distributions of the local LS estimator ρ̂nτ and corresponding
t-statistic Tn (ρ0,n) in the local-to-unity case.

Define
t (s) := tn,τ (s) = T1 + ⌊nhs⌋ = ⌊nτ⌋ − ⌊nh/2⌋ + ⌊nhs⌋ (7.9)

as a function of s ∈ [0, 1] for any fixed τ ∈ [0, 1]. First, we obtain the asymptotic distri-
bution of the zero-initial condition process (nh)−1/2 Y 0

n,t(s) for s ∈ [0, 1]. Then, we obtain
the asymptotic distribution of the normalized initial condition Y ∗

T0 in the r0 ∈ (0,∞) case.
Lastly, we obtain the asymptotic distributions of ρ̂nτ and Tn (ρ0,n). The last step includes
dealing with the initial condition Y ∗

T0 in the r0 = 0 case.

Lemma 7.3 (Asymptotic Distribution of Y 0
n,t(s)). Under Assumptions 1 and 3, for a se-

quence {λn = (ρn, µn, σ2
n, κn, bn, Fn) ∈ Λn}n≥1 and nh/bn → r0 ∈ [0,∞) (local-to-unity case),

we have
(nh)−1/2 Y 0

n,t(s)/σ0 (τ) ⇒ Iψ (s) for ψ = r0κ0(τ),

where t (s) is defined in (7.9), Iψ (s) is defined in (3.6), and “⇒” denotes weak convergence
with respect to the Skorohod metric.

The following lemma is used to determine the effect of the initial condition on the LS
estimator and t-statistic when r0 ∈ (0,∞).

27



Lemma 7.4 (Asymptotic Distribution of the Initial Condition Y ∗
T0

). Under Assump-
tions 1 and 3, for a sequence {λn = (ρn, µn, σ2

n, κn, bn, Fn) ∈ Λn}n≥1 and nh/bn → r0 ∈ (0,∞)
(local-to-unity case), we have

(2ψ/nh)1/2Y ∗
T0/σ0 (τ) →d Z1 ∼ N(0, 1),

where ψ := r0κ0(τ), Z1 is independent of B(·), Iψ(·) defined in (3.6), and the convergence
holds jointly with the convergence in Lemma 7.3.

The following lemma is useful in determining the asymptotic properties of ρ̂nτ in the
local-to-unity case.

Lemma 7.5 (Convergence of Components in the Local-to-Unity Case). Under
the null hypothesis H0 : ρnτ = ρ0,n, Assumptions 1 and 3, and nh/bn → r0 ∈ (0,∞)
(local-to-unity case), for a sequence {λn = (ρn, µn, σ2

n, κn, bn, Fn) ∈ Λn}n≥1 and ψ = r0κ0 (τ),
the following results hold jointly

(a) (nh)−1/2 Yt(s)/σ0 (τ) ⇒ I∗
ψ (s) , where t (s) = T1 + ⌊nhs⌋ for s ∈ [0, 1] ,

(b) (nh)−3/2 ∑T2
t=T1 Yt−1/σ0 (τ) →d

∫ 1
0 I

∗
ψ (s) ds,

(c) (nh)−2 ∑T2
t=T1 Y

2
t−1/σ

2
0 (τ) →d

∫ 1
0 I

∗2
ψ (s) ds,

(d) (nh)−1/2 ∑T2
t=T1 Utσt/σ0 (τ) →d

∫ 1
0 dB (s) ,

(e) (nh)−1 ∑T2
t=T1 Yt−1Utσt/σ

2
0 (τ) →d

∫ 1
0 I

∗
ψ (s) dB (s),

(f) (nh)−2 ∑T2
t=T1

(
Y 0
t−1/σ0 (τ)

)2
→d

∫ 1
0 I

2
ψ (s) ds, and

(g) when r0 = 0, parts (a)–(c) and (e) hold with Yt(s) (= µt(s) + Y 0
t(s) + ct(s),t(s)−T0Y

∗
T0) and

Yt−1 replaced by µt(s) + Y 0
t(s) and µt−1 + Y 0

t−1, respectively.

After proper re-scaling, we have

nh (ρ̂nτ − ρ0,n) =
(nh)−1 ∑T2

t=T1

(
Yt−1 − Y nh,−1

)
(Yt − ρ0,nYt−1)

(nh)−2 ∑T2
t=T1

(
Yt−1 − Y nh,−1

)2 . (7.10)

The next theorem gives the asymptotic distribution of nh (ρ̂nτ − ρ0,n) and the t-statistic
Tn (ρ0,n) in the local-to-unity case.

Theorem 7.2 (Asymptotic Distribution of Normalized ρ̂nτ and t-Statistic in the
Local-to-Unity Case). Under the null hypothesis H0 : ρnτ = ρ0,n, Assumptions 1, 2, and
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3, nh/bn → r0 ∈ [0,∞) (local-to-unity case), and Assumption 4 if r0 = 0, for a sequence
{λn = (ρn, µn, σ2

n, κn, bn, Fn) ∈ Λn}n≥1 and ψ = r0κ0 (τ), we have

nh (ρ̂nτ − ρ0,n) →d

(∫ 1

0
I∗2
D,ψ (s) ds

)−1 ∫ 1

0
I∗
D,ψ (s) dB (s)

and
Tn (ρ0,n) →d

(∫ 1

0
I∗2
D,ψ (s) ds

)−1/2 ∫ 1

0
I∗
D,ψ (s) dB (s) .

Remark 7.2. For any subsequence {pn}n≥1 of {n}n≥1, Lemmas 7.1–7.5 and Theorem 7.2
hold with pn in place of n throughout and hpn in place of h = hn.

7.5 Asymptotics in the Stationary Case

The “stationary” case is characterized by bn = o (nh), or equivalently, nh/bn → r0 = ∞.

The stationary case is defined such that the t-statistic has a standard normal distribution
under H0 : ρnτ = ρ0,n in the stationary case. If bn is bounded, then ρnτ ≤ Cρ for some
constant Cρ < 1 for all n ≥ 1. If bn diverges to infinity, then ρnτ goes to one at a rate slower
than 1/nh. Thus, the stationary case includes some scenarios where ρnτ goes to one.

Define
ρn := max {exp {−κ0 (τ) / (2bn)} , 1 − ε1} , (7.11)

where −1+ε1 is a lower bound on ρt by the definition of Λn. We can bound |ρt| for t ∈ [T1, T2]
using ρn. First, suppose ρt ≤ 0, then −1+ε1 ≤ ρ ≤ 0, which implies that |ρt| ≤ρn, as desired.
Given this, in the following calculations we suppose ρt ≥ 0 for all t ∈ [0, 1] without loss of
generality. Then, for n sufficiently large, we have

max
t∈[T1,T2]

|ρt| ≤ max
t∈[T1,T2]

|ρt − ρnτ | + |ρnτ − exp {−κ0 (τ) /bn}| + exp {−κ0 (τ) /bn} ,

≤ O (h/bn) + o (1) /bn + exp {−κ0 (τ) /bn} ≤ ρn, (7.12)

where bn ≥ ε3 > 0, the second inequality uses Lemma 7.1(a), (7.8), Assumption 3, and a
mean value expansion of the exp {·} function, and the last inequality holds using κ0(τ) > 0
and the fact that when bn → ∞, ρn − exp{−κ0(τ)/bn} ≥ K/bn for some constant K > 0.

Equation (7.12) implies

|ct,j| =

∣∣∣∣∣∣
j−1∏
k=0

ρt−k

∣∣∣∣∣∣ ≤ ρjn for j = 1, ..., t− T1 + 1 and t = T1, ..., T2. (7.13)

Furthermore, using Lemma A.1 of Giraitis, Kapetanios, and Yates (2014) and the definition
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of the parameter space Λn, under H0 : ρnτ = ρ0,n, we have
∣∣∣ct,j − ρj0,n

∣∣∣ ≤ jρj−1
n max

k∈[T1,T2]
|ρk − ρ0,n| = jρj−1

n O (h/bn) for j = 0, ..., t− T0 and t = T1, ..., T2,

(7.14)
where the equality holds by Lemma 7.1(a).

The following results are used in the analysis:

∞∑
t=0

ρtn = (1 − ρn)−1 = O (bn) , (7.15)

∞∑
t=0

ρ2t
n =

(
1 − ρ2

n

)−1
= O (bn) , (7.16)

∞∑
t=0

tρtn = ρn (1 − ρn)−2 = O
(
b2
n

)
, (7.17)

∞∑
t=0

t2ρ2t
n = ρ2

n

(
1 + ρ2

n

) (
1 − ρ2

n

)−3
= O

(
b3
n

)
, and (7.18)

nh∑
t>s=0

ρt−sn =
nh∑
t=1

t−1∑
s=0

ρt−sn = O (nhbn) . (7.19)

When ρ0,n = 1 − κn (τ) /bn with bn = o (nh) , one can replace ρn with ρ0,n in (7.15)–(7.19)
and the results still hold.

We now establish the N (0, 1) asymptotic distribution of ρ̂nτ in the stationary case with
the following normalization:

(
1 − ρ2

0,n

)−1/2
(nh)1/2 (ρ̂nτ − ρ0,n)

=

(
1 − ρ2

0,n

)1/2
(nh)−1/2 ∑T2

t=T1

(
Yt−1 − Y nh,−1

)
(Yt − ρ0,nYt−1)(

1 − ρ2
0,n

)
(nh)−1 ∑T2

t=T1

(
Yt−1 − Y nh,−1

)2 . (7.20)

Next, we prove a lemma on the asymptotic properties of the zero-initial condition process
Y 0
t in the stationary case.

Lemma 7.6 (Asymptotics in the Stationary Case). Under the null hypothesis H0 :
ρnτ = ρ0,n and Assumptions 1 and 3, for a sequence {λn = (ρn, µn, σ2

n, κn, bn, Fn) ∈ Λn}n≥1

where nh/bn → r0 = ∞ and κ0 (τ) > 0 (stationary case), the following results hold jointly

(a)
(
1 − ρ2

0,n

)1/2
(nh)−1 ∑T2

t=T1 Y
0
t−1/σ0 (τ) →p 0,

(b)
(
1 − ρ2

0,n

)
(nh)−1 ∑T2

t=T1

(
Y 0
t−1/σ0 (τ)

)2
→p 1, and
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(c)
(
1 − ρ2

0,n

)1/2
(nh)−1/2 ∑T2

t=T1 Y
0
t−1σtUt/σ

2
0 (τ) →d N (0, 1) ,

where Y 0
t is defined in (7.5).

Lemma 7.6 concerns the zero-initial condition process Y 0
t with time-varying autoregres-

sive parameter ρt, which is the foundation of our asymptotic analysis of ρ̂nτ . Essentially
Lemma 7.6 says that when nh/bn → r0 = ∞, the asymptotic distributions of normalized
sums of Y 0

t behave in the same way as in an AR process with constant ρ < 1. The proof
involves applications of appropriate weak laws of large numbers and central limit theorems
for martingale difference triangular arrays and approximations of TVPs. One can extend the
results to allow the Ut process to be conditionally heteroskedastic, but this requires a differ-
ent definition of σ̂2

nτ and complicates the analysis, see Andrews and Guggenberger (2014).
For simplicity, we do not consider this extension here.

Define
µnh = (nh)−1

T2∑
t=T1

µt and µnh,−1 = (nh)−1
T2∑
t=T1

µt−1. (7.21)

Lemma 7.7 (Asymptotics of the Denominator in the Stationary Case). Un-
der the null hypothesis H0 : ρnτ = ρ0,n and Assumptions 1, 2, and 3, for a se-
quence {λn = (ρn, µn, σ2

n, κn, bn, Fn) ∈ Λn}n≥1 where nh/bn → r0 = ∞ and κ0 (τ) > 0
(stationary case), the following results hold

(a)
(
1 − ρ2

0,n

)
(nh)−1 ∑T2

t=T1

(
Yt−1 − µnh,−1

)2
/σ2

0 (τ) →p 1, and

(b)
(
1 − ρ2

0,n

) (
Y nh,−1 − µnh,−1

)2
/σ2

0 (τ) →p 0.

Lemma 7.7 concerns the asymptotic distribution of the denominator of the normalized ρ̂nτ
in (7.20). To bound the difference between Y 0

t and Yt and control for TVPs asymptotically,
we use various inequalities and approximations in the proof of Lemma 7.7.

Lemma 7.8 (Asymptotics of the Numerator in the Stationary Case). Un-
der the null hypothesis H0 : ρnτ = ρ0,n and Assumptions 1, 2, and 3, for a se-
quence {λn = (ρn, µn, σ2

n, κn, bn, Fn) ∈ Λn}n≥1 where nh/bn → r0 = ∞ and κ0 (τ) > 0
(stationary case), the following results hold

(a)
(
1 − ρ2

0,n

)1/2
(nh)−1/2 ∑T2

t=T1

(
Yt−1 − µnh,−1

) [
Yt − µnh − ρ0,n

(
Yt−1 − µnh,−1

) ]
/σ2

0 (τ)

→d N (0, 1), and

(b)
(
1 − ρ2

0,n

)1/2
(nh)−1/2 ∑T2

t=T1

(
Y nh,−1 − µnh,−1

) [
Yt − µnh − ρ0,n

(
Yt−1 − µnh,−1

) ]
/σ2

0 (τ)

→p 0.
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Lemma 7.8 concerns the asymptotic distribution of the numerator of the normalized ρ̂nτ
in (7.20). The proof of this lemma uses the results in Lemmas 7.2(c) and 7.6.

The next theorem provides the limit distributions of
(
1 − ρ2

0,n

)−1/2
(nh)1/2 (ρ̂nτ − ρ0,n)

and Tn (ρ0,n) in the stationary ρnτ case.

Theorem 7.3 (Asymptotic Distribution of Normalized ρ̂nτ and t-Statistic in the
Stationary Case). Under the null hypothesis H0 : ρnτ = ρ0,n and Assumptions 1, 2, and 3,
for a sequence {λn = (ρn, µn, σ2

n, κn, bn, Fn) ∈ Λn}n≥1 where nh/bn → r0 = ∞ and κ0 (τ) > 0
(stationary case), we have

(
1 − ρ2

0,n

)−1/2
(nh)1/2 (ρ̂nτ − ρ0,n) →d N (0, 1)

and
Tn (ρ0,n) →d N (0, 1) .

Remark 7.3. For any subsequence {pn}n≥1 of {n}n≥1, Lemmas 7.6–7.8 and Theorem 7.3
hold with pn in place of n throughout and hpn in place of h = hn.

7.6 Asymptotic Results for ĥ

Here we give conditions under which ĥ defined in (4.2) is asymptotically equivalent to
the value ĥopt that minimizes the “empirical loss,” which is unobserved. See Li (1987) and
Andrews (1991) for analogous results in i.i.d. models. The empirical loss, Ln(h), is

Ln(h) := n−1
n∑
t=1

(µ̂t−1(h) − µt + Yt−1(ρ̂t−1(h) − ρt))2. (7.22)

We give a simple high-level condition under which

Ln(ĥ)
Ln(ĥopt)

= Ln(ĥ)
infh∈Hn Ln(h) →p 1. (7.23)

The FEn(h) criterion can be written as follows:

FEn(h) = Ln(h) − 2Cn(h) + En, where En := n−1
n∑
t=1

σ2
tU

2
t and

Cn(h) := n−1
n∑
t=1

σtUt(µ̂t−1(h) − µt + Yt−1(ρ̂t−1(h) − ρt)). (7.24)
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The empirical loss Ln(h) and the cross-product term Cn(h) depend on h, but the average
squared error En does not. Since En does not depend on h, ĥ minimizes Ln(h) − 2Cn(h)
over Hn.

Under the following condition, ĥ is asymptotically equivalent to the infeasible value ĥopt
that minimizes Ln(h).

Assumption 5. suph∈Hn

|Cn(h)|
Ln(h) →p 0.

Lemma 7.9. Under Assumption 5, Ln (̂h)
Ln (̂hopt)

→p 1.

Now, we give a set of sufficient conditions for Assumption 5. Let hmin = min{h : h ∈ Hn}
and hmax = max{h : h ∈ Hn}. Typically, hmin and hmax depend on n and decrease to 0 as
n → ∞. Let ξn denote the cardinality of Hn. We decompose Ln(h) and Cn(h) into the
main components L2n(h) and C2n(h), respectively, which depend on t = nhmax + 1, ..., n
and for which (µ̂t−1(h), ρ̂t−1(h)) depend only on random variables in Gt−1, and the “small t”
boundary components L1n(h) and C1n(h), respectively, which depend on t = 1, ..., nhmax for
which (µ̂t−1(h), ρ̂t−1(h)) depend on some random variables that are not in Gt−1. Define

L1n(h) := n−1
nhmax∑
t=1

(µ̂t−1(h) − µt + Yt−1(ρ̂t−1(h) − ρt))2,

L2n(h) := n−1
n∑

t=nhmax+1
(µ̂t−1(h) − µt + Yt−1(ρ̂t−1(h) − ρt))2,

C1n(h) := n−1
nhmax∑
t=1

σtUt(µ̂t−1(h) − µt + Yt−1(ρ̂t−1(h) − ρt)), and

C2n(h) := n−1
n∑

t=nhmax+1
σtUt(µ̂t−1(h) − µt + Yt−1(ρ̂t−1(h) − ρt)). (7.25)

The risk as a function of h is Rn(h) = ELn(h). Let R2n(h) = EL2n(h).
The following assumption is sufficient for Assumption 5.

Assumption 6 (Sufficient Conditions for Assumption 5).

(a) The true sequence of distributions is from the parameter spaces {Λn : n ≥ 1}.

(b) suph∈Hn

|C1n(h)|
Ln(h) →p 0.

(c) suph∈Hn
|L2n(h)
R2n(h) − 1| →p 0.

(d) hmax ≤ 1 − ε for n large for some ε > 0.

(e) n infh∈Hn R2n(h)
ξn

→ ∞.
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Assumption 6(b) implies that the “small t” boundary component of Cn(h), which only de-
pends on t ≤ nhmax, is asymptotically dominated by Ln(h), which is based on all t ≤ n.

Assumption 6(c) requires that the variability of L2n(h) is small relative to its mean. In par-
ticular, Assumption 6(c) holds if StdDev(L2n(h))/EL2n(h) = o(1). Assumption 6(d) implies
that the elements of Hn are bounded away from one, which implies that nh = n is not a
feasible choice.

To interpret Assumption 6(e), we give an intuitive discussion of the magnitudes of
infh∈Hn L2n(h) and infh∈Hn R2n(h). First, consider the case where {Yt}t≤n displays unit root
or local-to-unity behavior across the whole time series. Then, µ̂t−1(h) − µt ≈ (nh)−1/2

and Yt−1(ρ̂t−1(h) − ρt) ≈ n1/2(nh)−1 = (nh2)−1/2, L2n(h) ≈ (nh2)−1, and under suitable
conditions, R2n(h) ≈ (nh2)−1. Second, in the case where {Yt}t≤n displays stationary behav-
ior across the whole time series, µ̂t−1(h) − µt ≈ (nh)−1/2, Yt−1(ρ̂t−1(h) − ρt) ≈ (nh)−1/2,

L2n(h) ≈ (nh)−1, and under suitable conditions R2n(h) ≈ (nh)−1. Third, in the case where
{Yt}t≤n displays behavior that varies between unit root and stationarity across the time
series, the order of magnitude of R2n(h) is between (nh2)−1 and (nh)−1, which is bounded
below by (nhmax)−1. Hence, Assumption 6(e) requires n ·(nhmax)−1/ξn → ∞ or ξn = o(h−1

max).
That is, the number ξn of values h in Hn needs to be of smaller order than the reciprocal of
the maximum value hmax in Hn.

Lemma 7.10. Assumption 6 implies Assumption 5.

Remark 7.4. The proof of Lemma 7.10 shows that EC2n(h) = 0 and V ar(C2n(h)) ≤
C3U × (n − nh)−1EL2n(h) ∀h ∈ Hn, n ≥ 1, where C3U < ∞ is the bound on the variance
function σ2 in the definition of Λn.

Remark 7.5. Let R1n(h) = EL1n(h). Under Assumption 6 and suph∈Hn

R1n(h)+E|C1n(h)|
Rn(h) → 0,

we also have: Rn (̂h)
Rn (̂hopt)

→p 1.
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