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Abstract

We estimate the distributional effects of the unprecedented rise in European energy

prices over 2021-2023. Using bank account data for a sample of UK households we show

that there were significant energy consumption falls, consistent with an average price

elasticity of around -0.45, with proportionally larger responses for those with high pre-

crisis spending. We also document evidence of a labeling effect associated energy bill

rebates, part of the government’s policy response. Using estimates of a flexible model

of energy demand, we show that the introduction of a large energy price subsidy, along

with bill rebates, limited welfare losses, though the labeling effect created an inefficiency

that, if avoided, would have reduced average monetary losses by a further 33%. We

show that the UK government’s reliance on a relatively large subsidy can be rationalized

by a social welfare function that places high weight on avoiding large monetary losses.
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1 Introduction

By February 2022, when Russia invaded Ukraine, European wholesale gas spot prices were

over seven times higher than a year earlier, feeding through to unprecedented increases

in the price of natural gas and electricity in many countries. A number of governments

responded with support packages aimed at protecting households from the consequences

of these price rises, typically through a combination of price subsidies and transfers. In

designing these packages policymakers face the challenge of targeting support to the need-

iest in a cost-effective way. Price subsidies can be effective at supporting those with large

energy needs, but, depending on their design, they can also entail efficiency costs through

incentivizing consumption, and they can channel resources disproportionately to those rel-

atively well-off. Transfers avoid distorting consumption behavior, but may be less well

targeted at those most in need of support, particularly if exposure to the price shock varies

along dimensions that differ from those along which conventional redistribution is typi-

cally conducted (i.e., income, age or disability). In this paper we estimate the distributional

impact of large rises in energy prices, and we study the design of support packages aimed

at mitigating the welfare consequences of the shock.

We focus on the UK, one of the worst affected countries, where the cost of residential en-

ergy rose over four-fold between early 2021 and early 2023. We use individual-level panel

data that includes monthly spending on energy over period of price rises. The data, col-

lected by a fintech company, contain information of each households’ bank account inflows

and outflows across linked accounts, including credit and debit card transactions, standing

orders and balances, for a period of at least three years. In addition to energy spending, we

also observe salary and benefit payments and spending on other goods and services. In the

UK the majority of residential electricity and gas bills entail a fixed access fee and single

marginal usage price, both of which are subject to a regulatory price cap, which became

binding for almost all suppliers during the energy price crisis. By focusing on a sample of

households with variable bills (where spending tracks usage) and exploiting the binding

regulatory cap, we are able to measure energy consumption for a sample of over 100,000

households.

We begin by documenting heterogeneity in exposure to energy price rises. Using pre-

shock data we show that higher income households, on average, consume more energy

but they allocate a smaller fraction of their total spending to energy. Therefore, while in

monetary terms higher incomes households are more exposed than less well off house-

holds to price rises, exposure rises less than proportionately with total household spend-

ing. However, conditional on income, there is substantial variation in energy consumption,
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with some low income households being relatively heavy consumers of energy. In response

to small price changes, these patterns of exposure are likely be a reasonable guide to the

resulting welfare effect. However, UK households experienced a series of large incremental

price increases, driven by the changes in the regulatory price cap, of 12% in October 2021,

54% in April 2022 and 27% in October 2022 (with the latter representing the net impact of

a price rise and the introduction of a price subsidy), meaning consumption responses are

likely to be non-negligible.

We use the ratcheting profile of prices, which result from the periodic increases in the

binding regulatory price cap, to trace out energy spending and consumption responses.

Each price increase is associated with an upwards jump in average energy spending, and a

decline in consumption, which imply an average own price elasticity of energy demand of -

0.48. We show that consumption responses are largest among the highest energy users – for

instance, the average energy own price elasticity for those in the bottom quintile of the pre-

shock energy spending distribution is -0.4, rising to -0.6 for those in the top quintile. This

pattern holds within quintile of the income distribution, while, conditional on pre-shock

energy spending, high income households tend to be less price sensitive.

The energy price cap increased by a 80% in October 2022, taking it to over four times its

pre-shock level. At this point the UK introduced a price subsidy for energy which meant

that households instead experienced a 27% price rise. Concurrently, it introduced a rebate

on energy bills of £67 per month, which was in place until the end of March 2023. The

projected combined cost of these measures was £33 billion (over 1% of UK GDP). We show

that, on average, energy consumption exhibits only a small drop in October 2022, and when

the energy rebates were withdrawn (with no change in prices) consumption fell by over

10%. This pattern implies that, on average, households allocated about 30% of their rebate

to energy spending. We compare this with the marginal propensity to consume energy out

of a different (conditional) transfer the government introduced over the same time period.

Unlike the energy bill rebate, this second transfer was not specifically labeled as addressing

rising energy costs, but rather was given to households in response to the wider ”cost-of-

living crisis”. Households that received these cost-of-living payments, allocated around 5%

of them, on average, to energy spending. The much higher marginal propensity to consume

energy from the rebates is consistent with them influencing consumption through a labeling

effect that is in addition to the income effect associated the monetary values of the rebates.

This is similar to the labeling effect from “Winter Fuel Payment” – a labeled cash transfer

provided annually to older households – document by Beatty et al. (2014).

We next estimate of model energy demand, which enables us to quantify the incidence

of energy price increases and subsidies and bill rebates, and to model counterfactual pol-
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icy responses. We specify an Exact Affine Stone Index (EASI) demand model to capture

households’ decisions over how to allocate their total spending between energy and alter-

native goods (Lewbel and Pendakur (2009)). We use the panel dimension of our data to

allow energy price responses and Engel curves to vary by pre-shock energy spending. Our

demand estimates replicate the descriptive patterns of how (Marshallian) price responses

vary by pre-shock energy consumption and income. We decompose these price responses

into a substitution effect (reflecting the increased relative price of energy) and an income

effect (reflecting the impact of lower purchasing power). We find that the total expenditure

elasticity of energy varies from 0.4, on average for households in the bottom half of the in-

come distribution, to 0.8 for households in the top income quintile and bottom quintile of

the pre-shock energy spending distribution. For all households energy is a normal good (a

necessity), meaning that the substitution and income effects are reinforcing, with the former

being quantitatively most important.

The labeling effect associated with the energy bill rebate means that, during the period

that rebates were administered, observed choices are not necessarily utility-maximizing.

We estimate how labeling impacts energy demands, and, show, under the assumption that

households make optimal choices in the absence of labeling, how to measure utility asso-

ciated with distorted choices. Our method entails computing the rotation of the budget

constraint through observed choices that rationalizes them as optimal, and evaluating the

true (normative) indirect utility function at the price and total expenditure values implied

by the rotated budget constraint. This approach leverages the existence of an observed

choice domain under which decisions are optimal (see Bernheim and Rangel (2009)) and

avoids the need to specify a behavioral model for suboptimal decisions.

We use the model to compute the distribution of energy consumption changes and

equivalent variations associated with the combination of the energy price shock and policy

response. In the absence of government intervention, energy consumption by October 2022

would have been around 52% less than at pre-shock prices, and the associated welfare loss

would have been £143 per month on average for the bottom quintile of the income distri-

bution, rising to £223 for top quintile, primarily as a result of average energy consumption

being positively correlated with incomes. The combination of the subsidy and bill rebates

that the government introduced lowered the average fall in energy consumption to 35%

and limited average welfare losses to £15 per month for the bottom income quintile, rising

to £63 for the top quintile. However, the unconditional distribution of losses was dispersed

with 5% of household experience monthly losses of at least £108 per month.

Administering a transfer as a labeled bill rebate led households to over consumer en-

ergy. This entails a direct cost to households associated with failing to choose utility max-
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imizing choices. It also entails a fiscal externality due the encouragement of consumption

of a subsidized good. We show that quantitatively this second channel is more important.

Specifically, had households received a non-labeled transfer of the same monetary amount

as the rebate, their average monthly welfare loss would have fallen by £2. However, if in-

stead households had received an unlabeled transfer that expended the same resources as

that of observed policy, their monetary loss would have fallen by £10 on average. Therefore

the welfare loss from labeling primarily arises from the fiscal costs from over consumption,

rather the from the direct utility costs.

In choosing the balance between subsidizing the price of energy and providing house-

holds with an unconditional transfer, the policymaker faces a trade-off. While raising the

value of the subsidy helps mitigate losses of those particularly exposed to energy price

shocks, on average, it benefits better-off households more than poorer households. The

optimal balance between these instruments depends on the value the policymaker places

on limiting large monetary losses and channeling resources to lower income households.

To quantify this trade-off we specify a social welfare function with both vertical welfare

weights (allowing for the policymaker to value limiting losses to the poor more than to

the rich) and horizontal welfare weights (capturing aversion to large losses). Most income

groups prefer, on average, a relatively low subsidy (and large transfer). Therefore a pol-

icymaker that is neutral to sizes of losses, conditional on income, would favor a low (or

zero) energy subsidy. However, this leaves some households exposed to very large losses.

The more the policymaker is concerned with limiting large losses, the larger is the optimal

subsidy. In practice the UK government choice a subsidy equivalent to 38.5% of the price of

energy; our framework rationalizes this through a high social value on limited large losses.

A recent set of papers study the European energy price crisis, including its likely distri-

butional impacts based on pre-crisis data (Bachmann et al., 2022; Fetzer et al., 2023) and its

implications for macroeconomic stabilization policy (Auclert et al., 2023; Dao et al., 2023).

We contribute to this emerging literature by using micro spending data over the course of

the crisis to estimate the distribution of energy consumption responses and welfare losses.

In doing this we provide new estimate of energy price elasticities, that are based on large,

salient and persistent price increases (see Labandeira et al. (2017) for a recent meta-study).

Our work also relates to a literature that documents the distribution and efficiency cost im-

plications of non-linear pricing in energy markets (Borenstein, 2012; Borenstein and Davis,

2012; Hahn and Metcalfe, 2021).

The rest of this paper is structured as follows. In Section 2 we describe the relevant

features of the UK energy market and the government’s policy response to the European

energy price crisis, and we outline our main dataset. In Section 3 we present estimates of
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the distribution of energy consumption changes in response to price rises and the introduc-

tion energy bill rebates. In Section 4 we outline our empirical model of household energy

choice. In Section 5 we present model estimates and describe the incidence of observed and

counterfactual policy. A final section concludes.

2 Setting and data

2.1 Global energy price rises

Global demand for energy surged following the end of COVID-19 lockdowns and as polit-

ical tensions with Russia, then the world’s largest exporter of natural gas, gradually wors-

ened. This led to significant increases in wholesale gas prices in Europe in the winter of

2021 and early 2022.

Figure 2.1 shows trends in wholesale gas prices in the UK market. Day-ahead prices for

natural gas in the UK market spiked following Russia’s invasion of Ukraine in February

2022 at 314 pence per therm, having risen seven-fold between March 2021 and March 2022.

Prices eventually peaked in August 2022 at 356 pence per therm as Russia interrupted its

pipeline exports to Europe, before it halted exports all together in September. Thereafter,

spot prices fell back slightly but remained both high and volatile. These increases had a

particularly large effect on energy prices in the UK, owing to the UK’s relatively strong

dependence on natural gas for both domestic heating and electricity generation. Retail

energy prices remained high long after the decline in spot wholesale gas prices in late 2022,

owing to the widespread use of forward price contracts by energy suppliers.

2.2 UK domestic energy market

UK domestic energy consumption consists of electricity, and gas for heating (a small mi-

nority of households rely on heating oil). Energy bills typically consist of unit charges for

electricity and gas (charges per kilowatt-hour of use), and fixed standing charges that are

independent of use. For the majority of households the fixed fee standing charge comprises

only a small fraction of their overall bill – for instance betweeen April and September 2022,

standing charges for gas and electricity accounted for 14% of a typical consumer’s bill. Non-

linear pricing, such as increasing block pricing where the marginal price increases in usage,

are not a feature of the UK market. The majority of UK households (86% in 2012 Depart-

ment for Energy and Climate Change (2013)) face a unit charge that is fixed throughout

the day. The majority of the remaining households are on contracts that entail a different

marginal price for day-time and night-time consumption.
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Figure 2.1: Wholesale gas prices in the United Kingdom, 2019-2023
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Notes: Data from Ofgem (2023). Figures show monthly average day-ahead wholesale gas prices in pence per therm. Russia
invaded Ukraine on 24th February 2022.

Approximately 60% of households pay for energy via fixed direct debit, i.e., the pay-

ment of a bill, typically monthly, which is based on their expected energy use. Energy

suppliers review direct debit payment amounts every 3-6 months, based on households’

actual consumption measured from meter readings. Therefore households paying by fixed

direct debit typically spend part of the year in credit (summer) or debit (winter).

The remaining 40% of households have bills that correspond much more closely to their

actual energy usage each billing period. Some of these households are on “variable” direct

debits, which adjust each period according to their energy consumption. This requires them

to either have a smart meter, which automatically transmits usage to the supplier, or send

in regular meter readings. Other households pay via standard credit, which means they

only pay for energy once they have received a bill for their actual use. The final group have

pre-payment meters, which require topping up (either online or in shops) before the credit

can be used for energy consumption.1 The amount of credit that can be held on such meters

is limited (typically around £200-250 for electricity meters) meaning that prepayment cus-

tomers must typically top up their meters regularly. 85% of those that recording spending

on gas or electricity prepayment meters in the Living Costs and Food Survey report expect-

1Common reasons for using pre-payment include: a desire to more closely monitor and control their energy
costs; because they are renters, and their landlord has arranged for them to use prepay (for example to avoid
their tenants leaving the property with unpaid energy bills); or, because they are in arrears with their energy
provider and a prepayment meter is being used to collect payments.
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ing their payment to cover one month or less. In Appendix A we describe these different

payment methods in more detail.

2.3 Government policies

Energy price controls

A distinctive feature of the UK energy market is that a price cap (officially known as the

“default tariff cap”) has been in place since January 2019. The cap is administered by the

energy regulator Ofgem and sets maximum values for the unit prices and standing charges

that suppliers are allowed to charge domestic consumers for electricity and gas (although it

is often presented as a cap on the cost of a ‘typical’ energy consumer’s bill based on average

annual consumption of electricity and gas).

The stated aim of the cap is to limit firm profits and to prevent those households that

do not shop around for cheaper tariffs from overpaying. The cap level is based on Ofgem’s

estimates of supplier costs. Until October 2022, Ofgem updated the cap every 6 months to

reflect changes in suppliers’ costs (most likely driven by wholesale price changes). After

October 2022 Ofgem updated the cap every 3 months as a response to the increasingly

volatile wholesale market. Ofgem decides the level of the cap in each period and announces

it approximately one month in advance.

As wholesale energy prices rose rapidly, the price cap became increasingly binding

on suppliers. Figure 2.2 shows the value of a bill at capped electricity and gas prices for

Ofgem’s definition of a typical consumer, alongside the average annual bills this consumer

would pay under the 10 cheapest tariffs on the market. In January 2020, the average of the

10 cheapest tariffs was around 70% of the cost of a bill at the default tariff cap. By January

2021, this had risen to 90%, and from October 2021 it had risen to 99%. At this point, the vast

majority of consumers were paying the maximum prices specified by the cap. The fact that

the cap binds in this way is useful for us, as it means know with a high degree of certainty

the tariffs consumers paid the energy they consumed from mid-2021 onwards, enabling us

to obtain accurate measures of the quantities of energy they are consumed.2

2A potential complication in using the prices set by the Ofgem cap to infer prices paid, and calculate quanti-
ties consumed, is that the cap does not apply to tariffs on fixed price contracts that consumers may have agreed
before the energy price cap increases occurred. Historically, these offered consumers lower prices than variable
rate contracts. However, the price advantage of fixed contracts disappeared from mid-2021 onwards as energy
prices rose, leading to a substantial reduction in their share of the market. In June 2021, 42% of gas customers
and 40% of standard electricity consumers were on fixed term contracts. By December 2022, these figures had
both fallen to 25% (Department for Business Energy and Industrial Strategy (2022)). Fixed tariffs are in any case
much less prevalent among the set of consumers with variable energy consumption that we use for our main
analysis. The share of pre-pay consumers on fixed tariffs is much lower than for direct debit consumers, at less
than 1% for both electricity and gas tariffs (Department for Business Energy and Industrial Strategy, 2022).
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Figure 2.2: Energy price cap, energy price guarantee and cheapest available tariffs, 2019-2023
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Notes: Data from Ofgem (2023). Figures are costs of an annual bill at ‘typical’ consumption values of gas and electricity
(12,000kWh of gas and 2,900kWh of electricity) for dual fuel direct debit consumers. The average of the cheapest tariffs is
a simple average of direct debit tariffs from the 10 suppliers with the lowest cost tariffs (that is, only including one tariff
per supplier), including fixed tariffs. Only tariffs that are generally available to consumers are included. The costs of the
energy price cap are an average across regions in Great Britain.

In September 2022, as households faced the prospect of an 80% increase in the energy

price cap in October 2022, the government introduced an “Energy Price Guarantee” (EPG)

to limit further price increases. The EPG capped the unit rates and standing charges that

suppliers could charge, and paid a subsidy to suppliers to make up for the difference be-

tween the EPG rates and the energy price cap set by Ofgem. It was set at a rate to cap the

costs for a typical user at £2,500 from October 2022 to April 2023 (later extended until June).

The dashed line in Figure 2.2 shows the cost of the typical bill under the EPG. The

average cost of an energy bill for those paying via direct debit at typical consumption values

rose by 54% in April 2022. It then rose a further 27% in October; in the absence of the

EPG, it would have risen by 80%. The EPG also protected consumers from a further 21%

price increase in the energy price cap in January 2023. Unit prices for electricity under

the EPG from October 2022 to June 2023 were on average 40% below the cap price, while

unit gas prices were on average 29% lower. Weighting by average shares of spending on

electricity and gas from 2019 this implies a 38.5% subsidy on the marginal cost of energy.

While the EPG reduced unit prices, it left fixed fee standing charges for both electricity and

gas essentially unaffected.3

3The cap prices and prices set under the EPG differed across users according to their payment type. How-
ever the price changes over this period were very similar across payment methods. Figure A.1 in the Appendix
shows the cap levels for pre-payment users in the same way as Figure 2.2.
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Rebates and transfers

In addition to the energy price subsidy provided by the EPC, the government provided

further support through general rebates on energy bills. The government paid rebates on

household energy bills of £400 in monthly instalments of either £66 or £67 from October

2022 until March 2023. In most cases, those paying by direct debit had these payments

directly credited to their account, with the rest receiving the payments as cash refunds.

Those paying by pre-payment either had funds directly added to their meter (if using a

newer ‘smart’ meter), or received vouchers in the post that could be redeemed to add credits

to their meters (if using older ‘traditional’ meters).

On top of measures that were explicitly labeled as addressing the rising costs of energy,

the government also provided households with direct cash payments to help with the gen-

eral increase in the cost of living. These were, in various ways, targeted to those likely

to be in most need. Households in receipt of means tested benefits, pensions or disability

benefits received “cost of living” payments of varying amounts that were paid directly into

their bank accounts in instalments from summer 2022 until spring 2024.4 Households also

received a £150 rebate on their council tax in the summer and autumn of 2022 if they lived

in homes with Council Tax bands A-D (loosely targeting lower value properties).

The total costs of all the Energy Price Guarantee, rebates on energy bills, cost of living

payments and council tax rebates was £45.1 billion across 2022-23, equivalent to 1.4% of

GDP over this period (Office for Budget Responsibility (2023)). Most of this was accounted

for by the energy support measures: £20.3 billion was spent on the EPG, and a further £12.7

billion on the energy rebates.

2.4 Bank account data

Our main dataset contains information on spending and incomes drawn from individual-

level bank account and credit card statements. The data are collected by two fintech com-

panies. We use historic data covering the period 2015-19, which was collected by Money-

dashboard, and data that cover the energy price shock, over 2019-23, which was collected

by ClearScore. Both Moneydashboard and ClearScore are designed to assist users in moni-

toring and managing their finances; Moneydashboard provides users with access to a bud-

geting app, and ClearScore additionally provide users with access to their credit report and

4Payments of £650 were paid to those in receipt of means tested benefits in two instalments in the summer
of 2022 and in November, with an additional £300 for those receiving pensions and £150 for those receiving
disability benefits that were both paid in the winter. Further cost of living payments of £900 for those on means
tested benefits were later announced to be paid in three instalments from spring 2023 to spring 2024, alongside
further payments of £300 for those receiving pensions to be paid in winter 2023 and £150 for those receiving
disability benefits that were paid in the summer 2023.
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scores, and to Open Banking data. We undertake the majority of our analysis with the

ClearScore dataset. We use the Moneydashboard data as one of a number of alternative

ways of controlling for seasonality in energy spending. Therefore, in this section we de-

scribe the ClearScore data. We provide further details about the ClearScore data, and on the

Moneydashboard data, in Appendix A.

Anyone that signs up to ClearScore links in their bank account details, from which their

entire transaction histories over the previous three years are extracted. This gives us the

transaction-level data (as shown on bank statements) for almost half a million UK users over

the period 2019 to 2023. One of the advantages of the ClearScore data, relative to similar

data provided by single banks, is that users are encouraged to link all of their accounts and

credit cards. This gives us a relatively complete picture of user’s incomes and spending

patterns. As users are encouraged to link all of their accounts, including those held jointly

with their spouse, we refer to them as households.

We use a sample of households that have at least one account that records spending

on energy, aggregating the data (including across accounts) to the household-year-month

level. We construct measures of monthly energy (gas and electricity combined) spending,5

monthly non-durable spending, and monthly income. Our ClearScore sample includes 11.1

million observations covering 464,000 consumers over the period 2019-23. Younger indi-

vidual and those that live in northern regions of the UK are over represented in the data –

we therefore reweight our sample to match UK population figures. Appendix A contains

more details on the sample construction and representativeness.

The energy bill rebates that households received between October 2022 and March 2023

were administered in one or two ways. Some households had their accounts directly cred-

ited with the rebate amount (or for those that use pre-paymeant, received vouchers). Other

households, that pay by direct debit, were paid a refund directly into the bank account they

use to pay their energy bills. For households in this latter group we observe the payment

of the refund. For households in the former we group we adjust their observed energy

spending to account for the value of the bill rebate.

The ClearScore data provide us with a detailed picture of spending patterns over the

period of elevated energy prices. In Figure 2.3 we show that the energy spending patterns

in the data align well with other data source. In panel (a) we show that the distribution

of energy spending in 2019 in the ClearScore data is similar to that in the UK’s national

expenditure survey (the LCFS); the principle difference is, unlike in the survey data, the

5We focus on combined gas and electricity spending as 70% of UK electricity consumers and 80% of UK
gas consumers have duel bills, meaning they pay for both gas and electricity together. This means we cannot
distinguish between spending on gas and electricity. Note, that 80% of household use both electricity and gas
(Ofgem, 2018).
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ClearScore data do not exhibit any rounding bias. In panel (b) we show that the aggregate

energy spending trend in the ClearScore data is similar to that in the UK National Accounts.

Figure 2.3: Comparison of energy spending in ClearScore with other data
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As described above, some households have variable billing and other fixed direct deb-

its. We distinguish between these two groups based on the payment method we observe

households using (e.g., direct debit or card payment) and variability in the amount they

spend (see Appendix A for details). We undertake most of our analysis on the subsample of

households that use variable billing (approximately 40% of the full sample). For this group,
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monthly energy spending closely aligns with their monthly usage. We focus on the period

when the regulatory price cap was binding. This leaves with a sample of 112,340 house-

holds and 1.44million year-months covering June 2021 to May 2023. Figure 2.3(b) shows

that the trend in energy spending for this variable sub-sample closely track that of the full

sample, albeit with more seasonal variation (as expected).

For each household-month in our analysis sample, we measure the quantity of energy

consumed by dividing spending with an energy price index. Specifically, we first subtract

the fixed standing charges, for both electricity and gas, from total monthly energy spend-

ing. We then divide this amount with a fixed-weight price index based on the unit prices of

gas and electricity. As weights we use the average share of energy spending allocated to gas

and to electricity by people living in the household’s local area prior to the price shock (over

2019-2020). We provide further details in Appendix A. Note our measure of energy prices is

designed to capture the marginal price. Ito (2014) shows evidence that, in response to com-

plex non-linear pricing schedules (involving several marginal rates), consumers respond to

average rather than marginal prices. In the UK market, the vast majority of households face

just a single marginal price for electricity and for gas.

2.5 Weather data

We use data on minimum and maximum monthly temperatures and total monthly rainfall

provided by the UK’s Met Office to control for seasonal and local weather changes that

may affect energy demand. This data is collected from 37 weather stations situated across

the UK. We interpolate using inverse distance weighting to obtain temperatures and rain-

fall at the level of Lower Super Output Areas (LSOAs – which have a mean population of

1500), and then merge this information into our Clearscore dataset based on the households

residential location.

3 The distributional effects of the crisis and current policy

In this section we provide evidence on the distribution of exposure to energy price rises

(based on pre-shock energy consumption), how average consumption responded to the

price shock, and the distribution of consumption responses.

3.1 Exposure to energy price shocks

In Figure 3.1 we document how patterns of exposure to price rises vary across households.

Specifically, we show how average monthly energy spending over 2019-2020, prior to the
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energy price shock, varies with average monthly income (panels (a) and (b)), and within

quintiles of the average monthly income distribution (panels (c) and (d)).

Panel (a) shows that richer households, on average, spend more on energy – for in-

stance, those in the top income decile, on average, spend roughly 50% more on energy than

those in the bottom decile. However, as panel (b) shows, higher income households typi-

cally allocate a smaller fraction of their total non-durable spending to energy than poorer

households. Therefore while in monetary terms higher incomes households are more ex-

posed than less well off households to price rises (i.e., in the absence of behavioral responses

their energy spending will rise by more), exposure rises less than proportionately with total

household spending.

Panels (c) and (d) highlight that there is substantial heterogeneity in energy spending,

conditional on income. For instance, although richer households spend more on energy on

average, 20% of households in the bottom income quintile spend more than £100 on energy

a month, or more than 15% of their total non-durable spending. Therefore a substantial

fraction of relatively low income households are highly exposed to energy price rises.

Figure 3.1: Pre-shock energy spending and budget shares by income
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(c) Distribution of pre-shock energy spending
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(d) Distribution of pre-shock energy budget shares
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Notes: Panel (a) shows a binscatter of households’ mean monthly energy spending in the pre-shock period (2019 and 2020)
against mean monthly income. Panel (b) shows a binscatter of household’ energy budget shares (energy spending over
non-durable spending) in the pre-shock period against mean monthly income. Panels (c) and (d) show the distributions of
pre-shock monthly energy spending and budget shares by quintiles of the average monthly income distribution.

13



3.2 Average changes in energy usage over the crisis

Figure 3.2(a) shows changes in deseasonalized log energy expenditure over the period 2020

to 2023.6 The vertical dashed lines indicate periods when the value of the energy price cap

was updated and, in April 2023, when the government ceased providing bill rebates. The

shaded area highlights the period when the energy price cap was binding for the majority

of households. The figure shows that average energy spending increased at each price cap

rise, and decreased in April 2023 after the bill rebates stopped.

Panel (b) of Figure 3.2 focuses on the period when the price cap was binding and plots

the evolution of average log energy consumption. It shows that there were sharp discontin-

uous drops in the quantity of energy consumed following price cap changes. The quantity

response for the 27% price cap, which coincided with the introduction of energy bill rebates

of £67 a month, is less pronounced that for the other cap rises. When rebates ended in April

2023 (at which point there was no price change) both energy spending and consumption

exhibits drops.

Overall, the figure indicates quantity falls (and spending rises) at the 12% and 54% en-

ergy price cap rises, consistent with an energy price elasticity in between 0 and -1. The

spending and quantity changes in response to the introduction and withdrawal of bill re-

bates indicates an economically meaningful marginal propensity to consumer energy in

response to the rebates.

There is some evidence of anticipatory effects prior to the 54% cap rise. It is possible

that some households topped up their pre-payment meters at the lower price, and then ran

this down during the higher cap period.7 Below we shows estimates of the energy price

elasticities below, and that removing variation for the months immediately prior to and

following a cap change has only a minimal impact estimates.

A potential concern with our sample, which consists of variable payment households,

is that these are not representative of the UK population as a whole. To help address this

concern we show that the impact of reweighting our sample (to match the UK population

on the basis of age and region) on price elasticity estimate. However, it is possible that there

are unobservable differences between those that pay by fixed direct debit and those who

6To deasonalise we first use the MoneyDashboard data to estimate calendar month effects over the period
2015-19 (controlling for the price of energy). These are shown in Appendix B. We then subtract the estimated
month effects from log energy spending observed in the ClearScore data from 2020 onwards to construct our
deseasonalized measure of spending. The regressions show the estimated year-month effects from January 2020
onwards, after controlling for a flexible function of local temperature and rainfall. Figure B.2 in the Appendix
shows the trends in the raw data, without controlling for any seasonality.

7For some households using old pre-payment electricity meters this would have enabled them to pay the
pre cap rise price on some post cap rise consumption. However, there was no incentive to do this for households
using a smart electricity pre-pay meters, and for any type of gas pre-pay meter, as these meters allow suppliers
to charge current rates for use.
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Figure 3.2: Log energy spending and quantities by month
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Notes: The top (bottom) figure shows total log deseasonalized energy spending (quantities) in each month.

use variable billing. Figure 2.3(b) shows that the aggregate trend in energy spending for the

variable and full sample are similar. In Appendix B we compare the raw and deseasonalized

trends in log energy spending and quantity for the variable and full samples. As is to

be expected, there is more seasonal variation in the raw trend for the variable payment

sample. However, once we strip this out, the evolution of spending over the crisis for the

two samples is very similar. We show below that this also translates into similar estimate
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price elasticities. One potential explanation for why the fixed payment sample appears to

behave similarly to the variable payment is that people were encouraged to submit regular

meter readings (especially pre and post the cap change) to ensure accurate billing.

3.3 Price elasticities

To estimate energy price elasticities, we focus on the period when energy cap changes were

most likely to be binding, from June 2021 to September 2022. For the moment, we exclude

the period following the cap change in October 2022 as this price change coincided with the

introduction of energy rebates. We return to these below.

We estimate the following equation:

log qit = γ log pt + g(tempr(i)t, rainr(i)t) + ψXt + ζi + ϵit (3.1)

where q denotes energy quantity, pt is the marginal price of a unit of energy in period t,

g(tempr(i)t, rainr(i)t) is a flexible function of minimum and maximum monthly tempera-

tures and rainfall in location r, and ζi is a household fixed effect. The coefficients γ is the

elasticity of energy demand with respect to price. Xt includes a dummy for periods dur-

ing which people were encouraged to work from home during the COVID pandemic, and,

in some specifications, a set of calendar month effects. We estimate a specification where

the dependent variables is deseasonalized, and one where it is not deseasonalized and we

control for calendar month effects.

We report results for different specifications in Table 3.1. Column (1) shows the esti-

mate for the specification that is based on deseasonalized energy consumption and controls

for local weather (in addition to household fixed effect). This gives an energy price elas-

ticity estimate of -0.49. In column (2), we report the estimate for the specification where

the outcome variable is not deseasonalized and where instead we include calendar month

dummies. This yields a similar estimate to of -0.47. In column (3), we report estimates for

the same specification as in column (1), but in this case we weight the regression accord-

ing to age, region and pre-shock energy expenditure. The resulting estimate of -0.48 can

be interpreted as the aggregate energy price elasticity. In column (4) we report the elastic-

ity estimate when we omit data for the month immediately prior to and following a cap

change, to strip out any effect arising from households that pay by pre-payment attempting

to “stock up” on their meters – this reduces the magnitude of the elasticity estimate slightly

to -0.47.
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Table 3.1: Energy price elasticities (July 2021 - September 2022)

(1) (2) (3) (4)

Log energy quantity

log(pt) -0.490 -0.474 -0.484 -0.470
(0.004) (0.005) (0.008) (0.004)

Household FE Yes Yes Yes Yes
Deseasonalized Yes No Yes Yes
Weather controls Yes Yes Yes Yes
Month effects No Yes No No
Anticipation effects No No No Yes
Reweighting by No No Age, region, exp. No

Notes: Standard errors in parentheses and clustered at the household level. All specifications include controls for local
weather (fifth order polynomials for minimum and maximum monthly temperatures, rainfall and the squared different
between the monthly minimum and maximum local temperatures) and household fixed effects. In column (2) we addition-
ally control for a calendar month dummies. In column (3) we re-weight observations by their expenditure multiplied by
inverse probability weights estimated using region and age. Column (4) includes dummies for the months immediately
prior to and after a cap change.

Heterogeneity in energy price elasticities

The distributional impact of the energy price shock is, in part, determined by the distribution

of consumer responses to the price change. In particular, if a households lowers its energy

consumption in response to a price rise, and this is primarily driven by a substitution effect

(switching to alternatives in response to relative price changes) rather than an income effect

(lowering energy consumption due to reduced purchasing power) this will act to mitigate

the welfare loss due to the price rise. Here we document heterogeneity in households’

responses to price changes. In Section 4 we outline a model that we use to decompose price

responses into substitution and income effects.

To measure heterogeneity in energy price elasticities we estimate:

log qit =
D

∑
d=1

γd log pt + g(tempr(i)t, rainr(i)t) + ζi + ϵit (3.2)

We estimate two versions of equation (3.2). In the first d indexes quintiles of pre-shock en-

ergy spending. The red line in Figure 3.3 shows that there is a downward sloping gradient

in the energy price elasticity with pre-shock energy spending: on average, households with

higher pre-shock energy spending have larger (in absolute terms) price elasticities.

We also specify a variant of equation (3.2) that allows us to jointly estimates hetero-

geneity in γ across income and pre-shock energy spending quintiles. The estimates are

illustrated by the blue lines in Figure 3.3. They show that, conditional on income, the pat-

tern of higher price responsiveness by those with higher pre-shock spending persists, and,
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conditional on pre-shock spending, higher income households tend to be less price sensi-

tive.

Figure 3.3: Heterogeneity in energy price elasticities, by pre-shock energy spending and income
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Notes: Figure shows the estimates of γ̂d from (3.2). The red line are estimated with d indexing pre-shock energy spending
quintile. The blue lines are estimated with d indexing the interaction between pre-shock energy spending quintile and
income quintile. 95% confidence intervals are shown in the grey dots.

3.4 Rebates

In column 1 of Table 3.2 we report estimates based on a regression that is similar to equation

(3.1), but with the exception that the outcome variable is log energy spending, we use data

covering July 2021 until May 2023, and we include an indicator variable for the period when

bill rebates were given. The implied energy own price elasticity is given by one minus the

coefficient on log price. Reassuringly, the elasticities are very similar to those reported in

Table 3.1 when we incorporate data following the October 2022 price rise.

In Column 2 of Table 3.2 we compare the impact on the log of energy spending from

receiving energy rebates to the receipt of ‘cost of living’ (COL) payment. These were paid

to those that receive means-tested benefits in July and November 2022 and April-May 2023.

The payments were £326 in July, £324 in November and £301 in 2023, and were therefore

considerably larger than the £66 and £67 bill rebates. Total energy spending over the period

when the rebates were in effect (inclusive of the rebate), among individuals observed in all

six months of this period, was £1090, and the average rebate imputed to these individuals

was £321. The coefficients in column 2 of Table 3.2 imply that the rebates increased average

energy spending by around 7%, or £76, which was around 22% of the rebate. By contrast,

18



the estimates imply that they only 3% of the COL payments were spent on energy. The

sample of people that received COL payments may differ to the broader sample of people

that received rebates. In Column 3, we restrict the sample to those who were recorded

as having received a COL payment at one point between July 2022 and May 2023. These

individuals had a similar propensity to spend on energy out of the COL payments, but an

even slightly higher propensity to spend out of energy rebates.

Since the fraction of those for whom the energy rebates were greater than their monthly

energy spending is small (around 15% of households in September 2022), there is little rea-

son for utility-maximizing household to treat money received through energy bill rebates

differently to other income. Evidence of labeling effects has been document with respect

to Winter Fuel Payments - labeled cash transfers to older UK households (see Beatty et al.

(2014)) - as well in the context of SNAP benefits (see Hastings and Shapiro (2018)).

Table 3.2: Effect of rebates and cost-of-living payments

(1) (2) (3)

Log energy spending

log(pt) 0.562 0.556 0.553
(0.003) (0.003) (0.005)

Rebates 0.0655 0.0678 0.0854
(0.002) (0.002) (0.003)

COL payments 0.0274 0.0245
(0.002) (0.002)

Consumer FE Yes Yes Yes
Deseasonalised Yes Yes Yes
Weather controls Yes Yes Yes
Sample Variable Variable Variable, rec. COL

Notes: Standard errors in parentheses and clustered at the household level. All specifications include controls for local
weather (fifth order polynomials for minimum and maximum monthly temperatures, rainfall and the squared different
between the monthly minimum and maximum local temperatures) and household fixed effects. Columns (1) and (2) use
data on our main analysis sample (those with variable billing); column (3) restricts the sample to only those with variable
billing the received cost-of-living (COL) payments.

4 Model

In this section we outline an empirical model of household energy demand, which we use

to quantity the welfare effect of observed and counterfactual policies. Two important fea-

tures of our approach are, first we allow for the possibility that households, in some periods

(namely when labeled rebates are administered), do not make choices that maximize true
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welfare. Second we use flexible to functional form to capture energy demands, as our ob-

jective is to trace out the distribution of household-level welfare effects.

4.1 Conceptual framework

Consider a household’s decision over how to allocate their total period budget, x, between

domestic energy consumption, e, and consumption of all other non-durables (excluding

domestic energy), n. Let pe denote the price (inclusive of any subsidy) of energy and pn the

price of other non-durables.8

The household’s total budget is x = x̃ + t, where t > 0 is a transfer given to the house-

hold and x̃ is its total budget in the absence of the transfer. If the transfer is given as a bill

rebate the household’s choice is subject to a labeling effect, which we denote by L = 1 (in

the absence of a labeling effect, L = 0). The household’s choice problem is:

ṼL(pe, pn, x; θ) = max
e,n

UL(e, n; θ) s.t. pee + pnn ≤ x. (4.1)

Both their direct decision utility function, UL(.), and the associated maximum function,

ṼL(.), depend on whether there is a labeling effect, and are indexed by a parameter vec-

tor θ. The energy and non-durable demand functions take the form e = e
L(pe, pn, x; θ) and

n = n
L(pe, pn, x; θ) for L = {0, 1}.

If the effect of labeling on the household’s choice is to change their underlying norma-

tive preferences, the functions Ṽ0(.) and Ṽ1(.) directly tell us the level of utility attained by

the household. However, in our baseline analysis we adopt the normative view that label-

ing distorts choices. In this case, the household’s decision utility function in the absence of

labeling effects, U0(.) (and hence Ṽ0(.)), reflects their true underlying preferences, and the

function that maps the budget set into the utility level the household attains, given their

choice behavior captured in equation (4.1), is given by:

V(pe, pn, L, x; θ) =

{
U0(e0(pe, pn, x; θ),n0(pe, pn, x; θ); θ)

U0(e1(pe, pn, x; θ),n1(pe, pn, x; θ); θ)
if

L = 0

L = 1.
(4.2)

V(pe, pn, L, x; θ) is similar to an indirect utility function, but with the important difference

that when L = 1 it corresponds to choices that are sub-optimal. We refer to V(pe, pn, L, x; θ)

as the household welfare function.

In Figure 4.1 we illustrate the difference between an undistorted choice (L = 0) and

a distorted choice (L = 1), by comparing the two at the same budget set (given by 0AB).

Specifically, (e1,n1) is the household’s (distorted) choice when given a bill rebate, while

8To use energy households must pay a fixed fee and marginal price. Therefore x is spending net of the fixed
fee and pe is the marginal price.
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(e0,n0) is their (undistorted) choice if they receive an unlabeled transfer of the same amount.

The undistorted choice is at a point of tangency between the U0(.) function’s indifference

map and the budget constraint and yields utility level Ū0, while at the distorted choice the

indifference curve intercepts the budget constraint (AB) and the associated utility level is

Ū1 < Ū0.

Figure 4.1: Distorted and undistorted choices

Notes: (n1,z1) and (n0,z0) represent choices with (distorted) and without (undistorted) labeling effects, and Ū1 and Ū0

the corresponding utility levels, when the consumer faces the budget set OAB. The budget set OCD represents the rotation
through the point (e1,n1) that would result in (e1,n1) being the undistorted choice under this new budget set. This
entails changing the energy price from pe to (1 − ϕ)pe and the budget from x to x − ϕpee

1.

Equation (4.2) defines the household welfare function in terms of the direct utility func-

tion U0(.). However, as our empirical model entails specifying a flexible form for the (in-

verse of) the function ṼL(pe, pn, x; θ), it is convenient to define the household welfare func-

tion in terms of Ṽ0(.). In the absence of labeling both functions coincide. This is not the case

when the household’s choice is subject to a labeling effect. However, in this case we can find

a point at which the values of the functions V(.) and Ṽ0(.) coincide, by considering the rota-

tion of the budget constraint, through the point (e1,n1), that results in tangency between a

hypothetical budget constraint and the U0(.) indifference map (line CD in Figure 4.1). This

allows us to write the household welfare function according to the following proposition.
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Proposition 1. The level of utility attained by a household when they make choices according to

equation (4.1) and when their underlying preferences are reflected in their choice behavior in the

absence of labeling (L = 0), is given by

V(pe, pn, L, x; θ) =

{
Ṽ0(pe, pn, x; θ)

Ṽ0(pe(1 − ϕ), pn, x − ϕpee
1; θ)

if
L = 0

L = 1

where e1 and ϕ are such that:

e
1 ∈ arg max

e,z
U1(e, n; θ) s.t. pee + pnn ≤ x

e
1 = e

0(pe(1 − ϕ), pn, x − ϕpee
1; θ).

ϕ is the compensated percent price reduction for energy that rationalizes the distorted

choice e1 as the welfare-maximizing choice.

The welfare effects of policy

The UK government responded to the price shock by introducing an energy price subsidy,

sO (meaning the energy price households faced related to the pre-subsidy price by pe =

(1 − sO)Pe) and a transfer of value tO via a bill rebate (and hence with a labeling effect,

L = 1). Consider a continuum of households, indexed by i, with population normalized to 1

and let (s, t,L) denote an arbitrary combination of subsidy, transfer and labeling. We write

a household’s welfare function directly as a function of the policy parameters, Vi(s, t,L) ≡
V((1− s)Pe, pn,L, x̃i + t; θi), where the i index reflects the household’s pre-policy budget, x̃i,

and preference vector, θi. We convert Vi(s, t,L) to a money-metric form using the inverse

function C(pe, pn, L, u; θ) ≡ V−1(pe, pn, L, .; θ). Specifically, letting P0
e denote the energy

price in the absence of the price shock, we define the consumer’s equivalent variation as:

EVi(s, t,L) = x̃i − C(P0
e , pn, 0, Vi(s, t,L); θi), (4.3)

which gives the monetary value household i is willing to pay in the absence of the price

shock (and hence any policy intervention), to avoid the shock with policy response (s, t,L).

To understand the role played by each element of the government’s policy response,

we compare observed policy (sO, tO, LO) to the alternative policies; no intervention (0, 0, 0),

subsidy only (sO, 0, 0), and subsidy and unlabeled transfer (s, t′, 0). In the case of an unla-

beled transfer, we consider both t′ = tO and when the transfer value is adjusted to achieve

budget balance. In the latter case we use the government’s budget constraint;

sPE
∫

i
ei(s, t,L)di + t = R̄, (4.4)
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where ei(s, t,L) ≡ e
L((1 − s)Pe, pn, x̃ + t; θ) is household energy demand and R̄ is the

resources the government uses to fund observed policy (sO, tO, LO).

Optimal policy

To consider the optimal balance between subsidies and transfers, it is necessary to specify

a social welfare function, which entails taking a stand on inter-household welfare compar-

isons. We consider a social welfare function where a household’s contribution depends both

on the percentile of the income distribution to which they belong, yp(i), and their equivalent

variation:

W(s, t,L) =
∫

i
f (yp(i))G(EVi(s, t,L))di, (4.5)

where f (.) > 0, f ′(.) ≤ 0, G′(.) > 0 and G
′′
(.) ≥ 0. The function f (.) controls the govern-

ment’s concern for vertical equity. If f ′(.) = 0 the government values a given loss equally

across households, regardless of their income level; if f ′(.) < 0 the government places

higher weight on a loss the lower is a household’s income. The function G(.) controls the

government’s concern for horizontal equity. If G
′′
(.) = 0 the government places the same

weight on a marginal cash lose to a household regardless of whether it is the first £ lost

of the 1000th. If G
′′
(.) > 0 the government places more weight on avoiding large mone-

tary losses than small loses. The government’s problem is to choose the policy parameters

(s, t,L) to minimize equation (4.5) subject to its budget constraint (equation (4.4)). Note,

as labeling distorts households’ choices and leads to higher consumption of a subsidized

good, it is clear that optimal policy entails setting L = 0. In addition, note that when the

government has no horizontal equity concerns, so G
′′
(.) = 0, minimizing equation (4.5) is

equivalent to the standard optimal tax problem of maximizing the (vertical social welfare

weighted) sum of household-level utilities.

4.2 Empirical demand model

We specify a flexible form for the choice model in equation (4.1). Using information on our

sample of households and year months (indexed τ) on energy consumption, prices (pτ ≡
(peτ, pnτ)), total budgets, an indicator for whether there is a labeled rebate and conditioning

variables, (eiτ, pτ, xiτ, Lτ, ziτ), we estimate the parameters governing the energy demand

equation and hence the maximum function ṼL(.). We use this to construct the household

welfare function based on proposition 1.

We specify an energy demand model in the Exact Affine Stone Index (EASI) class, de-

veloped in Lewbel and Pendakur (2009). This class of demand models provides a way of

capturing rich heterogeneity in behavior across households, while observing the behavioral
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restrictions implied by consumer theory. We specifying a EASI form for Hicksian budget

share demand for energy, wiτ = ω(pτ, Lτ, uiτ, ziτ, ϵiτ; Ψ), where wiτ ≡ peτeiτ
xiτ

is the energy

budget share,9

uiτ is attained level of decision utility,10 ϵiτ is a preference shock and Ψ a parameter

vector.11 A defining feature of EASI demand systems is that they give rise to implicit func-

tions for the Marshallian budget share demand and indirect (decision) utility, of the form

wiτ = ω(pτ, Lτ, yiτ, ziτ, ϵiτ; Ψ) and yiτ = υ(wiτ, pτ, Lτ, xiτ, ziτ; Ψ), where by construction

yiτ = uiτ.

We specify the implicit Marshallian budget share demand:

wiτ =
(

A+ ∑
l∈Z1

Alziτl
)
+
(

B + ∑
l∈Z2

Blziτl
)
× (log peτ − log pnτ) +

(
C1 + ∑

l∈Z1

C1l
)
yiτ

C2y2
iτ + D (log peτ − log pnτ)× yiτ +

(
δ + ∑

l∈Z2

δlziτl
)

Lτ + ϵiτ, (4.6)

The A parameters determines the budget share intercept, the B parameters govern the de-

mand response to a (compensated) price change, the C parameters capture the energy Engel

curve and D allows for an interaction effect between price responses and the Engel curve.

By including the log difference in prices in equation (4.6), we ensure preferences satisfy

adding-up, demand homogeneity, and Slutsky symmetric.12 The δ parameters captures

the behavioral effect of labeling. We allow for indicator variables for the pre-shock energy

spending decile the household belongs to (collected in the set Z2) to shift the intercept, price

response, Engel curve and labeling effect. In addition, we include seasonal month dummies

and detailed weather controls in the set of intercept shifters (Z1 ⊃ Z2).

The form for implicit decision utility consistent with equation (4.6) is:

yiτ =
log xiτ − (wiτ log peτ + (1 − wiτ) log pnτ) +

1
2
(

B + ∑l∈Z2
Blziτl

)
× (log peτ − log pnτ)

2

1 − 1
2 D × (log peτ − log pnτ)

2 (4.7)

Estimation

Let Ψ = (A, {Al}l∈Z1 , B, {Bl}l∈Z2 , C1, {C1l}l∈Z2 , C2, D, δ, {δl}l∈Z2) denote the model param-

eters. We obtain estimates for these using an iterated two-stage least squares estimator (see

Blundell and Robin (1999)). This entails fixing an initial guess of implicit decision utility

9As households pay a fixed fee for using energy, peτeiτ is variable spending on energy, xiτ is total non-
durable spending net of the fixed fee, and wiτ is the share of net non-durable spending the household allocates
to variable energy spending.

10Specifically u is given by the function VL(.) in equation (4.1).
11The budget of other non-durables is equal to 1 − wiτ , by the adding-up restriction.
12Consumer theory also requires that the inverse of the decision utility function ẼL(pe, pn, u; θ) ≡

ṼL −1(pe, pn, .; θ) is concave in prices and increasing in u. This implies inequality constraints that we check
are satisfied ex post. See Appendix C for a detailed discussion of the demand model and the regularity condi-
tions imposed by consumer theory.
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yiτ, estimating the energy budget share demand (equation (4.6)), updating implicit deci-

sion utility (equation (4.7)) and continuing the procedure until convergence. At each stage

of the iteration we estimate the budget share demand using two-stage least squares, in-

strumenting for implicit decision utility. We do this for two reasons. First, implicit decision

utility itself depends on the budget shares, which leads to a mechanical correlation between

implicit decision utility and the unobserved shock, ϵiτ. Second, it may be that total expen-

diture, xiτ, is correlated with ϵiτ – a period of unexpectedly high energy needs could lead

the household to raise total period expenditure. Our instrument for yiτ is:

ỹiτ =
log miτ − (w̄ log peτ + (1 − w̄) log pnτ) +

1
2
(

B + ∑l∈Z2
Blziτl

)
× (log peτ − log pnτ)

2

1 − 1
2 D × (log peτ − log pnτ)

2 , (4.8)

where miτ is the monthly period τ income and w̄ is the average energy budget shares across

all household and time periods.13

Measuring household welfare

With the estimated parameters, we can solve equations (4.6) and (4.7), for any set of prices,

expenditures and/or labeling, to compute the corresponding Marshallian energy demands

and maximized decision utility. We denote these functions by e(pe, pn, L, x, ziτ, ϵiτ; Ψ) and

ṼL(pe, pn, x, ziτ, ϵiτ; Ψ). When L = 0, the household’s welfare function is given by: Ṽ0(pe, pn, x, ziτ, ϵiτ; Ψ).

When L = 1, we use proposition 1, which entails finding the rotation of the budget con-

straint (captured by the parameter ϕ) through the point of distorted choice that rationalizes

this choice as an undistorted choice, which allows us to use Ṽ0(.) to measure the house-

hold’s true utility level at the distorted choice. Specifically, let e1 = e(pe, pn, 1, ziτ, ϵiτ; Ψ)

denote the distorted choice. We solve for the budget rotation ϕ using the iterative algorithm:

ϕ(i) = ϕ(i−1) + log e1 − log e(pe(1 − ϕ(i−1)), pn, 0, x − ϕ(i−1)pee
1, ziτ, ϵiτ; Ψ),

until ||ϕ(i) − ϕ(i−1)|| < 10e−3.

5 Results

5.1 Estimates

In Table 5.1 we report the demand model parameter estimates. The first column reports the

baseline parameter estimates, and the remaining columns the pre-shock spending decile

13In practice, when iterating between equations (4.6) and (4.7) we do note update the parameters of the
instrument. Rather, we initially iterate between the two equations using log miτ − (w̄ log peτ + (1 − w̄) log pnτ)
as the instrument. Using the converged parameters we construct the ỹiτ according to equation (4.8). We then
undertake the iterative estimation procedure a second time with this new instrument. The reported estimates
in Table 5.1 are the converged parameters from this second stage.
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interaction effects. The table shows that model estimates are statistically significant at con-

ventional levels. Energy consumption responses to price or total expenditure changes are

determined jointly by all the parameters, meaning individual parameter estimates are dif-

ficult to interpret. We therefore report elasticities implied by the model in Figure 5.1.

Table 5.1: Parameter estimates

×Pre-shock spending decile

2 3 4 5 6 7 8 9 10

Constant
(A)XXXXXXX 1.5712 0.0876 0.1650 0.2245 0.2754 0.3125 0.3463 0.4133 0.4630 0.5290

(0.0501) (0.0118) (0.0120) (0.0123) (0.0123) (0.0126) (0.0129) (0.0139) (0.0153) (0.0186)
Price
(B) 0.1322 -0.0041 -0.0045 -0.0036 -0.0040 -0.0032 -0.0055 -0.0065 -0.0050 -0.0195

(0.0079) (0.0014) (0.0014) (0.0014) (0.0014) (0.0014) (0.0014) (0.0015) (0.0016) (0.0018)
Implicit utility
(C1) -0.4186 -0.0113 -0.0214 -0.0290 -0.0354 -0.0398 -0.0435 -0.0519 -0.0572 -0.0631

(0.0135) (0.0017) (0.0017) (0.0018) (0.0018) (0.0018) (0.0018) (0.0020) (0.0022) (0.0026)

(C2) 0.0286 - - - - - - - - -
(0.0010)

Price× Implicit utility
(D) -0.0134 - - - - - - - - -

(0.0012)
Labeling
(δ) 0.0143 0.0004 -0.0010 -0.0006 -0.0017 -0.0032 -0.0033 -0.0039 -0.0075 -0.0158

(0.0007) (0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0010) (0.0010) (0.0011)

Notes: Estimates are for budget share energy demand (equations (4.6) and (4.7)) and are estimated by iterated 2SLS. We
use monthly income to instrument for total expenditure. The model includes month dummies, 5th-order polynomials in
local monthly minimum and maximum temperature, the squared difference between maximum and minimum temperature,
local monthly rainfall and an indicator for Dec 2021 and Jan 2022, when a work-from-home order was in place.

In Figure 5.1 we report simulated elasticities based on the period on the October 2021-

September 2022. We compare consumption during this period with counterfactual con-

sumption had the price of energy relative to other non-durables been at its “pre-shock”

April-September 2021 level. This corresponds to a 9% price increase over October 2021-

March 2022 and a 62% price rise over April 2022-September 2022.14 In panel (a) we report

mean Marshallian price elasticities, computed based on the percent change in household

energy consumption divided by the percent change in the energy price, associated with

the increase in the (relative) price of energy from its pre-shock level. We report means by

quintiles of the pre-shock energy spending and income distributions. The pattern of elas-

ticities increasing with pre-shock energy spending, and conditional on this, exhibiting little

variation by income, shown in the figure matches the evidence in Figure 3.3.

The Marshallian price elasticities reflect both substitution responses associated with the

relative increase in energy prices, and any income effects resulting from the reduction in

purchasing power due to the price rise. In panel (b) we isolate the former, by reporting

14These are the same price increases we use to estimate price elasticities in Section 3.3.
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compensated prices elasticities, which we simulate adjusting each household’s total expen-

diture so that their original consumption bundle remains affordable.15 For all groups the

mean compensated price elasticities are smaller in magnitude than Marshallian ones, im-

plying that energy is a normal good. This can also be seen in panel (c), which shows mean

expenditure elasticities. For all income and pre-shock energy consumption quintiles energy

is a necessity, with lower income and higher pre-shock consumption groups having lower

expenditure elasticities.16

Figure 5.1: Slutsky decomposition
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(b) Compensated price elasticity
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(c) Expenditure elasticity
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Notes: Figure reports price and expenditure elasticities simulated based on the demand estimates. Specifically, for observa-
tions (i, τ) during the period Oct. 2021-Sept. 2022 we compute the percent change in energy consumption associated with
the price change from the pre-shock Apr.-Sep. 2021 period and divide it by the percent price change. Panel (a) reports the
mean by pre-shock energy consumption and income quintiles. For panel (b) we repeat this exercise but adjust household
level expenditure so that the pre-shock consumption bundle remains affordable. For panel (c) we construct the percent
change in consumption due to this expenditure adjustment, divided by the percent expenditure change, and report means
by pre-shock energy consumption and income quintiles.

15These are therefore Slutsky-compensated elasticities. The Hicksian-compensated elasticities (where a
household’s total expenditure is adjusted to keep their original utility level affordable) are very similar.

16The Marshallian, compensated and expenditure elasticities are related through the (discrete) Slutksy equa-
tion. Let ϵM, ϵC and εX denote the arc elasticities for a given consumer and w the post-shock budget shares,
then: ϵM = ϵC − wεX .
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5.2 Incidence

Price shock and policy response

In October 2022 the UK energy regulator raised the energy price cap to a level 310% higher

than its level in Summer 2021. The UK government responded with the Energy Price Guar-

antee, which entailed the introduction of a price subsidy (of 38.5% of the energy price) and

a £67 per month bill rebate (which lasted until March 2023). In Figure 5.2 we summarize

the effect of the price shock and policy intervention, relative to had prices remained at their

pre-shock Summer 2021 level, across households. We consider three scenarios; had the gov-

ernment not introduced a subsidy or rebates (“No interverion”), had it introduced only the

price subsidy (“Subsidy”), and the case of the observed policy response of a subsidy and

rebate (“Subsidy+rebate”).

Panels (a) and (b) report average effects by quintile of the income distribution; panel

(a) shows the proportional impact on energy consumption and panel (b) reports the impact

on household welfare (measured in £s). In the absence of government intervention energy

consumption would have fallen, on average, by between 51%, for households in the bottom

quintile of the income distribution, and 55%, for those in the top quintile. This gradient is

driven by higher price elasticities among those with high (pre-shock) consumption, who, on

average, tend to have higher incomes. The average monthly welfare losses from the price

shock (in the absence of a policy response) range from £143 for the bottom income quintile

to £223 for the top. This gradient is driven by those with higher incomes tending to have

higher levels of energy consumption.

The price subsidy (on its own) reduces both the magnitude of energy consumption re-

sponses (which range from a fall of 33% to 37% moving from the bottom to top income

quintiles) and welfare losses (which range from £78 to £125). The proportionate reduction

in monetary welfare losses across income groups is approximately constant and around

55%, however, higher income groups gain more in £ terms (the subsidy lowers the aver-

age loss of those in top income quintile by £98, whereas it lowers it by £64 for those in the

bottom quintile). The effect of adding the bill rebate to the subsidy is to further reduce the

fall in energy consumption (to between 23% for the bottom income quintile and 29% for the

top one) and the monetary welfare cost of the price shock. The rebate reduces each income

groups’ monetary loss by around £63 (meaning it has larger proportional effect for lower

income households). There are two reasons why the £67 rebate lowers welfare losses by the

lesser amount of £62. This first is because we measure losses based on equivalent variation

defined at pre-shock prices (see equation (4.3)) and the purchasing power of a marginal £
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is less after the energy price rise. The second is that the rebate distorts behavior through a

labeling effect. We turn to the magnitude of this effect in the next section.

Figure 5.2: Impact of policy on welfare and energy consumption

(a) Energy consumption, by income
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(b) Welfare effect, by income
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(c) Distribution of welfare effects
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(d) Distribution of incremental welfare gains
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Notes: For observations (i, τ) during the period Oct. 2022-Mar. 2023 we compare energy consumption and equivalent
variation (see equation (4.3)), relative to had the energy price been at its Apr.-Sep. 2021 level, under different policy
responses. “No intervention” corresponds to no government policy response; “Subsidy” corresponds to a price subsidy
alone; “Subsidy+rebate” corresponds to the implemented response of a price subsidy and energy bill rebate. Panels (a)
and (b) show average change in energy consumption and equivalent variation by income quintiles. Panel (c) shows the
empirical cumulative distribution function of equivalent variations. Panel (d) shows the empirical cumulative distribution
function of incremental falls in equivalent variation from the subsidy and rebate.

Panels (a) and (b) of Figure 5.2 mask a great tell of heterogeneity across households that

is not captured averages by income groups. In panel (c) we illustrate this by plotting the em-

pirical cumulative density function across households in monetary welfare losses. In panel

(d) we show the empirical cumulative density of the reduction in losses due to the subsidy

and the incremental reductions in losses through adding the rebate (on top of the subsidy).
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In the absence of government intervention the bottom and top percentiles of the loss distri-

bution are £61 and £400. Under the subsidy and rebate, these percentiles fall to a welfare

gain of £30 and a loss of £171. While there is wide heterogeneity in the extent to which

the price subsidy reduces welfare losses, the incremental impact of the rebate on monetary

losses is similar across all households. This reason for this is that the subsidy is tied to en-

ergy usage (which is highly heterogeneous), whereas the rebate is constant in value across

households (though there is some variation in the extent of behavioral distortions due to

the labeling effect). As we show in Section 5.3, the relative value the government places on

limiting large losses, versus supporting low income households, has an important bearing

on the optimal policy prescription.

Labeling effect

As we document in Section 3.4, the marginal propensity to consume energy out of rebates

is substantially higher than that out of cash. In Figure 5.3 we quantity the strength of this

labeling effect across quintiles of the income distribution on energy consumption responses

(panel (a)) and welfare losses (panel (b)). In doing this we separate out two distinct chan-

nels. The first captures the distortionary impact on behavior of the labeling effect. We quan-

tify this by replacing the labeled rebate with an unlabeled cash transfer of the same amount.

The comparison of responses under “observed policy” and under this alternative policy (“-

behavioral distortion”) reflects the influence of labeling based behavioral distortions. The

second channel captures the fiscal externality induced by the labeling effect through en-

couraging consumption of a subsidized good. We quantify this channel by replacing the

rebate with an unlabeled transfer that is adjusted in value to expend the same resources as

observed policy. The removal of the labeling induced fiscal externality allows for the trans-

fer to be raised to £77, without the government expending more resources. Comparison

of policy where the transfer equals the value of the rebate (“-behavioral distortion”) and

where it equals £77 (“-fiscal distortion”) reflects the influence of this fiscal distortion.

Figure 5.3 shows that removing the behavioral distortion due to labeling leads to con-

siderably larger energy consumption falls (33% larger, on average for the bottom income

quintile, falling to 25% larger for those in the top quintile). The reduction welfare losses

due to eliminating the labeling based choice distortion is relatively modest (around £2 per

month on average). Conversely, the incremental effect of removing the labeling based fiscal

distortion on energy consumption is relatively modest (as the rise in the transfer value from

£67 to £77 exerts a relatively small income effect on energy consumption), yet it has a bigger

impact on welfare, reducing welfare losses by around £10 per month on average).

30



Figure 5.3: Impact of labeling distortion on welfare and energy consumption, by income

(a) Energy consumption
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Notes: For observations (i, τ) during the period Oct. 2022-Mar. 2023 we compare energy consumption and equivalent
variation (see equation (4.3)), relative to had the energy price been at its Apr.-Sep. 2021 level, under different policy re-
sponses. “Observed policy” corresponds to the implemented response of a price subsidy and energy bill rebate, “-behavioral
distortion” corresponds to replacing the bill rebate with an unlabeled transfer of the same amount, “-fiscal disortion” cor-
responds to raising the unlabeled transfer value until total government resource expended are the same as under observed
policy. We show average effects by income quintiles.

Behavioral responses

Our model allows us to quantity the welfare effects of observed policy (the simultaneous

introduction of a subsidy and labeled transfer) and of alternative policies. In this section we

use the period of elevated prices over April-September 2022 (prior to the introduction of the

government’s support package) to compare our model’s welfare predictions with welfare

approximations that do not entail specifying the form of preferences.

A first-order welfare approximation uses the envelope condition to approximate a house-

hold’s equivalent variation with EV1st ≡ e0∆Pe, where e0 is pre-shock energy consumption

and ∆Pe is the energy price change. This approximation is exact for a marginal price change

and has the advantage of using only information on pre-shock consumption. However, for

finite price changes it ignores any substitution effects, which results in an upwards bias. A

trapezoid approximation to the welfare cost, under the assumption of homothetic prefer-

ences, is given by EVT ≡ 1
2 (e0 + e1)∆Pe. Unlike the first-order approximation, this requires

data on post-shock energy consumption, e1, but this comes with the benefit of allowing for

substitution responses.17 The assumption of homothetic preferences has the advantage that

17This is made clear by re-writing the approximation EVT ≡ e0∆Pe − 1
2 ∆e∆Pe, where ∆e ≡ e0 − e1 is the

reduction in energy consumption. Note this can also be re-written in terms of the Marshallian price elasticity,
ϵ, using ϵ ≈ −∆e

∆p to obtain: e0∆Pe +
1
2 ϵ (∆Pe)

2.
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the approximation depends on observed (this time pre- and post-shock consumption), but

it comes at the cost of a non-homotheticity bias, which will be positive for a normal good.18

Figure 5.4: Impact of subsidy, model compared to approximations
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Notes: For observations (i, τ) during the period Apr. 2022-Sept. 2022 we compute the welfare loss associated with the
energy price rise relative to its Apr.-Sept. 2021 level. We do this using the model based equivalent variation (see equation
(4.3)) and a first-order and Trapezoid approximation. The figure shows histograms of the percent difference between the
approximations and the model based estimate.

In Figure 5.4 we plot a histogram of the percent difference between both the first- and

Trapezoid welfare approximations and the model generated equivalent variations. As ex-

pected both approximations over-predict welfare losses, relative to the model. The average

difference for the first-order approximation is 15%. The relatively large differences are un-

surprising, given the large price increases (and incentive to lower energy consumption)

households faced. The Trapezoid approximation over-predicts welfare losses, relative to

the model estimates, for over 95% of the sample, though the average difference is much

small (under the 2%). The degree of over-prediction is strongly related to households’ en-

ergy budget share – households with a pre-shock budget share below 5% have an average

difference of 1% while this with a share above 15% have an average difference of 4%. This

is consistent with energy being a normal good; energy price rises lead to a fall in energy de-

18A trapezoid approximation to equivalent variation that does not rely on homothetic preferences is
EVT−NH ≡ 1

2 (e
c
0 + e1)∆Pe where e

c
0 is the compensated pre-shock energy demand at the post-shock utility

level. However, this approximation depends on an unobserved compensated demand. Note, for a price change
rise, which means the pre-shock utility level is higher than the post-shock level, and when the good is normal
good, ec

0 < e0 and hence EVT−NH < EVT . This illustrates the upward bias in EVT .
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mand due to an income effect (which is larger for those with high budget shares) and this

translates to an upwards non-homotheticity bias in the Trapezoid approximation (which is

not present in our model, which does account for income effects). We view the fact that our

model generated equivalent variations are similar to those based on the Trapezoid approx-

imation, and that the differences between them are consistent with the bias embedded in

the approximation, as further reassurance of the performance of our model.

5.3 Optimal compensation

During October 2022-March 2023 the UK government implement a specific combination of

energy price subsidy and bill rebates. In this section we explore the optimal balance be-

tween the price subsidies and an unconditional transfer. We focus on an unlabeled transfer,

since, as we have shown, labeling lowers welfare both by distorting choices and induc-

ing a fiscal externality. However, we show in the appendix that our main conclusions are

unaffected if we instead consider a labeled transfer.

The transfer and subsidy values are linked through the government’s budget constraint

(equation (4.4)). We can therefore treat the subsidy rate as the policy parameter, with the

government’s budget constraint determining the associated transfer value. We consider

non-negative subsidy and transfer values, meaning the policy space in bounded by a sub-

sidy of 0, which implies a transfer of £201 and an energy price increase of over 245%, and a

subsidy of 57%, which entails no transfer and an energy price increase of 50%.

In Figure 5.5 we summarize how household-level monetary welfare losses vary with

the subsidy value. In panel (a) we show the average loss in each percentile of the income

distribution, and in panel (b) we report average losses within each percentile of the loss

distribution. On average, households towards the bottom of the income distribution prefer

a low subsidy and high transfer (with zero subsidy leading, on average, to welfare gains

for the bottom half of the income distribution). On average, households at top of the dis-

tribution prefer are relatively large subsidy, for instance households in the top percentile of

the income distribution see the lowest average welfare loss when the subsidy rate is 30%.

However, panel (b) makes clear that the distribution of losses is mush more dispersed than

the average losses by income percentile, and that lower subsidy values in particular, are

associated with some households experiencing particularly large monetary losses.
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Figure 5.5: Household-level welfare effects, by subsidy value

(a) By income

-100

0

100

200

300

M
on

et
ar

y 
lo

ss
 p

er
 m

on
th

, £

0 20 40 60

Subsidy rate (%)

(b) Distribution

-100

0

100

200

300

M
on

et
ar

y 
lo

ss
 p

er
 m

on
th

, £

0 20 40 60

Subsidy rate (%)

Notes: For observations (i, τ) during the period Oct. 2022-Mar. 2023 we simulate balanced-budget combinations of
energy price subsidies and unlabeled transfers. Panel (a) shows how the average equivalent variation (see equation (4.3))
in each percentile of the income distribution varies with the subsidy rate. Panel (b) shows how average equivalent variation
within each percentile of the equivalent variation distribution varies with the subsidy rate.

When setting policy the government must weight both the relative value of a £ loss

across households of different incomes (vertical equity), and how the value of a £ loss varies

with the overall loss size (which we refer to as horizontal equity). We encode these into

the social welfare function (equation (4.5)) through vertical social welfare weights, f (yp(i)),

which depend on the income percentile the household belongs to, yp(i), and by allowing

household level equivalent variation to enter through an increasing (weakly) convex func-

tion, G(EVi(s, t, 0)). We specify these functions:

f (yp(i); α) = exp(−αyp(i)) α ≥ 0

G(EVi(s, t, 0); ψ) =

{ EVi(s, t, 0)
1
ψ [exp(ψEVi(s, t, 0)− 1]

if
ψ = 0

ψ > 0,

α captures the government’s degree of concern for vertical equity (targeting policy at miti-

gating losses among the poor) and ψ captures the government’s concern for horizontal eq-

uity (targeting policy at mitigating large losses). Figure 5.6 illustrates how these parameters

determine the government’s marginal valuation of a £ loss.19 Panel (a) plots how the by-

income social welfare weights, f (yp(i); α) vary across the income distribution for different

values of α. When α = 0, the government places equal weight on a given equivalent varia-

tion loss, regardless of the individual’s income. For α = 0.2, the government places 1.2 times

19For ease of presentation we reparameterize f (yp(i); α) = f (yp(i); α̃(α)) and G(EVi(.); ψ) = G(EVi(.); ψ̃(ψ))

such that the values of α and ψ we consider are on the [0, 1] interval. The reparameterization is: α̃ = 103α−1 and
ψ̃ = 1

3.3 ∗ 100.3ψ−1.
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the weight on an equivalent variation loss for someone in the bottom percentile of the in-

come distribution relative to the same monetary loss for an individual with median income.

When α is 0.4 and 0.6 the relative weight is 2.2 and 22. When α is 0.8 only the bottom 10 per-

centiles have a relative weight bigger than 1/10 that of the bottom percentile, and when α is

1 this is true only of the bottom five percentiles. Panel (b) shows how the government’s val-

uation of an additional £ loss varies with the overall size of the loss (conditional on income).

This vertical marginal social welfare weight is given by g(EV; ψ) ≡ G′(EV; ψ) = exp(ψEV)

and is endogenous in the sense that the marginal welfare weight assigned to an individual

will vary with government policy through its effect on equivalent variation. When ψ = 0

the government values the loss of the first £ equal to all subsequent £ losses. As ψ ap-

proaches 1 the government place a very large weight on avoiding large losses.

Figure 5.6: Welfare weights
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In Figure 5.7 we show how the optimal subsidy rate (panel (a)) and associated transfer

value (panel (b)) vary with the parameters controlling vertical and horizontal equity con-

cerns. The figures shows that the degree of horizontal equity concerns is key to driving

optimal policy. For any degree of vertical equity concern, if concerns over horizontal equity

are sufficiently low, optimal policy entails a relatively low subsidy and high transfer. The

reason for this can be seen in Figure 5.5(b), which shows that for most of the equivalent

variation loss distribution, even as high as the 75th percentile, losses are increases in the

subsidy value. It is only for the top of the loss distribution that that losses are decreasing

in the subsidy level. As the government’s concern for horizontal equity becomes stronger,

its desire to limit losses of those most exposed to the price shocks becomes more influen-

tial in determining policy, and the optimal subsidy rate rises. It is for intermediate values

of horizontal equity concern, that vertical equity concerns exert the most influence on op-

timal policy. For instance, when ψ = 0.5, the optimal subsidy rate ranges from X when

the government weights households of different incomes equally (α = 0), to Y, when the
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government places almost all vertical weight on the lowest income households (α = 1).

This pattern is driven by lower income households, benefiting most on average from as a

high transfer as possible and higher income households, on average, prefering a moder-

ate to high subsidy rate. In reality the UK government opted for a relatively high subsidy

rate of 0.4, which is rationalizable in our framework only with relative strong concerns for

horizontal equity.

Figure 5.7: Optimal policy, by social preference parameters
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Notes: For each combination of α and ψ we compute the subsidy value (and associated transfer value, using the government
budget constraint, equation (4.4) that maximizes the weighted convex sum of equivalent variation (the social welfare
function, equation (4.5)). Panel (a) describes how the optimal subsidy varies with α and ψ and panel (b) describes how the
associated optimal transfer varies with α and ψ.

6 Conclusion

To add
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ONLINE APPENDIX

A Setting and data

A.1 Further details on prices and payment methods

Figure A.1: Energy price cap, energy price guarantee and cheapest available tariff for pre-payment
consumers, 2019-2023
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Notes: Data from Ofgem (2023). Figures are costs of an annual bill at ‘typical’ consumption values of gas and electricity
(12,000kWh of gas and 2,900kWh of electricity) for a consumer paying for energy using prepayment. The figure shows the
cheapest available prepayment tariff on the market (unlike Figure 2.2 which shows an average of the cheapest tariffs), as
Ofgem doesn’t publish a similar average for prepayment users. Only tariffs that are generally available to consumers are
included when selecting the cheapest. The costs of the energy price cap are an average of costs for pre-payment consumers
across regions in Great Britain.

A.2 Bank account data

Sample construction

Our focus is on consumers who are responsible for paying the households’ energy bills. We

start by selecting consumers with at least one account that records spending on energy. We

keep all periods that longer than 6 months and contain an energy purchase at least every

150 days. We aggregate the data to the consumer-year-month level, summing spending and

income across linked accounts. We construct a measure of non-durable spending, which
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comprises expenditures on: energy, groceries and other fast-moving consumer goods, ve-

hicle fuel, childcare, recreation, personal services, transport services, other bills. Income is

measured as money flowing into the account, excluding transactions tagged as bank trans-

fers.

Table A.2 shows the number of consumers and observations in each year of the data.

Over the full 2019-23 period, we have more than 11 million observations covering 464,000

consumers. 2019 is the first year of the ClearScore data so there are fewer users and obser-

vations in that year. In our analysis, we either control for consumer fixed effects to remove

any sample compositional changes, or use a balanced panel that consists only of consumers

present over the whole time period. This balanced sample contains 2.8 million observations

for 68,000 consumers.

Table A.1: Number of consumers and observations in the ClearScore data

Number of

Consumers Observations

2019 146979 648085
2020 282799 2628777
2021 351567 3173922
2022 397791 3716342
2023 242768 963610

Full sample 464885 11130736
Balanced sample 68230 2817357

Notes: The first column shows the number of consumers and the second column the number of observations (consumer-
year-months) present in each year of the sample and in total. The balanced sample is defined as consumers who are present
between 2019 and 2023 (inclusive).

Representativeness

Figure A.2 compares the geographic and age composition of the ClearScore sample with the

UK population. The ClearScore data overrepresents younger individuals and those living

in the North West, and underrepresents those in London and the South East. We use the

population data to construct weights based on region and 5-year age bands that we use to

reweight the data to match the UK population.

Figure A.3 compares the distributions of income, non-durable spending, and energy

spending in the ClearScore data (reweighted along age bands and region) and the Living

Costs and Food Survey. The distributions align closely.
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Figure A.2: Age and geographic sample composition
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(b) Age
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Notes: The left-hand panel shows the fraction of (i) users in the ClearScore sample and (ii) the UK population in each
region. The right hand panel shows the fraction of (i) users in the ClearScore sample and (ii) the UK population in 5-year
age bands (measured in 2021).

Figure A.3: Comparison of spending and income with the Living Costs and Food Survey

(a) Income
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Notes: The figure compares the distribution of monthly income (top left), non-durable spending (top right), and energy
spending (bottom) in the ClearScore data with that in the Living Costs and Food Survey. Distributions drawn for 2019;
for the ClearScore data we take the average of each variable across the months they are present in the sample. ClearScore
data are reweighted along age and region to match the UK population.
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Identifying energy payment method and constructing weights

Consumers pay for their energy consumption in different ways. The most common method

is to pay via direct debit with a fixed payment amount each month. We refer to consumers

paying via this method as belonging to the “fixed payment sample”. The remaining con-

sumers pay in such a way that their monthly energy spending corresponds to their monthly

energy usage (the spending of those in the fixed payment sample corresponds to their av-

erage (over the year) estimated energy use). We refer to these consumers as the “variable

payment sample”. This consists of people who pay by variable direct debit, pre-pay for

their energy, or pay via standard credit (i.e. pay the bill they receive each period using card

payment). We identify each of these payment methods in our data as follows.

The data contain information on the payment type of each transaction, such as: direct

debit, card payment, or transfer (this is extracted from consumers’ bank statements). We

first identify all direct debit payments using this variable. We identify consumers on “vari-

able” direct debits as those for whom the payment amount changes at least every other

month, on average. Pre-payment consumers are identified as those who do not pay by di-

rect debit, and whose payment amount is both less than £100 and ending in either a 5 or

a 0 (i.e. a round number). Finally, standard credit consumers are those that do not pay by

direct debit and do not satisfy the requirements for pre-pay described above.

Table A.2 shows the number observations (consumer-year-months) for our fixed and

variable payment samples, where we split the variable payment sample into variable direct

debit, pre-payment and standard credit. When reweighted to match the UK population

along age and region, 62% of observations are fixed direct debit payments. The remaining

37% are variable payments, of which the majority are those that pre-pay for their energy.

Figure A.4 compares the distributions of the variable payment sample with the full sam-

ple. The distributions are similar, although the average income is a bit lower in the vari-

able payment sample. This is to be expected since pre-payment tends to be more common

among low-income consumers. We construct weights that adjust the variable sample to

match the full sample on the basis of income decile.

Figure A.5 provides a validation of our sample definition by looking at variability of en-

ergy spending across the calendar year. The figure plots the average monthly energy spend

in the pre-crisis period (2019-2020) for the fixed payment sample, the variable payment sam-

ple, and the subset of the variable payment sample that are direct debit consumers. It shows

that, as we would expect, the fixed payment sample sees essentially no change in payment

amount over the calendar year. The variable payment samples see higher payments in the

winter and lower ones in the summer. This gives us confidence that our variable payment
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sample consists of consumers whose energy spending closely corresponds to their energy

usage.

Table A.2: Number of observations by payment type

Observations

No. Unweighted % Weighted %

Fixed payment 6380450 57.3 62.2
Variable payment 4750286 42.7 37.8
which consists of:

Variable direct debit 395508 3.6 4.1
Pre-payment 3883193 34.9 30.1
Standard credit 471585 4.2 3.6

Notes: The first column shows the number of observations in the fixed and variable samples, with the latter further split
into the three different payment types. The second column shows the unweighted share of observations in each sample and
the third column shows the weighted share using age and region weights to match the UK population.
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Figure A.4: Comparison of spending and income between the full and variable payment samples
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Notes: The figure compares the distribution of monthly income (top left), non-durable spending (top right), and en-
ergy spending (bottom) in the full sample with that of the variable payment sample. Distributions are drawn over the
consumer’s average of each variable over the period they are present in the sample. The grey and red bars show the distri-
butions weighted by age and region to match the UK population. The blue line reweights the variable payment sample to
match the income distribution of the full sample.
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Figure A.5: Seasonality of energy spending by payment type
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Notes: We estimate the average energy spending in each calendar month in 2019 and 2020 for three samples: the fixed
payment sample, the variable payment sample and the subset of the variable payment sample that pay via direct debit.
We control for user fixed effects. The regressions are weighted to match the age and region composition of the UK, and
the variable sample is also weighted to match the full sample on the basis of income decile. 95% confidence intervals are
shown.

B Additional event study results

Figure B.1: Estimated seasonality in energy spending
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Notes: The figure shows the month effects in log energy spending estimated using the Moneydashboard data over the
period 2015-19, controlling for the log CPI for energy.
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Figure B.2: Log energy spending and quantities by month, seasonal
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(b) Quantity
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Notes: The top (bottom) figure shows total log energy spending (quantities) in each month, without controlling for sea-
sonality or temperature fluctuations.
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Figure B.3: Log energy spending and quantities by month, comparison of full and variable sample
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(b) Spending (deseasonalized)
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Notes: The top (bottom) left figure shows log energy spending (quantities) in each month before any seasonal adjustment,
comparing the variable sample with estimates for the full Clearscore sample. The top (bottom) right figure shows deseason-
alized log energy spending (quantities) in each month, comparing the variable sample with estimates for the full Clearscore
sample.
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C Details of energy demand model

Here we give further details on the consumer preference model underlying our demand

equation (equation (4.6)).

C.1 Exact Affine Stone Index demand

Consider an individual’s problem of allocating their total expenditure – denoted in logs

by x – across J goods, where p and w are J × 1 vectors of log prices and budget shares.

The individual is characterized by an L× 1 vector of observable demographic variables (we

denote the set of L demographics Z). ϵ is a J × 1 vector capturing unobserved heterogeneity.

The EASI demand system, proposed by Lewbel and Pendakur (2009), has a log-expenditure

function of the form:

C(p, u, z, ϵ) = u + p′m(u, z) + T(p, z) + S(p, z)u + p′ϵ,

where m(u, z) is a J-vector valued function and T(p, z) and S(p, z) are single valued func-

tions.

By Shephard’s Lemma the Hicksian budget shares are:

w = m(u, z) +∇pT(p, z) +∇pS(p, z)u + ϵ

Substituting into the log-expenditure function and rearranging yields the implicit Marshal-

lian budget shares,

w = m(y, z) +∇pT(p, z) +∇pS(p, z)y + ϵ,

where implicit utility takes the form:

y =
x − p′w − T(p, z) + p′∇pT(p, z)

1 + S(p, z)− p′∇pS(p, z)
,

and where by construction y = u. Implicit utility is an affine transformation of the Stone

price index, x − p′w.
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C.2 Our specification

We use the following functional forms:

m(u, z) =A0 + Az0 +
R

∑
r=1

(cr + Crz2) ur

T(p, z) =
1
2

p′
(

B0 + ∑
l∈Z1

Blzl

)
p

S(p, z) =
1
2

p′Dp,

where z1, z2 and z3 are weak subsets of the demographic variables, Z0,Z1,Z2 ⊆ Z .

The leads to Marshallian implicit budget shares of the form:

w = A0 + Az0 +

(
B0 + ∑

l∈Z1

Blzl

)
p +

R

∑
r=1

(cr + Crz2) yr + Dpy + ϵ,

where implicit utility is

y =
x − p′w + 1

2 p′ (B0 + ∑l∈Z1
Blzl

)
p

1 − 1
2 p′Dp

.

Consumer theory requires that the demand functions satisfy adding up and the expenditure

function is homogeneous in prices; these properties are satisfied as long as 1′JA0 = 1, 1′Jcr =

0 and 1′JCr = 0n(Z2) for r = 1, . . . , R, 1′JB0 = 1′JB1 = 1′JD = 0J , 1′JA = 0n(Z0) and 1′Jϵ = 0. It

also requires symmetry of the Slutksy matrix of substitution effects, which is satisfied if B0,

Bl and D are symmetric.

As our focus is on energy demand, we specify a two good demand system over energy

and other nondurable consumption. In this case we can impose the adding up, homogene-

ity and Slutsky symmetry regularity conditions in the demand equation for one of the two

goods (the energy equation) by specify the demand equation:

wE =

(
A0 + ∑

l∈Z0

Alzl

)
+

(
B0 + ∑

l∈Z1

Blzl

)
(pE − p0) +

R

∑
r=1

(
cr + ∑

l∈Z2

Clrzl

)
yr + D(pE − p0)y + ϵ,

(C.1)

which is same as equation (4.6). It is not necessary to estimate demand for other non-

durables as the only unknown parameter in the second equation is the constant term, which

can be obtained as AO
0 = 1 − A0.

Two other regularity conditions implied by consumer theory are that the expenditure

function (which is given by c(p, u, z, ϵ) = exp (C(p, u, z, ϵ))) is concave in prices and strictly

11



increasing in utility. In our two good case, this implies the inequality restrictions:

(wE)2 − wE + B0 + ∑
l∈Z2

Blzl + Dy < 0 (C.2)

(pE − pO)

(
R

∑
r=1

(
cr + ∑

l∈Z1

Clrzl

)
ryr−1 +

1
2

D(pE − pO)

)
> −1, (C.3)

which we check are satisfied post estimation.
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