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Abstract

This paper assesses the welfare implications of introducing airport slot auctions. Given the absence of

an existing market and available bids, slot values are derived from airlines’ additional profits, utilizing a

flight-level structural model. This model considers various factors, such as consumer preferences, schedul-

ing efficiencies, and aircraft-specific costs, with a new flight-level dataset facilitating its estimation. The

estimated network benefits carry through the market-based allocation, skewing the resulting slot allocation

towards dominant carriers within their hub airports. Consumers benefit from the auction and surprisingly

prefer a mechanism without quantity caps. This preference is attributed to the convenience benefits of larger

carriers outweighing the gains from increased competition.
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1 Introduction

This paper investigates the welfare effects of implementing a market-based mechanism to allocate a scarce and

highly valuable resource: airport slots. Airlines vie for take-off and landing rights twice yearly at over 200 of

the world’s busiest airports with limited capacity. A global airport slot allocation policy has been established

to streamline this process across various airports. Key aspects of this policy include slots being distributed

free of charge and airlines retaining their departure rights from the previous year as long as they cancel less

than 20 percent of associated flights. The airport slot policy has garnered considerable attention due to its

implications for airline competition, market efficiency, and potential windfall profits for slot-owning airlines.

Amidst discussions on noise reduction, pollution control, and sustainable aviation, the need for a more efficient

slot allocation policy is increasingly apparent. As flight movements come under scrutiny, comprehending the

potential impacts of an alternative slot allocation system becomes vital for policymakers.

A well-designed auction mechanism assigns scarce resources to the firms that value them the most, typically

leading to maximizing allocative efficiency as well. Market-based approaches are commonly employed for optimal

assignments ranging from radio spectrum usage licenses to renewable energy production contracts. However,

transitioning to auctions for airport slots may not necessarily enhance welfare. Firstly, a firm’s valuation of

a slot depends on the profits it can generate by operating flights in that slot, potentially leading to increased

consumer costs. Secondly, since time slots are not tied to specific routes or flights, different airlines can utilize

them for various markets, disrupting the alignment between allocative and productive efficiency and resulting

in distributional implications. Moreover, the airline industry differs in that consumers derive some benefits

from airlines having a larger share of airport slots due to associated convenience perks, a phenomenon widely

documented.1 It remains uncertain ex-ante whether these benefits outweigh the negative impacts stemming

from reduced competition.

This paper presents the first welfare assessment of introducing auctions for airport slots. To accomplish

this, I develop a flight-level structural model of demand and supply, adding significant detail to the existing

literature. This model is estimated using a novel dataset of flights, which includes routes between two of

the most slot-constrained airports, Paris Charles de Gaulle (CDG) and Paris Orly (ORY), and 119 global

destinations accessible by direct flight during one flight season (summer 2018). A notable aspect of the model

is its consideration of consumer preferences regarding flight departure times. Airline carriers apply higher

equilibrium mark-ups for more popular departure times, which emerges as a key driver for the greater value of

morning slots than afternoon slots. Furthermore, the model captures spillover effects across flights and markets,

influenced by demand and supply factors. Estimating this model with a comprehensive global flight-level dataset

adds to a deeper understanding of the airline industry, particularly as existing literature predominantly relies

on US route-level data.

My empirical findings highlight the significance of the carrier’s flight network. I observe diseconomies of

scope in the number of destinations and economies of scale in the number of flights. Moreover, substantial

scheduling efficiencies are evident. Specifically, a one standard deviation increase in the spacing of flights

from the departure airport (by the same carrier and date and to any destination) leads to an 11.7 percent

increase in costs, with other variables held constant at their sample means. On the demand side, consumers,

particularly those in the business segment, place high value on flights offering better connection opportunities

1As documented by Borenstein (1989), Berry (1990), Brueckner et al. (1992), Berry and Jia (2010), Bontemps et al. (2021),
Ciliberto et al. (2021), amongst others.
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and are willing to pay a premium for them. These asymmetric network benefits are reflected in slot values.

Consequently, transitioning to a market-based allocation of airport slots risks exacerbating concentration at the

airport unless the mechanism is designed to favor small bidders or newcomers specifically.

In essence, a departure slot s grants the carrier the right to schedule one flight departing from the airport at

the specified time and day of the week. The value of this slot to carrier a, denoted by ν(a, s), is defined as the

incremental profits generated by the carrier when operating a flight in that slot. These profits are derived in

market equilibrium and hinge on various factors such as the timing of the slot, the costs of and demand for the

flight, and the role of the flight in the carrier’s network. Additionally, the opportunity cost of winning the slot

is not negligible. Slots hold greater value for a carrier when the slot use of one of its competitors is expected

to reduce its profits significantly. This characteristic of the slot allocation issue leads to what is known as slot

hoarding behavior, where carriers may even operate flights at a loss to retain their slot rights.2 Considering all

these factors, computing the full slot value would necessitate solving the market equilibrium numerous times,

which is particularly demanding given the comprehensive demand and supply model with spillovers across flights

and markets. I approximate two aspects of the slot value to speed up the analysis by a factor of about 240,000.

Carriers are assumed to operate their best-performing available flight in the slot rather than the flight that

would yield the most additional profit, and which flight they choose is considered public information. Section

2 provides further details about the proposed slot value characterization.

My approach involves aggregating all incremental profits for a flight based on the value of the departure

slot at a single airport. This scenario assumes that only slots at one airport are auctioned while other airports

continue their current process of awarding slots for free. Additionally, the slot value should be considered to

apply to both the departure and reasonably close arrival slots at the origin airport. The estimated slot values are

adjusted to apply across the 31-week flight season, creating a market for weekly slot pairs (WSPs) pertinent to

this industry. This approach effectively captures the undeniable complementarity between arrival and departure

slots at one airport and between series of weekly departure rights that facilitate network stability during the

flight season. In addition, the nature of complementarity among WSPs is transparent and rooted in the model.

An additional WSP reduces costs for all other flights operated on the same date to any destination by improving

scheduling efficiencies and benefiting from economies of scale in flights. Furthermore, it increases demand non-

linearly for all existing flights to the same destination on the same date, which can be interpreted as an expected

delay effect. Numerical simulations of the model indicate that the complementarity across multiple WSPs is

typically small since they are integrated into existing flight networks, limiting the impact of incremental cost

savings or demand expansion. However, the complementarity can be significant for carriers with limited or no

operations at the airport.

The median departure-arrival slot pair utilized for a weekly flight during a single flight season is estimated

to hold a value of e579k. Air France, the largest carrier with over 50 percent of the slots in its global hub,

tends to have higher slot values than other carriers for many slots. These discrepancies in slot values are

partially attributed to variations in costs and demand. Air France benefits from a denser network and higher

flight frequency to numerous destinations, giving it a competitive edge. Moreover, Air France operates some

of the most lucrative flights from Paris to overseas destinations and is expected to expand its offerings in this

regard. Comparing my findings to the scant information available regarding the prices paid for slots at London

Heathrow Airport shows that my approach yields prices of a similar magnitude. While achieving a perfect

2See, e.g., De Wit and Burghouwt (2008), Fukui (2012), Miranda and Oliveira (2018), Fu et al. (2015), Kösters et al. (2023).
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match is not the goal, obtaining similar prices validates the effectiveness of this approach that recovers auction

values via their link with equilibrium profits.

To better understand the primary drivers of slot values, I conduct a regression of ν(a, s) on variables

associated with the timing of the slot, the carrier’s network, the flight, and competition at the route level. As

anticipated, morning slots hold higher value; departing before 11 am increases the slot value by 25 percent. Slots

at CDG carry greater value than those at ORY, albeit only on weekdays. All else being equal, slots are more

valuable to carriers that presently possess them than to carriers competing for them, indicating the advantage

of optimizing their flight network around the take-off and landing rights they currently hold. Moreover, slots

command a significant premium for the dominant carrier at their global hub, even after accounting for flight

connectivity and market competition. This advantage for the dominant carrier is equivalent in magnitude to

utilizing the slot for a flight with either one standard deviation larger capacity or a destination one standard

deviation further away. Given these variables, the first two moments of the idiosyncratic (residual) slot value

distribution are higher for the dominant carrier than other carriers, suggesting that an asymmetric auction

model would best characterize values in this market.

The estimated slot values are used to compute the welfare impacts of introducing an efficient mechanism in

this market. The mechanism assigns each WSP to the carrier with the highest ν(a, s). I observe that the final

ownership shares of the participating bidders are minimally affected by the auction; only easyJet experiences

some loss of slots to other bidders, and apart from that the four bidders grow proportionally. Numerous slot

trades occur, resulting in a substantial surplus for the median winning bidder. The absence of a secondary

market for slots explains these findings; carriers typically cannot capitalize on opportunities to sell their least

valuable slots and acquire new ones to enhance their network’s value.

I use the model estimates to address the core indeterminacy in this environment as clearly identified in

Borenstein (1988): efficient markets for licenses, which do not precisely determine prices, quantities, or even the

applicable market, do not necessarily improve welfare or consumer surplus. I find that introducing a market

for airport slots would be welfare increasing; re-assigning the 216 separate WSPs to the highest ν(a, s) firms

is estimated to increase total welfare by approximately e96 million. Much of this is driven by e70 million

higher consumer surplus. Due to the modeled spillovers through network effects coming through demand and

supply factors, consumers in all markets are affected regardless of whether the product offering changes in those

markets. The compensating variation differs substantially across markets, pointing to the policy’s distributional

impact, which leaves some consumers worse off. By contrast, the variable profits are estimated to increase for

all participating firms as partly driven by the better utilization of the slots. Whether or not firms are better off

overall depends on the exact auction mechanism (pinning down the price).

To gauge the scale of this market, I assume that the regulator would auction off only 10 percent of the

slots each time to maintain continuity, with the winning bidder granted airport take-off and landing rights for

5 years. In this scenario, each auction involves approximately 900 slot series for the two airports in the study.

Additionally, approximating the price as the second-highest value, akin to the Generalized Vickrey Auction,

this is estimated to generate e2.2 billion in auction revenues. For context, these auction proceeds would be

similar to those from the latest auction for 310 MHz of spectrum in the 3.4 - 3.8 GHz band conducted by the

French communications regulator Arcep.
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1.1 Literature

This paper aims to connect the two parallel pillars of research in Industrial Organization: equilibrium models

of demand and supply for posted price markets (e.g., Berry (1992, 1994), Berry et al. (1995), Goldberg and

Verboven (2001), Berry and Haile (2014)), and equilibrium models of bidding for auction markets (e.g., Paarsch

(1992), Laffont et al. (1995), Guerre et al. (2000), Bajari and Hortaçsu (2003)). The auction literature leverages

observed bids alongside game-theoretical equilibrium models of bidding to identify bidders’ latent values (or their

marginal costs), typically used to simulate the welfare impacts of alternative allocation mechanisms. I propose an

alternative value-elicitation method, defining the item’s value directly in terms of its profit-generating potential

to the firm and estimating these profits with an equilibrium model of demand and supply in the industry. This

framework is especially valuable for analyzing welfare effects of introducing a market, such as transitioning from

a lottery or a first-come-first-serve allocation to an auction or matching mechanism or when revealed preference

data from an existing market mechanism is unavailable. Doraszelski et al. (2017) is the only other paper I know

performing such an ex-ante analysis, using an accounting model to estimate values for US broadband licenses

before the auction. A benefit of my structural approach is that it enables counterfactual welfare analysis.

Relatedly, Einav and Levin (2010) discuss parallels between demand estimation methods developed for auction

and posted price markets.

The paper also contributes to the empirical air transportation literature (including Berry (1990), Berry

(1992), Brueckner and Spiller (1994), Berry et al. (2006), Berry and Jia (2010), Ciliberto and Williams (2010),

Aguirregabiria and Ho (2012), Gayle (2013), Ciliberto and Williams (2014), Lazarev (2013), Park (2020), Aryal

et al. (2021), Bontemps et al. (2021), Williams (2022)). Noteworthy are Williams (2022) and Lazarev (2013),

which, like this paper, depart from the typical disaggregated route-level analysis to consider the influence of

flight characteristics (in their cases to study dynamic pricing behavior). Despite the industry’s acknowledgment

of the importance of airport slots dating back to Levine (1986), most literature abstracts from them. An

exception is Park (2020), who evaluates slot divestitures in the American Airlines / US Airways merger, modeling

demand for segments of routes and finding that the divestiture policy increased consumer surplus. Ciliberto

and Williams (2010) provide empirical evidence of entry barriers that carrier investment in gates poses. Other

studies, such as Borenstein (1989), Fukui (2012), Reitzes et al. (2015), Ribeiro et al. (2018), and Odoni (2020),

focus on various aspects of airport slot policy without simulating equilibrium effects when the industry reacts to

alternative policies. Grether et al. (1979), Rassenti et al. (1982), and related operations research papers examine

the computational and operational feasibility of market-based airport slot allocation mechanisms. What sets

this paper apart is its focus on the welfare implications of an efficient slot allocation mechanism, considering

participating firms’ equilibrium price and product strategies, while leaving the mechanism’s design for future

exploration.

The paper furthermore adds to the literature on auctions with after-markets. Efficient auctions typically

bolster welfare by assigning items to the highest-value users (bidders). Still, welfare impacts become theoretically

uncertain when these users compete downstream (Borenstein (1988), Janssen and Karamychev (2009), Hazlett

and Muñoz (2009), Cramton et al. (2011), Gretschko et al. (2016), Kasberger (2020), Ershov and Salant (2022)).

This literature predominantly focuses on broadband spectrum auctions and the associated telecom services

market. Winning more spectrum licenses reduces the marginal cost of providing services across all markets,

addressing the allocation of multiple marginal-cost-reducing licenses. While this applies to airport slot auctions
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due to estimated scheduling efficiencies and economies of density, additional demand-side network effects come

into play. Moreover, as Borenstein (1988) points out, a crucial complicating factor is that the auctioned license

does not specify the market or product it applies to — carriers can choose which flight to operate in the

slot. Hence, both network effects and product choice are considered. A related line of research captures that

firms first decide which markets to enter or products to offer before setting equilibrium prices (e.g., Eizenberg

(2014), Wollmann (2018), Fan and Yang (2020), Park (2020), Bontemps et al. (2021)). Those papers follow the

revealed preferences approach developed in Pakes (2010) and Pakes et al. (2015), necessitating that observed

choices reflect (only) profit-based factors. When binding slot restrictions are introduced, the fixed entry costs

(here, to operate a flight) can no longer be bounded. Instead, I approximate the optimal choice of product

relying on the detailed accounting of demand and costs for a flight paired with operational constraints.

Finally, the proposed framework can be used to estimate bidder values for packages of items, contributing to

a set of papers that perform empirical analysis of combinatorial auctions (Fox and Bajari (2013), Cantillon and

Pesendorfer (2007), Kim et al. (2014), Kong (2021), Xiao and Yuan (2022), and Gentry et al. (2023)). Benefits

of my approach are that it is independent of the auction format and that the estimated model parameters

provide deep insight into the drivers of the complementarity.

2 The value of a slot

A departure (or arrival) slot gives the carrier the right to schedule one flight departing from (or arriving at)

the airport at that specified time and day of the week. This flight generates a certain amount of profits for the

operating carrier depending, in equilibrium, on the timing of the slot, the costs of and demand for this flight,

the role of the flight in the carrier’s network, and the flight offerings of competing carriers. I take all these

factors into account. In this section, I define the value of an airport slot to an airline (section 2.1) and what

this implies for the outcome of an auction for slots (section 2.2). In the next section, I propose a flight-level

equilibrium model of demand and supply to estimate these slot values.

2.1 Defining slot values

First, some notation must be defined. Each slot (s ∈ S) is associated with a departure airport, departure day

of the week, and departure hour, the set of which is indicated by Ds.3 To indicate that flight j is operated in

slot s, I indicate that its flight-level characteristics, Xj , are contained in the set Ds. To clarify that flight j

departs from the departure airport associated with slot s, regardless of its departure day or time, I use Xj ∈ As.

Airlines are denoted by a ∈ A and markets by t ∈ T . A flight is denoted by f and the flight that airline a offers

in slot s is given by fa(s) (the determination of which is given below). The set of flights offered by all airlines

across all markets is denoted by F , and Fs(a) indicates the set of flights when airline a owns slot s.

Importantly, each slot can only be used for one flight. Hence, the difference in flight offerings when airline

a or airline a′ owns the slot consists of the two flights that they would operate in the slot, as in

Fs(a) \ Fs(a
′) = fa(s) and Fs(a

′) \ Fs(a) = fa′(s). (1)

3Slots are actually associated with a 5-minute time interval, but for simplicity and empirical feasibility, I consider hours. The
model focuses on departure slots but can be applied to arrival slots as well.
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Moreover, presuming that slots cannot be added to the congested system, the difference between the counter-

factual sets of flights above and the baseline set of flights in the data are exactly two flights; the flight whose

rights expired and that is taken out of the schedule (fX(s)) and the flight that is added, such that ∀a ∈ A

Fs(a) \ F = fa(s) and F \ Fs(a) = fX(s). (2)

Two initial simplifications regarding the choice of flight should be highlighted. Equations (1) and (2) implicitly

consider that when one flight is added or removed from a carrier’s network, the rest of the network does not

change as a direct response. This is, to some extent, supported by the scarcity of slots and the complexity of the

network. While airlines continuously work on improving their networks to meet demand best — for instance,

all Air France flights to Chicago are moved to a new slot window in the summer season of 2019 (S19)—, the

data also supports the lack of rigorous changes to the flight network when one flight is added or removed. This

can be demonstrated by observing changes in Air France’s flight network, which has the majority of departure

slots in the data and is, therefore, in the best position to change its flight offerings. I focus on destinations

where in S19 at most one more or fewer flights are offered than the same season the year before. In all six of

these destinations, none of the added flights is offered in slot windows that weren’t previously used to serve this

market, and no slot windows are removed when reducing the offered flights by one. This means that new slots

fit the existing slot series but for one additional or one fewer week. There is some reshuffling to the number of

flights in each slot window, but this concerns less than 5 percent of the flights.4

Furthermore, when selecting which flight to offer at slot s, the airline is restricted to selecting a flight from

their existing network (Fa). This limits the risk of an exposure problem; only airlines who at baseline already

operate from the airport are considered as competitors, and only flights to destinations that are already served

at baseline can be added. It circumvents the idea that a critical mass of departure rights needs to be won by

an (entrant) airline before it is worthwhile to offer flights from an airport.5 Only considering the flight network

of a carrier at baseline avoids having to model the entry decision of what would be the next best destination

for an airline to expand its network to.6

The data justifies this approach. 92 percent of the flights newly offered in S19, by any carrier and to any

destination reachable from Paris ORY and Paris CDG, go to a destination that a carrier flew to in S18. Some

of the new destinations offered by carriers that were already present at the departure airport are operated with

fewer flights than those offered by carriers new to Paris. This suggests that the fixed costs to offer flights to

a new destination when already operating at the departure airport are lower than when setting up operations

4Table C1 in the online appendix documents these facts. The statistics indicate that network changes are sometimes made, but
mostly flights are added in existing slot windows and a small share of flights in existing windows is updated between the two flight
seasons. For example, the 4.17 for Calvi reflects that one flight has been added in S19 to the single slot time already used for 23
flights in S18. While several changes are made to the flight offerings to San Francisco (10 more flights are added to the Thursday
3 pm slot, 9 to the Thursday 3 pm slot, and 6 to the Wednesday 3 pm slot, and some flights are removed from the other slots),
these changes constitute only a small share (0.23 percent) of all flights in those slots. Note also that S19 is one week shorter than
S18, so we can tell from the table that Air France offers one weekly flight to Djibouti in both seasons. The change in the number
of flights in that slot is 3.33 percent corresponding to 1/30 flights removed in the single slot window.

5Aguirregabiria and Ho (2012) estimate that (for a sample of the largest US routes) without non-stop connections in the two
endpoint cities a carrier has to pay an entry cost of 536, 000, whileacarrierwith53connectionsateitherendpointpaysonly45,000 to
start a new route between the two cities.

6Ciliberto et al. (2021) and Bontemps et al. (2021) model entry and pricing in airline markets, abstracting from binding slot
constraints. Park (2020) considers slot constraints but, due to data limitations, can only generically consider them. Likewise,
Ciliberto et al. (2021) and Bontemps et al. (2021) offer a simplified demand model, abstracting, for instance, from heterogeneity
in consumer preferences that Berry and Jia (2010) find to be important, to estimate the two-stage entry and pricing model with
spillovers across markets. My approach uses a rich second-stage model of demand and supply given the network of flights, combined
with a simple entry choice, to obtain realistic and differentiated slot values accounting for network effects that spill over across
flights and markets.
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from scratch. All these forms of market entry are minor compared to expansions of the existing flight network.7

Airlines compete for a slot at auction, meaning that if they do not win, one of their competitors might. This

matters if that competitor uses the slot to add a flight to a market that the airline itself also serves, as the

competitor will steal some of its business. This feature of the slot allocation problem makes the opportunity

cost of winning a slot at auction not zero, so that firms care about the winning bidder’s identity even if they lose

the auction themselves. The fact that the willingness to pay includes the value of deterring entry or expansion

of competitors affects the efficiency of the market-based mechanism (as pointed out in Cramton et al. (2011)).

The choice of flight and dependence on competitors’ flight choices complicates the estimation of slot values.

To see why, consider a simplified case with only two airlines, a and a′. The value of slot s to airline a would be

defined as the difference in total profits when a owns the slot and when a′ owns the slot

∑
K∗a
(
Fs(a)

)
−
∑

K∗a
(
Fs(a

′)
)

(3)

subject to

fa(s) = arg max
j∈{Fa|Xj∈As}∪∅

[∑
K∗a
(
F \ fX(s) ∪ j

)
−
∑

K∗a
(
F \ fX(s)

)]
fX(s) is known

The vector K∗a(F) stacks the equilibrium profits from all flights offered by airline a given F , multiplying

the vector of average flight-level markups Ba(F) with the equilibrium number of seats sold Q∗a(F), defined in

section 3. Two complications arise when determining the full slot value defined in (3). The first is computational

and relates to the choice of flight. Determining which flight adds the most value to an airline’s flight network

requires solving for the equilibrium in all affected markets for each of the flights (that depart from As) in the

networks of both airlines –as network effects and spillovers across flights and markets are considered relevant

here.8 That means that the market equilibrium needs to be computed |F| + 1 times if all flights are offered

from As, for each of the affected markets, only to determine where the airlines would use their slots for. That

is not a feasible journey to embark upon, with more than 120,000 products to consider.

The second complication relates to the role of private information. Equilibrium profits depend on flight-level

demand and supply unobservables, typically assumed private information to the firm. Denoting the vector of

ξj and ωj ∀j ∈ Fa by ξa and ωa, respectively, airlines can compute the exact values of

K∗a
(
F
)

= K∗a
(
F ; ξa, ωa

)
and thus determine the highest added profit flight fa(s). For their competitors’ choice of highest added profit

flight, they can only base themselves on expectations over cost and quality draws, deducting

K̃∗a′(F) =

∫
ωa′

∫
ξa′

K∗a
(
F ; ξa′ , ωa′

)
dFξdFω.

7Table C2 in the online appendix documents these facts.
8Which markets are affected depends on the definition of the network effects. In our maintained specifications, the market

equilibrium must be computed in all markets where a flight is added or subtracted from any network and in all markets where
flights depart on the same date as a flight that has been added or subtracted.
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That would also mean that the flight that a competitor will actually offer when obtaining the slot (fa′(s)) is

not usually the same as the flight that airline a expects it to choose (f̃a′(s)). Computationally, it would require

solving the market equilibrium 2×|F|+1 times for each affected market; once to determine K∗a(F\fX(s)∪fa(s))

(to go into the slot value of firm a) and once to determine K∗a′(F \ fX(s) ∪ f̃a(s)) (to go into the slot value of

firm a′), and once when not adding a flight. Again, this is infeasible in an application with 120,000 products.

To address this, I make the following assumption.

Assumption 1. The flight operated by airline a in slot s is determined as

fa(s) = arg max
j∈{Fa|Xj∈As,Cs}

K∗j (F) (4)

and the flight whose departure rights expired is determined as

fX(s) = arg min
j∈{Fa|Xj∈Ds}

K∗j (F) (5)

and these flights are identified without error by all (competing) firms a ∈ A. Cs denote additional constraints

on the set of flights to be chosen from (detailed below), and K∗j (F) denotes the equilibrium profit of flight j

given the baseline network of flights F .

As such, the added flight fa(s) is taken to be the highest-profit flight to any destination currently served by

the airline from the airport where s applies, but then taking off at the departure day and hour of s. The profits

of each flight are computed in market equilibrium and denoted by K∗j (F). The dependence on the full set of

flights indicates that equilibrium profits are not only a function of flights by the same or rival airlines within

the market but also on flights by the same airline to other markets —through cost synergies. Cs in (4) denotes

a set of additional constraints imposed when determining fa(s). These constraints guarantee that each flight

can be replicated at most once, so that the frequency of flights to any destination can at most be doubled, and

that the overnight status of the alternative flight has to match the overnight status of the flight that is currently

served by the slot. Imposing Cs minimizes the scope for unrealistic out-of-sample predictions (such as airport

limits on plane sizes, inoperability of certain slots for certain flight durations). The dropped flight, fX(s), is

chosen as the one generating the least profit among all carrier flights (the slot owner) scheduled within the same

departure slot as the one that expires.

The above determines the slot value for an airline with one competitor. Airlines obviously face multiple

competitors on most routes, which is taken into account next. It is useful to mention that bidders only care

about other firms in auctions without after-markets to the extent that more or more competitive firms will

reduce their win probability for any given bid. Here, conditional on winning the slot, each competitor will affect

the airline’s expected profits across its flight network differentially. Previous studies document (De Wit and

Burghouwt (2008), Fukui (2012), Miranda and Oliveira (2018), this US GAO report of 2012, or this research

prepared for the EU Transportation Committee in 2016) or explain (Fu et al. (2015), Kösters et al. (2023))

airline behavior consistent with strategic slot hoarding, identified as the operation of flights with smaller aircraft

and/or lower load factors and/or at higher flight frequencies than comparable flights in settings without slot

constraints.

Kösters et al. (2023) include the following quote by the Lufthansa CEO Carsten Spohr, which is telling

of the magnitude of this issue: “We have to operate 18,000 additional, unnecessary flights during the winter,
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purely to secure our slots.” Worse than the operation of flights with sub-optimal load factors, airlines sometimes

operate these so-called rescue- or ghost flights to safeguard their slot rights, despite substantial costs associated

with having even (near-) empty aircrafts reach their destination.9

Such slot hoarding strategies require the airlines to value (substantially) the slot that does not fall into the

hands of their competitors. This is accommodated in the slot value definition. Specifically, as formalized below,

the slot value for airline a compares total profits when a uses the slot and total profits when the competitor

whose slot use would decrease a’s profits by the most.

Assumption 2. The value of slot s to airline a is ∀a ∈ A and ∀s ∈ S given by

νa,s = max
a′ 6=a∈A

(∑
K∗a
(
Fs(a)

)
−
∑

K∗a
(
Fs(a

′)
))

(6)

subject to the choice of fa(s) and fX(s) according to Assumption 1.

Two assertions can be made. First, the setting is one with private values because the realizations of

competitors’ cost and demand shocks do not affect νa,s and because νa,s is not affected by the νa′,s of competing

bidders (a′). 10 The private values paradigm adds to the tractability of this model in the first place because it

allows these values to be estimated separately. Private values are also key for the counterfactual relying on the

existence of an efficient mechanism. This relates to the second assertion that the setting is one with allocative

externalities because K∗a is a function of the full flight network. Jehiel and Moldovanu (2001) provide important

results about conditions for the existence of Bayes-Nash incentive-compatible mechanisms in case of allocative

externalities. They show that existence is guaranteed when values are private.

While this looks like a network formation or (route) entry game at first glance, there are important differences.

A slot can only be used by one airline to operate one flight and markets are independent, so there is no best-

response type behavior where if one airline enters a market the other airline should refrain from doing so. In

other words, fa(s) is not a function of the choice of flight of competitors fa′(s). There can be one exception,

as non-owners will know which rights expire (fX(s)), so their choice of flight might depend on the flight that

has been removed. This type of behavior would result in the slot value being subject to the outcome of a game

between operators, and it is abstracted from by assuming that firms choose to replicate (drop) the flight that

at baseline generates the highest (lowest) profits subject to constraints.

2.2 Linking slot values to auctions

Assumption 2 formalizes the slot value definition that is adopted throughout the paper. I assess the welfare

effects of introducing a market for slots by allocating each slot to the airline that values it the most according

to this definition and then comparing the counterfactual market equilibrium with the current one. This delivers

results independent of the specific market design (as long as it is efficient). However, various auction rules are

evaluated in the counterfactuals.11 The results are realistic if the highest-value firm is correctly identified, even

9The public awareness of this issue peaked during the COVID-19 reduction in air travel (and the subsequent proliferation of
ghost flights). Still, the issue predates COVID as documented by, for instance, this UK Competition and Markets Authority report
of 2018. The quote from Carsten Spohr reflects the airline’s strategic response to low demand during the COVID-19 period.

10This would not be the case if bidders either would not know the fa′ (s) of their competitors or when bidders would incorporate
the strength of those competitors in terms of win probability in ν(a, s).

11For example, the role of quantity caps and the presence of complementarities across slots are investigated. It is, however, not
necessary to specify the auction mechanism further unless one is interested in the monetary outcomes of the mechanism (such as
how much money will be raised by the auctioneer). While the results in this paper are informative for the mechanism’s optimal
design, a deeper analysis is left for future work.
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if the true willingness to pay for the slot differs from (6).

To elaborate, the willingness to pay might differ because of certain unmodeled factors. First, the departure

rights will be leased to airlines for multiple years to allow airlines to market and invest in routes properly (as

in the Ball et al. (2007) proposal for LGA slot auctions), so the willingness to pay should reflect the discounted

present value of the perpetuity of receiving νa,s for a set period of time. In simulations, I compute slot values

based on 20 years at a 5 percent annual discount rate. I also multiply all slot values by the number of weeks in

S18 (31 weeks) to reflect that carriers often operate on the same schedule for the entire season.12 Second, νa,s

ignores the fixed costs accrued by the extra flight. In fact, the marginal cost specification in (15) captures the

average variable costs of offering the flight, including the average fuel cost per seat and other costs to operate the

flight. Any additional fixed or variable costs incurred to offer the additional flight (purchasing a new aircraft,

hiring more pilots, leasing an aircraft hangar, ...) are omitted.

All the factors described above are inconsequential for the results presented in this paper, as long as they do

not vary substantially across airlines. In general, if we take µa,s to be the true willingness to pay of airline a for

slot s, the results follow if µa,s is an affine transformation of the slot values defined in (6).13 More formally, the

counterfactual simulations represent true market outcomes if the following holds. The matrix ν of dimension(
|S| × |A|

)
contains the values of all airlines for all slots as given in (6)

ν =


ν1,1 . . . ν|A|,1

...
. . .

...

ν1,|S| . . . ν|A|,|S|


and the corresponding willingness to pay matrix of the same dimensions is denoted by µ. It is maintained that

µ = ~a · ν +~b,

where ~a and ~b are (|S| × 1) column vectors of factors outside the model that may vary across slots and that

change the scale or the level of ν, respectively, but that are restricted to be the same for all airlines.

The counterfactual results rely on an efficient slot allocation mechanism that awards each slot to the airline

that values it the most. The mechanism is implemented subject to various policy criteria, such as whether each

airline can win at most a maximum share of all slots (i.e., a quantity cap), and should thus be understood to

be constrained-efficient subject to such policy constraints collectively denoted by P.

Assumption 3 summarises the above, guaranteeing that the winners are correctly identified.

Assumption 3. Let νP denote the matrix of slot values subject to the award mechanism’s policy criteria and

numerical implementation P. The firm with the highest conditional slot value for slot s, indicated by I
(
|νP |s ==

12An ideal market-based mechanism would probably be designed to prioritize series of multiple consequetive slots, in line with
the current allocation policy (see the World Airport Slot Guidelines and the discussion surrounding increasing the slot series length
in Europe (e.g., this 2020 Airports Council International position paper). Table C2 shows that, in my data, one weekly slot is also
the minimum frequency used to offer a new route when already operating at one endpoint; as Air France did for Bari and Ivalho in
2019, showing that auctioning longer slot series favors network expansion. The role of the series length is abstracted from in this
paper by awarding all carriers weekly slots when winning.

13Note that it is not strictly necessary that ν is an affine transformation of the true willingness to pay µ. For simulating prices
and other market outcomes after the auction, only the identity of the slot winner needs to be correctly identified, not the cardinal
amount of their µ.
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max(|νP |s)
)
, is correctly identified as the winning bidder. Hence, the column vector of slot winners is given by

IP =


IP1
...

IP|S|

 =


I
(
|νP |1 == max(|νP |1)

)
...

I
(
|νP ||S| == max(|νP ||S|)

)


Implicit in the assumption is the existence of an efficient mechanism with market-clearing prices, which is

not given in the presence of complementarities (e.g., Milgrom (2000), Cantillon and Pesendorfer (2007)). A

specific mechanism with good properties that has been proposed (and tested experimentally) for auctioning

slots at La Guardia is a (combinatorial) Clock Proxy Auction. Please refer to Section 8.1 for a discussion. The

package bidding part is important for airlines to express synergies across slots. Four types of complementarities

should be distinguished: 1) between arrival and departure rights at the same airport, 2) between departure and

arrival rights for the same flight at two airports, 3) between departure (or arrival) rights in the same airport

for multiple (consecutive) weeks in the flight season, and 4) between departure (or arrival) rights for multiple

slots on the same date in the same airport.

The slot value definition in (6) loads all incremental profits for a flight on the value of the departure slot

in one airport. This reflects the scenario where only slots in one airport are auctioned while the other airports

stick to the current process of awarding slots for free. Moreover, the slot value should be considered to apply to

the pair of departure and (reasonably close) arrival slots at the origin airport. As mentioned above, the values

are scaled to apply to the 31 weeks of the season. Combined, this addresses complementarities 1-3 and results

in a market for weekly slot pairs or WSPs, as is relevant for this industry. The auction could be implemented for

multiple airports at the same time or for the weekly slot pairs at only one airport.14 While complementarities

1-3 are undeniable, the fourth is interesting to investigate as it might be a key source of airline asymmetry.

Therefore, the magnitude of synergies coming from demand (e.g., consumers valuing airport presence) or supply

(e.g., scheduling efficiencies from sharing check-in desks) are studied in Section 7.2.

As in the empirical auction literature, one can interpret slot values as realizations of a random variable,

V ∼ FV .15 The slot value ν(a, s) is then a realization of V for carrier a in the auction for slot s, driven by a

carrier-specific idiosyncratic value component (Ṽa) and a common value driver (the vector of observables A)

Va = ν(a, s) = g(A, Ṽa) (7)

Variation in Ṽa is generated by variation in ξ, ω, and by factors that affect K∗(F) but that are excluded from A.

Hence, in terms of order statistics, assumption 3 implies that the winning bidder in an auction with N bidders

has a value of VN :N ; the maximum value of a sample of N draws from FV . Section 7.1 reports estimated slot

values and recovers both slot value determinants and fV |A under additive separability.

14Implementing a slot auction in one airport works as long as its timing coincides with slot allocation periods in the current
grandfathering policy so that bids can be made conditional on obtaining matching (arrival) slots in other airports.

15Bidder-specific subscripts are omitted from the notation for simplicity, but the results in Section 7.1 indicate that an asymmetric
value model —distinguishing a large carrier in its global hub from other carriers— is more suitable in the empirical context.
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3 Market Equilibrium conditional on Slot Allocation

This section presents a model for the airline industry suitable to capture slot values as defined in (6). Both

departure-time preferences by consumers and airline-time-specific connection opportunities at the departure- and

destination airports are key drivers of why some slots are more valuable than others. Including the importance

of a route in the airline’s flight network —in terms of cost and demand— accounts for hub effects at the origin

and destination and facilitates the estimation of slot values on an airport-by-airport basis. The model takes

as given both the aircraft fleet and the network of routes that are offered by the airlines, as these should be

determined before the time when the slot auction is held. More details are provided below.

3.1 Equilibrium profits K∗(F)

Multi-product firms compete in average flight fares (prices) for consumers within a market. As demand is

assumed to be independent across markets, equilibrium prices can be obtained market-by-market despite the

marginal cost being a function of the carrier’s flight network (Cjt(Fa)), as detailed below. Equilibrium prices

maximize the firm’s profits, solving ∀(a, t)

P∗at ≡ {P ∗jt}j∈Fat
≡ arg max

Pat

( ∑
j∈Fat

(
Pjt − Cjt(Fa)

)
Qjt(Ft,Pt)

)
. (8)

Qjt(Ft,Pt) denotes the quantity demanded given 1) the vector of prices Pt for all flights in the market and 2)

the set of flights Ft (as the number of flights to a destination is allowed to affect consumer demand). It equals

the size of market t times the equilibrium market share for product j (S∗jt(Ft,Pt) defined in (13)). From this,

standard Bertrand-Nash first order conditions for optimal prices are derived, requiring that ∀j ∈ Fat

∑
h∈Fat

(P ∗ht − Cht(Fa))
∂Q∗ht(Ft,P∗t )

∂P ∗jt
+Qjt(Ft,P∗t ) = 0. (9)

The equilibrium profits are derived without observing the marginal costs by subtracting the equilibrium mark-up

from observed (equilibrium) prices. Rewriting (9), the mark-ups are given ∀(j, t) by

B∗jt(F) = −
(
Qjt(Ft,P∗t ) +

∑
h6=j∈Fat

(P ∗ht − Cht(Fa))
∂Qht(Ft,P∗t )

∂Pjt

)(
∂Qjt(Ft,P∗t )

∂P ∗jt

)−1

. (10)

B∗jt(F) equates to the standard multi-product Bertrand-Nash equilibrium mark-up of product j in market t.

However, in this model, it depends on the network of all flights in the market (Ft) and the network of own flights

to any destination (Fa), which for notational simplicity is denoted by the full set of flights F . The equilibrium

profit of a flight is

K∗jt(F) = B∗jt(F)Qjt(Ft,P∗t ). (11)

This also defines K∗a(F), which stacks the K∗jt ∀(j, t) ∈ Fa, and which is used to determine slot values to firm

a in (6).
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3.2 Ticket demand

The demand model is based on Berry et al. (2006) and Berry and Jia (2010). Two latent consumer types

vary in their preferences for product characteristics, containing at least the price of the flight. The two types

r ∈ {1, 2} are interpretable as consumers traveling for either business or leisure purposes. When choosing among

products, purchasing a different flight and not flying altogether are categorically different, justifying a nested

logit specification with one nest for all flights in a market and one nest for the outside option (j = 0). As such,

the indirect utility for consumer i of type r for consuming flight j by carrier a to market t is given by

Uijt(Fat) = αrPjt +Xjt(Fat)′βr + εijt(κ), (12)

and Ui0t = κζi0t for the outside option of not flying. The composite error term εijt(κ) equals ξjt+νit(κ)+κζijt;

ξjt captures the flight-level scalar that is unobserved to the econometrician but (potentially) observed by firms

and consumers, νit captures consumers’ preference for flying over not flying to market t, ζijt captures consumer

i’s idiosyncratic utility for flight j to market t. Parameter κ ∈ (0, 1] governs how closely substitutable flights

are relative to the outside option. If κ = 1, the model reduces to a simple logit model where substitution

to the outside option is as likely as substitution to another flight within the same market. It is maintained

that E[Xjt(Fat)′εijt(κ)] = 0 but E[P ′jtεijt(κ)] 6= 0 due to equilibrium prices being (potentially) a function of

unobserved flight attributes. Furthermore, ζijt is assumed to be Gumbell-distributed, and νit is drawn from

the distribution shown by Cardell (1997) to render εijt(κ) Gumbell-distributed as well, to generate the familiar

closed-form nested logit purchase probabilities.

In particular, the market share of product j in market t is given by

Sjt(Ft; ξt, θD) = γ1Dj1

(∑J
k=1Dk1

)κ−1(
1 +

∑J
k=1Dk1

)κ + (1− γ1)Dj2

(∑J
k=1Dk2

)κ−1(
1 +

∑J
k=1Dk2

)κ , (13)

where

Djr = exp
(
(αrPjt +Xjt(Fat)′βr + ξjt)/κ)

)
.

γ1 is the share of the population that is of type 1 and θD = (κ, γ1, α1, α2, β) is a vector of all demand parameters.

The market share comprises the share of consumers of type r that purchase any ticket and the share of those

consumers that choose flight j conditional on flying. The notation makes explicit that Sjt depends on the vector

of all product-level unobservables in the market (ξt) as well as the set of flights offered in the market (Ft).

The demand model is specified to recover slot-related consumer preferences. Consumers are allowed to prefer

one departure airport over another and to have preferences for certain departure days and/or times. Hub effects

are accounted for in demand through the dependence of Xjt(Fa) on the airline’s flight network. The importance

of a carrier’s airport presence for demand is well-documented in the literature (Borenstein (1989), Berry (1990),

Brueckner et al. (1992), Berry and Jia (2010), Ciliberto et al. (2021)) and is accounted for by including the

number of destinations serviced from the departure airport. Moreover, consumers likely prefer to fly with a

carrier who has more frequent flights to the destination as this reduces wait time when a flight gets cancelled.

Together with the variables capturing the potential connections at the origin and destination airports described

above, these can be considered demand-side hub effects. Including these in the demand model makes it unclear

whether consumers are better off when taking a slot from the dominant carrier and giving it to a competitor in
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the same market, even when prices decrease. The estimated demand parameters will illuminate a fundamental

trade-off between higher prices and more convenience associated with concentration in this industry. Consumer

utility also depends on airline (group) fixed effects and the distance to the destination to proxy for the feasibility

of other transport modes such as a high-speed train.

Overall, this constitutes a rich model of consumer preferences, especially in relation to a carrier’s network

of flights and the role that a certain departure slot could have in it.

The flight-level equilibrium model differs from the more standard itinerary-level analysis of the industry,

and the distinction is important to make here. An itinerary is a set of flights between origin and destination

(and, for a round trip, back to the origin) for which a passenger buys a ticket. Hence, while itineraries have

connections, flights usually do not. In my Global Schedules Data, only 128 out of 152,531 flights (0.08 percent)

that departed from CDG and none that departed from ORY in S18 were connecting flights. By contrast,

Aéroports de Paris documents that 21.7 percent of the passengers departing from its airports (CDG and ORY)

were connecting from another flight that year.16 The large discrepancy between these two statistics originates

from the difference between an itinerary as viewed from a consumer’s perspective and a flight as scheduled by

an airline carrier. The flight-level model is developed to capture that an operating carrier must have arrival and

departure rights for each slot-constrained airport on the itinerary. Moreover, the carrier’s willingness to pay for

those slots is derived from the additional profits generated (across the carrier’s network) with the single flight

that can be scheduled in a slot.18

A non-negligible portion of demand comes from passengers who are on multi-legged itineraries. I address

this as follows. First, the market size definition accounts for connecting passengers (see section 4.3). Second,

the utility function allows for a demand premium for flights with better connection possibilities to other flights

by the same carrier or codesharing partners, both at the origin and the destination airport. Specifically, the

demand specification includes the number of other flights by the same carrier or a codesharing partner that

arrive in (depart from) the departure airport (arrival airport) within a time window of 1.5-6 hours before the

flight takes off (after the flight arrives). These variables reflect the convenience of the flight in relation to other

flights on a (potential and unobserved) itinerary, as also typically accounted for in itinerary-level analyses (e.g.,

the number of connections in Berry and Jia (2010), the ratio of itinerary distance over non-stop distance in

Gayle (2013)). Third, while some consumers face prices for multi-legged itineraries, my price data contains the

average return fares for all direct flights between CDG and ORY and the destination airports. It is therefore

maintained that the (unobserved) fare for the full itinerary consists of the sum of ticket fares for all of its legs

— which Williams (2022) finds to hold for most observations in his sample of daily ticket prices for trips in US

monopoly markets.19 My quantity data already details the number of passengers on each flight, irrespective of

16Source: press release Aéroports de Paris January 15 2019, available here: http://hugin.info/145257/R/2231408/877211.pdf,
last accessed 05-05-2022. The flight statistics are based on the Cirium global schedules file. Overall, it contains the universe of
32,342,819 flights for the 2018 summer season, of which 26,800,445 are scheduled passenger flights relevant for this study.17 86.6
percent of all scheduled passenger flights globally is indicated to be direct, 10.5 percent has one stop, and the remainder has two
or more stops. The 128 flights with connections at CDG are for only 6 routes, documented in table C7.

18Figure C4 illustrates flight-level analysis in relation to the value of a slot. In the figure, the value of slot is derived from
the incremental profits to the airline when offering flight CDG-MPX (assuming this flight is selected as fa(s)), irrespective of the
itinerary that the passengers on that flight are on. The equilibrium profits are based on the number of occupied seats on the plane
(quantity), the average ticket fare of the flight, flight-level marginal costs, and spillovers of costs and demand to other flights by
the same carrier.

19A similar rule applies to studies that use the DB1B dataset. That data includes the price paid for the full itinerary, and in the
case of round trips, this price is divided by two for each of the two ways for a closed-jaw ticket (with the same or no stops in either
direction). Moreover, the fare is typically assumed to be proportional to the miles in each direction otherwise. This procedure is
explained on the DB1A/DB1B page of the NBER data archive: https://www.nber.org/research/data/department-transportation-
db1adb1b, last accessed 05-05-2022.
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where they originated from and whether they took another flight from the destination. On the supply side, the

marginal costs to operate a flight are taken to be independent of the number of flights on a passenger’s itinerary

as it is unlikely that the sequence of flights that a passenger takes influences the cost to operate those flights.20

3.3 Marginal costs

The marginal cost per seat of flight j to market t is obtained from (10) as

Cjt(Fa) = Pjt −B∗jt(F ; θ̂D) (14)

where B∗jt(F ; θ̂D) indicates the equilibrium mark-up given the estimated demand parameters. The costs are

further decomposed into

Cjt(Fa) = Wjt(Fa)′θS + ωjt, (15)

where Wjt contains observed aircraft- and distance-specific fuel expenditure, other aircraft specifications, and

variables depending on the carrier’s own flight network —capturing scheduling efficiencies—, and ωjt is an

additive idiosyncratic cost term assumed to satisfy Wjt(Fa) ⊥ ωjt. Cjt is not required to be strictly positive.

In fact, taking economies of density and airlines’ hub-and-spoke strategies seriously, Cjt is more accurately

interpretable as the average variable cost per seat on flight j net of any benefits of transporting passengers to

destination airport t. For instance, we might observe negative costs when fares are substantially discounted on

feeder flights to a hub.

Fuel expenditures comprise a large share of the variable costs of operating commercial aircraft. The prior

literature typically approximates this cost by flight distance (e.g., Berry and Jia (2010), Gayle (2013), Bontemps

et al. (2021)). Observing the aircraft type in my data allows for a richer approximation. The average fuel

consumption per seat is approximated by an aircraft-specific quadratic function in the distance to destination

with aircraft-specific fuel efficiency coefficients estimated in Seymour et al. (2020), which they show mimics

more complex physics-based fuel burn performance models used in the industry.21 Fuel consumption per seat

is multiplied by the Kerosine-type Jet Fuel spot price one month before the departure date to (imperfectly)

account for input price variation over time.

In addition, the carriers’ flight networks naturally have a bearing on costs, mainly due to economies of

density associated with a hub-and-spoke network compared to a point-to-point network. To capture differences

in (counterfactual) profits across airlines, it is important to quantify these network-based cost differences and

what drives them. The big four airlines in my data use different network strategies, as documented in Figure

1. Air France (The Air France-KLM Group) and Lufthansa have clear hub-and-spoke flight networks. Through

the lens of this study, Lufthansa’s hubs are at destinations (Frankfurt and Munich), whereas Air France has a

big hub at the origin (Paris) and some destinations (Amsterdam, for instance). The flight networks of the next

two biggest carriers, easyJet and Vueling Airlines, reveal more of a decentralized network strategy, although

20This is slightly different from the approach in Park (2020), where an itinerary-specific unobserved error term is added to
deterministic marginal cost components that are additive over multiple legs of the itinerary.

21Such so-called “high fidelity” physics-based models are used to simulate aircraft performance’s geometric, kinematic, and
kinetic properties. They are complex and require a wealth of data such as cruising altitude, lift coefficient, climbing speed, and
flight envelope (Seymour et al. (2020)). See for instance https://www.eurocontrol.int/model/bada for EUROCONTROL’s aircraft
performance model.
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(a) AirFranceKLM (b) Lufthansa

(c) AirFranceKLM (Europe) (d) Lufthansa (Europe)

(e) easyJet (f) Vueling Airlines

Figure 1: Global Flight Networks of largest 4 carriers at Paris CDG and ORY.
Based on the Global Schedules File for S18. Flights where the carrier is the marketing carrier in a codesharing agreement
are included.
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with disproportionally many departures from airports in the UK and Spain, respectively.22

Note that in this flight-level model, economies of density are to a large extent already captured by the

flight’s load factor.23 Nonetheless, to sustain a high load factor, transporting passengers from or toward hubs

is beneficial, for instance, by the cost estimates for US flights in 2006 reported in Berry and Jia (2010). For

our purposes, it is relevant to quantify whether and by how much the slot value increases when airlines can use

that slot for a flight with at least one leg in a hub. As such, the flight-level marginal cost function includes as

explanatory variables the number of destinations the carrier serves from the departure airport and the number

it serves from the arrival airport.

Beyond the load factor or the number of flights on a route, the timing of those flights might also be relevant

for costs. Flights departing in close proximity to each other can have check-in personnel take care of both flights,

for instance. As such, the average spacing in hours of adjacent departures (of all flights by the same carrier

departing on the same date to any destination) is included in the cost function. These variables are computed

at the origin and destination, and are inspired by the departure time differentiation measures in Borenstein and

Netz (1999).

As a result, the model contains both cost synergies and market spillovers. Consider an airline that receives a

slot and adds a flight to a certain destination. If consumers value the frequency of flights to a certain destination,

their demand for all flights by this carrier to that destination increases, ceteris paribus. Moreover, the airline

potentially enjoys cost savings as the number of flights to any destination decreases, and this efficiency gain

would lower the marginal cost of all flights to any destination. In addition, he might obtain a cost reduction

for all flights departing on the same date. These network effects will be estimated and require the summation

of profit changes overall markets when computing the value of a slot in (6).

Finally, I follow most of the literature and omit a fixed cost (here, to operate a flight). This abstracts from

the decision to cancel a flight when the realized demand is insufficient to cover fixed costs. In the current

setting, the “use-it-or-lose-it” rule that applies at both slot-constrained departure airports in the sample makes

it particularly unattractive for a carrier to cancel a flight, justifying the abstraction. Moreover, fixed flight costs

are only relevant in this study insofar as they vary across flights and/or airlines (as explained in section 2.2),

above and beyond factors already included in the relatively detailed cost specification given in Table C9.

4 Data description

This section describes the data that is used to estimate the model.

4.1 Data sources

Two main data sources are used for the analysis. The first is data from French civil aviation regulator DGAC

containing a sample of ticket prices and number seats occupied for all return flights departing from CDG or

ORY in S18. The administration uses this data to construct the travel component of the Consumer Price

22In the context of severe (slot) constraints on expanding at airports, it is likely not by choice that these two low-cost carriers
did not manage to replicate the degree of network centralization of the flag carriers — often privatized national carriers that still
enjoy privileges. Airlines’ historic rights to slots are granted based on the flight network when the airport reaches a certain level of
congestion. As these rights carry forward, it is difficult for newcomers to accumulate a substantial share of slots.

23Relatedly, the number of flights between origin and destination does not need to be included on the cost side or instrumented
for on the demand side (as in, e.g., Berry and Jia (2010)), with the unit of observation being a flight rather than a composite
product of multiple flights capturing all demand between origin and destination in a period.
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Index. This unique dataset allows for studying the slot allocation policy with the proposed methodology, as it

contains flight-level identifiers, including its departure time and date. Such information is not available in the

DOT DB1B 10% random sample of US tickets normally used in empirical airline papers. Like the few other

papers that have collected flight-level data to address questions that cannot be answered with the DB1B (i.e.,

Lazarev (2013), Williams (2022), and Aryal et al. (2021)), the price data is based on offered fares.24 More

specifically, the price variable is constructed as the lowest offered fare weighted based on passenger surveys to

reflect actual purchase prices for passengers flying through CDG and ORY airports in S18. The survey weights

are a particularly nice feature as it makes the survey-weighted lowest offered fare a close proxy of actual prices

paid by the the relevant population. The DGAC quantity data compares well to the widely used data from the

US Department of Transportation.25.

Despite this dataset’s high quality, the DGAC’s algorithm to obtain prices does not regard the flight’s

departure time. As a result, the price is missing for a large share of flights for which a lower-priced alternative

(with otherwise identical features) took off at a different time that day. Online Appendix A details the fare

sampling process and motivates the method to correct for fares not missing at random. To summarise, when ξ

is a proper flight-level unobservable, constant across multiple offers (each time DGAC samples the offered fares)

and independent of any offer-specific unobserved heterogeneity, the data is missing at random conditional on

observables and ξ. As such, imputation delivers a consistent and asymptotically normal estimator (Dagenais

(1973), Gourieroux and Monfort (1981)) when capturing ξ with observables such as Sjt.
26 Random Forest (in

particular, the ranger implementation in R) performs best across a range of machine learning- and regression

models and is adopted to impute the missing fares. The R2 = 0.89 in the test sample that is left out from the

data on which ranger searches for the best partitioning (to guard against over-fitting). Online Appendix B

provides further details.

The second data source is the Global Direct Schedules File purchased from Cirium. It contains all scheduled

flights globally for the period January 2018-October 2019. This data is particularly useful for a rich analysis

of how flight networks affect slot values, as it is not limited to Paris-destination airport pairs.27 Additional

data is obtained from publicly available sources; the US Energy Information Agency for weekly jet fuel prices,

Simplemaps for the 2019 population count of cities, and Google Maps for their coordinates.28 Finally, aircraft-

specific fuel consumption performance parameters are taken from Seymour et al. (2020).

4.2 Estimation sample and summary statistics

The estimation sample contains flights departing from Paris Charles-de-Gaulle (CDG) and Orly (ORY) airports

in the S18 (between 26 March and November 3rd, 2018). While the quantity data is available for all 300

destinations reachable from CDG and ORY by commercial flight, the DGAC collects prices only for a subset

24See also Ivaldi et al. (2022), who describe the limitations of both the DB1B and of flight-level data based on offered fares.
25The US DOT does not publish prices for flights departing or originating outside of the US, but the DOT T-100 dataset reports

the number of tickets sold for transatlantic flights. Passenger shares by US destination (for destinations that are in both samples)
are very similar to those in the DGAC dataset (see Table C3 in the online appendix)

26Table B3 shows that the market share conditional (prodshare) and unconditional (marketshare) on purchasing, and the share of
the outside good (outsideshare) are among the 50 most important predictors of Pjt. Market shares are suitable for this prediction
problem as a proxy for ξ conditional on other observables, but it would be misguided to attach a causal interpretation to results
from a regression of prices on market shares (Miller et al. (2022)).

27Statistics from this dataset are averaged over different schedule observations weighted by the number of seats in the aircraft if
needed to account for a carrier’s schedule variation within the season.

28The US EIA publishes historic U.S. Gulf Coast Kerosene-Type Jet Fuel Spot Prices (dollars per gallon) here:
https://www.eia.gov/dnav/pet/hist/, the Simplemaps data can be downloaded here: https://simplemaps.com/data/world-cities.
Ggmaps in R is used to obtain city coordinates to compute distances.
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of those destinations. The 119 destinations in the estimation sample are more important in the sense of the

number of carriers and the frequency of flights that go there. The most popular destinations for ticket sales

are Nice, Toulouse, Barcelona, Madrid, Montreal, Lisbon, and New York. All cities are kept in the sample

regardless of their population size, as small cities by that definition (such as Toulouse) are also important by

demand volume for the relevant population. The sample is restricted to the 57 operating carriers for which the

DGAC collects fares. These carriers are more relevant in the sense of serving more destinations and offering

more flights to any destination. In the few instances where multiple flights by the same carrier depart to the

same destination in the same hour on the same date, the later flights are dropped from the sample to retain the

model’s flight-level nature —also when specifying departure time preferences as hourly fixed effects. The final

estimation sample contains 120,0039 flights (observations).

On average, a flight has 176 passengers. The average load factor (the number of occupied seats divided

by the aircraft’s capacity) is 0.85. Only five percent of flights are full. By comparison, in the sample of US

monopoly markets of Williams (2022) the average load factor is 89 percent but 15.7 percent of flights sell out.

So-called ghost flights are not important in the data.29 Only about 0.2 percent of flights takes off with less than

25 passengers and about 0.6 percent of flights takes off with less than 25 percent of its seats occupied.

The average price for a flight is e302, with a relatively large standard deviation that reflects the mix of low-

cost short-distance flights and more expensive long-haul flights. The four quadrants break down this variation

by the departure airport and whether the flight is overnight. There is a large variation in fares within and

across departure times and more so in CDG than at ORY. ORY is a smaller airport closer to the city, with

more short-haul flights than CDG. The average flight distance in the estimation sample is 1629 km (1012 miles)

at CDG and 972 km (604 miles) at ORY. 48 of the 111 CDG destinations are also accessible from ORY, and 8

can only be reached from ORY. Both are among the most slot-constrained international airports in the world.

Among the 57 carriers, Air France stands out as the dominant carrier in both airports.30 Air France was the

national flag carrier before the merger with KLM in 2003, is headquartered in Paris, and operates 53 percent

of all flights in the data. The online appendix contains additional details supporting the statistics referenced in

this section.

4.3 Product and market definition

A product is a direct flight between origin and destination, consisting of the operating carrier, the departure

time and date, and the average fare. The estimation sample has only one airport per destination city. Markets

are therefore all cities that can be reached by non-stop flight from Paris, conform the directional city-pair market

definition but limited to departures from Paris in line with the scope of the analysis. The market definition also

contains the departure month, based on the assertion that substitution between flights in different departure

months is limited. It is valid when their travel demand is associated with a fixed period (say, due to a conference

or a school vacation). This reduces the average number of products per market from 952 to 119, and it does

not affect the competitive landscape regarding the number of carriers per market. The number of carriers per

29A ghost flight is a flight that takes off with none or very few passengers, usually motivated by the 80 percent “use-it-or-lose-it”
requirement of the current slot allocation process. Flights may also take off (near-) empty for other reasons, for instance, if the
aircraft is needed to operate a flight from the destination. A frequent occurrence of ghost flights would motive departing from the
standard Bayes-Nash profit maximizing equilibrium.

30In what follows; all three carriers in the Air France Group are collectively referred to as Air France, and they are considered
to maximize the group’s profits. Carriers of the Air France Group included in the estimation sample are Air France, KLM, and
Transavia France.
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market is hardly affected because carriers typically maintain a regular flight schedule where they offer the same

flight throughout all months of the flight season.

Adjusting the usual market size definition accounts for connecting passengers. The market size is made

up of the geometric mean of the population in the destination city and the population in Paris weighted by

the share of non-stop passengers in Paris reported by Aéroports de Paris (0.873) plus the average geometric

population mean across all markets weighed by the share of connecting passengers (0.217). This reflects that a

non-negligible share of demand for flights departing from Paris is by passengers flying from or to cities beyond

the origin or destination of the flight. Assuming finally that people need to travel about twice per year, the

market size equals

Mt =
1

6

(
0.783

√
(popParis × popt) + 0.217

1

T

∑
t

√
(popParis × popt),

)

where T denotes the total number of markets. Population size (popt) is constant across months for the same

destination.

5 Estimation method

This section details how the model is estimated, what variation in the data-generating process identifies the

parameters, which instruments are used, how the estimator is implemented numerically, and on what basis the

final model specification is selected.

5.1 Estimation and Implementation

The demand model is a random coefficients nested logit (RCNL) model (previously adopted in, e.g., Brenkers

and Verboven (2006), Miravete et al. (2018), and Miller and Weinberg (2017)) but with discrete consumer

types (travelling for business or leisure) as in Berry and Jia (2010). In this approach, a generalized method

of moments (GMM) estimator is derived from the exclusion restrictions of the instruments for the price (ZD,

described below), namely that

E[ξ(θD)′ZD] = 0. (16)

In this equation, ξ(θD) is the vector of flight-level structural error terms in consumer utility (12) that equate

the observed market shares (the vector ŝt) to the market shares predicted by the model at the true values of

the parameters as defined in (13), e.g. the implicit function that, in all markets, sets

ŝt = [S0t(Ft; ξt, θD), . . . , SJt(Ft; ξt, θD)]′. (17)

I apply the standard fixed point algorithm of Berry et al. (1995) to solve the implicit function, using the modified

contraction mapping that Grigolon and Verboven (2014) show accounts for the nesting structure of the error

term. I find that it is important to include destination fixed effects in the demand model. In specifications

without destination fixed effects, even though the estimates still reveal a preference for morning flights, the

coefficients on the departure hour dummies are driven toward zero. This is because the availability and price of

alternatives vary substantially by destination. Not controlling for destination effects mixes the utility of flying
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to the destination airport with the utility of departing at the time of the available flights. More details are

given in section 5.3.

The destination fixed effects are concentrated out in the estimation algorithm, meaning they are estimated for

each set of candidate parameters θ̃D that the optimizer computes the GMM objective function for. Specifically,

destination fixed effects are estimated with an ordinary least squares (OLS) regression of ξ(θ̃D) on the 119

destination dummies. The residual of this regression, ξ̃(θ̃D), forms the basis of the GMM estimator of the

remaining demand parameters θD

θ̂D = arg min
θD∈Θ

1

N
g(θD)Ag(θD)′ (18)

g(θD) = ξ̃(θ̃D)′ZD. (19)

g(θD) denotes the empirical moment condition (with destination fixed effects concentrated out), A a positive

definite weighting matrix, and N the number of observations. The two-stage GMM estimator of Hansen (1982)

is implemented, with in the first stage a weight matrix A = ( 1
NZ

D′
ZD)−1 and in the second stage a weight

matrix A = ( 1
N g(θ̂D1)′g(θ̂D1))−1 (θ̂D1 denoting the estimation result from the first stage).

The solution to (18) is obtained with a constrained minimizer using the interior-point algorithm and analytic

gradients, with default convergence criteria (1e-6 for the values of the objective function and the constraints).

The solver starts from initial parameters that are the estimated coefficients in a nested logit model with one

consumer type, obtained from an instrumental variable (IV) regression of log(ŝjt)− log(ŝ0t) on ZD (see Berry

(1994)), and setting starting values of 0.5 for γ1 and κ. Bounds are set only for κ ∈ [0.01, 0.99], γ ∈ [0.01, 0.99],

and α ∈ [−10,−0.001] parameters, and the results are always in the interior. The standard fixed point algorithm

of Berry et al. (1995) is adopted when solving for ξ(θ̃D), with a tight convergence criterium of 1e-12. Overall,

the performance of the described implementation of the estimator is surprisingly good given the scale of the

problem. Results for the preferred specification are obtained in half an hour on a local machine.31

With the estimated θ̂D in hand, the marginal cost parameters θ̂S are obtained by Instrumental Variable

regression. The marginal costs are obtained from (14) as Pjt−B∗jt(F ; θ̂D) and regressed on Wjt, instrumenting

for endogenous quantities (in the equilibrium mark-up B∗, see (10)) with supply-side instruments ZS .

5.2 Identification and Instruments

Identification of θD follows from Berry and Jia (2010), and more generally from the results in Berry and Haile

(2014) for identification of nonparametric (random coefficient) differentiated product models using market-level

data and scalar unobserved heterogeneity. Identification is conditional on having at least one valid instrument

for each endogenous variable, satisfying exclusion and completeness restrictions.

The price instruments (ZD) must generate variation in average flight fares across all flights in a market.

The fuel consumption per seat of the flight generates a primary source of such variation. Fuel costs comprise

a large share of the costs to operate a flight and vary substantially across aircraft (Brueckner et al. (2023)). I

compute a detailed measure using the aircraft-specific fuel consumption parameters of Seymour et al. (2020)

31Similar outcomes are obtained when first using the interior-point algorithm with a convergence criteria of 1e-5, and then
switching to the sequential quadratic programming algorithm starting from the interior-point results. Both are large-scale algorithms
suitable to the size of the problem. Implementing the Merrow-Skerlos algorithm to solve for ξ(θ̃D) does not lead to substantial
speed improvements. See Conlon and Gortmaker (2020) for further details about optimization choices and best practices. The
performance is substantially worse when estimating demand and supply parameters jointly, which takes at least 15 times more
function value iterations depending on the specification.
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applied to the flight distance. The fuel consumption in kg per seat is interacted with the Kerosine-Type Jet Fuel

price 9 weeks before departure in dollars and adjusted to euros using the exchange rate in that week, to reflect

differences in fuel costs over time for flights with the same aircraft-destination-month triple. An identifying

assumption is, therefore, that consumers do not value (or observe, at the time of booking) how fuel-efficient the

aircraft that they fly with is.

Other aircraft-specific cost shifters in ZD are the share of seats allocated to first class or business class,

whether the plane is a wet lease (owned by another airline), and whether it is large (having more than 150

seats). Other variables affecting the marginal costs of a flight through scheduling efficiencies include the average

spacing in hours between flights to any destination by the same airline on the same date and the number of

destinations that the airline serves, as well as the averages of these variables across all the carrier’s flights

departing from the destination, and the number of flights by the carrier departing from the destination. What

is commonly referred to as BLP instruments are included, too, to capture to some extent the distance in

characteristics space of the flight to other flights in the same market.32 Finally, the number of products in the

market and their total capacity (number of seats) is included in ZD to instrument for the endogenous probability

of purchasing any flight in the market.

The instruments are remarkably strong. This is especially true for the Fuel Consumption instrument, which

already explains 79 percent of the variation in prices. The Wu-Hausman test of endogeneity and a test for

weak instruments both support the validity of this instrument (with p-values virtually 0).33 This remains true

when adding the additional instruments in ZD, when adding destination fixed effects, and when restricting the

sample to flights with observed raw fares. In addition, the Sargan test for over-identification rejects that the

instruments provide conflicting information about the price coefficient (p-value virtually 0).

The same set of instruments is included in ZS (although cost shifters are captured by Wjt directly), affecting

endogenous quantities through the equilibrium mark-up. These mark-up shifters have a strong relationship with

quantity. Table C8 in the online appendix lists all instruments and supports the descriptive statistics referenced

in this section.

5.3 Model selection

While the outlines of the model have been motivated, which exact model specification best fits the data remains

to be determined. This is particularly important to determine for the demand model because consistency

and asymptotic normality of the GMM estimator rely on the correct specification of the model and moment

conditions (Andrews and Lu (2001)). In addition, how much airlines favor certain slots over others depends

on how much consumers prefer to fly at those hours, so the demand model must capture consumers’ departure

time preferences well.

I rely on the MMSC-BIC criterium of Andrews and Lu (2001) to select the best-fitting specification. The

BIC-MMSC is suitable for the selection of non-nested models estimated with GMM. It is based on the Hansen

(1982) J test statistic for over-identifying restrictions and penalizes using fewer moment conditions or additional

parameters. Let b denote a vector of parameters defined on a bounded support B, c a vector of moments, and

32BLP instruments are considered complementary here, as the large market asymptotics may reduce their identifying power if
the dependence of the equilibrium mark-up on (rival) product characteristics decreases too quickly (Armstrong (2016)).

33I test this in a nested logit model without random coefficients, regressing log(Sjt) − log(S0t) on Xjt, Pjt, and the product
share. The latter two are endogenous variables instrumented with ZD that includes the number of products per market. See the
bottom panel of Table C8 for the results from IV diagnostics tests.
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Table 1: Model Selection

Departure-time preferences specification

Hours Hours
(dest. FE)

Cosine
Prefs.

2-Type
Cosine

MMSC-BIC Model Selection (scaled by N) 0.102 0.037 0.034 0.033
Number parameters 43 157 141 142
Number moments 61 176 160 160
Don’t reject H0 correct specification X X X X
Computation Time (demand model, hours) 0.141 0.074 0.037 0.088

Stepsize at optimum 0.000 0.000 0.000 0.000
First Order Optimality 0.000 0.017 0.036 0.032
FOC: Max. Abs. Gradient 0.011 0.054 0.121 0.096
SOC: Min. Eigenvalue Hessian 0.000 0.023 0.217 0.219
Share Negative Costs 0.485 0.066 0.043 0.041

Share Inelastic Demand 0.463 0.018 0.007 0.006
Nested Logit Coefficient (kappa) 0.874 0.800 0.780 0.783
Share Business Type 0.623 0.042 0.044 0.045

Notes. The demand models are based on the same model with random coefficients on the constant, the price, and the
departure airport. The estimated departure time preferences in the four model specifications are plotted in Figure C5.
The checkmarks indicate that for none of the models the null hypothesis that the model is correctly specified rejected
at the 5 percent level. The indicator is computed using that Jn(b, c) has an asymptotic chi-square distribution with
k = |c| −min

(
|b|, |c|

)
degrees of freedom. The corresponding critical value equals χ2

k(0.05), for the 95th quantile of the
chi-squared distribution with k degrees of freedom (Andrews and Lu (2001)).

n the sample size. Jn(b, c) denotes the J test statistic

Jn(b, c) = n inf
b∈B

Gnc(b)
′Wn(b, c)Gnc(b), (20)

resulting from the GMM estimator, with Wn(b, c) the corresponding weight matrix and Gnc(b) the value of the

moments associated with b and c. The MMSC-BIC statistic is defined by

Jn(b, c)−
(
|c| − |b|

)
ln(n). (21)

Table 1 reports the computed values of the MMSC-BIC statistic for four different demand specifications, along-

side other relevant statistics. The first two columns are based on demand models with departure hour dummies

(12), with the benefit of capturing preferences flexibly. The first thing to note is that in the second column,

where destination fixed effects are included, the MMSC-BIC statistic is substantially lower.34

The estimated departure time coefficients follow an interesting pattern. They peak at 8 am —consumers

strongly favoring morning flights, all else equal— and dip about 12 hours later around 8 pm. However, it remains

an open question whether travelers’ true preferences are as distinguished as represented with the departure hour

dummies; do people really like noon and 2 pm flights more than flights leaving at 1 pm? I consider it more likely

that the true time preferences are more smooth, and that departures from a smooth preference representation

result from the model imperfectly capturing other factors that interact with the departure time. This motivates

34The estimated departure hour coefficients are plotted in Figure C5 (plot (a) and (b)) in the online appendix. The model with
destination fixed effects is preferred because omitting them (plot (a)) removes some of the distinction between the hours, potentially
by conflicting preferences for reaching the destination by plane and when these flights are scheduled. In addition, the model without
destination fixed effects results in an implausibly large share of negative (net) costs and inelastic demand.
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my use of a cosine function as a smooth process for departure time preferences, repeating every 24 hours and

forced to peak at 8 am, defined as

Cosine24 = cos
( π

12
(Departure Hour− 8)

)
. (22)

Besides considering a smooth representation (fit) of the estimated departure time dummies, I also consider

two models that impose the smooth cosine pattern on the decision-making process. This is done by including

the variable Cosine24 as defined in (22) in the utility function in place of the departure hour dummies. The

estimated coefficient on this variable is the amplitude of the cosine. The coefficient is interpreted as the utility

gain (loss) from the flight departing at 8 am (8 pm) rather than at 2 pm or 2 am — the latter being times when

Cosine24 = 0. The results of this specification are given in column 3 of Table 1. Another benefit of using the

smooth cosine representation is that it can be estimated separately for the two departure type, as in column

4.35

Following Andrews and Lu (2001), I systematically consider these different specifications. The null hypothesis

that the model is correctly specified is for none of the models rejected at the 5 percent level.36 As the 2-Type

Cosine model has the smallest |c| − |b| and the smallest MMSC-BIC value, it has the best statistical fit of

the considered specifications. This specification also has the lowest share of negative (net) costs and inelastic

demand and is still estimated fast. The nested logit coefficient (κ) is stable across the three specifications with

destination fixed effects. Figure C5 also shows that the departure time preferences of the two traveler types

are estimated to be substantially different, and it is a benefit to be able to capture this in the analysis. The

resulting model estimates are discussed in the next section.

6 Estimation results

This section presents and interprets the estimated model parameters. The full set of estimated parameters is

given in Table C9 in the online appendix.

6.1 Demand parameters

The estimation results indicate that a small share of the population (γ̂1 = 0.54) has preferences that diverge

from the rest. Based on the estimation results, Type 1 can be considered the business traveller having a lower

price elasticity (α̂1 = −0.274 and α̂2 = −1.245) and Type 2 can be labelled as the consumer that travels for

leisure. The results confirm that consumers prefer to fly with a large carrier at the departure airport. Still, it

does not necessarily come through the number of destinations the airline serves (“Hub”). Instead, consumers

value flying with a carrier that offers more flights on the same day to the destination they want to reach. The

quadratic term and the scaling of this variable (“Nr. Flights to Destination”) imply that a flight is more valuable

when the carrier has up to 13 flights to a destination per day.37 It is plausible that consumers expect more

35By contrast, including a random coefficient on the departure hour did not appear feasible.
36Specifically, Jn(b, c) has an asymptotic chi-square distribution with k = |c|−min

(
|b|, |c|

)
degrees of freedom. The corresponding

critical value equals χ2
k(0.05), for the 95th quantile of the chi-squared distribution with k degrees of freedom (Andrews and Lu

(2001)). The null is not rejected when the (unscaled) MMSC-BIC statistic exceeds the critical value.
37The non-linearity in the network effects (coming through the number of destinations or the number of flights to a certain

destination) implies that re-allocating a flight from a carrier with a larger airport presence to a newcomer will affect total consumer
utility even when holding all else constant. This might reflect the possibility that a carrier with a hub at the departure airport has
more to lose when its departure rights are up for auction than that a newcomer has to gain — when abstracting from all other
differences between these airlines and their use of the slot.

24



Table 2: Price elasticities and willingness to pay

Own price elasticities
Type 1 -1.051
Type 2 -4.791
Both types (population weighted average) -3.166

Share of passengers
Type 1 0.045

Willingness to Pay for CDG
Type 1 -566.170
Type 2 54.398

Willingness to Pay for Connectivity
Departure Airport - Type 1 222.518
Departure Airport - Type 2 48.958
Arrival Airport - Type 1 77.194
Arrival Airport - Type 2 16.984

Amplitude Cosine
Type 1 0.081
Type 2 0.204

Smooth departure time preferences
WTP Departing at 8am vs 2pm - Type 1 29.553
WTP Departing at 8am vs 2pm - Type 2 16.391

Notes. The Willingness to Pay (WTP) is reported in euros per ticket. The WTP for CDG is the Willingness to Pay
to depart from Paris Charles-de-Gaulle rather than Paris Orly Airport. The WTP for Connectivity at the Departure
(Arrival) Airport captures the monetary value of one additional flight arriving at the departure airport (departing from
the arrival airport), operated by the same carrier or a codesharing partner, within 1.5-6 hours before (after) the flight
in question is scheduled to depart (arrive). The WTP to depart at 8 am vs. 2 pm is obtained by dividing the estimated
type-specific amplitude by (minus) the price elasticity of that type.

delays or cancellations when more than 13 flights are available. Moreover, consumers prefer flights with better

connection possibilities at both the departure and arrival airports. Conditional on hub and network benefits,

the results suggest that Air France flights are not preferred over flights by Low-Cost Carriers.38

The estimated destination fixed effects capture the benefit of flying to that destination compared to reaching

it by other means, such as by train. Table C10 reports the 20 destinations with the highest and the lowest

estimated fixed effects. As expected, the lowest flight-utility destinations are those that can be reached by

(high-speed) train, such as London, Zurich, Milan, and Marseille. The highest flight-utility destinations, such

as Atlanta, Saint-Denis, and Dzaoudzi, are all separated from Paris by an ocean.39

Table 2 provides further intuition for the estimated demand coefficients, reporting the own price elasticities

and willingness to pay for important flight attributes. The price elasticity of the tourist type (-4.79) is compa-

rable to the estimated value in Berry and Jia (2010) (-5.0 in the base specification), and business types are more

price elastic (-1.1 vs. -0.44). As only 4.5 percent of passengers are business types in my model, the resulting

aggregate price elasticity is twice as large (-3.17 vs. -1.55). Note that the price elasticities in most airline

studies (including Berry and Jia (2010)) are based on aggregated data. This likely introduces an upward bias

to price-elasticity estimates, as documented in D’Haultfœuille et al. (2022) in the context of rail transportation.

Corresponding to this idea, my estimated aggregate price elasticity of -3.17 is close to the -3.31 average price

elasticity across markets in Williams (2022), also estimated using flight-level data.

The small share of business travellers are characterised by a strong preference for flying from Paris Orly

airport. Their strong preference can be justified because it is more convenient to reach the airport by taxi from

38More specifically; the excluded category are non-flag carriers other than easyJet and Vueling Airline.
39Saint-Denis and Dzaoudzi are on two French overseas territories in the Indian Ocean, near Madagascar.
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central Paris, and it takes less time to go through security and reach the gate. Moving between terminals for

flights with a layover at CDG is notoriously complicated.40 The business type has a high value of time. Also,

regarding connectivity, Type 1 is willing to pay e223 for each additional (potentially connecting) flight that

arrives at the departure airport within 1.5-6 hours before the flight in question. Also, leisure travelers value

flights with better connection opportunities more and are willing to pay e50 for each additional connection

at the departure airport. This is important for the counterfactuals; allocating slots from airlines with larger

networks (like Air France, who has its global hub in Paris) to airlines who are smaller reduces the consumer

convenience of having short layover times.

The estimates also reveal a sizeable departure time preference; business travellers are willing to pay e30

more and leisure travellers e16 more to depart at 8 am rather than at 2 pm. From the airline’s perspective,

these are substantial departure time premiums, making up about 25-50 percent of the median profit per seat.

6.2 Supply parameters

I estimate that a flight generates on average 22k in profits before fixed costs (see Table 3). Profits are lower

for short-haul flights, and distance categories have substantial heterogeneity. The median profits per seat are

e64, the average is e110, and at the 90th percentile, each seat generates e309 in profits before fixed costs. Air

France is estimated to have similar profit statistics, except for long-haul flights with higher profits (e79k vs

e66k on average per flight). On average, the marginal costs make up 53 percent of the price. A Lerner Index of

0.47 on average is lower than the estimate for direct flights in Berry and Jia (2010), consistent with the higher

price elasticity uncovered with my flight-level analysis and my rich cost specification, and reflecting relatively

tight margins in this industry.41 The Lerner Index is also 0.47 for Air France flights, matching their self-reports

average gross profit margin of 48 percent (across all Air France flights in 2018).42

Besides affecting the convenience on the consumer side, the estimation results indicate that the flight network

also affects the bottom line through cost synergies (Figure 2 displays the standardized effects of a one standard

deviation increase in the variable). I estimate diseconomies of scope where a larger network is more costly for

a given number of flights, although there are economies of scale in the number of flights. In addition, carriers

face scheduling efficiencies: cost synergies from scheduling flights more closely together. As shown in Figure 2,

a one standard deviation increase in the spacing of flights from the departure airport (by the same carrier and

date and to any destination) increases costs by 11.7 percent, when keeping the other variables fixed at their

sample means. The spacing of flights is the fifth most important cost shifter, after measures of the duration

of the flight, the aircraft’s fuel efficiency, and the network size in terms of the number of destinations reached.

Increasing the number of destinations by one standard deviation results in a 25 percent increase in marginal

costs.

Departing from CDG costs about e34 more per ticket, c.p. Differences in fees partly account for this cost

difference – the supplemental per-passenger fee being, for instance, more than twice as high at CDG than at

40On the other hand, high-end lounges and airport facilities are inferior at ORY. Anecdotally, according to the Points Guy
website, Charles de Gaulle can be an infuriating airport to navigate depending on what terminal you’re departing from, but once
you clear security you’ll have many more options for your time, be it shopping, eating or relaxing in a lounge.

41Other Lerner Index estimates in the literature range between 0.32 and 0.39, with lower estimates for direct flights in a model
without random coefficients (Bontemps et al. (2021)) and higher values for integrated codeshare products (Gayle (2013)), all for
US markets in recent years and estimated based on disaggregated DB1B data.

42Source: Macrotrends.net, who provide profit statistics based on financial reports of traded companies. Air France’s financial
statement over this period provides further cost breakdowns.
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Figure 2: Marginal cost parameters: standardized effects
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Notes. Displaying the percentage change in marginal costs when increasing the relevant variable by one standard
deviation, holding the other variables at their means. For binary variables, the effect measures the percentage change
in costs when setting them from zero to one. All estimated coefficients are statistically significant. See Table C9 for the
corresponding point estimates.

ORY and connecting passengers at CDG being even more expensive.43 As expected, the average cost per ticket

on flights with a higher business class share is more expensive, as well as those with a higher fuel consumption

per seat, on a plane leased from another airline, and for flights that are medium or long haul. Arriving in

the middle of the day is estimated to be costly, which might reflect the network benefit of having the aircraft

operational for a return flight at a reasonable hour. As mentioned above, the marginal cost should be interpreted

as the average variable cost per seat net of any network benefits. For 4.1 percent of flights, I estimate negative

costs, which might reflect feeder flights for which the benefit of routing passengers through the destination

outweighs the flight operation costs.44 Relatedly, the cost per seat for flights to slot-constrained destinations is

about e17 less, which can similarly be interpreted as those flights incurring a large benefit of having the aircraft

arrive at the destination.

7 Estimated slot values

Section 7.1 discusses the slot values derived in the data. The role of the airline’s flight network and the related

magnitude of departure slot complementarities is further investigated in Section 7.2.

43Source: Fee schedules ORY and CDG for 2018.
44Empirically, the probability that costs are negative is higher for flights towards a Hub (serving more destinations by the same

carrier) in a Probit specification that controls for destination fixed effects.
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Table 3: Profits by flight and seat

All airlines Air France
Lerner Index

Average 0.471 0.468
Median 0.404 0.378

Profit per flight (10k)
Average 2.246 2.300
Median 1.307 1.295

Profits per flight (10k), median by departure airport
CDG 1.258 1.225
ORY 1.365 1.377

Profits per flight (10k), average by distance
Short Haul 1.206 1.192
Medium Haul 4.564 3.929
Long Haul 6.626 7.868

Profits per flight (10k), 90th percentile by distance
Short Haul 1.635 1.667
Medium Haul 8.211 8.635
Long Haul 12.593 14.095

Profits per seat
Average 110.434 112.208
Median 63.394 65.319
90th percentile 308.581 308.581

Notes. 63,793 out of 120,039 flights are operated by a carrier in the Air France group. Profit statistics for these flights
are given in the column labeled Air France.

7.1 Slot value results

To assess the welfare impacts of introducing a market for slots, slot values are only derived for the four largest

firms; Air France, Lufthansa, easyJet, Vueling Airlines. These four airlines combined operate 60% of flights and

sell 68% of tickets in the data. All other carriers make up a small market share and excluding them from the

slot auction —not from the market— reduces the computational burden. Specifically, how much the big four

airlines (a) value the 252 unique hourly departure slots (s) is determined following Assumptions 1-2. First, the

flight whose departure rights expire (fX) is obtained by selecting a flight randomly among all flights departing

in s and picking the flight with the lowest baseline profits among all flights of the same carrier departing in s.

Then, each airline computes the incremental profits across their flight network when adding the flight with the

highest baseline profit to their network and letting it depart at s, subject to the constraints given above.45. This

requires updating the exogenous variables (X, W ) to account for network effects and simulating the market

equilibrium in all markets where are least one of these variables changes for at least one of the carriers. The

change in total profits gives ν(a, s).

Computationally, the market equilibrium does not always converge within a reasonable time for all 119

markets, 252 slots, and all carriers operating from the departure airport associated with the slot. Simulations

are halted when the price does not converge to within e5 within 500 iterations in at least one of the markets.

Slot values are excluded for all bidders if for at least one of the bidders the simulations are halted prematurely.

The results are based on the 216 slots (auctions) that converged quickly according to these criteria. To reduce

the dependence on outliers, slot values exceeding the 95th percentile are excluded from the results. Further-

more, ν(a, s) is derived for a random ordering of s to ensure that the constraints’ slackness does not relate

45Each flight can be added at most once and the overnight status of the added flight has to match the overnight status of fX .
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Table 4: Estimated slot values (in e100k, S18 flight season)

N Median SD Total
Slot Values 595 5.790 5.874 4708.631
Slot Values - by Bidder

Air France 166 11.271 8.178 2227.362
Lufthansa 76 6.312 2.917 528.263
Vueling Airlines 143 4.792 2.304 771.987
easyJet 210 5.156 2.150 1181.019

Slot Values - by Airport
CDG 381 5.949 6.859 3332.949
ORY 214 5.646 2.975 1375.683

Slot Values - Winning bidders 205 12.056 12.208 3386.921

Notes. Slot values across 216 auctions for which all simulations converged, excluding 9 auctions with negative values and
with values exceeding the 95th percentile.

systematically to the departure time of the slot.

The 595 resulting slot values are summarised in Table 4. They are the basis of the auction results in Section

8. One departure slot used for a weekly flight in one flight season is valued at e579k, at the median. While

the value of a slot is about the same in CDG as in ORY, there is a larger variation across departure hours at

CDG airport. This is because some CDG departure slots are used for highly profitable long-haul flights with

wide-body aircraft. The dominant carrier has substantially higher (median) slot values than the other carriers.

Unsurprisingly, Air France values some slots at its global hub more than the other carriers. Differences in slot

values are partly driven by differences in costs and demand, with the denser network and the higher flight

frequency (to a destination) generating an advantage for Air France. In addition, Air France operates some of

the most profitable flights from Paris to overseas destinations and, when expanding, is expected to offer more

of such flights.

When holding the network variables fixed, there is no particular reason why Air France flights generate

higher profits or why this carrier should have higher slot values. Quite the opposite, in fact, as a negative Air

France premium is coming through the demand side. It is, therefore, a general result that the dominant carrier

will have a favorable position in a potential slot auction in its hubs, and, for instance, it is to be expected that

Lufthansa values slots at Frankfurt and Munich more than Air France does. Existing network asymmetries will,

to some extent, carry through in the allocation of a market-based mechanism unless it is designed to favour

small bidders or newcomers particularly.

Figure 3 externally validates the estimated slot values. Despite the unavailability of systematic data about

prices paid for (or bids placed on) slots, the information available about slot prices at Heathrow Airport aligns

with my results. Representing different airports and periods, and in the case of the sample of paid prices also

being for a non-random selection of slots, a perfect match is not to be expected. However, one would expect slot

values to be somewhat comparable as London Heathrow, Paris Charles de Gaulle, and Paris Orly are all among

the most slot-constrained airports in the world, they are close in proximity, and they have similar competitive

environments with dominant carriers owning a large share of slots. The figure shows that the model’s price

estimates for Paris have the same order or magnitude as (estimated) prices for London Heathrow. This is

supportive of my approach—recovering potential bidder values based on a model of the market’s demand and

supply equilibrium rather than a model of equilibrium bidding—which yields reasonable results.

Next, I assess what makes some airport slots more valuable than others. Slot value determinants are
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Figure 3: Validation based on price estimates for Heathrow slots
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Notes. The Heathrow slot value estimates in the box-plot on the left are from a 2008 newsletter publication by the
“strategic aviation consultancy” firm Aviation Economics, available upon request. Both their low value and high value
estimate for each departure hour are included in the plot. The sources for Heathrow slot prices in the middle box-plot
are, for 1998-2013 this CAPA article, and for 2013-2017 Odoni (2020, Table 3.4). All prices are given in 2018 euros for
a daily slot pair for 31 weeks (as in S18). The model estimate of a slot price in Paris is the present value of an ordinary
annuity that pays ν(a, s) per year for 5 years (as in the mock slot auctions described in Ball et al. (2007)) with an interest
rate of 1.17% per year – the average 2018 inflation rate in the European Union (Macrotrends)), taking only ν(a, s) for
the winning bidder of each slot (the highest across a).

Table 5: Slot value determinants

coefficient std. error marginal effect
Number competing flights in market 0.488* (0.205) 11.33
Herfendahl Index 1.986** (0.715) 6.295
Distance of flight (1000 km) 1.763*** (0.273) 54.747
Capacity of aircraft (100 seats) 3.645*** (0.294) 57.774
Connectivity arrival airport 0.953* (0.392) 7.578
Connectivity departure airport -2.557*** (0.692) -29.137
Morning slot (before 11 am) 1.364*** (0.409) 25.785
Overnight flight -3.345* (1.386) -63.229
Dominant carrier in global hub 2.677*** (0.687) 50.599
Slot owner 1.413*** (0.423) 26.719
Slot at CDG -0.464 (0.6) -8.781
Weekday slot -1.234* (0.556) -23.335
Weekday slot at CDG 2.026** (0.72) 38.291
Intercept -4.508*** (0.921)

Notes. The coefficients and standard errors are from an OLS regression with the slot value in e100k as a dependent
variable in the sample of 595 estimated slot values summarized in Table 4. The stars indicate the following statistical
significance levels: ∗ 0.1, ∗∗ 0.05, and ∗∗∗ 0.001. The last column reports the standardized effect. This is computed as
the percentage change in the slot value when the numerical (binary) variable changes by one standard deviation (from
zero to one), holding the other numerical (binary) variables at their sample means (at 0).

obtained by regressing the estimated ν(a, s) on variables relating to the slot, the carrier’s network, the flight,

and competition at the route level. The estimated coefficients and standardized effects are given in Table 5.

As expected, morning slots are more valuable. Departing before 11 am increases the slot value by e14k (25

percent). Slots at CDG are more valuable than those at ORY, but only during weekdays. Using the slot for a

flight in a more concentrated market also increases the value. All else equal, slots are more valuable to carriers

that currently own them than to carriers that compete for them, suggesting the benefit of optimizing their flight
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Figure 4: PDF of idiosyncratic slot values, fV |A with X the determinants in Table 5. Specifically, the idiosyn-
cratic slot value is computed as the residual from the regression of ν(a, s) on X, adding the intercept and, where
relevant, the global hub effect.

network around the slot. In addition, also reflecting network benefits, slots are more valuable to Air France

than to the four other carriers. Interpreting this in general terms, slots are estimated to carry a large premium

for the dominant carrier in their global hub, who values a slot e267k more than the other firms. The dominant

carrier benefit is of the same magnitude as using the slot for a flight with one standard deviation larger capacity

or for a destination one standard deviation further away. Additional slot value determinants are given in the

table.

One also requires the distribution of idiosyncratic values to simulate bidding in a specific auction. These are

the Ṽi in (7). Assuming additive separability so that Va = h(X) + Ṽa, the idiosyncratic values are obtained as

the residual from the regression of ν(a, s) on X, with X the variables reported in Table 5, adding the intercept

and for slot values of Air France adding the coefficient on Dominant carrier in global hub. The resulting density

of idiosyncratic values, fV |A, is plotted in Figure 4. Consistent with the analysis above, an auction model with

asymmetric bidders is best suited for this market. The first two moments of fV |A are higher for a carrier with

a large airport presence in one of its hubs than for the other carriers.

7.2 Complementarities and network effects

I also use the model estimates to quantify the magnitude and determinants of departure slot synergies.46 To

further illustrate how flight networks affect slot values, I focus on three market settings; a small carrier in a

small market (with a low flight frequency), a large carrier in a small market, and a large carrier in a large

market. These settings are represented in the data by Aeromexico (the small carrier) operating one daily flight

to Mexico City in September (the small market), Air France (the large carrier) operating one daily flight to

Mexico City in September, and Air France operating 13 daily flights to Toulouse in July (the large market),

respectively.

The simulations subsequently have the carrier win 1, 2, 5, and 10 additional slots for these three settings.

46As noted earlier, I consider daily slot pairs as the unit of analysis, which already capture obvious complementarities between
arrival and departure slots in one airport and which are sufficient even for existing carriers to expand to a new destination (see
Table C2). This is also the relevant unit when slot trades occur and the one that would likewise reduce the exposure problem in a
combinatorial auction in one airport alone.
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Table 6: Departure slot packages
Values in e100k, S18 flight season, and as share of value for first slot

Aeromexico-MEX AirFrance-MEX AirFrance-TLS

updating slots value share 1st value share 1st value share 1st

All 3 1 4.852 1.000 0.962 1.000 0.200 1.000
Only updating All 3 2 14.100 2.906 1.732 1.802 0.220 1.096
network variables All 3 3 18.933 3.902 2.434 2.531 0.188 0.936

All 3 4 21.999 4.534 3.055 3.177 0.103 0.514

All 3 1 20.200 1.000 25.320 1.000 3.513 1.000
Updating + adding All 3 2 65.346 3.235 51.266 2.025 6.980 1.987
flight to market All 3 3 109.136 5.403 77.507 3.061 10.356 2.948

All 3 4 150.320 7.442 103.708 4.096 13.596 3.871

Contribution of Individual Network Variables

Spacing 1 4.526 1.000 0.353 1.000 -0.002 1.000
Only updating Spacing 2 13.096 2.893 0.617 1.749 -0.094 46.884
network variables Spacing 3 17.293 3.821 0.919 2.607 -0.148 74.218

Spacing 4 19.714 4.356 1.256 3.561 -0.172 85.779

Flights 1 0.000 1.000 0.353 1.000 -0.003 1.000
Only updating Flights 2 0.000 1.143 0.617 1.749 -0.097 34.252
network variables Flights 3 0.000 1.000 0.919 2.607 -0.156 55.008

Flights 4 0.000 1.143 1.256 3.561 -0.185 65.231

Frequency 1 0.231 1.000 0.962 1.000 0.201 1.000
Only updating Frequency 2 0.423 1.833 1.732 1.802 0.223 1.108
network variables Frequency 3 0.574 2.487 2.434 2.531 0.196 0.971

Frequency 4 0.682 2.955 3.055 3.177 0.117 0.582

Notes. Slots are complements when the value of adding N slots is larger than N times the value of the first slot. The
presence of complementarities thus requires that share 1st > slots in the rows that are based on the full equilibrium
where the flights are added to the market and where all 3 network variables are updated.

After updating the relevant network variables in (X,W ), the new equilibrium is computed across all markets,

and the value of the slot pair is taken to be the difference in the carrier’s total profits. To set aside any (selection)

effects associated with the choice of flight, these simulations restrict both the number and use of the slots won

by bidders; all flights are out of CDG on the first Monday of the month at 9 am. The flight characteristics at

baseline (X,W, ξ, ω) are from the (nearest) flight already operated on that day by the carrier.

The results are given in Table 6 and paint a nuanced picture. There are two ways in which airlines can

benefit from slot package complementarities. First, package slots can be more valuable when offering more

flights to the same destination, as consumers value frequency. This holds up to a point; the peak is reached

at 13 daily flights given the estimated model parameters. As this is exactly the baseline number of flights in

the large carrier / large market example, with Air France operating 13 flights per day from CDG to Toulouse

in July, this contributes to the pure network effect of adding the 14th flight being negative (amounting to -6k,

see the second-to-last column in the first row of Table 6). The second way package slots can be more valuable

is when they reduce the operational costs of flights departing on the same date, regardless of the destination.

The contribution of the three network variables is separated in the lower part of the table.

The benefit to Air France of adding the first flight to Mexico City (the large carrier / small market example)

is substantial (25k). Slot values like this are at the upper end of the slot value distribution because they hit a

sweet spot: combining the benefits of the large carrier, adding a profitable long-haul flight to a low-frequency

market, and banking on cost synergies across many flights in its network. The results indicate that higher
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demand due to the increased flight frequency within the market drives most of the network benefits. Scheduling

efficiencies through the number of flights or their scheduling for departures on the same date make up less

than 25 percent of the network benefits in this setting. In addition, the contribution of the network benefits is

relatively small, making up only 6 percent of the total value of the first slot. To conclude that network effects

are minor would be misleading, however; Air France values the first extra slot to Mexico City 2.5 times more

than Aeromexico mostly because of the size of Air France at the departure airport.

Another striking result is the magnitude of the network effects in the small carrier / small market example.

When adding two additional flights to Mexico City, all network effects combined generate twice as much profit

for Aeromexico as for Air France. In fact, this leads to the result that the small carrier / small market case is

the only one with slot package complementarities. In the other two cases, any network effects are fully undone

in the full market equilibrium when the flight is added to the network, and no benefit of winning multiple

slots at once is detected. Generally, departure slot packages allow for the enjoyment of the benefits of a larger

network (coming from demand premie and cost savings), which are valued more by smaller airlines for whom

the expansion is larger in relative terms. We can conclude from the simulation exercise that departure slot

packages can benefit smaller carriers more than larger ones.

8 Introducing slot auctions

Before quantifying the welfare impacts of introducing a market for slots in Section 8.3, Section 8.1 outlines

considerations about the form of such a market.

8.1 Auction design

An efficient market is implemented in what follows by allocating each s to the carrier with the highest ν(a, s).

This is done according to the model’s assumptions and based on counterfactual market simulations that account

for spillovers across flights and markets, as detailed in Section 7.1. The focus lies on the implications of a slot

market on the competitive environment, social costs, and consumer welfare rather than on the allocation of

auction rents between bidders and the auctioneer. Any transaction prices resulting from the auction do not

affect the total welfare as it is credited to the auctioneer (the airport or the slot coordinator), and, being a sunk

cost at the flight level, do not affect equilibrium fares. One may consider —for political reasons, perhaps— the

redistribution of auction revenues to the market participants by reducing landing rights and other airport fees.

The auction is for series of Weekly Slot Pairs (WSP), consisting of a departure and matching arrival slot

in the origin airport for a certain time each week in the flight season. The value of all slots is computed

independently, considering the added value of the slot to the carrier’s baseline network of flights. Section 7.2

highlights that synergies of adding multiple WSP are small at best, except for the marginal carriers that can

benefit from unlocking cost synergies across multiple additional flights. In those instances, a counterfactual

expansion of the carrier’s network is also the most speculative, requiring aircraft availability and demand for

return flights. This motivates me to consider only the biggest four carriers competing for WSP at auction

(another motivation is computation time). The setting is one with independent private values.47 It is assumed

that there are no borrowing frictions so that bidders do not face budget constraints. Many auction designs

47Note that if the value definition (6) would include the probability that competitor a′ wins the auction, which would be a function
of the value that a′ attaches to the slot, bidder values would be interdependent by construction.
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Table 7: Auction results

Value definition according to model Alternative value def.

Pre-
auction

Base case Add
quantity

cap

More par-
ticipation

No
hoarding

Drop
random
flight

Expected revenue (per slot, 1m) 2.432 2.238 27.347 2.280 2.349
Winner surplus (per slot, 1m) 2.930 0.804 96.223 2.414 2.586
Number bidders 3.000 3.000 13.000 3.000 3.000
Share slots owned by 4 firms 0.648 1.000 1.000 0.574 1.000 1.000
Proportion owned by

Air France 0.736 0.741 0.362 0.574 0.679 0.647
Lufthansa 0.050 0.051 0.157 0.000 0.091 0.034
Vueling Airlines 0.050 0.056 0.200 0.000 0.105 0.092
easyJet 0.164 0.153 0.281 0.000 0.124 0.227

Notes. The reported expected auction revenue is the median of the second-highest value (E[VN−1:N ]). The winner surplus
is the median difference between the highest and second-highest value (E[VN :N − VN−1:N ]). The number of bidders (N)
is the median number of carriers for which the bidding constraints (Cs in Assumption 1) are not binding in the auction
of slot s, meaning that these carriers have operations out of the origin airport with the same overnight status as the
flight whose rights expire (fX) and that these flights have not yet been added to the carrier’s flight network in previous
slot auctions. Further details are given in Section 8.2.

efficiently allocate independent items to IPV bidders, including first- and second- price sealed bid, English,

and Dutch auctions. By the revenue-equivalence theorem, these auctions yield the same expected revenues for

the auctioneer, and in the second-price versions, it is a dominant strategy to bid truthfully (Krishna (2009)).

In what follows, one can consider any of these auction designs as a basic auction with the above-mentioned

properties (referred to as base case in the results).

Realistically, the actual auction design would need to be tailored to the specifics of the market. The Clock-

Proxy Auction (or CPA, developed by Ausubel et al. (2006)) is probably the most suitable practical auction

design for this context and has been proposed for auctioning slots at NYC La Guardia Airport based on good

mock auction results (see Ball et al. (2007) for details).48

8.2 Auction results and alternative slot values

Table 7 presents the first set of results. Before the auction, the four auction participants own two-thirds of the

auctioned slots. The slots are allocated to the four bidders as follows: Air France has 74 percent of the departure

rights, easyJet has 16 percent, and Lufthansa and Vueling Airlines each have 5 percent. One interesting finding

is that the auction participants grow proportionally while owning more slots after the auction. In particular,

the column labeled Base case in Table 7 shows that when allocating the slots through an efficient mechanism,

Air France retains 74 percent of the slots in the auction, and the others also keep their relative sizes except for

a slight redistribution of slots from easyJet to the other three bidders.

The resulting slot ownership proportions are similar, but many slot trades take place, resulting in a large

surplus for the winning bidder of on average e1.1 million per slot. This is computed as the average difference

between the highest and second-highest value (E[VN :N −VN−1:N ]). The absence of a secondary market for slots

reconciles these results; carriers cannot generally take advantage of opportunities to sell their least valuable slots

48Even if bidders struggle to determine their true values, Parkes and Ungar (2000) demonstrate that iterative combinatorial
auctions lead to allocative efficiency and offer significant computational advantages over their closed-form equivalents. Finally, it
is worth noting that the proposed CPA design achieves a “core allocation” relative to reported preferences (Ausubel et al. (2006)),
with desired properties of efficiency and revenue maximization (Day and Milgrom (2010)).
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and purchase slots that would add more value to their network. It is generally believed that slots are not traded

within the EU because of unclear regulation and ill-defined property rights.49 The effect of the two policy rules

(the quantity cap and the set-aside that enhances participation) are discussed in Section 8.4. The auction results

in e2.4 million expected revenues per slot, computed as the average of the second-highest value (E[VN−1:N ])

across the 216 simulated slot auctions. A key difference between a well-functioning secondary slot market and

an efficient primary market is that in the latter case, the auctioneer receives these proceeds, avoiding the issue

of windfall profits in a secondary market.50 The proceeds can be redistributed to firms and/or consumers by,

for instance, improving the airport infrastructure, reducing airport fees, or reducing taxes. The magnitude of

the auction proceeds depends on the auction frequency, the duration of the departure rights, and the share of

slots that are auctioned off. I assume that the regulator would auction off only 10 percent of the slots each time,

to maintain continuity, and that the winning bidder would be given the the slot departure rights for 5 years. In

that case, each auction is for about 900 WSP slot series for the two airports in the study. This is estimated to

generate e2.2 billion in auction revenues. For context, the auction proceeds would be of the same magnitude

as those from the latest auction for 310 MHz of spectrum in the 3.4 - 3.8 GHz band, conducted by the French

communications regulator Arcep.51.

The outcomes of the base case where only the largest four firms participate resemble actual expansion

patterns in the market. Information about slots requested by carriers provides a useful source of validation.

The 2019 bankruptcy of the airline carrier Aigle Azul made an unusually large number of slots available for

reallocation at ORY.52 Of the six carriers that are both in my data and that requested slots from this pool, the

two smallest ones that are not projected to win slots at auction also did not receive any slots from the French

slot coordinator COHOR (this regards Air Caraibes and Ukraine International). Three carriers that revealed a

desire to grow and received COHOR-allocated slots are also projected to win at auction (easyJet, Air France,

and Lufthansa). The fourth carrier projected to win at auction indicated a willingness to expand substantially

(Vueling Airlines requested 51 daily slot pairs), although it did not get any assigned slots. The projected growth

of Vueling Airlines is consistent with receiving all 18 daily slot pairs at ORY, which Air France was forced to

give up in 2021 to remedy competition distortions after receiving financial support from the French state.53

These results speak to the model’s ability to characterize market-based outcomes based on an approximation

of the relatively complex flight choice model with spillovers across the network.

Table 7 also reports the auction outcomes based on two alternative definitions of ν(a, s). The first alternative

shuts off the effect of slot hoarding. Specifically, in the no-hoarding slot value definition, carriers only consider

their expected profits when winning the slot, as in

(∑
K∗a
(
Fs(a)

)
− 0

)
, (23)

49Odoni (2020) reviews this issue and concludes: Secondary trading, as practiced today at some Level 3 airports in the UK,
has important positive and negative impacts. The realistic options for the future are at this point (i) continuation of the existing
hands-off policy that leaves it up to Member States to decide whether to permit secondary trading at Level 3 airports in their
territory (to date, only the UK does), or (ii) amending Regulation 95/93 to permit secondary trading throughout the EU, subject
to certain conditions.

50Moreover, as argued by Krishna (2009), a regulator should aim for the most efficient primary allocation mechanism, as issues
like transaction costs or thin markets can reduce the efficiency of resale.

51These Ascending Clock Auctions raised e2.9 billion according to this press release, which would be the equivalent of the
approximate revenues from auctioning 13 percent of the roughly 9,000 available WSPs.

52For details, see https://www.cohor.org/2019/12/05/ory-05122019-new-slot-pool-allocation/.
53The assignment was based on a beauty contest, prioritizing proposals by carriers already operating at ORY and rank-

ing them based on the airline’s capacity and the connectivity potential of the carriers’ use of slots. For details, see
https://ec.europa.eu/commission/presscorner/detail/en/ip 21 4805.
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Table 8: Validation based on 2019 Aigle Azul bankruptcy

Aigle Azul bankruptcy slot pool

Slot-requesting carriers
also in data

Slots requested Slots awarded Projected to
win auctions

AirCaraibes 20 0 FALSE
easyJet 21 7 TRUE
AirFrance 60 14 TRUE
UkraineInternational 7 0 FALSE
VuelingAirlines 51 0 TRUE
Lufthansa 14 14 TRUE

Notes. Based on slot requests and awards based on data from COHOR (available here). HOP! is coded as AirFrance,
representing the Air France Group in this paper. The table lists only the six carriers that vied for Aigle Azul bankruptcy
slots and are also in the dataset used for the empirical analysis.

Table 9: Welfare effects of slot auction across markets (in e100k)

obs sum mean sd

Welfare Change
Consumers + firms + auctioneer 879 961.163 0.791 21.397

Compensating Variation
All markets 879 -696.137 -0.792 20.880

Variable Profits
All bidders 3516 296.847 0.084 0.743

Variable Profits by firm
Air France 879 225.079 0.256 1.236
Lufthansa 879 17.305 0.020 0.430
Vueling Airlines 879 39.327 0.045 0.594
easyJet 879 15.135 0.017 0.320
Non-bidding firms 94 -31.821 -0.339 0.493

while still having the best alternative flight fa(s) and the dropped flight fX(s) determined as in assumption

1. The results underscore that strategic slot hoarding is important. Owing to lower implied values, Air France

would win 6 percentage points fewer slots if it were not accounting for the allocative externality of its competitors

using the slots in the downstream market. In other words, the results replicate that slot owners are incentivized

to sit on slots even if they are not profitable individually. The 80 percent use-it-or-lose-it rule contributes to

the inefficient use of available airport capacity previously documented.

The second alternative shuts off the effect of slot owners removing the lowest-profit flights from their networks

when needing to give up a slot. Hence, the slot value is still given as in assumption 2, but fX(s) is chosen at

random from all flights taking off in the departure slot window, as in

fX(s) = j ∈R {j ∈ Fa|Xj ∈ Ds}, (24)

where ∈R {. . . } denotes selection at random among all elements in the set. The results highlight that the choice

of which flight to cancel is relevant. When shutting off the ability of carriers to optimize within their networks,

the flag carriers Air France and Lufthansa win fewer slots.
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Table 10: Welfare effects of slot auction — with quantity cap (in e100k)

obs sum mean sd

Welfare Change
Consumers + firms + auctioneer 889 514.346 0.300 10.757

Compensating Variation
All markets 889 -318.958 -0.359 9.923

Variable Profits
All bidders 3556 219.838 0.062 0.759

Variable Profits by firm
Air France 889 95.943 0.108 1.065
Lufthansa 889 3.970 0.004 0.118
Vueling Airlines 889 87.050 0.098 0.947
easyJet 889 32.876 0.037 0.505
Non-bidding firms 80 -24.450 -0.306 0.461

8.3 Welfare effects

In this setting, the efficiency of the market mechanism does not necessarily result in each slot reallocation

being beneficial for consumers.54 I address this issue for the slot auctions in my data. Table 9 reports the

overall welfare effects of introducing the auction, taking into account its effect on the resulting equilibrium

in the after-market, and considering variation in production technologies (W,ω) and sunk assets (represented

by J ) across competing firms. The results indicate that auctioning the 216 slots increases the total welfare

by roughly e96 million. This is computed by assigning all slots to the highest bidders, updating the network

variables in (X,W ), and recomputing the equilibrium once again across all markets. The results for the final

allocation include markets for which the change in simulated profits is within the 1st-99th percentile for all firms,

as to minimize the effects of outliers. The reported compensating variation gives the monetary compensation

consumers need to receive to be indifferent between the pre- and post-auction scenarios. This measure reflects

changes in both prices and products (as in, e.g., Wollmann (2018)).

Overall, consumer surplus increases by e70 million. Due to the modeled spillovers through network effects

coming through demand and supply factors, consumers in all markets are affected regardless of whether the

product offering changes in those markets. The large standard deviation across markets also points to the

distributional impact of the policy. That the variable profits increase for all firms suggests, in part, that the

slots are better utilized. The universal increase in variable profit is also partly driven by the fact that only

the largest four carriers participate in this auction variant, so they are taking away value-creating slots from

non-participating bidders. The profits of non-participating bidders decrease by e3 million in total, which is less

than e100k per carrier. These losses are small because slot owners choose to cancel the least profitable flight

among all flights in the slot that is targeted to expire.

54The key issue with auctioning product licenses rather than products or services is clearly set out in Borenstein (1988): The
potential for inefficient allocation arises because different firms would, if assigned a license, choose to enter different markets
or to use different production technologies. A firm’s most profitable use of a license depends on its production set and its sunk
assets. Sunk assets might include reputation or acquired expertise in a specific industry or market, as well as the machinery and
equipment that are costly to trade. Of course, if these factors were identical for all potential license holders, then any applicant
would choose the same market and production process. If that were the case, assignment of operating licenses would not affect
resource allocation and would probably not be a significant public policy issue [emphasis added]. Such an assumption, however,
is equivalent to supposing that a certain landing slot at La Guardia Airport would be used to serve the same route whether the slot
were assigned to United Airlines or Air Vermont. In reality, the most profitable use of a license will differ among firms, depending
in large part on the products that they already sell.
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8.4 Quantity caps and set-asides

A critical concern in auctions with aftermarkets is the potential for winners to amass an excessive share of

items, leading to market monopolization. To mitigate this, a cap on the maximum share of slots each bidder

can secure may be imposed, although this could compromise efficiency and inflate costs. I evaluate the welfare

implications of such a policy by capping each firm’s slot winnings at 30 percent. The 252 slots are auctioned

in a random order. Bidders are excluded after attaining the highest ν(a, s) in 75 slot auctions to enforce the

quantity cap by setting their values to zero. The resulting slot allocation, presented in the column labeled Add

quantity cap in Table 7, may show proportions exceeding 0.3 per bidder due to excluding outlier values and

auctions where the market equilibrium did not converge for at least one of the firms in at least one market.

As anticipated, the quantity cap is binding only for Air France. Slots previously held by Air France are now

proportionally distributed among the remaining three bidders, resulting in a twofold increase in variable profits

for competing low-cost carriers, Vueling Airlines and easyJet, compared to the auction without the cap (see

Table 10). Lufthansa is projected to prefer the outcomes of an uncapped auction, despite winning fewer slots,

owing to allocative externalities. Implementing the quantity cap halves the monetary gain for consumers, with

compensating variation decreasing from e70 million to e32 million. This reflects consumers’ high valuation

of the convenience associated with the dominant carrier’s denser flight network, network-related efficiencies

curbing price increases, and disparities in product choice. Consistent with a long literature underscoring the

benefits of the hub-and-spoke model in the airline industry, these results highlight the unusual implications for

an optimal slot auction design.

Set-asides and subsidies are additional policy tools often considered to achieve distributional goals (Athey

et al. (2013)), including the mitigation of downstream market power (Cramton et al. (2011)). Athey et al.

(2013) demonstrated that incentivizing smaller bidders through subsidies is preferable to set-asides, as the

latter restricts competition. To gauge the impact of increased bidder participation, I simulate an auction where

all carriers participate rather than just the top four. In this scenario, Air France secures 57 percent of slots, less

than the 74 percent in the base case but more than the 36 percent with the quantity cap. However, this is Air

France’s least favored policy, which must be due to smaller carriers expanding into more profitable markets for

Air France. Similarly, consumers prefer this scenario the least. In terms of magnitude, implementing a quantity

cap reduces the gain in consumer surplus by 55 percent. In comparison, a scenario where 43 percent of slots are

won by small carriers (reflecting a significant bidder-subsidy program) reduces the gain by 95 percent. Despite

these reductions, the overall consumer surplus and total welfare gains remain positive.

When promoting increased participation from carriers, Air France loses slots to some of them, like Air

Caraibes, Royal Air Maroc, and Tunis Air.55 Some new participants are simulated to grow substantially; Iberia

for instance had only two WSPs due to expire and leaves the auction with 23 WSPs. Conversely, easyJet loses

all the 26 WSPs it entered the auction with.56 It is interesting to contrast this finding with the fact that easyJet

is estimated to gain from a quantity cap, meaning that, to some extent, larger non-dominant firms can benefit

from the curbing of market power of the dominant firm, but encouraging too much participation might hurt

them, too.

55Cross-tabulations of slot ownership before and after auctions are provided in Tables C12 and C13 for the basic and expanded
bidding scenarios, respectively.

56It should be noted that the set-aside policy simulations extend the most beyond the status quo, and unmodeled factors such
as fleet restrictions or budget constraints are likely to curb the projected growth of smaller carriers in this scenario.
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Table 11: Welfare effects of slot auction — with small firms participating (in e100k)

obs sum mean sd

Welfare Change
Consumers + firms + auctioneer 382 20.263 0.053 0.076

Compensating Variation
All markets 382 -15.965 -0.042 0.066

Variable Profits
All bidders 21774 4.298 0.000 0.003

Variable Profits by firm
AirFrance 1146 5.246 0.005 0.010
FlagOther 14898 -0.527 0.000 0.001
Lufthansa 382 -0.019 0.000 0.000
NonFlagOther 4584 -0.149 0.000 0.001
VuelingAirlines 382 -0.025 0.000 0.001
easyJet 382 -0.229 -0.001 0.002
Non-bidding firms 0

9 Concluding remarks

This paper assesses the welfare impacts of introducing competition in allocating scarce airport take-off and

landing slots and provides handles to transition to a policy of periodic slot auctions. Methodologically, a new

approach is taken to understand the effects of introducing an auction in a setting without relying on value-

identifying bids. To this end, a structural flight-level model is developed and estimated, and slot values are

identified in equilibrium as the incremental profit that firms generate by utilizing specific slots. Certain elements

are introduced in the model to capture the essence of what makes airport slots valuable, including factors that

make flights at favorable departure times and with short layovers more attractive for consumers. The model’s

accuracy is demonstrated through its close alignment with industry data, including metrics like gross profit

margins from Air France, average slot prices at Heathrow, and the behavior of carriers seeking additional slots

after the 2019 Aigle Azul bankruptcy.

The estimation results indicate significant network effects in costs and demand, influencing the slot values

and favoring larger carriers in a market-based slot allocation. Counterfactual policy simulations demonstrate

that both participating firms and consumers benefit from the auction. An interesting outcome of the estimated

consumer preference for convenience is their overall preference for a mechanism without quantity caps or set-

asides. In simpler terms, consumers prioritize the convenience benefits offered by larger dominant carriers over

the advantages of increased competition from smaller network firms, at least within the context of the examined

auctions. These findings from the model shed light on the central ambiguity in auctions with aftermarkets,

where the welfare implications of efficient mechanisms are uncertain.

Regarding taxpayer gains, the projected proceeds of approximately e2.2 billion from auctioning 10% of slots

in Paris align closely with those from the most recent French auction for radio spectrum. As the overall welfare

gains of the policy are positive, firms can be made at least indifferent by restituting some of the auction proceeds

via reduced airport fees, aiding the political feasibility of transitioning to a market-based system.

The analysis is done independently of the exact mechanism to be put in place and leans on the existence of

an efficient mechanism to allocate slots based on the estimated slot values. Slot values are computed separately,

considering only the complementarity with the carrier’s existing flight network, and can be considered an

approximation of the outcome of more complicated ascending auction designs. This is supported by the limited
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complementarity observed in the (already packaged) WSPs, at least for larger carriers. Moreover, the overall

network size of carriers is only minimally impacted by the auction. With the caveat that this is based on

the estimated stand-alone slot values, this limits the concern that dramatically changing network sizes would

increasingly affect the slot values throughout the auction.

The estimation results serve as the basis for further study into the ideal auction design and to motivate why

this would benefit society. An ideal policy would likely involve promoting environmental sustainability of the

sector and other non-standard objectives that are are the forefront of the policy debate.
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Online Appendices

A Fare sampling process

This appendix details the DGAC observed fare sampling process in relation to the treatment of missing values

in the survey-weighted lowest offered fare of the flight (Pi).

This section specifies the demand side as a simple linear regression model to clarify the relationship between

the process generating missing values in the price variable and the outcomes of interest. Generic subscripts for

observation i (which represent a consumer-flight combination) are used, assuming that the relevant population

can be accurately described with one consumer type and that there is no correlation of preferences requiring

a nested error structure. Dependent variable Yi represents indirect consumer utility from taking flight i, Pi

the average fare, X ′i a row vector of observed flight characteristics that are never missing (including intercept),

ξi the unobservable flight quality, εi a scalar unobservable assumed i.i.d. across individuals and flights, and

θ = {α, β} parameters to estimate with a focus on the disutility of price (α):

Yi = αPi +X ′iβ + ξi + εi (A.1)

with E[Xiεi] = E[Xiξi] = E[Piεi] = 0 and E[Piξi] 6= 0. Furthermore, to describe the event that the price is

missing, define Mi as:

Mi =

1 if Pi is missing

0 if Pi is not missing

Note that the analysis in the paper is done at the flight level requiring the usual logit transformation of (A.1) into

market shares (e.g., adopting a Gumbell distribution for ε, specifying the outside option and consumer choice

problem). The methods to deal with the missingness of fare data that are discussed below also apply when Pi

is endogenous –conditional on the availability of set of valid instruments (row vector) Z ′i = [{Zki }k=1,...,K ] for

K ≥ 1, and (when necessary) conditioning on these as well with Wi = [X ′i, Z
′
i]
′. In the spirit of Rubin (1976),

examining what drives Mi is crucial.

Flight-level prices Pi are the survey-weighted average ticket-level offered prices collected periodically by the

DGAC web-scraping algorithm. The algorithm works as follows. Every other day, it collects ticket prices for a

return flight offered for a predetermined set of “products” and “profiles”, which amount to the combination of

departure airport, destination airport, ticketing carrier, number of days of stay (3, 7, or 21), in how many days

the flight takes place (2, 11, 20, 44, or 90), booking class (economy or business), with flexible booking conditions

or not, and whether it includes a stopover or not.57 For each combination of these search characteristics A, the

robot records the lowest offered price if there are multiple.58 After dropping flights with a stopover (due to not

having quantity data for such flights), the average fare for flight i is obtained as the survey-weighted average of

57To give an example, the algorithm loads prices for a return flight from CDG to BCN, without connection, for a departure date
2 days ahead and a return date 5 days ahead, in economy class, with flexible booking conditions, and with Air France.

58The algorithm thus mimics consumers selecting the lowest available fare for a given itinerary, as in the dynamic pricing model
of Williams (2022), with the addition of also selecting the carrier, return leg, class, flexibility of booking conditions, and connection.
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recorded prices related to flight i (Psai):59

Pi =
1

Si

Si∑
s=1

Psaiφa (A.2)

Survey weights φa are provided by civil aviation authority DGAC to render the recorded prices representative of

air travel spending by the relevant population according to passenger surveys.60 Si (the total number of times a

price for flight i is recorded) varies by flight due to i) A not containing the departure time and ii) unavailability of

tickets when the departure day approaches. Importantly, the fact that the robot does not specifically condition

on the departure time explains why the distribution of departure hours differs by Mi. Flights departing at

unfavorable hours (to consumers) have lower equilibrium fares and are therefore oversampled by the algorithm.

With the above sampling mechanism in mind, it is easy to show that Mi does not depend on Yi conditional

on observables under reasonable assumptions. As standard in structural models of oligopoly markets, prices are

conceived to be a function of demand characteristics (Xi, affecting mark-ups), a flight-level scalar unobservable

“quality” (ξi, the root cause of endogeneity in these models), and cost. The latter are referred to as cost shifters

(Zi) when applied to address price endogeneity using a GMM model, based on the identifying assumption that

E[ξiWi] = 0 for W ′i = [X ′i, Z
′
i]
′ as above and with instruments Zi excluded from consumer utility. I next use

these conventions to explicitly model the set of offered prices during simulation s of the price scraping algorithm

for search profile a. Offered prices Psain are also subscripted by i to indicate that the price is associated with

(additional) characteristics for flight i (X ′i, Z
′
i, ξi) and by n to denote one of the offers if there are multiple.

Hence Psain can be specified as:

Psain = g(a,Xi, Zi) + h(ξi) + νsan, with νsan ⊥ (ξi, εi) (A.3)

for generic functions g(.) and h(.). The important restriction is that ξi is a proper flight-level unobservable,

constant across multiple offers within a simulation, and independent of any offer-specific unobserved hetero-

geneity νsan. Rather than selecting the minimum offer price across n conditional on (a,Xi, Zi) in simulation s,

the algorithm selects price:

Psai = min(Psain|A = a) (A.4)

= min(g(a,Xi, Zi) + h(ξi) + νsan)

= min(νsan) + g(a,Xi, Zi) + h(ξi)

with the last equality holding in particular due to h(ξi) being constant across n. This underscores the earlier

comment that unattractive departure times in Xi are undersampled as they are associated with higher prices in

equilibrium (higher g(a,Xi, Zi)). Also flights with higher cost, i.e. due to the use of a less fuel efficient aircraft,

or with higher offer-specific idiosyncratic error are undersampled.

Importantly though, the ignorability condition of Dardanoni et al. (2011) holds in this context.61 The

59Typically, Psai is one of many recorded prices that match on the market-product definition (departure month, departure airport,
destination airport, ticketing carrier, departure day, departure hour) regardless of the number of days of the stay, days ahead the
flight takes place, booking class, and flexibility of booking conditions.

60DGAC produce survey-weighted ticket prices as part of the travel component of the French CPI, and have kindly generated
survey weights φa for this study to match expenditure by travellers departing from CDG or ORY airports only.

61Dardanoni et al. (2011) use the term ignorability for when Mi and (Yi, Pi) are conditionally independent given Wi. This
renders both the complete case and linear imputation method (e.g., Dagenais (1973), Gourieroux and Monfort (1981)) consistent,
with the former being potentially less precise and the latter potentially introducing bias through the imputation equation.

1



equation below formalizes this by letting DepHours(.) be the set of departure hours associated with selected

minimum prices Psai, a(i) the set of product-market characteristics associated with observation i (e.g. depar-

ture airport, arrival airport, ticketing carrier, month), and Sa(i) the number of simulations done for these

characteristics. Pi is only missing if:

DepHouri /∈ DepHours
(
{Psai}a=a(i),s=1,...,Sa(i)

)
(A.5)

so that Mi ⊥ Yi|(Xi, Zi) under the restrictions in (A.3). Under these restrictions, imputation methods are more

efficient than the complete case estimator, consistent and asymptotically normal (Dagenais (1973), Gourieroux

and Monfort (1981), Abrevaya and Donald (2017)). This motivates the imputation approach the paper takes to

deal with missing prices. Imputing missing fares is merely a prediction problem; no causal relationship is sought

after at this stage. To determine which combination of variables best predicts the price of a flight, various

(machine learning) methods are explored alongside more standard regressions (see section B).

Another remark here is that a more stringent assumption that prices are Missing Completely At Random

(MCAR) does not hold. MCAR assumes that Mi is statistically independent of (Pi,Wi, εi) and any unobserved

price heterogeneity conditional on Wi. When MCAR holds, this justifies discarding observations with Mi = 1

and adopting the complete case estimator –as is done in most empirical studies dealing with missing data

published in the top econ journals.62 However, MCAR is violated as the distribution of departure hours differs

by Mi (see figure A1). To see why this is the case, recall that the algorithm collects prices for different ticket

characteristics for each combination of departure day of the week, origin, destination, and carrier. However, it

does not specifically search for flights departing at a certain hour or time. As a result, even the reweighed data

might not fully reflect consumer preferences for slots. The lowest price is recorded if multiple departure times

are offered within the (narrow) ticket search.

B Machine Learning Imputation Methods

This appendix describes the application of machine learning techniques alongside conventional regression models

to impute missing fares.

Three economically-motivated regression models that relate the fare to variables in X and markup- and cost-

shifters are specified based on what we know about the product/industry. In addition, three machine learning

methods are considered: Random Forest, Ranger, and Ridge Regression. Random Forest and Ranger are based

on partitioning the data into increasingly fine bins with a bin-specific (average) fare. These algorithms search

over the set of variables (and values of factor variables) for the best-fitting partitioning. At the same time, Ridge

Regression takes all available values and gives them the best-fitting weights (which may include 0). The 48,241

observations with non-missing Fares (40.0% of the full dataset) are split 80-20 into training and test sets. This

operation results in a training set of 38,593 observations. For the expert-dictated or economically motivated

models, the coefficients are estimated by OLS on the full training dataset. The machine learning methods

split the training set into one half where the model is trained and one half where the model is validated. The

62Abrevaya and Donald (2017) review all empirical papers published in the American Economic Review, Quarterly Journal of
Economics, the Journal of Human Resources, and the Journal of Labor Economics published between 2006 and 2008 and find
that 40 percent deal with missing data. In roughly 70 percent of those articles observations with missing values are dropped
(referred to as the complete data method), and the remainder use linear imputation of missing values and/or a dummy variable
(or missing-indicator) method.
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Figure A1: PMF of departure hour, separately for whether or not there is price data available for flight

remaining 9,648 observations constitute the test set, which always leaves aside any estimation or training, to

avoid overfitting. Fares are predicted based on the trained/estimated models and compared to the true values

in the test set, and the fit is summarised by the RMSE and R2 in the test dataset.

The set of potential predictor variables include: X and W reported in the paper, BLP instruments based

on X, additional instruments included in the analysis (sum of flights departing within a 2-hour window on the

same day, sum of seats for those flights, both for own and rival firms, average fuel price per seat based on the

price per dollar of Kerosene grade Jet fuel and the dollar/euro exchange rate in different periods before the

flight), the market share, the market share2, the market size, destination-specific variables such as the absolute

deviation in temperature with Paris, and other flight-level observables not included in X and W . Some dataset

pre-processing is performed to avoid multicollinearity (excluding variables with a correlation coefficient larger

than 0.9), and the final training sample contains 104 variables. The machine learning models are trained using

the caret package in R. The Random Forest, Ranger, and Ridge Regression methods are first trained on only

5,000 observations to limit the computation time, and the best-performing method is then also trained on the

full training set of 38,593 observations. The performance of these seven models is summarized in table B1.

The first thing to note is that all simple OLS expert-dictated models do very well in predicting fares. Model

B has the lowest R2 and the fewest outliers among the OLS-based models (table B2). Ridge regression does

better than the best OLS model even on the smaller training set of 5,000 observations, improving the R2 by 6

percentage points. However, as the imputation is based on continuous variables and weights, it results in 0.2%

P̂jt < 0 –similar to the OLS-based models. Random Forest and Ranger do not have that issue, and they result

in an even better fit. The Full Ranger model, estimated on the full training dataset, improves the R2 to an

impressive 0.9 and lowers the RMSE to 81.71. It can be concluded that this machine learning method predicts

with very high accuracy the average flight-level fares that are set based on the available data, and the structural

demand estimation in the paper is based on fares imputed with this model (if missing).
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Table B1: Performance imputation models: Fit

RMSE R2 No. obs. Train Train Control Method CV number CV repeated User time (hr)
Model A 1.38 0.74 38838 NaN < 10s
Model B 1.42 0.73 38838 NaN < 10s
Model C 1.37 0.75 38838 NaN < 10s

Random Forest 1.09 0.84 5000 repeatedcv 10.00 10.00 0.18774138888889
Ranger 1.09 0.84 5000 repeatedcv 10.00 10.00 0.0243886111111109

Ridge 1.32 0.77 5000 repeatedcv 10.00 10.00 0.00062249999999848
Full Ranger 0.91 0.89 38838 repeatedcv 10.00 10.00 11.0538288888889

Notes. Notes. Performance of the seven different regression/machine learning models. Control method “repeated CV”
stands for repeated Cross Validation, and # CV indicates the number of times the model is cross-validated, each based
on a 10-fold split of the Training sample. This means that the Full Ranger model is fitted 100 times on the Training
sample, selecting the best-performing partitioning among those, and the performance of this model is evaluated in the
training sample.

Table B2: Details imputation: distribution and outliers

Nobs Min 1st Q. Median Mean 3rd Q. Max Outlier (%)
Non-missing Fares 48793 Min. : 0.39 1st Qu.: 1.23 Median : 1.98 Mean : 3.22 3rd Qu.: 4.29 Max. :19.27

Model A 120053 Min. :-0.6863 1st Qu.: 1.2624 Median : 1.9035 Mean : 2.7684 3rd Qu.: 3.1522 Max. :19.2665 1.1612
Model B 120053 Min. :-0.7189 1st Qu.: 1.2645 Median : 1.9080 Mean : 2.7651 3rd Qu.: 3.1292 Max. :19.2665 1.082
Model C 120053 Min. :-0.6711 1st Qu.: 1.2740 Median : 1.9376 Mean : 2.7848 3rd Qu.: 3.1659 Max. :19.2665 1.1503

Random Forest 120053 Min. : 0.3895 1st Qu.: 1.3989 Median : 2.0366 Mean : 2.9275 3rd Qu.: 3.0343 Max. :19.2665 0
Ranger 120053 Min. : 0.3895 1st Qu.: 1.4009 Median : 2.0374 Mean : 2.9258 3rd Qu.: 3.0127 Max. :19.2665 0

Ridge 120053 Min. : 0.2184 1st Qu.: 1.3556 Median : 1.8624 Mean : 2.8538 3rd Qu.: 3.0154 Max. :19.2665 0.0117
Ranger Full 120053 Min. : 0.3895 1st Qu.: 1.3444 Median : 2.0699 Mean : 3.0235 3rd Qu.: 3.5102 Max. :19.2665 0

Notes. Notes. Quantiles and statistics of the predicted P̂jt based on the relevant regression/machine learning model. An
outlier is defined as P̂jt < 0 or P̂jt > 1204.13 (the sample maximum of observed Pjt).

It is also interesting to learn from the machine which variables are the most important (statistically) predictor

of prices in this market. Table B3 lists the 50 most important variables for the four models and their scaled

importance within the model. Whether the destination requires a LongHaul flight (a combination of Europe

dummy and Distance category) is by far the most important one in the Ranger Full model, followed by the

CDG departure airport dummy, and aircraft-distance specific Fuel Consumption variables.

C Data: additional descriptive statistics and results

This appendix contains additional descriptive statistics and results referenced in the text.
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Table B3: Machine learning models: 50 most important predictors of Pjt

Var. name Random Forest Ranger Ridge Regression Ranger Full
Distance 100.00 100.00 100.00 100.00
Distance2 91.43 99.59 2.26 87.04
outsideshare 14.67 20.00 0.86 21.98
UniqueFaresFlight 9.20 18.48 0.37 20.58
ZSpacingSumOwn 3.00 8.48 0.33 9.86
SHbusinessClass 2.76 7.60 0.33 8.64
log FuelDistperSeatL9 2.72 6.40 0.27 6.79
FuelDistperSeatL9 2.49 6.11 0.23 6.68
FuelBurnperSeatL9 2.41 5.82 0.22 4.99
LoadFactor 2.18 5.80 0.22 4.94
DepartureDayMONRushHour 2.08 5.07 0.20 4.33
log FuelBurnperSeatL9 2.05 4.30 0.18 4.30
PotConn6h DEP 1.93 3.68 0.17 4.12
PotConn6h ARR 1.87 3.62 0.17 3.30
RushHourMorningExp 1.74 3.54 0.13 3.11
CDG 1.55 3.42 0.13 3.05
Quantity 1.53 3.23 0.12 3.02
FlagCarrier 1.48 3.01 0.12 3.01
ZSpacingDestSumOwn 1.46 2.99 0.12 3.00
Exceed90thSpacing 1.43 2.95 0.12 2.95
ZSpacingDestSumOther 1.41 2.80 0.11 2.90
ZWeekdayRushMorningSumOwn 1.32 2.76 0.11 2.68
RushHourEveningExp 1.27 2.74 0.07 2.62
DepartureDateDay 1.27 2.54 0.07 2.61
k 1.19 2.49 0.07 2.58
Herfendahl 1.18 2.41 0.05 2.57
Destinations 1.15 2.37 0.05 2.32
HerfendahlDest 1.12 2.35 0.05 2.27
ZWeekdayRushEveningSumOwn 1.09 2.27 0.05 2.17
ZPotConn6h ARRSumOwn 1.08 2.08 0.05 2.12
MediumHaul 1.08 2.05 0.05 2.11
ZPotConn6h DEPSumOwn 1.06 2.01 0.04 2.03
Spacing 1.06 1.96 0.04 1.93
DepartureDayTUERushHour 1.01 1.94 0.04 1.83
RushHour 1.00 1.92 0.03 1.81
ZWeekdayRushMorningSumOther 1.00 1.88 0.03 1.80
prodshare 0.99 1.83 0.03 1.79
Month 0.97 1.69 0.02 1.78
marketshare2 0.95 1.69 0.02 1.77
ZFlightsSumOwn 0.95 1.66 0.02 1.75
marketshare 0.92 1.62 0.01 1.72
ZFlightsDestSumOwn 0.91 1.62 0.01 1.71
HubDest 0.89 1.57 0.01 1.70
FuelBurn 0.83 1.53 0.01 1.67
ZSeatsFlightsSumOther 0.80 1.52 0.01 1.66
Destinations2 0.80 1.52 0.01 1.53
SpacingDest 0.72 1.48 0.01 1.52
ArrivalHour 0.71 1.39 0.01 1.50
ZSHfirstClassSumOwn 0.70 1.28 0.01 1.49
WeekdayRushHour 0.70 1.24 0.01 1.48

Notes. Notes. LongHaul is based on the Distance×Europe dummy for the destination airport, the variables ending with
Lx are based on the JetFuel price Lagged by x weeks, FuelDistperSeat is based on a distance-based approximation of
the FuelBurnperSeat variables (which reflects the aircraft- and distance- specific fuel consumption per seat), variables
ending with OWN are BLP-instruments summing over own flights, and ending with RIVAL are based on rival flights,
the Ridge regression contains almost only destination and carrier fixed effects (indicated by their IATA codes).
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Table C1: Slot changes when perturbing network by up to 1 flight

Flights S19
(number)

Flights
change
S19-S18
(number)

Additional
Slots
(percent)

Removed
Slots
(percent)

Across Slot
Shuffle
(percent)

City Country

434 -1 0 0 -0.23 San Francisco United States
30 -1 0 0 -3.33 Djibouti Djibouti
54 0 0 0 0 Figari France
217 0 0 0 0 Osaka Japan
217 0 0 0 0 Jeddah Saudi Arabia
24 1 0 0 4.17 Calvi France

Notes. Based on Global Schedules Data; selecting Air France departures from Paris Charles de Gaulle (CDG) airport.
The table reports changes in flights between the summer season of 2018 (S18) and the summer season for 2019 (S19) for
destinations where one flight is added (Calvi), one flight is removed (San Francisco and Djibouti), or where the number
of flights is exactly the same in S18 as S19 (Figari, Osaka, and Jeddah), as indicated in the column Nr Flights change
S19. The percent of flights in slots that is added to (or removed from) the network in this destination is given in the
column Additional Slots (Removed Slots). The zeros in these columns indicate that the flights are added to existing
slot windows, indicating that an extra week is added or removed from the slot series that Air France operated in S18.
Positive numbers indicate that a new slot window is used. The column Across Slot Shuffle reports the average change
in the number of flights scheduled in those slots as a percentage of the number of flights scheduled in S19.

Table C2: Flights added from Paris CDG or ORY in summer of 2019

New Flights City Country Carrier

New Destination, New Carrier 254 Calgary Canada WestJet
New Destination, New Carrier 161 Halifax Canada WestJet
New Destination, New Carrier 120 Fuzhou China Xiamen Airlines
Total new flights 535

New Destination, Existing Carrier 150 Sao Paulo Brazil Aigle Azur
New Destination, Existing Carrier 30 Bari Italy Air France
New Destination, Existing Carrier 210 La Rochelle France Air France
New Destination, Existing Carrier 72 Quito Ecuador Air France
New Destination, Existing Carrier 210 Wroclaw Poland Air France
New Destination, Existing Carrier 60 Chongqing China Hainan Airlines
New Destination, Existing Carrier 60 Shenzhen China Hainan Airlines
New Destination, Existing Carrier 90 Vigo Spain Iberia
New Destination, Existing Carrier 30 Ivalo Finland Jetairfly
New Destination, Existing Carrier 50 Nador Morocco Transavia France
Total new flights 962

Existing Destination, New Carrier 210 Dakar Senegal Air Senegal
Existing Destination, New Carrier 360 Vienna Austria Anisec
Existing Destination, New Carrier 117 Fort-de-France Martinique Openskies
Existing Destination, New Carrier 78 Montreal Canada Openskies
Existing Destination, New Carrier 133 New York United States Openskies
Existing Destination, New Carrier 136 Pointe A Pitre Guadeloupe Openskies
Existing Destination, New Carrier 120 Algiers Algeria Tassili Airlines
Total new flights 1154

Total New Flights, New Destination or Carrier 2651
Total New Flights, Existing Destinations and Carriers 32086
Total Existing Destinations and Carriers 224
Total New Destinations by New Carriers 4
Total New Destinations by Existing Carriers 11
Total Existing Destinations by New Carriers 8

Notes. Based on Global Schedules Data; selecting departures from Paris Charles de Gaulle (CDG) or Paris Orly (ORY)
airport. The table reports all flights offered in the summer season of 2019 (S19) that were not offered in the same season
in 2018 (S18).
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Table C3: Share of passengers to US destinations

Destination DGAC T100
ATL 0.10 0.11
BOS 0.06 0.07
EWR 0.06 0.10
IAD 0.11 0.08
JFK 0.27 0.27
LAX 0.11 0.14
MIA 0.08 0.06
ORD 0.08 0.06
SFO 0.12 0.10

Notes. Rows reflect the nine destinations that have commercial flights in both the international segment
of the T-100 dataset and in the DGAC quantity data between April and September 2018, with the de-
parture airport being CDG or ORY. The DOT T-100 (International segment) dataset is obtained from
https://www.transtats.bts.gov/DL SelectFields.aspx?gnoyr VQ=FJE&QO fu146 anzr=Nv4%20Pn44vr45. It is based
on a 10% random sample of ticket sales for direct international flights originating or departing in the US, as reported
by the airline carriers. The DGAC dataset contains the number of actual passengers for the universe of direct flights
departing from CDG or ORY.

Table C4: Estimation Sample: Selected Carriers and Destinations

N In Sample Means (across destinations)

N In Sample Carriers Flights
119 TRUE 4.21 1227.77
285 FALSE 2.38 290.38

N In Sample Means (across carriers)

N In Sample Dests. Flights
57 TRUE 7.84 2931.14
63 FALSE 2.40 371.24
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Table C5: Carriers included in the sample

Carrier name Number Destinations Number Flights Share of Quantity
Air France 170 88991 0.39
easyJet 50 14926 0.07
Transavia France 49 9867 0.05
Vueling Airlines 27 7466 0.04
Aigle Azur 13 2094 0.01
Delta Air Lines 13 2427 0.02
Air Algerie 10 2661 0.01
Corsair 10 1090 0.01
Air Caraibes 9 1040 0.01
Royal Air Maroc 8 2895 0.01
American Airlines 6 1226 0.01
Aegean Airlines 5 1057 0.00
Tunisair 5 1627 0.01
Air Corsica 4 2046 0.01
United Airlines 4 884 0.01
Air Transat 4 575 0.01
Turkish Airlines 3 1343 0.01
SAS 3 1393 0.01
Air Canada 3 547 0.01
Aeroflot 3 1510 0.01
Air China Limited 3 668 0.00
Air Austral 3 233 0.00
Lufthansa 2 2734 0.01
TAP 2 1640 0.01
Jet Airways 2 367 0.00
Aer Lingus 2 1076 0.00
China Eastern Airlines 2 525 0.00
Vietnam Airlines 2 308 0.00
Air Madagascar 2 53 0.00
Ukraine International 1 432 0.00
SWISS 1 1028 0.00
British Airways 1 1365 0.01
Finnair 1 1067 0.00
Iberia 1 1161 0.01
KLM 1 1164 0.01
Qatar Airways 1 640 0.01
CSA 1 645 0.00
Austrian 1 804 0.00
Middle East Airlines 1 432 0.00
El Al 1 560 0.00
Emirates 1 617 0.01
Singapore Airlines 1 216 0.00
TAROM 1 426 0.00
Cathay Pacific Airways 1 347 0.00
Thai Airways International 1 208 0.00
Atlasglobal 1 189 0.00
Air Mauritius 1 249 0.00
Asiana Airlines 1 154 0.00
Air Serbia 1 394 0.00
JAL 1 216 0.00
Korean Air Lines 1 233 0.00
Air Seychelles 1 13 0.00
Aeromexico 1 208 0.00
Etihad Airways 1 423 0.00
ANA 1 214 0.00
Air India 1 215 0.00
LATAM Airlines Brasil 1 186 0.00
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Table C6: Flights in the sample with at most 10 passengers

CarrierName Origin arrivalCityName Quantity Capacity DepartureDay DepartureHour DepartureDate
RoyalAirMaroc ORY Agadir 4 114 Thursday 22 2018-08-23
RoyalAirMaroc ORY Agadir 4 114 Friday 22 2018-08-24
RoyalAirMaroc ORY Agadir 8 114 Tuesday 22 2018-08-28
RoyalAirMaroc ORY Agadir 4 114 Wednesday 22 2018-08-29
AirCorsica ORY Ajaccio 6 180 Monday 22 2018-08-27
AigleAzur ORY Algiers 5 180 Sunday 7 2018-09-30
AirFrance ORY Bordeaux 6 145 Monday 7 2018-04-02
AirFrance CDG Bordeaux 6 145 Monday 12 2018-05-07
RoyalAirMaroc CDG Casablanca 5 114 Thursday 7 2018-08-23
RoyalAirMaroc CDG Casablanca 7 159 Saturday 7 2018-08-25
RoyalAirMaroc CDG Casablanca 7 114 Sunday 7 2018-08-26
RoyalAirMaroc CDG Casablanca 6 159 Tuesday 7 2018-08-28
RoyalAirMaroc CDG Casablanca 8 159 Wednesday 7 2018-08-29
RoyalAirMaroc CDG Casablanca 10 159 Thursday 7 2018-08-30
RoyalAirMaroc CDG Casablanca 8 159 Wednesday 7 2018-09-05
RoyalAirMaroc CDG Casablanca 9 159 Friday 7 2018-09-07
Tunisair ORY Djerba 9 148 Tuesday 19 2018-08-28
Tunisair ORY Djerba 6 148 Wednesday 19 2018-08-29
Tunisair ORY Djerba 9 148 Monday 19 2018-09-03
Tunisair ORY Djerba 8 148 Tuesday 19 2018-09-04
AirFrance ORY Marseille 5 180 Tuesday 17 2018-09-04
AirFrance ORY Toulouse 8 180 Tuesday 21 2018-04-03
AirFrance CDG Tunis 10 169 Friday 7 2018-08-31
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Figure C3: Share of departure slots by airline

10



Table C7: Routes with connection at CDG

departureAirport arrivalAirport Share ShareCDG ShareORY Number NumberCDG NumberORY
ISB BCN 1.00 1.00 0.00 31 31 0
LHE BCN 1.00 1.00 0.00 31 31 0
MXP ISB 1.00 1.00 0.00 31 31 0
MXP LHE 1.00 1.00 0.00 31 31 0
FUE RNS 1.00 1.00 0.00 3 3 0
NTE DBV 0.01 0.01 0.00 1 1 0

Notes. Source: Cirium global schedules file, for S18, listing only the operating carrier and no codesharing partners and
excluding non-commercial flights. No flights are connecting at ORY.

(a) Flights and potential Itineraries

CDG

MXP

JFK

DXB

(b) Slot Value νa,s based on flight-level Q,P

CDG

MXP

s

Flights by airline a

Quantity = number seats filled

Passenger’s itinerary (?)

Figure C4: Flight-level analysis to recover the value of slot s

Notes. For example, consider two passengers, one that buys a return ticket to fly from New York (JFK) to Milan
Malpensa (MXP) via Paris CDG and another one that buys a return ticket to fly from JFK to Dubai International
Airport (DXB) via CDG. They are in the same plane departing from JFK to CDG. From the perspective of a consumer,
JFK-CDG-MXP and JFK-CDG-DXB are two different itineraries both with a connecting stop at CDG. The itinerary-
level approach that is dominant in the literature would consider these as four directional markets (New York-Milan,
Milan-New York, New York-Dubai, Dubai-New York) or two non-directional ones. Demand is modelled as the indirect
utility of purchasing a ticket with a dummy for whether the itinerary includes a connection or not. However, from the
perspective of an airline carrier, three flights are involved in each direction. The flight that arrives at CDG from JFK is
not (necessarily) linked to either of the endpoints of the two itineraries, and the aircraft might fly back to JFK or it might
continue to another destination. For this exact reason, the global schedules file has a much lower share of connecting
flights at CDG and ORY than the share of departing passengers that are reported to be connecting at these airports.
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Table C8: Analysis of demand and supply instruments

First Stage: OLS of Price on OLS of Q on

(1) (2) (3) (4) (5)

Fuel Consumption 1.292*** 0.638*** 0.246*** 0.368***
(0.002) (0.004) (0.009) (0.016)

Business Class share 1.527*** -1.536*** -0.143
(0.095) (0.105) (0.212)

Wet Lease -0.019 0.079*** -0.138***
(0.017) (0.019) (0.041)

Monopoly Markets (at Destination) 1.484*** 0.492*** -0.147 59.659***
(0.041) (0.049) (0.108) (1.027)

Duopoly Markets (at Destination) 0.727*** 0.228*** -0.215*** 29.098***
(0.025) (0.028) (0.060) (0.644)

Number of products in Market -0.001*** 0.000*** 0.002*** 0.013***
(0.000) (0.000) (0.000) (0.002)

Week of departure -0.005*** -0.002*** -0.003*** 0.050*
(0.000) (0.000) (0.001) (0.021)

Spacing 0.011*** 0.059*** 0.041***
(0.002) (0.003) (0.005)

Hub (at Destination) -0.247*** 0.361*** 0.809***
(0.012) (0.074) (0.147)

Nr. Flights (at Destination) 0.005 -0.139*** -0.182***
(0.007) (0.007) (0.015)

Number own flights from CDG in Market 0.001*** 0.000 -0.003*** -0.117***
(0.000) (0.000) (0.001) (0.004)

Number competing flights from CDG in Market 0.002*** 0.002*** 0.003*** -0.025***
(0.000) (0.000) (0.001) (0.006)

Number competing flights in Market 0.037*** 0.036*** 0.002 -7.786***
(0.003) (0.003) (0.007) (0.143)

Nr. own flights in 2 hour window in Market -0.025** -0.047*** -0.022 -2.914***
(0.009) (0.008) (0.018) (0.299)

Nr. competing flights in 2 hour window in Market -0.019* -0.008 -0.016 11.510***
(0.007) (0.007) (0.013) (0.334)

Total capacity own flights in Market 0.001*** 0.001*** 0.001*** 0.155***
(0.000) (0.000) (0.000) (0.002)

Total capacity competing flights in Market 0.001*** 0.000*** 0.000*** 0.231***
(0.000) (0.000) (0.000) (0.002)

Num.Obs. 120039 120039 120039 48787 120039
R2 0.785 0.879 0.913 0.890 0.886
R2 Adj. 0.785 0.879 0.912 0.889 0.886
AIC 486992.5 418552.9 379407.9 174727.7 1344878.5
Log.Lik. -243494.254 -209216.443 -189525.963 -87186.868 -672422.270
Exogenous variables X included X X X
Destination fixed effects included X X
Sample with raw fares only X

Logit IV Model diagnostics:
– Weak instruments test (p-value) 0 0 0 0
– Wu-Hausman endogeneity test (p-value) 0 0 0 0
– Sargan overidentification test (p-value) 0 0 0

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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(b) Hours (dest. FE) with fitted Cosine
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(c) Cosine Prefs.
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(d) 2-Type Cosine
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Figure C5: Departure time preferences in different demand specifications

Notes. Plot (a) is based on the demand model with departure hour dummies and without destination fixed effects.
It reports the point estimates and 95% confidence interval of the departure hour dummies. The coefficients should be
interpreted in relation to the reference group of departing after midnight and before 7am. Departure times are binned into
departure hours after midnight — for instance, the departure hour of a flight leaving at 13:46 (1:46 pm) is 13. Plot (b) is
based on the departure hour demand model with destination fixed effects. The estimated departure time preferences are
also represented by a fitted cosine function f(x) = a cos( 2π

24
(x− 8)), with a cos(bx) the cosine function with amplitude a

and period 2π
b

applied to x. As detailed in the text, this function is chosen for its suitability to represent time preferences
and due to its fit to the estimated parameters. The amplitude is half the difference between the minimum and maximum
of the function, indicated in plot (b) as the distance between the top and middle (or bottom) horizontal dashed lines.
Setting b = 2π

24
forces the preferences to repeat every 24 hours. Estimated Cosine-shaped departure time preferences in

a model with destination fixed effects are given in plot (c). Plot (d) displays the estimated type-specific Cosine-shaped
departure time preferences. The four models are further evaluated in Table 1.
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Table C9: Estimated demand and cost parameters

Demand variables Cost variables
Nested logit coefficient (kappa) 0.783*** Constant 0.243***

(0.003) (0.015)
Population share (type 1) 0.045*** Hub 0.588***

(0.002) (0.014)
Fare (type 1) -0.274*** Spacing 0.087***

(0.008) (0.002)
Fare (type 2) -1.245*** Nr. Flights -0.143***

(0.007) (0.012)
Departure Airport = CDG (type 1) -1.55*** Hub at Destination 0.085***

(0.05) (0.006)
Departure Airport = CDG (type 2) 0.677*** Spacing at Destination 0.021***

(0.011) (0.001)
Cosine Departure Time (type 1) 0.081*** Nr. Flights at Destination 0.105***

(0.015) (0.003)
Cosine Departure Time (type 2) 0.204*** Fuel Consumption 0.271***

(0.005) (0.004)
Day = Tuesday 0.118*** Wet Lease 0.048***

(0.01) (0.012)
Day = Wednesday -0.244*** Departure Airport = CDG 0.343***

(0.011) (0.01)
Day = Thursday 0.161*** Slot Constrained Destination -0.173***

(0.01) (0.008)
Day = Friday -0.117*** Business Class share 1.093***

(0.01) (0.065)
Day = Saturday -0.054*** Flight = Medium Haul 2.127***

(0.011) (0.015)
Day = Sunday 0.012 Flight = Long Haul 2.24***

(0.01) (0.023)
Air France -0.136*** Arrival = Mid Day 0.235***

(0.014) (0.009)
easyJet -0.56*** Arrival = End Day 0.033***

(0.012) (0.008)
Other Flag Carrier 0.133*** Capacity -0.001***

(0.013) (0)
Lufthansa -0.388***

(0.02)
Vueling Airlines -0.147***

(0.014)
Hub -0.105***

(0.011)
Nr. Flights to Destination 0.24***

(0.032)
Nr. Flights to Destination (squared) -0.174***

(0.023)
Connectivity Arrival Airport 0.211***

(0.01)
Connectivity Departure Airport 0.609***

(0.011)

Notes. The estimated destination fixed effects are summarized in Table C10. The Fare is the average ticket price in
e100. Just like prices, costs are also reported in e100. Summary statistics are given in Table C11 in the online appendix.
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Table C10: Estimated destination fixed effects

City Airport FE
Highest utility (vs outside options, incl. train)

Libreville LBV -0.12
Atlanta ATL -0.04
Abidjan ABJ 0.00
Cayenne CAY 0.26
Philipsburg SXM 0.32
Higuey PUJ 0.69
Mahe Island SEZ 0.80
Port Louis MRU 0.92
Saint-Denis RUN 1.73
Dzaoudzi DZA 2.73

Lowest utility (vs outside options, incl. train)
London LTN -7.20
London LHR -6.88
Hamburg HAM -6.08
Liverpool LPL -6.04
Milan LIN -5.96
Berlin TXL -5.76
Zurich ZRH -5.76
Milan MXP -5.76
Marseille MRS -5.75
Barcelona BCN -5.72

Notes. The demand model includes fixed effects for all 119 destinations (airports) in the data. The 10 highest and lowest
destination fixed effect estimates are reported, reflecting destinations where the utility of flying is estimated to be the
most and least attractive relative to the outside option, respectively.

Table C11: Summary statistics of selected demand and cost variables

Mean Min Median Max

Fare 3.02 0.39 2.07 19.27
Quantity 175.85 4.00 163.00 615.00
CDG 0.67 0.00 1.00 1.00
Hub 0.85 0.01 0.40 1.89
FlightstoDest 0.40 0.10 0.30 1.50
Spacing 1.42 0.07 0.41 13.75
Flights 0.91 0.01 0.38 2.36
HubDest 1.30 0.08 1.20 3.10
SpacingDest 2.95 0.00 1.03 16.83
FlightsDest 0.73 0.00 0.13 19.44
FuelBurnperSeatL9 1.81 0.23 0.91 14.78
WetLease 0.08 0.00 0.00 1.00
SlotConstrained 0.65 0.00 1.00 1.00
FirstBusiness 0.04 0.00 0.00 0.42
MediumHaul 0.08 0.00 0.00 1.00
LongHaul 0.14 0.00 0.00 1.00
ArrivalMidDay 0.33 0.00 0.00 1.00
ArrivalEndDay 0.48 0.00 0.00 1.00
Capacity 205.75 48.00 180.00 615.00
DepHour 13.76 5.00 14.00 23.00

Total number of products (flights) 120039.00
Total number of flights by Air France 63793.00
Total number of markets (destination-months) 952.00
Average number of products per market 279.27
Total number of firms 57.00
Average number of firms per market 3.27
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Table C12: Changes in slot ownership - largest firms participate

Post-auction
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Pre-auction AegeanAirlines 2 0 0 0 2
Pre-auction AerLingus 4 0 0 0 4
Pre-auction Aeroflot 4 0 0 0 4
Pre-auction AigleAzur 1 0 0 0 1
Pre-auction AirAlgerie 2 1 0 1 4
Pre-auction AirAustral 1 0 0 0 1
Pre-auction AirCanada 2 0 0 0 2
Pre-auction AirCaraibes 2 2 0 0 4
Pre-auction AirCorsica 1 3 0 0 4
Pre-auction AirFrance 72 5 4 4 85
Pre-auction AirIndia 1 0 0 0 1
Pre-auction AirTransat 1 0 0 0 1
Pre-auction ANA 1 0 0 0 1
Pre-auction Corsair 1 1 0 0 2
Pre-auction DeltaAirLines 1 0 0 0 1
Pre-auction easyJet 14 4 3 2 23
Pre-auction ElAl 1 0 0 0 1
Pre-auction Emirates 1 0 0 0 1
Pre-auction EtihadAirways 0 1 0 0 1
Pre-auction Finnair 1 0 1 0 2
Pre-auction Iberia 1 1 0 0 2
Pre-auction LATAMAirlinesBrasil 0 1 0 0 1
Pre-auction Lufthansa 6 0 1 0 7
Pre-auction MiddleEastAirlines 2 0 0 0 2
Pre-auction QatarAirways 1 1 0 0 2
Pre-auction RoyalAirMaroc 6 2 0 0 8
Pre-auction SAS 1 0 0 0 1
Pre-auction SWISS 3 0 0 0 3
Pre-auction TAP 4 1 0 0 5
Pre-auction TransaviaFrance 9 7 0 2 18
Pre-auction Tunisair 3 1 0 0 4
Pre-auction TurkishAirlines 0 0 0 1 1
Pre-auction UkraineInternational 4 0 2 1 7
Pre-auction UnitedAirlines 1 0 0 0 1
Pre-auction VietnamAirlines 2 0 0 0 2
Pre-auction VuelingAirlines 4 2 0 1 7

NA TOTAL post-auction 160 33 11 12 216
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Table C13: Changes in slot ownership - all firms participate
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Pre-auction AegeanAirlines 0 0 0 2 0 0 0 0 0 0 0 0 0 2
Pre-auction AerLingus 0 0 0 4 0 0 0 0 0 0 0 0 0 4
Pre-auction Aeroflot 0 0 0 5 0 0 0 0 0 0 0 0 0 5
Pre-auction AigleAzur 0 0 1 0 0 0 0 0 0 0 0 0 0 1
Pre-auction AirAlgerie 0 0 0 4 0 0 0 0 0 0 0 0 0 4
Pre-auction AirAustral 0 0 0 1 0 0 0 0 0 0 0 0 0 1
Pre-auction AirCanada 0 0 0 2 0 0 0 0 0 0 0 0 0 2
Pre-auction AirCaraibes 0 0 2 1 0 0 0 1 0 0 0 0 0 4
Pre-auction AirCorsica 0 0 2 1 0 0 0 0 0 0 0 0 1 4
Pre-auction AirFrance 1 1 3 54 0 2 7 7 0 2 1 17 2 97
Pre-auction AirIndia 0 0 0 1 0 0 0 0 0 0 0 0 0 1
Pre-auction AirTransat 0 0 0 1 0 0 0 0 0 0 0 0 0 1
Pre-auction ANA 0 0 0 1 0 0 0 0 0 0 0 0 0 1
Pre-auction Corsair 0 0 0 1 0 0 0 1 0 0 0 0 0 2
Pre-auction DeltaAirLines 0 0 0 1 0 0 0 0 0 0 0 0 0 1
Pre-auction easyJet 0 0 3 13 1 0 3 4 0 1 1 0 0 26
Pre-auction ElAl 0 0 0 0 0 0 1 0 0 0 0 0 0 1
Pre-auction Emirates 0 0 0 1 0 0 0 0 0 0 0 0 0 1
Pre-auction EtihadAirways 0 0 0 1 0 0 0 0 0 0 0 0 0 1
Pre-auction Finnair 0 0 0 2 0 0 0 0 0 0 0 0 0 2
Pre-auction Iberia 0 0 1 1 0 0 0 0 0 0 0 0 0 2
Pre-auction LATAMAirlinesBrasil 0 0 0 1 0 0 0 0 0 0 0 0 0 1
Pre-auction Lufthansa 0 0 0 7 0 0 0 0 0 0 0 0 0 7
Pre-auction MiddleEastAirlines 0 0 0 1 0 0 1 0 0 0 0 0 0 2
Pre-auction QatarAirways 0 0 0 3 0 0 0 0 0 0 0 0 0 3
Pre-auction RoyalAirMaroc 0 0 2 5 0 0 0 2 0 0 0 1 0 10
Pre-auction SAS 0 0 0 0 0 0 1 0 0 0 0 0 0 1
Pre-auction SWISS 0 0 0 3 0 0 0 0 0 0 0 0 0 3
Pre-auction TAP 0 0 2 4 0 0 0 1 0 0 0 0 0 7
Pre-auction TransaviaFrance 0 0 7 4 0 0 0 5 0 2 0 2 0 20
Pre-auction Tunisair 0 0 1 1 0 0 0 2 0 0 0 0 0 4
Pre-auction TurkishAirlines 0 0 0 0 0 0 1 0 0 0 0 0 0 1
Pre-auction UkraineInternational 0 0 0 7 0 0 0 0 0 0 0 0 0 7
Pre-auction UnitedAirlines 0 0 0 0 0 0 0 0 1 0 0 0 0 1
Pre-auction VietnamAirlines 0 0 0 2 0 0 0 0 0 0 0 0 0 2
Pre-auction VuelingAirlines 0 0 0 4 0 0 0 0 0 0 0 5 1 10

NA TOTAL post-auction 1 1 24 139 1 2 14 23 1 5 2 25 4 242
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