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Abstract

Many countries have set ambitious targets for transitioning away from fossil fu-
els. The plans generally involve switching from combustion engines to electric vehi-
cles (EVs). As batteries constitute around 40% of the cost of EVs, firms need to es-
tablish low-cost battery supply chains in order to make EVs attractive to consumers.
At the same time, governments increasingly use tax and subsidy schemes to induce
firms to locate more stages of the supply chain within their jurisdictions. We specify a
multi-stage supply chain for EVs from battery cell production to vehicle distribution.
Each car producer selects where to open facilities at each stage considering produc-
tion costs, transport costs, tariffs and subsidies. This is a difficult combinatorial choice
problem, but we leverage a mixed integer linear program formulation which can be
solved in under a minute. We estimate the parameters of our model—which include
the variable production costs and fixed plant/model activation costs—using observed
sourcing decisions for all production stages over the period 2015 to 2022. The next
step is a set of counterfactuals that compute how policy interventions affect the final
pattern of production and trade in this sector. Ultimately, we plan to use the model to
quantify the impact of competing industrial policies on global CO2 emissions.
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1 Introduction

The rise of global supply chains has dramatically changed the landscape of the interna-
tional organization of production. Firms slice up their production process, retaining only
a subset of the stages within their domestic economies. Yet, this international organiza-
tion of production does not come with international cooperation in government policies,
especially in growing industries, like electric vehicles (EV). As more countries accelerate
their transition to green economies and announce their ban on internal combustion engine
vehicle sales by 2035, countries compete to get EVs made in their countries by providing
domestic subsidies.

The 2022 US Inflation Reduction Act (IRA) awards consumer and production subsi-
dies that do not extend to European-made cars. European governments are considering
measures to counter those policies and to stem the rising tide of Chinese imports. Canada,
meanwhile has promised to match US IRA production subsidies for plants established in
Canada. Deputy prime minister Freeland defended the Canadian government’s decision
to spend roughly $30 billion on incentives to induce Volkswagen and Stellantis to build
factories in Ontario, saying “Our government is absolutely determined that Canada gets
its fair share of those green jobs.”

The value chain for EVs is economically interesting because of countervailing forces
at work. First, there are China’s cost advantages in all stages of the EV value chain from
refining of minerals to final assembly. The IRA contains a provision that prevents subsi-
dies from being applied to vehicles containing Chinese minerals and other components.
Second, there are large transport costs because batteries are heavy, bulky once arranged
in packs, and the EVs themselves are challenging to transport because of their weight
and fire risk. Finally, there are the subsidies and protectionist rules designed to pull EV
and battery production into the consuming countries. With large fixed costs for each new
facility, these forces interact in complex ways to determine the equilibrium locations of
production and the distribution of sales.

This paper studies how firms endogenously form supply chains over space and how
these chains shape the spatial distribution of the EV industry. Firms decide where to
build plants and from whom to source inputs at every stage along a supply chain. Char-
acterizing such allocation of production stages to countries is a challenging computa-
tional problem for even moderate number of alternative locations. Even with just one
stage of production, the facility location problem (as it is referred to in the operations
research literature) is already an NP-hard problem. Loosely speaking, this means that
there are no algorithms guaranteed to solve it in polynomial time, or put more simply the
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problem-solving time “explodes” as the number of locations increases. The difficulty is
compounded under multi-stage production because the optimal location of a given stage
is not only a function of the marginal cost and fixed cost at that production stage, but is
also shaped by the proximity of that location to the desired locations of production of the
upstream and downstream stages. One contribution of this paper is to adapt techniques
from operations research (OR) to solve for the geography of global supply chains with
fixed costs. We extend the multi-stage production cost minimization problem considered
in OR to allow for endogenous demand and market entry.

We show in simulations that the way firms respond to government policies depends
in complex ways on the geographic structure and parameter choices. Various types of
industrial policy can be effective, ineffective, or even counterproductive. Therefore, one
cannot make policy recommendations without bringing in detailed data on the costs of
distance, borders, and trade agreements. Variable and fixed costs of production need to
be estimated. We propose a methodology to do so that uses different decisions the firms
make to extract the implied parameters.

Once the model is quantified through data and estimation, we perform counterfac-
tual exercises to determine how various industry policies currently in use are predicted
to affect the extent to which various countries participate in domestic, regional, or global
supply chains. We also quantify the welfare consequences of these policies. Specifically,
we examine the effects of the US Inflation Reduction Act (IRA) which subsidize the US-
assembled EVs with batteries sourced from its trade partners. The conditions to qualify
for the EV tax credit have raised concerns from major battery makers, including those in
China, Japan, South Korea and the EU. In response, the European Union is also consid-
ering loosening its rules to allow governments to provide more subsidies for EV man-
ufacturers, leading to a subsidy war that may potentially be wasteful. In addition, the
restrictions on cheap input sources also increase the cost of US car manufacturers, lead-
ing to a potential welfare loss.

However, one may argue that the transformation of green technology and the global
urgency of decarbonization make the more subsidies—on both sides of the Atlantic—the
better. Analyzing the welfare effects of US IRA alone is not sufficient unless the policy is
compared to an alternative with international cooperation. To answer this question, we
plan on deriving the global optimal subsidy and predicting the optimal spatial distribu-
tion of the EV supply chains.

The paper is organized as follows. Section 2 positions this paper within the literature
on multi-stage production and the role of fixed costs in location choices and sourcing
along the value chain. Section 3 describes three key facts about the EV industry that in-
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form core assumptions in the model. Section 4 presents the model of multi-stage produc-
tion market entry, and equilibrium. In section 5, we verify the computational feasibility
and illustrate how policies work within a stripped down model with a single decision
maker. Section 6 develops the estimation framework and presents the estimated and cali-
brated parameters needed to solve the model using real world data. Section 7 carries out
counterfactual policy exercises. Section 8 concludes.

2 Literature

Table 1: Positioning our model in the literature

number of production∗ stages
Single (K = 1) Multiple (K > 1)

yes ARRY 2018 Antras & de Gortari 2020
Constant Head & Mayer 2019 Tyazhelnikov 2022
returns?
(CRS) no Tintelnot 2017 de Gortari 2020 note

AFT 2017, AES 2023 AFFT 2024 (K = 2)
Castro-Vincenzi (2022) † This paper (K = 3)

Note: ∗ excludes market entry (stage K + 1 here). † features capacity constraints, other
non-CRS have fixed costs

Plant location with fixed costs is a hard combinatorial problem as the number of po-
tential locations grows. Even with just a single production stage, brute force requires
evaluating 2N alternative solutions. Jia (2008) pioneered using supermodularity of the
profit function to reduce computational difficulty. Antràs et al. (2017) pointed out that
the global sourcing problem can be supermodular or submodular depending on the rel-
ative magnitudes of the key demand and supply parameters, σ and θ. With σ denoting
the elasticity of substitution between varieties in the demand function, and θ denoting
the Frechet shape parameter on the supply side, supermodularity obtains if and only if
σ > 1 + θ. This restriction holds in Antràs et al. (2017): σ = 3.9, θ = 1.8. However, Arko-
lakis et al. (2023) find σ = 4, θ = 4.5 implying submodularity. They extend the Jia (2008)
method to exploit submodularity with a “generalized squeezing” algorithm.

Our structure requires a different approach because one mechanism for submodular-
ity and two mechanisms pushing for supermodularity. The submodularity mechanism is
that plants at the same stage k substitute for each other. The supermodularity mechanism
is that active upstream or downstream production facilities at stages k ≤ K complement
each other. Furthermore, activated distribution (K + 1) facilities increase the profitabil-
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ity of adding production plants. We do not think oarametric restrictions to ensure global
sub- or super- exist for for this setup. One attractive feature of our approach is that it is
not necessary to rely on them.

3 Facts

This section describes our data and presents some useful facts about the battery EV in-
dustry.

3.1 Data on batteries and electric vehicles

We use three main sources of data in this project.

1. The first one is a dataset on the value chain of batteries for electric vehicles produced
by the consultancy firm IHS-Markit (now part of S&P). For each vehicle produced
in a given assembly plant, the dataset provides the source of the cells, modules,
pack with associated respective plants and suppliers (LG, CATL, Panasonic etc.).
Additional details are provided regarding the shape of the cell (prismatic, pouch
or cylinder), the detailed chemistry (various forms of two main types: NMC and
LFP), and the battery capacity in KWh. This is production-based data (years 2015
to 2022), with total volumes of cars assembled associated battery elements, but no
information on where the cars are sold.

2. The second source is the updated version of the sales data (also from IHS-Markit)
used in Head and Mayer (2019). It provides bilateral volumes at the car model
level for each of 75 markets, and providing information on the plant of assembly. It
also provides information on the manufacturing firm at that assembly plant (which
can differ from the brand name, i.e. GM vs Chevrolet). importantly, the car model
information does not include fuel type: when a flow of Hyundai Konas appears in a
dataset, it sums all fuel types, Gas, Diesel, Hybrid, Plug-in hybrid and BEVs in that
case. This is not an issue for models that are only produced as BEVs (the Nissan
Leaf for instance), but there is no way to identify those in this source.

3. The third source, still produced by IHS-Markit is called New Registration. This is
a destination-based dataset available for 24 markets, where sales / registration are
reported, with more detail on the car model (most importantly for us; fuel type), but
no information on the assembly plant. We use this last source to identify i) models
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that are only BEVs, which means that the allocation of production in data source
1) can be safely done with data source 2), ii) models that have mixed fuel types,
for which we compute a share of BEVs in total sales over the markets in order to
allocate production of the BEV version.

The combination of those 3 sources help us construct a novel type of micro-level GVC
dataset where we can track where the final product is sold (and how much), where it
is assembled, and where do the elements of its core value chain (the battery pack) are
themselves produced. All plants along the value chain have been geo-coded with latitude
and longitude. The data is available for the quasi universe of the nascent BEV industry
(none of the major destinations or countries of production are missing), over the period
2015-2022. Frictions that will be used in estimation stages use the usual sources in this
literature (CEPII gravity data for distance and RTAs), WITS for tariffs.

3.2 Main markets of BEVs

Table 2: The 15 top markets of BEVs in 2022

Rank Country # Models # Firms Sales (000’) EV share (%)

1 China 150 46 3875.8 16.1
2 United States 40 15 819.7 5.9
3 Germany 61 24 334.6 11.6
4 United Kingdom 49 16 215.1 11.3
5 Norway 59 22 131.2 64.0
6 South Korea 30 8 117.2 7.1
7 France 49 17 106.7 5.7
8 Canada 35 14 94.8 6.2
9 Sweden 55 21 73.4 22.7
10 Japan 33 12 71.8 1.7
11 Netherlands 57 22 51.6 13.8
12 Switzerland 46 16 35.8 14.0
13 Belgium 52 18 32.8 7.7
14 Italy 50 17 32.0 2.2
15 Australia 26 11 31.7 3.0
16 Rest Of World 23 10 305.2 4.0
Note: Rest of world row reports averages across 59 countries for numbers of models and
EV share and the sum for Sales.

Table 2 shows the top 15 markets for BEVs in 2022. China is by far the largest market
in all dimensions except the share of EVs. Relative to the US it has three times more
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active firms and almost four times as many models. The majority of the large ICE vehicle-
making countries (US, France, Korea, Japan, Canada, and Italy) have EV shares under
10%. In the model it will be important to capture both market size in terms of car buyers
and pro-EV policies (The three countries with the highest EV shares—Norway, Sweden,
and China—all had early aggressive subsidies to induce buyers to switch to EVs).

3.3 Actors along the value chain

Figure 1: Battery cell production is highly concentrated
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Figure 1 shows that a handful of firms dominate the industry. The top five firms
account for nearly 80% of all cells produced (measured in terms of gigawatt-hours to
distinguish capacity differences). Vehicle assembly is less concentrated, but the top five
still account for almost half of all EVs sold.

In our data there are 63 firms that assemble EVs in 2022. Of those, 14 sell exclusively
in China. Table 3 shows that the top 13 firms—ranked by number of sales destinations—
account for 96% of all EVs sold outside China. Because the Chinese market is so large,
these firms account for much smaller share (62.5%) of world production. Even among the
top firms we see that most firms sell in a minority of the markets.

Table 4 shows the major players at the first stage of production considered in this pa-
per: cell manufacturing. CATL of China equips twice as many cars as its nearest rival, LG
of Korea, but it focuses on a different shape of cell. It is also active in the less expensive
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Table 3: 13 top firms, their 139 models in 2022

No. Manufacturer # Markets # Models Production Sales-exCHN
Cum. Share (%) Cum. Shr (%)

1 Tesla 26 4 17.2 40.2
2 Volkswagen 19 18 24.8 56.6
3 BMW 15 7 28.1 61.9
4 Hyundai 14 5 32.7 70.9
5 Geely 13 13 37.9 74.0
6 Mercedes-Benz 11 6 40.1 78.3
7 Ford 10 2 41.8 82.5
8 Nissan-Mitsubishi 9 4 43.3 86.9
9 BYD 8 10 54.8 87.6
10 Renault 8 6 58.2 91.4
11 SAIC 7 9 60.9 93.2
12 Toyota 7 4 61.4 94.1
13 General Motors 4 4 62.5 96.1

Table 4: Cell suppliers are specialized (2022 data)

Supplier Vol (000s) # clients Shape Material
Prismatic Pouch Cylinder LFP NMC

CATL 2142 47 99 1 0 42 58
LG Energy Solution 1074 15 0 70 30 0 100
BYD 964 6 100 0 0 99 1
Phylion 553 2 100 0 0 8 92
Panasonic 516 2 0 0 100 0 100
China Aviation Lithium 500 12 100 0 0 29 71
SK On 449 6 1 99 0 0 100
Gotion 321 16 53 19 27 91 9
CATL-SAIC 246 3 100 0 0 2 98
Samsung SDI 182 8 85 0 15 0 100
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iron-based battery material called LFP. BYD, a vertically integrated EV maker from China
is devoted almost entirely to prismatic LFP cells and its main client is its own down-
stream vehicle plants. The Japanese (Panasonic) and Korean (LG, SK On, Samsung) cell
makers exclusively use the Nickel based NMC material. Individual car models use par-
ticular shapes and materials for their cells (no cars mix them) so these choices constrain
the sourcing options for cell sourcing.

3.4 Location of plants and sourcing along the value chain

Figure 2: Cell plants in the major regions
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Figures 2, 3, and 4 show the impressive growth in the numbers of plants for cells,
packs, and vehicles from 2015 to 2022—in all the main regions. The size of plant sym-
bols corresponds to total output in gigawatt-hours for cells and packs and total sales for
vehicles.

East Asia remains dominant in cell production but the number of plants in the US and
Europe grow by factors of three and two respectively and the capacity in GWH rises by
two orders of magnitude. While the growth of cells is impressive, it is also worth noting
that many of countries in Figure 4 with multiple vehicle plants (Italy, Spain, Portugal, and
Turkey) lack local cell production.
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Figure 3: Pack plants in the major regions
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Figure 3 shows packs are intermediate: there are more pack plants than cell plants in
every region in both years but fewer pack plants than vehicle plants. We will see that this
“fanning out” is a natural feature of the multi-stage production model and does not rely
on differences in either transport costs or fixed costs across stages.

The maps show the geographic dispersion of plants but they do not tell us which
plants trade with which. Table 5 provides some insight into the distances that components
travel. By showing medians and means we see the huge skewness in the distribution of
distances that the output of a stage travels before becoming an input. For comparison
purposes we also show distance for two of the most important parts of the ICE vehicle:
the engine and the transmission. The finding that over 50% of modules travel 1km reflects
our decision to code intra-plant distances as 1 to make them easy to recognize. Of the
modules that travel long distances a very large share of them are put together in the Cell
factory. Also many cells skip the module stage and go straight into packs. For this reason,
we will omit modules from our representation of the value chain.

Table 6 shows that when we disaggregate as much as the data allow, a component in
the value chain is almost always single-sourced. This is not the case at more aggregate
levels of models and firms. The reason is that there are different types of battery com-
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Figure 4: EV plants in the major regions
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Table 5: How much do components travel?

Link Year Distance in km
median mean

Battery Electric Vehicle

Pack to Assembly 2015 299 819
2022 215 641

Module to Pack 2015 1 994
2022 1 830

Cell to Module 2015 13 1782
2022 1 477

Internal Combustion Engine Vehicle
Engine to Assembly 2018 133 1034
Transmission to Assembly 2018 681 2184

11



Table 6: Multi-sourcing is rare

Percent multi-sourcing by
Stage firms models specs

Cells 10 0.63 0.17
Modules 7.14 3.17 0.00
Packs 8.57 2.86 0.00
Battery chains 20 6.35 0.17
Assembly 17.46 2.44 2.44
Note: The numbers are percentages of models
or firms that source from more than one country
at each stage, conditional on the set of countries
used in subsequent stages.

ponents and a purchaser may obtain one type of cell from one plant and a different type
from another plant. Even at the final assembly stage we see that market countries tend
to single source, with a narrowly defined vehicle only coming from two different plants
2.44% of the cases. In this respect, EVs do not differ notably from traditional vehicles.
Head and Mayer (2019) find multi-sourcing (measured in terms of countries of origin
rather than plants) for 2.3% of all model-market years from 2000 to 2018.

This fact is very important for thinking about how to formalize the firm’s profit max-
imization problem. It is common in the trade literature that is applied to more aggregate
data to think of each source country as supplying a distinct variety (Armington assump-
tion) with firms using a CES aggregator to combine them. This is not appropriate at the
detailed micro level. Instead, our setup realistically assumes that firms choose the lowest
cost source for a narrowly defined component or final vehicle.1

There is another explanation for multi-sourcing which is also important to consider
in setting up the firm’s profit maximization problem: capacity constraints. We might see
multi-sourcing not because of the love of variety common in trade models but simply
because the preferred source is unable to meet the demand. However, the numbers in
Table 6 suggest that capacity constraints are not a major concern. In line with the data
patterns exhibited in the data, we employ an uncapacitated model in this paper.

1Thus, our component specifications are sufficiently detailed to correspond to the goods in the Eaton
and Kortum (2002) continuum.
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4 Multi-product Multi-stage Production

4.1 Demand

There are N consumer countries indexed {n : n ∈ N}. Each country has Bn buyers
who select their preferred EV model m, among those offered in the market—or buy the
outside good (internal combustion engine vehicle). Each household in market n has a
common indirect utility An + ξm − αpnm, where An is the country-specific appeal of EVs
(determined by inter alia charging stations, gas prices), α is the price sensitivity parameter,
and pnm is the price of model m in country n inclusive of any tariffs or consumer subsidy.
The outside good is normalized to have indirect utility of 1. Household heterogeneity is
distributed Type 1 Extreme Value, leading to the familiar expression for Logit demand
after aggregating over households:

qnm =
exp(An − αpnm)

1 +
∑

m′ exp(An − αpnm′)
Bn. (1)

Each firm f carries distinct varieties m. We assume the set of models for a firm Mfn

and a measure of firms Fn depending on how many models and firms sell at destination
location n.

4.2 The firm’s problem

Figure 5 depicts a simplified version of our model to clarify the decisions we are mod-
elling. As in the empirical model, we have K = 3, that is three stages of production. In
addition, there is the decision to enter a consumer market. The schematic portrays a sin-
gle firm that makes three models (identified by the colors Cyan, Magenta, and Orange).
There are three potential locations: East, Central, and West.

The problem of the firm consists of three stages: At stage K +1 the firm selects the set
of car models to supply to each location n. In figure 5 Cyan is offered in West and Central;
Magenta and Orange are only offered in Central. No model was profitable to offer in East.
The firm simultaneously decides the locations of facilities along the value chain. In this
example, only one location (Central) has an active cell plant; there are two Pack plants
(Central is not activated at k = 2). Constrained by the active facilities, the firm chooses
paths for each car model from cells to final consumers. We refer to this as an assignment
problem. In our model once a firm activates a production, facility can be used by more
than one model, as we see for E2. The lines shown in gray are edge that are available but
not selected. The decisions of which plants and markets to activate depend on quantities,
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Figure 5: Schematic of a supply chain with K = 3
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which are in turn determined (via a simple markup equation) by the sum of the marginal
costs incurred at each node and along each edge.

A global value chain has levels of production {1, ..., K}, where level 1 is the furthest
production stage from consumers and level K the closest stage. The set of potential loca-
tions where firms can open facilities is partitioned into different levels, {L1, ..., LK}, and
each set Lk does not necessarily overlap with one another.2 A particular production loca-
tion at level k is denoted as ℓk. One can integrate the final consumption as level K+1 such
that the location of final consumers n ≡ ℓK+1 ∈ N = LK+1. We use these two interchange-
ably in the paper. Therefore, a path of value chain ℓnm ≡ {ℓ1(m), ..., ℓK(m), ℓK+1(m)}. A
firm chooses sets of facilities to produce at each level and the set of destinations to sell,
Lf = {L1(f), ...,LK(f),LK+1(f)}, and ℓnm ∈ Lf .

A firm is characterized by its country of origin, h(f), the set of models it offers, Mf .
Fixed costs incurred at the firm-stage are {ϕℓk(f)} for k = 1, ..., K Fixed cost of market ac-
cess ϕmn are incurred for a single model in a market. They represent the cost of marketing,
sales training, space for display, and so forth.

The production function at each level k is Leontief with γk upstream units needed to

2The data shows that there are 9 countries producing cells, 18 producing packs, 27 hosting EV assembly.
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make one stage k unit along with βk bundles of primary factors and other locally supplied
inputs. For brevity we will refer to them as labor. Therefore, cost per unit on an edge from
ℓk to ℓk+1 are

ckmℓk+1ℓk
= βk(wℓk + τℓk+1ℓk + um

ℓk+1ℓk
), (2)

where wℓk is the per unit labor cost at location ℓk, τℓk+1ℓk are per unit trade cost including
border and distance costs plus tariffs on the edge from ℓk to ℓk+1, and the um

ℓk+1ℓk
are the

unobserved edge cost shocks. The βk ≡
∏K

k+1 γk, are the number of units required for the
completed vehicle, where γk are input requirements at stage k.

Given the Leontief technology, the final cost of the assembled vehicle delivering to
consumer n is

c(ℓnm) =
K∑
k=1

ckmℓk+1ℓk
=

K∑
k=1

βk(wℓk + τℓk+1ℓk + um
ℓk+1ℓk

). (3)

The cost for a particular chain depends on three key aspects: (i) wage wℓk at locations
of each level, (ii) the amount of cost saving associated with productivity for each model
attributable to the bilateral locations um

ℓk+1ℓk
, and (iii) the geography, as captured by a

N×LK matrix of trade cost τnℓK between consumers and assembly and a Lk+1×Lk matrix
of trade cost τℓk+1ℓk between two adjacent levels of production.

For a chosen path ℓnm, the firm also incurs fixed costs ϕℓk in location ℓ for each stage
of production k (presumably, a substantial portion of these are sunk once a facility is
open). Note that these fixed costs are not indexed by model: Once a facility is open in ℓ

for production stage k, we assume that it can accommodate any of the firm’s models. We
denote this facility location choice with a binary variable yℓk ∈ {0, 1}.

We start with an assumption of monopolistic competition, whereby the impact of a
firm’s prices across its models sold in market n on other firms’ pricing decisions is neg-
ligible. Given the Logit demand (1), firms add a constant markup 1/α to their delivered
marginal cost c(ℓnm) for all their models. The resulting equilibrium quantity for each
model then only depends on that model’s delivered marginal cost c(ℓnm) and an aggre-
gate cost index c̃n:

q(c(ℓnm), c̃n) = Bn
exp(An − 1) exp[−αc(ℓnm)]

1 + exp(An − 1) exp(−αc̃n)
, c̃n ≡ − 1

α
ln

{∑
m

exp[−αc(ℓnm)]

}
. (4)

In this case, the firm’s variable profits earned from sales of model m to market n then
also only depend on the delivered marginal cost and the cost index: π(c(ℓnm), c̃n) =

q(c(ℓnm), c̃n)/α.3

3We can extend our model to oligopolistic Bertrand pricing. In this case, the scalar cost index is replaced
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Let ϕnm be the fixed market entry cost of selling model m in market n. The firm will
then sell all models for which the variable profit π(c(ℓnm), c̃n) exceeds this cost. We denote
those market entry choices with binary variables ynm ∈ {0, 1}. Consider a firm’s chosen
set of paths ℓnm for every model m and market n such that ynm = 1 (this involves a set
of choices for all the open facilities yℓk = 1 along those paths). The firm’s total profits for
that chosen set of paths is then:

Π =
∑
n

∑
m

[π(c(ℓnm), c̃n)− ynmϕnm]− yℓk

K∑
k=1

ϕℓk (5)

In the following section, we describe how we solve for a firm’s optimal set of paths ℓnm,
including the determination of all the binary yℓk facility location choices and ynm market
entry choices.

4.3 Multi-level uncapacitated facility location problem

We adapt the multi-level uncapacitated facility location problem (MUFLP) in the oper-
ations research literature described by Ortiz-Astorquiza et al. (2018) to our framework
with multi-product and endogenous choice of market access. This results in a linear op-
timization problem with integer constraints. In a typical MUFLP, there are two types of
decisions involved. One is the facility location decision yℓk at each level of production.
The other is the assignment of chosen paths across those locations and stages of produc-
tion for a given product to a given destination. A chosen path ℓ = {ℓ(1), ℓ(2), . . . , ℓ(K)} is
represented by a set of indicator variables xℓnm. If there are Lk potential location with 3
production stages k = 1...K, then there are a total of L1 × ...×LK indicator variables xℓnm

for a given product m and location n. Further multiplying by the number of products
and number of locations yields the total number of x variables.4We further adapt this op-
timization problem to incorporate the market entry decisions ynm. Maximizing total firm
profits (5) can then be written as the following linear optimization problem with integer

by the entire vector of delivered marginal costs for all models sold in market n.
4The operations research literature refers to this MUFLP formulation as a path-based optimization prob-

lem. There is also an alternative edge-based formulation, which defines the x variables for “edges” from
one stage k to stage k+1. We use the path-based formulation as this delivers a linear optimization problem
in the x and y variables, even when the variable profit is non-linear in delivered marginal cost c(ℓnm) and
cost index c̃n.
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constraints:

max
x,y

∑
n

∑
m

∑
ℓ

π(c(ℓnm), c̃n)xℓnm −
∑
k

∑
ℓ∈Lk

yℓkϕℓk −
∑
n

∑
m

ynmϕnm,

subject to
∑
ℓ∈L

xℓnm ≤ ynm, ∀n,m

xℓnm ≤ yℓkk,∀n,m, k

xℓnm ≥ 0,

yℓk, ynm ∈ {0, 1}, ∀ℓ, n,m, k.

In this formulation, we only need to specify the facility location and market entry
decisions as binary variables. Given the constraints, the optimal path indicator variables
xℓnm will always be either 0 or 1.5

5 Single-model Policy Simulation

We simulate a production chain of a single firm with one car model. There are three
stages of production (cell, pack, vehicle assembly) in a world of 40 locations6 (produc-
tion and consumption sites). The coordinates of site are randomly drawn from the unit
interval. Demand is assumed to rise with the square root of latitude: Northern loca-
tions demand more EVs than Middle locations, which themselves consume more electric
cars than the South. To make costs observable in the maps we draw, we assume the
marginal cost of production is determined by the Euclidean distance between countries,
cmnℓ = d̃ℓ1,ℓ2 + d̃ℓ2,ℓ3 + d̃ℓ3,n, where d̃ab = [(lata − latb)2 + (lata − latb)2]1/2. Fixed costs of
establishing plants at any stage are set to be the same for all locations and stages. Fixed
costs of market access are drawn randomly from a uniform distribution.

The low and high fixed costs to revenue ratios implied by the parameter settings in
the simulation are 6.2% and 16%. Using newspaper reports on investment costs, we see
that on average EV assembly plants involve a $0.85 billion investment and battery plants
require $2.45 billion. We assume the battery investment costs refer to packs and include
the fixed costs of the cell facilities. There are 205 EV assembly plants and 101 pack plants,
so total EV investment is approximately $4.15 billion. Annualizing these up-front invest-

5In addition, we formulate the first constrain as an inequality, even though it will always hold with
equality at the optimum. This is the version of the problem that we implement computationally (the solvers
work more efficiently with constraints specified as inequalities versus equalities).

6As of 2021, 38 countries are involved in one or multiple stages of the production of EVs.
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ments at rates or 5% or 10%, we compute fixed cost to revenue ratios for the EV industry
as 7% to 14%. Our revenue calculation assumes an average price of $50,000 per EV for the
6.3 million EVs assembled worldwide in 2022. These “back of the envelope” calculations
suggest that the fixed cost to revenue ratios in the simulation are in the right ballpark.

Each of the mapped simulation below takes about 20–40 seconds7 to solve the firm’s
location problem, depending on the computer and the levels of fixed costs and subsidies.
This establishes that the mixed integer programming solver can handle realistically sized
problems in a reasonable amount of time. The code, which will be made available online,
is written in Julia and uses the JuMP package to interface with the solver.

Figure 6: Simulation: no interventions

(a) Low fixed costs (b) High fixed costs

We begin the investigation of the MUFLP by simulating the model without any subsi-
dies for EVs. The left panel of Figure 6 shows the case of low fixed costs. We see the three
key features of the model: (i) there are more plants in the North, reflecting the higher de-
mand, (ii) for any given latitude, plants tend to be central to be closer to more consumers,
(iii) peripheral and southern consumers are less likely to be served (one quarter of the
consumers do not have sufficient demand to justify the fixed costs of serving them). In
the right panel, we multiply fixed costs by five. This reduces the number of cell plants by

7The program can be solved an order of magnitude more quickly in the arc-based formulation (ABF)
described in Appendix A.2. Unfortunately while this method minimizes cost given quanity and market
entry decisions, it is not guaranteed to maximize profits.

18



a factor of four and the number of assembly plants by a factor of three. The greater dis-
tances from assembly to consumer lower the number markets served from 30 to 18. The
combination of higher marginal costs and reduced number of markets lowers the share
of EVs in the market from 5.5% to 2.9%.

Figure 7: Simulation: $5,000 subsidies in Middle

(a) Unconditional subsidy (b) Final-assembly (c) Full-path

Figure 7 brings consumer subsidies into the picture, continuing the high fixed cost case
from Figure 6. The three frames correspond to three different types of rules for which
vehicles qualify for the subsidy. In panel (a) any consumer in the designated region—
shown in yellow—qualifies for the $5,000 dollar subsidy. This resembles the way credits
are allocated in Canada and many European countries. In panel (b), the subsidy is only
available for vehicles assembled in the region. This is similar to the situations in China
and the US where there are consumer subsidies coupled with large tariffs on imported
EVs. Panel (c) takes its inspiration from the IRA provisions requiring the whole value
chain of batteries to come from countries with whom the US has a free trade agreement.

The unconditional subsidy in Middle (panel a) leads to a new assembly plant being
opened in the South, and the existing plant in the Middle is replaced by a more centrally
located plant. Five new consumer sites are activated, and the EV share rises from 2.9%
to 4.5%. Making the subsidy eligible only to regionally produced vehicles leads assembly
site serving Southern consumers to be relocated to the lower part of Middle. Two markets
in the South are closed due to higher marginal costs. The EV share falls to 4.2%. Panel (c)
makes qualification rules even stricter. The pack plant used in panel (b) would disqualify
vehicle sales from the plant in the southern part of Middle. It is replaced by a new plant
in the South, which leads to reactivating two Southern consumers. There are conflicting
effects on affordabilty that leave the overall market share of EVs unchanged. This case
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illustrates the Laffer curve effect identified by Head et al. (2024): stricter rules can be
counterproductive in terms of domestic production.

Figure 8: Simulation: $7,500 subsidies in Middle

(a) Unconditional subsidy (b) Final-assembly (c) Full-path (IRA)

The simulation underlying Figure 8 keeps the same cost parameters as in Figure 7 but
raises the subsidy to $7,500 to mimic the IRA. The key points are that the higher subsidy
increases the number of activated consumers, and adds an extra plant at each stage. It also
increases the EV share under all three policy rules. The interesting point is that the higher
subsidy eliminates the outcome in panel (c) where the firm responds to the more stringent
content rule by decamping to the South. However, the higher costs of complying with the
rule in panel (c) imply that now the EV share falls relative to panel (b).

Figure 9: Simulation: $5,000 subsidies in North

(a) Unconditional subsidy (b) Final-assembly (c) Full-path

Figure 9 departs from the previous case in three ways. First we revert back to $5,000

20



subsidies, second we lower fixed costs, and third we place the subsidy in the North. The
key points to note are that in panels (a) and (b) two Northern plants are served by cell-
pack value chains in Middle. The full-path rule in panel (c) eliminates the possibility of
qualifying for subsidies with such paths. This lowers EV shares and reduces the number
of consumers served. It also eliminates four factories. The EV share is still higher than
under laisses-faire in Figure 6 (a) but the policy is unsuccessful from both the point of view
of job creation (four fewer plants) and displacing ICE vehicles (lower EV share).

The takeaway from this series of simulations is that in a world where fixed costs are
important, subsidies can reshape the geography of production but do so in ways that are
not easy to predict, either quantitatively or even qualitatively. To obtain a better idea
of the effects of the gamut of recent policies, we are going to need parameter estimates
grounded in the data.

6 Estimation of the Theoretical Model

Applying a system of sourcing regressions, we can get the estimates of wℓk + τℓk+1ℓk for
all locations at each level of production, and estimates of the Gumbel scale parameter
θk driving the distribution of the random cost term uℓk+1ℓk(m) (up to a normalization).
These estimates for k = 1, ..., K will be used to construct equation (A.1) together with
the simulated Gumbel draws, and then solve the GVC for each firm-model-consumer,
given guesses of fixed costs. Lastly, we plan to estimate the fixed costs via constrained
maximum likelihood as in Tintelnot (2017) or via moment inequality.

6.1 Conditional choice estimation of variable costs

A nested logit model is used to estimate parameters driving variable costs along the value
chain. Recall that edge costs are given by

ckmℓk+1ℓk
= βk(wℓk + τℓk+1ℓk + um

ℓk+1ℓk
),

with βk ≡
∏K

k+1 γk, where γk are input requirements at stage k. The per unit production
costs in b are denoted with wℓk , and τℓk+1ℓk is the per unit trade cost including border and
distance costs plus tariffs on the edge from ℓk to ℓk+1. Finally um

ℓk+1ℓk
is the unobserved cost

shocks on edge ℓk+1ℓk for car model m. We assume that the sourcing decisions can be esti-
mated through nested logit, with the following Ben-Akiva and Lerman (1985) conditions
regarding um

ℓk+1ℓk
:
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1. All disturbance terms u are mutually independent.

2. The terms uℓ2ℓ1(m) are independent and identically Gumbel distributed with scale
parameter θ1.

3. The terms uℓk+1ℓk(m) is distributed so that
∑r

k=1 βkuℓk+1ℓk(m) is Gumbel distributed
with scale parameter θr, for r = 2, ..., K.

The scale parameters θ vary across levels of production. We there let each stage’s input
be heterogeneous in various degrees. An alternative approach is followed by Antràs and
De Gortari (2020) where the stage-specific Fréchet distribution is assumed to have the
same shape parameter.

Conditional on the set of level 1 facilities established by a firm L1(f), it chooses for
each model the location with the lowest cost to serve ℓ1 due to constant returns to scale in
the variable costs of production. We can then derive that the conditional probability of ℓ1
being the cost-minimizing location of supplying to ℓ2 as

Pr (ℓ1|ℓ2;L1(f)) = Pr

(
c1mℓ2ℓ1 ≤ min

ℓ′ ̸=ℓ1,ℓ
′∈L1(f)

{c1m
ℓ2ℓ

′}
)

=
exp [−θ1 (wℓ1 + τℓ2ℓ1)]∑

ℓ∈L1(f)
exp [−θ1 (wℓ + τℓ2ℓ)]

. (6)

An important component of the nesting approach to estimating production costs along
the value chain is the integration of the cost of upstream parts in downstream decisions.
The natural approach that follows from the assumptions of Ben-Akiva and Lerman (1985)
is to include in the choice of a location for the battery pack the expected cost of cells that
will be used in that pack. With extreme value distributions, this expected cost for pack
plant ℓ2 is

Eℓ2(f) = − 1

θ1
ln
∑

ℓ∈L1(f)

exp [−θ1 (wℓ + τℓ2ℓ)] . (7)

We refer to this term as the inclusive cost which depends on the sourcing potential of ℓ2 and
differs across firms due to various choice sets L1(f). For example, Tesla and Audi may
have different inclusive costs for its pack plants in China because Tesla has contracted
with cell suppliers in China, whereas Audi has only contracted with cell suppliers in
South Korea and Europe. The inclusive cost for Tesla’s pack plants in China also differs
from those in the US due to different trade costs from its set of cell plants.

Moving down the supply chain and applying condition 3, the probability that ℓ2 is
selected conditional on ℓ3 being chosen is

Pr (ℓ2|ℓ3;L2(f)) =
exp [−θ2 (wℓ2 + τℓ3ℓ2 + γ2Eℓ2(f))]∑

ℓ∈L2(f)
exp [−θ2 (wℓ + τℓ3ℓ + γ2Eℓ(f))]

, (8)
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where γ2 is the number of stage 1 parts (cells), that enter stage 2 (packs). Generalizing to
the k-level, the conditional sourcing probability is

Pr (ℓk|ℓk+1;Lk(f)) =
exp

[
−θk

(
wℓk + τℓk+1ℓk + γkEℓk(f)

)]∑
ℓ∈Lk(f)

exp
[
−θk

(
wℓ + τℓk+1ℓ + γkEℓ(f)

)] , (9)

where the inclusive cost of k-level producers is

Eℓk(f) = − 1

θk−1

ln
∑

ℓ∈Lk−1(f)

exp [−θk−1 (wℓ + τℓkℓ + γk−1Eℓ(f))] . (10)

At each stage, the conditional sourcing probability can be estimated empirically with
PPML. The dependent variable is the discrete choice (taken by the plant in stage k + 1) of
sourcing stage k from ℓk rather than any other available location in the set Lk(f):8

1 (ℓk = 1|ℓk+1;Lk(f)) = exp
(

FEℓk + FEfk − θk[X
′

ℓk+1ℓk
δk + ϵℓk+1ℓk + 1k>1γkEℓk(f)]

)
, (11)

where the origin fixed effects FEℓk = −θk (wℓk), captures local production costs, and
FEfk = − ln

∑
ℓ∈Lk(f)

exp
[
−θk

(
wℓ + τℓk+1ℓ + γkEℓ(f)

)]
accounts for the attractiveness of

the set of potential choices available to firm f at stage k. The bilateral trade costs are pa-
rameterized as τℓk+1ℓk = X

′

ℓk+1ℓk
δk + ϵℓk+1ℓk , with Xℓk+1

including bilateral frictions such as
bilateral distance, border, RTA and tariffs, and ϵℓk+1ℓk being the unobservable frictions. We
estimate this nested logit model sequentially from the most upstream stage where inclu-
sive cost is zero, and continue downward through the supply chain using the inclusive
cost constructed from the k − 1 level in estimating the k-level parameters.

6.2 Empirical results of variable costs estimation

Table 7 combines estimation results for the three stages considered in our analysis of the
BEV industry: battery cells, battery packs ans assembly. The first and last three columns
use different specifications for Xℓk+1

. Columns (1) to (3) use national borders, distance
and RTAs. The last three replace the RTA dummy with per unit tariffs between the two
locations/stages; which is obviously very correlated with RTAs, since all RTAs approved
under GATT/WTO have to achieve zero tariffs after a maximum of ten years on manu-
facturing goods.

8The estimation of those conditional logit problems through PPML with appropriate sets of fixed effects
uses the equivalence known in the literature since (Guimaraes et al., 2003) and has been used in a similar
context by Head and Mayer (2019).
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Table 7: Combined regression results

(1) (2) (3) (4) (5) (6)
Cells Packs Vehicles Cells Packs Vehicles

border -1.64a -3.74a -1.72a -0.713 -3.21a -0.797a

(0.471) (0.898) (0.460) (0.472) (0.462) (0.305)
log distance -0.565a -0.231a -0.069 -0.566a -0.234a -0.093c

(0.011) (0.018) (0.054) (0.012) (0.019) (0.052)
RTA 1.03b 0.965b 0.833a

(0.407) (0.475) (0.177)
EC -0.067 -0.485a -0.033 -0.021a

(0.052) (0.093) (0.026) (0.004)
tariff ($) -2.71a -0.197 -0.137a

(0.740) (1.00) (0.045)

θ 5.83 2.44 0.34 2.71 0.11 0.08
Cost elasticity -26.82 -8.43 -17.19 -12.48 -0.40 -3.94
Observations 17,280 16,005 54,933 17,280 16,005 54,933
Squared Correlation 0.511 0.320 0.244 0.513 0.319 0.247
Note: EC stands for expected costs, with definition being given in equation (10).

The effect of distance on sourcing decisions decline in absolute value as we move
downstream. The effect is quite strong (around -0.57) and significant for cells, but is re-
duced by more than half for packs, and is finally quite small for the distance separating
assembly from final destination. This last result contrasts with the ones obtained with
vehicles of all fuel types (and therefore mostly ICEs) from Head and Mayer (2019), where
distance effects were stronger. BEVs therefore seem to be less sensitive to physical dis-
tance once assembled.9 However, the RTA effect in column (3) is notably stronger than
for ICEs, signaling that intra-continental / intra-regional trade is more dominant than for
traditional vehicles. The RTA effects are uniformly strong along the value chain, approxi-
mately tripling the sourcing probablility (exp(1.03) = 2.80 for cells). The effect of national
borders is also very strong, specially for pack sourcing (with a coefficient of -3.74, there is
very little room for packs being sourced outside of national borders). The coefficients on
expected costs of upstream stages are overall small, and largely insignificant for packs,
when the effect is more robust for assembly.

We have two ways to estimate θk, an important parameter when converting estimates
of frictions into costs. The easiest is to include directly per unit bilateral tariffs on the

9An important distinction between the two studies is that the present one is much more granular, being
able to geo-locate all plants, rather than to simply assign them to countries.
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relevant stage.10 Since the coefficient on tariffs directly provides an estimate of θ1 (cells),
column(4) estimate is the tariff elasticity at 2.71. For packs and vehicles, we average
coefficients of tariffs and expected costs, resulting in lower and noisy values. The second
approach uses the fact that Border and RTA dummies also reflect the impact of tariffs.
We can compute preferential margins, i.e. the MFN tariff for border and the difference
between MFN and applied rates for RTAs, and use those margins to infer θk.

• For stage k = 1, we proceed as following:

1. Estimate cell sourcing with RTA and Border (w/o tariffs, column 1).

2. Across locations ℓ considered as a source for cells, compute θRTA
1 = β̂RTA

v2mean(tarMFN
ℓ2ℓ

−tarRTA
ℓ2ℓ

)
,

and θBorder
1 = β̂Border

v2mean(tarMFN
ℓ2ℓ

)

3. Our final estimate is θ̂1 = mean(θRTA
1 , θBorder

1 )

4. This is an upper bound because of the existence of NTBs in the impact of bor-
ders and RTAs.

• For k > 1 (in columns 2 and 3), there is one additional estimate of θk coming from
the expected cost term, −γkEℓk(f).

The resulting θk are 5.83, 2.44 and 0.34 for cells, packs and vehicles respectively. Re-
calling that θ is a measure of how homogeneous are the random terms across locations
in the variable costs of a car model for a given stage, it seems intuitive that this measure
of homogeneity is declining as one gets closer to the final good. There is a correspon-
dence between θk and the usual cost elasticity, obtained by multiplying θk by the unit
price of cells/packs/vehicles. Those are shown under the θk line in Table 7. There is wide
variation in those elasticities, and now obvious comparison with the literature possible
regarding cells and packs. Averaging the ones for vehicles from columns (3) and (6), one
obtains a cost elasticity of 10.5, larger but not out of range from than the one obtained by
Head and Mayer (2019) for all vehicles.

Figure 10 uses the estimates of country fixed effects to reveal relative costs for each
stage. This is obtained as wℓk = −FEℓk/θk, and normalized with respect to the USA in
each k. The competitiveness of China, South Korea and Japan is visible for cells. Poland

10We use WITS database to identify preferential and MFN tariffs: For cells, we use HS 850650, for packs
HS 850760, and for BEVs, HS 870380 and 870490 for passenger cars and light commercial vehicles respec-
tively. WITS provides ad valorem tarif rates. We transform those into unitary taxation (in USD per units)
using values inferred from figures relevant for the Tesla Model 3 in 2021. Those are 43800 euros for the car,
12100 euros per battery pack (both converted in USD). Since there are about 3000 cells in this pack, the unit
price of a cell is 4.6 USD.
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Figure 10: Relative costs in the value chain of BEVs

FRA

USA

DEU

GBR

HUN

KOR

JPN

POL

CHN

Percent difference in cost (USA =0)

−12 −10 −8 −6 −4 −2 0

Cells

IND

ITA

FRA

BEL

CZE

CHN

KOR

USA

DEU

JPN

AUT

POL

ESP

SVK

GBR

THA

HUN

Percent difference in cost (USA =0)

−0.005 0.000 0.005

Packs

IND

MYS

CHN

RUS

ASEAN

USA

ITA+A

POL

FRA

MEX

DEU

SVK

SVN

JPN

GBR

ESP

CZE

HUN

BEL

KOR

Percent difference in cost (USA =0)

−10 −5 0 5 10

Vehicles

(a) Cells (b) Packs (c) Vehicles

and Hungary are also estimated to have low costs of cells, based on their capacity to serve
pack factories in many places in Europe. Hungary is also (with Slovakia and Poland) a
performing place in terms of pack production. Korea and Belgium are identified as very
good places for EV assembly as opposed India, Malaysia or even China. This is due to
the fact that the electric Volvos and Audis assembled in Belgium sell in many places in
the world (not only EU), when most Indian, Malaysian and Chinese-assembled EVs are
sold locally. To take precise examples: The Hyundai electric Kona produced in India is
sold only in India, when the Korean-made one is sold in 59 destinations, and the figure
for the Czech-made one in 39. The case of Malaysia is also quite telling since it assembles
electric Volvos (the same as in Belgium) since 2022 that are sold only in Malaysia, and a
few in Thailand.11 In 2022, the Volswagen electric SUV ID.4 is produced in 4 plants: 2 in
Germany, 1 in the USA, 2 in China. Each of the German plants serves at least 29 markets,
the US plant 2 markets, and the 2 Chinese plants serve only China. Those FE estimates
reflect those patterns: while the situation is evolving rapidly for China, in our 2015-2022
sample most of the Chinese plants still serve only China. Other consumers in the world
prefer to source their BEVs from alternative plants, which translates into high estimated
costs.

11https://paultan.org/2023/02/03/volvo-car-malaysia-to-begin-exporting-car
s-made-in-shah-alam-to-the-philippines-and-vietnam-this-year/.
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6.3 Completing the parameter set for the model

Calibration of demand: Using car price data at each market, and sales of EV vs. ICE
cars,

qmn =
exp(An − αpmn)

1 +
∑

j yjn exp(An − αpjn)
Bn

QEV
n =

∑
m

ymnqmn =
exp(An)

∑
m ymn exp(−αpmn)

1 +
∑

j yjn exp(An − αpjn)
Bn

QICE
n =

1

1 +
∑

j yjn exp(An − αpjn)
Bn,

we can rearrange those equations and solve for the demand shifter An in each destination
as

An = ln

(
QEV

n

QICE
n

)
− ln

(∑
m

ymn exp(−αpmn)

)
.

In order to proceed with that inversion, we need a value for α. First note that own price
elasticity of a car model j with logit demand is αpj . We therefore alibrate α as the average
own price elasticity divided by the average price of all car models for a given year. Table 8
provides a number of average elasticities from a set of papers that estimate demand for
cars. The left column gives figures for papers focusing on EVs, while the right column
does not distinguish between EVs and traditional gas-powered vehicles, and therefore
mostly covers ICEs. In table 8, we see that several recent papers find own price elasticities
centered around four (the mean all studies is 5, but EVs appear to have lower elasticities,
averaging 3.25 across the EV-specific papers).

Table 8: Price responsiveness of car demand from recent literature

EV-only elas. Mainly ICE elas.

Barwick et al. (2024) 4.2 Beresteanu and Li (2011) 8.4
Kwon (2023) 4.4 Castro-Vincenzi (2024) 4.3
Li et al. (2022) 3.7 Colon and Gortmaker (2020) 3.9
Li (2023) 3.7 Coşar et al. (2018) 14.9
Li et al. (2017) 1.3 Goldberg (1995) 3.3
Linn (2022) 5.3 Goldberg and Verboven (2001) 5.2
Muehlegger and Rapson (2022) 2.1 Head and Mayer (2019) 3.9
Springel (2021) 1.8 Li (2018) 9.5
Xing et al. (2021) 2.8

Figure 11 provides the result for the year 2022, expressed in relative terms with respect
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the the United States. The top position of Norway in An ranking reflects very generous
policies, high income, and probably preferences for clean vehicles. On the other side of
the spectrum, China’s low An reflects low EV adoption relative to the low prices and high EV
variety.

Figure 11: Relative EV appeal (An) for selected markets
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7 Proposed Counterfactual

7.1 Unilateral subsidy

The first policy we will consider is the unconditional subsidy shown in the left panel of
figures 7–9. Outsourcing inputs from foreign countries could reduce the government’s
willingness to let subsidy rents flow to domestic firms. If the government internalizes
the surplus of domestic consumers and domestic producers only, transfers flowing to
foreign firms will not be credited to the government’s “surplus ledger.” This will reduce
the government’s incentives given to domestic firms, which is the subsidy-leakage effect
documented in Bown et al. (2022).

In this counterfactual exercise, we will predict the spatial distribution of electric ve-
hicle supply chains after the implementation of EV tax credits that to consumers from a
given country, but that are available for all vehicles regardless of the locations of assembly
and component procurement.

7.2 Unilateral subsidy conditional on sourcing locations

One way to mitigate the subsidy leakage is through regulating the input sources of cars
to be eligible for the subsidy. The US IRA is one example. Beginning in 2023, 40% of an
EV battery’s minerals and 50% of the components will need to come from the US or Free
Trade Agreement (FTA) partners. In 2027 and 2029, this requirement will increase to 80%
for minerals and 100% for components.

Based on the subsidized input source locations, we will again predict the geography
of global supply chain of EVs and the associate welfare effects to compare to the results
from the first counterfactual.

7.3 Subsidy with international cooperation

Since outsourcing inputs introduces distortion due to the domestic government’s desire
to limit leakage of the subsidy to foreign firms, there is thus scope for international co-
operation to improve global surplus. Suppose that cooperation comes in the form of an
agreement among countries to maximize expected global surplus. The country will then
increase the subsidy from the equilibrium levels absent international cooperation.

Then the question is whether the subsidy provided by the US IRA is too low due to
the subsidy-leakage effect, or too high considering the recent competition in EV adoption
by different countries, or coincidentally achieve the global optimum? In order to answer
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this question, we need to derive the analytical form of equilibrium subsidy at the country
level and global level as a function of facilities locations and paths of sourcing. The inter-
national treaty on EV subsidy presumably involves the US, EU, and China. Since the US
and China have already had relevant subsidies in place, we will examine the welfare ef-
fects of an EV subsidy implemented uniformly by the EU countries at the US-equivalent
level (US$7,500 with input requirements from EU countries) and the model-predicted
equilibrium level.

8 Conclusion

To be added when the estimation and counterfactuals are completed.
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A Multilevel Uncapacitated Facility Location Problems

A.1 Solving the combinatorial choice problem

Choice problems with binary variables that are interdependent impose severe computa-
tional challenges. The option to enumerate all the potential choices—brute force—is not
practical even because the number of possible combinations grows exponentially with
the number of choices. This rather quickly leads to exhaustion of the available computer
memory and exploding computation time.

We use the Gurobi optimizer, a commercial optimizer that is available for free to li-
censed academic users. Gurobi does not make public the precise algorithms that it uses to
solve mixed-integer linear programs (MILPs). However, the optimization log shows that
it uses linear relaxations, heuristics, cutting planes, and finally the branch and bound al-
gorithm.12 There is an open-source alternative to Gurobi called HiGHS. However, Gurobi
tends to be five to ten times faster than HiGHS.

The main solution method we employ is the path-based profit maximization approach
outlined above. This approach guarantees a global optimum but as the number of stages
increases, it becomes increasingly demanding in terms of time and memory. An alterna-
tive way to incorporate the endogenous decision on market access and quantity supplied,
is to apply a nested procedure where the inner loop solves the cost-minimization MUFLP,
and the outer loop updates the endogenous quantity based on equation (1) and (??) with
a check on whether the market access condition is met as in equation (??). We solve the
two loops iteratively until demand in the distributed markets converge. The advantage
of such an algorithm is that the cost-min MUFLP can be formulated based on arcs (edges)
rather than complete paths. The disadvantage is that the algorithm frequently converges
to a local optimum. In most cases the solutions from the two methods are quite close
but there are no guarantees. We have found instances where the arc-based algorithm
converges to solutions that are seriously underperform.

A.2 The Arc-Based-Formulation of the cost-minimization problem

Let xkm
nab = 1 if consumers at n uses the edge {a, b} ∈ Ek for model m where the sets Ek

contain all possible edges between a ∈ Lk+1, b ∈ Lk and k = 1, ..., K. Since we allow
for an endogenous choice of market access, we introduce a third binary decision ymn = 1

if and only if the car model m is sold at location n. The assignment and distribution

12https://www.gurobi.com/resources/mixed-integer-programming-mip-a-primer-o
n-the-basics/
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decisions {xkm
nab, y

m
n } are model specific, and the location decisions {yfℓk} for k = 1, ..., K

are firm-specific.
Holding fix the set of models with market access ymn and endogenous quantity sup-

plied qmn , the firm’s profit maximization problem can be reformulated to a problem of cost
minimization. Each firm solves its production location and assignment decisions know-
ing its models’ variable costs at every level of production for any location configurations
ckmab as in equation (3), and fixed cost for every location-stage ϕf

ℓk
.

min
{x,yℓ}

∑
n∈N

∑
m∈Mf

K∑
k=1

∑
{a,b}∈Ek

qmn y
m
n c

km
ab x

km
nab +

K∑
k=1

∑
ℓk∈Lk

ϕf
ℓk
yfℓk (A.1)

subject to ∑
b∈LK

xKm
nnb = ymn , n ∈ N,m ∈ Mf (A.2)∑

b∈Jk−1

x
(k−1)m
nab =

∑
b′∈Lk+1

xkm
nb′a

, n ∈ N,m ∈ Mf , a ∈ Lk, k = 2, ..., K (A.3)

∑
a∈Lk+1

xkm
nab ≤ yfb , n ∈ N,m ∈ Mf , b = ℓk ∈ Lk, k = 1, ..., K (A.4)

xkm
nab ≥ 0, n ∈ N,m ∈ Mf , {a, b} ∈ Ek, k = 1, ..., K (A.5)

yfℓk ∈ {0, 1}, ℓk ∈ Lk, k = 1, ..., K. (A.6)

where
ckmab = βkakwb + βktab − βku

km
ab . (A.7)

Equations (A.2) and (A.3) are flow conservation constraints. In constraint (A.2), each con-
sumer, if chosen to sell, must be served by one facility. In constraint (A.3), total flow that
belongs to consumers in n and comes into a facility, should be equal to the amount from
this facility. Equations (A.4) are activity constraints which govern a facility must be open
to serve a client or a downstream producer. The inequalities guarantee that flow can only
exist on the constructed edges. Finally, equations (A.5) and (A.6) state the aforementioned
decision variables.

B Additional empirical results

B.1 Stage-level regression results
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Table B1: Cell Sourcing decision

Dependent Variable: Cell sourcing decision
Model: (1) (2) (3) (4) (5) (6)

Border -1.65a -1.94a -2.58a -2.46a -2.47a -2.45a

(0.472) (0.491) (0.594) (0.518) (0.511) (0.513)
log distance -0.565a -0.427a -0.182a -0.184a -0.158a -0.128b

(0.011) (0.026) (0.067) (0.067) (0.049) (0.059)
RTA 1.04b 1.04b 1.10b 1.30a 1.67a 1.66a

(0.406) (0.404) (0.433) (0.441) (0.390) (0.395)
Intrafirm 1.89a 0.849a 0.501a 0.148 0.312c

(0.117) (0.182) (0.153) (0.149) (0.167)
Intraplant 3.00a 2.72a 3.12a 3.58a

(0.419) (0.366) (0.279) (0.329)

Observations 17,294 16,655 16,655 11,203 8,295 7,762
Squared Correlation 0.511 0.515 0.529 0.472 0.523 0.537
Column (4) constrains the set of choosers to be car models with positive sales (strictly de-
fined). Column (5) adds the constraint that the choice set constitutes of plants already pro-
ducing the required cell shape. Column (6) adds the constraint that the choice set constitutes
of plants already producing the required cell in terms of chemistry/material (NCM vs LFP).
Clustered (dyad) standard-errors in parentheses, Signif. Codes: a: 0.01, b: 0.05, c: 0.1.
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Table B2: Pack Sourcing decision

Dependent Variable: Pack sourcing decision
Model: (1) (2) (3) (4) (5)

Border -3.74a -3.84a -3.84a -3.98a -3.49a

(0.898) (0.919) (0.919) (0.973) (0.774)
log distance -0.231a -0.215a -0.216a -0.231a -0.283a

(0.018) (0.021) (0.016) (0.015) (0.042)
RTA 0.965b 1.02b 1.02b 1.02b 0.986a

(0.475) (0.481) (0.481) (0.504) (0.381)
EC(module) -0.067 -0.108b -0.108b -0.049 -0.189c

(0.052) (0.047) (0.047) (0.051) (0.102)
Intrafirm 0.601a 0.601a 0.983a 0.659b

(0.093) (0.097) (0.119) (0.263)
Intraplant -0.006 -0.118 -0.146

(0.173) (0.213) (0.346)

Observations 16,005 16,005 16,005 10,591 8,190
Squared Correlation 0.320 0.326 0.326 0.347 0.339
Column (4) constrains the set of choosers to be car models with positive sales
(strictly defined). Column (5) constrains the set of choosers to be owned by one
of the top 13 manufacturers. Clustered (dyad) standard-errors in parentheses, Sig-
nif. Codes: a: 0.01, b: 0.05, c: 0.1.

Table B3: BEV Sourcing decision

Dependent Variable: BEV sourcing decision
Model: (1) (2) (3) (4) (5)

Border -1.73a -1.72a -1.88a -1.72a -1.84a

(0.437) (0.459) (0.394) (0.460) (0.412)
log distance -0.069 -0.069 -0.013 -0.069 -0.104

(0.053) (0.054) (0.051) (0.054) (0.071)
RTA 0.863a 0.833a 1.01a 0.833a 1.13a

(0.171) (0.177) (0.163) (0.177) (0.225)
EC(pack) -0.485a -0.424a -0.485a -0.049

(0.092) (0.053) (0.093) (0.084)

Observations 54,696 54,696 54,933 54,933 36,107
Squared Correlation 0.223 0.226 0.241 0.244 0.243
FE origin ctry ctry cluster1 cluster2 cluster2
Sample all all all all NRdest
Clustered (dyad) standard-errors in parentheses, Signif. Codes: a: 0.01, b: 0.05, c: 0.1.
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