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Abstract

Based on a narrative classification of all significant postwar changes in R&D appropriations for

five major federal agencies, we find that an increase in nondefense R&D appropriations leads to

increases in various measures of innovative activity and higher business-sector productivity in the

long run. We structurally estimate the production function elasticity of nondefense government

R&D capital using the SP-IV methodology of Lewis and Mertens (2023) and obtain implied returns

of 150 to 300 percent over the postwar period. The estimates indicate that government-funded

R&D accounts for one quarter of business-sector TFP growth since WWII, and imply substantial

underfunding of nondefense R&D.
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Figure 1: Growth in Business-Sector TFP, R&D Capital, and Public Infrastructure

Notes: Centered five-year moving average annualized growth rates based on quarterly data. Business-sector
TFP is the utilization-adjusted measure of Fernald (2012). Public infrastructure consists of nondefense
structures and equipment. The definition of R&D capital includes a capitalization of expenditures for
software development. See Appendix A for variable definitions. Sources: BEA, Fernald (2012).

With the exception of a brief period in the late 1990s and early 2000s, aggregate U.S.

productivity growth has slowed markedly since the late 1960s. Figure 1 shows that this slow-

down coincides with a decline in public investments in research and development (R&D).1

The causality underlying this relationship, however, is far from clear, and as Figure 1 shows,

higher growth in business R&D capital or public infrastructure prior to the 1970s are plau-

sible alternative contributing factors.

Several significant empirical challenges need to be overcome in order to isolate the causal

role of government R&D in driving innovation and productivity growth. Any productivity

spillovers likely occur only after long and uncertain lags. Various potential channels for re-

verse causality need to be accounted for, since policymakers’ decisions to boost or cut R&D

funding could be influenced by a wide range of factors with independent effects on innova-

tion. Aggregate estimates must also be interpreted with care, as more government funding

can impact private spending on R&D or other productivity-enhancing public investments.

In this paper, we propose a novel empirical strategy to estimate the aggregate dynamic

effects of changes in government R&D spending, and to identify direct versus indirect pro-

ductivity effects. Because the lags between spending decisions and actual outlays are often

long, the starting point of our analysis is a new dataset of all postwar appropriations enacted

for the budgetary accounts funding R&D at the major federal agencies: The Department of

1See also the discussion in Gruber and Johnson (2019) or Bloom et al. (2019), among others.
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Defense (DOD), Department of Energy (DOE), National Aeronautics and Space Adminis-

tration (NASA), National Institutes of Health (NIH) within the Department of Health and

Human Services, National Science Foundation (NSF), and their historical precursors. To

guard against reverse causality, we perform a narrative classification of all major changes in

federal R&D appropriations for these agencies to construct measures that, after condition-

ing on a suitable set of controls, are largely unanticipated and plausibly free of confounding

influences. We use the narrative measures in long-horizon Jordà (2005) local projections

with quarterly postwar data to estimate the dynamic causal effects of shocks to R&D ap-

propriations on aggregate TFP and various other indicators of innovative activity.

The knowledge spillovers from defense and nondefense R&D are likely quite different, if

only because advancements in military know-how are unlikely to be disseminated as quickly

in order to maintain military superiority. For this reason, we distinguish throughout the

analysis between defense and nondefense R&D. We find that a positive shock to appropri-

ations for nondefense R&D robustly leads to a delayed and gradual increase in aggregate

TFP that becomes highly statistically significant at long forecast horizons (8 to 15 years).

For a shock that induces a one percent increase in government R&D capital, our baseline

estimates show eventual increases in the level of TFP of about 0.2 percent. Positive shocks

to nondefense R&D also induce increases in various indicators of innovative activity, such as

patent grants, the number of doctoral recipients in STEM fields, the number of researchers

engaged in R&D, or the number of technology publications. In contrast, we find little evi-

dence that a positive shock to defense R&D leads to any persistent productivity increases,

at least not within horizons of 15 years.

To better understand the estimated TFP responses, we investigate various decomposi-

tions of the spending changes that occur following shocks to R&D appropriations. As em-

phasized by Akcigit et al. (2020), public investments that focus more heavily on producing

basic knowledge can create important complementarities with private research investments,

and have larger spillovers. We find that nondefense shocks lead to relatively larger increases

in funding for more fundamental research, and to particularly persistent increases in funding

for research performed within government agencies and at universities. The majority of the

increase in nondefense R&D funding, in terms of dollars, stems from higher appropriations

for NASA, followed by the NIH. Defense shocks instead mostly result in increased funding

for development and product improvement, with more of the work performed by businesses.

We find that positive shocks to R&D appropriations for both defense and nondefense

activities lead to higher private investment in R&D. As in the theoretical framework of

Akcigit et al. (2020), this suggests that private and public R&D investments indeed act as

complements rather than substitutes. However, the increases in private R&D are relatively

small, particularly in response to nondefense shocks. We find that one channel through which

a positive nondefense shock likely has important additional indirect effects on productivity

is a gradual expansion of public infrastructure funded by state and local governments. This
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expansion is broad-based, with the largest increases in education structures (schools and

universities), followed by roads, and power, water, and sewer systems.

In order to isolate the direct productivity effects of government R&D, we formulate an

aggregate production function with public infrastructure and government R&D capital as

separate arguments, and we structurally estimate the elasticity of government R&D capital.

Our identification strategy relies on two key steps. First, we use available estimates of

the production function elasticity of public infrastructure to remove its contribution to

business-sector TFP growth. We consider values of this elasticity between 0.065 and 0.12,

the range deemed plausible by Ramey (2021) in a recent review of the existing evidence.

In the second step, we use the SP-IV estimator of Lewis and Mertens (2023) to estimate

the production function elasticities of defense and nondefense government R&D capital.

Intuitively, this estimator is a GMM estimator that obtains the elasticity as the value that

best fits the relationship between the estimated responses of government R&D capital and

(infrastructure-adjusted) TFP to the R&D appropriations shocks. Based on the responses to

nondefense R&D shocks, the point estimates of the production function elasticity to total

government R&D capital across various specifications lie within a relatively tight range

of a value of 0.12, and these estimates are generally highly statistically significant under

weak-instrument-robust inference procedures.2 In contrast, the results for defense R&D are

inconclusive, as the estimates vary greatly across specifications and are very imprecise.

Our estimates of the production function elasticities imply that nondefense government

R&D accounts on average for about one-quarter of business-sector TFP growth in the post-

war period. Despite the fact that the government invests significantly less in R&D than

in infrastructure, the contribution of government R&D to TFP growth is consistently of a

similar magnitude to, and frequently greater than, the contribution of public infrastructure.

Depending on the assumed value of the public infrastructure elasticity, slower growth in

all forms of public capital explains 0.38 to 0.45 percentage points of the TFP slowdown of

around one percentage point after the 1960s. Our findings indicate that the slower growth

in government R&D was equally important, if not more so, than the slowdown in public

infrastructure investment.

Finally, we calculate the rate of return to nondefense government R&D, both indirectly

from the elasticity estimates and directly from SP-IV estimates in regressions of TFP growth

on the ratio of net R&D investment to output. Depending on the method of calculation and

specification, we obtain rates of return on nondefense R&D between 150 and 300 percent

under a Cobb-Douglas assumption. These estimates are considerably higher than similar

ones for the return on public infrastructure. Our findings therefore point to a misallocation

of public capital, and substantial underinvestment in nondefense R&D.

This paper contributes to a large empirical literature estimating ‘social’ returns to R&D,

2The value of 0.12 for the elasticity to total government R&D capital translates to an elasticity to nondefense R&D
capital of 0.06, given that nondefense R&D averages about one-half of total government R&D in the postwar sample.

4



i.e., returns that include various spillovers on other firms or industries, which are typically

found to well exceed the normal return on other investments.3 Firm or industry-level studies,

however, are restricted in the scope of spillovers and general equilibrium effects that can be

captured. While aggregate data are better suited for estimating the concept of a ‘social’

return, the main challenge is causal identification. Our paper proposes a strategy for causal

identification with aggregate data in the context of government-funded R&D.

A number of recent empirical studies focus on industry-specific spillovers or patent re-

sponses to specific government R&D programs. For instance, Azoulay et al. (2018) find that

NIH spending spurs the generation of private patents; Myers and Lanahan (2022) find large

private R&D spillovers from the DOE’s Small Business Innovation Research program; Kan-

tor and Whalley (2022) find persistent manufacturing output and productivity spillovers

from local NASA R&D spending during the moon mission; Gross and Sampat (2023) doc-

ument how R&D programs during WWII fueled the postwar growth of technology clusters

and spurred innovation in the long term; and Moretti et al. (2019) find positive spillovers

from defense R&D to private R&D and productivity growth in a panel study of defense

R&D spending across OECD countries. Each of these studies provides evidence for some of

the spillovers that we aim to measure collectively.

Our paper is also related to several recent studies of the longer-run macroeconomic effects

of fiscal policy shocks. Cloyne et al. (2022), for example, find that a corporate tax cut leads

to increases in R&D spending by businesses, as well as longer-run increases in TFP. Antolin-

Diaz and Surico (2022) study the long-run effects of military spending shocks and find that

these shocks lead to long-run increases in output and productivity. Consistent with our

results, the authors argue that the long-run effects are associated with shocks that expand

the share of government spending going to R&D, which they identify by maximizing the

variance of government R&D spending at forecast horizons of up to one year. De Lipsis

et al. (2022) also study the effects of shocks to government R&D spending, in their case

identified with short-run restrictions similar to Blanchard and Perotti (2002). As we do, they

find that government R&D crowds in private investment and raises output in the long run.

Different from Antolin-Diaz and Surico (2022) or De Lipsis et al. (2022), we focus on shocks

to R&D appropriations rather than R&D spending, use a narrative identification scheme,

and distinguish between defense and nondefense government R&D. Despite methodological

differences, it is reassuring that our conclusions regarding the potential for government R&D

spending to boost economic growth are broadly similar.

Finally, this paper contributes to the literature on the productivity effects of public

capital, see e.g., Bom and Ligthart (2014) and Ramey (2021) for surveys. Since the early

contributions of Aschauer (1989) and Munnell (1990), this literature has mostly focused

on (nondefense) public infrastructure. Our paper presents estimates of the production

3For example, Bloom et al. (2013) use firm-level accounting data and changes in R&D tax incentives to identify a 55
percent social rate of return to R&D. See Hall et al. (2010) or Jones and Summers (2020) for overviews of the evidence.
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function elasticity of government R&D capital that can be used to separately study the

role of intangible public capital in quantitative growth models. These estimates are also

useful for budgetary analyses of fiscal policy initiatives (e.g., CBO 2016; CBO 2021).

I. Measurement, Definitions, and Facts

The measures of public capital used in this paper are based on data from the Bureau of

Economic Analysis (BEA). Specifically, we use data on gross investment from the National

Income and Product Accounts (NIPAs) to construct quarterly series of the value of gov-

ernment fixed assets (at real cost) that are consistent with the annual series in the BEA’s

Fixed Asset Account, see Appendix A for details. We distinguish between (i) defense non-

R&D capital (defense-related equipment and structures), (ii) public infrastructure (federal

nondefense and state and local government equipment and structures), (iii) defense R&D

capital, and (iv) nondefense R&D capital. Our definition of R&D capital includes a capital-

ization of expenditures for software development, and therefore corresponds to the concept

of ‘intellectual property’ for the government sector in the NIPAs; we use the term ‘R&D

capital’ as such throughout the rest of the paper.4 We refer to the aggregate of (iii) and (iv)

as ‘government R&D capital’. R&D expenditures are measured in the NIPA by source of

funding, so government R&D capital includes federally-funded ‘contract R&D’ performed

by firms, universities, nonprofits, and public-private partnership ‘R&D centers’ (e.g., the

Lawrence Livermore National Laboratory). Figure 2 plots the quarterly time series of pub-

lic capital and its subcomponents as a ratio of GDP. As is clear from the figure, government

R&D capital is relatively small compared to other types of public capital, with nondefense

and defense R&D capital averaging 3.9 percent and 2.7 percent of GDP, respectively, over

the postwar period.

The expenditure data underlying the BEA measures of R&D capital are constructed

primarily from annual surveys conducted by the NSF’s National Center for Science and

Engineering Statistics (NCSES). Unlike the NIPA data, NCSES data on R&D spending

are available by funding agency, performing sector, and type of research activity. The NSF

defines R&D as the “creative and systematic work undertaken in order to increase the stock

of knowledge ... and to devise new applications of available knowledge.” This wide umbrella

for spending on innovative activity is typically separated into three types: basic research,

applied research, and experimental development work. The NSF defines basic research as

experimental or theoretical work pursuing knowledge “without specific applications toward

processes or products” whereas experimental development work is defined as “systematic

work, drawing on knowledge gained from research and practical experience and produc-

ing additional knowledge, which is directed to producing new products or processes or to

4In Appendix D.5, we also consider alternative measures of R&D capital based on alternative values for the depreciation
rates than those used by the BEA.

6



Figure 2: Composition of Public Capital

Notes: R&D capital includes software. Infrastruc-
ture consists of structures and equipment. See Ap-
pendix A for variable definitions. Source: BEA.

Figure 3: Government R&D Expenditures

Notes: Fiscal year NCSES data are converted to
calendar years and exclude R&D plant. Sources:
BEA; NCSES, National Patterns of R&D Re-
sources (Tables 7, 8, and 9).

improving existing products or processes.” Falling between these two, applied research is

defined as “original investigation undertaken in order to acquire new knowledge... directed

primarily towards a specific practical aim or objective” (NSF 2022).

Figure 3 plots the NCSES measures of government R&D spending by type, along with

NIPA totals for comparison. Government spending on basic and applied research each av-

eraged 0.23 percent of GDP over the sample period shown, while experimental development

averaged 0.61 percent. Government spending on basic research is considerably larger than

that of the private sector, which instead spends relatively more on applied research and de-

velopment.5 As emphasized in Akcigit et al. (2020), this compositional difference suggests

that distinguishing between private and public R&D spending is potentially important.

As Figure 3 shows, government R&D expenditures in the NSF surveys do not align

perfectly with the corresponding series in the national accounts, as the BEA adjusts the

NSF source data and uses additional budgetary data to match required NIPA concepts.

‘Software development,’ in particular, is a broader concept in the NIPAs and includes various

non-experimental development expenditures.6 Note that not all spending labeled research

or development in other data sources, such as the appropriations data we use in our analysis,

necessarily flows exclusively into the NIPA measure of government R&D expenditures. For

example, DOD spending on ‘operational systems development’ is mostly classified by the

BEA as equipment. Similarly, ‘R&D plant,’ i.e., spending on major research facilities and

equipment, is also mostly recorded as investment in equipment or structures by the BEA.

Figure 4 plots NCSES data on government R&D spending broken out by performing

sectors and the major funding agencies. Panel (a) shows that the bulk of government R&D

5Over the same period, average private expenditures are 0.14 percent of GDP on basic research, 0.30 percent of GDP
on applied research, and 0.97 percent of GDP on development (Source: NCSES, National Patterns of R&D Resources).

6However, NIPA software development excludes software embedded in other products, e.g., computers or cars.
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Figure 4: Government R&D Expenditures

(a) By Performing Sector

Notes: Fiscal year data are converted to calendar
years. Source: NCSES, National Patterns of R&D
Resources (Table 6).

(b) By Federal Agency

Notes: Federal R&D outlays by agency excluding
R&D plant. Fiscal year data are converted to cal-
endar years. Source: NCSES, Survey of Federal
Funds for R&D (Various tables).

spending funds activity performed by private businesses, universities, or public-private R&D

centers, as opposed to ‘intramural’ R&D conducted within the federal agencies. During the

height of the Cold War, most government-funded R&D was performed by businesses, but the

share has fallen substantially since, and a steadily growing share is performed at universities.

Government funds for R&D are provided largely by the federal government—more than 90

percent on average in the postwar period; the remainder consists mainly of funding by state

and local governments for research at universities.

Panel (b) in Figure 4 provides a breakdown of federal R&D spending by agency. Early

in the Cold War, DOD and NASA accounted for the bulk of federal R&D spending, and

much of the decline in overall funding since the late 1960s can be attributed to Congress

reversing course on funding for these agencies after the nuclear triad was deployed and the

moon landing was successfully completed. Another major source of funding is DOE and

its historical precursors, covering both defense activities (e.g., nuclear weapons and naval

propulsion) and nondefense activities (e.g., civilian energy and physics research); in the

NIPAs, DOE’s national security functions are included in defense R&D. In recent decades,

NIH funding for medical research has gradually grown in importance. The final agency

engaged in significant R&D funding is the NSF. Various other federal agencies also provide

funding for R&D but in much smaller amounts.

II. Measuring Exogenous Variation in Government R&D Spending

Our strategy for identifying the causal effects of government R&D spending on aggregate

productivity is based on novel empirical measures of exogenous variation in federal funding
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for R&D. As is well known in the literature, an important identification concern is that

changes in fiscal policy are often anticipated, and mistiming the arrival of news about fiscal

policy can lead to misleading results (Ramey 2011; Mertens and Ravn 2013; Leeper et

al. 2013). To address these concerns, we rely on time series of all enacted appropriations

authorizing future federal R&D expenditures, and not just on current R&D expenditures

as in Antolin-Diaz and Surico (2022) or De Lipsis et al. (2022).7

The other identification concern is that policy changes reflect systematic reactions by

policymakers to macroeconomic developments that independently affect innovative activity

and aggregate productivity growth. We take a two-step approach to isolating changes in

appropriations that are plausibly uncorrelated with other influences on productivity and

innovation. First, we adopt a narrative identification strategy and—on the basis of an

extensive analysis of historical sources—retain only those changes in appropriations that

are not motivated by short-run macroeconomic considerations.8 Second, to guard against

the possibility that R&D policy responds systematically to other longer-term drivers of

productivity trends, we embed the narrative measures in empirical models that remove

predictable variation in future productivity growth through a wide variety of lagged controls

at a quarterly frequency. As we will show, neither the narrative identification step nor

the choice of controls will prove crucial for our main empirical finding that nondefense

government R&D raises TFP in the long run, which likely helps explain why our results

broadly agree with those of Antolin-Diaz and Surico (2022) or De Lipsis et al. (2022) despite

the various methodological differences. Before we describe the econometric methodology in

full detail, the rest of this section first discusses the dataset on appropriations as well as the

narrative measures used for identification.

A. Data on Appropriations for R&D

As the overwhelming majority of government R&D funding is at the federal level, we restrict

attention to congressional appropriations for R&D activities. To construct a time series of

federal R&D appropriations, we rely on information in the Budget of the U.S. Government

and its appendices. Specifically, we collect information on all enacted appropriations for the

budgetary accounts funding R&D activities at federal agencies for all fiscal years from 1947

to 2019. To keep the data collection manageable, we only consider the budget accounts for

the five major federal agencies discussed in Figure 4: DOD, DOE, NASA, NIH, and NSF.9

Together, these five agencies typically account for roughly 87 to 93 percent of total federal

R&D spending in any given fiscal year. For each agency, we obtain the appropriations from

7See also Brunet (2022) on the estimation of fiscal multipliers using budget authority rather than outlays.
8Examples of similar empirical approaches include applications to monetary policy (Romer and Romer 1989; Romer

and Romer 2023), government spending (Ramey 2011; Ramey and Zubairy 2018), federal tax policies (Romer and Romer
2010; Cloyne 2013), and housing credit policies (Fieldhouse et al. 2018).

9The Atomic Energy Commission and Energy Research and Development Administration are included as precursors
to the Department of Energy.

9



the ‘Budget Authority’ (BA) or—prior to the introduction of BA as a budgeting concept—

the ‘Appropriation (adjusted)’ line item for each R&D account. The data we collect reflects

all enacted annual appropriations bills adjusted for any supplemental appropriations, sub-

sequent transfers between accounts, or sequestration cuts. We date the appropriations to

the quarter they take effect, either the start of that fiscal year or when the appropriations

bill was subsequently enacted. As such, most changes in appropriations are dated to the

first quarter of the fiscal year. To match defense and nondefense spending in the NIPAs,

we separate the appropriations for DOD and for the national security functions of DOE

from all other nondefense appropriations. References to all data sources by agency/year are

available in Fieldhouse and Mertens (2023).

B. Narrative Classification

One potential reason for endogeneity problems is that changes in R&D appropriations may

be correlated with business cycle shocks. Comin and Gertler (2006) and Bianchi et al.

(2019), for example, argue that expansionary business cycle shocks can raise aggregate

productivity at longer horizons through endogenous growth channels, while Ilzetzki (2022)

provides evidence that high capacity utilization during WWII spurred innovation out of

necessity. Government R&D appropriations may be procyclical given that there is more

room in government budgets during booms. On the other hand, R&D spending may also

rise in recessions if increases in appropriations for R&D are systematically folded into larger

fiscal stimulus packages.

As we will rely on quarterly regression specifications that include lagged cyclical indica-

tors as controls, one could appeal to lags in the policymaking process for identification, as in

for example Blanchard and Perotti (2002). However, as including lagged cyclical indicators

as controls may not suffice to remove all sources of cyclical endogeneity, we prefer to conduct

our analysis with a subset of changes in appropriations that are classified as exogenous by

a narrative analysis. More specifically, for each of the five agencies, we conduct a narrative

analysis for all fiscal years with ‘significant’ changes in (real) appropriations, defined as

year-over-year increases of at least 5 percent, or decreases of at least 2.5 percent. We focus

on larger changes for two reasons. First, it is easier to infer legislative intent from available

historical sources for the more meaningful deviations from current policy. Second, the focus

on larger changes substantially reduces the number of agency-fiscal year pairs to analyze. In

total, we classify 218 agency-fiscal year pairs with significant real changes in appropriations

over the FY1947-2019 sample. Roughly one-third of the policy changes involve decreases in

real appropriations for R&D and two-thirds are increases.

For each of the 218 significant agency-fiscal year changes, we rely on a variety of pri-

mary and secondary sources to understand the context and motivation. Specifically, we

study the Budget of the United States Government, the State of the Union address, and
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Figure 5: Changes in Nondefense and Defense R&D Appropriations

(a) Nondefense Agencies (b) Defense Agencies

Notes: Nondefense agencies include NASA, NIH, NSF, and the nondefense functions of DOE. Defense
agencies include DOD and national security functions of DOE. Nominal appropriations are converted to
real dollars using NIPA price indices for federal nondefense/defense investment in intellectual property.
Source: Authors’ calculations based on the Budget of the U.S. Government, see Fieldhouse and Mertens
(2023).

any related presidential signing statements, veto statements, or other speeches to learn the

administration’s budgetary priorities and specific goals for R&D policy. To infer legislative

intent, we analyze the House and Senate Appropriations Committee reports that accom-

pany each appropriations bill, as well as related committee hearings. Finally, we also scan

CQ Almanac and newspaper coverage of the relevant appropriations bills, primarily The

Washington Post, The New York Times, and The Wall Street Journal.

Based on a close reading of the various sources, we classify every significant change in

real R&D appropriations for each agency as either ‘exogenous’ or ‘endogenous’. Endogenous

policy changes are those that are primarily motivated by short-run economic considerations.

Examples are increases in R&D spending that are part of a broader fiscal stimulus package

(e.g., as in the American Recovery and Reinvestment Act of 2009), increases in energy R&D

in response to oil shocks (e.g., creating the Energy Research and Development Administra-

tion in 1974), or cuts to R&D spending as part of broader austerity measures intended to

curb short-run inflationary pressures. Exogenous policy changes are instead motivated by a

variety of other considerations without clear macroeconomic relevance in the short run. For

nondefense R&D, examples include policymakers’ general concerns about the adequacy of

the science, technology, and engineering base (e.g., creating the NSF), evolving public health

concerns (e.g., Nixon’s ‘war on cancer’), multinational scientific efforts (e.g., human genome

project), certain geopolitical events (e.g. Sputnik and creating NASA), or initiatives with

mixed diplomatic/scientific objectives (e.g., International Space Station). For defense R&D,

examples include concerns about the adequacy of strategic capabilities relative to geopolit-
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ical rivals (e.g., Sputnik crisis), policy preferences of a new administration (e.g., Reagan’s

military buildup), evolving national security threats (e.g., Global War on Terror), or rat-

ifying or exiting non-proliferation treaties (e.g., exiting the Anti-Ballistic Missile Treaty).

Long-term deficit reduction packages often cut nondefense and/or defense R&D appropria-

tions (e.g., Budget Control Act of 2011). We classify such policies as exogenous if the intent

is long-term fiscal sustainability rather than curbing near-term inflationary pressures.

Figure 5 shows the time series of the changes in defense and nondefense appropriations,

expressed in 2012 dollars per capita for ease of comparison across the sample period. The

blue bars show those changes that are classified as exogenous in the narrative analysis,

aggregated over all five agencies. Appendix B presents the same figures for each agency

separately. For the interested reader, Fieldhouse and Mertens (2023) provides an overview

of postwar federal R&D policy along with details and data sources for each policy change.

C. Orthogonalized Narrative Measures for Changes in Defense and

Nondefense Appropriations

The knowledge spillovers from defense and nondefense R&D are potentially very different,

if only because defense R&D usually aims to maintain America’s military advantage and is

often classified. One slight complication to isolating their separate effects empirically is that

the changes in defense and nondefense R&D appropriations shown in Figure 5 are positively

correlated, i.e., an increase in appropriations for one category tends to be accompanied by

an increase in the other. Specifically, the correlation between all changes in defense and

nondefense appropriations is 0.31, and the correlation across the exogenous policy changes

is also 0.31. To better understand any underlying differences, it is useful to estimate the

causal effects of more idiosyncratic movements in each category of government R&D. To that

end, we construct versions of the narrative measures that are orthogonalized with respect

to one another. More specifically, let ∆aexo,it denote the narrative measures of exogenous

changes in appropriations for i = D,ND (defense/nondefense) in quarter t, as shown in

blue in Figure 5. The orthogonalized narrative measures are the residual zit in the following

regression,

∆aexo,it

Ki
t−4

= ai + bi
∆aexo,−i

t

K−i
t−4

+ zit , i = D,ND .(1)

To construct the orthogonalized narrative measures, we express the (constant) dollar changes

in appropriations in category i as a fraction of the total real value of the government R&D

capital stock in that budget category four quarters earlier, Ki
t−4. We scale the changes in

R&D appropriations by the real capital stocks as we are interested in elasticities to gov-

ernment R&D capital. To avoid introducing any sources of endogeneity, we scale by the

one-year lagged capital stocks, although this matters very little for the results. By con-
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struction, the sample correlation between zit and the exogenous appropriation change in the

other category, ∆aexo,−i
t /K−i

t−4, is zero. The orthogonalized narrative measure zit, therefore,

represents an exogenous innovation in government R&D appropriations for category i at

time t, but leaving appropriations in the other category −i contemporaneously unchanged.

The impulse responses identified with the orthogonalized narrative measures will have the

interpretation as the impact of a change in R&D funding targeting one category while leav-

ing appropriations for the other category unchanged on impact (but not necessarily in future

quarters). In practice, the orthogonalization step turns out to matter very little for the re-

sults, see Appendix C.2. Note that the positive correlation between defense and nondefense

measures implies that the two measures potentially both contain useful identifying varia-

tion in defense and nondefense R&D capital. Our estimation of the production function

elasticities and rates of return will therefore also include specifications that simultaneously

use both narrative measures (without the orthogonalization) for identification.

III. The Dynamic Effects of Changes in R&D Appropriations

A. Empirical Methodology

The first part of our analysis consists of estimating impulse responses of productivity and

government R&D capital associated with unanticipated changes—or ‘shocks’—to defense

and nondefense R&D appropriations. Given the likely significant delays between an in-

crease in congressional appropriations for R&D, actual outlays for R&D, and any eventual

technological improvements as a result of those outlays, we use Jordà (2005) local projec-

tions to estimate responses at forecast horizons h = 0, ..., H − 1 of up to 15 years (H = 60

quarters).10 The impulse response for an outcome variable yt at horizon h estimated by

local projections is simply the OLS coefficient in a direct forecasting regression of yt+h on

the period t value of the orthogonalized narrative measures, zit. This estimation approach

makes no ex-ante assumptions regarding the lags between R&D spending and the impact on

productivity. Because changes in R&D appropriations are serially correlated, as seen in Fig-

ure 5, we include information about past R&D appropriations in the regression. Specifically,

we include p = 4 quarterly lags of ln(ait), where ait is the cumulative sum of all past (con-

stant dollar) changes in R&D appropriations in category i. Including lags of ln(ait) rather

than zit provides more information about past R&D policies, and Appendix C.4 shows that

additionally including lags of zit has little effect on the results. We also include p = 4 lags

of the outcome variable yt in all specifications. Unless mentioned otherwise, the estimation

sample consists of 74 years of quarterly observations from 1948Q1 through 2021Q4.

10Vector autoregressions (VARs) are a common alternative for impulse response estimation. As shown in Plagborg-
Møller and Wolf (2021), local projections avoid potential misspecification in finite-order VAR-based impulse response
estimators at forecast horizons beyond the VAR lag length. Appendix C.5 shows that VAR-based estimates to the
appropriations shocks are nevertheless similar to the LP estimates.
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In practice, we estimate the following local projections for h = 0, ..., H − 1 using OLS:

3∑
j=0

(
1

4
× yt+h−j

)
= ch + γhz

i
t +

p∑
j=1

βj
h ln a

i
t−j +

p∑
j=1

δjhyt−j +

p∑
j=1

ζj′h xt−j + vt+h(2)

where p = 4, yt+h is the outcome variable of interest at horizon h (e.g., utilization-adjusted

TFP), vt+h is a residual at forecast horizon h, and the sequence {γh}H−1
h=0 contains the impulse

response coefficients.

Two features of (2) warrant further discussion: First, the left-hand side is a four-quarter

backward moving average,
3∑

j=0

(
1
4
× yt+h−j

)
, rather than just the quarterly observation yt+h.

The averaging smooths out some of the quarterly noise in the impulse response estimates,

but is otherwise not important: the estimation is numerically equivalent to using yt+h as

the left-hand side variable and subsequently taking the moving average of the estimated

impulse response coefficients.

Second, the specification in (2) allows for the inclusion of lags of additional control vari-

ables, xt. As is well known, including lagged predictors of the outcome variables as controls

in local projections can serve multiple purposes. One is that, even when identification is

valid without conditioning on lagged predictors of yt+h, including these predictors gener-

ally sharpens inference on the impulse response estimates by reducing the variance of the

forecast residuals, vt+h. Another is that adding a suitable set of lagged controls helps to

eliminate past influences on the outcome variable that may be correlated with the regressor

of interest, and otherwise would lead to endogeneity bias.

As discussed earlier, one of the controls included in xt is a cyclical indicator to eliminate

any remaining cyclical sources of endogeneity in the narrative measures. In the baseline

set of controls xt, we include the capacity utilization rate from the Fernald (2012) dataset,

which captures variation in both labor effort and the workweek of capital and is strongly

correlated with other coincident cyclical indicators. Adding the unemployment rate or the

output gap has very little impact on the results, see Appendix C.3.

Even if the narrative classification and cyclical controls successfully address the short-run

sources of endogeneity that are typically of greatest concern in the identification of fiscal

shocks, it is not clear that they are adequate to address potential longer-run sources of

policy endogeneity. R&D policy may, for example, respond to productivity, demographic,

or other secular trends. A related possibility is that policy responds to the arrival of new

ideas and nascent technologies that, even in the absence of government involvement, are

anticipated to raise productivity growth.

To address concerns about longer-term sources of endogeneity, the baseline specification

includes five additional controls to remove predictable variation in TFP and other outcome

variables of interest. First, we always include lags of utilization-adjusted TFP (in log levels)

in the control set. Next, we also include real government and business-sector R&D capital
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(both in log-levels) in xt. Including R&D capital stocks, rather than just recent R&D expen-

ditures, is preferable because of the potentially long delays between expenditures and actual

improvements in productivity. We further include an average of the cumulative real stock

market return for the high-tech, manufacturing, and health industries as a forward-looking

indicator of innovation and productivity growth. Several studies have shown that stock mar-

ket returns are predictive of output growth and TFP at longer forecast horizons, see e.g.,

Fama (1990) or Beaudry and Portier (2006). The natural explanation is that new ideas and

research opportunities are reflected in stock market valuations relatively quickly and well

ahead of the eventual productivity improvements. Indeed, Kogan et al. (2017) document

evidence of immediate stock market reactions to patent grants. The final element in the

baseline control set xt is the defense spending news variable of Ramey and Zubairy (2018).

We include news about total defense spending to remove additional predictable variation in

defense R&D, and potentially also in nondefense R&D arising through complementarities

or government budget constraints.

In Appendix C.3, we establish robustness to numerous additions to this baseline set of

controls, including a variety of additional fiscal policy indicators (public infrastructure cap-

ital, debt, taxes, spending, etc.), financial market indicators (interest rates, credit spreads,

and broader stock market indices), and alternative potential predictors of future TFP and

R&D spending (labor quality, non-R&D business-sector capital, patents, and the relative

price of R&D).

B. Government R&D and TFP After Shocks to R&D Appropriations

Figure 6 presents impulse responses of government R&D capital and TFP to appropriations

shocks based on the estimates of {γh}H−1
h=0 in the local projections in (2). Each panel shows

results for the baseline specification, i.e., with the five additional controls in xt described

above. To assess the importance of including these additional controls, the panels also report

results from a simpler specification without the lags of any of the variables in xt. For ease of

comparison with the production function elasticities presented later, the responses are scaled

to imply a one percent peak increase in total government R&D capital. Inference is based

on the heteroskedasticity and autocorrelation-robust (HAR) confidence bands recommended

by Lazarus et al. (2018).11

The top panels in Figure 6 show that both the defense and nondefense R&D appropri-

ations shocks lead to highly persistent hump-shaped increases in government R&D capital.

The build-up in R&D capital following both types of shocks is very gradual, with peak effects

that occur 8 to 10 years after the shocks. The substantial delays in the capital responses

show that there are, on average, relatively long lags between a positive shock to congres-

sional appropriations for R&D and eventual outlays. As we show below, the modest declines

11Appendix C.6 shows that our main result remains unchanged when using other inference procedures (specifically
Ecker-Huber-White or the Montiel Olea and Plagborg-Møller (2021) wild bootstrap).
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Figure 6: Government R&D Capital and TFP Following an Increase in R&D Appropriations

a. Nondefense R&D Shock

Government R&D Capital

Business-Sector TFP

b. Defense R&D Shock

Government R&D Capital

Business-Sector TFP

Notes: Estimates based on (2) using the orthogonalized narrative measure of changes in federal nondefense
(left panel) and defense (right panel) R&D appropriations, see (1). ‘Baseline’ includes additional lagged
controls described in the main text. Lazarus et al. (2018) HAR bands are at the 5 percent significance level.
Impulses scaled to imply a 1 percent peak increase in government R&D capital. Sample: 1948Q1–2021Q4.

in R&D capital towards the end of the forecast horizon not only reflect depreciation but also

eventual reversals in government R&D spending. In the baseline specification, the increase

in government R&D capital after a nondefense shock is highly statistically significant for

all horizons except shorter ones, which indicates that the narrative nondefense measure is

a strong predictor of future government R&D spending. The response of government R&D

capital to a defense shock is also significant at the 5 percent level at horizons between 5 and

11 years, but the confidence bands are wider than for the nondefense shock. The fact that

congressional appropriations are strongly predictive for future government R&D spending
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implies that the spending changes are potentially anticipated well in advance. Basing iden-

tification on variation in appropriations rather than spending is, therefore, preferable to

avoid possible bias due to anticipation effects. For both shocks, the point estimates vary

little across the specifications with and without the additional controls. The main effect of

the additional controls is to substantially sharpen inference for the government R&D capital

response to a nondefense shock.

The bottom left panel of Figure 6 shows the estimated response of TFP to a nondefense

R&D shock. The key finding is that, after a substantial delay, a positive shock to appro-

priations leads to a gradual increase in business-sector TFP. Moreover, the TFP increase

becomes highly statistically significant at longer horizons. In our baseline specification,

there is initially no significant change in TFP for several years, after which TFP slowly

increases to a level that is around 0.2 percent higher by the end of the 15-year horizon. In

the simpler specification, the TFP response is somewhat larger, up to around 0.35 percent

at the end of the forecast horizon. Including the additional controls again considerably

increases the precision of the estimates, but the TFP response is overall similar in shape,

and it is significant at longer horizons in both specifications.

The bottom right panel of Figure 6 shows that the TFP response to a defense R&D

shock is meaningfully different from the response to a nondefense shock. In contrast to the

nondefense shock, a positive defense shock leads to a decline in TFP at longer horizons.

In the baseline specification, the longer-run decrease in TFP is significant at the 5 percent

level at several horizons around 13 years after the shock. Overall, the estimates of the TFP

response to a defense shock are considerably more uncertain, and they are insignificant at

conventional levels for most horizons. Whereas the simple specification shows essentially

no impact on TFP at shorter horizons, the baseline specification shows evidence of a posi-

tive near-term TFP response to a defense shock, with point estimates that are marginally

significant between two and eight years. However, the main conclusion is that—unlike for

nondefense R&D—there is no evidence that defense R&D has positive TFP spillovers in the

longer run, at least not within the 15-year time window that we consider.

As Figure 6 shows, including the additional controls qualitatively has no major effects on

the estimated TFP responses at longer horizons. Appendix C.1 and C.2 show that the TFP

responses to both shocks also remain very similar if we use all appropriation changes rather

than just those classified as exogenous, or if we use the raw narrative measures rather than

the orthogonalized ones. Appendices C.3 and C.4 further document that the significant

positive long-run TFP response to a nondefense R&D shock is robust to many different

additions to the control set xt, as well as to various other changes in specification. Together,

these results suggest that policy endogeneity is not as serious a concern for government R&D

as it is for broader changes in tax or spending policies. Nevertheless, we include four lags of

the baseline controls in all remaining specifications, and—unless mentioned otherwise—we

continue to use the same orthogonalized narrative measures for identification.
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C. Effects on Other Productivity and Innovation Indicators

Figure 7 reports impulse responses of several other productivity and innovation indicators to

nondefense R&D shocks. The estimates are again based on (2) with the six baseline controls

in xt, and scaled to imply a one percent peak increase in total government R&D capital. For

brevity, the corresponding results for defense R&D shocks are reported in Appendix C.7.

Panel (a) in Figure 7 shows the response of business-sector labor productivity (output

per hour). Under certain assumptions, technological change is the only source of long-run

variation in labor productivity; see e.g., Gaĺı (1999). The response of labor productivity at

longer horizons thus provides an alternative signal of the productivity effects of government

R&D. As panel (a) shows, labor productivity initially does not react to a nondefense R&D

shock, but starts rising after three years, and reaches a level that is higher by around 0.30

percent after 15 years. Just as the TFP response to a nondefense shock in Figure 6, the

response of labor productivity is highly statistically significant at longer horizons. Appendix

C.8 shows that labor input remains essentially flat after a nondefense R&D shock. In con-

trast, the non-R&D business-sector capital stock rises significantly at longer horizons, with

a peak increase of around 0.2 percent. This pattern of responses is broadly consistent with

conventional balanced-growth assumptions in economic models implying that productivity

trends have no permanent effect on hours worked per capita. To the extent that the long-

run TFP increase is widely anticipated by economic agents, the absence of any short-run

response in labor input implies that news about future TFP from changes in R&D appro-

priations is not a source of fluctuations at business cycle frequencies. Indeed, Appendix

C.8 documents that real GDP shows no short-run response to a nondefense appropriations

shock, but simply rises in the longer run along a trajectory that is very similar to that of

business-sector labor productivity.

The next panel in Figure 7 shows the response of the Congressional Budget Office (CBO)

measure of potential GDP (in logs), which is an estimate of the economy’s maximum sus-

tainable output consistent with stable inflation. TFP is a key determinant of the level of

potential output, in addition to the levels of labor and capital inputs being utilized at sus-

tainable rates. Similar to the responses of TFP and labor productivity, panel (b) in Figure

7 shows that there is no effect on potential output for the first five or six years after a

nondefense shock. In the long run, however, there is a gradual and significant increase in

potential output, which expands about 0.2 percent after 8 to 15 years. With no response

of labor input and non-R&D business-sector capital increasing by around 0.2 percent, the

long-run rise in potential output appears primarily driven by an increase in TFP.

Patent data are a widely used alternative to productivity measures for evaluating the

pace of technological innovation across time; see, e.g., Kogan et al. (2017), Bluwstein et al.

(2020), and Kelly et al. (2021), among others. Panel (c) in Figure 7 shows the impact of a

nondefense R&D shock on the patent-based innovation index of Kogan et al. (2017), using
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Figure 7: Impact of a Nondefense R&D Shock on Other Productivity/Innovation Indicators

(a) Labor Productivity (b) Potential Output (c) Patent Innovation Index

(d) STEM Ph.D. recipients (e) Researchers (f) Technology Books

Notes: Estimates based on (2) using the orthogonalized narrative measure of changes in nondefense R&D
appropriations, see (1). Lazarus et al. (2018) HAR bands are for 95 percent confidence levels. Impulses
scaled to imply a 1 percent peak increase in government R&D capital. Sample: (a),(b),(d): 1948Q1–2021Q4;
(c): 1949Q1–2010Q4; (e): 1951Q1–2019Q4; (f): 1956Q1–1997Q4. See Appendix A for variable definitions.

the quarterly version constructed by Cascaldi-Garcia and Vukotić (2022), which is available

through 2010Q4. This index weights new patent grants by stock market reactions to account

for their economic value. As seen in panel (c), the patent innovation index temporarily

rises by around 2 percent after a positive shock to nondefense R&D appropriations, an

increase that is significant at several medium-run horizons. The rise in patent grants with

economic value occurs well in advance of the increase in TFP seen in Figure 6 and fades

near the end of the 15-year forecast horizon. The timing of the response is consistent with

increased government funding for nondefense R&D leading to more patents with economic

value followed by related improvements in business-sector productivity.

The bottom row of Figure 7 shows responses of several other measures of research activity.

Because these measures are only available annually, we construct quarterly versions of these

annual series by linear interpolation. Panel (d) first depicts the estimated responses of the

(log) number of new Ph.D. recipients in STEM fields to a positive nondefense R&D shock.

The response shows a statistically significant increase in new STEM Ph.D. recipients at

horizons above seven or eight years, a delay that is consistent with the average length of
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a Ph.D. after allowing for some additional implementation lags. The increase is persistent

over longer horizons, with a peak rise in new STEM doctoral degrees of more than one

percent after roughly 12 years.

The next panel considers the (log) number of researchers, i.e., the number of full-time

equivalent workers engaged in R&D, based on data from the OECD and Bloom et al. (2020).

As the panel shows, a nondefense R&D shock leads to a gradual increase in the number

of researchers by up to around 0.5 percent approximately three- to eight years after the

increase in appropriations. Over longer horizons, the number of researchers first returns

back to prior levels and then declines at the end of the 15-year horizon. The long-run

decline likely reflects the eventual reversal of the increase in government R&D funding.

The last panel in Figure 7 shows the response of an index of new technology book pub-

lications, a measure of innovation constructed by Alexopoulos (2011). While the available

sample for this series is much shorter (1956 through 1997), there is evidence of a significant

increase in new technology books at horizons of three to eight years. As was the case for

the innovation index in panel (c) and the number of researchers in panel (e), the effect on

the number of technology publications is transitory and occurs ahead of the TFP response.

The evidence in Figure 7 indicates that a nondefense R&D shock leads to increases in

both inputs (researchers and STEM scientists) and outputs (patents, technology books) of

the knowledge production function. Both in direction and timing, the responses appear

consistent with the simplest explanation of the delayed increase in TFP in Figure 6, which

is that government funding for research directly leads to innovations that prove valuable

in private production. After taking into account the additional lags between R&D appro-

priations and outlays, the timing of the effects also appears broadly in line with existing

evidence that innovation and productivity responses typically lag private R&D spending by

two- to five years, see e.g., Hall et al. (2010) for an overview.

Appendix C.7 shows that, in contrast to a nondefense shock, a positive shock to defense

R&D does not lead to similarly unambiguous increases in the same productivity and inno-

vation indicators, reinforcing our earlier conclusion that defense R&D spending on average

does not appear to have the same positive long-run spillovers on business-sector productivity

as nondefense R&D within the horizons that we consider.

D. A Closer Look at the Response of R&D Investment

Figure 6 showed that the shocks to appropriations for nondefense and defense R&D lead to

hump-shaped increases in government R&D capital. To gain a better understanding of the

nature of both types of R&D shocks, we next take a closer look at the responses of R&D

investment spending flows using additional information available in the underlying NCSES

survey data. Specifically, we study how the appropriations shocks affect government R&D

spending by type, performer, and funding agency using the series in Figures 3 and 4.
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To estimate decompositions of the spending changes, we use the following Törnqvist

index approximation of the log change in total real R&D investment, I tott ,

∆ ln I tott ≈
∑
j

sjt + sjt−1

2
∆ ln Ijt(3)

where Ij is gross R&D investment in category j in constant dollars and sj denotes the

nominal expenditure share of category j in total R&D investment (sj = In,j/In,tot, where

In,j is gross R&D investment in category j in current dollars). To obtain the individual

contributions of each category, we estimate the cumulative impulse response of each of the

terms of the summation in (3) using the baseline specification in (2). Because the NCSES

survey data are only available for fiscal years, we convert the series to calendar years and use

linear interpolation to obtain quarterly spending shares. We then apply these shares to the

BEA expenditures to construct quarterly series for all the subcategories that are consistent

with the NIPA totals. The impulses are scaled such that the peak increase in total spending

on nondefense (left panel) or defense (right panel) R&D is one real dollar. The resulting

estimates can thus be interpreted as the real dollar changes in spending in category j given

a peak increase in nondefense (or defense) spending of one dollar.

The first two rows in Figure 8 show the responses of total government R&D spending,

together with the decompositions by type of R&D and by performing sector. As can be

seen in the figure, both shocks lead to a gradual build-up in total R&D spending flows,

and partial spending reversals in the longer run. In response to a nondefense shock, R&D

spending is approximately unchanged for the first six quarters, after which it slowly rises

to a peak after about six years, and subsequently gradually declines. After about 10 years,

there is a reversal in spending that lasts until the end of the forecast horizon. The response

to a defense shock is similar, except that the rise in spending starts immediately on impact.

The decomposition in the first row of Figure 8 shows that both shocks lead to increases

in each of the three types of R&D investment (basic research, applied research, and devel-

opment) during the boom phase. However, the nondefense shock leads to a substantially

larger increase in basic and applied research (up to 38 cents and 22 cents, respectively). A

defense shock instead leads mostly to increases in spending on development (up to 75 cents).

For the nondefense shock, the eventual reversal in spending is exclusively in development,

while funding for basic research remains elevated throughout. For the defense shock, the

spending reversal is instead in all three types of R&D. As mentioned earlier, Akcigit et al.

(2020) argue that basic research generates greater knowledge spillovers than non-basic re-

search. Beyond national security prerogatives limiting knowledge spillovers from defense

activities, the larger and more persistent impact of the nondefense shock on basic research

may thus contribute to the difference between the long-run TFP responses to defense and

nondefense shocks in Figure 6.
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Figure 8: Response of R&D Spending by Type, Performer and Agency

a. Nondefense R&D Shock b. Defense R&D Shock
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Notes: Estimates based on (2) using the orthogonalized narrative measure of changes in federal nondefense
(left panel) and defense (right panel) R&D appropriations, see (1). Impulses scaled to imply a unit peak
increase in government R&D expenditures (row 1 and 2) or federal R&D expenditures (row 3). See notes
in Figures 3 and 4 for data sources. Quarterly values are obtained by interpolation of annual data. Real
variables based on the NIPA deflator for government intellectual property (R&D and software). Sample:
1954Q1–2021Q1.
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As shown earlier in Figure 4, most government R&D spending funds activity that is

not performed at federal agencies, but at private businesses, public-private R&D centers, or

universities. The decomposition in the second row of Figure 8 shows that this is also the case

for the spending increases induced by the shocks. A nondefense shock that increases total

government R&D investment by up to one dollar raises intramural spending by at most 33

cents, while a defense shock raises intramural spending by at most 27 cents. In both cases,

the bulk of the spending increase is funding research conducted by private businesses or

universities. For the nondefense shock, the eventual spending reversal is driven exclusively

by decreases in funding for businesses and R&D centers. The increase in funding for research

at universities and government agencies is instead highly persistent, which likely mirrors the

persistent impact of the nondefense shock on funding for more fundamental research. For the

defense shock, in contrast, the reversal in spending affects R&D activities by all performers.

The final row in Figure 8 shows a decomposition of the response of federal R&D spending

across the main federal funding agencies. As the left panel shows, a nondefense shock leads to

persistent increases in funding by NASA, NIH, and the NSF. Quantitatively, the increase in

spending by NASA is by far the largest in size, although NIH funding also sees a meaningful

and persistent increase. The increase in nondefense spending also appears to crowd out some

funding for defense R&D, as there are decreases in DOD outlays for R&D throughout the

entire forecast horizon. Energy R&D spending—which covers both defense and nondefense

functions—initially increases, but decreases at longer horizons. Unsurprisingly, the bottom

right panel of Figure 8 shows that a positive defense R&D shock mainly leads to DOD

spending increases. While the defense shock leads to some persistent declines in R&D

outlays for energy and NASA, and at later horizons also for health, there is little evidence

of very large crowding-out effects on the nondefense agencies’ R&D funding.

The decomposition by federal agency shows that, in dollar terms, the nondefense shock

primarily induces a change in R&D funding for NASA. This finding suggests that changes

in appropriations for NASA, especially at the time of the agency’s rapid growth during

the space race, are potentially very important as a source of identifying variation. In Ap-

pendix C.4, we show that the positive TFP response to a nondefense shock is robust to

excluding NASA appropriations during the height of the space race (1958-63). Whereas the

uncertainty around the estimates increases meaningfully, the long-run TFP increase remains

statistically significant and similar in size. In Sections 4 and 5 below, we will consistently

report results for specifications that omit the height of the space race from the narrative

measures to verify the sensitivity of the results to this potentially influential part of the

sample.
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E. Indirect Channels for Long-Run TFP Spillovers

The evidence presented so far is consistent with a significant direct effect of nondefense

government R&D on the level of innovative activity with spillovers on business-sector pro-

ductivity. However, the long-run TFP responses in Figure 6 are potentially also shaped

by additional indirect effects. For example, the appropriations shocks may affect other

long-run determinants of productivity growth, such as R&D funding by the private sector

or resources allocated to public infrastructure, which could have independent spillovers on

business-sector productivity. We next explore the importance of these indirect channels.

We first investigate how changes in appropriations affect total R&D capital in the econ-

omy (private and public). The top row in Figure 9 presents a decomposition of the impulse

response of total R&D capital into the individual contributions of each funding sector. These

contributions are estimated as in the previous section, using the following approximation of

the log change in total R&D capital, Ktot
t ,

∆ lnKtot
t ≈

∑
j

sjt + sjt−1

2
∆ lnKj

t(4)

where Kj is R&D capital of category j in constant dollars and sj denotes the nominal share

of capital of category j in total R&D capital (sj = Kn,j/Kn,tot, where Kn,j is capital in

category j in current dollars). The four main funders of total R&D are (i) federal defense

agencies, (ii) federal nondefense agencies, (iii) state and local governments, and (iv) the

private sector. The contributions of each funding category are the cumulative impulse

response of the individual terms in (4) estimated with the baseline specification in (2).

The impulses are scaled such that the peak increase in federal nondefense R&D capital

(left panel) or defense capital (right panel) is one real dollar. The resulting estimates can

be interpreted as the real dollar change in capital in category j given a peak increase in

nondefense (or defense) R&D capital of one dollar.

The top panels in Figure 9 show that the defense and nondefense appropriations shocks

primarily affect R&D capital within their own category. A positive nondefense shock leads

to some crowding out of defense R&D capital, by up to 20 cents after 15 years, while there

is very little effect of a defense shock on nondefense R&D capital. Consistent with the

framework in Akcigit et al. (2020) and the evidence in De Lipsis et al. (2022), there are

increases in private R&D capital in response to both the nondefense and defense shocks.

The increases in private R&D capital following a nondefense shock, however, are relatively

small, peaking at 19 cents per federally funded dollar. For defense R&D, the peak increase

in private R&D capital is somewhat larger at 52 cents per federally funded dollar.12

To investigate how the shocks to government R&D affect the various other components

12Changes in domestic R&D spending may also affect R&D spending in the rest of the world, which in turn could lead
to domestic spillovers. Because of data availability, we do not look into the role of such global spillovers.
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Figure 9: Total R&D and Public Capital Following an Increase in R&D Appropriations

a. Nondefense R&D Shock

Total R&D Capital

Total Public Capital

b. Defense R&D Shock

Total R&D Capital

Total Public Capital

Notes: Estimates based on (2) using the orthogonalized narrative measure of changes in federal nondefense
(left panel) and defense (right panel) R&D appropriations, see (1). R&D capital includes software. Impulses
scaled to imply a unit peak increase in federal nondefense (left) or defense (right) R&D capital. See Appendix
A for variable definitions. Sample: 1948Q2–2021Q4.

of the public capital stock, the bottom panels of Figure 9 depict analogous decompositions

of the response of the total public capital stock by type of capital. The responses in this

case are scaled to induce a one-dollar peak increase in real government R&D capital in the

nondefense (left) or defense (right) category.

The bottom left panel in Figure 9 shows that, in the decomposition of total public capital,

there is no evidence of the nondefense shock crowding out defense R&D capital. However,

the nondefense shock leads to a broader reallocation from defense to nondefense public cap-

ital. While the defense capital stocks for structures (e.g., military bases and facilities) and

equipment (e.g., ships and aircraft) decline, there is a relatively large increase in nondefense

structures (e.g., schools and universities; roads; power, water and sewer systems). For a
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peak increase in nondefense R&D capital of one dollar, the stock of nondefense structures

rises by up to 1.58 dollars after about 8 years. While this increase is much smaller than the

average ratio between the nondefense structures and R&D capital stocks, it is almost cer-

tainly too large to be explained exclusively by the reclassification of R&D plant expenditures

as ‘structures’ in the national accounts. In Appendix C.9, we present further decomposi-

tions showing that about 80 percent of the increase in nondefense structures originates with

state and local governments, which finance most nondefense public infrastructure. Given

the shared funding arrangements for interstate highways, one possibility is that nondefense

R&D appropriations are positively correlated with federal transfers for interstate highway

spending. However, the federal appropriations bills financing increases in R&D generally

do not provide significant funding for public infrastructure investment via transfers to state

and local governments. In Appendix C.9, we further show that federal transfers, if any-

thing, decline in response to a positive nondefense R&D shock. The rise in investment

expenditures by state and local government is instead financed initially by debt, and later

on by increases in tax revenues relative to other expenditures. The growth in state and local

structures is also broad-based, with the largest increases in education structures (schools

and universities), followed by highways and streets, and power, water, and sewer systems.

Overall, the expansion in public infrastructure appears large enough to potentially generate

meaningful indirect productivity effects.

The bottom right panel in Figure 9 shows that a defense R&D shock is also associ-

ated with increases in other types of public capital. In general, defense shocks cause only

negligible changes in the nondefense capital categories, although nondefense structures do

increase meaningfully toward the end of the forecast horizon. There is, however, a large and

immediate increase in defense equipment (up to 2.48 dollars), and also a smaller increase

in defense structures (up to 48 cents). For defense functions, it is easier to point to direct

linkages between appropriations for R&D and other military investments. For example,

the BEA treats the ‘operational systems development’ component of DOD’s Research, De-

velopment, Test, and Evaluation budget accounts, as gross investment in equipment, not

R&D.13 More importantly, the annual DOD appropriations bills that fund defense R&D

also fund procurement (i.e., equipment), and funding for developing new military hardware

typically leads to subsequent purchases of the newly developed equipment. Moreover, the

same geopolitical events that motivate significant increases in defense R&D are likely to

also motivate other military investments that may not be fully predicted by the Ramey and

Zubairy (2018) military news variable in the set of controls. In contrast to nondefense public

infrastructure, however, there is little evidence in the literature that defense equipment and

structures have any effect on private sector productivity, and the convention is to assume

13Due to data limitations, our measure of DOD R&D appropriations is based on the full Research, Development, Test,
and Evaluation (RDT&E) accounts. Defense structures are largely funded by the separate Military Construction and
Veterans Affairs Appropriations bills, not the Defense Appropriations bills funding RDT&E activities.
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no effect, e.g., CBO (2016). The increases in non-R&D defense capital following defense

R&D shocks are therefore unlikely to be a major influence on the long-run TFP response.

The main conclusions regarding the indirect channels for long-run TFP spillovers are the

following: First, the impact of shocks to government R&D in one category (i.e., defense or

nondefense) on the other is relatively small or absent. The orthogonalized narrative mea-

sures therefore appear largely successful in picking up idiosyncratic changes in nondefense or

defense R&D, such that reallocations of resources across both categories of R&D are unlikely

to be important for the TFP responses in Figure 6. Second, positive shocks to R&D appro-

priations lead to higher private spending on R&D, such that private and government-funded

R&D capital appear to be complements rather than substitutes. That said, the increases in

private R&D capital are relatively small, especially after a nondefense R&D shock. Finally,

the responses of public infrastructure capital are sizeable. Given the widespread evidence

for productivity spillovers of public infrastructure, these responses are potentially important

in determining the long-run TFP responses to the appropriations shocks.

IV. The Production Function Elasticity of Government R&D

Figure 6 shows that a nondefense appropriations shock raising government R&D capital

by one percent increases TFP by around 0.2 percent in the longer run. The results in

the previous section suggest that indirect effects may contribute meaningfully to the TFP

response, in particular through the impact on nondefense public infrastructure. To isolate

the direct spillover effects on business-sector productivity, in this section, we structurally

estimate the aggregate production function elasticity of government R&D capital.

A. Empirical Methodology and Identification Assumptions

The starting point is the following aggregate production function for quarterly aggregate

output growth in the business sector,

∆ft = α′
t∆mt + ηt∆qt + ϕt∆kt +∆νt(5)

where ft is the log of real business-sector output, the vector mt collects all business-sector

capital (including R&D) and labor inputs in logs, qt is the log of the public infrastructure

capital stock, kt is the log of government R&D capital, and νt is technological progress after

accounting for growth in both types of public capital, qt and kt. The parameters in αt

are the production function elasticities for all private inputs, ηt is the elasticity to public

infrastructure, and ϕt is the elasticity to government R&D capital. As is the convention

in the literature, we assume that (non-R&D) defense capital does not generate any TFP

spillovers. The notation henceforth assumes that all growth rates are demeaned such that

constants are omitted without loss of generality.
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Defining ∆tfpt = ∆ft − α′
t∆mt + ϵt, and assuming constant elasticities with respect to

public capital, (5) can be rewritten as

∆tfpt = η∆qt + ϕ∆kt +∆wt , ∆wt = ∆νt + ϵt , E[∆wt] = 0(6)

where ∆tfpt is the utilization-adjusted measure of business-sector TFP growth (or Solow

residual) constructed by Fernald (2012), and ϵt is measurement error. The unobserved

residual term ∆wt consists of the productivity growth term ∆νt, as well as any discrepancy

ϵt between measured TFP and actual productivity growth. Apart from measurement errors

in ∆ft and ∆mt, the discrepancy between measured and actual productivity growth could

be due to the mismeasurement of the elasticities in αt. As explained in Fernald (2012), the

identification of αt—which in practice is based on factor cost shares—relies on theoretical

assumptions that may not hold in reality, for instance, the absence of markups. As a result,

ϵt cannot generally be treated as classical measurement error, as it potentially also contains

the influence of all determinants of private factor inputs, including shocks to government

R&D. The other endogeneity concern is that movements in the residual productivity term

∆νt are correlated with government investment.

Our strategy to address endogeneity relies on two steps. First, we treat η as a known

constant, and estimate ϕ across a range of values of η consistent with the empirical literature.

A recent survey by Ramey (2021) establishes a plausible range of 0.065 to 0.12 for η. We

use these endpoints to estimate a corresponding range for ϕ, and we also consider the

intermediate value of η = 0.08, which is the value that the CBO currently uses to quantify

the impact of public infrastructure (CBO 2021). Treating η as known, we define ∆t̃fpt ≡
∆tfpt − η∆qt, i.e., the growth in measured TFP adjusted for the productivity effects of

public infrastructure capital. Substituting into (6), this definition leads to the structural

estimation equation,

∆t̃fpt = ϕ∆kt +∆wt(7)

where in general E[∆kt∆wt] ̸= 0 such that endogeneity remains a concern.

The second step in our identification strategy is to estimate ϕ in (7) using the SP-IV

estimator of Lewis and Mertens (2023). The SP-IV estimator is a GMM estimator with

an intuitive closed-form solution as the OLS estimate in a regression of estimated impulse

responses to shocks that are uncorrelated with the structural error, see also Appendix D.1.

In our application, we use the responses to R&D appropriations shocks discussed in the

previous section.14 Note that the functional form in (7) makes very specific assumptions

about the lags between R&D spending and the productivity effects. Appendix D.1 shows

14One minor difference is that the impulses underlying the SP-IV estimator are estimated in balanced samples rather
than iteratively, as is required for the inference formulas developed in Lewis and Mertens (2023). Appendix C.4 shows
that the impulse response estimates are very similar in the balanced sample to those shown in Figure 6.
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that these assumptions in fact align very well with the impulse response estimates, which

are obtained without imposing any rigid assumptions about the timing of the effects.

To understand the identifying moments in the GMM problem that generates the SP-IV

estimator, let Ωt−1 ≡ {ln ait−j, yt−j, xt−j}pj=1 define the full set of lagged controls included in

the local projections in (2). Letting zt denote the Nz × 1 vector containing the Nz narrative

measures used for identification, the HNz moment conditions that identify ϕ are

E
[
w⊥

t (h)z
⊥
t

]
= 0 ; h = 0, . . . , H − 1 , w⊥

t (h) ≡ t̃fp
⊥
t (h)− ϕk⊥

t (h)(8)

where z⊥t is the one-step ahead forecast error from the linear projection of zt on Ωt−1 and

t̃fp
⊥
t (h) and k⊥

t (h) are the h+ 1-step ahead forecast errors from linear projection of t̃fpt+h

and kt+h on Ωt−1. Intuitively, the identifying conditions in (8) exploit the fact that, if

the structural relationship in (7) holds in the raw data, it also holds across the h + 1-

step ahead forecast errors after projection on Ωt−1 for any forecast horizon h. The key

exogeneity assumption in (8) is that, after projection on Ωt−1, the period t innovations in

the narrative measures, z⊥t , are uncorrelated with the ex-post deviations w⊥
t (h) from the

structural relationship across the period t forecast errors at all horizons h = 0, ..., H − 1.

The conditional forecast errors w⊥
t (h) arise either because of accumulated technological

progress ∆ν between period t and t + h that is unpredicted by the projection on Ωt−1, or

because of accumulated measurement error ϵ in measured TFP between period t and t+ h

that is unpredicted by projection on Ωt−1. The first part of the exogeneity requirement is

a zero correlation between z⊥t and all sources of unpredicted productivity growth between

t and t + H − 1 that are not driven by the accumulation of government R&D capital.

Changes in appropriations in quarter t are plausibly uncorrelated with future realizations

of unanticipated technology shocks in quarters t+h > t. The narrative classification step is

intended to preclude any contemporaneous nonzero correlation between R&D appropriations

and technology shocks at h = 0. In addition, the typical recognition and legislative lags in

fiscal policy arguably make any systematic policy reaction to technology shocks within the

same quarter unlikely. Finally, we assume that conditioning on the variables in Ωt−1 suffices

to remove any joint influences of past shocks (realized prior to quarter t) on zt and future

productivity growth.

The second part of the exogeneity requirement is that z⊥t is uncorrelated with any unpre-

dicted accumulated measurement error in TFP across the forecast horizon. If the measure-

ment error in TFP is strictly exogenous, the identifying conditions in (8) remain perfectly

valid. If the error is the result of mismeasurement of the elasticities of private factor inputs,

then w⊥
t (h) is generally a function of any shock that causes changes in the factor inputs for

which the elasticities are mismeasured. In that case, we appeal to the same arguments as

above to motivate the assumption that z⊥t is not correlated with other shocks: non-causal

correlations with future non-technology shocks are implausible, the narrative classification
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and policy lags eliminate any contemporaneous correlations with non-technology shocks,

and the control set Ωt−1 removes any confounding influences of past non-technology shocks.

The same arguments do not apply, however, to the R&D appropriations shocks them-

selves. If appropriations shocks cause meaningful changes in private factor inputs, and

these changes are not properly accounted for in the measurement of TFP, then (8) would

not necessarily hold, and the SP-IV estimate of ϕ would be potentially biased. However, the

estimated impulse responses of business-sector labor and non-R&D capital inputs to R&D

appropriations shocks, reported in Appendix C.8, imply that any errors in the production

function elasticities for these factor inputs would have to be very large to introduce a quan-

titatively significant source of bias.15 Mismeasurement could be a more serious concern for

private R&D capital because of knowledge spillovers, which are not necessarily well cap-

tured by the cost share of private R&D capital. As shown earlier, both R&D shocks lead

to increases in private R&D capital. If the methodology in Fernald (2012) underestimates

the aggregate elasticity of private R&D capital, the estimates of ϕ are likely to be biased

upward. Fortunately, Figure 9 showed that the increases in business-sector R&D capital

are relatively small, especially for the nondefense R&D shock, such that the bias is likely

relatively small. Global spillovers through changes in R&D spending abroad are another

potential source of bias, but their importance or direction is not immediately obvious.

The estimation equation in (7) does not distinguish between defense and nondefense

government R&D capital, whereas the TFP responses in Figure 6 indicate that the spillovers

on business-sector productivity are potentially quite different. We therefore also consider

specifications that allow for different elasticities of defense and nondefense government R&D

capital. Using the approximation ∆kt ≈ sND,t∆kND
t + (1 − sND,t)∆kD

t , where sND,t is the

nominal nondefense share of total government R&D capital averaged over t and t − 1, the

estimation equation is adjusted as follows:

∆t̃fpt = ϕND

(
sND,t∆kND

t

)
+ ϕD(1− sND,t)∆kD

t +∆wt , E[∆wt] = 0(9)

This specification assumes production function elasticities to ∆kND
t and ∆kD

t that scale

with sND,t and 1−sND,t, such that ϕND (ϕD) measures the percent change in TFP for a one

percent increase in total government R&D capital that is driven exclusively by an increase

in nondefense (defense) R&D capital. The scaling has the advantage that the magnitudes of

ϕND and ϕD can be compared to the estimates of ϕ in the simpler specification in (7). For the

purpose of calibrating an aggregate production function with constant elasticities on ∆kND
t

and ∆kD
t , the estimates of ϕND and ϕD can be multiplied by 0.5, which is approximately

the average of sND,t across the sample. An alternative approach, pursued in Appendix D.4,

15For example, following a nondefense shock that increases government R&D capital by one percent, there is a gradual
and statistically significant increase in business-sector non-R&D capital of up to 0.2 percent, see Appendix C.8. Assuming
a measured elasticity of non-R&D capital of 0.33, a one-basis-point effect on measured TFP would require a 15 percent
error in the capital elasticity (0.2× 0.33× 0.15 ≈ 0.01).
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treats the elasticities to ∆kND
t and ∆kD

t as constants in the estimation.

When ϕND ̸= ϕD, the estimates of ϕ in the simpler specification in (7) are not necessarily

consistent for either ϕND or ϕD. In that case, the response to a nondefense shock only

identifies ϕ = ϕND in two situations: either a nondefense shock does not lead to any

changes in defense R&D capital, or there are no productivity effects of defense R&D, ϕD = 0.

Similarly, the response to a defense shock only identifies ϕ = ϕD if there is no impact on

nondefense R&D capital, or else if ϕND = 0. As discussed earlier, the impulse responses

do not show much crowding-out of one type of government R&D capital by the other, such

that we expect both specifications to provide similar estimates.

As is well known, IV estimation can be unreliable when identification is too weak. Ap-

plying the diagnostic test of Lewis and Mertens (2023) reveals that weak instruments are a

concern in a few of the specifications that we consider below. For this reason, we use the

weak-instrument-robust GMM inference methods of Kleibergen (2005), which remain valid

regardless of the strength of identification. Other problems can arise when the number of

identifying moments is too large (Han and Phillips 2006; Newey and Windmeijer 2009).

Given the high persistence in the impulse response estimates for t̃fp and k, there is limited

additional identifying information in immediately adjacent quarterly horizons. To mitigate

potential many-instrument problems, we therefore do not use all horizons for identification,

but only those at one-year intervals, at h = 3, 7, 11, ..., 59.16

B. Estimation Results

Table 1 reports estimates of ϕ, ϕND, and ϕD for various specifications, together with 95

percent weak-instrument-robust confidence intervals. The first five rows show estimates of

ϕ in (7), including only total government R&D capital, whereas the remaining rows show

estimates for ϕND and ϕD in (9), with nondefense and defense R&D capital stocks included

separately. The first two columns report results for TFP adjusted for public infrastructure,

t̃fpt, using the benchmark value of η = 0.08. The last two columns show the elasticity

estimates based on variation in nondefense R&D capital using the lower and higher values

of η = 0.065 and 0.12, respectively. For brevity, the elasticity estimates based on variation

in defense R&D capital for the alternative values of η are omitted.

The first row in Table 1 shows estimates based on the impulse responses identified with

the (orthogonalized) narrative measure for nondefense appropriations, zND
t . For η = 0.08,

the point estimate of ϕ in (7) based on the impulse responses to a nondefense shock is

0.12. This estimate is highly statistically significant and fairly precisely estimated, with

a 95 percent robust confidence interval ranging from 0.09 to 0.16. As expected, the point

16Identification is therefore based on 15 moments (rather than 60) for specifications identified with a single impulse
response, and 30 moments (rather than 120) for those identified with two. While the application is different, simulation
results in Lewis and Mertens (2023) for the estimation of the hybrid New Keynesian Phillips curve indicate that Kleibergen
(2005) inference for SP-IV displays only small size distortions in samples of 250 quarters and 20 identifying horizons.
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Table 1: Estimates of Production Function Elasticities
of Government R&D Capital

Public R&D Intermediate η = 0.08 Low η = 0.065 High η = 0.12

Measure Instruments ϕ̂/ϕ̂ND ϕ̂/ϕ̂D ϕ̂/ϕ̂ND ϕ̂/ϕ̂ND

[1] Total Exo ND 0.12∗∗∗
(0.09,0.16)

0.12∗∗∗
(0.10,0.16)

0.11∗∗∗
(0.08,0.15)

[2] Total Exo ND, No Space 0.14∗∗∗
(0.09,0.32)

0.14∗∗∗
(0.09,0.33)

0.13∗∗∗
(0.08,0.30)

[3] Total All ND 0.11∗∗∗
(0.09,0.15)

0.12∗∗∗
(0.09,0.16)

0.10∗∗∗
(0.08,0.14)

[4] Total Exo D −0.24
(−1.46,0.02)

[5] Total All D −0.23
(−1.30,0.03)

[6] ND/D Exo ND 0.11∗∗∗
(0.06,0.23)

−0.01
(−0.25,0.45)

0.11∗∗∗
(0.06,0.23)

0.10∗∗∗
(0.05,0.22)

[7] ND/D Exo ND/D 0.10∗∗∗
(0.06,0.17)

−0.07
(−0.25,0.39)

0.10∗∗∗
(0.07,0.18)

0.09∗∗∗
(0.06,0.17)

[8] ND/D Exo ND, No Space 0.14
(−2.00†,0.51)

0.18
(−2.00†,2.00†)

0.14
(−2.00†,0.51)

0.13
(−2.00†,0.50)

[9] ND/D All ND 0.11∗∗∗
(0.06,0.21)

−0.02
(−0.25,0.40)

0.11∗∗∗
(0.06,0.21)

0.10∗∗∗
(0.05,0.19)

Notes: Rows [1]-[5], SP-IV estimates of ϕ (government R&D) in (7); rows [6]-[9], SP-IV estimates of ϕND

(nondefense R&D) and ϕD (defense R&D) in (9). All specifications include the baseline set of lagged
controls described in Section 3. Numbers in parentheses are 95 percent weak-instrument-robust confidence
intervals based on inverting the KLM statistic of Kleibergen (2005). Test inversion is limited to a grid
with endpoints −2 and 2, † denotes intervals constrained at these endpoints. Subvector inference in rows
[6]-[9] is based on the projection method. Stars ∗, ∗∗ and ∗ ∗ ∗ denote statistical significance at 10, 5 and 1
percent levels, respectively. ‘Exo ND/D’ denotes the orthogonalized narrative measure of exogenous changes
in nondefense/defense R&D appropriations. ‘All ND/D’ denotes the orthogonalized series of all changes in
nondefense/defense R&D appropriations, ignoring our narrative classification. ‘No Space’ indicates that the
instrument is also orthogonalized to all changes in space appropriations between 1958 and 1963. Sample:
1948Q1–2021Q4.

estimates are decreasing in the assumed value of η, with ϕ̂ = 0.12 for η = 0.065 and ϕ̂ = 0.11

for η = 0.12. Assuming a larger elasticity of public infrastructure means that a greater

portion of the TFP increase after a nondefense R&D shock in Figure 6 is attributed to the

increase in public infrastructure shown in Figure 9, see also Appendix D.1. Consequently,

the increase in TFP after adjusting for public infrastructure is smaller when η is larger.

However, in practice the estimates of ϕ are very similar across Ramey’s (2021) plausible

range of values for η ∈ [0.065, 0.12].17

Rows [2] and [3] in Table 1 show results based on impulse responses identified with

different measures of nondefense R&D appropriations. Row [2] shows the estimates when

the narrative nondefense measure is further orthogonalized to all changes in appropriations

for NASA from 1958 to 1963, the period with the fastest growth in nondefense government

R&D capital in the sample. The resulting point estimates remain highly significant and

17The point estimate is ϕ̂ = 0.16 when assuming η = 0, and ϕ̂ = 0.04 when η = 0.39. The latter value is based on
Aschauer (1989) and is the highest estimate mentioned in Ramey (2021).
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are slightly larger than in row [1], around 0.13 to 0.14 depending on η. Without the space

race as identifying variation, the robust confidence intervals become notably wider, and in

particular, substantially larger values of ϕ cannot be ruled out. Row [3] shows estimates

based on responses to all changes in nondefense R&D appropriations, after orthogonalizing

to all defense R&D changes, regardless of their narrative classification. The estimates are

very similar to those in row [1], and the narrative classification therefore matters little for

the identification of ϕ.

The next two rows in Table 1 report estimates of ϕ identified with impulse responses to

defense R&D shocks rather than nondefense shocks. Row [4] reports ϕ̂ = −0.24 based on the

(orthogonalized) narrative measure of exogenous changes in defense R&D appropriations zDt ,

and row [5] shows that ϕ̂ = −0.23 when using all changes in defense R&D appropriations

regardless of their narrative classification. Unlike for the nondefense R&D shocks, both

estimates are negative. The confidence bands are very wide, and none of the estimates are

significant at conventional levels. The narrative classification is again unimportant.

The remaining rows in Table 1 report estimates of ϕND and ϕD from the specification

in (9) that includes both types of government R&D capital simultaneously, with subvector

inference based on the projection method. In row [6], ϕND and ϕD are identified jointly

using the same narrative nondefense measure as in row [1]. The resulting point estimate of

ϕND is 0.11 for the intermediate and low values of η, and 0.10 for the high value of η, all

of which are statistically significant and close to the corresponding estimates in row [1]. In

contrast, the point estimate of ϕD is small, -0.01, and statistically insignificant.

Rows [7]-[9] in Table 1 provide additional estimates of ϕND and ϕD identified with dif-

ferent impulse responses. In row [7], identification is based on impulse responses to both

defense and nondefense R&D shocks using the two original exogenous narrative measures

∆aexo,it /Ki
t−4, i = D,ND, i.e., without mutual orthogonalization. Rows [8] and [9] are in-

stead based on the same narrative measures of nondefense R&D shocks as in rows [2] and

[3], i.e., excluding the space race and using all changes in nondefense R&D appropriations,

respectively. The estimates of ϕD range from -0.07 to 0.18, but are statistically insignifi-

cant in all specifications. The estimates of ϕND, on the other hand, are close to those in

rows [2] and [3], and remain highly statistically significant. The only exception is in row

[8]: Without the large NASA appropriations during the space race, identification in the

specification with both types of government R&D capital weakens to the point where the

robust confidence intervals become very wide and include zero in all cases. This inference

result is the only substantive difference between the weak-IV-robust inference methods and

traditional Wald inference, which leads to rejection of no spillovers even when excluding

the space race, see Appendix D.3. For the interested reader, the same Appendix provides

further robust inference results, including the simultaneous confidence sets associated with

the estimates in rows [6]-[9].

Appendix D.4 reports results for the alternative version of (9) that instead assumes
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constant elasticities to ∆kND
t and ∆kD

t . The results are broadly consistent with those in

Table 1. After scaling appropriately for comparability, the estimates of ϕND range from 0.06

to 0.13, but are generally somewhat smaller than those reported in Table 1. The estimates

of ϕD for the alternative specification range from −0.09 to 0.16, and are all insignificant and

imprecisely estimated.

A key conclusion from Table 1 is that the various estimates of the production function

elasticity to government R&D capital based on variation in nondefense R&D do not vary

greatly, ranging from 0.09 to 0.14, with a midpoint of approximately 0.12. Multiplying by

the average postwar share of nondefense R&D capital of 0.5, the estimates imply elasticities

to nondefense R&D capital ranging from 0.045 to 0.07, with a midpoint of 0.06. The

estimates of the nondefense elasticity are relatively precise (even under weak-instrument-

robust inference) and highly statistically significant, with the exception of those in row

[8]. Overall, the results point to sizeable direct spillovers of nondefense government R&D

on business-sector productivity. In contrast, the elasticity estimates based on variation in

defense R&D vary considerably across specifications, from -0.24 to 0.18, and come with

wide confidence bands. Unlike for nondefense R&D capital, we cannot draw any sharp

conclusions regarding the size—or even the sign—of any direct spillovers of defense R&D.

V. The Macroeconomic Returns to Government R&D

A. Historical Contributions to TFP Growth

With the estimates of the TFP spillovers of government R&D in hand, it is possible to assess

the contribution of public capital accumulation to postwar business-sector TFP growth.

When calculating the contributions of the different types of public capital, we assume that

there are no TFP spillovers from defense R&D, i.e., ϕD = 0. While the elasticity for defense

R&D is imprecisely estimated, this assumption is consistent with the estimation results

in Table 1. We also continue to assume that defense capital (i.e., defense equipment and

structures) does not generate any TFP spillovers, as is the convention in the literature.

The contribution of nondefense R&D is calculated as ϕ̂ND ×
(
sND,t∆kND

t

)
. For ϕ̂ND, we

use the point estimates from row [1] in Table 1, which are in the middle of the range of

estimates across the different specifications, for each of the three different values of η. The

contribution of public infrastructure is calculated as η∆qt. The figure in the left panel of

Figure 10 shows the resulting contributions of government R&D and public infrastructure

for η = 0.08. The table in the right panel of Figure 10 reports averages over selected time

windows for each of the three values of η.

The main finding is that government R&D has contributed substantially to total TFP

growth since WWII R&D—accounting for roughly one-quarter of the total, on average—

regardless of the value of η within Ramey’s (2021) plausible range. The contribution of

government R&D is consistently similar in size to the contribution of public infrastructure
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Figure 10: TFP Growth Contributions of Public Infrastructure and Government R&D

’47-’69 ’70-’89 ’90-’09 ’10-’21

TFP growth 1.98 0.98 1.15 0.87

a. Intermediate η

Infrastructure 0.33 0.19 0.19 0.09

R&D 0.53 0.27 0.22 0.21

b. Low η

Infrastructure 0.27 0.16 0.15 0.07

R&D 0.55 0.28 0.22 0.22

c. High η

Infrastructure 0.50 0.29 0.28 0.14

R&D 0.49 0.25 0.20 0.20

Notes: The left panel shows the centered five-year moving average annualized growth rate of utilization-
adjusted TFP from Fernald (2012) and the contributions of public capital assuming η = 0.08. The right
panel tabulates averages across selected periods for different values of η.

and often larger. Between 1947 and 1969—when both government R&D and public in-

frastructure grew at a rapid pace—the combined contribution of growth in public capital

accounts for 0.82 to 0.99 percentage points of average TFP growth of 1.98 percentage points.

For the low value η = 0.065, the contribution of government R&D is about twice as large

as that of public infrastructure: 0.55 versus 0.27 percentage points, respectively. For the

high value η = 0.12, each component of public capital contributes about half a percentage

point. Relative to 1947-69, average TFP growth decelerated by 1.0 percentage points over

1979-89. The combined contribution of slower growth in public capital ranges from 0.38

to 0.45 percentage points as η increases from low to high. For low η, around 70 percent

of the contribution of public capital ((0.55 − 0.28)/0.38 = 0.71) is due to the slowdown in

government R&D. For high η, the slowdown in R&D contributes slightly more than half

((0.49−0.25)/0.45 = 0.53). According to our estimates, therefore, the retrenchment of gov-

ernment R&D in the 1970s and 1980s was at least as important for explaining the slowdown

in productivity as the slower pace of public infrastructure investment. The contribution of

government R&D to TFP growth is 20 to 22 basis points in both 1990-2009 and 2010-2021.

In contrast, the contribution of public infrastructure to TFP growth fell by half in 2010-2021

relative to 1990-2009 as a result of the further slowing of growth in public infrastructure.

The left panel in Figure 10 shows that government R&D spillovers were particularly

important in the 1960s and early 1970s. A potential caveat to this finding is that the as-

sumption of a constant η throughout the entire postwar sample may not be realistic. Fernald

(1999), for example, argues that road construction in the late 1950s and 1960s provided a

one-time, unrepeatable, large productivity boost. If that is the case, our calculations likely

overstate the contribution of government R&D relative to public infrastructure in that part

of the sample. The figure in the left panel also shows that public investment—either in R&D
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or infrastructure—plays little role in accounting for the high TFP growth immediately af-

ter WWII. It is possible that the higher TFP growth in the 1950s was partially driven by

wartime defense R&D—see, for instance, Gross and Sampat (2023)— which plays no role

in the decomposition because of our assumption that ϕD = 0.18 Finally, government R&D

also matters little for the TFP burst during the IT revolution in the 1990s.

B. Rates of Return to Government R&D

The production function elasticities reported in Table 1 can be translated into approximate

rates of return to government R&D. The net rate of return on government R&D is ρnt =

ρt − δt, where ρt = ϕYt/Kt is the marginal product of Kt (or gross return), Kt is the

government R&D capital stock, Yt is output, and δ is the depreciation rate of government

R&D capital. We restrict attention to the return to nondefense R&D and use the estimates

reported in the ϕ̂/ϕ̂ND columns of Table 1 for the calculations. To obtain an average gross

rate of return, we divide the elasticity estimates by the average ratio of government R&D

capital to GDP (both in constant 2012 dollars), which is around 6 percent. We use real

GDP rather than business-sector output for calculating the ratio based on an assumption

that the productivity spillovers extend identically to production in the non-business sectors.

The rates of return calculated as just described are derived from the earlier estimates of

the elasticity ϕ, which is assumed to be constant over the estimation sample. A common

alternative approach to estimating returns is instead to estimate ρ as a constant, see e.g.,

Hall et al. (2010). Using ∆kt ≈ ∆Kt/Kt and ϕt = ρKt/Yt, and substituting into (7) yields

∆t̃fpt = ρ
∆Kt

Yt

+∆wt(10)

To estimate ρ, we follow the same methodology as in the previous section, but now with

∆Kt/Yt as the endogenous regressor. Specifically, we estimate (10) using SP-IV regressions

of the cumulative impulse responses of ∆t̃fp and ∆Kt/Yt to the nondefense R&D appropri-

ations shocks. We again use real GDP rather than business-sector output as the measure

of Yt, which means that we assume that the spillovers are the same in the business and

non-business sectors of the economy. We also consider specifications that explicitly allow

for different returns on defense and nondefense government R&D capital:

∆t̃fpt = ρND
∆KND

t

Yt

+ ρD
∆KD

t

Yt

+∆wt(11)

As before, we conduct inference using the weak-instrument-robust procedures of Kleibergen

(2005), and only use forecast horizons at one-year intervals for the identifying moments to

mitigate many-instrument problems.

18Including wartime R&D could offer more identifying variation for estimating ϕD, but is unlikely to influence the
estimates of ϕND, as federal R&D expenditures were almost exclusively for defense activities before the 1950s.
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Table 2: Estimates of the Return to Government R&D Capital

Government Intermediate η = 0.08 Low η = 0.065 High η = 0.12

R&D ϕ̂ND ϕ̂ND ϕ̂ND

Measure Instruments × Y
K ρ̂ND × Y

K ρ̂ND × Y
K ρ̂ND

[1] Total Exo ND 2.04 2.13∗∗∗
(1.32,2.75)

2.11 2.20∗∗∗
(1.37,2.79)

1.86 1.96∗∗∗
(1.16,2.65)

[2] Total Exo ND, No Sp. 2.43 3.17∗∗∗
(1.42,5.00†)

2.50 3.23∗∗∗
(1.50,5.00†)

2.25 3.01∗∗
(1.21,5.00†)

[3] Total All ND 1.96 1.95∗∗∗
(1.28,2.54)

2.03 2.01∗∗∗
(1.34,2.58)

1.78 1.79∗∗∗
(1.13,2.44)

[4] ND/D Exo ND 1.91 2.49∗∗∗
(0.76,3.95)

1.98 2.55∗∗∗
(0.82,3.98)

1.74 2.33∗∗∗
(0.61,3.87)

[5] ND/D Exo ND/D 1.67 2.04∗∗
(0.13,3.78)

1.73 2.10∗∗
(0.17,3.82)

1.50 1.88∗∗
(0.01,3.69)

[6] ND/D Exo ND, No Sp. 2.42 3.98
(−2.00†,5.00†)

2.49 4.02
(−2.00†,5.00†)

2.24 3.87
(−2.00†,5.00†)

[7] ND/D All ND 1.87 2.04∗∗∗
(0.70,3.68)

1.94 2.10∗∗∗
(0.75,3.71)

1.70 1.89∗∗∗
(0.56,3.60)

Notes: Rows [1]-[3], SP-IV estimates of ρ (government R&D) in (10); rows [4]-[7], SP-IV estimates of ρND

in (11). All specifications include the baseline set of lagged controls described in Section 3. Numbers in
parentheses are 95 percent weak-instrument-robust confidence intervals based on inverting the KLM statistic
of Kleibergen (2005). Test inversion is limited to a grid with endpoints −2 and 5, † denotes intervals
constrained at these endpoints. Subvector inference in rows [4]-[7] is based on the projection method. Stars
∗, ∗∗ and ∗ ∗ ∗ denote statistical significance at 10, 5 and 1 percent levels respectively. ‘Exo ND/D’ denotes
the orthogonalized narrative measure of exogenous changes in nondefense/defense R&D appropriations. ‘All
ND/D’ denotes the orthogonalized series of all changes in nondefense/defense R&D appropriations, ignoring
our narrative classification. ‘No Space’ indicates that the instrument is also orthogonalized to all changes
in space appropriations between 1958 and 1963. Sample: 1948Q1–2021Q4.

Table 2 reports the estimates of the gross rate of return on nondefense R&D, both based

on the elasticity estimates and those estimated directly. The various rows in the table

mirror the specifications in Table 1, with rows [1]-[3] reporting results for (10) and rows [4]-

[7] reporting results for (11). Identification is based on the same variants of the instruments

as in Table 1, and each row also reports the calculation of the rate of return based on the

corresponding elasticity estimate in Table 1. The implied net returns can be obtained by

subtracting δ ≈ 0.16, which is approximately the average depreciation rate for government

R&D calculated by the BEA.19

As Table 2 shows, the implied rates of return to nondefense R&D are high. The estimates

range from around 150 percent to more than 300 percent depending on the specification,

the assumed value of η, and the method of calculation. The SP-IV estimates of ρ are highly

statistically significant regardless of the value of η. As with the elasticity estimates, the only

exception is the specification with both government R&D types and the narrative measure

that excludes the space race as the instrument, see row [6]. For lower values of η, more

19Appendix D.5 shows that the estimated net returns are increasing in the assumed depreciation rate. The reason is
that higher depreciation rates also lower the estimates of the government R&D capital stock. For the specification in row
[1] of Table 2, the estimated net returns vary from 125 percent assuming zero depreciation to 237 percent when doubling
the depreciation rates assumed by the BEA.
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of the TFP increase is attributed to R&D as opposed to public infrastructure, and the

estimated returns are therefore decreasing in η. However, the returns do not vary greatly

across the plausible range for η within each specification. The estimated returns are also

roughly the same regardless of whether they are derived from the elasticity estimates or

estimated directly.

An implication of the large returns on government R&D is that there is substantial un-

derinvestment of public funds in nondefense R&D. For comparison, the CBO estimates a

gross return on public infrastructure capital of 12.4 percent and a net return of 9.2 percent

after adjusting for depreciation (CBO 2021). Even after adjusting for the higher deprecia-

tion rates on R&D, the estimated returns in Table 2 substantially exceed those for public

infrastructure, implying significant misallocation of public capital. The estimates also sug-

gest that government funding of nondefense R&D is self-financing from the perspective of

the federal budget, at least in the long run. Assuming a return of 200 percent, a $1 long-run

increase in government R&D capital would improve the budget as long as the additional

tax revenue raised per dollar of additional GDP is at least 7.5 cents (δ/ρ = 0.15/2 = 0.075),

which is substantially below the historical ratio of federal tax revenues to GDP.

As mentioned in the introduction, the existing literature often estimates returns on

private R&D that well exceed the returns on other investments. In their survey of firm

and industry regression evidence, Hall et al. (2010) conclude that rates of return on private

R&D are likely in the range of 20 to 30 percent, though some estimates are as high as 75

percent. These estimates usually do not aim to capture all possible spillovers across firms and

industries. In that sense, our relatively higher estimates at the aggregate level are perhaps

not too surprising. In a stylized framework, Jones and Summers (2020) calculate an average

social rate of return on total R&D expenditures of 67 percent based on aggregate U.S.

data. Different from Jones and Summers (2020), but like most others in the literature, our

estimates of the rate of return rely on functional form (Cobb-Douglas) assumptions about the

aggregate production function that may not be realistic. Nevertheless, our evidence based on

appropriations shocks suggests that the return on R&D funded by federal agencies may be

significantly greater than 67 percent. As discussed earlier, one plausible explanation is that

this funding is more directed towards fundamental research with larger knowledge spillovers,

as in the framework of Akcigit et al. (2020). An important implication is that federal R&D

policy should not be restricted to tax credits and subsidies for private businesses, but also

provide adequate resources for R&D funding by federal agencies.

VI. Avenues for Future Research

This paper contributes new time series evidence on the productivity effects of government

funding for R&D by studying impulse responses to shocks to R&D appropriations for five

major U.S. federal agencies. We use the impulse response estimates to structurally es-
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timate the aggregate production function elasticity of government R&D capital. These

estimates can be used to discipline quantitative models to study the long-run effects of

public investment in research, as well as the optimal allocation of public capital between

public infrastructure and knowledge capital. While we find evidence for direct productivity

spillovers of nondefense R&D, the results for defense R&D are inconclusive, and it generally

appears important to distinguish between investments in defense and nondefense research.

Further distinctions between the various types of nondefense R&D funding, for instance

by type or agency, can be made to investigate the relative magnitude of the productivity

spillovers. It is also possible to look at the effects of shocks to R&D appropriations in more

disaggregated data and study the heterogeneous effects across firms or industries. The pos-

sible links between government R&D funding and overall trends in research productivity, as

documented by Bloom et al. (2020), are also worth exploring. Another interesting avenue is

to study R&D appropriations shocks as a potential deeper source of the ‘technology news’

shocks that are widely studied in macroeconomics, see also Jinnai (2014). Finally, our anal-

ysis has abstracted from global spillovers and possible international coordination of public

investment in R&D. We leave these and other questions for future research.
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A Data Sources and Definitions

Main data sources:

• F-TFP: FRB San Francisco Total Factor Productivity, see also Fernald (2012)

• BEA-NIPA: U.S. Bureau of Economic Analysis National Income and Product Accounts

1

https://www.frbsf.org/economic-research/indicators-data/total-factor-productivity-tfp/
https://www.bea.gov/itable/national-gdp-and-personal-income


• BEA-FA: U.S. Bureau of Economic Analysis Fixed Assets Accounts Tables

• NCSES: National Center for Science and Engineering Statistics,

– National Patterns of R&D Resources

– Survey of Federal Funds for Research and Development, pre-1999 data from the

NCSES/NSF archives

All additions and subtractions involving quantities in chained dollars are based on the

Divisia index approximation to chained aggregates, see Whelan (2002). All real quantities

are expressed in 2012 dollars using implicit deflators.

Capital stock variables: Quarterly real capital stocks are valued at real cost and con-

structed using the perpetual inventory method using quarterly NIPA data on real investment

and initial capital stocks (year-end 1946) from the BEA-FA tables. Depreciation rates are

quarterly interpolations of annual depreciation rates in the BEA-FA tables.

• Government R&D Capital: Chained sum of (i) federal nondefense R&D capital

stock, (ii) federal defense R&D capital stock, and (iii) state & local R&D capital stock.

R&D capital includes the BEA-NIPA categories ‘research and development’ and ‘soft-

ware development’. Investment series are lines 22, 30, and 38 in BEA-NIPA Table

3.9.3 (converted to 2012 dollars using Table 3.9.5). Depreciation rates are lines 35, 52,

and 72 in BEA-FA Table 7.4 (converted to 2012 dollars using Table 7.3) divided by

prior year capital stocks in the same lines of BEA-FA Table 7.2 (converted to 2012 dol-

lars using Table 7.1). Government Nondefense R&D Capital and Government

Defense R&D Capital are constructed analogously using the relevant subcategories.

• Public Infrastructure Capital: Chained sum of structures and equipment capital

stocks for (i) federal nondefense and (ii) state & local governments. Investment series

are lines 28, 29, 36, and 37 in BEA-NIPA Table 3.9.3 (converted to 2012 dollars using

Table 3.9.5). Depreciation rates are lines 39, 40, 56, and 57 in BEA-FA Table 7.4

(converted to 2012 dollars using Table 7.3) divided by prior year capital stocks in the

same lines of BEA-FA Table 7.2 (converted to 2012 dollars using Table 7.1).

• Defense Capital: Chained sum of defense structures and defense equipment capital

stocks. Investment series are lines 20 and 21 in BEA-NIPA Table 3.9.3 (converted to

2012 dollars using Table 3.9.5). Depreciation rates are lines 23 and 30 in BEA-FA Table

7.4 (converted to 2012 dollars using Table 7.3) divided by prior year capital stocks in

the same lines of BEA-FA Table 7.2 (converted to 2012 dollars using Table 7.1).

• Business-Sector R&D Capital: Aggregate of BEA-NIPA categories ‘research and

development’ and ‘software development’ for the business sector based on the weights

and growth rates in F-TFP (‘wgt_r_and_d’,‘dk_r_and_d’,‘wgt_software’, and

‘dk_software’), cumulated and converted to 2012 dollars using BEA-FA Table 7.1.
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• Total R&D Capital: Chained sum of the components of government R&D capital

and business-sector R&D capital.

• Total Public Capital: Chained sum of the components of government R&D capital,

public infrastructure capital and defense capital.

Other variables:

• Variables from F-TFP: Business-Sector TFP: utilization-adjusted total factor pro-

ductivity (F-TFP: ‘dtfp_util’); Capacity utilization: (F-TFP: ‘dutil’); Labor

Productivity: (F-TFP: ‘dLP’); Log-level variables are obtained as cumulative sums

of the annualized growth rates in the F-TFP dataset after dividing by 400.

• Potential Output: CBO estimate of potential real GDP. From 1949Q1 onward,

‘GDPPOT’ from FRED. Observations before 1949Q1 are from the replication files of

Ramey and Zubairy (2018).

• Stock market returns: Average of the cumulative sums of the equally weighted re-

turns for manufacturing (‘R_EW_Manuf’), high tech (‘R_EW_HiTec’), and health indus-

tries (‘R_EW_Hlkth’) from the Kenneth French Data Library (5 Industry Portfolios).

• Military News: ‘news’ in replication files of Ramey and Zubairy (2018) converted

to 2012 dollars by the implicit GDP deflator, divided by potential output.

• Patent Innovation Index: Quarterly version of the patent innovation index of Kogan

et al. (2017), from the replication files of Cascaldi-Garcia and Vukotić (2022).

• New PhDs in STEM: Total number of doctoral recipients in science and engineering.

Data for 1947-1957 is from the Historical Statistics of the U.S. (Colonial Times to

1970), series H766-787. Data from 1958 onward is from the NCSES Survey of Earned

Doctorates. Quarterly interpolation of annual data.

• Researchers: Total researchers (full-time equivalents), from the OECD Main Science

and Technology Indicators. Pre-2000 data is obtained from the replication files of

Bloom et al. (2020). Quarterly interpolation of annual data.

• Technology Books: Books published in the field of technology, constructed Alexopou-

los (2011) and obtained from the replication files of Kogan et al. (2017). Quarterly

interpolation of annual data.

B Narrative Appropriations Shocks by Agency

Figure B.1 depicts the narrative R&D appropriations changes separately for each agency,

before aggregation to nondefense versus defense R&D policy changes, as depicted in Figure

5 of the main text. The top four panels of Figure B.1 depict the R&D appropriations shocks

for nondefense expenditures, with NASA in panel (a), NIH in panel (b), NSF in panel (c),
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Figure B.1: Changes in R&D Appropriations by Federal Agency

(a) NASA (b) National Institutes of Health

(c) National Science Foundation (d) Department of Energy: Nondefense

(e) Department of Defense (f) Department of Energy: Defense

Notes: See Fieldhouse and Mertens (2023). Sample: 1947Q1–2019Q4.

and the nondefense functions of DOE in panel (d). The bottom two panels depict the
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Figure C.1: Role of Narrative Classification

a. Nondefense R&D Shock

Business-Sector TFP

b. Defense R&D Shock

Business-Sector TFP

Notes: Estimates based on (2) using the measures of changes in federal nondefense (left panel) and defense
(right panel) R&D appropriations, see (1). ‘Exogenous Changes Only’ uses the orthogonalized narratively
identified measures as in the baseline specification described in the main text. ‘All Changes’ uses orthogo-
nalized measures based on all changes in appropriations. Lazarus et al. (2018) HAR bands are for 95 percent
confidence levels. Impulses are scaled to imply a 1 percent peak increase in government R&D capital. Sam-
ple: 1948Q1–2021Q4.

R&D appropriations shocks for defense expenditures, with DOD in panel (e) and the nuclear

security functions of DOE in panel (f). Appropriations shocks classified as exogenous are

depicted in blue, and those classified as endogenous (or too small to classify) are in red; all

R&D appropriations shown are measured in real dollars per capita.

C Impulse Responses: Robustness and Additional Results

C.1 Robustness: Role of the Narrative Identification Step

This section discusses the role of the narrative classification of the changes in federal R&D

appropriations as ‘exogenous’ or ‘endogenous’ for the impulse response estimates. Figure

C.1 replicates the baseline impulse responses of TFP to nondefense and defense shocks from

Figure 6 in the main text. The figure also shows estimates for the same specifications, but

using all changes in R&D appropriations rather than just those identified as ‘exogenous’ in

the narrative analysis. In this case, the zit variables in (2) contain all changes in appropria-

tions shown in Figure 5, after orthogonalizing defense to nondefense appropriations and vice

versa, as in (1). Both the point estimates and confidence intervals for the TFP responses to

both the defense and nondefense R&D shocks are very similar when additionally using the

endogenous and smaller, unclassified changes in appropriations in the regressions.
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Figure C.2: Role of Orthogonalization of the Narrative Measures

a. Nondefense R&D Shock

Business-Sector TFP

b. Defense R&D Shock

Business-Sector TFP

Notes: Estimates based on (2) using the measures of changes in federal nondefense (left panel) and defense
(right panel) R&D appropriations. Lazarus et al. (2018) HAR bands are for 95 percent confidence levels.
Impulses are scaled to imply a 1 percent peak increase in government R&D capital. Sample: 1948Q1–
2021Q4.

C.2 Robustness: Role of the Orthogonalization

This section discusses the role of mutually orthogonalizing the narrative measures of ex-

ogenous changes in defense and nondefense R&D appropriations for the impulse response

estimates, as in equation (1) in the main text. Figure C.2 replicates the baseline impulse

responses of TFP to nondefense and defense shocks from Figure 6 in the main text. The

figure also shows estimates for the same specifications, but using all the raw changes in R&D

appropriations ∆aexo,it /Ki
t−4, i = D,ND as the zit in the local projections in (2) rather the

residuals in (1). As the figure shows, the point estimates and confidence intervals for the

TFP responses to both the defense and nondefense R&D shocks are very similar.

C.3 Robustness: Additional Control Variables

Figure 6 in the main text shows that including lags of the baseline set of controls xt reduces

the variance of the impulse response estimates to a nondefense R&D shock, but has otherwise

no major qualitative effects on the point estimates. This suggests that the controls do

not capture any important simultaneous influences on both the narrative measures and

future TFP that would threaten the causal interpretation of the estimates in the simpler

specification. Here, we consider a number of additions to the baseline set of controls to gain

further confidence in the causal interpretation of the positive TFP response to nondefense

R&D shocks. Panel (a) of Figure C.3 plots the impulse responses of business-sector TFP
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Figure C.3: TFP Impact of Nondefense R&D Shock, Robustness

(a) Additional Control Variables (b) Model Specification

Notes: Estimates based on (2) using the narrative measure of federal nondefense R&D appropriations.
Lazarus et al. (2018) 95 percent HAR confidence bands are for the baseline impulse responses. Impulses
scaled to imply a 1 percent peak increase in government R&D capital. Sample: 1948Q1–2021Q4 (specifica-
tion with patent-based innovation index, 1949Q1–2010Q4).

to nondefense R&D shocks for these various additions. For reference, the figure repeats the

baseline estimates and the associated 95 percent confidence bands from Figure 6 in the main

text. Rows [2]-[11] in Table C.1 report the impulse response coefficients at horizons of 5,

10, and 15 years with HAR confidence bands in parentheses.

As mentioned in the main text, the baseline controls include capacity utilization to

capture possible business cycle influences. The first two expanded control sets each add

an alternative cyclical indicator: The headline unemployment rate or the output gap (the

percentage difference between real GDP and CBO potential output). Neither one has much

effect on the estimated TFP response to a nondefense R&D shock, and the TFP response

remains highly statistically significant at longer horizons (see rows [2]-[3] in Table C.1).

Replacing the utilization rate with either of these alternative cyclical indicators or adding

them both at the same time similarly has no major effect on the estimates (these results

are not reported).

It is possible that R&D appropriations, despite accounting for only a small share of the

federal budget, are predictable by other tax and spending policies that may have indepen-

dent long-run effects on productivity. For instance, Antolin-Diaz and Surico (2022) find

that government spending shocks raise long-run TFP, Cloyne et al. (2022) find that tem-

porary tax cuts have long-run effects on TFP, and Croce et al. (2019) find that the public

debt-to-GDP ratio significantly influences the cost of capital for R&D-intensive firms and

productivity growth. The baseline controls include lags of cumulative nondefense appro-

priations, government R&D capital, and the Ramey and Zubairy (2018) military spending
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news variable. As these variables may not be sufficient to capture all relevant information

about fiscal policy, the next three expanded control sets add information about fiscal pol-

icy. In turn, we add log cumulative appropriations for defense R&D, the log of the public

infrastructure capital stock, and a set of broader fiscal policy indicators. The latter includes

the log of total real government consumption expenditures, the ratio of government debt

to GDP (based on the Market Value of U.S. Government Debt constructed by the Federal

Reserve Bank of Dallas), and the measures of average federal personal and corporate income

tax rates from Mertens and Ravn (2013). The addition of defense appropriations has no ma-

jor impact on the estimates, and the TFP response remains highly statistically significant

(row [4] in Table C.1). Adding public infrastructure capital induces a more front-loaded

TFP response that is somewhat more muted at longer horizons. The TFP response remains

highly statistically significant at longer horizons (see row [5] in Table C.1). Controlling for

lags of a broader set of fiscal policy indicators also leads to somewhat smaller TFP responses

at longer horizons, but they nevertheless remain highly significant (see row [6] in Table C.1).

The baseline controls include cumulative real stock returns in R&D-intensive industries

to capture any broad advanced information about future technological developments. Next,

we add a broader set of financial indicators. Financial conditions could matter for several

reasons, for instance, by determining the relative attractiveness of long-horizon investments

in R&D, by summarizing additional forward-looking economic information with an influence

on both productivity and government R&D, or more generally by capturing additional types

of disturbances with potential effects on long-run productivity. We add the 3-month and

10-year Treasury rates, the log real S&P500 index, and the spread between BAA- and AAA-

rated corporate bonds to the controls (obtained from FRED and Shiller (2015)). As can

be seen from panel (a) in Figure C.3, these additional financial controls attenuate the TFP

response somewhat at horizons beyond eight years. The TFP response at longer horizons

remains highly statistically significant (see row [7] in Table C.1).

The next four specifications each, in turn, rotate in a number of additional variables

that conceivably could contain important independent information about future productiv-

ity: Non-R&D capital in the business sector, the Fernald (2012) measure of labor quality,

the patent-based innovation index of Cascaldi-Garcia and Vukotić (2022), and the relative

price of R&D from the NIPA data. Including non-R&D capital leads to somewhat smaller

estimates of the TFP response in the longer run, while including the relative price of R&D

leads to estimates that are considerably larger. The addition of the indices for labor quality

or innovation do not have any major impact on the estimates. As rows [8]-[11] in Table

C.1 show, the estimates of the TFP response at longer horizons remain highly statistically

significant in each case.
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Table C.1: TFP Impact of Nondefense R&D Shock, Robustness

% Impact After

5 years 10 years 15 years

[1] Baseline 0.05
(−0.05,0.15)

0.18∗∗∗
(0.09,0.27)

0.24∗∗∗
(0.13,0.36)

[2] + Unemployment Rate 0.03
(−0.07,0.13)

0.20∗∗∗
(0.08,0.32)

0.29∗∗∗
(0.13,0.44)

[3] + Output Gap 0.05
(−0.06,0.17)

0.20∗∗∗
(0.10,0.31)

0.28∗∗∗
(0.13,0.42)

[4] + Defense R&D Appropriations 0.06
(−0.12,0.24)

0.22∗∗∗
(0.06,0.38)

0.19∗∗
(0.00,0.37)

[5] + Public Infrastructure Capital 0.08∗
(−0.01,0.18)

0.15∗∗∗
(0.06,0.25)

0.14∗∗∗
(0.06,0.22)

[6] + Other Fiscal Variables 0.06
(−0.09,0.20)

0.07
(−0.05,0.19)

0.18∗∗∗
(0.06,0.30)

[7] + Financial Variables 0.04
(−0.05,0.13)

0.11∗∗
(0.02,0.20)

0.18∗∗∗
(0.09,0.27)

[8] + Non R&D Capital 0.04
(−0.06,0.14)

0.08∗∗
(0.01,0.15)

0.16∗∗∗
(0.07,0.25)

[9] + Labor Quality 0.03
(−0.08,0.13)

0.16∗∗∗
(0.09,0.24)

0.24∗∗∗
(0.12,0.37)

[10] + Patent-Based Innovation Index 0.00
(−0.11,0.12)

0.18∗∗∗
(0.06,0.30)

0.28∗∗∗
(0.14,0.43)

[11] + Relative Price of R&D −0.00
(−0.14,0.14)

0.24∗∗∗
(0.09,0.39)

0.42∗∗∗
(0.16,0.68)

[12] Two Lags of Controls 0.07∗∗
(0.00,0.13)

0.16∗∗
(0.03,0.29)

0.16∗
(−0.01,0.34)

[13] Six Lags of Controls 0.19
(−0.07,0.45)

0.45∗∗∗
(0.22,0.67)

0.26∗∗∗
(0.06,0.45)

[14] Excluding Space 0.08
(−0.25,0.41)

0.20∗∗
(0.00,0.41)

0.25∗∗
(0.04,0.47)

[15] Including Lags of Narrative Shock 0.07
(−0.05,0.19)

0.22∗∗∗
(0.12,0.33)

0.24∗∗∗
(0.16,0.32)

[16] Balanced Sample 0.04
(−0.07,0.15)

0.17∗∗∗
(0.08,0.25)

0.22∗∗∗
(0.12,0.32)

Notes: Estimates are based on (2) using the narrative measure of federal nondefense R&D appropriations.
Numbers in parentheses are 95 percent HAR confidence bands based on Lazarus et al. (2018). Stars ∗, ∗∗ and
∗∗∗ denote statistical significance at 10, 5, and 1 percent significance levels, respectively. Impulses scaled to
imply a 1 percent peak increase in government R&D capital. Sample: 1948Q1–2021Q4 (specification with
patent-based innovation index: 1949Q1–2010Q4).

C.4 Robustness: LP Model Specification

This section reports impulse response estimates of TFP to a nondefense R&D shock under

several additional alterations to the baseline specification in (2). Panel (b) in Figure C.3

plots the impulse responses along with the baseline estimates and their 95 percent confidence

bands from Figure 6 in the main text. Rows [12]-[15] in Table C.1 report the coefficient

estimates for the various alterations at horizons of 5, 10, and 15 years with HAR confidence

bands in parentheses.

The baseline specification uses p = 4 lags of all control variables. The first two robustness

checks consider shortening or lengthening the number of lags to p = 2 and p = 6, respectively.

As Panel (b) in Figure C.3 shows, reducing lag length from four to two quarters leads to
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somewhat smaller TFP responses at horizons beyond 10 years; the long-run TFP responses

remain statistically significant at the 5 or 10 percent levels (see row [12] of Table C.1).

Increasing the lag length from four to six quarters makes the TFP response somewhat more

volatile, but the response at the end of the forecast horizon is very similar to the baseline

specification and also remains highly significant (see row [13] of Table C.1).

As discussed in the main text, the rapid expansion of government R&D expenditures

during the early stages of the space race is important for the precision of the estimates of

the production function elasticities and rates of return reported in Tables 1 and 2. Our

next robustness check analogously verifies the role of the early NASA R&D appropriations

for the estimated TFP response to a nondefense R&D shock. We remove the influence

of the early expansion during the space race by orthogonalizing the narrative measure of

exogenous nondefense R&D shocks not only to the defense R&D measure, but also to all

appropriations for NASA over the 1958–1963 period. Figure C.3b shows that the gradual rise

in TFP following a nondefense R&D shock is robust to excluding the space race episode.

Row [14] of Table C.1 shows that the long-run TFP response also remains significant at

conventional levels, even though the confidence bands become notably wider.

The baseline set of controls includes four lags of the (log) of cumulative nondefense

R&D appropriations, but not lags of the (orthogonalized) narrative R&D measures them-

selves. Figure C.3b shows that additionally including these lags has very little effect on the

estimated TFP response and the associated confidence bands (see row [15] in Table C.1).

Finally, the inference formulas for SP-IV developed in Lewis and Mertens (2023) require

a balanced sample. The impulse responses in Section 3 are instead estimated iteratively,

i.e., using the largest possible estimation sample for each horizon h. Figure C.3b provides

the estimated TFP response in the balanced sample, which leads to only relatively minor

differences with the baseline estimates. As seen in row [16] of Table C.1, the estimates also

remain highly statistically significant in the balanced sample.

C.5 Robustness: VAR-based Impulse Responses Estimates

Asymptotically, local projections estimate approximately the same impulse response as Vec-

tor Autoregressive Models (VARs) up to the lag length of the VAR model, see Plagborg-

Møller and Wolf (2021). An advantage of LPs is that they avoid misspecification in finite-

order VAR-based impulse response estimators at horizons beyond the lag length. In small

samples, however, this advantage generally comes at the cost of greater variance, as shown

for instance in the simulations of Li et al. (2022). In practice, VAR and LP impulse response

estimates can differ meaningfully in small samples, raising questions about robustness.

Figure C.4 presents estimates of the TFP response to a nondefense R&D shock based

on a VAR model, together with 95 percent confidence bands obtained using the wild boot-

strap procedure described in Montiel Olea and Plagborg-Møller (2021). The estimates are
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Figure C.4: TFP Impact of Nondefense R&D Shock, VAR Model Estimates

Notes: Estimates are based on an eight-variable VAR(4) model that includes all the variables from the
baseline specification: the orthogonalized nondefense narrative measure, cumulative appropriations, (log)
utilization-adjusted TFP, and the additional baseline controls described in the main text). VAR impulses
are to an innovation in the narrative measure, scaled to imply a 1 percent peak increase in government R&D
capital. The 95 percent confidence bands for the VAR impulse are percentile intervals based on the wild
bootstrap described in Section 5 of Montiel Olea and Plagborg-Møller (2021). Sample: 1948Q1-2021Q4.

obtained from an ‘internal instrument’ VAR with four lags in eight variables: the orthogo-

nalized nondefense narrative measure, (log) utilization-adjusted TFP, (log) cumulative sum

of past changes in real nondefense R&D appropriations, and the additional controls of the

baseline specification described in the main text. For comparison, the figure also shows the

point estimates from the corresponding LP model.

As Figure C.4 shows, the VAR-based impulse response confirms our key finding: after a

substantial delay, a positive shock to nondefense R&D appropriations leads to a gradual in-

crease in business-sector TFP that becomes statistically significant in the long run. Overall,

the magnitude of the VAR response is also similar to the LP response. The restrictions on

the dynamics implied by the VAR do lead to some qualitative differences with the LP-based

estimates. Specifically, the increase in TFP starts somewhat earlier and is hump-shaped.

Despite these differences, we conclude that the positive long-run TFP response is robust to

the choice of a VAR or LP-based impulse response estimator.

C.6 Robustness: Alternative LP Inference Procedures

The confidence intervals for the impulse responses are based on the equal-weighted cosine

(EWC) test recommended by Lazarus et al. (2018). Herbst and Johanssen (2022) show

in simulations that EWC delivers better empirical coverage than heteroskedasticity-and-

autocorrelation robust (HAR) inference based on Newey and West (1987) or heteroskedastic-

robust inference based on Ecker-Huber-White. Montiel Olea and Plagborg-Møller (2021)
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show that accounting for autocorrelation is redundant in lag-augmented LPs and that it

suffices to use Ecker-Huber-White standard errors. The same authors also describe a wild

bootstrap procedure that—in simulations of AR(1) models—delivers better coverage in small

samples, especially at longer horizons and when the data is highly persistent.

Figure C.5 compares various inference procedures for the impulse response of utilization-

adjusted TFP based on the (orthogonalized) narrative measure for nondefense R&D ap-

propriations. The left panel shows Ecker-Huber-White intervals and the simple intervals

assuming homoscedasticity, along with the Lazarus et al. (2018) intervals, for the baseline

specification with additional controls (same as in the bottom left panel of Figure 6). To cap-

ture a longer history of appropriations for R&D, the baseline specification includes lags of

cumulative appropriations as controls rather than lags of the narrative measures. The right

panel shows point estimates and confidence intervals based on specifications that addition-

ally include four lags of the narrative measure, i.e., the explicit lag-augmented specification

considered in Montiel Olea and Plagborg-Møller (2021). Apart from the Lazarus et al.

(2018) intervals, the right panel again shows the Ecker-Huber-White intervals as well as the

intervals based on the Montiel Olea and Plagborg-Møller (2021) wild bootstrap procedure.

The main conclusion from Figure C.5 is that the choice of inference procedures is rel-

atively unimportant. The homoscedastic and Ecker-Huber-White bands are similar to the

Lazarus et al. (2018) EWC bands. The wild bootstrap bands are meaningfully wider, but

the increase in coverage lies mostly to the north of the Lazarus et al. (2018) region. Espe-

cially at longer horizons, the lower bootstrap band is relatively close to the Lazarus et al.

(2018) band. Importantly, the finding that a shock to nondefense appropriations leads to a

statistically significant long-run increase in business-sector TFP is not affected by the choice

of inference procedures.

C.7 Impact of a Defense R&D Shock on Other Productivity/Innovation

Indicators

Figure 7 in the main text reports the impact of a nondefense R&D shock on various pro-

ductivity measures and innovation indicators. Figure C.6 reports the impact of a defense

R&D shock on the same variables. Whereas a positive nondefense R&D shock consistently

leads to increases in all productivity and innovation indicators, the same is not the case for

defense R&D shocks. Figure C.6 shows a hump-shaped transitory decline in labor produc-

tivity and no statistically or economically significant impact on potential output. There also

are transitory declines in the patent innovation index and the number of Ph.D. recipients

in STEM fields. The number of R&D researchers increases in the short run, but declines in

the longer run. There is no meaningful change in the number of technology publications,

except perhaps at longer horizons.
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Figure C.5: TFP Impact of Nondefense R&D Shock, Alternative Inference Procedures

Notes: All confidence intervals are for the 95 percent level. Left Panel : Point estimates and shaded con-
fidence intervals (Lazarus et al. (2018) HAR) are identical to those in the bottom left panel of Figure 6
(baseline specification). Right Panel : Point estimates and shaded confidence intervals (Lazarus et al. (2018)
HAR) are based on the baseline specification with four lags of the nondefense narrative measure added
to the controls. The figure also shows bootstrap intervals as described in Section 5 of Montiel Olea and
Plagborg-Møller (2021), based on 10,000 samples. Impulses are scaled to imply a 1 percent peak increase
in government R&D capital. Sample: 1948Q1-2021Q4.

C.8 Responses of Private Labor and non-R&D Capital Inputs

Figure C.7 shows estimates of the responses of other private factor inputs following positive

shocks to nondefense (panel a) and defense (panel b) R&D appropriations. The measures

of private factor inputs are from Fernald (2012). The estimates are obtained from local

projections as in (2) in the main text, with the same baseline controls and four lags of each

outcome variable added as additional controls. As in Figures 6 and 7 in the main text, the

impulse responses are scaled to imply a one percent peak increase in the total government

R&D capital stock. The first row in Figure C.7 depicts responses of labor input adjusted

for labor quality (cumulative sum of ‘dhours’ + ‘dLQ’ in F-TFP, see Appendix A). The

second row shows the responses of the business-sector non-R&D capital stock, which consists

of all types of capital excluding R&D and software (nonresidential equipment and structures,

residential business structures, and non-R&D intellectual property).

The first row in Figure C.7 shows that a nondefense R&D shock leads to little change in

(quality-adjusted) labor input in the business sector at most horizons. Towards the end of

the 15-year forecast horizon, there is a decline in labor input that is marginally statistically

significant at one or two horizons. The response of labor input to a defense R&D shock

is somewhat volatile and imprecisely estimated, with none of the estimates statistically

significantly different from zero at the 5 percent level.

The second row in Figure C.7 shows that, with a long delay, a nondefense shock leads to

a gradual and persistent increase in the business-sector non-R&D capital stock that is highly
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Figure C.6: Impact of a Defense R&D Shock on Other Productivity/Innovation Indicators

(a) Labor Productivity (b) CBO Potential Output (c) Patent Innovation Index

(d) STEM Ph.D. Recipients (e) Researchers (f) Technology Books

Notes: Estimates based on (2) using the orthogonalized narrative measure of changes in defense R&D
appropriations, see (1). Lazarus et al. (2018) HAR bands are for 95 percent confidence levels. Impulses
scaled to imply a 1 percent peak increase in government R&D capital. Sample: (a),(b),(d): 1948Q1–2021Q4;
(c): 1949Q1–2010Q4; (e): 1951Q1–2019Q4; (f): 1956Q1–1997Q4. See Appendix A for variable definitions.

statistically significant at horizons between 6 to 14 years. The peak increase in non-R&D

capital is roughly 0.2 percent and occurs after about 13 years. The response of non-R&D

capital to a defense R&D shocks shows some evidence of a transitory decline in the short

run but is overall imprecisely estimated.

The final row in Figure C.7 shows the responses of real GDP. A nondefense shock does

not lead to any economically or statistically significant change in real GDP in the short

run. In the longer run, real GDP increases by around 0.2 to 0.35 percent. The timing

and magnitude of the GDP response are overall similar to that of business-sector labor

productivity or potential output, see Figure 7 in the main text. The response of real GDP

to a defense R&D shock is positive and marginally significant at a few horizons over the first

five years, but the point estimates are imprecisely estimated at longer horizons and oscillate

between positive and negative. Consistent with the impulses to defense shocks shown in

Figures 6 and C.7, there is no evidence that defense shocks lead to a significant long-run

increase in real GDP.
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Figure C.7: Labor and non-R&D Capital Following an Increase in R&D Appropriations

a. Nondefense R&D Shock

Quality-Adjusted Labor

Non-R&D Capital

Real GDP

b. Defense R&D Shock

Quality-Adjusted Labor

Non-R&D Capital

Real GDP

Notes: Estimates based on (2) using the orthogonalized narrative measure of changes in federal nondefense
(left panel) and defense (right panel) R&D appropriations, see (1). ‘Baseline’ includes additional lagged
controls described in the main text. Lazarus et al. (2018) HAR bands are for 95 percent confidence levels.
Impulses scaled to imply a 1 percent peak increase in government R&D capital. Sample: 1948Q1–2021Q4.
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Figure C.8: Nondefense Public Capital

Notes: Estimates based on (2) using the orthog-
onalized narrative measure of changes in federal
nondefense R&D appropriations, see (1). Impulses
are scaled to imply a unit peak increase in fed-
eral nondefense R&D capital. Sample: 1948Q2–
2021Q4.

Figure C.9: S&L Structures by Function

Notes: Estimates based on (2) using the orthog-
onalized narrative measure of changes in federal
nondefense R&D appropriations, see (1). Impulses
are scaled to imply a peak increase in state and lo-
cal structures of 1.21 dollars, to match Figure C.8.
Sample: 1948Q2–2021Q4.

C.9 A Closer Look at the Public Infrastructure Response to a Nondefense

Shock

Figure 9 in the main text shows that an increase in appropriations for nondefense R&D

leads to a rise in public infrastructure, and specifically in nondefense structures. In this

section, we present further decompositions similar to those in Figure 9 to better understand

the nature of the rise in public infrastructure after a nondefense R&D shock.

The first additional decomposition considers the response of various components of total

nondefense public capital by type and level of government, i.e., federal versus state and

local (S&L) government. Figure C.8 shows that the increase in public infrastructure after

a nondefense shock is primarily driven by a rise in structures funded by state and local

governments (up to 1.19 dollars), although there is also an increase in federal infrastructure

spending on structures (up to 28 cents). Note that the total increase does not exactly add

up to the 1.58 dollar increase seen in Figure 9 because of slight differences in the regression

specifications (the lagged outcome variables yt−j on the right-hand side in (2) are different).

The main text, therefore, reports the contribution of state and local government structures

as a percentage (1.19/(1.19 + 0.28) ≈ 0.8).

Figure C.9 provides a further breakdown of the state and local government infrastructure

response into various categories based on additional detail in the BEA Fixed Assets Accounts

(Table 7.1), with quarterly values obtained by interpolation of the annual source data. The

responses, in this case, are scaled to match the peak 1.21 dollar increase in Figure C.8.

As the figure shows, the largest increase occurs in educational structures. There are also

meaningful increases in highways and streets as well as in power, water, and sewer systems.
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Figure C.10: Financing of S&L Investment in
Structures

Notes: Estimates based on (2) using the orthog-
onalized narrative measure of changes in federal
nondefense R&D appropriations, see (1). Impulses
are scaled to imply a unit peak increase in S&L
gross investment in structures. Sample: 1949Q1–
2021Q4.

The changes in all remaining types of state and local government infrastructure (‘Other

Infrastructure’) are individually relatively small.

Figure C.10 provides a breakdown of the response of investment in structures by state

and local governments according to the means of financing: Debt, federal transfers, or

current surpluses (revenues less other spending). Note that, unlike in the previous figures,

this decomposition pertains to the flow (real gross investment in structures) rather than

the stock (the capitalized real cost value of structures). The decomposition is based on the

budget constraint identity aggregated across state and local governments using data from

the BEA (NIPA Table 3.3). The impulses are scaled to imply a unit peak increase in S&L

gross investment in structures.

Figure C.10 shows that, consistent with the response of the corresponding capital stock,

a nondefense R&D shock leads to a gradual rise in state and local investment in nondefense

structures. Investment peaks after about seven years, subsequently returns to prior levels,

and towards the end of the forecast horizon, even dips slightly below the level predicted

in the absence of the nondefense R&D shock. Figure C.10 also shows that the investment

boom is not financed by increased federal transfers to state and local governments. The

latter initially fall and only revert to prior levels well after the peak in investment. For the

first couple of years, the rise in investment is accounted for by an increase in borrowing by

state and local governments. Between horizons of 4 to 10 years, the investment boom is

implicitly financed by a surplus in revenues relative to other state and local spending. The

main takeaway from Figure C.10 is that the rise in state and local investment in nondefense
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structures does not appear to be driven by increases in federal grants to state and local

governments, for instance, to increase spending on highways.

D Estimation of Production Function Elasticity: Additional Results

This section presents additional results for the estimation of the production function elas-

ticity of government R&D capital ϕ in Section 4 in the main text.

D.1 SP-IV as a Regression in Impulse Response Space

Figure D.1 provides the main intuition behind the SP-IV estimation of ϕ in (7) based on

the response to the orthogonalized narrative measure of nondefense R&D appropriations,

zND
t , using the specification in (2). The solid lines in the left panel show the response of

t̃fpt to a one standard deviation innovation in zND
t for three different values of η, and the

right panel shows the estimated response of kt, the government R&D capital stock. Both

figures show the impulse responses at one-year intervals that used for the estimation of

the production function elasticity. The left panel shows the response for the endpoints of

Ramey’s (2021) plausible range, η = 0.065 and η = 0.12; to make the dependence on η

visually clearer, the figure also shows the response for a much higher value η = 0.39, which

is the estimate in Aschauer (1989). The SP-IV estimate of ϕ in each case is simply the OLS

coefficient ϕ̂ in a regression (without intercept) of the impulse response coefficients of t̃fpt

in the left panel on those of kt in the right panel. The dashed lines in the left panel show

the resulting fitted values—ϕ̂ times the impulse response of kt—that minimize the sum of

squared residuals for each value of η. The SP-IV regression framework thus estimates the

structural parameter as the value of ϕ that best fits the relationship between t̃fpt and kt

along the impulse response trajectories. The functional form in (7) imposes very specific

assumptions on the lags between R&D spending and the TFP effects. As Figure D.1 shows,

the dynamics of the fitted TFP responses align well with those of the actual TFP responses,

such that the timing assumptions implied by the structural equation appear reasonable in

light of the responses estimated in the local projections.

SP-IV can make use of more than one set of impulse response coefficients for identifi-

cation, e.g., to both defense and nondefense shocks, in which case the inverse covariance

matrix of the identifying innovations weights the different impulse responses. The SP-IV

estimator also applies to structural equations with multiple endogenous regressors, as in

specification (9) in the main text, in which case it reduces to multiple regression in impulse

response space, see Lewis and Mertens (2023).

D.2 Simultaneous Confidence Sets

For the specifications with two endogenous regressors, i.e., (9) and (11) in the main text, the

confidence intervals reported in Tables 1 and 2 are subvector confidence sets obtained using
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Figure D.1: Illustration of the SP-IV Estimator

Response of t̃fpt
Response of kt

Notes: Solid lines show impulse response estimates (at one-year intervals) to a one standard deviation
innovation in the orthogonalized narrative measure of changes in nondefense R&D appropriations using
the baseline specification in (2) in a balanced sample. The SP-IV estimator ϕ̂ results from regressing the

impulse response coefficients of t̂fpt in the left panel on the impulse response coefficients of kt in the right
panel without intercept, see Lewis and Mertens (2023). The dashed lines in the left panel show the fitted

responses obtained by multiplying ϕ̂ by the response of kt in the right panel.

the projection method, see, e.g., Andrews et al. (2019). As an illustration, the panels in

Figure D.2 show the 68, 90, and 95 percent weak-instrument-robust confidence sets for the

full parameter vector [ϕND, ϕD] associated with the estimates reported in row [6] of Table

1. The confidence intervals reported in Table 1 for ϕ̂ND (ϕ̂D) are the largest and smallest

values of ϕ̂ND (ϕ̂ND) across all values of ϕD (ϕ̂ND) that belong to the 95 percent simulta-

neous confidence set. The simultaneous confidence sets are based on inverting the KLM

statistic of Kleibergen (2005). The latter is based on the score of the continuously updated

Anderson-Rubin statistic (or equivalently, the S-statistic of Stock and Wright (2000) for

GMM) as a function of ϕND and ϕD, see Lewis and Mertens (2023). The minimum of the

Anderson-Rubin objective does not correspond to the SP-IV point estimate, such that the

latter does not generally lie at the ‘center’ (or is even within) of the confidence sets. An

alternative estimator of (ϕND, ϕD) is the minimand of the continuously-updated Anderson-

Rubin objective function, which by construction lies at the ‘center’ of the confidence sets.

This continuously updated estimator (CUE) is marked by the blue dots in Figure D.2. As

can be seen from the figure, the CUE estimates of ϕND are all very close to the SP-IV

estimates, whereas those for ϕD are marginally larger.

Figure D.3 shows the simultaneous confidence sets for the three remaining specifications

in Table 1 that include nondefense and defense capital separately (rows [7]-[9]). For brevity,

the figure reports only the confidence sets for the specifications that assume the interme-
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Figure D.2: Simultaneous Weak-Instrument Robust Confidence Sets

(a) Intermediate η = 0.08 (b) Low η = 0.065 (c) High η = 0.12

Notes: Confidence sets based on inverting the KLM statistic of Kleibergen (2005) for the specification in
row [6] of Table 1.

Figure D.3: Simultaneous Weak-Instrument Robust Confidence Sets

(a) Using Both Shocks (b) Excluding Space (c) All Appropriations

Notes: Confidence sets based on inverting the KLM statistic of Kleibergen (2005) for the specification in
rows [7]-[9] of Table 1 for η = 0.08.

diate value of the infrastructure elasticity, η = 0.08. As can be seen from the figures, the

CUE estimate is usually close to the SP-IV estimate, and always nearly identical for the

nondefense elasticity. The simultaneous confidence sets are also very similar across speci-

fications. The exception is the specification with the narrative measure that excludes the

large appropriations for the space race, see panel (b) in Figure D.3. For that specification,

the confidence sets have highly irregular shapes, and most values of either parameter cannot

be ruled at conventional levels of confidence.

D.3 Wald Inference

In the main text, inference for the SP-IV estimates is based on the weak-instrument robust

methods for GMM described in Kleibergen (2005). Lewis and Mertens (2023) show that

the SP-IV estimator is equivalent to a restricted 2SLS estimator in a system of equations,
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Table D.1: SP-IV Elasticity Estimates with Wald Inference

Public R&D Intermediate η Low η High η

Measure Instruments ϕND ϕ/ϕD ϕ/ϕND ϕ/ϕND

[1] Total Exo ND 0.12∗∗∗
(0.08,0.16)

0.12∗∗∗
(0.08,0.17)

0.11∗∗∗
(0.06,0.15)

[2] Total Exo ND, No Space 0.14∗∗∗
(0.05,0.24)

0.14∗∗∗
(0.05,0.24)

0.13∗∗∗
(0.04,0.22)

[3] Total All ND 0.11∗∗∗
(0.07,0.16)

0.12∗∗∗
(0.08,0.16)

0.10∗∗∗
(0.06,0.14)

[4] Total Exo D −0.24
(−0.69,0.20)

[5] Total All D −0.23
(−0.67,0.21)

[6] ND/D Exo ND 0.11∗∗∗
(0.06,0.16)

−0.01
(−0.33,0.30)

0.11∗∗∗
(0.07,0.16)

0.10∗∗∗
(0.05,0.15)

[7] ND/D Exo ND/D 0.10∗∗∗
(0.05,0.14)

−0.07
(−0.35,0.21)

0.10∗∗∗
(0.06,0.14)

0.09∗∗∗
(0.05,0.13)

[8] ND/D Exo ND, No Space 0.14∗∗∗
(0.04,0.24)

0.18
(−0.75,1.10)

0.14∗∗∗
(0.04,0.25)

0.13∗∗
(0.03,0.23)

[9] ND/D All ND 0.11∗∗∗
(0.07,0.15)

−0.02
(−0.33,0.28)

0.11∗∗∗
(0.07,0.15)

0.10∗∗∗
(0.06,0.14)

Notes: See notes to Table 1 in the main text. The only difference is that the confidence intervals are based
on the Wald formulas derived under the assumption of strong identification, see Lewis and Mertens (2023).

where the number of equations is equal to the number of impulse response horizons used

for identification. Under strong identification and otherwise standard assumptions, this

formulation of the SP-IV estimator leads to conventional Wald inference formulas. It is

well known that—when identification is weak—Wald inference can suffer from large size

distortions in small samples, and the simulations in Lewis and Mertens (2023) show that

this is also the case for the SP-IV estimator. Table D.1 shows the same point estimates

as Table 1 in the main text, but reports confidence intervals based on the conventional

Wald formulas. Qualitatively, the only specification for which there are large differences in

the inference results is the one in row [8], i.e., the specification with the narrative measure

that excludes the large appropriations for the space race: The Wald-based inference points

to estimates that are highly statistically significant, whereas the weak-instrument-robust

inference result leads to the conclusion that the instrument is uninformative. The estimates

of the defense R&D capital elasticity, on the other hand, remain insignificant also under

Wald inference.

D.4 Specification with Constant Elasticities

In specification (9) in the main text, the production function elasticities of defense and

nondefense R&D capital scale with their nominal shares in total government R&D capital.
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Table D.2: Government R&D Production Function Elasticities
Alternative Specification

Public R&D Intermediate η = 0.08 Low η = 0.065 High η = 0.12

Measure Instruments ϕ̂/ϕ̂ND ϕ̂/ϕ̂D ϕ̂/ϕ̂ND ϕ̂/ϕ̂ND

[1] ND/D Exo ND 0.07∗∗
(0.02,0.13)

0.16
(−0.42,0.47)

0.07∗∗
(0.02,0.13)

0.06∗∗
(0.01,0.12)

[2] ND/D Exo ND/D 0.08∗∗
(0.01,0.12)

−0.03
(−0.30,0.37)

0.08∗∗
(0.01,0.13)

0.08∗
(−0.00,0.12)

[3] ND/D Exo ND, No Space 0.13
(−2.00,0.11)

−0.09
(−0.93,2.00)

0.13
(−2.00,0.11)

0.12
(−2.00,0.10)

[4] ND/D All ND 0.07∗∗∗
(0.02,0.13)

0.13
(−0.41,0.43)

0.07∗∗∗
(0.02,0.13)

0.06∗∗
(0.01,0.12)

Notes: Rows [1]-[4] show SP-IV estimates of ϕND (nondefense) and ϕD (defense) in (D.1). All specifi-
cations include the baseline set of lagged controls described in Section 3. Numbers in parentheses are
weak-instrument robust confidence intervals at the 5 percent significance level based on inverting the KLM
statistic of Kleibergen (2005). Test inversion is limited to a grid with endpoints −2 and 2, † denotes in-
tervals constrained at these endpoints. Subvector inference is based on the projection method. ∗, ∗∗ and
∗ ∗ ∗ denote statistical significance at 10, 5 and 1 percent levels respectively. ‘Exo ND/D’ denotes the
orthogonalized narrative measure of exogenous changes in nondefense/defense R&D appropriations. ‘All
ND’ denotes the orthogonalized series of all changes in nondefense/defense R&D appropriations, ignoring
our narrative classification. ‘No Space’ indicates that the instrument is also orthogonalized to all changes
in space appropriations between 1958 and 1963.

The following specification instead imposes constant elasticities:

∆t̃fpt = ϕND

(
s̄ND∆kND

t

)
+ ϕD(1− s̄ND)∆kD

t +∆wt(D.1)

We multiply the regressors by the average shares, s̄ND and 1 − s̄ND, over the estimation

sample, such that the estimates are on a comparable scale to those reported in Table 1 in the

main text. The estimation results based on (D.1) are reported in Table D.2. The estimates

can be multiplied by s̄ND ≈ 0.5 to obtain the elasticities with respect to ∆kND
t and ∆kD

t .

The main difference with the results in the main text is that the point estimates for ϕND

are smaller. The only exception is in row [3], but this is also the specification for which the

estimates are very imprecise. Ignoring the results in row [3], the point estimates of ϕND are

around 0.07, as compared to 0.12 under the specification discussed in the main text. The

estimates of ϕND are relatively precisely estimated (except in row 3]), and they are highly

statistically significant. Just as in the main text, the estimates of ϕD vary considerably

across the specifications. They are always imprecise and never statistically distinguishable

from zero.

The difference in the estimates of ϕND between the specification in equation (9) and the

one in (D.1) is not too surprising, given that the share of nondefense R&D varies considerably

over the estimation sample. Given that the stock of nondefense R&D capital is small in the

beginning of the sample, the log differences ∆kND
t are very large early on, which leads to

lower overall estimates of ϕND. Weighting by the shares as in the baseline specification (9)
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in the main text attenuates the influence of these early observations, and should therefore

lead to more accurate estimates for the whole sample.

Even if one would prefer the lower estimates in Table D.2, they do not change the overall

conclusion that the rate of return on nondefense government R&D is very high. Dividing

the estimates in rows [1], [2], and [4] of Table D.2 by 0.06 (the average ratio of government

R&D capital to GDP), the implied rates of returns range from 100 to 150 percent.

Finally, note that the point estimates of ϕND in row [3] of Table D.2 lie outside of the

reported weak-instrument-robust confidence intervals. As explained in Appendix D.2, this

is possible with the confidence sets based on Kleibergen (2005) as they are not necessarily

centered on the GMM estimates.

D.5 Different Depreciation Rates

The quarterly measures of the government R&D capital stocks that we use throughout the

analysis closely follow the methodology of the BEA, which publishes the annual totals as

part of the ‘Fixed Assets’ tables. For certain categories of government R&D, the BEA

estimates depreciation rates based on observing a progression of specific R&D investments

with observable outcomes on the effective life of the R&D. For other categories of government

R&D, the BEA uses the same depreciation rates as for private R&D services.

Given the inherent difficulties in measuring the obsolescence of intellectual capital, we

verify how the estimates of the production function elasticities and rates of return change

under different assumptions about depreciation rates on government R&D. Specifically, we

capitalize the various categories of government R&D investment by multiplying the annual

BEA depreciation rates for each category by a scaling factor x = 0, 0.5, 1, 1.5 or 2. On

average across (weighted) categories and years, the BEA depreciation rate is δ ≈ 0.16.

When x = 0, all depreciation rates are zero. When x = 2, all depreciation rates are twice

as large as those used by the BEA, therefore averaging to 2 × δ ≈ 0.32. For simplicity, we

keep the initial values of each subcomponent of the R&D capital stock constant to the 1946

values in the BEA tables.

Figure D.4 shows how the estimation results (all assuming η = 0.08) change with the

assumed depreciation rates. The left panel shows the estimates of the production function

elasticity, obtained exactly as in row [1] of Table 1. The right panel shows the estimates of

the net rate of return, obtained by estimating the gross rate of return exactly as in row [1]

of Table 2 and subtracting the (scaled) average depreciation rate. The error bars mark the

95 percent weak-instrument-robust confidence intervals.

As the left panel of Figure D.4 shows, the production function elasticity estimates are

decreasing in the assumed depreciation rate. Intuitively, assuming a larger depreciation rate

implies a smaller estimate of the net stock of R&D capital, and therefore, a one percent

increase in the capital stock corresponds to a smaller increase in investment expenditures.
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Figure D.4: Nondefense Government R&D,
Elasticity and Return Estimates Assuming Different Depreciation Rates

(a) Production Function Elasticity (b) Net Rate of Return

Notes: SP-IV estimates of ϕ (left) and rates of return ρ (right) based on (7) and (10), respectively. Estimates
are based on the (orthogonalized) narrative measure of nondefense appropriations as in rows [1] of Table
1 and 2, respectively, and assuming the intermediate value η = 0.08. Error bars are 95 percent weak-
instrument-robust confidence intervals based on inverting the KLM statistic of Kleibergen (2005).

As mentioned in the main text, the BEA depreciation rates result in elasticity estimates

that are centered around 0.12. Assuming zero depreciation raises the point estimate of the

elasticity to 0.20, whereas doubling the depreciation rates lowers the estimate to 0.10. The

right panel of Figure D.4 shows that the net rate of return is increasing in the assumed

depreciation rate. Although the elasticity estimates are decreasing in the depreciation rate,

larger depreciation rates also lower the capital stock to GDP ratio estimate, which translates

to higher rates of return. Using the BEA estimates, the point estimate of the net rate of

return is (2.13− 0.16)× 100 = 197 percent. This estimate drops to 125 percent, assuming

zero depreciation. Doubling the depreciation rates increases the net return estimate to 237

percent. Even if one would prefer to assume a higher or lower average depreciation rate on

intellectual capital, doing so would not change the main conclusion that the rate of return

on nondefense government R&D is relatively high.
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