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Abstract

We develop a panel Nelson-Siegel model of individual inflation expectations across different

forecasting horizons: an individual term-structure of inflation expectations. Utilizing panel

data from the Survey of Professional Forecasters, we uncover significant heterogeneity in the

dynamic patterns of the term structure across forecasters and over time. We decompose the

dispersion of inflation expectations into three components: 1) prior beliefs, 2) heterogeneous

responses to common information, and 3) idiosyncratic information. Our findings suggest

that in normal times, long-horizon inflation disagreement is predominantly driven by prior

beliefs, while short-horizon disagreement stems mainly from idiosyncratic information.

However, during economic recessions, heterogeneous responses to common information be-

come more important in driving disagreement at all horizons. This result suggests that clear

communication about aggregate policies can more effectively anchor long-term inflation

expectations of economic agents during periods of significant uncertainty.
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“Of course, an extended period of high goods and services inflation resulting from a
series of demand and supply shocks associated with the pandemic and the war could
lead to a rise in inflation expectations, which would make it much more difficult to
bring inflation down. That is why it has been important for monetary policy to take a
risk-management posture to defend the expectations anchor. And the evidence from
market- and survey-based measures suggests that longer-term inflation expectations
are well anchored, while year-ahead measures have recently declined but remain
elevated." — Lael Brainard (January 19, 2023)

1 Introduction

Maintaining stable inflation expectations among economic agents is crucial for achieving the

FOMC’s mandate of price stability and for managing macroeconomic risk. To gauge how well

anchored economic agents’ inflation expectations are, economists and policy makers have paid

attention to the mean or median of inflation expectations— so-called the consensus. A less

utilized metric is the disagreement about inflation expectations: Economic agents would not

disagree much about future inflation if their expectations are well-anchored. In this context, a

less known fact is that during the 2000s and over the course of the Great Recession, when the

consensus inflation expectations stayed low and stable, the disagreement showed substantial

volatility comparable to that seen in the early 1990s — the period of high inflation and likely

unanchored inflation expectations.1 This observation suggests the disagreement may serve as

an independent measure of anchored inflation expectations, supplementing the consensus.

Not all the disagreements are alike. For monetary policy, it is important to consider two

aspects of heterogeneity in disagreement about inflation expectations: forecast horizons and

the source of disagreement. A practical question a policy maker may ask is “Which type of

disagreement or what portion of the disagreement is relevant to monetary?" Disagreements about

long-run inflation expectations are more relevant to monetary policy than those about short-run

inflation expectations, since the monetary authority is primarily interested in anchoring long-

run inflation expectations. Long-run inflation expectations matter more for the price and wage

setting, while short-run inflation expectations largely reflect the realized inflation or effects of

transitory factors like oil price changes.

In addition, different sources of disagreement also matter for the management of macroe-

1In 2010 when the consensus long-term inflation expectations stayed at around two percent in the survey of
professional forecasters (henceforth, SPF), the variance across forecasters was at the level seen in the early 1990s
when the consensus expectation was five percent— the period of unstable inflation.
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conomic expectations. Forecasters may have different priors on average inflation Patton and

Timmermann (2010), or different private information on future inflation that is not shared with

others Herbst and Winkler (2021). Or simply, forecasters may interpret publicly available in-

formation differently Lahiri and Sheng (2008); Andrade et al. (2016). These different sources

have direct implications for the effectiveness of monetary policy. Effective forward guidance, for

example, may reduce the portion of disagreement driven by heterogeneous reactions to public

information. If changes in the disagreement are driven by private information or a forecaster’s

long-run prior, there is not much room for monetary policy to reduce disagreement of these

margins. In this context, not only the disagreement but also its source is important for monetary

policy.

This paper develops a new individual-level model of inflation expectations over forecasting

horizons–what we call “the individual term-structure of inflation expectation." This model is

designed to comprehensively characterize disagreement about inflation expectations relevant to

macroeconomic policy. Inspired by Nelson and Siegel’s term structure of interest rates (Nelson

and Siegel, 1987), we model an individual’s trajectory of inflation forecasts over forecasting

horizons with three factors—the level, slope, and curvature. The level captures the long-run

inflation projection, which we call the long end. The slope captures the overall difference

between the long end and the inflation nowcast of the current quarter. The curvature depicts

residual nonlinearity in the forecast horizon and inflation projection between the current-quarter

nowcast and the long end, not captured the other two factors. We do not consider the curvature

for parsimonious modeling because its role in the observed individual-level term structure of

inflation expectations is limited.

Each factor of an individual forecaster, the level, for instance, is composed of three compo-

nents: (1) the constant term capturing individual prior; (2) the term capturing forecast reactions

to public or common information; (3) the term reflecting forecast reactions to private or id-

iosyncratic information. The first term is estimated with the individual fixed effect and hence

time invariant. The second and third terms are time-varying and are described as the common

and idiosyncratic components of a dynamic factor structure. Likewise, the individual’s slope

is also composed of the three analogous components. Our analytical framework decomposes

the disagreement of each forecasting horizon at each point in time into the contributions from

(1) individuals’ prior beliefs, (2) heterogeneous reactions to common information, and (3) het-

erogeneous reactions to idiosyncratic information. It is noteworthy that this decomposition of
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disagreement is entirely new in the literature.

We take the model to the forecaster-level data from the Survey of Professional Forecasters

(the SPF, henceforth) and estimate the model with maximum likelihood. The sample period is

1990:Q1-2023:Q2. The SPF provides a rough snapshot of a forecaster’s term structure of inflation

projections, not a complete trajectory. Specifically, the forecasting horizons are available in

grouped forms such as “the average over the next 5 years" or “the average over the next 10 years."

From the incomplete observations, our model recovers a forecaster’s complete trajectory of

quarter-over-quarter inflation forecasts from the current quarter to 10 years out at each point

in time. This new model is so flexible that it can also be estimated with other survey data on

inflation expectations with different forecasting horizons.

The estimated level and slope effectively capture the long-run and transitory dynamics in

inflation expectations, respectively. The mean level trends down in the 1990s and then stays

at a near-constant level from 2000. This mean level edges down during the Great Recession

and the pandemic recession, and recovers after the end of both recessions. However, the mean

slope factor is quite volatile, reflecting transitory developments such as oil price fluctuations

and changes in economic activity. During the Covid-19 pandemic, the mean slope fluctuates

drastically, capturing the run-up in inflation in 2021 and 2022. The mean level and slope also

have unique forecast implications for the pandemic era. In particular, the mean level does not

change much during the pandemic. The mean slope factor normalizes in 2022 but has not yet

reached the prepandemic level. These two distinct movements in mean level and slope suggest

that the run-up in inflation during the pandemic is less likely to reflect permanent changes in

long-run trend inflation.

Consistently, the recovered mean inflation expectations 10 years out from the current quarter,

the 10-year consensus forecast, trend down in the 1990s and then stabilize at around 2-2.5%

from 2000 including the Great Recession period. This estimated consensus is quite similar to

the trajectory of popularly cited trend inflation (e.g., Stock and Watson, 2016). Even during the

Covid-19 pandemic, the 10-year consensus exhibits muted variations—edging lower in 2020,

rising fast by a half percentage point in 2021, and then stepping down to 2.5 percent, the level

a little elevated relative to the pre-pandemic level. Quite differently, the consensus forecast

with a horizon shorter than 1 year largely reflects the realized CPI inflation. Specifically, during

the Covid-19 pandemic, the consensus short-term inflation projections spiked above 4 percent,

much higher than that seen in the early 1990s.
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Although the estimated consensus forecasts seem to suggest well-anchored long-term infla-

tion expectations, the recovered disagreement over the forecast horizon tells us a completely

different story. Forecasters disagree more about the level during the Great Recession and its

recovery than they did in the early 1990s. Notably, during the pandemic, there are quite a few

forecasters who were estimating dramatically high long-run inflation expectations higher than

4 percent, signalling a substantial upside risk in the long-term projection. In addition, the dis-

agreement about slope is also larger in the Great Recession and the pandemic than that in the

early 1990s. In 2021 and 2022, there are quite a few forecasters who expect the elevated inflation

to slow down sluggishly than what is suggested by the mean slope, again indicating the upside

risk in inflation projection. This observation suggests that the term structure of disagreement

provides information about the degree of anchored inflation expectations independent of that of

the consensus.

We further decompose changes in the disagreement into the distinct sources. To begin with,

prior beliefs and idiosyncratic information account for the bulk of disagreement among fore-

casters and across the forecasting horizons, while the role of common information is relatively

small. This decomposition result is in line with previous findings, including those of Patton and

Timmermann (2010) and Lahiri and Sheng (2008). During an economic downturn, however,

common information is responsible for the increased disagreement. For example, at the peak

of the Great Recession, common information accounts for about 60 percent of the long-term

disagreement. During the pandemic, the disagreement about short-run and long-run inflation

forecasts increased substantially. Common information is responsible for the bulk of increased

disagreement.

Our novel findings have unique implications for policy. The importance of idiosyncratic

information and permanent heterogeneity in the disagreement suggests that monetary policy

may be limited in reducing the disagreement substantially. However, this is not necessarily bad

news. In particular, the portion of long-run disagreement driven by common information is

larger before 2000 than in the post-2000 period. This may suggest better anchored expectations

in the 2000s than in the pre-2000 period, and not much room is left for monetary policy to further

reduce the disagreement. More importantly, the increased importance of public information

during an economic downturn suggests clear communication about monetary policy may be

more effective in expectation management in times of economic uncertainty than in normal

times.
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Furthermore, we empirically examine the link between monetary policy and disagreement in

inflation forecasts. Specifically, we estimate responses of the disagreement to a forward-guidance

shock and Fed’s reactions to economic news Bauer and Swanson (2023). Contractionary forward

guidance or Fed’s reaction, which aims inflation stabilization, reduces the disagreement driven

by common information, in line with the previous studies including Ehrmann et al. (2019) and

Glas and Hartmann (2016). However, their effects are limited in reducing the idiosyncrasy-driven

disagreement. This empirical result confirms the economic interpretation of the disagreement

created by heterogeneous reactions to common information as the portion of disagreement that

is reducible with clear communication on monetary policy.

Finally, we explore the implications of our empirical findings for the theory of expectation

formation and learning. First, our novel disagreement decomposition provides the empirical

validation of existing theories on information acquisition. Specifically, our result highlights the

importance of long-term priors (Patton and Timmermann, 2010; Farmer et al., 2021) and the

equilibrium disagreement driven by heterogeneous interpretations of public information (Lahiri

and Sheng, 2008) in the learning models of the finance literature. In addition, our results suggest

a next step for the information acquisition model in the macro-literature. The individual factor

loadings– parameters capturing the heterogeneous responses to public information–can be

interpreted as the information precision heterogeneous across forecasters. Note that we have

the loadings for both the level and the slope for each individual. The two-dimensional precision

measures may be necessary to capture changes in the commonality-driven disagreement across

different forecasting horizons, which has not yet been considered in the literature.

Related Literature This paper makes novel contributions to a few different strands of eco-

nomic research. The first is the literature on aggregate the term structure of interest rate or

inflation expectations. Aruoba (2020) models the term structure of inflation expectations using a

Nelson-Siegel (Nelson and Siegel, 1987) yield curve. Aruoba treats the level, slope, and curvature

factors as latent states and estimates them with a linear state-space model using median SPF

forecasts and Blue Chip consensus forecasts. Clark et al. (2022) construct the term structure of

inflation expectations and uncertainty using a state space model in which stochastic volatility

and persistent biases in the forecasts are allowed. Bundick and Smith (2020) analyze the effect of

monetary policy on inflation expectations and find that inflation became more anchored after

the announcement of the inflation target in 2012. However, the empirical analysis is conducted

at the aggregate level and is based on the Michigan Survey of Consumers and TIPS break-even
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rates.

Recent studies focus on modeling individuals’ inflation expectations (Herbst and Winkler,

2021; Crump et al., 2021; Fisher et al., 2022).2 This paper is closest to Herbst and Winkler

(2021) in that inflation forecasts over the forecasting horizon are modeled and estimated at

the individual level. However, the two studies are different for the following reasons. First, our

focus is the term structure of inflation projection at the individual level, and hence we model

the complete term structure of inflation forecasts from the current quarter through 10 years

out with flexible Laguerre polynomials employed in Nelson-Siegel’s model. Meanwhile, Herbst

and Winkler characterizes the individual-level inflation projection over relatively short-term

forecast horizons (up to one year), since their goal is to characterize the comprehensive joint

dynamics of various macroeconomic variables.3 Second, we compute the extent to which public

and private information accounts for the changing disagreement about future inflation at each

forecasting horizon with a particular focus on forecasters’ heterogeneous responses to public

information. These heterogeneous responses are not allowed in Herbst and Winkler (2021). Last,

we provide the unique decomposition that summarizes the role of prior beliefs, and public and

private information in the disagreement at each point in time, a methodological advancement

from Herbst and Winkler’s.

Our research directly speaks to the literature on disagreement and learning models. Lahiri

and Sheng (2008) emphasizes the importance of prior information in disagreement and proposes

a Bayesian learning model.4 Similarly, Patton and Timmermann (2010) find that the key source

of persistent disagreement stems from heterogeneity in priors and show that the differences in

opinion move countercyclically. A recent study by Farmer et al. (2021) claims the importance of

prior beliefs in the formation of macroeconomic expectations by professional forecaters. Our

paper is distinguished from the previous studies in that the model has the component capturing

heterogeneous responses to public information.

This paper also speaks to the literature on heterogeneous effects of monetary policy on

2Crump et al. (2021) estimate a multivariate trend-cycle model using the universe of professional forecasts for
the U.S. and show that the multivariate model better fits the data than estimating individual univariate models on
each time series. Fisher et al. (2022) model people’s expectations of inflation using a trend-cycle decomposition and
estimate the term structure of expectations using the full panel structure of the SPF assuming agents receive private
and public signals.

3They adopt three common factors and the idiosyncratic component, and estimate the model with a Bayesian
method.

4Lahiri and Sheng show that in the presence of strong prior and uncertain public information, the heterogeneous
response to public information is an equilibrium outcome.
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the disagreement of economic agents. Andrade et al. (2016) provide empirical evidence for

heterogeneous beliefs about forward guidance and analyze the effect of monetary policy in the

context of a new Keynesian model. Glas and Hartmann (2016) distinguish individual inflation

uncertainty and disagreement between forecasters, and show that the overall disagreement

increases during the period of contractionary policy. Our finding is distinguished from that of

Glas and Hartmann in that we further show that the common-information driven disagreement

reduces to a contractionary monetary policy shock. Ehrmann et al. (2019) shows long-horizon

time-contingent and state-contingent forward guidance effectively reduces disagreement, while

short-horizon time-contingent forward guidance does not.

The paper is organized as follows. Section 2 discusses the data on inflation expectations in

the Survey of Professional Forecasters. Section 3 introduces the individual-level semiparametric

model that we use for the term structure of inflation expectations. Section 4 decomposes the

dispersion of inflation expectations into components driven by public and private information

at each forecasting horizon. Section 5 discusses the implications of empirical findings for policy

and theory. Section 6 concludes.

2 Data: The Survey of Professional Forecasters

This section discusses inflation expectations data from the Survey of Professional Forecasters

(SPF).

2.1 Notation

First, we define some notation that we will use throughout the rest of the paper. Denote the

price level at time t by Pt (in our case this will refer to the consumer price index). Let πs→t be

the continuously compounded inflation rate between time s and time t :

πs→t ≡ log (Pt )− log (Ps) (1)

Throughout we will work with continuously compounded inflation rates because of their time-

additive properties. Define the forecast, made at time t , of the inflation rate between times r and

s, as πr→s|t . Finally, let qa−1(t ) denote the final quarter of the year prior to the year time t is in.
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2.2 Definition of Forecasted Quantities

We collect data on CPI inflation forecasts from the SPF, conducted by the Federal Reserve Bank

of Philadelphia. The survey is sent out in the first month of each quarter and responses are

collected around the middle of the quarter, e.g. mid-February in Q1. Survey participants are

asked to forecast the average quarterly level of the CPI (or transformations of this quantity) at

various horizons. The SPF CPI Inflation Forecasts can be broken into 4 categories:

• 1-period backcasts to 4-quarter ahead forecasts of annualized quarter-over-quarter CPI infla-

tion :

100×
[(

Pt+h

Pt+h−1

)4

−1

]
for h =−1, . . . ,4.

• 1 to 3-year ahead forecasts of Q4 over Q4 CPI inflation:

100×
[

Pqa−1(t )+4 j

Pqa−1(t )+4( j−1)
−1

]

for j = 1, . . . ,3.

• Forecasts of average Q4 over Q4 CPI inflation over the next 5 years:

100×
(

5∏
j=1

Pqa−1(t )+4 j

Pqa−1(t )+4( j−1)

) 1
5

−1


• Forecasts of average Q4 over Q4 CPI inflation over the next 10 years:

100×
(

10∏
j=1

Pqa−1(t )+4 j

Pqa−1(t )+4( j−1)

) 1
10

−1


The first type of forecasts is what’s known as fixed horizon forecasts and the other three types

are known as fixed event forecats. We assume that these forecasts correspond to forecasts of

continuously compounded inflation so that they line up with our model specification directly.5

5This turns out to be relatively innocuous assumption, see Aruoba (2020) for a discussion.
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That is, we assume

100×Et

[(
Pt+h

Pt+h−1

)4

−1

]
≈ 400×πt+h−1→t+h|t

100×Et

[
Pqa−1(t )+4 j

Pqa−1(t )+4( j−1)
−1

]
≈ 100×πqa−1(t )+4( j−1)→qa−1(t )+4 j |t

100×Et

(
5∏

j=1

Pqa−1(t )+4 j

Pqa−1(t )+4( j−1)

) 1
5

−1

≈ 20×πqa−1(t )→qa−1(t )+19|t

100×Et

(
10∏

j=1

Pqa−1(t )+4 j

Pqa−1(t )+4( j−1)

) 1
10

−1

≈ 10×πqa−1(t )→qa−1(t )+39|t

Our sample begins in 1991Q4, which is the first time that forecasts of average Q4 over Q4

inflation over the subsequent ten years become available, and runs through 2022Q4. This is

necessary to be able to estimate the long-end of the term structure. Three-year ahead forecasts

of Q4 of Q4 inflation and forecasts of average Q4 over Q4 inflation over the subsequent five years

first become available in 2005Q3. We restrict our sample to forecasters who report nowcasts

to four-quarter ahead forecasts and either a 5-year or 10-year average forecast in at least one

quarter to ensure that we can identify long-run forecasts.

2.3 Properties of SPF CPI Forecasts

There are 172 unique forecasters in the data set during our sample period. In any given quarter,

there are between 28 and 53 forecasters who report a forecast and a median of 37. Forecasters

remain in the data set for between 1 and 112 quarters with a median tenure of 14 quarters (3 and

a half years).

Figure 1 displays the distribution of 1-quarter ahead forecasts and 10-year ahead forecasts.

The upper panels display the mean (which we will refer to as consensus) of the forecasts and the

projections of two individual forecasters. The upper-left panel shows 1-quarter ahead forecasts

and the upper-right panel reports 10-year ahead forecasts. The gray bars represent the NBER

recessions. In the first ten to fifteen years of the sample there is a downward trend in both short

and long-run inflation forecasts from around 4% to 2%. Short-run forecasts tend to exhibit more

time series volatility than long-run forecasts as they react more strongly to transitory shocks.

The bottom panels also show the cross-sectional standard deviation (which we will refer to as

dispersion) of projections a quarter ahead and a 10-year ahead over time. Short-run forecasts
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Figure 1: SPF FORECAST SUMMARY STATISTICS AND EXAMPLES

Notes: Black lines in the upper two panels show the average of inflation forecasts 1 quarter (left panel) and 10 years
(right panel) ahead. The colored lines capture the projection of two forecasters whose IDs are 107 and 122 in the
survey. The bottom two panels report the standard deviation of the projections.

Sources: SPF and authors’ calculation.

typically exhibit higher dispersion than long-run forecasts, with a notable exception being the

early 1990s.

In addition to Figure 1 which captures the aggregate properties of the SPF forecasts, we

also wish to explore how the expectations of the individual forecasters evolve over time. To

this end, Figure 2 plots the reported forecasts over all horizons of two different forecasters for

three different time periods: 1) 2007:Q3, 2) 2009:Q2 and 3) 2022:Q3. The solid black line is the

consensus, and the dashed lines capture the forecasts at 5% and 95% of the distribution. The

three dates reported in the figure help illustrate the wide variety of shapes the term structure of

inflation expectations can take and how different an individual forecaster can be relative to the

consensus. The levels of forecasts, as well as the trajectories over the forecasting horizons, are all

different.

3 An Individual Term Structure of Inflation Forecasts

In this section, we build and estimate a model to recover the complete path of inflation forecasts

over a 10-year horizon at each point in time.
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Figure 2: THREE TERM STRUCTURES OF SPF FORECASTS
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Notes: Black lines capture the consensus projections. The colored lines capture the projections of two forecasters
whose IDs are 107 and 122 in the survey. The dashed lines capture the forecasts at 5 percent and 95 percent of the
distribution.

Sources: SPF and authors’ calculation.

3.1 Model

Following Aruoba (2020), we set up a Nelson-Siegel model for the term structure of inflation

expectations:

πi ,t→t+h|t = Li ,t −
(

1−e−λi h

λi h

)
Si ,t +

(
1−e−λi h

λi h
−e−λi h

)
Ci ,t . (2)

Based on this representation, the forecast of inflation between any two horizons h1 and h2 is

given by

πi ,t+h1→t+h2|t = Li ,t −
(

e−λi h1 −e−λi h2

λi (h2 −h1)

)
Si ,t +

(
(1+λi h1)e−λi h1 − (1+λi h2)e−λi h2

λi (h2 −h1)

)
Ci ,t .

Following Diebold et al. (2008), we specify the following decomposition for the factors

Li ,t =αi ,L +βi ,LLt +εi ,L,t (3)

Si ,t =αi ,S +βi ,SSt +εi ,S,t (4)

Ci ,t =αi ,C +βi ,C Ct +εi ,C ,t (5)
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Figure 3: THREE FACTOR LOADINGS OF NELSON-SIEGEL MODEL
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Notes: The figure captures the level, slope, and curvature factors in Equation (2).

Sources: Authors’ calculation

where Lt ,St , and Ct are level, slope, and curvature factors which are common to all forecasters.

αi ,L ,αi ,S , and αi ,C are forecaster-specific constant terms which govern the overall level of their

individual factors. βi ,L ,βi ,S , and βi ,C are forecaster-specific loadings on the common factors. λi

are forecaster-specific shape parameters.

We make several simplifying assumptions in our baseline model. Namely, we assume that

there is no curvature factor for parsimony (we explore this further in robustness). We assume

that the constant terms are the same for all forecasters so that αi ,L =αL and αi ,S =αS for all i .

We assume that the shape parameter λi =λ for all i . As λ mostly governs where the maturity at

which the curvature factor is maximized, this does not greatly impact our results.

We assume that the common factors follow a VAR(1) process as follows:

 Lt

St

=
 a11 a12

a21 a22

 Lt−1

St−1

+
 uL,t

uS,t

 . (6)

Since the levels of the common factors and the factor loadings are not separately identified,

we normalize the shocks to the common factors uL,t and uS,t to have unit variance. We assume

the shocks are uncorrelated:  uL,t

uS,t

∼ N

 0

0

 ,

 1 0

0 1

 . (7)
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In addition, we assume that the idiosyncratic factors follow VAR(1) processes such that

 εi ,L,t

εi ,S,t

=
 bi ,11 bi ,12

bi ,21 bi ,22

 εi ,L,t−1

εi ,S,t−1

+
 ui ,L,t

ui ,S,t

 . (8)

In our baseline specification, we assume that all of the VAR coefficients and covariance

matrices are the same across forecasters, and that the covariance matrix is diagonal:

 ui ,L,t

ui ,S,t

∼ N

 0

0

 ,

 σ2
L 0

0 σ2
S

 . (9)

3.2 State space representation

Since the model is specified for continuously compounded inflation at the quarterly frequency,

this makes mapping the model predictions to observed SPF forecasts straightforward. In this

section, we reformulate our model into a linear state-space model that is estimable with the

Kalman filter and the maximum likelihood. It is noteworthy that our nonlinear term-structure

model is translated into a linear representation because the nonlinear portion is parsimoniously

expressed into a linear combination of Laguerre polynomials. This section describe the full

state-space representation of the model.

3.2.1 State equation

We first start with the state equation. Let the state vector xt be defined as

xt =
[

Lt ,St ,ε1,L,t ,ε1,S,t , · · · ,εn,L,t ,εn,S,t

]′
(10)
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Define the transition matrix F as

F =



a11 0 0 0 . . . 0 0

0 a22 0 0 . . . 0 0

0 0 b11 0 0. . . 0 0

0 0 0 b22 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . b11 0

0 0 0 0 . . . 0 b22


. (11)

Let ut be the vector of shocks to the state vector defined as follows:

ut =
[

uL,t ,uS,t ,u1,L,t ,u1,S,t , · · · ,un,L,t ,un,S,t

]′
. (12)

The covariance matrix of the shocks is given by:

Q =



1 0 0 0 . . . 0 0

0 1 0 0 . . . 0 0

0 0 σ2
L 0 0. . . 0 0

0 0 0 σ2
S . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . σ2
L 0

0 0 0 0 . . . 0 σ2
S


. (13)

We finally arrive at the following state equation of standard form:

xt = F xt−1 +ut , ut ∼ N (0,Q). (14)

3.2.2 Measurement equation

This section introduces the measurement equation that describes the observations with the state

variables. Our measurement equation will have the following form:

yt =µy +Hxt + vt , vt ∼ N (0,R), (15)
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where µy is the vector composed of forecaster fixed effects, H is the matrix composed of factor

loadings on the aggregate level and slope factors, and vt is the vector of measurement errors.

The rest of the section details each component in Equation (15).

A. The vector of observations: yt

For estimation, we use one-quarter to four-quarter ahead fixed-horizon forecasts and two-

year forward, three-year forward, five-year average, and ten-year average fixed event forecasts.

For the 5-year and 10-year average forecasts, we use observed nowcasts and one-quarter back-

casts when available, and realized inflation two-quarter and three-quarter prior of the most

recent CPI vintage.

The observation vector for any period yt is given by

yt =



π1,t→t+1|t , π1,t+1→t+2|t , π1,t+2→t+3|t , π1,t+3→t+4|t , · · ·
π1,t+3→t+7|t , π1,t+2→t+6|t , π1,t+1→t+5|t , π1,t→t+4|t , · · ·

π1,t→t+7|t+11, π1,t+6→t+10|t , π1,t+5→t+9|t , π1,t+4→t+8|t , · · ·
π1,t→t+19|t , π1,t→t+18|t , π1,t→t+17|t , π1,t→t+16|t , · · ·
π1,t→t+39|t , π1,t→t+38|t , π1,t→t+37|t , π1,t→t+36|t , · · ·

· · · · · ·
· · · πn,t→t+37|t , πn,t→t+36|t



′

. (16)

The first four elements of yt correspond to fixed horizon forecasts of one to four quarters ahead

and are typically observed every period. Only four of the final sixteen elements of yt are observed

in any given quarter. These final sixteen elements correspond to fixed event forecasts, where

each group of four correspond to the fixed event correctly mapped to the right forecast for the

given quarter in which the survey is being conducted.

For the final eight elements, which correspond to forecasts of average inflation over five and

ten year periods including the current calendar year, we must adjust them to directly with our

model. Specifically,

• In Q1, we define

πi ,t→t+19|t = 4

19

(
5πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t

)
πi ,t→t+39|t = 4

39

(
10πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t

)
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• In Q2, we define

πi ,t→t+18|t = 4

18

(
5πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t

)
πi ,t→t+38|t = 4

38

(
10πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t

)

• In Q3, we define

πi ,t→t+17|t = 4

17

(
5πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t − 1

4
πi ,t−3→t−2|t

)
πi ,t→t+37|t = 4

37

(
10πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t − 1

4
πi ,t−3→t−2|t

)

• In Q4, we define

πi ,t→t+16|t = 4

16

(
5πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t − 1

4
πi ,t−3→t−2|t − 1

4
πi ,t−4→t−3|t

)
πi ,t→t+36|t = 4

36

(
10πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t − 1

4
πi ,t−3→t−2|t − 1

4
πi ,t−4→t−3|t

)

For the nowcasts πi ,t−1→t |t and backcasts πi ,t−2→t−1|t , we use the reported values from the SPF.

For the two and three period backcasts πi ,t−3→t−2|t and πi ,t−4→t−3|t , we use the most recently

available vintage of the CPI at the time that the forecast was made.

B. The vector of forecaster fixed effects: µy

We define the loading function on the slope factor for forecasts of inflation between horizons

at two dates t +h1 and t +h2 as follows.

fS(h1,h2) = e−λh1 −e−λh2

λ(h2 −h1)
(17)

This expression is used in µy and H.
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We define the constant vector in the measurement equation, µy , as the following:

µy =



αL −αS fS(0,1), αL −αS fS(1,2), αL −αS fS(2,3), αL −αS fS(3,4),

αL −αS fS(3,7), αL −αS fS(2,6), αL −αS fS(1,5), αL −αS fS(0,4),

αL −αS fS(7,11), αL −αS fS(6,10), αL −αS fS(5,9), αL −αS fS(4,8)

αL −αS fS(0,19), αL −αS fS(0,18), αL −αS fS(0,17), αL −αS fS(0,16),

αL −αS fS(0,39), αL −αS fS(0,38), αL −αS fS(0,37), αL −αS fS(0,36),

· · · · · ·
· · · · · ·αL −αS fS(0,37), αL −αS fS(0,36)



′

. (18)

We define the constant vector in the measurement equation, vt , as the following:

vt =



v1,1,t , v1,2,t , v1,3,t , v1,4,t ,

v1,5,t , v1,6,t , v1,7,t , v1,8,t ,

v1,9,t , v1,10,t , v1,11,t , v1,12,t ,

v1,13,t , v1,14,t , v1,15,t , v1,16,t ,

v1,17,t , v1,18,t , v1,19,t , v1,20,t ,

· · · · · ·
· · · · · ·vn,19,t , vn,20,t


. (19)

The covariance matrix of the the measurement error vector (vt ), R, is given by the following

diagonal matrix.

R = diag





σ2
v,1, σ2

v,2, σ2
v,3, σ2

v,4,

σ2
v,5, σ2

v,6, σ2
v,7, σ2

v,8,

σ2
v,9, σ2

v,10, σ2
v,11, σ2

v,12,

σ2
v,13, σ2

v,14, σ2
v,15, σ2

v,16

σ2
v,17, σ2

v,18, σ2
v,19, σ2

v,20

· · · · · ·
· · · · · · ,σ2

v,19, σ2
v,20



′
(20)

Note that the argument in the square bracket is a vector.
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Last, we define the measurement equation mapping matrix H as

H =



β1,L −β1,S fS(0,1) 1 fS(0,1) . . . 0 0

β1,L −β1,S fS(1,2) 1 fS(1,2) . . . 0 0

β1,L −β1,S fS(2,3) 1 fS(2,3) . . . 0 0

β1,L −β1,S fS(3,4) 1 fS(3,4) . . . 0 0

β1,L −β1,S fS(3,7) 1 fS(3,7) . . . 0 0

β1,L −β1,S fS(2,6) 1 fS(2,6) . . . 0 0

β1,L −β1,S fS(1,5) 1 fS(1,5) . . . 0 0

β1,L −β1,S fS(0,4) 1 fS(0,4) . . . 0 0

β1,L −β1,S fS(7,11) 1 fS(7,11) . . . 0 0

β1,L −β1,S fS(6,10) 1 fS(6,10) . . . 0 0

β1,L −β1,S fS(5,9) 1 fS(5,9) . . . 0 0

β1,L −β1,S fS(4,8) 1 fS(4,8) . . . 0 0

β1,L −β1,S fS(0,19) 1 fS(0,19) . . . 0 0

β1,L −β1,S fS(0,18) 1 fS(0,18) . . . 0 0

β1,L −β1,S fS(0,17) 1 fS(0,17) . . . 0 0

β1,L −β1,S fS(0,16) 1 fS(0,16) . . . 0 0

β1,L −β1,S fS(0,39) 1 fS(0,39) . . . 0 0

β1,L −β1,S fS(0,38) 1 fS(0,38) . . . 0 0

β1,L −β1,S fS(0,37) 1 fS(0,37) . . . 0 0

β1,L −β1,S fS(0,36) 1 fS(0,36) . . . 0 0
...

...
...

...
. . .

...
...

βn,L −βn,S fS(0,37) 0 0 . . . 1 fS(0,37)

βn,L −βn,S fS(0,36) 0 0 . . . 1 fS(0,36)



. (21)

C. Remark

In the measurement equation, each series in yt is assumed to be observed with measurement

error. The fixed event forecasts are treated separately in each quarter throughout the calendar

year. This leaves us with a total of 20 observables for each forecaster in each quarter, 12 of which

are missing by construction.
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3.3 Estimation

Since our model is a Gaussian state-space model, we employ the Kalman filter to make inference

on the latent variables and form the likelihood function. The model is estimated with maximum

likelihood. Our baseline model has a total of 431 parameters consisting of the following.

• Forecaster-specific means
{
αi ,L ,αi ,S

}n
i=1

• Forecaster-specific factor loadings
{
βi ,L ,βi ,S

}n
i=1

• Factor autocorrelation parameters a11, a22,b11, and b22

• Idiosyncratic factor conditional variances σ2
L and σ2

S

• Shape parameter λ

• Measurement error variances σv,1, . . . ,σ2
v,20.

The parameter vector is denoted as

θ = [α1,L , . . . ,αn,S ,β1,L , . . . ,βn,S , a11, a22,b11,b22,σ2
L ,σ2

S ,λ,σ2
v,1, . . . ,σ2

v,20]′.

4 Estimation Results

This section reports and discusses our results from the estimation of the term-structure model.

We estimate our model for every forecaster and every time period available in the SPF for whom

we have sufficient data.6

4.1 Consensus

Figure 4 plots the mean of each forecaster’s smoothed factor and slope estimates. The top panel

plots the smoothed common level factor. Note that the unit does not have a particular economic

meaning because of the normalization. Overall, the estimate tracks variations in the long-run

inflation expectations. The estimate exhibits a sharp downward trend in the 1990s. In the later

part of the sample, the estimate drifts down even further after the Great Recession. During the

6So long as we observe non-missing values for πt−1→t |t , πt+3→t+4|t , and so long as two elements of both ε̂s,t and
ε̂l ,t are well-defined for forecaster i at time t , we estimate an individual-level term structure of inflation expectations
for forecaster i at time t .
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Table 1: MAXIMUM LIKELIHOOD PARAMETER ESTIMATES

For both αi ,L and αi ,S , the “Estimate" column refers
to the average estimate across forecasters and the
“95% CI" column refers to the 2.5th and 97.5th per-
centiles of the estimates.

Parameter Estimate 95% CI

αi ,L 2.429 [1.867,3.567]
αi ,S 0.382 [-0.434,1.559 ]
a11 0.999
a22 0.852
b11 0.868
b22 0.605
σL 0.137
σS 0.512
λ 0.285
σv,1 0.639
σv,2 0.457
σv,3 0.474
σv,4 0.455
σv,5 0.294
σv,6 0.297
σv,7 0.248
σv,8 0.011
σv,9 0.300
σv,10 0.328
σv,11 0.308
σv,12 0.314
σv,13 0.183
σv,14 0.193
σv,15 0.229
σv,16 0.255
σv,17 0.210
σv,18 0.210
σv,19 0.194
σv,20 0.231

COVID pandemic, the estimate dips in the early phase of the pandemic, quickly recovers from it,

and does not exhibit a run-up or a notable swing afterward.

The bottom panel plots the smoothed common slope factor. Again, the unit does not have

economic interpretations because of the normalization. The estimate tracks expected changes

in inflation between the current quarter and the long run at each point in time. The positive

slope estimates indicate that the term structure of inflation expectations is typically upward
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Figure 4: MEAN SMOOTHED FACTORS

Notes: The upper panel shows the smoothed common level factor (blue line) along with the 95 percent confidence
intervals (black dashed line). The bottom panel shows the smoothed common slope factor (blue line) along with
the 95 percent confidence intervals (black dashed line). The shaded areas denote the NBER recessions.

Sources: Authors’ calculation

sloping. The steepest positive slopes occur in the years following the dotcom bubble and in the

Great Recession. The slope has systematically declined over the 2010s, reflecting the decade

of low and stable inflation after the Great Recession. The slope increases with the onset of the

Covid-19 pandemic. This reflects that forecasters expect inflation to increase relative to that

in the current quarter, given that inflation plunged in the early phase of the pandemic and the

long-run expectation did not change much. From 2021 when inflation picked up rapidly, the

slope estimate turned negative and plunged further, reflecting forecasters’ expectation that

inflation would eventually decline.

Figure 5 plots the mean of each forecaster’s implied forecast on four different forecast hori-

zons. The top panels plot the mean 6-month and 1-year ahead inflation expectations, which

track the consensus inflation nowcast and thus realized inflation to a large extent. The bottom

panels display the man 5-year and 10-year ahead inflation projections, which are quite different

from the short-term projections. The 10-year-ahead inflation projection reflects less of the

variations in realized inflation than the 5-year-ahead inflation expectation.
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Figure 5: MEAN FORECAST ESTIMATES

Notes: The black lines display the average inflation forecasts recovered from the individual-level term structure
model. The shaded areas denote the NBER recessions.

Sources: Authors’ calculation

4.2 Dispersion: A proxy for disagreement

Figure 6 plots the distributions of each forecaster’s smoothed factor and slope estimates. Note,

for instance, that the individual level factor includes both the common and idiosyncratic com-

ponents with the loadings on common factor considered for the level, and hence the unit is

comparable to that of consensus inflation expectations. The same applies to the slope factor.

The top panel displays the distribution of individual smoothed level estimates. It is noteworthy

that even when the long-run inflation expectation stays at a low level after 2005, the dispersion

of estimates changes substantially over time. In particular, the dispersion seen after the Great

Recession is larger than that seen in the early 1990s, when the mean long-run inflation expecta-

tions are around 4 percent. During the Covid pandemic, the mean level edged up slightly, but

the distribution dramatically skewed to the right, reflecting the increased upside risk to long-run

inflation expectations. The bottom panel displays the distribution of individual smoothed slope

estimates. Similar to the level estimate, the dispersion of slope increases substantially over

the course of the Great Recession and the Covid-19 pandemic. In particular, the distribution

becomes skewed to the right at the onset of the pandemic, but it becomes skewed to the left

dramatically following a rapid rise in inflation in 2021.
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Figure 6: SMOOTHED FACTOR DISTRIBUTIONS

Notes: The figure shows the distribution of the individual level factor (upper panel) and that of individual slope
factor (bottom panel). The dotted lines depict the confidence intervals at 25th and 75th percentiles. The dashed
lines depict the confidence intervals at the 5th and 95th percentiles.

Sources: Authors’ calculation

Figure 9 displays the distribution of inflation forecasts at four different horizons. Across

all four forecasting horizons, the dispersions vary independently of the corresponding mean

forecasts. In particular, when the mean inflation projections are low and stable, say 2005 onward,

the dispersions become larger than those observed in the 1990s, when the level of inflation is

generally high. This observation suggests that the disagreement measured with the dispersion

carries information about the degree of anchored inflation expectation quite different from what

the consensus suggests.

Long-run inflation factors were more dispersed than short-run expectations early in our

sample, but since around the Great Recession, that pattern has flipped and short-run factors have

tended to be more dispersed. The dispersion of all factors spiked during the Great Recession but

interestingly long-run factors have remained relatively stable during the COVID-19 pandemic,

suggesting strong credibility of central bank policy and communication. In the most recent

couple of quarters there has been an increase in long-run dispersion, which may be an early

warning sign of this pattern reversing.
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Figure 7: DISAGREEMENT ABOUT FORECASTS

Notes: The figure shows the distribution of recovered individual inflation forecasts at four different forecast
horizons. The dotted lines depict the confidence intervals at the 25th and 75th percentiles. The dashed lines depict
the confidence intervals at the 5th and 95th percentiles.

Sources: Authors’ calculation

4.3 Individual dynamics

We look closely at the individual-level term structure of inflation expectations and its implications

for the aggregate term structure of disagreement at each point in time. We select three dates for

illustration.

Figure 8 shows the term structure of the inflation forecasts of two forecasters along with the

consensus (left panels) and the implied aggregate disagreement over the forecasting horizons

(right panels). First, we consider 2007Q3 (upper panels). This was the final survey conducted

before the start of the Great Recession. The consensus term structure is relatively flat, with the

nowcast and 10-year ahead inflation expectations being around 2.25%. Meanwhile, the two

forecasters disagree about the nowcasts and the direction of slopes, as shown in the downward

sloping term structure of Forecaster 535 and the upward sloping term structure of Forecaster 518.

Overall, the disagreement is largest in the short run but reduces over the forecasting horizon,

yielding the downward-sloping term structure of disagreement (upper right panel).

A quite different pattern is observed in 2009Q2 — the peak of Great Recession. The term

structures are upward-sloping for both forecasters and consensus. Although the two forecasters
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Figure 8: TERM STRUCTURE OF INFLATION EXPECTATIONS AT THREE DATES
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Notes: The left panel shows the estimated term structure of the inflation expectations of the consensus (black line)
and two forecasters (colored lines). The right panel shows the overall term structure of disagreement over the
forecast horizon.

Sources: Authors’ calculation
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significantly disagree about near-term inflation, they are still expecting a rise in inflation over the

forecast horizon, in line with the consensus. The disagreement is largest in the short run, reduces

in the near term, and then widens in the long run (middle right panel). This non-linearity signals

substantially high uncertainty in the immediate future and in the long run.

Finally, we consider 2022Q1 (bottom panels). Inflation expectations are monotonically de-

creasing for both forecasters and in the consensus. The disagreement is largest in the current

quarter but reduces over the forecasting horizon, producing the downward-sloping term struc-

ture of disagreement (lower right panel). Although the term structure of disagreement is similar

to that prior to the Great Recession, the magnitude of disagreement is three times as large as that

seen in 2007.

5 Three sources of disagreement

Our model decomposes the cross-sectional dispersion at each point in time into three compo-

nents of distinct sources: (1) individual prior belief (individual fixed effect); (2) heterogeneous

responses to common (or public) information; (3) idiosyncratic (or private) information. The

goal of this decomposition is to identify the extent to which macroeconomic policies affect

disagreement. For example, monetary policy, which is public information, may affect forecasters’

disagreement through the common-information channel.

5.1 Model for the disagreement decomposition

The decomposition is made up of two steps. We first decompose the forecaster i ’ inflation

forecast of each forecasting horizon into the portions of three sources. With the estimated

portion, we decompose the cross-sectional variance into the contributions from the three

sources at each point in time.

Equations (3) and (4) essentially decompose the individual level and slope factors into the

three information sources. Here, we give economic interpretations to each component as follows.

Li ,t = αi ,L︸︷︷︸
prior belief

+ βi ,LLt︸ ︷︷ ︸
common

+ εi ,L,t︸ ︷︷ ︸
idiosyncratic

. (22)

The level factor of forecaster i , Li ,t , is decomposed into the portions representing prior belief
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(αi ,L), common or public information (βi ,LLt ), and idiosyncratic or private information (εi ,L,t ).

Define the prior belief component of Li ,t to be Lpb
i =αi ,L , the common component of Li ,t to

be Lc
i ,t =βi ,LLt , and the idiosyncratic component of Li ,t to be Li d

i ,t = εi ,L,t . We then rewrite Li ,t

into

Li ,t = Lpb
i +Lc

i ,t +Li d
i ,t . (23)

Likewise, we give similar economic interpretations to each component of Si ,t in Equation (4),

and Si ,t is rewritten into the following:

Si ,t = Spb
i +Sc

i ,t +Si d
i ,t . (24)

With the decompositions in Equations (23) and (24), forecaster i ’s h-quarter-ahead inflation

forecast at time t , πi ,t→t+h|t , is expressed into the portions representing prior beliefs (πpb
i ,t→t+h|t ),

common information ( πc
i ,t→t+h|t ), and idiosyncratic information (πi d

i ,t→t+h|t ) as follows.

πi ,t→t+h|t = Li ,t −
(

1−e−λh

λh

)
Si ,t

=αi ,L +βi ,LLt +εi ,L,t −
(

1−e−λh

λh

)(
αi ,S +βi ,SSt +εi ,S,t

)
=αi ,L −

(
1−e−λh

λh

)
αi ,S +βi ,LLt −

(
1−e−λh

λh

)
βi ,SSt +εi ,L,t −

(
1−e−λh

λh

)
εi ,S,t

= Lpb
i −

(
1−e−λh

λh

)
Spb

i︸ ︷︷ ︸
prior belief component

+Lc
i ,t −

(
1−e−λh

λh

)
Sc

i ,t︸ ︷︷ ︸
common component

+Li d
i ,t −

(
1−e−λh

λh

)
Si d

i ,t︸ ︷︷ ︸
idiosyncratic component

=πpb
i ,t→t+h|t +πc

i ,t→t+h|t +πi d
i ,t→t+h|t .

The factor structure leads us to decompose the cross-sectional dispersion of πi ,t→t+h|t into

the dispersion components driven by the three information sources.7

vari (πi ,t→t+h|t ) ≈ vari (πpb
i ,t→t+h|t )+ vari (πc

i ,t→t+h|t )+ vari (πi d
i ,t→t+h|t ) (25)

If the pool of forecasters does not change over time, the variance of individual prior beliefs

7This variance decomposition is possible, because innovations to the common component and innovations to
the idiosyncratic component are independent with each other. The realized shocks to common and idiosyncratic
component may show some comovements at times, but this ex-post covariation still does not invalidate the
assumption that the two are independent processes.
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(the first term in (25)) should not create changes in the dispersion. Since each forecaster has

different average forecasts, the churns of the forecasters or the compositional changes of the

forecasters likely create variations in the dispersion.8

5.2 Decomposition result

Figure 9 reports the decomposition result of Equation (25) by the forecast horizon. The upper

panels display the decomposition for short-term inflation expectations (6-month and 1-year

ahead). The bottom panels report the decomposition for longer-term inflation forecasts (5- and

10-years ahead). The disagreement about short-term inflation forecasts is mainly explained by

idiosyncratic information (yellow line). Meanwhile, individual prior beliefs (blue line) play a

larger role in the disagreement about long-run inflation expectations than idiosyncratic informa-

tion. The contribution from common information (red line) is the smallest on average, regardless

of the forecast horizon. For long-run expectations disagreement, common information is an

important driver of increased disagreement in times of high uncertainty, such as the Great Reces-

sion and the Covid-19 pandemic. The pandemic is distinguished from the previous recessions

in that common information is the main driver behind the dramatic increase in disagreement

about both short- and long-run forecasts.

Figure 10 reports the share of common information in the variance of forecast at each point

in time. The contribution of common information to the disagreement changes dramatically

over time. The share exhibits countercyclicality, increasing in times of large economic shocks,

regardless of the forecasting horizon. This observation suggests that forecasters pay more atten-

tion to public information during an economic downturn or the period of inflation uncertainty,

but translate the public information into their forecasts in different manners.

Furthermore, common information has different effects on the short-run and long-run

forecasts and over the recession episodes. Figure 11 shows the share of common information

in the disagreement over the forecast horizon. Before the Great Recession, the role of common

information in the disagreement is low over the forecast horizon. The share is larger in the

short run than in the long run. Quite differently, at the peak of the Great Recession, common

information plays a larger role than before the economic downturn. In particular, the share

is larger in the long-run forecasts than in the short-run forecasts (middle panel). The Covid

pandemic is unique in that common information was the main driver of increased disagreement

8In this context, the dispersion due to permanent heterogeneity is interpreted as the natural level of disagreement.
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Figure 9: FORECAST VARIANCE DECOMPOSITION

Notes: The figure shows the decomposition of the overall disagreement about inflation expectations (black line)
into portions driven by individual prior beliefs (denoted by FE, blue line), heterogeneous responses to common
information (denoted by Common, red line), and idiosyncratic information (denoted by Idiosyncratic, yellow line).
The gray areas denote the NBER recessions.

Sources: Authors’ calculation
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Figure 10: FORECAST VARIANCE SHARE OF COMMON COMPONENT

Notes: The figure shows the fraction of overall disagreement about inflation expectations driven by heterogeneous
responses to common information. The gray areas denote the NBER recessions.

Sources: Authors’ calculation

across all forecasting horizons (bottom panel). The share is greater than 0.5 across all forecast

horizons. In the presence of shocks that are unprecedented in nature and magnitude and

the consequent policy responses, forecasters paid attention to public information during the

pandemic. However, due to the high uncertainty, forecasters had different interpretations about

the public information and produced quite different inflation projects across the forecasting

horizons.

The importance of common information in long-term disagreement in times of high eco-

nomic uncertainty suggests that monetary policy may be able to anchor long-horizon expecta-

tions effectively with clearer communication.

6 Implications for monetary policy

We examine the extent to which the informational content of monetary policy can effectively

reduce disagreement about inflation expectations.
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Figure 11: TERM STRUCTURE OF VARIANCE SHARES AT THREE DATES
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Notes: The figure shows the fraction of overall disagreement about inflation expectations driven by heterogeneous
responses to common information over the forecast horizon at three different points in time. The top panel reports
the estimates as of 2007:Q3, the middle panel as of 2009:Q2, and the bottom panel as of 2022:Q3.

Sources: Authors’ calculation

31



6.1 Model: SVAR-IV

For this analysis, we employ a structural vector autoregression model with external instrument

variables (SVAR-IV, henceforth). The baseline SVAR-IV is the specification from Stock and Watson

(2018). As an instrument for the informational content of monetary policy, we consider the

following two shocks : Fed reactions to economic news Bauer and Swanson (2023) and forward

guidance shock from Swanson (2021). Bauer and Swanson (2023, 2022) adjust the high-frequency

monetary policy surprises by removing the portions reflecting recent macroeconomic and

financial news. Bauer and Swanson call this effect "Fed’s response to news." Since our goal is to

estimate the effect of monetary policy communication on the disagreement among forecasters,

we use this purged portion as a monetary-policy information shock and hence the instrument for

the SVAR model. We also consider the forward guidance shock from Swanson (2021) as another

type of surprise in the monetary policy communication for robustness checks.

Our VAR model includes the following quarterly macroeconomic variables: the log of indus-

trial production, the log of the consumer price index, the excess bond premium from Gilchrist

and Zakrajšek (2012), the two-year treasury yield, and two disagreement estimates.9 The two dis-

agreement estimates include disagreement about 6-month ahead inflation expectations driven

by common and idiosyncratic information, respectively. Replacing the short-term disagree-

ment estimates, we consider disagreement about 10-year-ahead inflation expectations driven

by common and idiosyncratic information. We consider short-run and long-run disagreement

separately, because VAR estimates, those from a VAR with a large vector in particular, can be

sensitive to model specification.10 Nevertheless, we also extend the baseline VAR to include the

four disagreement estimates altogether in one vector.

We stack the six variables in a vector Yt and estimate a reduced-form VAR as follows:

Yt =α+B(L)Yt−1 +ut (26)

where α is a constant, B(L) is a matrix of polynomial in the lag operator, and ut is a 6 × 1

vector of serially uncorrelated residuals, with V ar (ut ) = I . We estimate Equation (26) from

1990:Q1-2019:Q4 using ordinary least squares with 4 lags.

As in the literature on SVAR-IV with the external instrument, we assume that the reduced

9Our model is similar to Bauer and Swanson (2022).
10Graves et al. (2023) employed a similar approach.
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form shock ut is expressed into a linear combination of structural shocks as follows:

ut = Sϵt (27)

where ϵt is a vector of serially uncorrelated structural shocks. Given our research question,

we assume that one of the structural shocks is a monetary policy shock. Let ϵmp
t denote the

monetary policy shock and order it first in the vector ϵt . The first column of S, denoted by s1,

captures the impact of ϵmp
t on Yt .

We use the high-frequency identification to estimate the impact of ϵmp
t . Let zt denote the

high-frequency shock of our interest—Fed’s reaction to news or forward guidance—converted to

a quarterly series by summing over all the high-frequency surprises within each quarter. As well

known in the literature, for zt to be a valid instrument of ϵmp
t , the relevance condition should be

satisfied:

E [ztϵ
mp
t ] ̸= 0, (28)

and the following exogeneity condition should be satisfied as well:

E [ztϵ
−mp
t ] = 0, (29)

where ϵ−mp
t denotes elements in ϵt other than the first Stock and Watson (2018).

With zt , we estimate the impact effect in the SVAR-IV as in Stock and Watson (2018). Specifi-

cally, we order the two-year Treasury yield first in Yt and denote it by Y 2y
t . We then arrive at our

empirical model:

Yt = α̃+ B̃(L)Yt−1 + s1Y 2y
t + ũt .

This regression model is estimated with two-stage least squares with zt as the instrument for

Y 2y
t . Note that the first element of s1 is unity for normalization. In the impulse responses, we

report the impact effect of 25 basis points rather than 1 percentage point. Given the estimated s1

and B(L), we can calculate the impulse response function for each variable.

6.2 Estimation result

Figure 12 reports the response of disagreement about short-term (6-month ahead) and long-

term (10-year ahead) inflation expectations to Fed’s contractionary reactions to economic news.
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Figure 12: RESPONSES OF DISAGREEMENT TO FED’S REACTION TO NEWS

0 5 10
-0.05

0

0.05
Public (6 month)

0 5 10
-0.05

0

0.05
Private (6 month)

0 5 10
-0.05

0

0.05
Public (10 year)

0 5 10
-0.05

0

0.05
Private (10 year)

Notes: The figure shows the responses of disagreement about inflation expectations driven by public and private
information to a monetary policy information shock from Bauer and Swanson (2023). The upper panels show the
responses of disagreement about 6-month ahead inflation expectations. The bottom panels show the responses of
disagreement about 10-year ahead inflation expectations. The dashed line captures the 95 percent confidence
intervals.

Sources: Authors’ calculation
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Figure 13: RESPONSES OF DISAGREEMENT TO FORWARD GUIDANCE
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Notes: The figure shows the responses of disagreement about inflation expectations driven by public and private
information to a forward guidance shock from Bauer and Swanson (2023). The upper panels show the responses of
disagreement about 6-month ahead inflation expectations. The bottom panels show the responses of disagreement
about 10-year ahead inflation expectations. The dashed line captures the 95 percent confidence intervals.

Sources: Authors’ calculation

Note that the Fed’s contractionary reaction implies downside inflation stabilization. The left

column reports the responses of disagreement driven by common information, and the right

column reports those driven by idiosyncratic information. Fed’s positive take of economic news

reduces disagreement about both short-run and long-run inflation forecasts one quarter after

the announcement, and the effects are statistically significant. Fed’s reaction equivalent of the 25

basis point rise in the policy rate reduces the commonality-driven short-term disagreement by

0.025 percentage point and the commonality-driven long-run disagreement by 0.01 percentage

point. These estimates are about one-tenth of the short-run and long-run variance on average.

Meanwhile, the effects are not statistically significant in disagreement driven by idiosyncratic

information.

We further analyze the effects of the forward-guidance shocks. Figure 13 reports the responses

of the disagreement with the forward guidance. Similarly to the result of Fed’s reactions to news,

forward guidance is effective in reducing disagreement driven by common information both
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in the short-run and long-run, but the effect is not statistically significant on disagreement

driven by private information. All told, our result suggests that disagreement driven by public

information is the margin on which monetary policy can affect to anchor inflation expectations.

7 Implications for theory

This section discusses the implications of our empirical findings on theoretical models. We

pay particular attention to the disagreement about long-run inflation forecasts. The gist of our

finding is summarized as follows: First, individual prior beliefs and the idiosyncratic information

are the main factors creating the long-run disagreement; Second, common and idiosyncratic

information drives changes in the disagreement; Third, heterogeneous responses to common

information is the key driver of increased disagreement about long-term inflation forecasts in

times of economic downturns or high inflation uncertainty. We analyze what features of existing

theoretical models can capture these empirical findings and then identify the missing piece in

the literature to draw implications for the next step in research.

We review the following models: the sticky information model; the noisy information model;

disagreement about means and long-run priors. Table 2 summarizes the main features of each

model in the context of our empirical findings. Note that there is no scope for disagreement

in the full-information rational expectation (FIRE) model, where economic agents are ex ante

identical and efficiently process available information.

To begin with, the importance of individual prior beliefs indicates that heterogeneity in

beliefs about long-run means Patton and Timmermann (2010) is the key to understanding the

disagreement between forecasters and is consistent with the recent finding of Farmer et al.

(2021) that the priors of individual forecasters play a key role in long-term macroeconomic

forecasts. Forecasters may have different priors on the long-term underlying inflation. Note

that our statistical model captures the forecaster-specific long-run prior with the individual

fixed effect. This individual fixed effect is different from the idiosyncratic information that a

forecaster has, in that the long-run prior does not change over time unlike the idiosyncratic

information. Therefore, disagreement induced by individual prior beliefs does not respond

particularly well to macroeconomic shocks. This margin accounts for the bulk of disagreement

about long-run inflation forecasts, with a smaller contribution to disagreement about short-run

inflation expectations.
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Disagreement driven by idiosyncratic information can be accounted for by the noisy in-

formation model. The noisy information model Woodford (2001) can generate disagreement

among forecasters, but is limited to characterize countercyclical disagreement or increased

disagreement to a large economic shock. In the model, forecasters are ex-ante identical with

the time-invariant information precision that are the same across forecasters, but they face

the realization of signals with idiosyncratic errors at any point in time. This feature generates

disagreement that does not vary over the business cycle. In this context, the noisy informa-

tion model provides an economic interpretation of the disagreement involving idiosyncratic

information in our model.

Disagreement driven by common information is explained by the noisy information model

with heterogeneity and the sticky information model. The noisy information model with het-

erogeneous information precision across forecasters can generate increased disagreement to

economic shocks Coibion and Gorodnichenko (2012), while the model without heterogeneity is

limited to do so. Notice that the factor loadings of the level and slope in our statistical model

may have economic interpretation of the heterogeneous information precision, in that the factor

loadings different across forecasters create disagreement from common information. Meanwhile,

the sticky information model can also generate disagreement at all times and capture increased

disagreement in times of large shocks if a certain condition is satisfied. In this model, economic

agents update their information set periodically due to the cost of information acquisition

Mankiw and Reis (2002). Thus, the disagreement arises because only a fraction of forecasters

update their forecasts in response to macroeconomic news, while others do not. The model

can capture that increased disagreement in response to macroeconomic news. However, in

the model, the increased disagreement dissipates over time as more forecasters update their

information set. This feature of the model matches well with the little role of common infor-

mation in normal times, but its increased importance during an economic downturn and the

normalization after the recession. Meanwhile, if the frequency of economic shocks is higher than

the frequency of information update, the model can also generate disagreement at all times.

However, existing models are limited in characterizing the different importance of permanent

heterogeneity and idiosyncratic and common information in short- and long-term inflation

forecasts. In particular, common information plays a larger role in the countercyclical disagree-

ment in the long-run forecasts than in the short run. Notice that our statistical model captures

the heterogeneity across the forecast horizons with the distinct factor loadings for the level
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Table 2: DISAGREEMENT IN THE MODELS OF EXPECTATION FORMATION

FIRE Sticky Noisy info. Noisy info. Disagreement
Information (Same) (Different) about means

Scope of disagreement X ✓ ✓ ✓ ✓
Permanent heterogeneity X X X X ✓
Changing idiosyncratic disagreement X X ✓ X X
Countercyclical common disagreement X ✓ X ✓ X
Forecast-horizon differences X X X X X

and the slope. Considering the factor loadings capture heterogeneous responses to common

information, the two sets of loadings suggest the need of two-dimensional heterogeneity in

information precision, the forecast-horizon specific precision, and the precision heterogeneous

across forecasters. In the context of information friction model, heterogeneity over the forecst

horizons may be captured with the frequency of information update different across forecasting

horizons. To the best of our knowledge, no such model that can characterize the two-dimensional

heterogeneity in disagreement is available. Overall, our empirical findings shed light on the

future path for modeling expectation formation and information acquisition.

8 Discussions

This section discusses an alternative model and methodology. Section 8.1 considers a time-

varying parameter model. Section 8.2 considers a non-parametric approach as an alternative of

our parametric model.

8.1 Time-varying parameter model

A. Fixed factor loading

In our model, the factor loadings of each forecaster are fixed. One might argue that our model

is limited to capture the changing responsiveness of forecasters to common information. The

time-invariant factor loadings are a restriction, but it is not a too strong restriction considering

the limited number of observations for each forecaster. An individual forecaster stays in the

sample for 27 quarters on average, which is a bit too short to allow regime changes in the factor

loadings for each individual.

Note that our model allows each forecaster to have his or her own unique loadings, although

the loadings are constant for a forecaster. Therefore, in our model, two similar forecasters
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observed at two different points in time have different loadings, reflecting increased or decreased

attention to potentially similar policy changes, for instance.

Our goal is to parse out the portion of cross-sectional variance attributed to common infor-

mation. In other words, as long as the common component—the product of common factor

and factor loading—is distinguished from the idiosyncrasy, the distinction of factor loading

from common factor is not necessary. For instance, if the common component does not change

in spite of an increase in the factor loading, the portion of disagreement driven by common

information does not change and hence the increased factor loading does not matter.

B. Stochastic Volatility

We do not allow changing variance for the dynamics of idiosyncratic component and com-

mon factors. However, we assume that each forecaster has a unique variance for his or her

idiosyncratic component. Since an individual forecaster stays in the sample for a relatively

short period of time (average 26 quarters), the fixed volatility for each forecaster is not a too

strong assumption. Considering the churns of forecasters, the forecast-specific variance for

idiosyncrasy can be thought of allowing stochastic volatility in the aggregate sense. However,

one caveat is that for those who stay in the sample for a long enough period of time, stochastic

volatility may be needed to adequately estimate the variance for the idiosyncratic component.

The resilience of the model estimates to the Covid-19 shock is a practical concern. If the

pandemic observations dramatically alter the parameter estimates, the pre-pandemic inference

changes dramatically with the inclusion of a handful of pandemic observations. In this case,

including stochastic volatility may robustify the inference, as it discounts the pandemic volatility

and largely prevents the model from carrying backward the Covid shock for the pre-pandemic

inference. To check how reliable the estimates are to the Covid shock, we compare the model

estimates through 2019:Q4 with those through 2023:Q4. In particular, the estimates and the main

conclusion are robust to the inclusion of the pandemic observations for the period prior to the

COVID era. This observation suggests that our result is fairly robust even without the absence of

stochastic volatility.

8.2 Evidence from a non-parameteric model

Our baseline model is a highly parameterized model with a large number of parameters. Since

the model is estimated with maximum likelihood, the numerical optimization is costly and time-
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consuming. One may argue that our conclusion may be sensitive to the particular parametric

assumptions that we impose and that the parameter estimates may be unstable because of the

estimation difficulty.

For robustness checks along this margin, we consider an alternative two-step approach. The

first step is to construct a nonparametric model that describes the individual term structure of

inflation expectations. In this model, we use Legendre polynomials to fit the near-term variations

in inflation forecasts and a log function to fit the long-term inflation projection beyond one

year ahead. We fit each forecaster’s observed inflation projections with the polynomials and the

log-function with least squares. From this step, the level and slope factor for each individual is

estimated. In the second step, we estimate a dynamic factor model for each factor to parse out

the common and idiosyncratic components. We estimate the factor model with the algorithm of

Banbura and Modugno (2014), since the data sets for level and slope are in an incomplete panel

structure. Finally, we recover the portions of individual term structure attributed to common

and idiosyncratic information and the portions reflecting permanent heterogeneity. Further

details about this model are documented in the Appendix.

Compared to the baseline model, the alternative model is less costly to estimate. In addition,

we can allow for more than one common factor for the level or slope without much estimation

cost. However, this convenience comes with cost. The log function is not flexible enough

to capture observed forecasts beyond one year out and hence produce unrealistic long-end

estimates—a noticeable decline in the long end— during the Covid-19 pandemic. This problem

is not observed in our baseline model. However, the overall conclusion is robust regardless.

9 Conclusion

We develop a new parametric model for individual inflation expectations at different forecasting

horizons, an individual term structure of inflation expectations. We estimate our model with

individual-level data in the Survey of Professional Forecasters and uncover rich heterogeneity

in the dynamic pattern of the term structure between forecasters and over time. Our new

statistical model allows us to analyze disagreement in a comprehensive way. We decompose

the disagreement about inflation expectations at each forecasting horizon into a component

driven by individual prior beliefs and private and public information, which is entirely new in

the literature.
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We find that the disagreement about future inflation is mainly driven by forecasters’ private

information and long-run priors with the former’s contribution larger in the short run than

in the long run and vice versa for the latter. However, in times of high inflation uncertainty

or economic recessions, heterogeneous reactions to public information play a key role in the

increased disagreement about long-term inflation expectations. The Covid-19 pandemic is a

unique period of time in which public information led to disagreement on both short-term and

long-term inflation projections.

Our empirical findings have important implications for policy and theory. Disagreement

about inflation expectations serves as an independent measure of how well anchored infla-

tion expectations are. Since monetary policy is public information, disagreement driven by

heterogeneous responses to public information captures the degree to which communication

on monetary policy affects the disagreement. Our result suggests that clear communication

about monetary policy can be particularly effective in reducing disagreement and anchoring

inflation expectations in times of great economic uncertainty. Furthermore, our empirical result

points to the area of new research. Different dynamic patterns of disagreement over the term

structure suggest the need to consider heterogeneity over the forecasting horizon in the model

of information acquisition.
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Appendix A Detailed Notation for Nelson-Siegel Model and Esti-

mation

This section provides full expression for the lengthy notation adoped in the model.

The observation vector in any period, yt is given by

yt :=



π1,t→t+1|t

π1,t+1→t+2|t

π1,t+2→t+3|t

π1,t+3→t+4|t

π1,t+3→t+7|t

π1,t+2→t+6|t

π1,t+1→t+5|t

π1,t→t+4|t

π1,t→t+7|t+11

π1,t+6→t+10|t

π1,t+5→t+9|t

π1,t+4→t+8|t

π1,t→t+19|t

π1,t→t+18|t

π1,t→t+17|t

π1,t→t+16|t

π1,t→t+39|t

π1,t→t+38|t

π1,t→t+37|t

π1,t→t+36|t
...

πn,t→t+37|t

πn,t→t+36|t



(A1)
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The first four elements of yt correspond to fixed horizon forecasts of one to four quarters ahead

and are typically observed every period. Only four of the final sixteen elements of yt observed in

any given quarter. These final sixteen elements correspond to fixed event forecasts, where each

group of four correspond to the fixed event correctly mapped to the right forecast for the given

quarter in which the survey is being conducted.

For the final eight elements, which correspond to forecasts of average inflation over five and

ten year periods including the current calendar year, we must adjust them to directly with our

model. Specifically

• In Q1, we define

πi ,t→t+19|t := 4

19

(
5πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t

)
πi ,t→t+39|t := 4

39

(
10πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t

)

• In Q2, we define

πi ,t→t+18|t := 4

18

(
5πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t

)
πi ,t→t+38|t := 4

38

(
10πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t

)

• In Q3, we define

πi ,t→t+17|t := 4

17

(
5πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t − 1

4
πi ,t−3→t−2|t

)
πi ,t→t+37|t := 4

37

(
10πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t − 1

4
πi ,t−3→t−2|t

)

• In Q4, we define

πi ,t→t+16|t := 4

16

(
5πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t − 1

4
πi ,t−3→t−2|t − 1

4
πi ,t−4→t−3|t

)
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πi ,t→t+36|t := 4

36

(
10πi ,t−1→t+19|t − 1

4
πi ,t−1→t |t − 1

4
πi ,t−2→t−1|t − 1

4
πi ,t−3→t−2|t − 1

4
πi ,t−4→t−3|t

)

For the nowcasts πi ,t−1→t |t and backcasts πi ,t−2→t−1|t , we use the reported values from the SPF.

For the two and three period backcasts πi ,t−3→t−2|t and πi ,t−4→t−3|t , we use the most recently

available vintage of the CPI at the time that the forecast was made.
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Define the measurement equation mapping matrix H as

H :=



β1,L −β1,S fS(0,1) 1 fS(0,1) . . . 0 0

β1,L −β1,S fS(1,2) 1 fS(1,2) . . . 0 0

β1,L −β1,S fS(2,3) 1 fS(2,3) . . . 0 0

β1,L −β1,S fS(3,4) 1 fS(3,4) . . . 0 0

β1,L −β1,S fS(3,7) 1 fS(3,7) . . . 0 0

β1,L −β1,S fS(2,6) 1 fS(2,6) . . . 0 0

β1,L −β1,S fS(1,5) 1 fS(1,5) . . . 0 0

β1,L −β1,S fS(0,4) 1 fS(0,4) . . . 0 0

β1,L −β1,S fS(7,11) 1 fS(7,11) . . . 0 0

β1,L −β1,S fS(6,10) 1 fS(6,10) . . . 0 0

β1,L −β1,S fS(5,9) 1 fS(5,9) . . . 0 0

β1,L −β1,S fS(4,8) 1 fS(4,8) . . . 0 0

β1,L −β1,S fS(0,19) 1 fS(0,19) . . . 0 0

β1,L −β1,S fS(0,18) 1 fS(0,18) . . . 0 0

β1,L −β1,S fS(0,17) 1 fS(0,17) . . . 0 0

β1,L −β1,S fS(0,16) 1 fS(0,16) . . . 0 0

β1,L −β1,S fS(0,39) 1 fS(0,39) . . . 0 0

β1,L −β1,S fS(0,38) 1 fS(0,38) . . . 0 0

β1,L −β1,S fS(0,37) 1 fS(0,37) . . . 0 0

β1,L −β1,S fS(0,36) 1 fS(0,36) . . . 0 0

...
...

...
...

. . .
...

...

βn,L −βn,S fS(0,37) 0 0 . . . 1 fS(0,37)

βn,L −βn,S fS(0,36) 0 0 . . . 1 fS(0,36)



(A2)
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Define the constant vector in the measurement equation, µy , as

µy :=



αL −αS fS(0,1)

αL −αS fS(1,2)

αL −αS fS(2,3)

αL −αS fS(3,4)

αL −αS fS(3,7)

αL −αS fS(2,6)

αL −αS fS(1,5)

αL −αS fS(0,4)

αL −αS fS(7,11)

αL −αS fS(6,10)

αL −αS fS(5,9)

αL −αS fS(4,8)

αL −αS fS(0,19)

αL −αS fS(0,18)

αL −αS fS(0,17)

αL −αS fS(0,16)

αL −αS fS(0,39)

αL −αS fS(0,38)

αL −αS fS(0,37)

αL −αS fS(0,36)

...

αL −αS fS(0,37)

αL −αS fS(0,36)



(A3)
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Define the vector measurement errors vt as

vt :=



v1,1,t

v1,2,t

v1,3,t

v1,4,t

v1,5,t

v1,6,t

v1,7,t

v1,8,t

v1,9,t

v1,10,t

v1,11,t

v1,12,t

v1,13,t

v1,14,t

v1,15,t

v1,16,t

v1,17,t

v1,18,t

v1,19,t

v1,20,t

...

vn,19,t

vn,20,t



(A4)
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The covariance matrix of the the measurement error vector R is given by

R := diag





σ2
v,1

σ2
v,2

σ2
v,3

σ2
v,4

σ2
v,5

σ2
v,6

σ2
v,7

σ2
v,8

σ2
v,9

σ2
v,10

σ2
v,11

σ2
v,12

σ2
v,13

σ2
v,14

σ2
v,15

σ2
v,16

σ2
v,17

σ2
v,18

σ2
v,19

σ2
v,20

. . .

σ2
v,19

σ2
v,20





(A5)
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Appendix B Gibbs Sampler Details

1. Sample θ1 =
{
αi ,L ,αi ,S ,βi ,L ,βi ,S

}N
i=1 conditional on remaining parameters.

Since all of the shocks are assumed to be independent, this can be treated as a separate

regression model for each forecaster i . We assume independent, multivariate normal

priors for each group of four parameters
[
αi ,L ,αi ,S ,βi ,L ,βi ,S

]′ across each foracaster i ,

where 

αi ,L

αi ,S

βi ,L

βi ,S


∼ N

(
µi ,Σi

)

2. Sample θ2 = vec(A)
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Appendix C Other figures

This section shows figures that are not included in the main text.

Figure C1: SMOOTHED IDIOSYNCRATIC FACTOR DISPERSION

Notes: The shaded areas denote the NBER recessions.

Sources: Authors’ calculation

Figure C2: SMOOTHED IDIOSYNCRATIC FACTOR SKEWNESS

Notes: The shaded areas denote the NBER recessions.

Sources: Authors’ calculation
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Figure C3: SMOOTHED IDIOSYNCRATIC FACTOR KURTOSIS

5
Notes: The shaded areas denote the NBER recessions.

Sources: Authors’ calculation

Appendix D Nonparametric representation

In this section, we build and estimate an alternative non-parametric model which is estimable

with least squares. This non-parametric model also recovers the complete path of individual

inflation forecasts over a 10-year horizon at each point in time. We find that the empirical

result from the alternative model is broadly consistent with our baseline result, confirming the

robustness of our baseline conclusion.

D.1 Model

The term structure is modeled as the sum of two different components, short-run and long-run.

The short-run model characterizes the forecasts πt−1→t |t to πt+3→t+4|t , while the long-run model

characterizes the forecasts πt+3→t+4|t to πt+38→t+39|t . Short-run forecasts are characterized by

level, slope, and curvature factors while long-run forecasts are characterized by a long-term slope.

Since we have more observations of individual forecasts at the short-end than the long-end, we

are able to use a more flexible short-run econometric model.
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D.1.1 Short-run Forecasts

For horizons 0 to 4 quarters ahead, forecasts are modeled as follows

πt+h−1→t+h|t = lt + ss
t (h)+ ct (h)

= lt + ss
t ·

h

4
+ c1,t L2

(
2h

4
−1

)
+ c2,t L4

(
2h

4
−1

)
(D6)

where lt is a level factor, ss
t is a slope factor (with an s superscript to distinguish it from the

long-run slope factor), and c1,t and c2,t are curvature factors. The curvature ct (h) is a weighted

sum of the 2nd and 4th Legendre polynomials, L2 and L4 respectively.

The level factor lt is determined as the nowcast of the current QoQ inflation rate πt−1→t |t .

The short-run slope factor ss
t is measured as πt+3→t+4|t −πt−1→t |t , the difference between the

4-quarter ahead forecast and the nowcast. The short-term curvature ct (h) captures the residual

variation in inflation forecasts that are not accounted for by the short-term level and slope.

D.1.2 Long-run Forecasts

The path of inflation forecasts between πt+3→t+4|t and πt+38→t+39|t is determined a single long-

run slope parameter. We only consider a one-parameter model because it is difficult to identify

curvature from the observed averages of annual forecasts.11 To take into account possible non-

linearity in long-run inflation expectations, we adopt a log function to characterize the long-run

slope:

πt+h−1→t+h|t =πt+3→t+4|t + sl
t (h) for h ≥ 5.

sl
t (h) is the slope of h-period-ahead projection:

sl
t (h) =λt · ln(h −4)

ln(39−4)
for h = 5, . . . ,39

11In particular, the only information we have for forecasts of inflation between 5 and 10 years out is from the
10-year average forecast.
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where λt is the overall change in inflation expectations between 1 and 10 years out. It follows

that

πt+38→t+39|t =πt+3→t+4|t +λt .

In this model, the only unknown is λt .12

D.1.3 Full Model

Combining the short-term and long-term forecasting models we can write the model for a

general forecast

πt→t+h|t = lt +1 {h ≤ 4}
[
ss

t (h)+ ct (h)
]+1 {h > 5}

[
ss

t + sl
t (h)

]

for h = 0, . . . ,39. For the 1Q backcast, πt−2→t−1|t , we use the value provided in an individual

forecaster’s survey response. For any further backcasts, πt−h|t−h+1|t for h > 2, the forecaster is

assumed to use the latest available vintage of inflation data.

D.2 Estimation of the Model

The level factor lt is identified as the nowcast πt−1→t |t

l̂t =πt−1→t |t (D7)

The short-run slope factor is identified as the difference between the four-quarter ahead forecast

πt+3→t+4|t and the nowcast πt−1→t |t

ŝs
t =πt+3→t+4|t −πt−1→t |t (D8)

12Note that our functional form for the long-run implies forecasts are monotonically increasing or decreasing
from one to ten years out. We also tried fitting a more conventional Nelson-Siegel model with curvature to the
long-run but found that we could not precisely estimate the parameters given the limited information we have for
medium and long-run forecasts.
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Collect the deviations of the forecasts πt→t+1|t , πt+1→t+2|t , and πt+2→t+3|t from the values pre-

dicted by the term structure in the vector ε̂s,t :

ε̂s,t =


πt→t+1|t − l̂t − ŝs

t · 1
4

πt+1→t+2|t − l̂t − ŝs
t · 2

4

πt+2→t+3|t − l̂t − ŝs
t · 3

4

 (D9)

The curvature factors c1,t and c2,t are estimated by OLS from a regression of ε̂s,t on

Lt =


L2

(2
4 −1

)
L4

(2
4 −1

)
L2

(4
4 −1

)
L4

(4
4 −1

)
L2

(6
4 −1

)
L4

(6
4 −1

)


which gives  ĉ1,t

ĉ2,t

= (
L′

t Lt
)−1 L′

t ε̂s,t (D10)

Note that we need not use πt−1→t |t and πt+3→t+4|t to estimate the curvature factors since the

curvature ct (h) is equal to 0 by construction at those values for all c1,t and c2,t .

For long-run forecasts, the estimation depends on the quarter in which the survey is con-

ducted since the forecasts are always relative to the first quarter of the year. Collect the deviations

of the one to three-year ahead forecasts and the five and ten-year averages of Q4 over Q4 forecasts

from their model implied counterparts in a vector ε̂l ,t :

ε̂l ,t =



πqa−1(t )→qa−1(t )+3|t − π̂qa−1(t )→qa−1(t )+3|t

πqa−1(t )+4→qa−1(t )+7|t − π̂qa−1(t )+4→qa−1(t )+7|t

πqa−1(t )+8→qa−1(t )+11|t − π̂qa−1(t )+8→qa−1(t )+11|t
1
5πqa−1(t )→qa−1(t )+19|t − 1

5 π̂qa−1(t )→qa−1(t )+19|t
1

10πqa−1(t )→qa−1(t )+39|t − 1
10 π̂qa−1(t )→qa−1(t )+39|t


(D11)
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Define h∗
1 such that πqa−1(t )+h∗

1−1→qa−1(t )+h∗
1 |t = πt+3→t+4|t . That is, h∗

1 is the forecast horizon

relative to the final quarter of the year prior to when the survey was conducted that corresponds

to the 4Q-ahead forecast in the SPF. For any forecast horizon h > 0 such that t +h ≤ 39, define

h1 ≡ min(h,h∗
1 ). Finally, define h2 ≡ h −h1. This allows us to define

π̂qa−1(t )→qa−1(t )+h|t =
h1−1∑
s=1

πqa−1(t )+s−1→qa−1(t )+s|t +
h1+h2∑
s=h1

(
πt+3→t+4|t + sl

t (s −h1 +5)
)

=
h1−1∑
s=1

πqa−1(t )+s−1→qa−1(t )+s|t + (h2 +1)+λt

h1+h2∑
s=h1

ln(s −h1 +1)

ln(35)

The long-run slope λt is estimated by minimizing the sum of squared residuals ε̂l ,t

λ̂t = argmin
λt

ε̂′l ,t ε̂l ,t (D12)

D.3 Estimation Results

This section reports and discusses our results from the estimation of the term-structure model.

We estimate our model for every forecaster and every time period available in the SPF for whom

we have sufficient data.13

Figure D4 plots the cross-sectional means of the estimated factors from our model over time.

The top left panel plots the mean level factor, which tracks the consensus inflation nowcast (and

thus realized inflation to a large extent) by construction. The top right panel plots the implied

consensus forecast of QoQ inflation 10 years ahead, i.e. the forecast of inflation between 38 and 39

quarters out, πt+38→t+39|t . This is a summary measure of long-run inflation expectations, which

unlike forecasts of 10-year average inflation, contains only information about long-run beliefs.

Long-run inflation expectations exhibited a sharp downward trend in the 1990s, stabilizing

around 2.5% by the early 2000s. In the later part of the sample they have drifted down even

further nearing 2% during the COVID pandemic.

13So long as we observe non-missing values for πt−1→t |t , πt+3→t+4|t , and so long as two elements of both ε̂s,t and
ε̂l ,t are well-defined for forecaster i at time t , we estimate an individual-level term structure of inflation expectations
for forecaster i at time t .
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Figure D4: MEAN OF ESTIMATED FACTORS

Notes: The shaded areas denote the NBER recessions.

Sources: Authors’ calculation

The middle left panel plots the mean of the short-run slope factor, which tracks the expected

path of inflation over the year following the survey. The middle right panel plots the mean of

the long-run slope factor, which tracks the expected path of inflation between one and ten years

after the survey. The term structure of inflation expectations is typically upwards sloping, with

the short-run slope factor being positive for about 62% of the sample and the long-run slope

factor being positive for about 76% of the sample. The steepest positive slopes occur in the years

following the dotcom bubble and in the Great Recession. The long-run slope has systematically

declined over the 2010s and is about -0.5% as of 2022Q1. The short-run and long-run slope

factors have a correlation of 0.38 and thus still exhibit a large amount of independent variation.

The bottom panels plot the short-run curvature factors c1,t (left) and c2,t (right). The estimates

are noisy, reflecting the short-term noisiness.

Figure D5 plots the cross-sectional standard deviations, i.e. dispersions, of the estimated

factors from our model over time. Each panel corresponds to the same factor as in Figure

D4. Long-run inflation factors were more dispersed than short-run expectations early in our
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Figure D5: DISPERSION OF ESTIMATED FACTORS

Notes: The shaded areas denote the NBER recessions.

Sources: Authors’ calculation

sample but since around the Great Recession, that pattern has flipped and short-run factors have

tended to be more dispersed. The dispersion of all factors spiked during the Great Recession but

interestingly long-run factors have remained relatively stable during the COVID-19 pandemic,

suggesting strong credibility of central bank policy and communication. In the most recent

couple of quarters there has been an increase in long-run dispersion which may be an early

warning sign of this pattern reversing.

Figure D6 plots the estimated term structure of inflation expectations at different points in

time. The columns correspond to 2007:Q3, 2009:Q2, and 2022:Q1 respectively. The rows corre-

spond to particular forecasters, the consensus forecast, and the overall dispersion respectively.

The dates are chosen to showcase the flexibility of the term structure model in fitting different

patterns.

First we consider 2007:Q3. This was the final survey conducted before the start of the Great

Recession. The consensus term structure is relatively flat, with the nowcast and 10-year ahead

inflation expectations being around 2.25%. The estimates imply some nonlinear expected short-
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Figure D6: ESTIMATED TERM STRUCTURE OF INFLATION EXPECTATIONS AT THREE DATES
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run variation in inflation, displaying oscillation between 2.1 and 2.4% over the year following the

survey before steadily declining over the one to ten-year ahead horizons. The two forecasters’

trajectories are quite different from the consensus. Dispersion is high in the short-run and low

in the medium and long-run.

Next consider 2009:Q2, in the middle of the Great Recession. The term structures are upward

sloping for both forecasters and the consensus. The forecasters expect a short-run increase and

decline from 1%, before a steady increase over the one to ten-year ahead horizons to about 1.6%.

The consensus forecasts increase mostly monotonically from 1% to about 2.7%. The forecasters

show significantly lower long-run inflation than the consensus whereas they were aligned in

2007:Q3. Dispersion is high in the short and long-run but lower in the medium run.

Finally we consider 2022:Q1. Inflation expectations are mostly monotonically decreasing for

both forecasters and the consensus, with most of the decline occurring over the first year out

and then a slow decline from one to ten years ahead. Dispersion is highest at the 3 and 4Q ahead

horizons, and declines rapidly at medium and long horizons.
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D.4 Dynamic decomposition of disagreement

This section investigates the role of individual prior beliefs and public and private information

in the disagreement. We employ a dynamic factor model to assess the role of public and private

information in changes of individual i ’s j -period-ahead inflation projection.

D.4.1 Dynamic factor model for the term-structure of inflation expectations

Consider forecaster i ’s j -period-ahead inflation projection denoted by z j
i t . The variable z j

i t is

composed of the portion that comoves with other forecasters’ j -period-ahead projection and

the portion that does not. The mean of z j
i t over t is denoted by c j

i . Let x j
i t denote the former that

reflects public information and e j
i t denote the latter that is the outcome of forecaster i ’s private

information. Note that x j
i t and e j

i t have zero means. In this environment, z j
i t is the sum of c j

i ,

and x j
i t and e j

i t .

z j
i t = c j

i +x j
i t +e j

i t . (D13)

Suppose that there are total N forecasters. We collect z j
i t of all forecasters into a vector z j

t =
[z j

1t , z j
2t , · · · , z j

N t ]′, the common components in the vector x j
t = [x j

1t , x j
2t , · · · , x j

N t ]′, and the id-

iosyncratic components in the vector e j
t = [e j

1t ,e j
2t , · · · ,e j

N t ]′. Equation (D13) is rewritten into the

following:

z j
t = c j +x j

t +e j
t . (D14)

The vectors, x j
t and e j

t , are estimated with a dynamic factor model. We first standardize z j
t

so that z j
t has a zero mean and a unit variance. Let y j

t = [y j
1t , y j

2t , · · · , y j
N t ]′ denote the vector of

standardized level factors. The model postulates:

y j
t =Λ j f j

t + r j
t , r j

t ∼ i .i .d .N (0,R j ), (D15)

where f j
t is an p j ×1 vector of common factors and Λ j denotes an (N × p j ) matrix of factor
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loadings. The vector of idiosyncratic disturbances is captured by r j
t = [r j

1t ,r j
2t , · · · ,r j

N t ]′.14 The

idiosyncratic components r j
t is assumed to be uncorrelated with f j

t at all leads and lags. The

vector r j
t is drawn from a normal distribution with mean zero and covariance matrix R j , where

R j is a diagonal matrix.

The vector of common components, f j
t , follows a VAR process of order q j :

f j
t =C j

1 f j
t−1 +C j

2 f j
t−2 +·· ·+Cq j f j

t−q j +u j
t , u j

t ∼ i .i .d .N (0,Q j ). (D16)

In the above equation, C j
1 ,C j

2 , · · · ,C j

q j denote the p j ×p j matrices of VAR coefficients. We assume

that the vector of innovations u j
t is drawn from a normal distribution with zero means and

covariance matrix Q j .15

Note that forecasters join the survey and leave the sample at a different point in time. There-

fore, the dataset has an unbalanced panel structure due to missing observations and ragged

edges. Banbura and Modugno (2014) develop an algorithm that estimates equations (D15)-(D16)

in such data environment. Banbura-Modugno’s estimation algorithm is summarized as follows.

First, the data are demeaned and standardized. The unbalanced panel dataset is transformed

into a balanced one by filling in missing values and ragged edges with the interpolated values

of each forecaster’s j -period-ahead projection.16 Second, principal components are estimated

from the constructed balanced dataset. We use the estimated principal components as the

starting factors for the iteration of EM algorithm. The smoothed estimates of factors are obtained

from the E-step and the parameters are estimated via linear projections in the M-step.17

The number of factors are determined based on IC1, IC2, and IC3 from Bai and Ng (2002)

with the balanced dataset obtained from the second step of Banbura-Modugno’s algorithm.18

14We also consider the case where r j
t follows an AR(1) process for robustness checks. The result is robust as

documented in the appendix.
15Since our sample period begins from the mid 1990s, non-stationarity or I(1) component in the idiosyncratic

component are less of an issue.
16See the online appendix for more details about Banbura and Modugno (2014).
17See the appendix for more details on the algorithm.
18We set the maximum number of factors to be 5. All three statistics often do not agree about the optimal number

of factors, as it is well known. In this case, we check the robustness of estimates given the number of factors
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After this step, we choose the number of lags in Equation (D16) based upon Akaike Information

Criterion (henceforth, AIC).

The common component, x j
i t , is estimated from the following. Notice that both the esti-

mated factor and the idiosyncratic component have zero means and unit variances, as they are

estimated from the standardized data. Therefore, we scale the factors multiplied by the factor

loadings by the standard deviation of forecaster i ’s j -period-ahead projection (σ j
i ) and add the

mean of forecaster i ’s j -period-ahead projection (µ j
i ):

x j
i t =Λ

j
i f j

t ×σ j
i ,

where Λ j
i is the elements in i th row of Λ j . The portion of private information in forecaster i ’s

j -period-ahead projection, ei t , is then computed from

e j
i t = z j

i t −x j
i t − c j

i .

We adopt essentially the same model for all j . However, the model specification is allowed to

change according to the information criteria for the number of factors and that of lags for the

factor dynamics.

D.5 The fit of model

This section checks the fit of model to examine whether we have reliable estimates or not. Figure

D7 displays the mean of (x̂ j
i t + ĉ j

i ) and that of ê j
i t by the forecast horizon of inflation expectations.

The left panels show the mean component (grey line) and the portion of mean component

attributed to by public information or the common factors (black dashed line). Overall, the

dynamic factor model portrayed in the previous section fits the mean of inflation forecasts fairly

well. The right panels display the portion of mean forecasts attributed to private information.

This portion is noisy, satisfying the assumption in Equation (D15).

suggested by each information criterion.
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Figure D7: MEAN OF INDIVIDUAL FORECASTERS’ PROJECTION BY FORECASTING HORIZON (PER-
CENTAGE POINT )

Notes: The left panel displays the mean common component and the right panel displays the mean idiosyncratic
component. Shaded areas denote the NBER recessions.

Sources: Authors’ calculation
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D.6 Dynamic Decomposition of Disagreement on Inflation Forecasts

This section explores the degree to which public and private information accounts for changes

in the disagreement about inflation forecasts at each horizon. The disagreement is measured by

cross-sectional dispersion of inflation forecasts.

We decompose the dispersion of j -period-ahead forecasts into the portions attributed to

prior beliefs and public and private information. We measure the disagreement with the variance

of each component in (D13).

vari (z̃ j
i t ) ≈ vari (c̃ j

i )+ vari (x̃ j
i t )+ vari (ẽ j

i t ). (D17)

Figure D8 reports the decomposition result of Equation (D17). The left panels display var (x̃ j
i t )

(dotted line) along with var (z̃ j
i t ) (solid line). The right panels display the share of var (x̃ j

i t ) out of

var (z̃ j
i t ) (solid line) and the average of the sample period (dashed line).

There are three notable features. First, the role of public information is more important in

the disagreement about longer-horizon forecasts than in that about shorter-horizon forecasts.

Specifically, public information accounts for about a quarter of the dispersion in nowcasting,

30% in the 1-year-ahead dispersion, and a half of the 10-year-ahead dispersion. This suggests

that the disagreement on long-term expectations is importantly accounted for by heterogeneous

reactions of forecasters to public information. Meanwhile, the disagreement about short-term

forecasts is driven by private information given that the forecasters are fairly homogeneous

about interpreting public information for their near-term forecasts.
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Figure D8: DECOMPOSITION OF THE DISAGREEMENT ABOUT j -PERIOD-AHEAD INFLATION (PER-
CENTAGE POINT )

Notes: The left panel displays the mean common component and the right panel displays the mean idiosyncratic
component. Shaded areas denote the NBER recessions.

Sources: Authors’ calculation
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