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linear difference equations are used extensively in macroeconomics and asset pric-
ing. They offer great flexibility in modeling time preference, intertemporal risk
aversion and attitudes to timing of resolution of uncertainty. We revisit the is-
sues of existence and properties of recursive utilities in regard to time preference,
risk and timing attitudes in a Markov setting. As these properties are of ordi-
nal nature, we focus on ordinal representations of recursive utilities which involve
joint transformation of the aggregator and the certainty equivalent. Taking into
account ordinal representations delivers weaker conditions for existence, discount-
ing, risk aversion, and preference for early resolution of recursive utilities than the
conditions previously known in the literature.

We examine Epstein-Zin and risk-sensitive recursive utilities that are often used
in applications. Further, we introduce a novel class of Koopmans recursive utili-
ties that are generated by an additively separable aggregator with non-linear dis-
count function and the expectation operator as a certainty equivalent. Koopmans
recursive utilities feature non-exponential discounting and a clear-cut separation
between timing and risk attitudes, and offer great flexibility in these dimensions.
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1. Introduction

Recursive utilities play an important role in macroeconomics and finance. They

offer great flexibility in modeling time preferences and intertemporal risk aversion.1

Their main advantage over the standard discounted expected utility is that they

discard time separability. In particular, the popular Epstein and Zin (1989) and

Weil (1990) recursive utility has been extensively used in asset pricing to explain

long standing empirical puzzles such as the equity premium puzzle and the risk-free

rate puzzle. The Epstein-Zin recursive utility allows for separate parametrization

of risk aversion and elasticity of intertemporal substitution. Recursive utilities

represent preferences as solutions to non-linear difference equations and therefore

can be easily used in dynamic programming.

The idea of recursive utility dates back to Koopmans (1960) and Kreps and

Porteus (1978). It postulates that the utility of a plan of current and future

consumption is an aggregate according to some specific function of a utility of

current consumption and a certainty equivalent of next period continuation utility

which is stochastic. The standard discounted expected utility has such recursive

structure with quasi-linear aggregator (linear in continuation utility, but not in

current consumption) and expectation as the certainty equivalent. Other recursive

utilities involve different specifications of an aggregator and a certainty equivalent.

In particular, Epstein-Zin utility has a non-linear aggregator and a utility-based

certainty equivalent.

Recursive utility is merely a representation of underlying preferences. Every

strictly increasing transformation of recursive utility represents the same prefer-

ences. We show that every transformation of recursive utility function is recursive

as well under a joint transformation of the aggregator and the certainty equivalent.

Many important properties of recursive utilities are properties of the underlying

preferences, that is, they are ordinal. Examples are time preference, attitudes to-

ward risk and timing of resolution of uncertainty, and the basic property of the

existence of recursive utility as a solution to the difference equation. While these

properties are invariant to transformations of recursive utility, the corresponding

sufficient conditions on the aggregator and the certainty equivalent are not invari-

1See Backus et al. (2004).
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ant to transformations. For example, contraction conditions of the aggregator and

the certainty equivalent, or concavity/convexity of the aggregator are not invariant

to transformations. The former conditions are critical for the existence and time

preference of recursive utility while the latter is critical for attitudes toward risk

and timing of resolution. This implies that, for the said properties of recursive util-

ities, it is sufficient that the relevant conditions hold for what we call an equivalent

ordinal representation, that is, a suitably chosen transformation of the aggregator

and the certainty equivalent.2

We revisit in this paper the issues of existence and properties of recursive

utilities taking into account their equivalent ordinal representations. Doing so

delivers significantly weaker conditions for the existence of recursive utility than the

conditions previously known in the literature. Further, it uncovers new sufficient

conditions for risk aversion, time preference, and preference for timing of resolution

of uncertainty.

We consider Epstein-Zin and risk-sensitive recursive utilities of Hansen and Sar-

gent, and propose a novel class of Koopmans recursive utilities under uncertainty.

Epstein-Zin utility is specified by constant-elasticity-of-substitution (CES) aggre-

gator F (c, z) = (cα + βzα)
1
α with elasticity parameter α > 0, and a utility-based

(i.e., quasi-arithmetic) certainty equivalent with CRRA utility index with risk-

aversion parameter ρ. Risk-sensitive utility has quasi-linear aggregator F (c, z) =

u(c)+βz with period-utility function u and a CARA utility-based certainty equiva-

lent with risk-aversion parameter σ. Koopmans utility is generated by an additively

separable aggregator F (c, z) = u(c) + f(z) with (non-linear) discount function f

and a certainty equivalent given by the expectation operator. Additively separable

aggregators have been advocated in the work of Koopmans (1960, 1972) in settings

without uncertainty.

We first establish existence of recursive utility functions relying on contrac-

tion properties of the aggregator and the certainty equivalent. The Contraction

Theorem implies that there exists a solution to the difference equation defining

a recursive utility in the space of norm-continuous utility functions on the space

of non-negative and bounded consumption sequences. We restrict attention to

bounded consumption sequences in order to focus on the method of ordinal repre-

2Potential usefulness of equivalent representations has been pointed out by Ma (1993).
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sentations. We apply the Contraction Theorem to three classes of recursive utilities

under consideration taking into account their ordinal representations. Epstein-Zin

utility has two alternative representations: one with quasi-linear aggregator and

transformed CRRA certainty equivalent, the other with transformed CES aggrega-

tor and the expectation operator as the certainty equivalent. Risk-sensitive utility

has an alternative representation with Cobb-Douglas aggregator and the expec-

tation operator. A simple shift transformation gives rise to a useful equivalent

representation of the Koopmans utility. Using these ordinal representations when

applying the general existence result delivers weaker than previously known suffi-

cient conditions for existence for the three classes of utility functions. Epstein-Zin

utility is shown to be well-defined for every α > 0 and ρ < 1. Risk-sensitive utility

is well-defined for every σ 6= 0. Koopmans utility exists under weak restrictions on

the discount function.

Contraction conditions are of critical importance not only for the existence of

recursive utility function but also for time preference. There are two qualitative

aspects of time preference that can be expressed and characterized for recursive

utilities: The first is preference for early consumption introduced by Koopmans

et al (1960) in the setting of no uncertainty. It postulates that and extra amount

of consumption is preferred when offered at an earlier date to it offered at a later

date. The second is tail insensitivity that has been extensively studied by Streufert

(1990) under no uncertainty. It postulates that consumption in very distant future

does not asymptotically matter for current utility. It gives rise to a sequential

representation of recursive utility. We show that contraction conditions on the

aggregator and the certainty equivalent together with additive separability of the

aggregator are sufficient for preference for early consumption. Contraction con-

ditions alone are sufficient for tail insensitivity. When applying these results to

Epstein-Zin and risk-sensitive utilities, it turns out important yet again to take or-

dinal representations into account. Risk-sensitive and Koopmans utilities exhibit

preference for early consumption and tail insensitivity under the same conditions

found earlier to be sufficient for their existence. For Epstein-Zin utility, preference

for early consumption involves an additional restriction that α
1−ρ ≤ 1.

The property of risk aversion of a utility function has strong implication in many

economic setting. In particular, it has profound implication for risk sharing among
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multiple agents. We distinguish two concepts of risk aversion of recursive utility.

The first is atemporal risk aversion considered by Ma (1993) which states that

replacing risky consumption at all future dates by their expected value conditional

on current date and state is preferred under the current-date utility. The second is

temporal risk aversion which states that replacing next period risky consumption

by its expected value conditional on current date and state is preferred under the

current-date utility. Sufficient conditions for atemporal risk aversion are concavity

of the aggregator and a risk-aversion condition on the certainty equivalent for some

ordinal representation. For Epstein-Zin utility, these conditions hold if α ≤ 1 and

ρ ≥ 0. For risk-sensitive utility with logarithmic period-utility they hold if σ ≤ 1.3

For Koopmas utility, the sufficient condition is concavity of period-utility and

discount functions. Temporal risk aversion requires separability of the aggregator

and holds only for Koopmans utility with concave period-utility function.

Attitudes to timing of resolution of uncertainty have been brought to consider-

ation for recursive utility functions by Kreps and Porteus (1978) in the setting of

temporal lotteries. It is well known that discounted time-separable expected utility

exhibits indifference to timing of resolution of uncertainty. That is, a comparison

of two consumption plans that differ only by the date of resolution of uncertainty,

say t+1 versus t+2, results in indifference according to date-t (and all prior dates)

utility function. Recursive utilities offer flexibility in modeling different attitudes

to timing of resolution. Epstein-Zin and risk-sensitive utilities can exhibit prefer-

ence for early or late resolution of uncertainty depending on parameters. Extending

earlier results of Kreps and Porteus (1978) and Strzalecki (2013), we provide suf-

ficient conditions for preference for early and late resolution of uncertainty taking

into account ordinal representations of recursive utilities. We identify conditions

on parameters of Epstein-Zin and risk-sensitive utilities corresponding to differ-

ent timing attitudes. For Koopmans utility, preference for early or late resolution

corresponds to the discount function being convex or concave, respectively.

Summing up, our results show that while all three classes of Epstein-Zin, risk-

sensitive and Koopmans recursive utilities offer flexibility in regard to time prefer-

ence and attitudes to risk and time of resolution, the Koopmans recursive utilities

provide the most clear-cut separation between timing and risk attitudes. Period-

3Parameter σ is the negative of the coefficient of risk aversion of the CARA utility index.
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utility function expresses (temporal) risk attitudes through its concavity/convexity

properties while discount function expresses attitudes to timing of resolution of

uncertainty through its concavity/convexity properties and preference for early

consumption through its contraction properties.

The paper is organized as follows. In Section 2 we introduce the concept of

ordinal representation of a recursive utility function and provide a characterization

for quasi-arithmetic certainty equivalents. Epstein-Zin and risk-sensitive utilities

are introduced in Section 3 along with their alternative ordinal representations.

The novel class of Koopmans recursive utilities is presented in Section 3 as well.

Section 4 is about the existence of recursive utilities and the contraction conditions

on the aggregator and the certainty equivalent. The importance of the contraction

conditions is on display in Section 5, too, where we study time preference of re-

cursive utilities. Attitudes toward risk and timing of resolution of uncertainty are

discussed in Sections 6 and 7, respectively. Section 8 concludes the paper with,

among other things, some results on recursive utilities under ambiguity.

Related literature: An important application of the Epstein-Zin recursive util-

ity is in the asset pricing theory. Stochastic discount factor derived from the

Epstein-Zin utility combined with the long-run risk specification of the represen-

tative agent’s consumption provide an explanation of the equity premium puzzle.

The parameters of the utility function estimated to fit the data in the leading stud-

ies are α = 1
3

and ρ = 10 (see Bansal and Yaron (2004)), or α ≈ 1
2

and ρ ≈ 9 (see

Schorfheide et al. (2017)). These values do not satisfy the conditions of Corollaries

1-3 for well-definiteness, preference for early consumption, or tail insensitivity of

Epstein-Zin utilities. They do, however, satisfy sufficient conditions for atemporal

risk aversion and preference for late resolution of uncertainty of Corollaries 5 and

6. Their analysis concerns consumption sequences with bounded rates of growth.

The long-run risk specification of a consumption sequence in Bansal and Yaron

(2004) and others involves unbounded growth rates, and hence is beyond the scope

of the analysis in this paper which is limited to bounded sequences. Hansen and

Scheinkman (2009, 2012), Borovicka and Stachurski (2020), and Christensen (2022)

study the existence of Epstein-Zin recursive utility for long-run risk models of

consumption. The objective of these studies is to prove that the recursive utility is
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well-defined as a solution to the difference equation for a particular consumption

sequence, or a narrow class of sequences. This should be contrasted with the

approach of this paper that seeks a utility function on the consumption set of non-

negative sequences which is of relevance, for example, to welfare analysis of risk

sharing among many agents (see Werner (2023b)).

There is a strand of literature proving existence of recursive utility as a solution

to an optimal investment problem and applying methods of dynamic programming.

Examples are Ozaki and Streufert (1996), Bloise and Vailakis (2018), Bloise et al.

(2024), and Balbus (2016). References to earlier work on the existence of recursive

utilities include Epstein and Zin (1989) in the setting of consumption lotteries

and Ma (1993). The recent book by Sargent and Stachurski (2023) provides an

excellent exposition of the issues related to existence of a recursive utility.4

2. Recursive Utilities and Ordinal Representations

The set of possible states at each date is a finite set S. The product set S∞

represents all sequences of states over infinite time. For a sequence (or path) of

states (s0, . . . , st, . . . ), we use st the denote the partial history (s0, . . . , st) through

date t. Partial histories are date-t events. The set S∞ together with the σ-field Σ

of products of subsets of S is the measurable space describing the uncertainty.

Consumption plans are non-negative bounded sequences adapted to Σ. Con-

sumption set denoted by C is thus isomorphic to `∞+ . A generic consumption plan

is c = (c0, c1, . . . ). We use ct to denote event-dependent consumption at date t,

and ct for a consumption plan for infinite future starting at t, event-dependent.

There is reference probability measure on (S∞,Σ) generated by transition ker-

nel (or matrix) Q : S×S → [0, 1]. We use Q(s) to denote the vector of conditional

probabilities of next-period states if the current state is s. Expectation operator

with respect to Q(s) on RS is denoted by Es.

Definition 1: State-dependent utility function U : S × C → Z is recursive if it

satisfies

U(st, c
t(st)) = F

(
ct(s

t), µst(U(ct+1))
)
, ∀st, ∀t. (1)

4We omit all references to the literature on existence of recursive utilities in deterministic
settings.
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for every t and every c for some aggregator function F : R+ × Z → Z and state-

dependent certainty equivalent µs : ZS → Z for every s ∈ S, where the domain

Z ⊂ R is usually either R+ or R.

Function U in this definition is the stationary stochastic recursive utility in-

troduced by Koopmans (1960). Aggregator function F and certainty equivalent µ

will be referred to as a representation of recursive utility U. Equation (1) is often

written more concisely as

Ut(c
t) = F

(
ct, µt(Ut+1(ct+1)

)
, ∀t. (2)

In this notation, subscript t in Ut indicates conditioning on state at date t, rather

than time-dependence of recursive utility U.

Aggregator function F : R+ × Z → Z is assumed throughout the paper to

satisfy the following condition:

(AG) F is strictly increasing and continuous.

An example is the quasi-linear aggregator

F (y, z) = u(y) + βz (3)

for y ∈ R+ and z ∈ R, with strictly increasing and continuous period-utility

function u : R+ → R and discount factor 0 < β < 1.

Certainty equivalent µ, where µs : ZS → Z, is assumed to satisfy

(CE) µs is increasing, i.e., if z̃ ≥ z̃′, then µs(z̃) ≥ µs(z̃
′) for z̃, z̃′ ∈ ZS

for every s ∈ S. Two simple and intuitive properties of certainty equivalent µ that

will be needed in some results are risk aversion meaning that µs(z̃) ≤ Es(z̃) for

every z̃ ∈ ZS and s ∈ S, and normalization defined by µs(k) = k for every risk-free

k ∈ Z and every s.

An example of a certainty equivalent is the expectation operator

µs(z̃) = Es[z̃], (4)

for every z̃ ∈ RS. When put together, the quasi-linear aggregator and the expec-

tation operator are a representation of the discounted expected utility

Ut(c
t) = Et[

∞∑
τ=t

βτ−tu(cτ )], (5)
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for every t.

An important class of certainty equivalents that includes the expectation op-

erator are quasi-arithmetic operators of the form

µs(z̃) = g−1(Es[g(z̃)]) (6)

for z̃ ∈ ZS, where utility index g : Z → R is strictly increasing and continu-

ous.5 Every quasi-arithmetic certainty equivalent is normalized and every quasi-

arithmetic certainty equivalent with concave utility index is risk averse.

Utility functions are, of course, merely representations of preference relations.

Every strictly increasing transformation of a utility function represents the same

preference relation. We introduce the notion of ordinal representation of a recursive

utility function.

Definition 2: Aggregator F̂ and certainty equivalent µ̂ are an ordinal representa-

tion of recursive utility function U if there exists a strictly increasing, continuous

function h : Z → R such that F̂ and µ̂ are a representation of utility function

Û = h ◦ U.

If two pairs (F, µ) and (F̂ , µ̂) are ordinal representations of the same recursive

utility, then we say that (F, µ) and (F̂ , µ̂) are ordinally equivalent. If certainty

equivalent µ̂ in Definition 2 is quasi-arithmetic with utility index ĝ, then we say

that F̂ and ĝ are an ordinal representation of U. We have the following

Proposition 1: If (F, g) is a representation of recursive utility function U, then

for every strictly increasing and continuous function h : Z → R, the pair (F̂ , ĝ),

where

F̂ (y, z) = h
(
F (y, h−1(z))

)
, and ĝ ≡ g · h−1 (7)

is an ordinal representation of U .

Proof: The proof is elementary and is left to the reader.

Function h in Proposition 2 will be referred to as a transformation function.

5Note that any linear transformation of g gives rise to the same certainty equivalent.
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3. Epstein-Zin, Risk-Sensitive, and Koopmans Recursive Utilities

The Epstein-Zin recursive utility is a solution to the equation

Ut(c
t) =

(
cαt + β[Et(Ut+1(ct+1))1−ρ]α/(1−ρ)

)1/α

(8)

where 0 < β < 1, α > 0, and ρ 6= 1, or a strictly increasing transformation thereof.

The aggregator in (8) is the constant elasticity of substitution (CES) function

F (y, z) = (yα + βzα)1/α (9)

for y ∈ R+ and z ∈ R+ while the certainty equivalent is quasi-arithmetic with

CRRA (or power) index

g(x) =
1

1− ρ
x1−ρ, (10)

for x ∈ R+, with x 6= 0 if 1− ρ < 0, and where ρ is the coefficient of relative risk

aversion.6

There are two other ordinal representations of the Epstein-Zin recursive utility

(8) that will be useful in the analysis to follow. The first is with quasi-linear

aggregator

F̂ (y, z) = yα + βz, (11)

for y ∈ R+ and z ∈ R, and a quasi-arithmetic certainty equivalent with transformed

CRRA utility index

ĝ(x) =
α

1− ρ
x(1−ρ)/α. (12)

It obtains via transformation h(x) = xα. The second representation is with the

expectation certainty equivalent. It obtains via transformation h(x) = g(x) and

has the CES-like aggregator

F̂ (y, z) =
1

1− ρ
(
yα + β[(1− ρ)z]α/(1−ρ)

)(1−ρ)/α
(13)

for y ∈ R+ and z ∈ R+ if 1 − ρ > 0, and z ∈ R−, z 6= 0, if 1 − ρ < 0. Recursive

utility with this representation takes negative values if 1 − ρ < 0, in which case

the aggregator is not defined for z = 0.

6Often, the aggregator is written in a slightly different form as F̄ (y, z) =

(
(1−β)yα+βzα

)1/α

.

It can be easily seen that the pairs (F, g) and (F̄ , g) are ordinally equivalent via transformation
h(x) = (1− β)1/αx.
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The risk-sensitive recursive utility of Hansen and Sargent (see Sargent and

Stachurski (2023)) is a solution to

Ut(c
t) = u(ct) + β

1

σ
ln

(
Et[e

σUt+1(ct+1)]

)
, (14)

where 0 < β < 1 and σ 6= 0, or a strictly increasing transformation thereof. Period-

utility function u : R+ → R is strictly increasing and continuous. The aggregator

in (14) is quasi-linear while the certainty equivalent is quasi-arithmetic with CARA

(exponential) utility

g(x) =
1

σ
eσx (15)

for x ∈ R, where σ is the negative of the coefficient of absolute risk aversion. A

frequently used specification of period-utility function in the risk-sensitive recursive

utility is u(y) = ln(y). However, this logarithmic function is not defined for y = 0.

An ordinal representation of recursive utility (14) with the expectation certainty

equivalent obtains via transformation h(x) = g(x). It features the aggregator

F̂ (y, z) =
1

σ
eσu(y)(σz)β, (16)

for y ∈ R+ and z ∈ R+ if σ > 0, and z ∈ R− if σ < 0. Recursive utility with this

representation takes negative values if σ < 0. For the logarithmic period-utility

function, aggregator (16) is the Cobb-Douglas-like function7

F̂ (y, z) =
1

σ
yσ(1−β)(σz)β, (17)

where y 6= 0 if σ < 0.

We introduce a third class of recursive utilities that we refer to as Koopmans

recursive utilities. As we will see, they offer the most clear-cut separation between

timing and risk attitudes. Further, they retain some (but not all) properties of

discounted expected utilities in regard to efficient risk sharing (see Werner (2023b)).

The Koopmans recursive utility is a solution to the equation

Ut(c
t) = u(ct) + f(Et[Ut+1(ct+1)]), (18)

7A slightly different representation with Cobb-Douglas aggregator F̂ (y, z) = y(1−β)zβ and
CRRA utility index ĝ(x) = 1

σx
σ/(1−β) obtains by transformation h(x) = e(1−β)x. This shows

that risk-sensitive utility can be considered a special (or limit) case of Epstein-Zin utility as the
Cobb-Douglas aggregator can be considered CES with α = 0.
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for some period-utility function u : R+ → R and a strictly increasing and contin-

uous discount function f : Z → R, or a strictly increasing transformation thereof.

The aggregator in (18) is an additively separable function

F (y, z) = u(y) + f(z) (19)

for y ∈ R+ and z ∈ Z, while the certainty equivalent is the expectation operator.8

An example of aggregator (19) with non-linear discount function f is

F (y, z) = u(y) + β ln(z + 1), (20)

for y ∈ R+ and z ∈ R+, considered by Koopmans et al. (1968).

4. Existence, Uniqueness, and the Blackwell Contraction Condition

We establish existence and uniqueness of recursive utility functions in this sec-

tion relying on contraction properties of the aggregator and the certainty equiv-

alent. Contraction conditions are of critical importance for discounting and tail

insensitivity of recursive utility as well (see Section 5).

An aggregator F satisfies the Blackwell contraction condition if

|F (y, z)− F (y, z′)| ≤ δ|z − z′| ∀y ∈ R+, ∀z, z′ ∈ Z, for some 0 < δ < 1. (21)

Clearly, the quasi-linear aggregator (3) satisfies the Blackwell contraction condition

with δ = β. The CES aggregator (9) satisfies it if α ≥ 1, with δ = β1/α.

The (weak) contraction condition for certainty equivalent µ is

|µs(z̃)− µs(z̃′)| ≤ ||z̃ − z̃′||, ∀ z̃, z̃′ ∈ ZS, (22)

for every s. Contraction condition (22) is equivalent9 to constant subadditivity of

µ, i.e.,

µs(z̃ + k) ≤ µs(z̃) + k, ∀ z̃ ∈ ZS and ∀k ≥ 0. (23)

Marinacci and Montrucchio (2010, Theorem 12) show that quasi-arithmetic cer-

tainty equivalent with twice-differentiable utility index g is constant subadditive

8Period utility function u in representation (18) of Koopmans utility is unique up to strictly
increasing linear transformation.

9This can be demonstrated using the arguments of the proof of the Contraction Lemma in
Sundaram (1996).
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if and only if index g is IARA, i.e., it exhibits increasing absolute risk aversion.

In particular, the expectation operator and the CARA certainty equivalent are

constant additive, hence subadditive, and therefore satisfy contraction condition

(22).

We consider in this section a subset of the consumption set C consisting of all

consumption plans c such that 0 ≤ c ≤ ω for some arbitrary upper-bound ω ∈ C.
This set is the order-interval [0, ω]. The space of utility functions Uω consists of all

norm continuous state-dependent utility functions on [0, ω], with the sup-norm of

function U being ||U || = sups∈S supc∈C |U(s, c)|.
We say that recursive utility is well-defined, if there exists a continuous utility

function U ∈ Uω solving equation (1) for an aggregator F and certainty equivalent

µ. The solution is a fixed point of an operator T on Uω defined by the operation

seen on the right-hand side of (1), that is, T (U)(s, c) = F (cs, µs(U(c1))). Operator

T maps Uω into itself. If conditions (21) and (22) hold, then T is a contraction. The

Contraction Theorem implies that there exists a fixed point. Since the existence

of recursive utility is invariant to ordinal representations, we have

Proposition 2: Recursive utility is well-defined if there exists an ordinally equiv-

alent representation (F̂ , µ̂) such that F̂ satisfies the Blackwell condition and µ̂ is

a contraction.

The Contraction Theorem implies further that the operator T̂ associated with

(F̂ , µ̂) is globally stable and the fixed-point utility function is unique. Of course,

recursive utility function is not unique in the ordinal sense of representing the pref-

erence relation. As discussed in Section 2, every strictly increasing and continuous

transformation of the fixed-point utility function is a recursive utility representa-

tion as well.

When applying Proposition 2 to Epstein-Zin recursive utility, we consider the

equivalent representations introduced in Section 3. We first consider the case

when ρ < 1. The representation with quasi-linear aggregator (11) and transformed

CRRA index (12) satisfies conditions of Proposition 2 if the CRRA index is IARA.

This is so if 1−ρ
α
≥ 1. The second representation with CES-like aggregator (13) and

expectation operator satisfies conditions of Proposition 2 if the former satisfies the

Blackwell condition which holds if α
1−ρ ≥ 1. One of these two conditions holds
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for every α > 0 and ρ < 1. If ρ > 1, then either the certainty equivalent or

the aggregator of the ordinal representations in Section 3 is not defined at zero.

This makes Proposition 2 not applicable. For risk-sensitive recursive utility, the

representation with quasi-linear aggregator and CARA certainty equivalent (15)

satisfies the conditions of Proposition 2 for every σ 6= 0. Summing up, we have10

Corollary 1:

(i) Epstein-Zin recursive utility is well-defined for every α > 0 and ρ < 1.

(ii) Risk-sensitive recursive utility is well-defined for every σ 6= 0.

Marinacci and Montrucchio (2010) proved that Epstein-Zin utility is well-

defined for every α ≤ 1 and ρ > 1 on a truncated set of consumption plans

bounded away from zero (see also Sargent and Stachurski (2023)). Corollary 1

(ii) does not apply to risk-sensitive utility with logarithmic period-utility function

which is not defined at zero. However, it applies to period-utility u(y) = ln(y + ε)

for arbitrary ε > 0, which can be used to approximate ln(y).

Koopmans recursive utility is obviously well-defined if discount function f sat-

isfies the Blackwell condition. However, many concave functions which are of spe-

cial importance (see Section 6) do not satisfy this condition. For example, function

f(z) = zr, for 0 < r < 1, is not a contraction. The following lemma shows that a

linear transformation of a concave function on R+ satisfies the Blackwell condition.

Lemma 1: If f : R+ → R+ is a strictly increasing and concave function and there

exists unique z∗ > 0 such that f(z∗) = z∗, then the shift-function f̂ : R+ → R+

defined by f̂(z) = f(z + z∗)− z∗ satisfies the Blackwell condition.

Proof: We present a proof assuming that function f is differentiable. Consider a

function q(z) = f(z) − z for z ∈ R+. Function q is concave and it holds q(0) ≥ 0

and q(z∗) = 0. Therefore q is decreasing on [z∗,∞) and q′(z∗) < 0. Let δ = f ′(z∗).

We have 0 < δ < 1. Since f(z′) − f(z) ≤ f ′(z)[z′ − z] for z′, z ≥ z∗ and f ′(z) ≤
f ′(z∗), we have f(z′)− f(z) ≤ δ[z′ − z] for z′, z ≥ z∗. For shift-function f̂ , this is

10Parameter β is assumed to satisfy 0 < β < 1 and period-utility function u is assumed strictly
increasing and continuous on R+ throughout the rest of the paper. These conditions will not be
mentioned in any results.
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f̂(z′) − f̂(z) ≤ δ[z′ − z] for z′, z ≥ 0. Thus f̂ satisfies the Blackwell condition on

R+ 2

If F is an additively separable aggregator of the Koopmans recursive utility

with period-utility function u and discount function f, then the pair (F,E) of F

and the expectation operator E is ordinally equivalent to (F̂ , E), where F̂ (y, z) =

u(y) + f̂(z) for the shift-function f̂ . The transformation function mapping (F̂ , E)

to (F,E) is h(x) = x + z∗ and leaves the expectation operator unchanged. Using

Lemma 1 we obtain

Corollary 2: Koopmans recursive utility is well-defined if the discount function

f satisfies either (i) the Blackwell condition, or (ii) f : R+ → R+ is concave and

there exists unique z∗ > 0 s.t. f(z∗) = z∗.

Discount function f(z) = zr satisfies condition (ii) for every 0 < r < 1. The

shift-function is f̂(z) = (z + 1)r − 1. Condition (ii) is slightly stronger than the

Thompson condition which requires, beside concavity, that there exists ẑ such that

f(ẑ) < ẑ (see Marinacci and Montrucchio (2010) and Bloise and Vailakis (2018)).

The Thompson condition is not sufficient to guarantee that there is a shift-function

satisfying the Blackwell condition.11

5. Time Preference

Discounted time-separable expected utility (5) features exponential discounting

with discount factor β per period. It is well known that exponential discounting

fits rather poorly most of empirical and experimental evidence. Recursive utilities

offer great generality of alternative forms of discounting while maintaining dy-

namic consistency of preferences. We consider two aspects of time preference (or

discounting) of recursive utilities in this section: preference for early consumption,

and tail-insensitivity.

The definition of preference for early consumption in the stochastic setting is

as follows.

11An example is function f defined by f(z) = z for 0 ≤ z ≤ 1 and f(z) = 1 + ln(z) for z ≥ 1.
None of fix-points of this f makes the shift-function satisfy the Blackwell condition. A discount
function f(z) = min{z, α + βz}, for α > 0 considered by Bloise and Vailakis (2018) does not
satisfy condition (ii), but the shift-function with z∗ = α

(1−β) , which is the greatest fix-point of f,

satisfies the Blackwell condition.
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Definition 3: Recursive utility function U exhibits preference for early consump-

tion if for every c ∈ C, w, v ∈ R+ such that w > v, and every st

U(st, c̊
t(st)) > U(st, (c̄

t(st)) (24)

where c̊τ = c̄τ = cτ for every τ 6= t, t + 1, c̊τ ({−st}) = c̄τ ({−st}) = cτ ({−st})
for τ = t, t+ 1, and c̊t(s

t) = w, c̊t+1(st+1) = v, c̄t(s
t) = v, c̄t+1(st+1) = w, for every

st+1 ⊂ st.

The plan c̊ in Definition 3 has a greater amount of consumption offered at date

t than at t + 1, while the plan c̄ has the same amounts offered in reversed order.

Note that because c̊ and c̄ are equal for all dates before t, the preference of c̊ over

c̄ holds at all dates from 0 to t as well.

We have the following

Proposition 3: Recursive utility displays preference for early consumption if there

exists an ordinal representation (F̂ , µ̂) such that F̂ is additively separable and sat-

isfies the Blackwell condition and µ̂ is a contraction.

Proof: If F̂ (y, z) = u(y) + f(z), then

Û(st, c̊
t(st)) = u(w) + f

(
µ̂st [u(v) +W (st+1)]

)
and

Û(st, c̄
t(st)) = u(v) + f

(
µ̂st [u(w) +W (st+1)]

)
,

where we used W (st+1) = f(µ̂st+1 [Ût+2(ct+2)]). Using the Blackwell condition (21)

for f and the contraction condition (22) for µ̂s, and keeping in mind that u(w) >

u(v), we obtain

f
(
µ̂st [u(w) +W (st+1)]

)
− f

(
µ̂st [u(v) +W (st+1)]

)
≤

δ
(
µ̂st [u(w) +W (st+1)]−µ̂st [u(v) +W (st+1)]

)
< u(w)− u(v).

Hence, (24) holds. 2

Proposition 3 can be applied to Epstein-Zin recursive utilities via the represen-

tation with quasi-linear aggregator (11) and certainty equivalent with CRRA index

(12). The contraction condition for the certainty equivalent holds if 1−ρ
α
≥ 1, see
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Section 4. For risk-sensitive recursive utilities, the representation with quasi-linear

aggregator (3) and CARA certainty equivalent satisfies conditions of Proposition

3 for every σ 6= 0. Lastly for Koopmans utilities, Proposition 3 applies under any

of the conditions of Corollary 2. Summing up, we have

Corollary 3:

(i) Epstein-Zin recursive utility displays preference for early consumption for

α > 0, ρ < 1 and α
1−ρ ≤ 1.

(ii) Risk-sensitive recursive utility displays preference for early consumption for

every σ 6= 0.

(iii) Koopmans recursive utility displays preference for early consumption if dis-

count function f satisfies one of the conditions of Corollary 2.

Since Epstein-Zin and risk-sensitive recursive utilities have ordinal representa-

tions with quasi-linear aggregators, they are time-separable with exponential dis-

counting when restricted to deterministic consumption plans. In contrast, Koop-

mans recursive utilities are not time-separable on deterministic consumption plans,

reflecting the original motivation of Koopmans (1960) for studying recursive utili-

ties. They offer great flexibility in modeling non-exponential discounting in recur-

sive way.

The second aspect of discounting is tail insensitivity. A definition in the stochas-

tic setting is as follows.

Definition 4: Recursive utility function U is tail insensitive if

U0(c) = lim
t→∞

U0(c−te) (25)

for every c ∈ C and e ∈ C, where c−te denotes the consumption plan equal to cτ

for τ ≤ t and to eτ for τ > t.

This definition says that consumption in distant future does not asymptotically

matter for current utility. Equation (25) can be equivalently stated as

U0(c) = lim
t→∞

F
(
c0, µ0(F (c1, µ1(F (c2, . . . , µt−1(F (ct, zt))))))

)
(26)
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where zt = µt(Ut+1(et+1)) for some e ∈ C. Equation (26) with e = 0, that is

zt = U(0), provides a sequential representation of recursive utility U akin to the

infinite sum (5) for discounted expected utility.

The property of tail insensitivity is invariant to transformations of recursive

utility function. Contraction conditions for some ordinal representation are suffi-

cient for tail insensitivity.

Proposition 4: Recursive utility function U is tail insensitive if there exists an

ordinal representation (F̂ , µ̂) such that F̂ satisfies the Blackwell contraction con-

dition and µ̂ is a contraction.

Proof: Let us denote

∆t ≡ |Û0(c)− Û0(c−te)| (27)

for c, e ∈ C. Using equation (2) recursively from 0 to t, we obtain

Û0(c) = F̂
(
c0, µ̂0(F̂ (c1, µ̂1(F̂ (c2, . . . , µ̂t−1(F̂ (ct, µ̂t(Ût+1(ct+1)))))))

)
. (28)

Writing Û0(c−te) in equation (27) in the way as in (26) (with µ̂t(Ût+1(et+1)) sub-

stituted for zt) and repeatedly using contraction conditions (21) and (22), there

results

∆t ≤ δt||Ût+1(ct+1)− Ût+1(et+1)|| (29)

Since Ût(c
t) and Ût(e

t) are bounded sequences, the right-hand side of inequality

(29) converges to zero. Therefore limt ∆t = 0 and (26) follows. 2

We have

Corollary 4: Epstein-Zin, risk-sensitive, and Koopmans recursive utilities are tail

insensitive under the conditions of Corollary 1 and Corollary 2, respectively.

We illustrate results of this section and Section 4 with an example of Koop-

mans recursive utility function with a discount function that does not satisfy the

Blackwell condition, but there is an ordinal representation which is a contraction.

Example 1: Let the discount function be f(z) =
√
z and the period-utility be

linear u(y) = y. The shift-function f̂(z) =
√
z + 1 − 1 is an ordinally equivalent

representation of this Koopmans recursive utility and it satisfies the Blackwell
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condition, see Corollary 2. Recursive utility function Û is the fixed point of a con-

traction operator and has a sequential representation implied by tail insensitivity.

For a constant and deterministic consumption plan d, utility Û(d) is the unique

positive solution to equation Û(d) = d +

√
Û(d) + 1 − 1. We have, for example,

Û(0) = 0. Recursive utility function U solving the recursive equation with f is

the shift-transformation of Û , that is U(c) = Û(c) + 1 for every c ∈ C. Note that

U(0) = 1. This value is one of two positive solutions to the equation U(0) =
√
U(0)

of the recursion for U. It is selected so that the resulting function be continuous

and tail insensitive.

The utility of a deterministic consumption plan of one unit at date t and zero

at all other dates is U(1t) = (1 + 1)
1
2t , where the first term in 1 + 1 is the period-

utility of one unit of consumption while the second is the continuation utility of

zero future consumption. We can see that U(1t) is decreasing in t as implied by

the preference for early consumption, and limt→∞ U(1t) = U(0). 2

6. Risk Aversion

Discounted time-separable expected utility with concave period-utility displays

risk aversion in several ways. First is temporal risk aversion which states that

replacing next period risky consumption by its expected value conditional on cur-

rent state is preferred under the current-state preferences. Second is atemporal risk

aversion which states that replacing risky consumption for all future periods by

their expected value conditional on current state is preferred under the current-

state preferences. Further, there is a multi-period form of temporal risk aversion

which we will discuss later. All these forms of risk aversion have implications on

risk sharing under discounted time-separable expected utility (see Werner (2023b)).

We explore in this section extensions of temporal and atemporal risk aversion to

general recursive utilities.

Recursive utility function U is temporaly risk averse if

Ut(c
t) ≤ Ut(ct, Et[ct+1], ct+2), (30)

for every c ∈ C and every t. This is more precisely written as

U(st, c
t(st)) ≤ U(st, (ct(s

t), Est [ct+1], ct+2(st))),
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for every st. Temporal risk aversion holds for discounted time-separable expected

utility if (and only if) period-utility function is concave. This result extends to

general recursive utilities in the following way.

Proposition 5: Recursive utility is temporaly risk averse if there exists an ordinal

representation (F̂ , µ̂) such that F̂ is additively separable with concave period-utility

function and µ̂ is the expectation operator.

Proof: We prove (30) for t = 0. If F̂ (y, z) = u(y) + f(z) and u is concave, then

Û0(c) = u(c0) + f
(
E0[u(c1) + f(E1(Û2(c2)))]

)
≤ u(c0) + f

(
u(E0(c1)) + E0[f(E1(Û2(c2)))]

)
= Û0(c0, E0(c1), c2).

The proof for arbitrary t ≥ 1 is the same. 2

The key argument of the proof of Proposition 5 is that there is no hedging effect

between next-period consumption and continuation utility. More precisely, the

absence of hedging appears in the preference for risk-free consumption in E0[u(c1)+

f(z̃)] ≤ E0[u(E0(c1)) +f(z̃)], where z̃ is state-dependent continuation utility. This

would not hold for non-separable aggregator or non-linear certainty equivalent.

Proposition 5 states that Koopmans recursive utility with concave period-utility

function is temporaly risk averse. Koopmans recursive utility with linear period

utility function is temporaly risk neutral with no necessity for exponential dis-

counting, see Example 1. Epstein-Zin and risk-sensitive recursive utilities do not

have a representation with additively separable aggregator and the expectation

certainty equivalent.

The second notion of risk aversion is atemporal risk aversion studied in Ma

(1993). Recursive utility function U is atemporaly risk averse if

Ut(c
t) ≤ Ut(Et(c

t)), (31)

for every c ∈ C and every t. The following proposition is due to Ma (1993).

Proposition 6: Recursive utility is atemporaly risk averse if it is tail-insensitive

and there exists an ordinal representation (F̂ , µ̂) such that F̂ is concave and µ̂ is

risk averse.
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Proof: We first prove that (31) holds for consumption plans that are risk-free

and constant over time from some date T on. For any c ∈ C, we consider the

consumption plan c−Td equal to risk-free d ∈ R+ for every t > T.

For t = 0 in (31), we have12

Û0(c−T d) = F̂
(
c0, µ̂0(F̂ (c1, µ̂1(Û2(c−T d))))

)
≤ F̂

(
c0, E0(F̂ (c1, E1(Û2(c−T d))))

)
≤ F̂

(
c0, F̂ (E0(c1), E0(Û2(c−T d)))

)
. . .

≤ F̂
(
c0, F̂ (E0(c1), F̂ (E0(c2), . . . , F̂ (E0(cT−1), U(d))))

)
= Û0(E0(c−T d))

where we interchangeably used risk aversion of µ̂ and concavity of F̂ .

Passing to the limit as T goes to infinity in Û0(c−Td) ≤ Û0(E0(c−Td)) and

using tail-insensitivity of Û , we obtain (31) for t = 0 for arbitrary c. The proof for

arbitrary t ≥ 1 is the same. 2

Corollary 5 provides sufficient conditions atemporal risk aversion of Epstein-

Zin, risk-sensitive and Koopmans recursive utilities.

Corollary 5:

(i) Epstein-Zin recursive utility is atemporaly risk averse for every 0 < α ≤ 1

and ρ ≥ 0, ρ 6= 1.

(ii) Risk-sensitive recursive utility is atemporaly risk averse for every σ < 0.

(iii) Koopmans recursive utility is atemporaly risk averse if period-utility function

u and discount function f are concave.

Proof: For the representation of Epstein-Zin utility with CES aggregator (9) and

CRRA utility index (12), the conditions of Proposition 6 hold if α ≤ 1 and ρ ≥
0. For the representation with quasi-linear aggregator (11) and the transformed

CRRA index (12), the conditions hold if α ≤ 1 and 1−ρ
α
≤ 1. This is subsumed

be the previous case. The representations with CES-like aggregator (13) does not

provide any additional conditions.

For risk-sensitive utility, the representation with quasi-linear aggregator (3) and

CARA certainty equivalent satisfies the conditions of Proposition 6 if the CARA

12To simplify notation, we write U2(c−T d) instead of U2({c−T d}2) for date-2 continuation
utility in this proof.
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utility index is risk averse. This holds if σ < 0. The representation with aggregator

(16) does not provide any additional conditions. Summing up, we obtain (ii).

The case of the Koopmans utility is straightforward. 2

If the period-utility function in the risk-sensitive recursive utility is logarithmic,

then the condition in Corollary 5 (ii) can be strengthened to σ ≤ 1. This is so

because the Cobb-Douglas-like aggregator (17) if concave if 0 < σ < 1.

Discounted expected utility with concave period-utility function has a stronger

risk-aversion property not shared by any other utility function in Corollary 5. It

is the multi-period risk aversion defined by

Ut(c
t) ≤ Ut(ct, . . . , cτ−1, Et[cτ ], c

τ+1), (32)

for every c ∈ C and every t and τ ≥ t+ 1, or more precisely,

U(st, c
t(st)) ≤ U(st, (ct(s

t), . . . , cτ−1(st), Est [cτ ], c
τ+1(st))),

for every st. Multi-period risk aversion implies temporal and atemporal risk aver-

sions - the latter provided that U is tail-insensitive. It holds for Koopmans utility

if the discount function is linear but may not hold otherwise.

7. Preference for Early Resolution of Uncertainty

Discounted time-separable expected utility exhibits indifference to timing of

resolution of uncertainty. Recursive utilities offer flexibility in modeling different

attitudes to timing of resolution.

The definition of preference for early resolution of uncertainty is adopted from

Strzalecki (2013). We assume in this section that beliefs are not changing, that is,

Q(s, ·) is independent of s for iid beliefs, for otherwise beliefs would confound pref-

erence for timing of resolution. Accordingly, we assume that certainty equivalent

µs is independent of s. This holds for quasi-arithmetic certainty equivalents.

Definition 5: Recursive utility function U exhibits preference for early resolution

of uncertainty if for every risk-free dt, every z̃ ∈ RS
+ and st

U(st, ĉ
t(st)) ≥ U(st, č

t(st)) (33)
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where ĉτ = čτ = dτ for every τ 6= t + 2, ĉt+2({−st}) = čt+2({−st}) = dt+2

and ĉt+2(st+2) = z̃(st+1), čt+2(st+2) = z̃(st+2), for every st+2 ⊂ st+1 and every

st+1 ⊂ st.

Consumption plans ĉ and č in Definition 5 offer the same risky claim z̃ at date

t+2, but differ by the timing of resolution of uncertainty of z̃. In ĉ, the uncertainty

is resolved at date t + 1 (early), while in č it is resolved at date t + 2 (late). The

two consumption plans are risk-free at all dates other than date t + 2. Thus the

comparison of early and late resolutions of uncertainty is made in isolation of any

other uncertainty. Note that because consumption plans ĉ and č are the same for

all dates before t, the preference of early-resolution plan ĉ over late-resolution č in

(33) holds for all dates from 0 to t.

We have the following proposition of which the first part has been demonstrated

by Kreps and Porteus (1978) in the setting of consumption lotteries and the second

part is closely related to Strzalecki (2013) in the setting of finite-time consumption.

Proposition 7: Recursive utility with iid beliefs displays preference for early (late)

resolution of uncertainty if there exists an ordinal representation (F̂ , µ̂) satisfying

one of the following conditions:

(i) F̂ is convex (concave, respectively) in the second argument and µ̂ is the ex-

pectation operator.

(ii) F̂ is quasi-linear and µ̂ is normalized, constant superadditive and subhomo-

geneous13 (subadditive and superhomogeneous, respectively).

Proof: For consumption plan c equal to ĉ or č and any representation (F̂ , µ̂), we

have

Û(st, c
t(st)) = F̂

(
dt, µ̂st [F̂ (dt+1, µ̂st+1 [F̂ (ct+2,W ))]

)
(34)

whereW = Ût+3(dt+3) and is risk-free. Clearly, the comparison of utilities Û(st, ĉ
t(st))

and Û(st, č
t(st)) amounts to comparing the second argument under outer F̂ in (34),

that is, µ̂st [F̂ (dt+1, µ̂st+1 [F̂ (ct+2,W ))]. Since ĉt+2 depends only on states st+1 and

13µ is subhomogeneous if µ(λz̃) ≥ λµ(z̃) for every z̃ ∈ RS+ and every 0 ≤ λ ≤ 1. µ is superho-
mogeneous if the opposite inequality holds.
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is equal to z̃, and µ̂s is independent of s, this term for c = ĉ is

µ̂[F̂ (dt+1, F̂ (z̃,W ))]. (35)

Since čt+2 depends on states st+2 and is equal to z̃, the respective expression for

c = č is

F̂ (dt+1, µ̂[F̂ (z̃,W )]). (36)

Under the assumptions of part (i), expression (35) equals E[F̂ (dt+1, F̂ (z̃,W ))]

while (36) equals F̂ (dt+1, E[F̂ (z̃,W )]). If F̂ is convex in the second argument, then

the former exceeds the latter, that is, (35) exceeds (36) and (33) follows. The

opposite holds if F̂ is concave in the second argument.

In part (ii), expression (35) equals µ̂(u(dt+1) + βF̂ (z̃,W )) while (36) equals

u(dt+1) + βµ̂(F̂ (z̃,W )). If µ̂ is normalized, constant superadditive and subhomo-

geneous, then

µ̂
(
u(dt+1) + βF̂ (z̃,W )

)
≥ u(dt+1) + µ̂(βF̂ (z̃,W )) ≥ u(dt+1) + βµ̂(F̂ (z̃,W )).

Thus (35) exceeds (36), and (33) follows. The opposite holds if µ̂ is normalized,

constant subadditive and superhomogeneous. 2

It can be easily shown that if certainty equivalent µ is normalized and concave,

then it is constant superadditive and subhomogeneous.14 Similarly, if µ is normal-

ized and convex, then it is constant subadditive and superhomogeneous. Hardy

et al (1934, Theorem 3.16) show that quasi-arithmetic certainty equivalent with

CRRA utility index (10) is concave if ρ ≥ 0 and convex if ρ ≤ 0.

Corollary 6: With iid beliefs, the following hold

(i) Epstein-Zin recursive utility displays preference for early (late) resolution of

uncertainty for α > 0 and ρ 6= 1 if α
1−ρ ≥ 1 ( α

1−ρ ≤ 1, respectively).

(ii) Risk-sensitive recursive utility displays preference for early (late) resolution

of uncertainty if σ < 0 (σ > 0, respectively).

14Normalized and concave are the sufficient conditions on µ̂ in Strzalecki (2013, Theorem 2).
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(iii) Koopmans recursive utility displays preference for early (late) resolution of

uncertainty if discount function f is convex (concave, respectively).

Proof: For the Epstein-Zin recursive utility, we consider the representation with

quasi-linear aggregator (11) and the certainty equivalent of transformed CRRA

index (12). Condition (ii) of Proposition 7 holds if the certainty equivalent is

concave which is the case if 1−ρ
α
≤ 1. Otherwise, if 1−ρ

α
≥ 1, the certainty equivalent

is convex and the preference for late resolution holds. The same conditions obtain

from applying Proposition 7 (i) to the representations with CES-like aggregator

and the expectation operator.

For the risk-sensitive utility, we consider the representation with aggregator

(16) and the expectation operator. The aggregator is concave in the second ar-

gument for σ > 0 and convex for σ < 0. The result follows from Proposition 7

(i).

The case of the Koopmans utility is straightforward. 2

Corollary 6 (i) can be found in Epstein and Zin (1989).

A restrictive feature of Definition 5 is that it applies to consumption plans

that are risk-free at all dates except a single date t + 2. Clearly, risk-free plan

(d0, . . . , dt+1) can be replaced by an arbitrary uncertain plan (c0, . . . , ct+2) without

affecting the results of Proposition 7. A further inspection of the proof reveals that

the result of part (i) continues to hold if the continuation consumption from date

t+ 3 on is Markov, so that its continuation utility is Markov.

8. Other Recursive Utilities

The methods and results of Sections 2-7 can be used to analyze other recursive

utilities. We shall briefly discuss recursive utilities with stochastic discount factors

and ambiguity.

Discounted time-separable expected utility is recursive if discount factor β is

state dependent. More precisely, if the discount factor is βs in state s with 0 <

βs < 1, then the discounted time-separable expected utility

U0(c) = E0[
∞∑
t=0

βtu(ct)],
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where βt takes value βs1 · βs2 . . . ·βst is event st, is recursive as it satisfies eq. (2)

with the aggregator F (y, z) = u(y) + z and the certainty equivalent

µs(z̃) = βsEs[z̃]. (37)

In this case, the aggregator is a weak contraction and the certainty equivalent is a

strict contraction. This certainty equivalent is not normalized.

Epstein-Zin, risk-sensitive, and Koopmans recursive utilities can be generalized

to include stochastic discount factors. All results of Sections 4-6 remain unchanged.

It suffices to adjust the certainty equivalents by discount factors as in (37). Of

course, the analysis of early resolution of uncertainty of Section 7 does not apply as

it necessitates state-independent certainty equivalent and hence state-independent

discounting.

There is a vast class of recursive utilities under ambiguity, see Strzalecki (2013).

We present an important example of recursive multiple-prior utility of Epstein and

Schneider (2003). The recursive multiple-prior utility is a solution to

Ut(c
t) = u(ct) + β min

P∈Pt
Et,P [Ut+1(ct+1)] (38)

for 0 < β < 1, with quasi-linear aggregator (3) and certainty equivalent given by

µs(z̃) = min
P∈Ps

EP [z̃], (39)

where Ps is a state-dependent set of probabilities on S. The certainty equiva-

lent is constant additive and hence a contraction, and the aggregator satisfies the

Blackwell condition. The resulting recursive utility function is

U0(c) = min
π∈Π

Eπ[
∞∑
t=0

βtu(ct)],

where Π is a set of probabilities on S∞ such that one-step-ahead conditional prob-

abilities derived from Π are exactly the set Pst for every st.

The transformation rule of Proposition 1 does not apply to multiple-prior utility

functions. Nevertheless, the results of Sections 4-7 can be applied to the representa-

tion with aggregator (3) and certainty equivalent (39). Propositions 3 and 4 imply
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that the recursive multiple-prior utility function displays preference for early con-

sumption and is tail insensitive for arbitrary period-utility function. If the period-

utility function is concave, then, by Proposition 6, the recursive multiple-prior util-

ity is atemporaly risk averse with respect to any selection of probability measures

from the set of priors. However, it may not be temporaly risk averse. Proposi-

tion 7 implies that recursive multiple-prior utility (with state-independent sets of

priors) displays indifference to timing of resolution of uncertainty (see Strzalecki

(2013, Theorem 1). This is so because the certainty equivalent (39) is normalized,

constant additive, and homogeneous. Strzalecki (2013) provides a comprehensive

analysis of attitudes to timing of resolution of uncertainty for a broad class of

recursive utilities under ambiguity.

Koopmans recursive utilities can be generalized to include state-dependent sets

of “priors” Ps instead of single-valued transition kernel Q, and the multiple-prior

certainty equivalent.

9. Concluding Remarks

We studied properties of three classes of recursive utility functions: Epstein-Zin,

risk-sensitive, and the novel Koopmans utilities. The properties under considera-

tion were well-definiteness, time preference, and attitudes toward risk and timing

of resolution of uncertainty. All three classes of utility functions can accommodate

different attitudes toward risk and timing of resolution. While risk-sensitive and

Koopmans utilities are well-defined, display preference for early consumption, and

are tail insensitive for all parameters of their specifications, there is a range of

parameters of Epstein-Zin utilities for which these desirable properties cannot be

assured. Some parameters which are often used in applications lie in this range.

Koopmans utilities offer the most clear-cut separation between timing and risk

attitudes. Period-utility function expresses (temporal) risk attitudes through its

concavity/convexity properties while discount function expresses attitudes to tim-

ing of resolution of uncertainty through its concavity/convexity properties and

preference for early consumption through its contraction properties.

27



References

Backus, D., B.R. Routledge and S. Zin (2004), “Exotic Preferences for Macroe-

conomists,” NBER Macroeconomics Annual, 19, 319-390.

Balbus, L. (2016), “On non-negative recursive utilities in dynamic programming

with nonlinear aggregator and CES,” Econ. Theory.

Bansal, R., and A. Yaron, “Risks for the long run: A potential resolution of asset

pricing puzzles,” Journal of Finance 59, 1481–1509, 2004.

Bloise, G. and Y. Vailakis (2018). “Convex dynamic programming with (bounded)

recursive utility,” Journal of Economic Theory, vol 173, 118–141.

Bloise, G. C. Le Van and Y. Vailakis (2024), “Do not blame Bellman: It is Koop-

mans’ fault,” Econometrica, vol. 92, No. 1m 111–140

Borovicka, J. and J. Stachurski, “Necessary and Sufficient Conditions for Existence

and Uniqueness of Recursive Utilities,” Journal of Finance, vol 75(3), 2020.

Christensen, T., “Existence and uniqueness of recursive utilities without bounded-

ness,” Journal of Economic Theory, vol 200, 2022.

Epstein, L. and S. Zin (1989), “Substitution, Risk Aversion, and the Temporal Be-

havior of Consumption and Asset Returns: A Theoretical Framework,” Econo-

metrica, 57, 937-969.

Epstein, L. and M. Schneider, “Recursive Multiple Priors,” Journal of Economic

Theory 113, (2003), 1-31.

Hansen, L.P. and J. Scheinkman, 2009, “Long-term risk: An operator approach,”

Econometrica, 77, 177–234.

Hansen, L.P. and J. Scheinkman, 2012, “Recursive utility in a Markov environment

with stochastic growth,” P.N.A.S. 109, 11967–11972.

Hardy, G.H., J. E. Littlewood and G. Polya, Inequalities, Cambridge University

Press, (1934).

Kreps, D. and E. Porteus “Temporal resolution of Uncertainty and Dynamic Choice

Theory,” Econometrica, 48, pg 185-200.

Koopmans, T. (1960), “Stationary Ordinal Utility and Impatience,” Econometrica,

28, pg 287,

Koopmans, T. , “Representation of preference orderings over time,” in Volume in

honor of J. Marschak, (1972).

Lucas, R.E. and N.L. Stokey (1984), “Optimal Growth with Many Consumers,”

Journal of Economic Theory, 32, 139-171.

28



Ma, C. (1993), “Market equilibrium with heterogeneous recursive-utility-maximizing

agents,” Econ. Theory, 3, 243-266, with corrigendum

Marinacci, M. and L. Montrucchio “Unique Solutions for Stochastic Recursive

Utilities” J. EconTheory, vol 145, 2010.

Ozaki, H. and P.A. Streufert, “Dynamic programming for non-additive stochastic

objectives,” J. Math. Econ., 25 (4), 391–442 (1996).

Sargent, T. J. and J. Stachurski, Dynamic Programming, QuantEcon, (2023).

Schorfheide, F., D. Song, and A. Yaron, “Identifying long-run risks: A bayesian

mixed-frequency approach,” Econometrica 86(2), 617–654.

Streufert P.A (1990), “Stationary recursive utility and dynamic programming un-

der the assumption of biconvergence,” Review of Econ. Studies, 57, pg 79-97.

Strzalecki, T. “Temporal Resolution of Uncertainty and Recursive Models of Am-

biguity Aversion” Econometrica, 81, 2013.

Sundaram R. A First Course in Optimization Theory, Cambridge University Press,

(1996).

Weil, P. “Nonexpected utility in macroeconomics,” Quarterly Journal of Eco-

nomics 105, 29–42, (1990).

Werner, J. (2023b), “Risk Sharing with Recursive Utilities,” working paper.

29


