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Abstract

This paper studies consumers’ privacy choices when firms can use their data to

make personalized offers. We first introduce a general framework of personalization

and privacy choice, and then apply it to personalized recommendations, personalized

prices, and personalized product design. We argue that due to firms’ reaction in the

product market, consumers who share their data often impose a negative externality

on other consumers. Due to this privacy-choice externality, too many consumers

share their data relative to the consumer optimum; moreover, more competition,

or improvements in data security, can lower consumer surplus by encouraging more

data sharing.
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1 Introduction

Two important trends in digital markets are increased personalization and heightened

concerns surrounding consumer privacy. In particular, firms increasingly have access

to very rich data about individual consumers. Using sophisticated AI prediction tools,

firms can then infer information about consumers and offer them a personalized shopping

experience—in the form of tailored ads and recommendations, as well as personalized

prices and even personalized products.1 For instance, it is estimated that 1.8 million US

websites offer personalized recommendations (Donnelly, Kanodia, and Morozov, 2024),

and that recommendations drive 30% of sales on Amazon, 70% of views on YouTube,

and 80% of engagement on Pinterest (CDEI, 2020). However, largescale collection and

processing of data also raises privacy concerns. For example, it is estimated that ad tech

firms observe over 90% of a typical consumer’s browsing history (CDEI, 2020). Similarly,

a consumer’s voice assistant listens in on her conversations, while her telephone tracks her

real-time location, and facial recognition software can be used to infer her emotional state

from her photos and videos (Stucke and Ezrachi, 2017). Concerns about consumer privacy

have led to initiatives which give consumers more control over what data is collected

and how it is used. Examples include privacy legislation such as the EU’s GDPR and

California’s CCPA, as well as Google’s decision to move away from third-party cookies,

and Apple’s app tracking transparency policy.

Personalization and privacy choice are clearly intertwined: it is easier for firms to per-

sonalize when consumers share their data, but consumers’ decision of whether or not to

share their data also depends on how personalization affects their utility. In this paper we

provide a simple framework to study the interaction between data-driven personalization

and consumer privacy choice. Each consumer first decides independently whether to dis-

close her data; a market game between firms and consumers then follows. Consumers have

rational expectations about how their data-sharing decisions will affect their consumption

utility from the product market; they also face heterogeneous intrinsic privacy costs (e.g.,

due to data security concerns) or benefits (e.g., due to better service or compensation)

from data sharing.2

1According to Deloitte (2018) these are currently the main sources of AI-driven personalization. For

examples of personalization, see, e.g., https://bit.ly/48KT28R
2Despite the obvious challenges in quantifying how much consumers value privacy, there is an emerging

empirical literature on it. For example, Prince and Wallsten (2022) offer survey evidence that people

value privacy differently depending on the country and the type of data in question. (For instance,

Germans value privacy more than people in the other five countries in their survey. Banking information
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The core economic force in our model is a privacy-choice externality across consumers:

when some consumers share their data, this affects not only the offers that firms make to

them, but may also affect the offers made to other consumers. If the payoffs of sharing

and anonymous consumers both decrease as more other consumers share their data, we

show that the privacy choice equilibrium features too much data sharing relative to the

consumer optimum. (This is true even though aggregate consumer surplus can vary

non-monotonically with the number of sharing consumers.) In contrast, the equilibrium

features too little data sharing if sharing and anonymous consumers’ payoffs increase as

more other consumers share. We then study three applications of the framework, and

argue that the former case often arises. In that case, we further demonstrate that more

competition (due to an increase in the number of competitors in the product market)

or improved data security (which decreases consumer privacy costs) can have a perverse

effect on aggregate consumer welfare by increasing overall data sharing in the market.

We now briefly explain the privacy-choice externality in each of the three applications.

Personalized recommendations. As already mentioned, online firms now routinely of-

fer consumers personalized recommendations. We consider a set-up in which consumers

can search firms on a platform to learn about prices and match values, but if they share

their data, the platform will recommend (without bias) their best-matched product. One

might expect consumers to benefit from such recommendations because they no longer

need to search. However, anticipating that consumers who receive recommendations be-

come less likely to search any non-recommended product, firms have an incentive to raise

their prices. This obviously harms consumers who hide their data (and so do not re-

ceive recommendations). Even for consumers who receive recommendations, this adverse

price effect can also outweigh the informational benefit.3 Moreover, consumers do not

always benefit from an increase in the number of firms: we show that more competition

induces more consumers to share their data, which leads to higher prices and so may lower

consumer welfare.

such as balance is worth about $8.5/month and browsing history is worth about $3.75.) Lin (2022)

documents lab evidence that (intrinsic) privacy cost is relatively small (per demographic variable) but

highly heterogeneous across consumers, while Tang (2019) shows in a large-scale field experiment that

privacy cost in an online lending market is much larger. See also Goldfarb and Tucker (2012), Athey,

Catalini, and Tucker (2017), and Kummer and Schulte (2019).
3Our analysis in this part is also related to targeted advertising. Specifically, ad exchanges provide

detailed information about consumers (who shared their data) to advertisers, who then bid for the right

to display an ad. Assuming the advertiser with the best match for a consumer wins the auction (and so is

seen by the consumer first), as more consumers share their data this creates a similar negative externality.
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Personalized pricing. Another common use of consumer data is personalized pricing,

i.e., charging different consumers different prices based on estimates of their willingness-

to-pay.4 To avoid a consumer backlash, firms often implement personalized prices by

offering consumers targeted discounts off a public price via emails or smartphone app.5

We consider a set-up in which firms charge a public list price to consumers who hide their

data, and meanwhile offer personalized discounts to consumers who share their data. A

higher list price reduces demand from the former consumers, but allows for more flexible

pricing to the latter consumers. Hence, as more consumers share their data, firms have an

incentive to raise their list prices. This harms consumers who hide their data and also the

sharing consumers who are not offered a discount. We again show that more competition

need not always benefit consumers, if it raises their incentives to share data and hence

leads to a higher public list price.

Personalized product design. In many industries such as apparel, furniture, and health-

care, there is a trend towards firms offering products that are individually designed for

consumers. By doing this, firms hope to create additional value, which they can then ex-

tract via a high price; at the same time, firms are constrained by the fact that consumers

can often also access publicly-available and less-personalized products which are offered to

consumers who have not shared their data. We construct a model with this feature, and

show that to extract more surplus from consumers who share their data, firms degrade

their public offering by distorting both product designs and prices. This again implies

that consumers who choose to share their data impose a negative externality on others.

In this paper we highlight the importance of accounting for privacy-choice externalities

across consumers when assessing the impact of privacy policies. For example, a policy

like GDPR which enables consumers to costlessly hide their data often improves consumer

welfare compared to the case where firms have free access to consumer data. However,

due to the privacy-choice externality, there are still too many consumers who share their

data relative to the consumer optimum. There are of course other possible reasons for

suboptimal consumer privacy choices. For example, this can happen if consumers are not

perfectly rational in their privacy decisions (e.g., if consumers put too much weight on

the immediate satisfaction from better service after sharing data but underestimate the

future cost due to, say, data security problems). Another possible reason is the so-called

4See https://bit.ly/3A4Rk10 and https://bit.ly/38Ygzq6 for a history of personalized pricing,

and OECD (2018), Which? (2018) and http://bit.ly/3E4nDBT for detailed examples.
5E.g., see https://bit.ly/37OftAc for how Kroger uses its mobile app to offer personalized coupons.
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“social data externality” as advocated in a sequence of recent articles, including Choi,

Jeon, and Kim (2019), Ichihashi (2021), Acemoglu, Makhdoumi, Malekian, and Ozdaglar

(2022), and Bergemann, Bonatti, and Gan (2022). The main idea in these papers is

that when a group of consumers have correlated preferences, one consumer’s data sharing

diminishes the value of other consumers’ data. When each consumer makes their data-

sharing decision independently, they do not take this externality into account; this results

in too much data sharing, and enables data intermediaries to acquire consumer data too

cheaply. This externality, however, is purely at the data market level and is independent

of the product market channel that we emphasize in our paper.6

Some other literature. The economics literature on consumer privacy is exploding

(see, e.g., the recent surveys by Acquisti, Taylor, and Wagman (2016), and Bergemann

and Bonatti (2019)). Our paper contributes to the study of consumer privacy choice

when consumer data is used by firms to make personalized offers. We do not follow the

“first-party data” approach in the large literature on purchase-behavior-based discrimi-

nation (see, e.g., the survey paper Fudenberg and Villas-Boas (2007)) where a firm can

obtain consumer data only if consumers previously purchased from it. Instead we con-

sider broader sources of consumer data: even data from non-merchant sites (such as social

media and service apps) can be purchased by firms to learn about consumer preferences.

For each of our applications, there are some closely related works. (Other related

papers will be discussed later in the paper after each application.) Anderson and Renault

(2000) examine the impact of having some exogenously informed consumers (who perfectly

learn product valuations before they search) in a duoploy version of the Wolinsky (1986)

search model. Since these informed consumers do not actively search, their presence

induces firms to raise their prices, similar to sharing consumers (who receive a perfect

recommendation) in our application of personalized recommendations. Anderson, Baik,

and Larson (2023) study consumer privacy choice in the context of personalized pricing

in the second part of their paper, and observe a similar externality of sharing consumers

6In addition, at the data market level, Miklós-Thal, Goldfarb, Haviv, and Tucker (2024) study the

implications of correlation between different dimensions of user data: when a firm accumulates more

consumer data, it is better able to infer sensitive data from non-sensitive data. In this case, data sharing

by early users imposes a negative externality on later users who share only non-sensitive data. This can

lead to data-sharing polarization over time: consumers who strongly value privacy share no data at all

(even if they could get compensated by sharing non-sensitive data), while those who are less privacy

sensitive share all their data (including sensitive data) because sharing only non-sensitive data cannot

prevent the firm from learning their sensitive data.
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on others, but their setup of personalized pricing is different from ours. However, neither

Anderson and Renault (2000) nor Anderson, Baik, and Larson (2023) discuss the potential

perverse effect of more competition. Our application to personalized product design is

most closely related to Bergemann and Bonatti (2023) and Section 7 of Vaidya (2023).

These papers address very different research questions, e.g., the first one does not study

consumer privacy choice, while the second one focuses on a regulator’s choice of what

information to allow consumers to disclose. Nevertheless, both models eventually boil

down to a variant of Mussa and Rosen (1978) where some consumers’ preferences are

perfectly observable to the firm so that it can offer a personalized product (which is also

used in our paper). We discuss these papers in more detail in the section on applications,

but these works either do not consider the problem of consumer privacy choice explicitly

or consider it in the context of a particular type of personalization. The general framework

offered in this paper not only helps connect these works but also delivers new insights

about the interaction between personalization and consumer privacy choice in general.

Some other recent papers also find privacy-choice externalities across consumers, but

in different contexts.7 For example, Fainmesser, Galeotti, and Momot (2023) study data

protection. In their model, a firm chooses how much data to collect from consumers

and how much to protect it from hackers and other adversaries. Consumers decide how

much data to give the firm (which is like a privacy choice): the trade-off is that sharing

more data gives a better service, but also increases the cost if the firm is hacked. When

consumers share more data, they exert both positive externalities (due to better service)

and negative externalities (by making the firm a more attractive target for hackers) on

other consumers. Unlike in our paper, these externalities are not driven by a market

channel. Galperti, Liu, and Perego (2024) study intermediated data markets. (See also

the paper Galperti, Levkun, and Perego (2023).) In their model, a platform first buys

data from consumers and then sells it to a firm that can price discriminate. If the platform

cares enough about consumers, it pools some consumer types together to avoid perfect

discrimination by the seller. A consumer’s privacy choice can then influence the seller’s

belief about the composition of consumers in each market segment, and thus also influence

the discriminatory prices it offers. Like in our paper, this generates a cross-consumer

externality via a product market channel. However, although they also have externalities

across consumers, these papers address different research questions from ours.

7See also pp. 445-446 in Acquisti, Taylor, and Wagman (2016) for a discussion of other types of

externality that can arise due to consumer privacy choices.

6



Finally, we note that in this paper we assume that consumers make their privacy

choices after learning their privacy costs but before learning their preferences for the

products in the market. Consequently, a consumer’s privacy choice does not convey any

information about her preference over different products. This is different from much

of the existing literature on privacy choice, such as Belleflamme and Vergote (2016),

Montes, Sand-Zantman, and Valletti (2019), Chen, Choe, and Matsushima (2020), Ichi-

hashi (2020), Ali, Lewis, and Vasserman (2023), and Hidir and Vellodi (2021), which

assumes that consumers know their preferences when deciding whether to share their

data. Our assumption captures the idea that consumers often have limited information

about when and how the data that they share (e.g., via cookies on a website, or tracking

by an app) will be used. For instance, when consumers decide whether or not to allow a

newspaper website to track their browsing data, they are rarely able to predict when and

in which product markets the data will be used to customize offers. We also discuss the

opposite case toward the end of the paper, arguing that our assumption is not crucial for

the main insights of the paper. Two papers that make the same timing assumption are

Anderson, Baik, and Larson (2023) and Argenziano and Bonatti (2023).

2 Framework

Consider a market with n ≥ 1 firms and a unit mass of consumers. A consumer is charac-

terized by her consumption type θ ∈ Θ and her privacy type τ ∈ [τ , τ ]. The consumption

type θ captures a consumer’s preferences over the firms’ products. The privacy type τ is

a consumer’s net cost from sharing her data; it can be positive or negative, and reflects

all costs and benefits from sharing data which are not related to product consumption

(e.g., concerns about data security, and benefits from better website/app functionality).

Each consumer’s θ and τ are drawn independently according to differentiable CDFs F (θ)

and T (τ) respectively.

We consider the following privacy choice game. At the first stage, each consumer learns

her privacy type τ , and decides whether to share her data based on a rational expectation

of how her data sharing decision will affect the offers that she will receive. (For simplicity,

we do not allow consumers to choose how much or what data to share.) If a consumer

shares her data, she pays her privacy cost τ . At the second stage, consumers who shared

their data receive a personalized offer (e.g., a recommendation, price, or product) which

7



depends on their θ.8 Consumers who did not share their data receive a uniform offer which

does not depend on their θ. Finally, at the third stage, consumers learn their consumption

type θ (which may require costly information acquisition in some applications) and decide

which offer (if any) to accept.

We allow for externalities in sharing decisions. Specifically, let σ be the fraction

of consumers who share their data. At the third stage, a consumer of type θ gets a

consumption surplus vs(θ, σ) if she shared her data and va(θ, σ) if she did not share her

data (and is thus anonymous).9 Since consumers make their privacy choice before learning

their θ, what matters at the first stage is their ex-ante expected consumption surplus. To

this end, we let Vs(σ) = Eθ[vs(θ, σ)] and Va(σ) = Eθ[va(θ, σ)] be the expected consumption

surpluses for a sharing and an anonymous consumer respectively. We assume that Vs(σ)

and Va(σ) are finite, and also continuous and differentiable in σ.

Using the above framework, we will examine whether consumers share too much or

too little relative to the consumer optimum. We will also study whether more competition

(due to an increase in n) or better data security (due to a decrease in the distribution of

τ) necessarily benefits consumers when privacy choices are endogenous.10

Remarks: Before solving the model, we briefly discuss two of our assumptions.

(i) Timing. We assume that consumers make their privacy choice before learning

their consumption type θ. As explained in the introduction, this captures the idea that

consumers often have limited information about when and how the data that they share

(via cookies on a website, or tracking by an app) will be used. It implies that a con-

sumer’s privacy choice does not convey any information about her θ. We discuss how this

assumption can be relaxed in Section 4.1.

(ii) Externalities. Externalities across consumers play a crucial role in our analysis,

and we provide several different microfoundations for them in Section 3. As an example,

suppose data is used to make personalized recommendations to consumers who face search

frictions, but firms must offer the same price to both sharing and anonymous consumers.

8In later applications we will assume for simplicity that access to a consumer’s data allows her θ to

be learned perfectly. However we do not require that assumption in the general framework studied here.
9The externality is assumed to depend only on the total number of sharing consumers but not their

composition. This is the case in all of our applications below.
10Developing this reduced-form framework first helps unify (and also simplify) our analysis in the later

applications. We note, however, that our framework applies beyond privacy choice: it also applies to

contexts where consumers make heterogenous choices (e.g., whether to install an ad blocker by paying a

cost) and impose externalities on each other via a product market channel (e.g., price competition).
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Suppose sharing consumers use recommendations to modify their search behavior. It is

natural that as more consumers share, firms face a different demand elasticity, and so

adjust their prices. Sharing consumers then exert an externality on other consumers.

2.1 Equilibrium privacy choice

We start by solving for consumers’ equilibrium privacy choices. To this end, denote by

∆(σ) the (expected) consumption benefit or loss from sharing data, where

∆(σ) ≡ Vs(σ)− Va(σ). (1)

Consumers follow a cut-off rule: if a fraction σ of consumers are expected to share, those

with τ < ∆(σ) optimally share their data whereas all the others optimally hide their data.

As a result, σ∗ is an equilibrium of the privacy game if and only if

σ∗ = T (∆(σ∗)) . (2)

It follows immediately that:

Proposition 1. The privacy choice game has at least one equilibrium. Moreover:

(i) No consumers sharing (i.e., σ∗ = 0) is an equilibrium if and only if ∆(0) ≤ τ . All

consumers sharing (i.e., σ∗ = 1) is an equilibrium if and only if ∆(1) ≥ τ .

(ii) All equilibria are interior (i.e., 0 < σ∗ < 1) if and only if ∆(0) > τ and ∆(1) < τ .

(iii) A sufficient condition for uniqueness of equilibrium is that ∆′(σ) ≤ 0.

Equilibrium existence follows from Brouwer’s fixed point theorem, because the right-hand

side of equation (2) is a continuous mapping from [0, 1] onto itself. Parts (i) and (ii) of the

proposition provide simple conditions for “corner” (i.e., σ∗ = 0 or σ∗ = 1) or “interior”

equilibria. For instance, if τ is sufficiently small and τ is sufficiently large, then any

privacy choice equilibrium must be interior with some consumers sharing their data and

others hiding it. Part (iii) of the proposition shows that equilibrium is unique whenever

∆(σ) is weakly decreasing, such that there is “substitutability” in sharing decisions. On

the other hand, multiple equilibria can arise when ∆(σ) is strictly increasing.11

The following simple observation is useful in our subsequent analysis:

Lemma 1. Suppose σ∗ is an equilibrium of the privacy choice game. If V ′
s (σ) < 0

and V ′
a(σ) < 0, each consumer prefers this equilibrium over any market situation with

11For instance, if sharing decisions are complementary and privacy costs are sufficiently homogeneous

that ∆(0) < τ < τ < ∆(1), there are two corner equilibria and at least one interior equilibrium as well.
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more sharing consumers (i.e., with σ > σ∗), regardless of whether that situation is an

equilibrium or not. In contrast, if V ′
s (σ) > 0 and V ′

a(σ) > 0, each consumer prefers this

equilibrium over any market situation with fewer sharing consumers (i.e., with σ < σ∗).

Proof. A consumer with privacy cost τ gets expected surplus max{Va(σ
∗), Vs(σ

∗) − τ}
in the σ∗ equilibrium. Meanwhile in a situation with σ ̸= σ∗, the same consumer’s

expected surplus is at most max{Va(σ), Vs(σ) − τ} (because if σ is not an equilibrium,

some consumers make a suboptimal privacy choice). The former strictly exceeds the latter

if (i) σ > σ∗, V ′
s (σ) < 0 and V ′

a(σ) < 0, or if (ii) σ < σ∗, V ′
s (σ) > 0 and V ′

a(σ) > 0.

The result in this lemma follows immediately if a consumer makes the same privacy

choice at σ and σ∗. Using a revealed preference argument, the proof demonstrates that

it also holds even if the consumer makes a different privacy choice in the two cases.

Lemma 1 can be used to provide a ranking when there are multiple equilibria:

Corollary 1. Suppose that σ∗
1 and σ∗

2 are both equilibria of the privacy game, with σ∗
1 < σ∗

2.

Every consumer is better off in the σ∗
1 equilibrium if V ′

s (σ) < 0 and V ′
a(σ) < 0. The

opposite is true if V ′
s (σ) > 0 and V ′

a(σ) > 0.

Lemma 1 can also be used to evaluate the impact of privacy policies such as GDPR

in the EU and CCPA in California. Specifically, imagine that initially consumers have no

control over their data, which is therefore shared with the firms; in terms of the above

discussion, this is equivalent to having σ = 1. Then suppose there is a privacy policy,

which allows consumers to costlessly hide their data. The following result is immediate:

Corollary 2. Suppose V ′
s (σ) < 0 and V ′

a(σ) < 0. A privacy policy that enables consumers

to costlessly hide their data strictly benefits every consumer if it induces σ∗ < 1.

On the other hand, when V ′
s (σ) > 0 and V ′

a(σ) > 0, a privacy policy can backfire and

harm every consumer. For instance, this happens when ∆(σ) ≤ τ for every σ (such that

the privacy policy induces all consumers to become anonymous) and in addition Va(0) <

Vs(1)−τ (such that even the most privacy-conscious consumer prefers the situation where

everyone shares). Later we provide an example where these conditions are satisfied.

2.2 Comparison with consumer optimum

We now consider a social planner that wishes to maximize aggregate consumer surplus,

and can decide which consumers share their data and which consumers are anonymous.

10



Clearly, conditional on having σ sharing consumers, the social planner chooses those with

the lowest privacy type, which gives rise to aggregate consumer surplus of

V (σ) = σVs(σ) + (1− σ)Va(σ)−
∫ T−1(σ)

τ

τdT (τ) . (3)

The derivative of this expression with respect to σ is equal to

V ′(σ) = σV ′
s (σ) + (1− σ)V ′

a(σ) + ∆(σ)− T−1(σ) . (4)

Notice that at an interior equilibrium (i.e., when 0 < σ∗ < 1), the marginal sharing

consumer’s privacy type T−1(σ∗) is exactly equal to the equilibrium consumption benefit

∆(σ∗). Hence the last two terms in equation (4) cancel, and we can write that:

V ′(σ∗)|0<σ∗<1 = σ∗V ′
s (σ

∗) + (1− σ∗)V ′
a(σ

∗) . (5)

This tells us whether a local change in σ raises or lowers aggregate consumer surplus,

while Lemma 1 can be used to look at the effect on a non-local change in σ. Therefore

combining the two, we find that:

Proposition 2. Suppose the privacy choice game has an interior equilibrium (i.e., 0 <

σ∗ < 1). If V ′
s (σ) < 0 and V ′

a(σ) < 0, there are strictly too many sharing consumers

relative to the consumer optimum; the opposite is true if V ′
s (σ) > 0 and V ′

a(σ) > 0.

Proof. Consider the case with V ′
s (σ) < 0 and V ′

a(σ) < 0. It is clear from equation (5) that

V ′(σ∗) < 0. In addition, Lemma 1 implies that V (σ∗) > V (σ) for any σ > σ∗, regardless

of whether σ is an equilibrium or not. Hence argmaxσ V (σ) < σ∗. The opposite case

with V ′
s (σ) > 0 and V ′

a(σ) > 0 can be proved in the same way.

This result may seem trivial because, for example, when V ′
s (σ) < 0 and V ′

a(σ) < 0, a

higher σ reduces both Vs(σ) and Va(σ) and so must harm consumers in aggregate. Notice,

however, that Vs(σ) can also exceed Va(σ), i.e., a sharing consumer can obtain more

consumption surplus than an anonymous consumer; this is a countervailing force which

favors having more sharing consumers.12 We also note that due to this countervailing

force, V (σ) may not be globally decreasing in σ when there are negative externalities: the

12We note that Proposition 2 may not hold if the privacy choice game has a corner equilibrium. In this

case, the privacy choice equilibrium features only weak over-/under-sharing respectively. To illustrate,

suppose for each σ ∈ [0, 1] that V ′
s (σ) < 0 and V ′

a(σ) < 0 but ∆(σ) > τ . The privacy choice game has

a unique equilibrium with σ∗ = 1. Moreover, since the last two terms in equation (4) are now strictly

positive, it is possible that V ′(σ) > 0 for all σ ∈ [0, 1], such that σ = 1 is also the consumer optimum.
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marginal consumer’s gain from sharing (i.e., the last two terms in (4)) can be positive

and outweigh the negative impact on other consumers’ surplus (i.e., the first two terms

in (4)). We will demonstrate these points in later applications.

2.3 The effect of more competition or improved data security

Fixing consumers’ privacy choices, one would usually expect more competition (i.e., higher

n) or improved data security (i.e., a FOSD decrease in τ) to raise consumer welfare. We

now show that this may not hold with endogenous privacy choices. Hence a competition

or consumer protection policy can have a perverse effect on consumers.

To illustrate this as simply as possible, we focus on the case where the privacy game

has a unique equilibrium. As a preliminary step, we find that:

Lemma 2. Suppose σ∗ is unique, and either (i) n increases and this raises ∆(σ) or (ii)

T (τ) decreases in the sense of FOSD. Then σ∗ weakly increases.

Proof. Consider a shift from {∆(σ), T (τ)} to {∆̃(σ), T̃ (τ)}. Let σ∗ and σ̃∗ be the (unique)

equilibrium associated with the former and latter, respectively. Assume ∆̃(σ) ≥ ∆(σ) for

each σ, and T̃ (τ) ≥ T (τ) for each τ . Clearly if σ∗ = 0 then it follows immediately that

σ̃∗ ≥ σ∗. If instead σ∗ > 0 then we must have T (∆(σ)) > σ for all σ < σ∗, which implies

that T̃ (∆̃(σ)) > σ for all σ < σ∗, which in turn implies that σ̃∗ ≥ σ∗.

If more competition raises the benefit of sharing data, or if better data security leads to a

FOSD reduction in privacy costs, then in equilibrium more consumers share their data.13

We first argue that an increase in competition can have a perverse effect on consumer

welfare. Specifically, abusing notation, the effect on aggregate consumer welfare of adding

an extra firm is V (σ∗(n+ 1);n+ 1)− V (σ∗(n);n), which can be rewritten as

V (σ∗(n);n+ 1)− V (σ∗(n);n)︸ ︷︷ ︸
Direct effect of more competition

+V (σ∗(n+ 1);n+ 1)− V (σ∗(n);n+ 1)︸ ︷︷ ︸
Indirect effect due to endogenous privacy choice

. (6)

The first part captures the effect of more competition for given privacy choices, and is

typically positive. The second part captures the effect of more competition through a

change in privacy choice: it is negative if, for example, an increase in n raises ∆(σ) and

13When the privacy game has multiple equilibria, the same observation applies to all stable interior

equilibria (in which T (∆(σ)) crosses σ from above) as well as any corner equilibria.
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thus σ∗ (by the above lemma), and V is decreasing in σ. We will show in later applications

that the second part can indeed be negative and can also dominate the first part.14

We also argue that a reduction in privacy costs can similarly have a perverse effect on

consumer welfare. To illustrate this in a simple way, consider the case with Vs(σ) > Va(σ)

for any σ, i.e., there is always a consumption benefit from sharing data. Suppose that

initially the privacy cost is so high that all consumers choose to be anonymous, leading to

consumer welfare of Va(0). Suppose data security improves so much that the privacy cost

drops to zero. Given that ∆(σ) > 0, all consumers share their data, leading to consumer

welfare of Vs(1). Consumers are then worse off whenever Vs(1) < Va(0). We provide

applications later on where this condition is satisfied.

3 Applications

We now apply our framework to personalized recommendations, prices, and products.

3.1 Personalized recommendations

As discussed in the Introduction, many online platforms use data to generate personalized

recommendations for consumers. In this section we study the interaction between unbiased

recommendations and privacy choice.15 Such recommendations only matter if consumers

have imperfect information and find it costly to discover their preferred product on their

own. In order to capture this, we build on the canonical search framework with product

differentiation developed by Wolinsky (1986) and Anderson and Renault (1999).

Primitives. Consider a discrete-choice framework with n firms. Let vi, i ∈ {1, ..., n},
denote a consumer’s valuation for firm i’s product. We assume that the vi’s are IID across

firms and consumers, and drawn from a common CDF F (v) with support [v, v]. Lef f(v)

14Note that, for simplicity, we assume here that any increase in competition does not affect privacy

costs. If privacy costs increase in n (e.g., because there is more chance that a consumer’s data is

mishandled), those consumers who still choose to share their data pay an extra privacy cost; on the other

hand, this induces fewer consumers to share, and so may mitigate any perverse effect of competition.
15We therefore sidestep the concern that sellers may pay a platform to obtain a biased recommendation;

there is already an extensive literature studying this (see, e.g., Armstrong and Zhou (2011), Inderst

and Ottaviani (2012), de Cornière and Taylor (2019), and Teh and Wright (2022)). Needless to say, an

interesting question for future research would be the interplay between privacy choice and data regulation,

and sellers’ incentives to pay for recommendations.
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be its density function, and assume it is log-concave. The consumption type is then a

consumer’s vector of valuations for the n products, i.e., θ = (v1, . . . , vn).

Each consumer is initially uninformed about her valuations for the n products as well

as their prices, but can learn this information via a standard sequential search process.

Specifically, if a consumer visits a firm, she learns her valuation for its product and its

price, and then decides whether to purchase its product immediately or continue searching.

We assume that the first visit is costless, but that visiting any additional firm incurs a

search cost s > 0; consumers may costlessly recall any firm they searched previously.

If a consumer shares her data (e.g., with a platform that hosts the n firms), she receives

a personalized recommendation informing her about which product gives her the highest

valuation.16 (Later on we discuss recommendations based on net surplus instead of match

value.) If a consumer does not share her data, she does not receive any recommendation.

Suppose that firms do not have access to data and so cannot price discriminate, e.g., they

do not know whether they have been recommended to a consumer or not.

The timing is as follows. Each consumer first learns her privacy type τ , and then

independently chooses whether or not to share her data. At the same time, firms form a

rational expectation about σ, and then set their prices simultaneously to maximize their

own profit. Consumers search optimally (with or without receiving recommendations

according to their privacy choice), holding a rational expectation about firms’ pricing

strategies. Since there are no correlated shocks across firms, we make the usual assumption

of passive beliefs, i.e., upon seeing an off-equilibrium price at some firm, consumers believe

that other unsampled firms still charge their equilibrium prices. We look for a symmetric

perfect Bayesian equilibrium where all firms set the same price.

Pricing equilibrium with a fixed σ. We first study price competition with an exoge-

nous fraction σ of sharing consumers. We look for a symmetric equilibrium where each

firm charges the same price p.

Let us first derive the demand for firm i if it unilaterally deviates and charges a price

pi (which is not observable to consumers before they search). We begin with demand

16Recommendations are therefore assumed to be perfect. Considering imperfect recommendations

would complicate the analysis, because sharing consumers might search beyond the recommended firm,

and might not use a standard cutoff rule since they would use the valuation of the recommended product

to update their belief about their valuations for other products. Nevertheless the main insight should not

change: since the recommended product is better on average than the others, sharing consumers would

search less than in the case without recommendations, leading to higher equilibrium prices.
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from sharing consumers. Firm i is recommended to a sharing consumer with probability
1
n
. Since all firms are expected to charge the same price, any sharing consumer who is

recommended firm i will visit that firm first. Suppose pi is a small local deviation (e.g.,

pi < p + s) so that a sharing consumer who is recommended firm i has no incentive to

search beyond firm i after seeing its deviation price. (We discuss non-local deviations

later.) In this case firm i competes only with the outside option, and so its expected

demand from a sharing consumer is

qs(pi) ≡
1

n
[1− F (pi)

n] , (7)

because conditional on being recommended—and therefore being the best of n products—

product i’s valuation has a CDF F (v)n. Note that the recommended firm is therefore like

a multiproduct monopolist that charges the same price on each of its n products.

Now consider demand from anonymous consumers. Anonymous consumers search

randomly among firms as in the usual Wolinsky-Anderson-Renault model. Specifically,

after visiting firm i for the first time, they buy immediately if and only if firm i offers

them a surplus vi − pi that exceeds r− p, where r is the reservation value in the optimal

stopping rule which solves
∫ v

r
[1 − F (v)]dv = s. We assume for now that r − p > 0, and

provide a primitive condition for it to hold below. Then, as is standard, firm i’s expected

demand from an anonymous consumer is

qa(pi) =
1

n
[1+F (r)+ · · ·+F (r)n−1][1−F (r− p+ pi)]+

∫ r−p+pi

pi

F (vi− pi+ p)n−1dF (vi) .

The first term is demand from consumers who buy immediately after searching firm i.

(Consumers search randomly, and only visit firm i if all the previously inspected products

have valuations below r.) The second term is demand from consumers who return to firm

i after visiting all firms. (A consumer searches on from firm i but then comes back to it

if and only if 0 < vi − pi < r − p and vj − p < vi − pi for all j ̸= i.) After a change of

variables, we can rewrite the expected demand from an anonymous consumer as

qa(pi) =
1

n

1− F (r)n

1− F (r)
[1− F (r − p+ pi)] +

∫ r

p

F (v)n−1f(v − p+ pi)dv . (8)

Notice that qa(p) = qs(p) = 1
n
[1 − F (p)n], i.e., a firm’s equilibrium demand from an

anonymous consumer is the same as that from a sharing consumer. This is because an

anonymous consumer buys something provided at least one of her valuations exceeds p,

and on average each firm gets a 1
n
share of her demand. However, as we discuss in more

detail shortly, anonymous and sharing consumers have different demand elasticities.
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Firm i’s problem is then

max
pi

(pi − c)[σqs(pi) + (1− σ)qa(pi)] . (9)

We focus on the case where this profit function is well-behaved, such that the equilibrium

price is determined by the first-order condition. (We will further discuss this issue after

the next lemma.) The equilibrium price p then solves

1− F (p)n

n

1

p− c
= σ|q′s(p)|+ (1− σ)|q′a(p)|

= σF (p)n−1f(p) + (1− σ)

[
f(r)

n

1− F (r)n

1− F (r)
−

∫ r

p

F (v)n−1f ′(v)dv

]
.

(10)

Lemma 3. The first-order condition (10) has a unique solution p ∈ (c, r) and it increases

in σ. That is, if the equilibrium price is determined by (10), it increases in the fraction

of sharing consumers.

Anonymous consumers are more price-sensitive than sharing consumers. The reason

is that anonymous consumers search randomly, and so when a seller raises its price, some

of these consumers search on, and not all of them return later and purchase. In contrast,

sharing consumers are recommended the product with the highest valuation maxi{vi},
and in equilibrium they either buy it or take the outside option—and so firms are like

“multiproduct monopolists” over these consumers. Therefore, as σ increases, firms face

a less elastic demand and charge a higher price. Indeed, as σ approaches 1, firms charge

the multiproduct monopoly price argmaxp(p− c)qs(p).

Remarks. We clarify a few technical issues before proceeding. First, it is hard to derive

simple primitive conditions for the deviation profit function in (9) to be well-behaved, so

that the first-order condition (10) is sufficient for defining the equilibrium price. This is

the case even in the standard Wolinsky model (i.e., the case with σ = 0); having the extra

demand component from the sharing consumers makes the problem more complicated.

In the numerical examples used below, we have verified that the deviation profit is single-

peaked. (The details are available upon request.)

Second, when firm i sets a high deviation price, even sharing consumers who were

recommended it may choose to search other products in the market. The firm’s demand

from sharing consumers is then lower than qs(pi) in (7). This, however, does not affect

the above equilibrium analysis: if a firm has no incentive to deviate under qs(pi) in (7), it

also has no incentive to deviate under a demand function that is smaller at high pi values.
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Finally, the above analysis is predicated on p < r, such that in equilibrium some

anonymous consumers search beyond the first firm that they sample.17 Since p is capped

by the multiproduct monopoly price argmaxp(p − c)qs(p), a sufficient condition is that

the latter is less than r, or equivalently

r − c >
1− F (r)n

nF (r)n−1f(r)
. (11)

In the appendix, we show that (11) holds when r is above (or s is below) a certain

threshold. This condition is also verified in the numerical examples we use below.

Now consider the surplus enjoyed by the two consumer types. A sharing consumer

buys if and only if her favorite product has a value above p, so her expected surplus is

Vs(σ) =

∫ v

p

(v − p)dF (v)n =

∫ v

p

[1− F (v)n]dv . (12)

An anonymous consumer’s expected surplus can be shown to equal18

Va(σ) =

∫ r

p

[1− F (v)n]dv + s . (13)

It then follows immediately from Lemma 3 that:

Corollary 3. Sharing consumers exert negative externalities: V ′
a(σ) < 0 and V ′

s (σ) < 0.

When there are more sharing consumers, this relaxes price competition, to the detriment

of both anonymous and sharing consumers.

Privacy choice equilibrium. Using equations (12) and (13), as well as the definition

of r, we can write the consumption benefit from sharing data as

∆(σ) = Vs(σ)− Va(σ) =

∫ v

r

[F (v)− F (v)n]dv . (14)

17When instead p ≥ r, in a symmetric pure-strategy equilibrium anonymous consumers do not search

beyond the first visited firm. In that case, each firm’s demand is a weighted sum of standard single-product

and standard multiproduct monopoly demands. Since the multiproduct monopoly price is greater than

the single-product monopoly price, the equilibrium price also increases in σ just as in Lemma 3.
18The first term is expected consumer surplus in the Wolinsky model. Using, e.g., Lemma 3 in Rhodes

and Zhou (2019), it equals V −
∫ s

0
S(x)dx, where V =

∫ v

p
[1− F (v)n]dv is consumer surplus when search

is costless but firms charge the equilibrium price associated with the actual search cost s, and S(x) is the

expected number of searches given a search cost x. Note that S(x) = [1−F (r(x))n]/[1−F (r(x))], where

r(x) is the reservation value given search cost x and it solves
∫ v

r(x)
[1 − F (v)]dv = x. Using a change of

variables from r(x) to v, we have that
∫ s

0
S(x)dx =

∫ v

r
[1−F (v)n]dv. Finally, the s term in equation (13)

is needed because in our model the first search is free, whereas in Wolinsky it costs s.
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Note that ∆(σ) is strictly positive for all n ≥ 2. The reason is that sharing consumers

pay the same price as anonymous consumers, but are recommended their best product

without having to search. Note also that ∆(σ) is independent of σ. Intuitively, both

sharing and anonymous consumers make a purchase if and only if they value (at least)

one product more than p, so changes in p affect their surpluses in the same way. It then

follows from Proposition 1 that the privacy choice game has a unique equilibrium σ∗.

Too much data sharing. Proposition 2 and Corollary 3 together imply that there is

too much data sharing in any (interior) equilibrium relative to the consumer optimum.

Figure 1 illustrates this for the case where n = 2, r = 2/3, valuations are uniform on

[0, 1], c = 1/4, and τ follows a Beta (1/2, 10) distribution. The privacy choice game

has a unique equilibrium with σ∗ = 0.646, whereas aggregate consumer surplus V (σ) is

hump-shaped and maximized at σ̂ = 0.409. At this optimum, total consumer surplus is

around 3% higher compared to in the privacy choice game.

σ∗σ̂0 1

5 · 10−2

7 · 10−2

9 · 10−2

σ

V (σ)

Figure 1: Aggregate consumer surplus as a function of σ

Perverse effect of more competition. It is clear from equation (14) that ∆(σ) in-

creases in n. (Intuitively, when n is higher, the best product has a higher match, and the

benefit of being recommended it rather than having to search among a larger number of

firms is also higher.) It then follows from Lemmas 2 and 3 that an increase in n raises σ∗

and relaxes competition. We now show via an example that having more firms can relax

competition so much that it ends up harming consumers.

Example. Suppose that c = 0, valuations are uniformly distributed on [0, 1], τ is uniformly

18



distributed on [0.025, 0.055], and the search cost is such that r = 0.8. Figure 2 depicts the

impact of changes in n on equilibrium outcomes. The red dotted curves are for the case

where all consumers exogenously hide their data (i.e., the standard Wolinsky model): as

n increases, price falls and consumers are better off. The blue solid curves are for the case

with endogenous privacy choice: (i) the fraction of consumers that share is zero for n = 1

and n = 2, intermediate for n = 3 and n = 4, and one for all n ≥ 5, (ii) the equilibrium

price is U-shaped in n and minimized at n = 2, and (iii) aggregate consumer surplus is

hump-shaped in n and maximized at n = 3. Intuitively, when n = 1 recommendations

have no value, and for n = 2 they have only limited value, so no consumers share; the

red and blue curves therefore coincide. However, as n increases further, recommendations

become more valuable and some consumers start sharing, which makes demand less elastic

and induces firms to charge a higher price, which for n > 3 dominates the improvement

in match utilities and so harms consumers.19

1 2 3 4 5 6 7 8 9 10
0

0.25

0.5

0.75

1

n

(a) Sharing consumers

1 2 3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

n

(b) Equilibrium Price

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3
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0.5

0.6

n

(c) Aggregate Consumer Surplus

Figure 2: The impact of competition with personalized recommendations

(The solid curve depicts equilibrium outcomes, and the dotted curve depicts outcomes when all

consumers exogenously hide their data)

Perverse effect of improved data security. We now fix n ≥ 2 firms and consider

a change in privacy costs. In Section 2 we gave an example where improvements in

data security that reduce privacy costs to zero induce all consumers to switch from being

anonymous to sharing their data. We argued that this would harm consumers if Vs(1) <

19It is also straightforward to construct examples where consumers prefer monopoly over duopoly. For

example, take the setting in Figure 2 but increase the search cost such that r = 0.6. When n = 1 no

consumer shares, so the firm charges the single-product monopoly price p = 1/2 and consumer surplus is

1/8. However, when n = 2 all consumers now share since search is costly, so firms charge the two-product

monopoly price p =
√
1/3, and consumer surplus is around 0.113 (i.e., 9% lower than under monopoly).
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Va(0): in the current model of personalized recommendations, this condition becomes∫ v

pMn

[1− F (v)n]dv <

∫ r

pW

[1− F (v)n]dv + s ,

where pMn is the multiproduct monopoly price with n products and pW is the standard

Wolinsky price. Since pW < pMn , it is evident that the above condition holds if the search

cost is small and hence r is close to v. Intuitively, improved data security encourages

consumers to share and use recommendations: this benefits consumers via lower search

costs, but harms them through a higher price, and when the search cost is small anyway

the latter effect dominates.20

Discussion: surplus-based recommendations. So far we have assumed that sharing

consumers are recommended the product with the highest match value. We now consider

an alternative scenario where they are recommended the product with the highest surplus

(i.e., match value minus price), and show that this can lead to different conclusions.21

Sharing consumers now buy the recommended product as long as it has a positive

surplus. Competition for these consumers is therefore the same as in the frictionless

Perloff-Salop model with a zero outside option. Hence if firm i unilaterally deviates to

price pi, its expected demand from a sharing consumer is

qs(pi) = Pr[vi − pi > max
j ̸=i

{0, vj − p}] =
∫ v

pi

F (v − pi + p)n−1dF (v) .

However firm i’s demand from an anonymous consumer is exactly the same as in equa-

tion (8) from earlier. Therefore, assuming the first-order condition is sufficient to deter-

mine the equilibrium,22 the equilibrium price p now solves

1− F (p)n

n

1

p− c
= σ[F (p)n−1f(p) +

∫ v

p

f(v)dF (v)n−1]

+(1− σ)

[
f(r)

n

1− F (r)n

1− F (r)
−
∫ r

p

F (v)n−1f ′(v)dv

]
. (15)

20The above condition also holds for n = 2 in the numerical example depicted in Figure 2. Before the

improvement in data security consumers pay 0.445 and get Va(0) = 0.233, whereas after the improvement

they pay 0.577 and get Vs(1) = 0.153.
21Of course we note that in practice it would be easier for a platform to learn a consumer’s relative

preferences across products (which is enough for match-based recommendations) rather than her exact

valuations for each product (which is needed for surplus-based recommendations off equilibrium path).
22For the same reason as in the case of match-based recommendations, it is hard to find simple

primitive conditions for this, but we verify that it holds in the numerical example below.
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As detailed in the appendix, given our log-concavity condition, the equilibrium price is

unique and now decreases in σ.23 Intuitively, sharing consumers here are just like anony-

mous consumers but with a zero search cost; since search costs tend to make consumers

less price-sensitive, a higher σ makes demand more elastic and so reduces the equilibrium

price. Hence sharing consumers now impart a positive externality on others.

The expressions for Vs(σ) and Va(σ) are obviously the same as before. However now

they increase in σ. According to Proposition 2, this implies that in any interior privacy

choice equilibrium there is now too little data sharing relative to the consumer optimum.

Similarly, now there is no perverse effect from more competition or improved data se-

curity. For instance, since ∆(σ) still increases in n, more competition again induces

more consumers to share their data, but now this reduces the equilibrium price and so

unambiguously benefits consumers.

Finally, it is now possible that a privacy policy which allows consumers to hide their

data can backfire. We illustrate this through the following simple example.

Example: perverse effect of privacy policies. Suppose n = 2, c = 0, and that valuations

are uniformly distributed on [0, 1]. Suppose also that τ = 0.06 and τ = 0.07, and that the

search cost s is such that r = 0.6. Absent a privacy policy all consumers’ data is shared

(i.e., σ = 1); firms charge the standard Perloff-Salop price p =
√
2− 1 ≈ 0.414, and each

consumer’s surplus is at least Vs(1)− τ ≈ 0.206. A privacy policy that enables consumers

to costlessly hide their data harms every consumer. Specifically, no consumer shares (i.e.,

σ∗ = 0) because ∆(σ) ≈ 0.059 < τ ; this induces firms to raise their price to p ≈ 0.481,

which lowers consumer surplus to Va(0) ≈ 0.164.

Other related literature. Our application to personalized recommendations is most

closely related to Anderson and Renault (2000). They consider a duopoly model in which

some consumers need to search the firms to learn their product matches, while other

consumers are fully informed of their matches for the two products and so in equilibrium

only search their favorite firm. The informed consumers in their model are the same as

our consumers who share their data and get recommendations of the best-matched prod-

uct. However, Anderson and Renault (2000) assume that the market is fully covered, and

so demand from informed consumers is completely inelastic, and prices are capped by

consumers’ budget constraint. Like us, they show that having more informed consumers

23As with match-based recommendations, our analysis here is predicated on r > p. A sufficient

condition for this is that the Wolinsky price is below r, or equivalently, r − c > 1−F (r)
f(r) . Note that this

condition is less stringent than (11), and holds for r sufficiently large, or equivalently s sufficiently small.
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raises the market price and so imposes a negative externality on other consumers.24 How-

ever, our paper considers a more general oligopoly model which enables us to discuss the

question of how increased competition (in terms of increasing the number of competitors)

affects consumer privacy choice and market performance. We also consider surplus-based

recommendations, and show that the externality works in the opposite direction.

Personalized recommendations lead to a trade-off between match quality and price.

Such a trade-off is also present in other works on privacy choice such as de Cornière

and de Nijs (2016), Ichihashi (2020), and Hidir and Vellodi (2021). In de Cornière and

de Nijs (2016), if an ad exchange platform provides consumer preference information to

advertisers, for each consumer the advertiser which best matches her preferences wins the

ad auction. They assume that consumers have a less elastic demand for a better-matched

product, so this leads to a higher market price. They focus on the platform’s privacy

choice instead of consumers’ privacy choice. In Ichihashi (2020) and Hidir and Vellodi

(2021), there is a multiproduct monopolist which sells several varieties of a product. If

consumers reveal their preference information, they are provided with the best matched

variety, but at the same time the firm can extract more surplus via personalized pricing.

There is also growing empirical research on personalized recommendations/rankings

on e-commerce platforms. See, for example, Donnelly, Kanodia, and Morozov (2024) for a

study on Wayfair.com and Zhou, Lin, Xiao, and Fang (2023) for a study on TaoBao.com.

They mainly focus on the impact of personalized recommendations on consumer search

and purchase behavior,25 but do not consider the potential impact on product pricing

or endogenous consumer privacy choice. Minaev (2021) constructs a structural model

to study the impact of personalized rankings on both the demand and the supply side.

Using Expedia hotel data, he shows in a counterfactual that personalized rankings save

consumers on search costs, help them find better-matched products, but raise market

prices. On average consumers suffer from personalized rankings.26

24They also argue that when consumers can pay a presearch cost (which is like our privacy cost) to

become informed, there are too many informed consumers from a collective viewpoint (see their page

734), and that reducing the information acquisition cost can harm consumers (see their footnote 17).
25Donnelly, Kanodia, and Morozov (2024) find that personalized rankings on Wayfair.com induce

more consumers to search and improve purchase diversity (i.e., shifting demand from bestsellers to niche

items); while Zhou, Lin, Xiao, and Fang (2023) find that when TaoBao.com returns more targeted search

results to consumers, they search less and buy the featured products more often, but meanwhile they

also spend less time in exploring other product categories, reducing unplanned purchases.
26Calvano, Calzolari, Denicoló, and Pastorello (2023) use a computational model to study personalized

recommendations in a search market. When a collaborative-filtering algorithm generates recommenda-
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3.2 Personalized pricing

As explained in the Introduction, firms are increasingly using data to offer consumers

personalized prices. This is often implemented via targeted discounts off a regular price.

In this section we study the interaction between personalized prices and privacy choice.

Primitives. We use the same discrete-choice framework as in the previous application,

i.e., a consumer’s valuation vi for product i is drawn IID using a log-concave density f(v)

with support [v, v]. However, here we assume that consumers automatically learn their

consumption type θ = (v1, . . . , vn) after making their privacy choice.

If a consumer does not share her data, she is anonymous and each firm offers her a

public “list” price. If instead a consumer shares her data, all firms learn her consumption

type θ and can offer her personalized prices; however, importantly, we assume that sharing

consumers always have the option to buy at firms’ list prices. For example, the list price

could be freely available on a firm’s website, which sharing consumers can consult before

choosing whether or not to accept their personalized price.27 One can therefore interpret

personalized prices as targeted discounts off the list price.

The timing is as follows. At the first stage, each consumer learns her privacy type

τ . Then, before learning her consumption type θ, each consumer independently decides

whether or not to share her data. At the second stage, each consumer’s θ is realized. Firms

observe a consumer’s θ if and only if she shared her data. Firms then simultaneously

choose a list price for anonymous consumers, and a (weakly lower) personalized price for

each consumer who shared her data. At the third stage, consumers decide which product

(if any) to buy. We normalize a consumer’s outside option from purchasing nothing to

zero. Assume that firms have the same constant marginal cost c.

Pricing equilibrium with a fixed σ. We first study price competition with an exoge-

nous fraction σ of sharing consumers. We look for a symmetric equilibrium where each

firm uses the same list price p(σ); when there is no confusion we simply denote this list

price by p. (We note that Rhodes and Zhou (2024) study two (exogenous) limit cases of

our game: the case σ = 0, as well as the case σ = 1 when the list price is fixed at v.)

Suppose that firm i unilaterally deviates to a list price pi > c. An anonymous consumer

buys from firm i if and only if vi − pi > maxj ̸=i{0, vj − p}. Following Rhodes and Zhou

tions, the average market price increases, but consumers benefit overall due to better product matches.
27Note that if sharing consumers could not access the public list price, there would be no interaction

between sharing and anonymous consumers and hence no externalities.
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(2024), let xp ≡ vi − p − maxj ̸=i{0, vj − p} denote the relative preference for product i

when all products are sold at price p, and let Hp(·) be its CDF. Then firm i’s expected

demand from an anonymous consumer is 1−Hp(pi−p), which leads to an expected profit

of

πa(pi, p) ≡ (pi − c)[1−Hp(pi − p)] . (16)

Competition for a sharing consumer is just a Bertrand game, but with (generically)

asymmetric valuations (v1, . . . , vn), and with the constraint that each firm’s personalized

price is capped by its list price. Therefore, using standard arguments, firm i wins a

consumer if and only if the consumer’s valuation for its product is the highest and it

exceeds c (i.e., if vi − maxj ̸=i{c, vj} > 0). Note that absent the list price constraint,

firm i would charge the consumer a price which makes her indifferent to her next best

alternative in the market. Specifically, if maxj ̸=i{vj} ≤ c, the next best alternative would

be the outside option, so firm i would charge vi; if instead maxj ̸=i{vj} > c, the next

best alternative would be to buy the second-best product at cost, so firm i would charge

c+ vi−maxj ̸=i{vj}.28 Summing up, without the list price constraint, firm i would charge

c+ vi −maxj ̸=i{c, vj}. However, since firm i is constrained by its list price, it drives the

consumer as close as possible to her next best alternative, and therefore charges her the

minimum of c+ vi−maxj ̸=i{c, vj} and pi. As a result, firm i’s profit margin when it wins

a consumer is

p(vi,v−i)− c = min{vi −max
j ̸=i

{c, vj}, pi − c} .

Letting Hc(·) be the CDF of xc = vi − maxj ̸=i{c, vj}, firm i’s expected profit from a

sharing consumer can then be written as

πs(pi) ≡
∫ pi−c

0

xdHc(x) + (pi − c)[1−Hc(pi − c)] =

∫ pi−c

0

[1−Hc(x)]dx , (17)

where the second equality follows from integration by parts. Notice that πs(pi) is increas-

ing in firm i’s list price. This is because an increase in pi enables firm i to charge a higher

personalized price to each consumer for whom the list price is binding. Hence firm i faces

a trade-off: as it increases its list price, it earns more profit from sharing consumers, but

loses demand from anonymous consumers.

Using the above, firm i’s deviation profit from charging a list price pi is

σπs(pi) + (1− σ)πa(pi, p) . (18)

28We follow the usual tie-break rule that when indifferent between multiple options, the consumer

chooses the one that maximizes total welfare.
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When σ = 1, firms set their list price (weakly above) v because πs(pi) is strictly increasing

in pi < v. Hence in this case the list price never binds, so firms set the same personalized

prices as in Rhodes and Zhou (2024). In the following we focus on the case σ < 1.

Given our assumption that f is log-concave, the deviation profit (18) can be shown to

be quasi-concave in pi and p ≥ c.29 We then obtain the following result:

Lemma 4. For any σ < 1 the symmetric equilibrium list price p(σ) uniquely solves

p− c =
1−Hp(0)

hp(0)
+

σ

1− σ

1−Hc(p− c)

hp(0)
, (19)

and it increases in σ.

Intuitively, as more consumers share their data, firms optimally raise their list price

in order to expand the range of personalized prices they can offer. In turn, this harms

anonymous consumers, as well as sharing consumers for whom the list price binds. To

see this last point, note that the expected surplus of an anonymous consumer is

Va(σ) ≡ E[max{vn:n − p, 0}] , (20)

where vn:n is the highest order statistic of {v1, ..., vn}, while for a sharing consumer it is

Vs(σ) ≡ E[max{vn:n − p, vn−1:n − c, 0}] , (21)

where vn−1:n is the second highest order statistic of {v1, ..., vn}. The latter is explained

as follows. A sharing consumer buys if and only if vn:n ≥ c. If, in addition, vn−1:n < c,

the firm with the best product is a monopolist, and so it extracts as much surplus as

possible from the consumer; in particular, it charges min{vn:n, p}, leaving the consumer

with surplus max{vn:n − p, 0}. If instead vn−1:n ≥ c, then as explained earlier, the firm

with the best product extracts as much of the additional surplus as possible that it creates

compared to if the consumer bought the next best product at cost; in particular, it charges

min{c+ vn:n − vn−1:n, p}, leaving the consumer with surplus max{vn:n − p, vn−1:n − c}.
Lemma 4 immediately implies the following observation:

Corollary 4. Sharing consumers exert negative externalities: V ′
a(σ) < 0 and V ′

s (σ) < 0.

29Note that πa(pi, p) in (16) is log-concave in pi given the log-concavity of f , while πs(pi) in (17) is

concave in pi. However it is not immediate that a linear combination of them is quasi-concave.
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Privacy choice equilibrium. We now solve for equilibrium privacy choices at the first

stage of the game, starting with the monopoly case and then the competitive case.

Under monopoly, ∆(σ) = Vs(σ) − Va(σ) = 0, i.e., the consumption benefit from

sharing data is zero. Intuitively, a consumer whose valuation exceeds p buys at a price

of p irrespective of whether or not she shares her data—because personalized prices are

capped at p. Meanwhile a consumer whose valuation is less than p always gets zero

surplus: when she is anonymous she does not buy, and when she shares she buys but

the monopolist fully extracts her willingness-to-pay. Equation (2) then implies a unique

equilibrium of the privacy choice game, with σ∗ = T (0) sharing consumers.

Under competition, ∆(σ) > 0 and ∆′(σ) > 0, i.e., the consumption benefit from shar-

ing data is positive and increasing in σ.30 Intuitively, competition for sharing consumers

that have relatively close valuations for two products leads firms to offer them discounts.

Moreover, from Lemma 4, as σ increases, firms increase their list prices; this increases

the size of the discounts that they offer, which makes sharing even more attractive. As

discussed earlier, this “complementarity” in privacy choices can lead to multiple equi-

libria.31 Moreover, since sharing consumers generate negative externalities, according to

Corollary 1 each consumer prefers the equilibrium with the lowest σ∗.

Too much data sharing. Since V ′
a(σ) < 0 and V ′

s (σ) < 0, Proposition 2 says that there

is too much data sharing in any interior equilibrium relative to the consumer optimum.

Figure 3 illustrates this for the case where n = 2, valuations are uniform on [0, 1], c =

0, and τ follows a Beta (1/2, 5) distribution. The privacy choice game has a unique

equilibrium with σ∗ = 0.912, whereas aggregate consumer surplus V (σ) is hump-shaped

and maximized at σ̂ = 0.465. At this optimum, total consumer surplus is around 9%

higher compared to in the privacy choice game.

Perverse effect of more competition. As explained earlier, when privacy choices are

endogenous, more competition can harm consumers. To illustrate this in a simple way,

suppose that τ ≥ 0. Then, as explained above, under monopoly σ∗ = 0, i.e., no consumers

30To see why ∆′(σ) > 0, notice that when p is larger (which is the case when σ is higher), it is more

likely that vn−1:n − c exceeds vn:n − p, and so ∆(σ) is also larger.
31In particular, σ∗ = 1 is always an equilibrium if E[max{vn−1:n − c, 0}] ≤ τ . If all consumers share

their data, firms optimally set a list price p = v; comparing (20) and (21), each consumer then indeed

prefers to share under the condition. Note also that the condition is easier to satisfy when n is larger.
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Figure 3: Aggregate consumer surplus as a function of σ

share. Hence equilibrium consumer surplus under monopoly is

Vm =

∫ v

pm

(v − pm)dF (v) =

∫ v

pm

[1− F (v)]dv , (22)

where pm = argmaxp(p− c)[1−F (p)] is the standard monopoly price. We now show that

this can exceed consumer surplus under competition. Specifically, suppose that τ ≤ ∆(0)

for some n ≥ 2. We then infer from equation (2) that with competition σ∗ = 1, i.e.,

all consumers share. As explained above firms then set a list price p(1) = v. Hence

equilibrium consumer surplus with n ≥ 2 firms is Vs(1)− E[τ ], where

Vs(1) = E[max{vn−1:n − c, 0}] =
∫ v

c

[1− F(n−1)(v)]dv (23)

with F(n−1)(v) = F (v)n + n(1 − F (v))F (v)n−1 being the CDF of vn−1:n. Consumers are

definitely worse off under competition if Vs(1) < Vm, i.e., if competitive personalized

pricing gives them less surplus than uniform pricing in monopoly. This can arise as

demonstrated in the following example:

Example. Suppose the vi’s are uniformly distributed on [0, 1] and c < 1. The monopoly

price is pm = 1+c
2

and so Vm = (1−c)2

8
. In addition

Vs(1) = cn − c+
n− 1

n+ 1
(1− cn+1) .

For instance, when n = 2 we find that Vs(1) < Vm for all c > 5
8
, while when n = 3 we find

that Vs(1) < Vm for all c >
√
3
2
. For a higher c, Vs(1) < Vm for a wider range of n.32

32In fact, for a general valuation distribution, Vs(1) < Vm holds if c is sufficiently high (and the privacy
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The perverse effect of competition can also arise when privacy choice is interior. To

illustrate this, consider Figure 4, which depicts market outcomes for the case where valu-

ations are uniform on [0, 1], c = 3/4, and τ is uniform on [0, 0.04]. The red dotted curve

shows outcomes when all consumers exogenously hide their data: as n increases, firms

reduce their (list) price, and consumers benefit due to the lower price and higher variety.

The solid blue curve shows outcomes when privacy choices are endogenous. As explained

earlier, when n = 1 no consumer shares her data. However, for n ≥ 2, sharing consumers

receive personalized discounts, which encourages those with low τ to share. Indeed, the

equilibrium σ∗ grows monotonically in n, and for n ≥ 6 all consumers share.33 Due to this

endogenous sharing, the equilibrium list price increases monotonically in n. The increase

in σ∗ and hence also in the list price is particularly sharp at n = 6, which explains why

an increase from n = 5 to n = 6 actually reduces consumer surplus. (Moreover, notice

that due to the negative externalities exerted by sharing consumers and the privacy cost

they pay, for each n ≥ 2 consumers would be weakly better off if they all hid their data.)
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Figure 4: The impact of competition with personalized prices

(The solid curve depicts equilibrium outcomes, and the dotted curve depicts outcomes when all

consumers exogenously hide their data)

cost condition τ ≤ ∆(0) is satisfied). Under monopoly, all consumers hide (assuming still that τ ≥ 0) and

so receive the same uniform price, which allows high-valuation consumers to get some surplus. Under

competition, however, all consumers share. As explained in Rhodes and Zhou (2024), if c is high, few

consumers have a valuation above c for more than one product, so each firm acts almost like a monopolist.

This means that consumers are almost fully extracted, and so are worse off than under monopoly.
33The privacy choice game has a unique equilibrium σ∗ for all n values considered in Figure 4. However,

for (much) larger values of n there are multiple equilibria. For large n there is always an equilibrium with

σ∗ = 1; given our assumptions on c, v, τ in this example, the explanation follows from footnote 31. For

large n there are also interior equilibria: intuitively, if few consumers share, competition between firms

leads to p close to c, which induces only those consumers with the very lowest τ close to zero to share.
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Perverse effect of improved data security. Improvements in data security can also

harm consumers when privacy choices are endogenous. We gave a simple example where

better data security switched all consumers from anonymous to sharing, and noted that

consumers would be harmed if Vs(1) < Va(0). This condition exactly corresponds to

the condition in Rhodes and Zhou (2024) for competitive personalized pricing to harm

consumers in aggregate relative to uniform pricing. As shown there, this cannot happen

if the market is fully covered under uniform pricing, but often happens when market

coverage is low, and always happens when the production cost c is sufficiently high.

Other related literature. There is a substantial literature on personalized pricing and

consumer privacy choice. Most papers consider purchase-history based price discrimina-

tion as surveyed in Fudenberg and Villas-Boas (2007).34 Our application to personalized

pricing is most closely related to Section 6 in Anderson, Baik, and Larson (2023). They

also consider an oligopoly model where personalized pricing is implemented as individ-

ualized discounts off a list price, and where consumers make their privacy choice before

learning their product valuations. There are two key differences. Firstly, in their model

it is costly to send discounts (via targeted ads) to consumers. This induces a more com-

plicated analysis of equilibrium discounts and advertising since they need to deal with

mixed-strategy equilibrium. Secondly, they assume full market coverage. This simpli-

fies the analysis of equilibrium list prices. Like us, they show that having more sharing

consumers increases firms’ list prices and so imposes a negative externality on other con-

sumers. They also point out that there can be too much data sharing, and that making

data sharing more costly can benefit consumers in aggregate. However, they do not dis-

cuss the potential perverse effect of more competition due to the way it can endogenously

cause more consumers to share.

Belleflamme and Vergote (2016) also make a similar point, but in a different setup,

that having more sharing consumers is associated with a higher price offered to anonymous

consumers. They consider a setting where consumers can hide their data (at a cost), and

34Interesting externalities across consumers can also arise in that context. For example, consider the

two-period monopoly model in Conitzer, Taylor, and Wagman (2012), where consumers who buy in the

first period can hide (at some cost) their purchase history, and in the second period the firm can price

discriminate consumers who did not hide. When the cost of anonymity increases, more consumers share

their data (other things equal); the firm optimally responds by cutting its first-period price, so as to sell

to more consumers who it can price discriminate later on. Unlike in our model, this generates a positive

externality on anonymous consumers. See also Montes, Sand-Zantman, and Valletti (2019) for a similar

positive externality of sharing consumers on anonymous consumers.
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a monopoly firm can commit to the price it will charge anonymous consumers. The firm

then has an incentive to raise this anonymous-consumer price, so as to reduce consumers’

incentives to hide their data. Therefore, in their model price is strategically distorted

upwards to encourage sharing. This is very different from our setup where a higher

anonymous-consumer price is a consequence of having more sharing consumers.

Ali, Lewis, and Vasserman (2023) also study consumer privacy choice and personalized

pricing. However, they consider a different game where consumers know their preference

types before their privacy choices, they do not face any intrinsic privacy costs, and they

can disclose different information to different firms. They do not study privacy-choice

externalities explicitly, though there is an externality across consumers via a market

segmentation effect as also studied in Galperti, Liu, and Perego (2024). We discuss this

paper in more detail in Section 4.1.

3.3 Personalized product design

As explained in the Introduction, improvements in technology are also making it easier for

firms to offer consumers personalized products. In this section we study the interaction

between personalized product design and privacy choice. To do this, we build on the

canonical monopoly screening model of Mussa and Rosen (1978).

Primitives There is a measure one of consumers with different quality preferences. If

a consumer of type θ ∈ [0, θ] buys a product of quality q at price p, she obtains a surplus

θq − p. Let F (θ) be the CDF of consumer types in the population, and assume that

its density function f(θ) is strictly positive everywhere and that 1− F (θ) is log-concave.

There is a monopoly firm in the market. Its cost of producing a product of quality q is

c(q). Suppose that c(q) is strictly convex, c′(0) = 0 and c′(q) > θ for sufficiently large q.

If a consumer does not share her data, her type θ is her private information, and the

firm offers her a “public” menu of products. If a consumer does share her data, then the

firm perfectly learns her type θ, and offers her a personalized price-quality pair (which

other consumers cannot access). Like in our second application, we assume that a sharing

consumer can still buy from the public menu of products if she wishes. When she is

indifferent between the personalized offer and the best option in the public menu, we

assume she buys the former.

We again assume that consumers make their privacy choice before learning their type

θ (e.g., because their quality preferences are market-specific). However, as we discuss
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later, in this application nothing would change if consumers knew their θ when making

privacy choices.

Optimal product design with a fixed σ. We first study optimal product design

with an exogenous fraction σ of sharing consumers. Anonymous consumers can only

buy from the public menu, which we denote by {(qa(θ), pa(θ))}θ. Sharing consumers

can buy from the public menu, but also receive a personalized offer which we denote by

(qs(θ), ps(θ)). (For notational simplicity, we suppress the dependence of these variables

on σ.) It is evident that the firm is (weakly) better off selling to a sharing consumer via

a personalized offer, since it can at least mimic the public offer.

A type-θ anonymous consumer buys the product (qa(θ), pa(θ)) designed for her if and

only if both the standard IC conditions θqa(θ) − pa(θ) ≥ θqa(θ
′) − pa(θ

′) and the IR

conditions θqa(θ)− pa(θ) ≥ 0 hold for any θ, θ′ ∈ [0, θ]. Define

va(θ) ≡ max
θ′

θqa(θ
′)− pa(θ

′)

as a type-θ anonymous consumer’s equilibrium surplus. Then va(θ) must be increasing

and convex, and v′a(θ) = qa(θ) almost everywhere. Hence we can write va(θ) as

va(θ) =

∫ θ

θ̂

qa(t)dt , (24)

where θ̂ is the critical type such that types below it are excluded from the market. It is

well-known that the IC conditions are equivalent to (24) and qa(θ) being increasing.

Since sharing consumers have access to both the public menu and their personalized

offer (qs(θ), ps(θ)), they have an additional IC constraint given by

vs(θ) ≡ θqs(θ)− ps(θ) ≥ θqa(θ)− pa(θ) = va(θ) (25)

for any θ, where va(θ) = 0 for θ ≤ θ̂.

The seller’s problem is to maximize

σ

∫ θ

0

[ps(θ)− c(qs(θ))]dF (θ) + (1− σ)

∫ θ

θ̂

[pa(θ)− c(qa(θ))]dF (θ)

subject to (24), the monotonicity constraint that qa(θ) is increasing, va(θ̂) = 0, and (25).

We first solve the relaxed problem by ignoring the monotonicity constraint. It is

evident that the constraint (25) must bind for each type (otherwise the firm could always

improve its profit by increasing the personalized price ps(θ)). Hence, we have

ps(θ) = θqs(θ)− va(θ) . (26)
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From the definition of va(θ) we also have

pa(θ) = θqa(θ)− va(θ) . (27)

Substituting them into the objective function and then using (24) and integration by

parts, the seller’s objective function simplifies to

σ

∫ θ

0

[θqs(θ)−c(qs(θ))]dF (θ)+(1−σ)

∫ θ

θ̂

[(
θ − 1

1− σ

1− F (θ)

f(θ)

)
qa(θ)− c(qa(θ))

]
dF (θ) .

This optimization problem can be solved pointwise. The optimal qs(θ) solves θ = c′(qs(θ)),

which means that each sharing consumer’s personalized product has the efficient quality

level. To solve for the public menu, let θ̂ be the unique solution to

θ̂ =
1

1− σ

1− F (θ̂)

f(θ̂)
. (28)

Then the optimal qa(θ) is zero for θ < θ̂, and otherwise is the unique qa(θ) that solves

θ − 1

1− σ

1− F (θ)

f(θ)
= c′(qa(θ)) . (29)

Given the log-concavity of 1 − F , the qa(θ) that we have solved for is indeed increasing

in θ.35 Hence the solution to the relaxed problem is also the real optimal solution.

Lemma 5. Suppose that an exogenous fraction σ of consumers share their data.

(i) The personalized products designed for sharing consumers are efficient, and are sold

at prices ps(θ) defined in (26) which increase in σ.

(ii) The products designed for anonymous consumers with θ ≥ θ̂ have qualities qa(θ)

solving (29) and are sold at prices pa(θ) defined in (27). (Anonymous consumers with

θ < θ̂ leave the market without purchasing a product.)

(iii) qa(θ) is distorted downward (except at the top) and decreases in σ; if c′′′(q) ≥ 0, for

a given σ, there exists a θ̃ ∈ (θ̂, θ) such that dpa(θ)
dσ

is positive for θ > θ̃ and negative for

θ < θ̃.

The firm offers a sharing consumer an efficient personalized product, so as to maximize

the surplus generated by her. The firm then prices that product in such a way that the

consumer is indifferent between buying it or her favorite product from the public menu.

35Note that the usual regularity condition that the virtual type θ − 1−F (θ)
f(θ) is increasing in θ is not

sufficient to ensure an increasing qa(θ) for any σ.
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The design of the public menu (which in equilibrium only caters to anonymous con-

sumers) is more interesting. First, as usual, product quality qa(θ) is distorted downwards

for all but the highest type θ. Second, it is clear from equation (29) that qa(θ) decreases in

σ, i.e., the distortion is more severe when more consumers share. Third, it is also evident

from equation (28) that θ̂ increases in σ, i.e., more anonymous consumers are excluded

from the market when there are more sharing consumers. Intuitively, to extract more

surplus from sharing consumers, the firm deteriorates the public menu by offering worse

products and excluding more consumers. Moreover, recalling the expression for va(θ) in

equation (24), the previous two observations imply that anonymous consumers are made

worse off as more consumers share their data, i.e., va(θ) decreases in σ for each θ. Since

the optimal solution has vs(θ) = va(θ), sharing consumers are also made worse off as σ

increases. Indeed, in the limit as σ → 1, the firm excludes all anonymous consumers from

purchasing so that it can fully extract surplus from sharing consumers, in which case

every consumer gets a zero surplus. In summary:

Corollary 5. Sharing consumers exert negative externalities: V ′
a(σ) < 0 and V ′

s (σ) < 0.

Continuing with properties of the firm’s optimal product design, note that since shar-

ing consumers’ fallback options va(θ) decrease in σ, the firm charges more for personalized

products when more consumers share their data. The impact of σ on the prices for anony-

mous consumers is subtler. Intuitively, for high-type consumers, distorting quality design

is rather costly, so the distortion is small; in order to deteriorate the offers to them,

the firm raises the prices. For low-type consumers (with θ ≥ θ̂), however, the quality

distortion is severe, so the firm needs to charge them less to induce them to still purchase.

We illustrate some of these properties of the optimal public menu in Figure 5. Suppose

the type θ is uniformly distributed on [0, 1], and that the cost of quality is c(q) = q3. The

figure shows that as σ increases, the qualities offered to anonymous consumers fall and

more lower types are excluded from the market (left panel), while for those types that are

still served, the offered price falls for relatively low types but increases for relatively high

types (right panel).

Privacy choice equilibrium. We now solve for equilibrium privacy choices at the first

stage of the game. Recall from above that any type obtains the same surplus regardless of

whether she shares her data or not (i.e., vs(θ) = va(θ)). As a result, the ex-ante expected

surplus is also the same (i.e., Vs(σ) = Va(σ)). Therefore a consumer shares her data if and

only if τ < 0, so there is a unique equilibrium with σ∗ = T (0). Notice also that because
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Figure 5: The menu offered to anonymous consumers of type θ, for different values of σ.

vs(θ) = va(θ) for any θ, in this application, whether a consumer makes her privacy choice

before or after learning θ does not affect the privacy-choice equilibrium.

Too much data sharing. Given V ′
s (σ) < 0 and V ′

a(σ) < 0, by Proposition 2 there is

too much data sharing in equilibrium (if τ < 0) relative to the consumer optimum. Unlike

the previous two applications, here σVs(σ) + (1− σ)Va(σ) always decreases in σ because

Vs(σ) = Va(σ) and both decrease in σ. However, this does not necessarily imply that

V (σ) decreases in σ if τ < 0. In that case, when σ is small, sharing consumers all pay a

negative privacy cost, and so a higher σ can lead to higher consumer surplus.

Perverse effect of improved data security. Since σ∗ = T (0), a decrease in the

distribution of privacy types (weakly) increases σ∗; given that vs(θ) = va(θ) decreases in

σ, this leads to a reduction in each individual’s consumption surplus. After accounting for

the reduction in privacy cost for some consumers who share, it is still possible that overall

consumer surplus decreases. To illustrate this in a simple way, suppose that initially

τ > 0, such that nobody shares their data, in which case total consumer surplus is strictly

positive. Suppose that after the improvement in data security τ < 0, such that everybody

shares; consumers now receive no consumption surplus, so if E[τ ] is sufficiently close to

zero, total consumer surplus is lower than before the improvement in data security.

Discussion: competition. Throughout this section we have focused on monopoly.

An oligopoly version of the Mussa-Rosen model is known to be complicated to deal with,
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and in general very limited analytical progress can be made (see, e.g., Rochet and Stole

(2002)). One simple case is when all IC constraints become slack due to competition,

which happens, for example, in the standard Hotelling model when the market is fully

covered (see, e.g., Armstrong and Vickers (2001)). In that case, however, even the public

menu would be efficient, and so for our purposes it would not be interesting since varying

σ would have no effect on market equilibrium. Without full market coverage, the public

menu is usually not efficient but it is complicated to characterize (see, e.g., the duopoly

model explored in Yang and Ye (2008)). This is a challenging problem that we hope to

revisit in future work.

Other related literature. Our application to personalized product design is most

closely related to Bergemann and Bonatti (2023) and Vaidya (2023). The first paper

does not study consumer privacy choice, so is different from ours in terms of the research

question. In their model some consumers use a platform to find a product, while others

look directly in an offline market. For the former consumers, the platform perfectly

observes their preferences and always steers them to (and also shares their preference

information with) the best-matched firm. These consumers, however, still have the option

to buy in the offline market. Due to the informational assumption in their paper, a

Diamond (1971) paradox result applies such that no consumers search actively. As a result

each firm acts as a monopolist (with an updated consumer type distribution). Since each

firm offers a menu of products with different qualities, their model essentially boils down

to Mussa and Rosen (1978) where some consumers’ preferences are perfectly observable

to the firm. Like us, they show that as more consumers use the platform, firms further

distort their product design for offline consumers. The second paper studies a regulator’s

choice of what information consumers can disclose to a monopoly firm. The extension

in its Section 7 also uses the Mussa-Rosen framework, but the setting is otherwise quite

different from ours: there is no privacy cost, consumers are informed ex ante of their

taste for quality, but only some are (exogenously) able to disclose it, and the firm can

commit ex ante to a menu of price-quality pairs. The optimal menu induces disclosure by

all those consumers who are able to do it, and so interestingly turns out to be the same

as in our model (for a fixed σ). Both these papers, therefore, have the same negative

externality that we highlight in our paper (although neither of them explores the impact

of sharing/disclosure on prices). However, unlike us, they do not endogenize the fraction

of sharing consumers through a privacy choice game and so, e.g., do not consider the

possible perverse effect of improvements in data security.
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Doval and Skreta (2023) also study consumer data and product design but in a very

different setting. They consider a two-period model: in the first period, an upstream firm

offers a menu of products to screen consumers as in Mussa and Rosen (1978); in the second

period, a downstream firm sells a single product, and part of its profit is transferred to the

upstream firm (e.g., because it buys data on consumer purchase history from the upstream

firm). Importantly, the downstream firm can use first-period purchase information to infer

consumers’ willingness-to-pay for its product and do price discrimination. Anticipating

this, consumers are less willing to buy in the first period when the product line is richer

(because buying in the first period reveals more information). As a result, the upstream

firm prunes its product line compared to the standard Mussa-Rosen case. Although this

product-line distortion arises due to consumer data, the mechanism is very different from

ours, and unlike in our paper there is also no personalized product design.

Argenziano and Bonatti (2023) also consider a setting in which consumers trade se-

quentially with two firms, and differ in how much they value additional units of the two

firms’ goods. When the second firm has access to data about the consumer’s consumption

choice at the first firm, it is able to infer the consumer’s type and offer her a personalized

product. They examine whether the first firm should be allowed to degrade the offer it

makes to consumers who forbid it from sharing their data. Like us, they assume that

a consumer decides whether or not to share her data before she learns her consumption

type. However, unlike us, they assume that consumers are unable to access a pubic offer,

and so sharing consumers do not exert any externality on other consumers.

4 Discussions

We now briefly discuss what happens if consumers know their consumption type before

deciding whether to share their data, or if some consumers are not fully rational when

making their privacy choice.

4.1 Type-dependent privacy choice

So far we have assumed that when consumers make their privacy choice, they do not

observe their consumption type. As we argued earlier, in many contexts this is a good

approximation. Nevertheless, we now consider the possibility that consumers know their

consumption type when choosing whether to share their data. In this case a consumer’s

privacy choice may signal her consumption type, which can further influence firm behavior.
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While a fully-fledged analysis can be involved, we now argue that the basic insights from

earlier should remain largely unchanged.

Consider first the application to personalized recommendations in a search market.

By definition, in that model consumers do not observe their valuations for the products

ex ante, so it is impossible to have type-dependent privacy choices. Consider a slightly

different set-up, however, in which consumers have some information about their match

values before making their privacy choice, but still need to search to learn additional

information and buy. For example, suppose vi = λṽi and consumers know ex ante their λ

(which, e.g., indicates their income level) but not their ṽi’s (which can be learned through

search after making their privacy choice). In that case, conditional on the privacy cost,

consumers with higher λ are “choosier” and so have more incentive to share data and

get recommendations; consumers who remain anonymous have smaller λ and so are less

willing to search. Intuitively, this is an additional force for firms to raise their price when

some additional consumers share their data (which in turn imposes a negative externality

on other consumers).36

Consider next the application to personalized pricing. Conditional on the privacy cost,

consumers with stronger preferences (i.e., those with a larger gap between their highest

and second-highest valuations) have less incentive to share their data. This implies that

anonymous consumers are more likely to have strong preferences. Moreover, as more

consumers share their data, the remaining anonymous consumers have even stronger

preferences, which gives firms more incentive to raise their public list prices. (However

the privacy choice game will not unravel, provided some consumers have a sufficiently

high privacy cost that they never share irrespective of their consumption type.) This

is an additional force for sharing consumers to exert a negative externality on other

consumers.37

Finally, as noted earlier, in the application to personalized product design, even if a

consumer knew her θ when making her privacy choice, it would not affect her decision of

36The opposite can be true if consumers have heterogeneous search costs and observe them before

making their privacy choice. In that case, consumers with higher search costs are more likely to share

their data for recommendations, and those who remain anonymous are more likely to have lower search

costs. This creates a countervailing positive externality by sharing consumers.
37The case without privacy costs is analyzed in Ali, Lewis, and Vasserman (2023). If consumers have

to share the same data with all firms, the equilibrium has full disclosure due to an unraveling argument.

However, if consumers can disclose different data to different firms (e.g., reveal their true preferences to

one firm but no information to another), there is a partial pooling equilibrium where every consumer is

better off compared to the case with no disclosure.
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whether or not to share. This is because personalized products are priced in such a way

as to fully extract a sharing consumer’s additional surplus relative to the public menu.

4.2 Behavioural consumers

So far, consumers decide whether to share their data by comparing the consumption

benefit of doing so with their privacy cost. Here we allow for some “behavioral” consumers

who under or overestimate their privacy costs so that they always share or hide their data.

Suppose a fraction ms ∈ [0, 1) of consumers (greatly) underestimate their privacy cost

and so always share, while a fraction ma ∈ [0, 1−ms) of consumers (greatly) overestimate

their privacy cost and so always hide their data. The remaining fraction 1−ms −ma of

(“rational”) consumers use their true privacy cost to decide whether or not to share; as

in the main model, they share if and only if τ ≤ ∆(σ̃), where σ̃ is the total fraction of

consumers in the market who share data. In equilibrium, we then have that

σ̃∗ = ms + (1−ms −ma)T (∆(σ̃∗)). (30)

Closely following earlier analysis, at least one equilibrium σ̃∗ always exists. Analogous

to Proposition 1, it is straightforward to provide conditions for existence of a corner

equilibrium (i.e., σ̃∗ = ms or σ̃
∗ = 1−ma) or an interior equilibrium (i.e., ms < σ̃∗ < 1−

ma). All our other results from earlier then carry over—including how to rank equilibria in

case of multiplicity (Corollary 1), the impact of privacy policies like GDPR (Corollary 2),

and whether too many or too few consumers share (Proposition 2).

One natural policy intervention in this new context is “education”, which helps con-

sumers learn the true consequences of their sharing decisions. For brevity, consider a policy

that converts some of the ms behavioral consumers into rational consumers. Assuming

for simplicity that the privacy game has a unique equilibrium, it is straightforward to

show that σ̃∗ decreases.38 Hence, when sharing externalities are negative (i.e., V ′
s (σ) < 0

and V ′
a(σ) < 0) the policy benefits all consumers, but when the externalities are positive

the opposite is true. Both possibilities are illustrated by the following example.

Example: the effect of educative policies. Consider the application to personalized rec-

ommendations in Section 3.1. Recall that in this case ∆(σ̃) ≡ ∆ > 0 is constant in

σ̃. Suppose that the true privacy cost is distributed on [τ , τ ], where τ = ∆ (so that no

38Moreover, by rewriting (30) as (σ̃∗ −ms)/(1−ms −ma) = T (∆(σ̃∗)), and noting that the left-hand

side is the fraction of rational consumers that share, it follows that whether such a policy stimulates or

reduces sharing by rational consumers depends on the sign of ∆′(σ).
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rational consumers will share their data). Suppose 0 < ms < 1 behavioral consumers

falsely believe that τ = 0, while the remaining 1 − ms rational consumers use the cor-

rect privacy cost. Absent any education policy, no rational consumers share data and so

σ̃∗ = ms; rational consumers get surplus Va(ms), while behavioral consumers get surplus

Vs(ms) − E[τ ] < Va(ms) given τ = ∆ = Vs(ms) − Va(ms). Meanwhile, following an edu-

cation policy that helps behavioral consumers learn their true privacy cost, no consumers

share data and so σ̃∗ = 0; both types of consumer now get surplus Va(0). When con-

sumers are recommended their best product, V ′
s (σ) < 0 and V ′

a(σ) < 0, so all consumers

benefit from the policy. However when recommendations are surplus-based, V ′
s (σ) > 0

and V ′
a(σ) > 0, so for τ sufficiently close to τ all consumers lose out from the policy.

5 Conclusion

This paper offers a simple framework to study the interaction between data-driven person-

alization and consumers’ incentives to share their data. We highlighted a novel externality,

whereby sharing by some consumers affects the payoff of others via its impact on firms’

behavior. Depending on whether this externality is positive or negative, we showed that

consumers may share too much or too little, and privacy policies such as GDPR could

benefit or harm consumers. We then applied the framework to understand the role of

personalized recommendations, prices, and product design respectively, and argued that

often sharing consumers impose a negative externality on others. Moreover, we showed

that due to this negative externality, more competition, or improvements in data security,

can harm consumers by incentivizing more of them to share their data.
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Appendix: Omitted Proofs and Details

Proofs for Section 3.1

Proof of Lemma 3. It is straightforward to check that the left-hand side of (10) is greater

than the right-hand side as p → c, and the opposite is true as p → r under condition (11).

The next step is to show that the right-hand side of (10) divided by 1−F (p)n

n
increases

in p, which implies the uniqueness of solution. When f is log-concave, so is 1 − F (p)n,

which implies that F (p)n−1f(p)
1−F (p)n

increases in p. Now consider

f(r)1−F (r)n

1−F (r)
− n

∫ r

p
F (v)n−1f ′(v)dv

1− F (p)n
.

It is increasing in p if and only if

[1− F (p)n]
f ′(p)

f(p)
+ f(r)

1− F (r)n

1− F (r)
− n

∫ r

p

F (v)n−1f ′(v)dv ≥ 0 . (31)

Notice that when f is log-concave, f ′

f
is decreasing, and so

n

∫ r

p

F (v)n−1f ′(v)dv =

∫ r

p

f ′(v)

f(v)
dF (v)n ≤ f ′(p)

f(p)
[F (r)n − F (p)n] .

Therefore, the left-hand side of (31) is greater than

[1− F (r)n]
f ′(p)

f(p)
+ f(r)

1− F (r)n

1− F (r)
≥ [1− F (r)n]

f ′(r)

f(r)
+ f(r)

1− F (r)n

1− F (r)
≥ 0 ,

where the first inequality used f ′(p)
f(p)

≥ f ′(r)
f(r)

, and the second is because the log-concavity

of 1− F implies [1− F (r)]f ′(r) + f(r)2 ≥ 0.

To show p increases in σ, it then suffices to show that

F (p)n−1f(p) <
f(r)

n

1− F (r)n

1− F (r)
−
∫ r

p

F (v)n−1f ′(v)dv ,

so that the right-hand side of (10) decreases in σ. By integration by parts, the above

inequality can be written as

F (p)n−1f(p) <
f(r)

n

1− F (r)n

1− F (r)
− F (r)n−1f(r) + F (p)n−1f(p) +

∫ r

p

f(v)dF (v)n−1 .

This must be true as 1−F (r)n

1−F (r)
> nF (r)n−1.

We now prove the following claim about condition (11).
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Claim 1. Condition (11) holds when r is above a certain threshold.

Proof. Given our assumption that f is log-concave, 1−F (r)n is also log-concave in r and

so the right-hand side of (11) is decreasing in r. Then it suffices to show that (11) holds

when r is sufficiently close to v. To see this, note that

lim
r→v

1− F (r)n

nF (r)n−1f(r)
= lim

r→v

1− F (r)n

1− F (r)

1− F (r)

nf(r)
= lim

r→v

1− F (r)

f(r)
.

Given 1−F (r)
f(r)

is decreasing in r, its limit is clearly less than limr→v(r − c) if v = ∞, or

if v < ∞ and f(v) > 0. If instead v < ∞ and f(v) = 0, then f(v) must be strictly

decreasing in a neighborhood of v, and hence for r close to v we have

1− F (r)

f(r)
=

∫ v

r
f(v)dv

f(r)
<

f(r)(v − r)

f(r)
= v − r < r − c .

We now prove the following claim from the discussion on surplus-based recommendations.

Claim 2. The first-order condition (15) has a unique solution p and it decreases in σ.

Proof. As a first step, we prove that the right-hand side of (15) increases in σ. This is

true if and only if

F (p)n−1f(p) +

∫ v

p

f(v)dF (v)n−1 >
f(r)

n

1− F (r)n

1− F (r)
−
∫ r

p

F (v)n−1f ′(v)dv .

Integrating the left-hand side by parts, this is equivalent to

f(v)−
∫ v

p

F (v)n−1f ′(v)dv >
f(r)

n

1− F (r)n

1− F (r)
−
∫ r

p

F (v)n−1f ′(v)dv .

Note that as r → v the right-hand side equals the left-hand side. It is therefore sufficient

to prove that the right-hand side is strictly increasing in r, or equivalently that[
f ′(r) +

f(r)2

1− F (r)

] [
1

n

1− F (r)n

1− F (r)
− F (r)n−1

]
≥ 0.

It is easy to see that this inequality holds. The first square-bracketed term is positive

because f being log-concave implies that f/[1−F ] is increasing, while the second square-

bracketed term is strictly positive given 1−F (r)n

1−F (r)
> nF (r)n−1.

Next, it is clear that as p → c the left-hand side of (15) exceeds the right-hand side.

In addition, given that a lower bound on the right-hand side of (15) is obtained by setting
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σ = 0, the condition in footnote 23 ensures that as p → r the right-hand side of (15)

exceeds the left-hand side.

The next step is to show that the right-hand side divided by 1 − F (p)n increases in

p and so the solution is unique. We showed that the second term is increasing in the

proof of Lemma 3. Consider the first term, and rewrite it (ignoring the σ part) using

integration by parts as

f(v)−
∫ v

p
F (v)n−1f ′(v)dv

1− F (p)n
.

Its derivative with respect to p is

F (p)n−1f ′(p)

1− F (p)n
+

f(v)−
∫ v

p
F (v)n−1f ′(v)dv

[1− F (p)n]2
nF (p)n−1f(p) ≥ 0 ,

where the inequality uses f(v) ≥ 0 and f ′(v)f(p) ≤ f ′(p)f(v) for v > p (since f(v) is

log-concave).

Finally, we have already shown that the right-hand side of (15) increases in σ. It is

then immediate that the equilibrium price decreases in σ.

Proof for Section 3.2

We begin by stating and proving Claims 3 and 4, which are required to prove Lemma 4.

Claim 3. The profit function (18) is quasi-concave in pi for any p ≥ c.

Proof. When σ = 1, profit equals πs(pi) which is concave and hence also quasi-concave.

When σ = 0, we have the uniform pricing regime studied in Rhodes and Zhou (2024); the

results there imply that profit here is quasi-concave.

The remainder of the proof deals with the case σ ∈ (0, 1) and n ≥ 2 (the monopoly

case is straightforward and so is omitted). To prove the result, we can focus on pi ≥ c

for which 1 − Hp(pi − p) > 0. Notice that the derivative of (18) with respect to pi is

proportional to (i.e., has the same sign as)

1− (pi − c)
hp(pi − p)

1−Hp(pi − p)
+

σ

1− σ

1−Hc(pi − c)

1−Hp(pi − p)
. (32)

Therefore, if (32) is decreasing in pi, (18) must be quasi-concave in pi. From Rhodes and

Zhou (2024), we already know that 1 − Hp(pi − p) is log-concave in pi given that f is

log-concave, and so the first two terms in (32) are decreasing in pi. Therefore, it suffices

to show that the final term is decreasing in pi. A sufficient condition for this is that
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1 −Hy(x − y) be totally positive of order 2 (TP2) in (x, y). TP2 implies that for x′ and

x′′ < x′ and also y′ and y′′ < y′, we have

[1−Hy′(x
′ − y′)][1−Hy′′(x

′′ − y′′)] ≥ [1−Hy′(x
′′ − y′)][1−Hy′′(x

′ − y′′)] ,

and so provided that 1−Hy′(x
′ − y′) > 0,

1−Hy′′(x
′′ − y′′)

1−Hy′(x′′ − y′)
≥ 1−Hy′′(x

′ − y′′)

1−Hy′(x′ − y′)
.

Then the desired result follows by setting y′′ = c and y′ = p.

To prove the TP2 property, we invoke the following theorem from Karlin (1968):

Theorem 1 (Theorem 5.2 on p. 124 of Karlin (1968)). Let f(λ, x) and g(λ, x) be defined

for Λ × X, where Λ is linearly ordered and X is (−∞,∞) (or the set of all integers).

Suppose f and g are TP2 in the variables λ ∈ Λ and x ∈ X, and are PF2 with respect to

the x variable; i.e., f(λ, x− ζ) is TP2 (−∞ < x, ζ < ∞) for fixed λ. Assume that

h(λ, x) =

∫ ∞

−∞
f(λ, x− ζ)g(λ, ζ)dζ −∞ < x < ∞;λ ∈ Λ

is well defined. Then h is TP2 in the variables λ and x.

Notice that under our IID assumption,

1−Hy(x− y) =

∫ ∞

x

G(v − x+ y)dF (v) =

∫ ∞

−∞
G(y − (x− v))1x−v<0f(v)dv , (33)

where G(v) = F (v)n−1 is the CDF of maxj ̸=i vj. First, f(v) is trivially TP2 in (y, v), and

is PF2 in v given that f is log-concave. Second, we prove that G(y − (x − v))1x−v<0 is

TP2 in (y, x) for fixed v, and also TP2 in (x, v) for fixed y. Since F (v) is log-concave,

G(v) is log-concave and so PF2 in v. Using the fact that if k(x) is PF2 then k(x− y) is

TP2 in (x, y), it follows that G(y − (x− v)) is TP2 in (y, x) and also in (x, v). Indicator

functions are TP2. Products of TP2 functions are also TP2. Hence the result follows.

Claim 4. Both 1−Hp(0)

hp(0)
and 1−Hc(p−c)

hp(0)
are non-increasing in p.

Proof. The first result is shown in Rhodes and Zhou (2024). We now prove the second.

Notice that

1−Hc(p− c)

hp(0)
=

∫ v

p
G(v − p+ c)dF (v)

G(p)f(p) +
∫ v

p
g(v)dF (v)

, (34)
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where G(v) = F (v)n−1 and g(v) = (n − 1)F (v)n−2f(v). One can show that (34) is

decreasing in p if and only if

[G(p)f(p) +

∫ v

p

g(v)dF (v)][G(c)f(p) +

∫ v

p

g(v − p+ c)dF (v)]

+G(p)f ′(p)

∫ v

p

G(v − p+ c)dF (v) ≥ 0 .

It is immediate that this condition holds if p ≤ v. In the remainder of the proof suppose

p > v, in which case dividing through by G(p)f(p) yields

G(p)f(p) +
∫ v

p
g(v)dF (v)

G(p)f(p)
[G(c)f(p) +

∫ v

p

g(v − p+ c)dF (v)]

+
f ′(p)

f(p)

∫ v

p

G(v − p+ c)dF (v) ≥ 0 .

When f is log-concave, f ′/f is decreasing. Hence a sufficient condition for the above

inequality to hold is

G(p)f(p) +
∫ v

p
g(v)dF (v)

G(p)f(p)
[G(c)f(p) +

∫ v

p

g(v − p+ c)dF (v)]

+

∫ v

p

G(v − p+ c)f ′(v)dv ≥ 0 .

Applying integration by parts to the last term, and noticing that the first fraction term

is greater than 1, it is straightforward to show that this inequality is satisfied.

Proof of Lemma 4. This follows immediately from Claims 3 and 4, because the right-hand

side of equation (19) is increasing in σ.

Proofs for Section 3.3

Proof of Lemma 5. All the results are straightforward to see except for the impact of σ

on pa(θ). From (24) and (27) and using the fact qa(θ̂) = 0, one can show that

dpa(θ)

dσ
= θ

dqa(θ)

dσ
−
∫ θ

θ̂

dqa(t)

dσ
dt , (35)

where, using equation (29), we have

dqa(θ)

dσ
= − 1

(1− σ)2
1− F (θ)

f(θ)

1

c′′(qa(θ))
. (36)
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At θ = θ̂, (35) must be negative; on the other hand, qa(θ) is efficient and so independent

of σ, and therefore at θ = θ (35) must be positive. One can further show that

1

θ

dp′a(θ)

dσ
=

dq′a(θ)

dσ
∝ −

(
1− F (θ)

f(θ)

)′
1

c′′(qa(θ))
+

1− F (θ)

f(θ)

c′′′(qa(θ))q
′
a(θ)

c′′(qa(θ))2
. (37)

Given the log-concavity of 1−F and convexity of c(q), this must be positive if c′′′(q) ≥ 0.

In that case, we have the stated cutoff result regarding how σ affects prices offered to

anonymous consumers.
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