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1. Consider the individusal I seeking to maximize the expected value Jc'.'uI of
his utility tLI and puppose that uI depends on a complex of circumstances [}
80 tbatul -=~f(c). ¢ ¥ (a, b) where a is defined as that component of ¢
which is subject to I*s free choice; I has no influence over the choice of b.
If c # C we may regard C as the (Cartesian) product of the two sets
A (= I's "decision domain™) and B (= the "univeree of diascourse"), i.e.,
C=AxB, ac A, be B,
2. 1I's problem conslsts in choosing an "optimal" (in the sense of § 3 below)
% € 4, given the complete gggoff,a,namthainfomationthat
B(v)e H 1(:) C Jé Y 1(30) £0 wherejjgo) is knomn. H(b) denotes a proba-
bility distribution in B. (1)5/ is the set of all H(b). O denotes the

anpty set. JJ (°) w111 be called the "a pribri information area.”
3. Definition: 2 €4 is said to be optimsl relative to Ps 8, B, andaf(") ir

P (8, b) aH(b) 2 1ne ﬂo (a, b) dE(b)
f a(u)&“)/?’

H(b)€ 31 (0)

for all a € A.

1. Among the elements of J/;o) we may find the "aingular' distributions

E (b - bo) with Prob(b = bo) = 1 (cf. H. Cramér, Mathematical Methods
of Statistics 16.1).
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k. The following special choices of ¥ go) are of interest:

o1, N §°) -ﬂ/;“) where ;°°) is the class of all "singular” (cf. foot~
note 1) distributions, i.e., all £ (b ~ bo)’ b, € B. Here the principls of
optimality given in '§3 above reduces to one of simple "maxmin-ing" with re-

gerd tc B, I.e., heres a is optimal if

inf .b)-inf (a, b) for all a ¢ A.
beB‘P(a o Pa, or a

h.2. JJ](;’) -J/B. If A has the property that a'& A, a"é A implies that
any randomized mixture of a', a" also belonge to A, then this case, as is

~ well imewn from the theory of games and Wald's work, ylelds the same solubion
2 as that considered in § 4.1 above. Either this case or that in § L.l may
be said to be that of pure imnorance (with regard to the given universe of

discourse).

b3, N ](3°) - (8% ), 1.e.,3./1(3°) is a one-element family. According to
the "subjective probability" school, as the writer understands it, this must
always be the case, both descriptively and nomatively. Here the problem

reduces to that of maximizing f\{? (a, b).dﬂ(a)(b) with regard to a € A,
-8

The solutions have been called "M " {or "Bayes optimal") with regard

to B ().

4.3.1. TWhen B 4s finite the choice of a ome-element 3/(°) #°(b)) has

been advocated where H o)

(b) assigns equal pmbabilities to all elements

b B. The traditional justification has been called the Principle of In-

sufficient Reason or the Bayes Postulate. [Not to be confused with the

"Bayes optimal" solutions with regard to an arbitrary H(o)(b); cf. § 4.3 above.]
A new Justification, based on certain axioms of "rational” behavior,

has been given by Ghemoff.(a)

2. Cowles Commission Discussion Paper, Statistics 3264, 346.
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li.3.2. Another special case of & one-elamantal“) is that of
W2 o (1% (10)) where B(%)(p°) 15 “eingular" [ £(b=b_)] and assigns
probability one to some b°& B. This is the case of certain certainty. Here the
problem reduces to that of maximizing + (a, b°) with regard to a ¢ A.
5. letB= B V B, where B, n_ B, = 0. GonaiderJJg)) =J’Bl defined as the
class of all distributions on Bl (1.e., with serv probabilitics for all sub-
pets of 32) .

This is the typical restriction imposed in econometric models when the
values of certain parameters are assumed known.

In this case it is clear that I's behavior would have been the same had
he started with the set Bl as the "unilverse of discourse.”
6.1. Ve may formally reduce the problem to one of simple maxmin [i.e., "pure
ignorance" of the § 4.1 type] by writing

Eu = ¥(a, B).
If it 1s assumed known that HE N g°), the Moptimal® solution is ob-

tained by taking the supremum of iﬁf\{f. I.e., we have
H&JJ(")V(a’ H) = H;n.;;l( ) Y (a, B) for all a ¢ A.

Here 3];0) plays the role of the universe of discourse while the "a priori
information area" consists of all the "singular® distributions (cf. § 4.1
above) over.ﬂ;o) .
6.2. In the case of a one-element Jf(o) - (H(o)(b)) [the general
"Bayesian® case (of. § 4.3 Bﬁrf:ign ‘the mpmsenmion used in § 6.1 reduces
the problem to the special /fass of "certainty® (cf. § h.3.2)’ since the "a
priori information area® conaists of a single element H(°)(b) of what is now
the universe of discourse (JJ §3°))‘

Thus the problem reduces to that of maximising Y (a, H®) with regard to

ag A,
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7.0. Examples. In what follows three examples are given of cases which are
neither simple maxmin or simple Bayes (unless, of course, the reformulation
of & 6 1s used). The first two are mainly designed to clarify the principle
used; the third sesms to be of some Interest in application.

7.1. Let - P(d, b) be given as a matrix

b, b
0 | 2.4
o (1] 1

[Hers the set A is given by all the "mixtures® ofdlanddz, i.0., all the
values of, eay, o(l, where *y ¥ Prob(d = clj_), i.e., all points of the

interval 0 § & 5 1,]

2
Wirite ,63 % Prob(b = b,).

We may represent subsets d‘ﬂB in terms of sets of values of /51. ThnsJ/B

itself corresponds to the interval 0 S /5’1 $1.

(1) Now u}/g") is given by O 1'/81 = 1 (the case of "pure ignorance") we

£ind that the optimal solution is Ql = 0 (1., "pure” d, should be used).

(2) A go)is a one~glement family, the following cases are of interest:

(2.1) .‘81 . i; i.e., certainty timt by Will occur; o‘?l =1 (L.e., "pure" 4).
N
(2.2) /31 -3 i.e., {equi-probability for bl, bz); x, - 0 (i.e., "pure® dz)o
: L A
~
(2.0) B, =030, =0.
(3) Letalg’) be given by 0 % 1‘5-}; then & = O,
7.2. Let ~‘P(d, b) be given as a matrix
b, b, h2
ap 1215
4 o0

[Here again A is given by all the mixtures of dl' dz.]
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Write, as befors, of, ¥ Prob(d = d,), ,63 F Prob{b = bj).
Conedder the following ] ,(30)*

@ £, -0

~Y 1
then-(l '3

(2) B =0

P
then o) &)

(3 A ;'-ﬂ;'s

s 2
%, Ty

A e A1

Itmlbanotédthat&;< A, <A

7.3. An interesting opportunity for applying the principle stated in § 3
arises in connection with the following statistical problem:

ot t.here be given a sample of size n=)l from a normal bivariate universe,
i.e., a pair xl, x2 of observations with the likelihood funection

2-,71"!32'? exp{- HAx - 0 e 2 ?Ax - 0)(x, - 0, + R2x, - 92)21} .
The problem is to estimate el with Z Ikmown.

A specilal feature of the problem 1s the assumption that a priori infor-
mation concerning 92 is available. This information is of the following form:
92 is considered as a stochastic variable nomally distributed with a known
mean 8 and a known variance w’

2 22°
Ve shall find a Bayes-minimax estimate "é: of 8 when the weight functian
24 2
ls w (el - 91) .
ders JJB consists of all bivariate distributions in 6y, 6, while SJ](;)
consists of all bivariate distributions in 91, 02 esuch that the marginal distri-

bution of 6, 1s that given above, i.c., N(e, | 65, w¥,).
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To obtain 8% we work with a subset(B)}éo) or.#é") given by all bi-
variate normal distribution in @, 92 such that Z(al) = 0 and 8, has the
marginal distribution Mo, e, w

First, let the Joint distribution of 95 8, be H , [bivariate normel

11 wh, O
with the reapectiw'mea.na 0, e: and a diagonal covariance mat:de = » .
0 w
22
Then the (Bayes) optimal estimate relative to H‘J is
1
Wno o 9% GQt¥n Wy
0 + w? o
%:w - — 22 * “ 22 x1+:1*w (xz-e:)
(W) 9% *%“n %2 n*“n 9%
' #* ) %*
n 9o * ¥ od “a %o * 2
By letting « -'-)no we obtain
a
< 1 o (L)
a X
®1(w ) ﬁ (’2 "E - (22 h(a:gz)(g &)
. \aaz
We note th#t

Q'
E‘(el(ao)' %) - ﬁ’zz) rj
%, h)_
Uy =) - )( )

Hence(S) bl;( y i & mininax estimate for),go) since the risk attached to it

is independent of 91 and it is Bayes optimal (asymptotically as wn—) e ).

3. The procedure followed here is a modifjication of that used by Wald and
Stein, Wolfowitz, Lehman and Hodges. See references [1] - [L4] in Cowles
Commimsion Discussion Paper, Statistics No. 352.

4. ZLatting u.};z become O and 40 , we obtain the earlier results in Cowles

Camnission Discussion Paper, Statistice No. 348, in particular equations (6_), (8).

5. See Hodges and Lehman, Theorem 2.1, Annals of Uathematical Statistics,
Vol, 2L, No. 2, June 1950, p. 182,




8. The main point of the present paper iz to show how situations characterized
by a mixture of knowledge and ignorance can be handled. The method used ia
that of utilizing information available and reducing the problem to one of
"pure ignorance" (over the "a priorilinformtion area} redefined as the new
universe of discowrse). The principle applied in the situation of pure
ignorance happens to be that of maxmin (corresponding to the more usual minjimax
setup). However, any alternative principle of decision-making under ignorance
that applies to a sufficiently broad class of cases could have been used in-
stead. (Chernoff's principle mentioned in 4 4.3.1 above 18 not eligible since
it only applies to a finite B.)

Among alternatives may be mentioned the principle of minimiging the maxi-~
mum (over.?j(;)) regrot and a class of criteria discussed in Cowles Commission
Discussion Paper, Statistics No. 356.



