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1 Introduction

We develop a tractable model of a production economy that matches key statistics

of both asset prices and business cycle dynamics to examine outcomes in low interest

rate environments. Our model produces a standard market price of risk, a low and

smooth risk-free rate, realistic price-earnings ratios, as well as volatilities of aggregate

output and consumption in line with business cycle statistics. We do this within a

heterogeneous agents economy with a realistic degree of risk aversion by incorporating

the life-and-death cycle of firms. Our model imposes restrictions on the asset pricing

kernel. These restrictions allow us to predict the impact of lower interest rates on the

prices of long-lived assets.

Since 1980, interest rates on U.S. government bonds have steadily decreased. They

are now lower than the nominal growth rate. Figure 1 depicts different measures of

the US real risk-free rate over the last 30 years. Depending on the choice of the

time horizon, the average annual real rate lies somewhere between 0.5% and 0.9% (see

Mehra and Prescott (1985) and Beeler and Campbell (2012)). The growth rate of per

capita output has been roughly 2%. At the same time, the price-earnings ratio of

S&P500 stocks lies around 25, and Shiller’s home price index, deflated by the CPI,

which captures real land rents, only rose by 60%. This is while the real 10-year rate in

the figure fell from around 4% in 1990 to averaging less than 0.5% between 2011-2021.

While simple consumption-based asset pricing models cannot reproduce observed

returns on equity and the risk-free rate (see, e.g., Weil (1989)) it is now well understood

how the joint assumption of agents’ heterogeneity and financial frictions can enrich

the asset pricing implications of the model (see Constantinides and Duffie (1996)).

Our model focuses on two dimensions of heterogeneity: first, we model two types of

households with differential access to trading technologies, as in Chien et al. (2011).
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Figure 1: Real interest rates

The first type of households, which we call advanced traders, can trade a full set

of aggregate-state contingent securities. The second type of traders, which we call

non-participants, only trade a one-period risk-free bond. The second dimension of

heterogeneity we focus on is wealth heterogeneity, which arises endogenously from

uninsurable idiosyncratic risk. Uninsurable idiosyncratic risk gives rise to a distribution

of wealth across and within types and realizations of the idiosyncratic shocks. Due to

the heterogeneity in trading technologies, the wealth distribution moves strongly in

response to aggregate shocks. The large movements in the wealth distribution drive

the high market price of risk. At the same time, we restrict ourselves to household

preferences that exhibit a degree of risk aversion of 5.5 and do not include a habit

factor that can lead to much higher local degrees of aversion to risk. We consider

this an important component of generating a reasonable pricing kernel of the marginal

investor.

As in Aiyagari (1994) and Huggett (1993), idiosyncratic income risk, together with

borrowing constraints, are the key drivers of a low risk-free rate in our model. The

presence of adjustment costs on the firms’ investment implies that the infinitely lived

firms pay an infinite stream of non-zero dividends. When interest rates are very low,

the firms’ market price can become very large. To match observed price-earnings ratios,
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we introduce firm-exit into our model: Every period, a fixed fraction of firms exit the

market and are replaced by new firms founded by households. We argue that models

without firm exit are unlikely to jointly match the risk-free rate, the market price of

risk, and price-earnings ratios when we take the real interest rate to be very small. It

is well-documented that every year a substantial fraction of firms and establishments

in the US “die”, while surviving firms, on average, grow in size, despite the fact that

new firms enter. We calibrate our model to match these facts.

Even for high interest rates, computing equilibria for our model turns out to be

substantially more difficult than for the model considered in Krusell and Smith (1998).

First, in order to forecast the next period’s endogenous variables, we need to introduce

another aggregate variable, the wealth share of the advanced traders, in addition to

aggregate capital. One aggregate moment does not suffice to capture the strong non-

linearities and movements in the wealth distribution. Second, to solve for equilibrium

prices of the Arrow securities, we need to employ approximation methods for the con-

sumption functions with good extrapolation properties, in the sense that the gradients

do not change too much when moving outside the domain on which the approximat-

ing function was previously fitted. Advanced methods used in the literature, such as

Gaussian processes (Scheidegger and Bilionis (2019)) or neural nets (Azinovic et al.

(2022)), performed worse in our experiments.

We employ a simulation-based method to solve for our model’s equilibrium, in which

we alternate between simulating the economy and updating the policy, value, and fore-

casting functions. Hence, our equilibrium functions must be able to extrapolate well.

To forecast the equilibrium outcomes of our model, we take as the aggregate state: the

level of capital, the wealth share of the advanced traders, and the exogenous aggregate

productivity shock. This aggregate state is sufficient to accurately forecast the next

period’s aggregate state for each exogenous aggregate shock. As is standard in Euler
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equation methods, we use the approximated policy functions (along with a forecast of

next period’s advanced trader wealth share) to determine the policies of the firm and

households in the next period and then solve jointly for next period’s capital stock

and Arrow prices so as to equate asset demand to asset supply. This critically involves

determining the overall asset demand of the households. The natural state for house-

holds includes, in addition to the aggregate state, their type, idiosyncratic shock, and

their asset level. Given this household state, we again use an Euler equation method

to solve for current asset demand given tomorrow’s consumption policy function and

current Arrow prices. Because the response of individual consumption to changes in

the aggregate capital stock and wealth share of the advanced traders differs markedly

in their own wealth level, fitting this directly would require a very flexible functional

form, which typically would not extrapolate well. To deal with this, we posit separate

simple consumption policy functions for our households on a discretized grid of the

aggregate shock, the idiosyncratic shock, and the households’ asset holdings.1

An important aspect of our approach is that we can compute equilibria for our model

even when (Arrow-Debreu) prices are not summable. The value of the firms remains

finite even if the present value of a strictly positive stream of future payments explodes.

Borrowing constraints for households ensure that even though the present value of

future labor endowments might be infinite, the household’s optimization problem still

has a solution. Of course, computing an equilibrium of our model when prices are

nearly summable or nearly non-summable is computationally challenging both because

of the rich state space and the impact of low interest rates, which effectively lengthens

pricing horizons. This reinforces the need for computational methods that are tailored

precisely to our economic problem.

We examine the wealth distributions and asset prices in various different calibrations

1This means we approximate the households’ policies by a different simple function for different
wealth levels of the households.
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resulting in different very low real rates. In our benchmark calibration, we set the real

interest rate to 0.8% with a growth rate of 2%. We match a market price of risk of

50% as well as realistic moments for consumption- and output growth and realistic

price-earnings ratios. We also calibrate the interest rate to be -1.5%. At such very low

rates, the price-earnings ratio becomes slightly too high but remains in a reasonable

range, due to firms’ exit. The value of future labor income, however, explodes. We

find that for very low real rates, the wealth inequality between advanced traders and

bond-only traders increases substantially.

The positive average gap between the U.S. growth rate and the real interest rate

on U.S. Treasuries has sparked a large literature on the question of whether an infinite

roll-over of government debt is possible and whether deficit finance has no fiscal cost

(see, e.g. Blanchard (2019), Mian et al. (2021), Aguiar et al. (2021)). One important

message of the literature on this debate is that the average interest rate alone contains

little information on whether infinite debt rollover is possible (see, e.g. Kocherlakota

(2022), Bloise and Reichlin (2022)).

As an application, we, therefore, investigate whether a console with a dividend

growing at the long-run growth rate has a finite value. If this is the case, it is impossible

to roll over debt infinitely. We find that as long as the parameterization of our model

matches a realistically high market price of risk, average interest rates can become very

small (with a growth rate of 2% we consider average interest rates of up to -1.5%), while

the value of the console remains finite.

The possibility of infinite debt rollover is a sufficient condition for Pareto-improving

government debt. In our model, it is not a necessary condition because of financial

frictions. Obviously, government debt might help to ease borrowing constraints (in

exchange for money today, agents pledge future labor income in the form of lump-sum

taxes). However, in our calibration government debt always makes all agents (ex ante)
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worse off. It crowds out private savings and implies lower wages because of a lower

average capital stock.

In our calibration, we assume a deterministic growth trend and transitory shocks

to TFP. One can think of other calibrations where low interest rates necessarily imply

that debt rollover must be possible. The purpose of our exercise is to provide one

plausible calibration and show that very low interest rates are not inconsistent with

finite values of long-lived assets.

In asset pricing, it is typically assumed that growth rates themselves are stochastic.

Alvarez and Jermann (2005) point out that some asset pricing facts, in particular,

the yield curve for government bonds strongly suggest that shocks must have a very

large permanent component. We conduct a sensitivity analysis where we show that a

relatively small permanent component to tfp shocks suffices to obtain a realistic yield

curve in our model.

This paper builds on the literature studying limited stock market participation as

a central channel to explain asset prices. The relevance of this channel to explain

asset returns is established by Vissing-Jørgensen (2002) and Vissing-Jørgensen and

Attanasio (2003). In line with these findings, Parker and Vissing-Jorgensen (2009)

show that the consumption growth of high-consumption households is substantially

more exposed to aggregate shocks than for average households. Guo (2004) and Chien

et al. (2011) model an endowment economy with limited stock market participation and

show that they can obtain a low risk-free rate and a large and counter-cyclical equity

premium in line with the data. In difference to these papers, we model a production

economy. Guvenen (2009) models two traders, which are heterogeneous in their trading

technology as well as their intertemporal elasticity of substitution (IES) in a production

economy. He obtains a large and counter-cyclical risk premium as well as a low and

smooth risk-free rate. While the main mechanism in his paper, the heterogeneity in
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trading technologies is similar to ours, there are several important differences in our

paper. First, there is only one representative agent per type in his model, i.e. there is

no uninsurable idiosyncratic risk. Consequently, his model is not suitable for studying

issues related to the wealth distribution. Moreover, one cannot study environments

with very low average risk-free rates. Second, the more advanced type of traders in his

model can only trade a stock and a bond, while the advanced traders in our model can

trade a complete set of aggregate-state contingent securities as in Chien et al. (2011).

This simplification is not innocuous in the sense that it has significant effects on the

resulting portfolio choice. Third, the between-type heterogeneity in our model is driven

exclusively by their access to trading technologies. At the same time, Guvenen (2009)

models a difference in preferences (the IES) between the two agents. While this does

not seem to be crucial for his key results it does add an additional layer of complexity

to his model.

Production-based asset pricing models with uninsurable idiosyncratic risks, maybe

because of the associated computational difficulties, remain understudied. An excep-

tion in the context of limited stock market participation, which is closely related to

our paper, is Favilukis (2013). Favilukis (2013) models a production economy with

an OLG structure featuring idiosyncratic risk with counter-cyclical variations on the

household side. Households have to pay two types of fixed costs to participate in the

stock market. Similarly to Guvenen (2009), there are only two assets, a stock, and a

bond. Like our model, his model generates asset pricing and business cycle statistics,

which are roughly in line with the data. To the best of our knowledge, there is no work

on production economies with limited stock-market participation, which incorporates

firms’ exit and entry and allows for the possibility of very low risk-free rates.

The paper is organized as follows. In Section 2, we introduce the model; Section 3

describes the calibration and key aspects of the quantitative implications of our model.
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In Section 4, we discuss various calibrations with very low interest rates. In Section 5

we examine the possibility of debt rollover and discuss the effects of government debt

on welfare. In Section 6 we examine the role of permanent tfp shocks for asset pricing

in our model, and Section 7 concludes. In the Appendix, we explain our computational

approach in detail.

2 Model

We model a production economy with segmented financial markets and infinitely lived

heterogeneous households that face aggregate and idiosyncratic risk. The existing firms

have an exogenous probability of exit, with new firms entering to replace them. Time

is discrete and indexed by t = 0, 1, 2, . . . . We denote the aggregate shock in period t

by zt ∈ Z = {1, . . . , Z} and assume that aggregate shocks follow a Markov chain with

transition π. We use π(zt+1|zt) for the probability to transit into aggregate shock zt+1

when currently in aggregate shock zt. We denote a history of aggregate shock by zt

and we use π(zt) to denote the unconditional probabilities of shock sequences zt. In

addition, households face idiosyncratic risks which are assumed to cancel out in the

aggregate and which we discuss below.

2.1 Firms

We model a continuum of firms that take capital and labor as input and produce

the single consumption good with identical Cobb-Douglas production technology. The

production function of firm i is

yit = ξ (zt)
(
kit
)α (

Atl
i
t

)1−α
, (1)
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where ξ (zt) is the stochastic productivity level, At = (1 + g)t grows deterministically

at a fixed rate g, kit and lit denote the amount of capital and labor firm i chooses in

period t.

Every period starts with a unit measure of firms, of which the fraction Γ survive

to produce and the fraction 1 − Γ die. If firms exit, they do not pay dividends, and

their capital evaporates.2 Because death is random, the amount of capital in surviving

firms is ΓKt where Kt is the total amount of capital at the beginning of the period.

An equal measure of new firms replaces the dying firms. The new firms do not

produce in the current period, and the initial amount of capital invested in them at the

end of the period is īt. The difference between the investment of new and incumbent

firms is that the investment of new firms is exogenously chosen and not subject to

adjustment costs. Since initial capital does not suffer adjustment costs, there can be

rents from firm creation.

The total measure of firms at the beginning of the next period is 1 by construction.

Except for their capital stock, both new and surviving firms are identical starting next

period, and both new and surviving firms in period t are subject to the survival shock

at the beginning of the next period. Conditional on surviving, new firms entering in

period t start producing in period t+ 1 with capital kit+1 = īt.

The problem of surviving firms is standard. For firm i, capital accumulates accord-

ing to

kit+1 = kit(1− δ) + iit (2)

δ denotes the depreciation rate of capital and kit+1 denotes firm i ’s capital in the next

2In a more detailed model, the capital of exiting firms would have some resale value, but this is
typically thought of as being very low and cyclical, see, e.g., Shleifer and Vishny (2011).
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period conditional on surviving. Firms producing at time t pay dividends

dit = yit − ωtl
i
t − iit − ψ

(
kit+1, k

i
t

)
(3)

where ωt denotes the wage at time t. Adjustment costs are given by

ψ (k′, k) := ξadjk

(
k′

k
−
(
1− δ + xtarget

))2

. (4)

In this specification of adjustment costs, the parameter ξadj denotes the level of the

adjustment costs, and xtarget denotes the level of the investment to capital ratio for

which no adjustment costs have to be paid.

Firms have access to financial markets and trade in a complete set of aggregate-

state contingent securities, i.e. Arrow securities for the aggregate states. The price

of an Arrow security that pays at node zt+1, when traded at node zt, is denoted by

p(zt+1|zt). From this, we can price all aggregate date-events — we denote the price in

period t of consumption at some future date-event zτ by pt(z
τ ).

Since Modigliani and Miller (1958) result holds here, the firm’s capital structure

does not affect its value, so we introduce the firm’s problem without the consideration

of financial policy. A firm’s Bellman equation is given by

vit = max
kit+1

dit + Γ
∑
zt+1

p
zt+1

t vit+1, (5)

where kit+1 and vit+1 denote the firm’s capital and value in the next period conditional

on surviving.

The birth and death cycle of firms combined with adjustment costs means that

young firms can differ in size relative to older firms. However, since the probability of

death is independent of age or size, these firms effectively aggregate, with each firm
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having the same capital-to-labor rate, and the same investment-to-capital rate. Thus,

effectively there is a representative surviving firm and a representative new firm. This

is the sense in which the economy aggregates.

To establish this formally, note that each firm i takes the wage as given and chooses

lit such that

ωt = ξtAt(1− α)

(
kit
Atlit

)α

⇔ kit
Atlit

=

(
ωt

Atξt(1− α)

) 1
α

=: Kt, (6)

where optimal labor choice implies that Kt is constant across all operating firms. There-

fore we obtain that the return to capital across firms must be identical and that

wt = At(1− α)ξtKα
t (7)

rKt = rKi
t = αξtKα−1

t (8)

Since firms don’t face idiosyncratic risk, all incumbent firms face the same first-order

condition for optimality which reads as follows.

1 +
∂ψ(kit+1, k

i
t)

∂kit+1︸ ︷︷ ︸
=2ξadj

(
kit+1

kit
−(1−δ+xtarget)

)
= Γ

∑
zt+1

p
zt+1

t


rKt+1 + 1− δ −

∂ψ(kit+2, k
i
t+1)

∂kit+1︸ ︷︷ ︸
−ξadj

((
kit+2

kit+1

)2

−(1−δ+xtarget)2

)


(9)

The right-hand side of the Euler equation reflects the firm’s anticipated policy tomorrow

conditional on survival. Because of the homogeneity of production and adjustment

costs, each incumbent firm chooses the same growth rate, which, for a given period, t,

we denote by (gk)it :=
kit+1

kit
= gkt .
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We define Kt to be the aggregate capital in period t at the beginning of the period

before the survival lottery. There is a measure Γ of incumbent firms from last period

and a measure 1− Γ of that were created last period. Let Pt denote the set of indexes

for firms, which are producing in period t. If K̃t+1 is the per-period-t-producing-firm

amount of capital chosen in period t by the producing firms, then

K̃t+1 =
1

Γ

∫
i∈Pt

kit+1di (10)

Similarly, let Ĩt to be the per-period-t-producing-firm investment level for producing

firms in period t,

Ĩt =
1

Γ

∫
j∈Pt

ijtdj.

Hence

ΓK̃t+1 = (1− δ)ΓKt + ΓĨt ⇔ K̃t+1 = (1− δ)Kt + Ĩt, (11)

where Ĩt is the per-producing-firm amount of investment in period t.

Capital is chosen at the end of the period. This leads us to set the initial capital

in new firms to be the fraction s of the per capita amount of capital being chosen by

incumbent firms in period t:

īt = sK̃t+1 > 0.

The evolution of the beginning of period t+1 capital stock includes the capital coming

from incumbent firms at time t and new entrants at time t:

Kt+1 = ΓK̃t+1︸ ︷︷ ︸
incumbents

+(1− Γ)̄it︸ ︷︷ ︸
entrants

= [Γ + (1− Γ)s] K̃t+1 (12)

The amount of capital available for production is ΓKt+1 andKt+1 is the average amount
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of capital at each producing firm in period t+1. Aggregate investment can be defined in

a similar fashion. The aggregate investment, which includes the investment by startups

as well as incumbents, is

It = ΓĨt + (1− Γ)̄it = ΓĨt + (1− Γ)sK̃t+1 (13)

The growth rate of capital at surviving producing firms is given by

gk =
K̃t+1

Kt

=
1

Γ + (1− Γ)s

Kt+1

Kt

. (14)

Aggregate output is given by

Yt = ξ (zt) (ΓKt)
α (AtLt)

1−α , (15)

which takes into account the amount of capital that survives and produces in period

t. As a result, the wage is given by

ωt = ξtAt(1− α)

(
kit
Atlit

)α

= ξtAt(1− α)

(
ΓKt

AtLt

)α

(16)

And, the aggregate dividends paid by producing firms are given by

Dt = Yt − ωtLt − Γ
[
Ĩt −Ktξ

adj
(
gkt − (1− δ + xtarget)

)2]
. (17)

Because all firm’s invest and produce proportionate to their beginning of period

capital stock, the value of a producing firm is simply equal to their capital times the

value of a firm with a unit of capital; ṽt := vit/k
i
t = vjt/k

j
t ∀i, j ∈ Pt. Therefore the
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total value of producing firms at time t is given by

V firm
t = ΓKtṽt =

∫
j∈Pt

vjtdj =

∫
j∈Pt

 yjt − ωtl
j
t − ijt − kjt ξ

adj
(
gkt − (1− δ + xtarget)

)2
+Γ
∑

zt+1
p
zt+1

t vjt+1

 dj
(18)

This condition can be restated in terms of the Bellman equation for a unit-sized firm

is given by

ṽt =

[
Dt

ΓKt
+ Γ

∑
zt+1

p
zt+1

t ṽt+1g
k

]
(19)

where ṽt+1 is the anticipated value of a unit-sized surviving firm in the next period,

and Dt/(ΓKt) is the dividend paid per-unit-of-capital by each producing firm.

The value of a new firm entering in time t is given by

v̄t := Γ
∑
zt+1

p
zt+1

t vt-entrant∗t+1 = Γīt
∑
zt+1

p
zt+1

t ṽt+1 (20)

where vt-entrant∗t+1 denotes the value of an idiosyncratic firm in period t + 1 with capital

kjt+1 = īt. The last expression follows from the fact that the value of an idiosyncratic

firm is proportional to its capital. The net value of creating a new firm is simply v̄t− īt.

In terms of equating asset demand with supply, an important element is the value

of firms producing next period, which includes the value of incumbent firms plus new

entrants,

V firm
t+1 = ṽt+1Γ

[
Γ K̃t+1 + (1− Γ) īt

]
= ṽt+1ΓKt+1 (21)

How the aggregate value of currently producing firms evolves is instructive as to the
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differing roles of the firm death rate Γ and the relative size of new entrants s. The

aggregate producing firm’s Bellman equation is given by

V firm
t = Dt +

Γ

Γ + (1− Γ)s

∑
zt+1

p
zt+1

t V firm
t+1 . (22)

Expression (22) shows that fixing s > 0, a decrease in the death rate means that less of

the future value of firm’s dividends is compounded into the current value of producing

firms. But it also shows that as s → 0 all of the future value firm dividends ends up

being compounded. This is because the missing future value of firms is a product of

two elements, how many there are and how valuable each new firm is in terms of both

it’s initial capital and subsequent rents from creating capital.

2.1.1 Life-Cycle of Firms

As pointed out above, all surviving firms grow at the same rate, independent of size. To

the extent that new entrants are smaller than the average firm size, a version of Zipf’s

law holds. The new entrants must grow faster than the growth rate of aggregate capital.

To better understand this, we abstract from shocks and note that the “detrended” level

of the beginning of period aggregate capital in steady state must satisfy

K̂t+1 = Γ
1 + gk

1 + g
K̂t︸ ︷︷ ︸

period t incumbents

+(1− Γ)s
1 + gk

1 + g
K̂t︸ ︷︷ ︸

period t startups

= [Γ + (1− Γ)s]
1 + gk

1 + g
K̂t. (23)

where gk denotes the growth rate of capital for surviving incumbent firms, g denotes the

deterministic labor augmenting productivity growth, and (1 + gk)/(1 + g) denotes the

growth rate relative to trend of incumbent firms, and (1−Γ)s1+gk

1+g
K̂ denotes detrended

investment in period t into startups. Since, in steady state, K̂t = K̂t+1 = K̂ss, we must
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have

1 = [Γ + (1− Γ)s]
1 + gk

1 + g
=⇒ 1 + gk =

1 + g

Γ + (1− Γ)s
(24)

As one can see from inspection, gk > g to the extent that s < 1. The share of employ-

ment in new firms is given by (1− Γ)s/ [(1− Γ)s+ Γ], while the share of employment

last period in firms who exit this period is given by (1−Γ). Thus we can calibrate the

entering size with the shares of (employment) capital at exiting and entering firms, or

to the growth rate of employment at existing firms.

Matching the share of the present value of firm rents coming from “existing firms”

as opposed to future firms3 is of fundamental importance to our exercise. Since all

firms in our model grow at the same rate, this depends fundamentally on the share of

capital in future exiting firms.4 We have assumed that new entrants are immediately

included in the overall value of firms once they start producing. In the data, the stock

market includes only publicly traded firms, which means that only some of the firms

are not counted and enter with potentially a much longer delay. However, since the

value of a firm is proportional to installed capital, and since this is equal for all firms

that start producing at a given date, which firms are “included” in the market will only

affect the value of these firms relative to overall output and not any of their standard

statistics like the price-earnings ratio.

2.2 Households

We model a unit measure of households. The households are of two types ex-ante and

there is ex-post heterogeneity within type due to idiosyncratic productivity risk. The

3There are rents associated with capital because of convex adjustment costs, and also because new
firms are started with capital that was not subject to this cost.

4In the data young firms grow faster due in large part to selection (see for example Rossi-Hansberg
and Wright (2007)). We abstract from this feature of the data since our calculations primarily involve
the long-run growth rate.
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types of ex-ante heterogeneous households are based on Chien et al. (2011): a measure

0 < µ ≤ 1 of households are advanced traders and a measure 1 − µ of households are

non-participants. Advanced traders can trade the full set of aggregate-state contingent

securities, while the non-participants only trade the risk-free one-period bond. Both

types of agents cannot insure against idiosyncratic risk and face borrowing constraints

in the form of a zero lower bound on asset holdings.

Each agent experiences one of two idiosyncratic shocks in every period – we denote a

realization of the idiosyncratic shock with ηt ∈ N and a history of idiosyncratic shocks

with ηt. We assume that both, the aggregate as well as the idiosyncratic shock, are

first-order Markov and evolve independently. We use πη(ηt+1|ηt) for the probability to

transition into idiosyncratic shock ηt+1 when currently in idiosyncratic shock ηt. Every

period each agent receives a stochastic labor endowment l(ηt) = l(ηt), which depends

on its current idiosyncratic shock. We use A to denote the advanced traders and B to

denote the non-participants.5 We assume that agents supply their labor inelastically

at the equilibrium wage.

2.2.1 Preferences

Agents have identical, times-separable, von Neumann-Morgenstern utility functions.

U((ct)
∞
t=0) = E0

∞∑
t=0

βtu(ct), (25)

where instantaneous utility is given by

u(ct) =
c1−γ
t

1− γ
(26)

5We use the letter B, because it goes well with A and because type B only trades a bond.
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where γ denotes the coefficient of relative risk aversion and β denotes the time-

preference parameter.

2.2.2 Advanced traders

We denote the asset holding of an agent at node xt = (zt, ηt) of aggregate-state con-

tingent securities with a payout of one only at node zτ ≻ zt by az
τ
(xt). In addition to

trading in financial markets, advanced traders start up new firms. For each start-up,

advanced traders have to invest the amount īt and then own a start-up of value v̄t

We assume that the firm will only start producing in the next period and the start-up

owners can trade the firm in financial markets. Therefore a start-up simply means

a cash transfer of value v̄t − īt to the agent. This value is mostly positive, but may

also become negative, in particular in economic downturns. We assume the (1− Γ)/Γ

start-ups per period to be equally distributed across the advanced traders. Each trader

hence starts (1−Γ)/(Γµ) start-ups, where µ denotes the measure of advanced traders.

We denote the cash flow received from a start-up opportunity as ζ(zt) := v̄t − īt. The

Bellman equation for advanced traders is given by

V (zt, ηt, a
zt
t−1) = max

{azt+1
t ≥a}zt+1∈Z

u(ct)

+ β
∑
z̃t+1

∑
η̃t+1

πz(z̃t+1|zt)πη(η̃t+1|ηt)V ((zt, z̃t+1), η̃t+1, a
z̃t+1

t ), (27)

where

ct = lA(ηt)ω(z
t) +

1− Γ

Γµ
ζ(zt) + aztt−1 −

∑
zt+1∈Z

a
zt+1

t pzt+1(zt). (28)
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and where the price of an aggregate-state contingent security is given by

pzt+1(zt) = p(zt+1|zt), for zt+1 = (zt, zt+1) ≻ zt. (29)

2.2.3 Non-participants

For non-participants a sufficient statistic for the agents’ problem at node xt = (zt, ηt)

is given by

sBt := (zt, ηt, bt−1). (30)

The Bellman equation of non-participants is given by

V (zt, ηt, bt−1) = max
bt≥b

u(ct) + β
∑

z̃t+1∈Z

∑
η̃t+1∈N

πz(z̃t+1|zt)πη(η̃t+1|ηt)V ((zt, z̃t+1), ηt+1, bt),

(31)

where

ct = lB(ηt)ω(z
t) + bt−1 − btp

b(zt). (32)

Here, pb(zt) denotes the price of a bond, which is given by

pb(zt) =
∑

zt+1≻zt

p(zt+1|zt). (33)

2.3 Market clearing

There are Z + 1 relevant market-clearing conditions in this economy. One for labor

and one for each aggregate state-contingent Arrow security. Consumption markets

clear by Walras’ law, and throughout, we normalize spot prices of consumption to one.
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Since households supply their labor inelastically and since we do not model population

growth, the total amount of labor supplied by the households is given by

Lhouseholds
t := LA

t + LB
t , where (34)

LA
t := µ

∑
ηt∈N

(∫ ∞

a

lA(ηt)ρ
A
t (ηt, x)dx

)
(35)

LB
t := (1− µ)

∑
ηt∈N

(∫ ∞

b

lB(ηt)ρ
B
t (ηt, x)dx

)
(36)

In our calibration, we choose initial conditions to ensure that Lhouseholds
t = 1 for all t.

Taking an equilibrium wage ωt as given, the labor demand by the firm is given by

Lfirm
t :=

(
ωt

(1− α)A1−α
t ξtKα

t

)− 1
α

. (37)

Labor market-clearing implies Lfirm
t = Lhouseholds

t , hence the market-clearing wage

on labor is given by

ωt = (1− α)ξtK
α
t L

−α
t . (38)

The firms are owned by an intermediary that issues Arrow securities that, in each

aggregate shock next period, are collateralized by the firm’s value. We do not introduce

this intermediary formally and simply note that asset markets clear in period t if at

each zt+1 the total financial wealth in the economy equals the value of the firms. The
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total financial wealth owned by households is given by

whouseholds
t := wA

t + wB
t , where (39)

wA
t := µ

∑
ηt∈N

(∫ ∞

a

xρAt (ηt, x)dx

)
(40)

wB
t := (1− µ)

∑
ηt∈N

(∫ ∞

b

xρBt (ηt, x)dx

)
. (41)

Financial markets clear when

V firm
t = whouseholds

t . (42)

Note that V firm
t as well as whouseholds

t , conditional on the aggregate shock zt ∈ Z, are

predetermined at time t− 1. Hence, at t− 1, there are |Z| market-clearing conditions

for the financial markets.

3 Calibration

We distinguish between exogenous parameters that we take from the existing literature

or estimate from the appropriate data and endogenous parameters chosen to match the

market price of risk and the average real rate in our model to values that are typically

considered realistic. We also compare the consumption volatility, the volatility of the

real rate, and the average price-earnings ratio in our model to values from the data.

3.1 Exogenous parameters

We take the capital share in the production function, Equation (1), to be α = 0.33 and

assume that (yearly) depreciation is δ = 0.1. The adjustment cost parameter, ξadj, is

taken to be an endogenous parameter and discussed in the next subsection.
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In our benchmark model, we set the exit-entry rate of firms to 3.5%. As Crane

et al. (2022) report, the Census Bureau publishes both firm and establishment exit data

through the annual Business Dynamics Statistics (BDS) product. Over recent decades,

the employment-weighted firm death rate has been about 2.5%, while the establishment

death rate is much higher at roughly 4.5%. So our death rate is the average of these

two values. Concerning the appropriate size of entrants, the employment share of new

entrants is reported to be 1% in the first year,6 while Luttmer (2011) reports that

firms’ employment growth is roughly 1% on average. The latter suggests that īt/K̂t+1

is approximately 75%, given the firm death rate.

As mentioned above, we assume that the capital of exiting firms has zero value.

We can generalize this by assuming that the value is positive but small relative to the

value of capital in surviving firms. Clearly, our effects on value-earnings ratios become

smaller the larger the resale value of capital for existing firms. We provide some further

discussions in Appendix C.

We choose xtarget = δ+g so that no adjustment costs have to be paid if gKt =
k∗t+1

kt
=

(1 − δ + xtarget) = 1 + g. We assume a trend growth g = 2% for labor augmenting

productivity.

Following Chien et al. (2011), we take the share of advanced traders to be µ = 0.1.

We take the coefficient of relative risk aversion to be 5.5. This is well within the range

considered realistic by Mehra and Prescott (1985)7. The time preference parameter,

β, is a parameter used for matching observed prices.

We model shocks to total factor productivity as a 3-state discretized AR(1) process

6See BLS online publication: Business Employment Dynamics by Age and Size of Firms: Spotlight
on Statistics: U.S. Bureau of Labor Statistics.

7They consider values below 10, but as they point out, Arrow (1974) argues that the coefficient
should not be much larger than one.
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for deviations from the deterministic trend8. For the AR(1) process we have

log(ξt) = ρtfp log(ξt−1) + σtfpϵξt , (43)

where ϵξt ∼ N (0, 1). We choose the auto-correlation to be ρtfp = 0.8145, following

Guvenen (2009), and the standard deviation of innovations of σtfp = 0.0247 to match

the standard deviation of output growth we measure in the data (2.6%).9 We discretize

the AR(1) process using the method from Rouwenhorst (1995).

We focus on temporary shocks to TFP. There is an important and large debate

on whether there is a large random walk component in GNP. Cochrane (1988) finds

little long-term persistence in US GNP data. On the other hand, Alvarez and Jermann

(2005) argue that to rationalize return properties of long-term bonds in models where

the stochastic discount factor depends on aggregate consumption, innovations to ag-

gregate consumption need to have permanent effects. Applying the Cochrane test to

time series on TFP, we find little evidence for permanent shocks.

Because of our 3-state process, a simple bond and stock portfolio will not span the

space of aggregate outcomes. As a result, there is a distinct advantage to being able to

trade a richer set of assets; as our advanced traders do. The richer set of assets then

also insures that the value of the firm is well defined.

In addition to the aggregate shocks, we assume that individuals face two idiosyn-

cratic shocks. For simplicity, we assume that both types face the same idiosyncratic

risk. An agent’s labor productivity given shock η is given by l(η) = Xη To match

the persistence and standard deviation of the idiosyncratic income process we approx-

imate the process from Storesletten et al. (2004), abstracting from to co-movement of

8In Section 6 we discuss the possibility of permanent shocks to TFP growth.
9We take the series “A939RX0Q048SBEA” (Real gross domestic product per capita, Chained 2012

Dollars, Quarterly, Seasonally Adjusted Annual Rate) from FRED between 1947 and 2008, compute
the quarterly growth rates and aggregate them to a yearly frequency.
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idiosyncratic risk with the aggregate state of the economy. Details can be found in

Appendix B. We obtain

X =

0.46

1.54

 , πX =

0.89 0.11

0.11 0.89

 (44)

The resulting cross-sectional standard deviation of log earnings is 0.60 and matches

the standard deviation of the process simulated in the Appendix. It is in the ballpark

of values typically used in the heterogeneous agents literature (see, e.g. Auclert et al.,

2021).

3.2 Matching Moments

We have two remaining parameters, which we calibrate inside the model: the ad-

justment cost parameter ξadj and the time-preference parameter, β. We choose these

parameters to match two key asset pricing facts, namely the low real average interest

rate and the high market price of risk.

As a benchmark, we match an average yearly interest rate of 0.8%. Depending on

estimating the mean with quarterly (1947.2-2008.4) or with yearly (1930-2008) data,

Beeler and Campbell (2012) obtain values of 0.89 and 0.56, respectively. Mehra and

Prescott (1985) estimate the average real return on a “relatively riskless security”from

1889 to 1978 to be 0.8%. If we consider the monthly reported 1-year real interest rates10

for the periods 1991-2016, we also obtain an average of 0.8. However, if we expand the

interval to 1991-2022 it falls to 0.5. So clearly, real rates are low and seemingly lower

of late.

Our second target is the market price of risk (MPR). Since there is a complete set

10We take the “1-Year Real Interest Rate, Percent, Monthly, Not Seasonally Adjusted” time-series
from FRED (“REAINTRATREARAT1YE”). We form simple averages from January 1991 to Decem-
ber 2016 and December 2022 respectively.
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of aggregate state-contingent Arrow securities in our model, we can define it within

the model as the standard deviation of the stochastic discount factor (that can be

constructed from the observed Arrow security prices) normalized by its mean. Formally

we have that at a given node zt, the market price of risk is given by

MPR(zt) =

√∑
zt+1∈Z π(zt+1|zt)( pzt+1

π(zt+1|zt) − pb(zt))2

pb(zt)

The market price of risk (also referred to as Hansen-Jagannathan bound, Hansen

and Jagannathan (1991)) exceeds the Sharpe ratio attained by any portfolio. Specifi-

cally, given the observed Sharpe ratio, the bound tells us that the SDF must be at least

just as volatile. We prefer to target the market price of risk rather than targeting the

Sharpe ratio directly because the latter depends on the firms’ debt policies on which we

do not want to take a stand. In our benchmark calibration, we follow Cochrane (2009)

and target a value of 50% for the market price of risk. In their segmented market

exchange economy, Chien et al. (2011) target moments of equity returns and report

an MPR of 45%. Several empirical studies report a Sharpe ratio in annual US equity

returns that lies significantly above 50% (see, e.g., Lo (2002) or Lustig and Verdelhan

(2012)). In Section 5 below, we explain why, for the exercise there, we want to employ

a calibration with a relatively low (but still realistic) MPR.

3.2.1 Matching the two targets

For our calibration exercise, we need a mapping from the two free parameters, the time-

preference parameter and the adjustment costs, to the moment of interest. It turns out

that in our model many mappings from exogenous parameters to endogenous quantities

of interest (most importantly the mapping to the mean market price of risk and the

mean interest rate, which we use in our calibration exercise) are smooth. Hence we
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can approximate these mappings very well with a surrogate model, which is orders

of magnitude cheaper to evaluate (see, e.g. Scheidegger and Bilionis, 2019; Catherine

et al., 2022). Following Scheidegger and Bilionis (2019) we fit a Gaussian Process to

obtain such a surrogate model.

Let rtarget and mprtarget denote our targets for the average interest rate and the

average market price of risk. Similarly, let r(β, ξadj) and mpr(β, ξadj) denote the mean

interest rate and the mean market price of risk in our economy with given parameters

β and ξadj. To find parameters that match these two targets, we numerically minimize

the average root mean squared error of the model implied moments relative to the

targets11

ℓ(β, ξadj) :=

(
1

2

(
mpr(β, ξadj)−mprtarget

mprtarget

)2

+
1

2

(
r(β, ξadj)− rtarget

max{0.01, rtarget}

)2
) 1

2

. (45)

In appendix A, we discuss both the basic computational method to solve for equilibrium

as well as the computational method used to match moments.

The third panel in Figure 2 shows the value of our objective function, (45), for

different combinations of β and ξadj. For our Benchmark model, we chose the values

which allow us to match both targets precisely. This is the case for β = 0.9273 and

ξadj = 4.514. As can be seen in the figure, the model matches the targets for the

interest rate and the market price of risk (almost) exactly, and our two parameters

are well-identified. By construction, our model matches observed output volatility, the

observed average risk-free rate, and an MPR of 50%.

The first two panels of 2 show how the two targeted moments vary with different

values of the parameters. The market price of risk in increasing in adjustment costs

and (somewhat depending on the region) decreasing in the time preference parameter,

11Since our model matches both targets (almost) exactly, the obtained parameters are not sensitive
to the specific functional form.
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Figure 2: Dependence of the market price of risk (left panel), the interest rate (middle panel), and the
root mean squared relative distance from the calibration targets (right panel) on the time-preference
parameter β and the adjustment cost parameter ξadj .

β. The average real rate is decreasing in β and (somewhat depending on the region)

increasing in the adjustment cost parameter. Note that an MPR of 55% or higher,

together with a low real rate, is still attainable if one chooses higher values for the

adjustment cost parameter and adjusts β.

3.2.2 Other moments

Without targeting these moments, we also compare the results in our model to the

data for the volatility of the real rate, the volatility of aggregate consumption, and the

price-earnings ratio.

Beeler and Campbell (2012) estimate the (annual) volatility of the risk-free rate to

be 2.89 in yearly data (1930-2008) and 1.82 in quarterly data (1947.2-2008.4). We find

the volatility of nondurable consumption to be 2.0% in the data.12 The average of the

log price-earnings ratio in the data lies somewhere between 2.8 and 2.99 depending on

whether we consider the “Cyclically Adjusted Price Earnings Ratio P/E10” or if the

12We take the series “A796RX0Q048SBEA ” (Real personal consumption expenditures per capita:
Services: Nondurable goods, Chained 2012 Dollars, Quarterly, Seasonally Adjusted Annual Rate)
and the sum of “A796RX0Q048SBEA ” and “A797RX0Q048SBEA ” (Real personal consumption
expenditures per capita: Goods: Nondurable goods, Chained 2012 Dollars, Quarterly, Seasonally
Adjusted Annual Rate) from FRED between 1947 and 2008, compute the quarterly growth rates and
aggregate them to a yearly frequency.
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Model Data Rep. agent

rbond 0.79% 0.8% 19%
MPR 50% 50% 12%
std output growth 2.6% 2.6% 2.6%

std rbond 2.0% 1.8-2.9% 3.1%
std agg. consumption growth 2.0% 1.4-2.0% 2.2%
log V/E 2.8 2.8-3.0 1.8

Table 1: Key moments in model and data.

“Cyclically Adjusted Total Return Price Earnings Ratio P/E10”.13 Table 1 summarizes

key statistics from our benchmark calibration of the model and compares them to the

data and a representative agent specification.14

The first two targets are met almost exactly by construction. The volatility of the

growth rates of real consumption per capita is 2% which appears very reasonable, the

volatility of the real interest rate and the average (log) value earnings ratios are all

well in the range of what can be considered realistic. Our model performs well in all

these dimensions. If we were to target a significantly higher MPR (say 60%) or higher,

a higher risk aversion would be needed.

In comparison, the representative agent model (with the same preference parameters

and production function) fails to reproduce average interest rates and the MPR. This

is not a surprise (it has been pointed out many times in the literature, e.g. Weil (1989))

but the numbers are provided for comparison.

It is worth noting that the high market price of risk in our model is generated

by the same mechanism already described in Chien et al. (2011). By construction,

13We divide the real price from Shiller’s monthly stock market data (the “U.S. Stock Markets
1871-Present and CAPE Ratio” available at http://www.econ.yale.edu/∼shiller/data/ie data.xls, last
accessed: January 2023) by the real earnings, take logs, and compute the average between 1947 and
2008.

14The representative agent model is, for comparison, solved with identical parameters but without
firm-exit.
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the entire aggregate risk in asset returns is held by the advanced traders. Since these

only constitute 10% of all agents in the economy, their individual consumption will be

very volatile. In our benchmark calibration, the consumption of the group of advanced

traders is roughly four times more volatile than aggregate consumption – we discuss the

wealth distribution between and within classes of agents in detail in Section 4.2 below.

The assets are priced off the individual consumption of unconstrained advanced traders,

which generates the high market price of risk in our model. The advanced traders, on

average, hold more wealth and attain a higher consumption level. While this is not the

focus of this paper, we also obtain a reasonable equity risk premium using standard

assumptions on the leverage policy of firms. For example, with a mean debt-to-value

ratio of 0.47 (implying a mean debt-to-capital ratio 0.52) we obtain that the average

expected return on firms’ equity is 4.9%, implying an equity risk premium of 4.1%.15

3.3 Mapping parameters to moments

As mentioned above, the first two panels in figure 2 show how the market price of risk,

the interest rate, and the value of the loss function vary with the parameters β and ξadj.

Figure 3 shows how the volatility of consumption growth and the volatility of interest

rates, as well as the price-earnings ratios, depend on the time preference parameter

and the adjustment costs. As one would expect, the time preference parameter has

a large impact on the real rate and, therefore, on price-earnings ratios. Adjustment

costs are the main determinant of the volatilities of both consumption growth and the

risk-free rate. A higher MPR would imply higher consumption volatility.

As we show in Section 4 below, our model setup allows us to match a wide range

of possible interest rates while keeping the MPR constant and 50%. For this, three

15To obtain these numbers, we assume a constant level of (detrended) firm debt, such that the
average debt-to-value ratio is 0.47.
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Figure 3: Standard deviation of consumption growth (left), standard deviation of the interest rate
(middle), and the price-earnings ratio (right) for different values of the time-preference parameter
(vertical axis), and the adjustment costs parameter (horizontal axis).

modeling ingredients play an important role, idiosyncratic income risk, borrowing con-

straints, and firms’ death. Ever since Aiyagari (1994) the first two are standard in

dynamic models with heterogeneous agents. To the best of our knowledge, our model

is the first to allow for firms’ death in this setting.

3.4 Firms

As explained in the introduction, one of the main innovations in our model is the feature

that firms die and are replaced by new firms that are initially financed by households.

The rate of firms exiting plays an important role in a realistic price-earnings (as well

as price-dividend) ratio. In a low risk-free rate environment the current value of a

discounted infinite stream of future payments can obviously be very large (we discuss

this point in detail in the next section).

We alternatively solve the model for different firm exit rates and a variety of com-

binations for the adjustment costs and the patience to obtain a mapping from the exit

rate, the adjustment costs and the patience to the moments of interest (see appendix

A.2 for details). Figure 4 shows, based on the surrogate model, how the mean price-

earnings ratio in our model depends on the firm exit rate. For each firm exit rate, we
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Figure 4: Mean log price-earnings ratio for different values of the firm exit rate. For a given firm
exit rate, the adjustment costs and the patience are recalibrated to maintain an average market price
of risk of 50% and an average interest rate of 0.8%. The shaded area shows the confidence interval of
the prediction by the surrogate model.

recalibrate the adjustment costs and the patience to maintain a market price of risk of

50% and a mean interest rate of 0.8%.

As explained above, the mean (log) V/E ratio for historical US data lies between 2.8

and 2.99. Since we are considering a log-scale a price-earnings ratio of 3.3 or higher is

clearly at odds with the data. As figure 4 shows, the price-earnings ratio in our model

without firm death, or with a death-rate below 1% would be substantially too high.

In order to examine low average interest rates firm exit must be a crucial ingredient of

the model.

4 Very low real rates

By varying the time-preference parameter, β as well as the adjustment cost parameter

our model allows us to match a wide variety of (counter-factually low) interest rates

with a realistic market price of risk and realistic volatilities of consumption- and output

growth. This allows us to examine a range of economies where the average real rate

range from -1.5% to +1.5% (with a +2% growth rate). As explained above, an average

interest rate of 0.8% matches US averages well. An average real rate of −1.5% certainly

seems to be a lower bound given the available data (although there have been historical

32



episodes where the return on government bonds lay below -1.5%, this is certainly not

a realistic average return).

Table 2 shows the resulting moments in our model for different interest rates, keep-

ing the market price of risk at 50%. To attain a higher mean interest rate while keeping

the targeted market price of risk, as well as all other parameters, constant, our model

requires lower patience and adjustment costs parameters. A higher mean interest rate

leads to a lower volatility of the interest rate and a lower average return to capital.

Nevertheless, even for an average interest rate of -1.5%, dividends remain always posi-

tive. If we were to push the interest rate even lower, dividends would eventually become

negative – the value of the firm would remain finite.

Surprisingly, the table shows our model matches output and consumption volatility

for the entire range of real interest rates. The volatility of the real rate increases as

the average real rate decreases as higher adjustment costs are necessary to obtain an

MPR of 50% with a high value for β. The volatility of the return to capital also rises

as a result.

β ξadj MPR mean rbond std rbond mean rFirm, K std rFirm, K std Yt+1/Yt std Ct+1/Ct

0.9740 8.300 49.9% -1.55% 2.6% 1.5% 7.2% 2.6% 2.1%
0.9600 7.000 50.4% -0.89% 2.5% 1.9% 6.7% 2.6% 2.1%
0.9551 6.333 49.9% -0.60% 2.4% 2.0% 6.5% 2.6% 2.1%
0.9494 5.814 49.8% -0.37% 2.3% 2.2% 6.0% 2.6% 2.0%
0.9425 5.449 50.1% -0.06% 2.2% 2.4% 5.7% 2.6% 2.0%
0.9365 5.082 50.1% 0.33% 2.2% 2.6% 5.5% 2.6% 2.0%
0.9273 4.514 49.8% 0.79% 2.1% 2.9% 5.2% 2.6% 2.0%
0.9126 3.922 49.8% 1.47% 1.9% 3.4% 4.8% 2.6% 2.0%

Table 2: Parameters and resulting moments in the model with different mean interest rates.

We now want to examine the effects of such very low rates on the wealth distribution

and on the prices of long-lived assets. In future tables will consider the exact same

calibrations as in Table 2, and we will reference the different cases simply by the

associated real rates, not repeating the adjustment cost and time-preference parameters
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that were used.

4.1 Asset prices

Decreasing interest rates will increase the price of long-lived assets. Shares in the

firms are long-lived assets in our economy, but since we model firms’ exit, they are not

infinitely lived assets. In our model, we do not allow for the trade in infinitely lived

assets, but we can obviously price such assets given our (unique) stochastic discount

factor.

For this, we consider a fictitious console, an asset that pays a (1 + g)t risk-free at

any time t in the future. Columns three and give of Table 2 show how the price of

the firms and the price of the console increase as the real rate decreases. Surprisingly

E
[
rbond

]
E [log(V/E)] E

[
pconsole

]
E [pdv(Lw)] E [pdv(V )] E [pdv(V start-ups)]

-1.55% 3.16 524 455 3.83 47.2
-0.89% 3.05 195 171 3.62 19.3
-0.60% 3.02 162 140 3.52 16.1
-0.37% 2.99 133 115 3.45 13.6
-0.06% 2.94 106 90.8 3.34 11.2
0.33% 2.89 90 77.3 3.27 9.89
0.79% 2.84 73 61.8 3.15 8.31
1.47% 2.75 55 46.3 2.99 6.72

Table 3: Mean interest rates (first column), mean log price earnings ratios (second column), mean
price of the console (third column), mean present discounted value of all present and future labor
income (fourth column), mean value of operating firms (fifth column), and mean present discounted
value of all present and future startups for different combinations of time-preference and adjustment
costs parameters (as shown in table 2).

the price of an infinitely lived asset remains finite even with a real rate of -1.5%. We

discuss this in detail in Section 5 below. The value-earnings ratio remains finite by our

construction but increases substantially.

Somewhat surprisingly, the increase in the average value of the firm is much less

pronounced. It increases from 2.99 at an interest rate of 1.5% to 3.83 at an interest
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rate of -1.5%. The reason for this is that the dividends of the firm decrease as the

interest rate decreases - in fact, for some calibrations with very low interest rates these

dividends can become negative (although this is not the case for the calibrations listed

in Table 3). Note that when the interest rate is very low, dividends paid out in the far

future greatly impact prices today. For the calibration with an interest rate of -1.5%, it

takes more than 700 periods for the firm’s value to converge, implying that the value of

long-lived assets is crucially dependent on their payoffs 200 to 600 years in the future.

This seems clearly counterfactual making the assumption of firms exiting crucial.

While the price of current firms remains relatively stable as the interest rate becomes

very low, the present discounted value of all future start-ups increases substantially.

The same is true for the present discounted value of agents’ future labor income.

Crucially, the value of future start-ups and future labor income do not show up in our

flow budget constraints, hence these constraints contain objects whose value does not

increase substantially as the interest rate falls.

4.2 The wealth distribution

For calibrations with very low risk-free rates we need high values for the time preference

parameter, β, which changes from 0.91 to 0.97, hence for the low-interest rate case,

traders are substantially more patient. However, in equilibrium, this has differential

effects on the wealth of Arrow traders versus bond-only traders. Table 4 shows how

the wealth distribution across types changes across the different calibrations leading

to different risk-free rates. The average wealth share of the Arrow traders increases as

the interest rate decreases (recall that Arrow traders receive 10% of labor income). At

the same time the variability of their wealth share increases. The differences in wealth

between the best and worst aggregate state are very large for the Arrow traders but

do not change with the real interest rate.
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E
[
rbond

]
E
[
λA
]

Std
(
λA
) E[λA|zt=good]

E[λA|zt=bad]
Std

(
CA

t+1

CA
t

)
Std

(
CB

t+1

CB
t

)
E [µ(ât = 0)] E

[
µ(b̂t = 0)

]
-1.55% 35.5% 12.9% 2.8 8.5% 1.0% 1.1% 10.7%
-0.89% 33.4% 12.1% 2.8 8.6% 1.0% 1.3% 10.8%
-0.60% 32.0% 11.6% 2.8 8.7% 1.0% 1.4% 10.7%
-0.37% 31.0% 11.2% 2.7 8.5% 1.0% 1.5% 10.8%
-0.06% 30.5% 10.6% 2.7 8.3% 1.0% 1.7% 10.9%
0.33% 29.0% 10.6% 2.8 8.3% 1.0% 1.8% 10.9%
0.79% 27.6% 9.9% 2.7 8.3% 1.0% 2.0% 11.0%
1.47% 26.2% 9.0% 2.6 8.4% 1.0% 2.1% 11.3%

Table 4: Statistics on the wealth distribution for different combinations of time-preference and
adjustment costs parameters (as shown in table 2). The first column shows the mean interest rate,
the second column shows the mean wealth-share of advanced traders, and the third column shows it’s
standard deviation. The third column shows the ratio of the mean wealth share of advanced traders
in the best relative to the worst aggregate shock. The fourth and fifth columns show the standard
deviation of the growth of aggregate consumption for each of the two groups. The sixth and seventh
columns show the fraction of constrained households for advanced traders (sixth column) and non-
participants (seventh column).

Table 4 also shows the average fraction of agents within each type that are on their

borrowing constraint. Clearly, a higher β implies that agents’ borrowing constraints are

less likely to be binding. On the other hand, the net present value of labor endowments

exploding must mean that agents have a higher desire to borrow against the future

and might be more likely to be constrained. The table shows that the effect is very

different for Arrow traders compared to bond-only traders. The fraction of constrained

bond-only traders stays roughly constant across our calibration, while the fraction of

constrained Arrow traders falls by almost 50%.

The stark difference between the wealth of the two types can also be seen in Figure

5. The histogram of the average financial wealth of Arrow traders (by idiosyncratic

shock) changes drastically as the interest rate changes from our benchmark of 0.8% to

-1.5%. The wealth distribution of bond-traders only changes little.

These facts seem surprising at first. Although the interest rate decreases as β

increases, the product (1 + r)β actually increases (substantially) if we take r to be

the average interest rate. Yet, the bond traders do not save (significantly) more. The
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Figure 5: Histograms of the wealth distributions together with average MPC, by type and id-
iosyncratic shock. Upper panel for rbond = 0.79, lower panel for rbond = −1.55. In each panel, the
histograms are normalized such that the highest histogram bin reaches one.
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reason for this is that the interest rate volatility also increases as β increases. The

correlation between the realized output growth rate and the current real interest rate

lies around -0.35 in our calibration (and does not change much across the different

cases). That is to say, when poor, the agents face a high interest rate, when rich the

agents face a low interest rate. The increase in volatility of the interest rate implies

that the bond agents do not increase savings substantially. The Arrow traders, on the

other hand, save significantly more in the low interest rate calibration (as can be seen

both in Figure 5 and Table 4). One important factor for this is the fact that the Arrow

traders become much wealthier through the higher value of future start-ups discussed

above. The other important factor is that the Arrow agents are, on average, much

richer than the bond-only traders for all calibrations. Their MPC is lower and they

save more out of additional income.

Finally, note from Table 4 that consumption growth volatility is very large for

Arrow traders and does not change with the risk-free rate. As we mentioned above,

this large consumption volatility is the main driver of the large market price of risk.

5 The fiscal costs of government debt

As we noted earlier, the positive average gap between the U.S. growth rate and the

real interest rate on U.S. Treasuries has sparked a large literature on the question of

whether an infinite roll-over of government debt is possible and whether deficit finance

has no fiscal cost (see Blanchard (2019), Mian et al. (2021) or Kocherlakota (2022),

Bloise and Reichlin (2022)).

Our model is ideally suited to answer this question because it produces realistic

asset prices in a production economy and allows parametrizations of the model where

infinite rollover is possible. As we will review below, without structural assumptions on
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the economy, for example, just from observed prices) statements about the possibility of

debt-rollover are impossible. To make statements, one needs to make strong assump-

tions on the underlying economy (i.e., specify endowments, preferences, technology,

and a stochastic process for TFP). Clearly, there could be alternative specifications

that also match our asset pricing facts and that produce the opposite conclusion.

A perhaps more important question is whether government debt can be Pareto-

improving in our setting (see, e.g. Aguiar et al. (2021), Amol and Luttmer (2022) or

Brumm et al. (2021)). Because of financial frictions, the fact that debt rollover is im-

possible does not imply anything about the welfare consequences of debt. We conduct

a simple experiment where the government issues government debt and households can

decide when to pay taxes to ensure that the debt is repaid in finite time. In our exper-

iments, government debt is always detrimental to welfare because it induces crowding

out of private savings and investment.

5.1 Debt rollover

In a deterministic model, debt rollover is possible if and only if the real risk-free rate,

r, is smaller than (or equal to) the growth rate, g. It follows from Kocherlakota (2022)

and Bloise and Reichlin (2022) that under uncertainty, debt rollover might be possible

if r > g, or it might be impossible even if r < g. This is easy to understand if

one considers a simple non-parametric setting (similar to the setting in Kocherlakota

(2022)). Suppose asset prices follow an S-state Markov chain with transition π, which

is assumed to have a unique stationary distribution π∗. We define an S × S matrix Q

of Arrow-prices, qi,j denoting the Arrow-price for state j in state i. The interest rate in

state s is then 1
Rs

=
∑S

i=1 qs,i, the average interest rate is R̄ =
∑S

s=1 π
∗
sRs. We abstract

from growth. It follows from Aiyagari and Peled (1991) (see also Kocherlakota (2022),

Proposition 1) that debt rollover is impossible if and only if the largest eigenvalue of
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the matrix Q is less than 1. It is easy to see that prices of infinite payments that are

bounded away from zero are finite under the exact same condition. As n → ∞ the

series

(I +Q+ . . .+Qn)


1

...

1


converges if and only if the largest eigenvalue is less than 1. We refer to this as

summable prices, and, in what follows, will refer to no rollover and summable prices

exchangeably.

For debt rollover to be possible, there cannot be assets traded that pay off a strictly

positive fraction of aggregate consumption for the infinite future, otherwise the value of

those assets would be infinite. In our economic model, households’ future labor income

cannot be traded because households face borrowing constraints. However, firms are

claims to an infinite stream of future dividends. When debt rollover is possible, the

value of firms can be finite only if dividend payments are negative in some states or if

firms die at a fast enough rate. As explained above, we chose to introduce firm death

in our economic model.

Requirements on the largest eigenvalue of Q impose no restrictions on the interest

rates Rs, s = 1, . . . , S, except that (i) for debt rollover to be possible, there must be

one state s for which Rs < 1 and (ii) for debt rollover to be impossible there must be

a state s′ for which Rs′ > 1. Obviously, these assumptions impose no restrictions on
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the average risk-free rate, R̄. To see why this is the case, define a matrix

Qϵ =



1
R1

ϵ . . . ϵ

1
R2

ϵ . . . ϵ

...
...

. . .
...

1
RS

ϵ . . . ϵ


It is easy to see that for ϵ = 0, the largest eigenvalue of this matrix is 1

R1
< 1 and hence

has nothing to do with R̄. Moreover, for sufficiently small ϵ > 0, the implicit function

theorem can be applied, and it follows that the largest eigenvalue varies smoothly with

ϵ.

However, once one imposes an equilibrium model with agents that maximize an

expected utility function, the above construction imposes strong assumptions on the

movements of individuals’ consumption. It is then a quantitative question of how low

interest rates can become with prices still being summable.

We check numerically whether our computed equilibrium prices are summable. Al-

though there are only three exogenous shocks, state prices obviously take on infinitely

many values since they depend on the (endogenously changing) wealth distribution.

While the largest eigenvalue of the matrix of average state prices typically gives a good

indication of whether prices are summable, we actually use the price of the (fictitious)

console discussed above. Note that there are always cases where it is not decidable

whether prices are summable - one cannot ensure the convergence or divergence of an

infinite sum by checking finitely many terms. However, when we report below that

prices are summable (or not) prices converge (or diverge) sufficiently fast to give us

high confidence in our results.

In the last column of Table 2, E(pconsole) denotes the expected price for a console

with payout (1+ g)t in every period. We first note that for our benchmark calibration,
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prices are summable (and therefore, debt rollover is impossible). As Table 2 shows,

as long as the MPR is held fixed at 50%, prices remain summable (i.e. debt rollover

remains impossible) even when average interest rates are 3.5% below the average growth

rate. This is consistent with our non-parametric toy model in the previous section, the

volatility of interest rates is sufficiently high to ensure that they are above the growth

rate for a substantial fraction of time. A realistically16 high MPR turns out to be

crucial for this result. For example, with a coefficient of relative risk aversion of 5.5,

β = 0.972, and a relatively low adjustment cost parameter of 1.55, we obtain a market

price of risk of 29.9%. The average real rate is 0.47% and its standard deviation is

0.9%. In this economy, prices are not summable, making debt rollover possible.

To understand better the interacting effects of the average interest rate and the

market price of risk we construct a surrogate model that maps average interest rates

and the average market price of risk into the price of the console. We fix all parameters

except for the patience and the adjustment costs at fixed values; hence other moments,

such as the standard deviation of the risk-free rate, also vary as the market price of

risk varies. Other parameters might influence the console price that we do not consider

here. Figure 6 shows the price of the console for different combinations of the interest

rate and the MPR. For lower interest rates computing the console’s price becomes

numerically difficult before a clear divergence of the price can be observed. We hence

mark the area in which we cannot observe either clear divergence or convergence of the

price with orange. Further, it should be noted that the value of the mean price of the

console, which we obtain, comes with an error due to Monte Carlo simulations.

Infinite debt rollover is possible if and only if the value of the console is infinite.

We can see that in regions where prices are summable, the average price of the console

is increasing faster than exponentially as the mean interest rate decreases. To see this,

16As mentioned above, we chose our calibration target for the MPR to be on the low side relative
to estimates in the literate.
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Figure 6: Mean price of a console, with a payout equal to (1 + g)t in logs, plotted against the mean
interest rate and the mean market price of risk.

observe that the distance between the contour lines is decreasing, despite the figure

showing the log of the average price of the console. A higher market price of risk lowers

the price of the console and hence allows for summable prices with lower interest rates.

In summary, as it has been pointed out (e.g. Kocherlakota (2022) or Bloise and

Reichlin (2022)) average low interest rates are neither necessary nor sufficient for the

possibility of debt rollover. In our calibrated model, we find that debt rollover is

impossible even if average interest rates are more than 2.5% below the average growth

rate. A realistically high MPR is crucial for this result. In our calibrations, we chose

to match an MPR that is rather on the low side, given the estimates in the literature.

5.2 Welfare effects of debt

Although in our calibration infinite rollover of debt is impossible and therefore, there

must be a fiscal cost of debt, it is not clear what the welfare consequences of government

debt are. The financial frictions imply that the competitive equilibria is suboptimal
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and there are no theoretical arguments to rule out the possibility that government

debt could be Pareto improving. There are two key frictions in the model: (i) a lack

of insurance for idiosyncratic risk for all households and aggregate risk for bond-only

traders, and (ii) the borrowing constraint.

State contingent government debt could help with (i) but we focus here on the abil-

ity of a simple government policy intervention that can relax the borrowing constraint

(from zero) through increasing the amount of risk free assets in the model. To do so,

consider a government policy intervention of the following form. In the first period of

the model, t = 0, the government gives each household some units of a government

bond which we denote by bg0. Assume that thereafter, the government increases its

bond issue by an amount so that the total for any household is

bgt = (1 + g)bgt−1

thus keeping the growth deflated size of the debt held by a household constant. The

government pays for its debt issuances by levying on the households lump-sum taxa-

tion in the future whose present-value is equal to the value of the issued bonds. By

construction this is a purely Ricardian policy. Assume that the household can treat

the government bonds as collateral and therefore short the government bond. Assume

also that each household is free to devise their own optimal state-contingent repayment

plan.

For the bond-only traders, this would alter their intertemporal budget constraint

as follows.

∑
zt

p(zt+k)ct(z
t) =

∑
zt

p(zt+k)
[
lB(ηt)ω(z

t) + bt−1 − btp
b(zt) + ∆bgt − T (zt)

]
(46)

where the last two terms involve the new debt transfer in period t, ∆bgt , and the state-
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contingent repayment T (zt). Clearly for these two terms to net to zero, we simply need

the original present-value budget constraint to hold. However, the ability to borrow

against one’s holding of government debt lowers the borrowing constraint by its level.

So long as

Et

[
lim
k→∞

p(zt+k|zt)(1 + g)t
]
= 0

with probability 1, the requirement that they stay weakly above the bond threshold

−bg0 implicitly implies that there are repaying the government’s bond transfer. This is

equivalent to the requirement that the price of the government’s growth consul stay

finite. A similar argument holds for the advanced-traders. Therefore, if debt rollover

is impossible, the above-described debt policy has the same effect as lowering the

borrowing constraint of the household in each period from 0 to −bg0.

Clearly, a relaxation of their borrowing constraints will potentially increase the wel-

fare of the bond traders. However, there is also a price-effect. The sign and magnitude

of the overall effect is then a quantitative question. Here we present the results from

lowering the borrowing constraint gradually to -.20 which can be roughly thought of in

terms of percent mean consumption since this value is roughly one. We consider three

calibrations for the average risk-free rate for the zero-borrowing case. As above, in the

benchmark case the average interest rate is around 0.6 percent, we also consider a zero

interest rate case as well as a case with an interest rate of 1.5 percent.

Because we change the preference parameter β to lower our interest rates, we cannot

compare results across different calibrations, but only with respect to the impact of the

lower borrowing constraint given a calibration. We are interested in how the change in

the borrowing constraint impacts on asset prices, and through these prices, the level

of capital. In addition, we are interested in welfare. Since preferences are given by

E [(]1 − β)
∑

t β
tu(ct), we report the relative level of normalized certainty equivalent

45



consumption level in the table. In table 5 we present some results for the relaxing the

borrowing constraint for three calibrations, the benchmark economy and both a higher

and lower interest rate economy.

Table 5: Impact of Government Policy to Lower Borrowing Constraint

Benchmark model

b r K̂ Ŷ λ MPR rel. c∗,A rel. c∗,B log(V/E)

0.00 0.785% 2.838 1.395 27.7% 50.0% 1 1 2.837
-0.05 0.917% 2.806 1.390 27.8% 49.6% 0.9972 0.9992 2.819
-0.08 0.991% 2.790 1.387 28.0% 49.3% 0.9959 0.9989 2.810
-0.10 1.044% 2.777 1.385 28.0% 49.2% 0.9943 0.9985 2.802
-0.15 1.176% 2.747 1.380 28.1% 48.8% 0.9913 0.9974 2.786
-0.20 1.294% 2.724 1.376 28.2% 48.3% 0.9861 0.9966 2.770

Low interest rate

b r K̂ Ŷ λ MPR rel. c∗,A rel. c∗,B log(V/E)

0.00 0.03% 2.980 1.418 30.0% 50.3% 1 1 2.932
-0.05 0.16% 2.950 1.413 30.1% 49.8% 0.996 1.000 2.914
-0.08 0.23% 2.932 1.410 30.2% 49.6% 0.994 1.000 2.904
-0.10 0.29% 2.917 1.408 30.2% 49.4% 0.992 1.000 2.895
-0.15 0.42% 2.885 1.402 30.3% 49.0% 0.991 0.999 2.878
-0.20 0.55% 2.853 1.398 30.4% 48.6% 0.988 0.998 2.860

Higher interest rate

b r K̂ Ŷ λ MPR rel. c∗,A rel. c∗,B log(V/E)

0.00 1.47% 2.703 1.373 26.1% 50.0% 1 1 2.751
-0.05 1.61% 2.674 1.368 26.3% 49.6% 0.997 0.998 2.735
-0.08 1.69% 2.655 1.365 26.3% 49.4% 0.994 0.997 2.724
-0.10 1.74% 2.643 1.363 26.4% 49.2% 0.994 0.997 2.718
-0.15 1.88% 2.611 1.357 26.5% 48.9% 0.991 0.995 2.701
-0.20 2.01% 2.583 1.353 26.7% 48.5% 0.989 0.992 2.685

As can be seen from the table, government debt is never Pareto-improving. On the

contrary, it typically makes all agents worse off (in the low-interest case, the welfare

effects for the bond-traders are so small that they become insignificant). The table

also shows the effects of government debt on the average capital stock. Government

debt crowds out private savings and hence decreases the capital stock. Since in our
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calibrations the economy is dynamically efficient (meaning that a reduction in capital

reduces aggregate consumption), average welfare decreases for both agents. It is well

established in the literature (see, e.g., Bloise and Reichlin (2022)) that the possibility of

debt rollover is a necessary but by far not sufficient condition for dynamic inefficiency.

The table also shows that the risk-free rate increases substantially and the market price

of risk decreases.

6 Transitory versus Permanent Shocks

As noted by Alvarez and Jermann (2005) the pricing of long-term risk-free bonds

is very sensitive to the stochastic process for consumption in a representative agent

model. They show that if consumption follows an AR1 process around a deterministic

trend, then the one-period holding return of a long-term risk-free bond is in fact very

risky. They show that this seems inconsistent with the observed term structure of US

government bonds, which, on average seems to flatten out after 20 years. If, on the

other hand, it is assumed that consumption follows a stochastic growth process, the

resulting term structure seems much more consistent with US data. This fact obviously

puts in question the validity of our calibration. Our results on the possibility of debt

rollover crucially depend on the shocks being transitory.

There is a large literature that examines whether there is a unit root in the time

series of aggregate consumption or GNP. Cochrane (1988) develops a measure of the

persistence of fluctuations in GNP based on the variance of its long differences. He

shows that this measure finds little long-term persistence in GNP. On the other hand,

Cochrane (1994) points out that there is a significant unit root component in consump-

tion. Chernov et al. (2021) show that consumption dynamics is best explained with a

switching model with both transitory and aggregate states.
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6.1 Evidence of a Unit Root in TFP, Output and Consump-

tion

Cochrane (1988) examines the variance of the log of a time series, xt with difference

k; var(xt − xt−k)/k ; this measure should settle down to the variance of the unit root

innovation with large enough k. The first panel of Figure 7 depicts Cochrane’s measure
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Figure 7: Cochrane’s Measure for TFP, GDP, and Consumption

for quarterly data 1960:Q1-2019:Q4 on TFP along with real GDP and consumption.

The TFP measure is from Fernald (2014). As one can see from the figure, the evidence

for a unit root in TFP appears more limited than for output or consumption. Because

our model has an annual frequency, we have also plotted the same series on an annual

basis in the second panel. In addition, we have added an alternative aggregate TFP

series from FRED.17 Overall, Figure 7 suggests that there may be a small unit root in

consumption and output (though the measure is trending down) but at most a tiny

17University of Groningen and University of California, Davis, Total Factor Productivity at Constant
National Prices for United States [RTFPNAUSA632NRUG], retrieved from FRED, Federal Reserve
Bank of St. Louis; https://fred.stlouisfed.org/series/RTFPNAUSA632NRUG, September 22, 2023.
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one in TFP. We will return to this evaluation once we incorporate a unit root into our

benchmark model.

6.1.1 Evidence from the Real Yield Curve

Alvarez and Jermann (2005) demonstrate that asset pricing data points to a large unit

root in consumption. The yield curve on pure discount bonds, especially at very long

horizons, is very informative as to the size of the unit root in the representative agent’s

consumption. They focus on the implications of nominal bond yields for the real term

structure – in Appendix D we review their argument in some detail.

In what follows, we focus on inflation-indexed bonds and ask whether our model

can replicate the observed yield curve. Unfortunately, TIPS (Treasury inflation index

securities) only became available starting in 2003 (and only for the 5 and 10-year bonds

and even later for the longer term ones). We plot the yields on TIPS in figure 8. As

one can plainly see, during this period the yield curve was almost always positively

sloped, especially at the longer horizons. If we compare the yields during the period in

Figure 8: TIPS Yields

which we also have the longer bond and examine the fraction of the weeks in which the

next longer bond yield was higher, the yield on a weekly yield on a 10-year bond was

above that on a 5-year 87% of the time, on a 20-year vs. a 10-year 99% of the time,
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and on a 30-year vs. a 20-year 100% of the time. Over the period from 2004-2023, the

average yield on the 5-, 10-, and 20- year bonds were 1.73, 1.99, and 2.19 respectively.

Over the period from 2010 onwards, when we also have 30 year bonds, the respective

averages were 1.38, 1.77, 2.03 and 2.14. The fact that the average yield curve for TIPS

is upward sloping is also discussed in Chernov et al. (2021).18

Let us mention several cautionary notes about the TIPS evidence. First, this data

has a limited time scale. Second, there are concerns about the pricing of TIPS: e.g.

Haubrich et al. (2012) use inflation swap rates and inflation surveys, and find that

there was substantial under-pricing of TIPS during their early years (prior to 2004)

and again during the financial crisis of 2008-9. Third, during this period QE2 was

widely thought to have lowered yields on medium and longer-term Treasuries (see, e.g.

Vissing-Jorgensen and Krishnamurthy (2011)).

6.2 Quantitative Assessment with the Model

To examine the impact of adding in a stochastic growth component, we modified our

model as follows. To keep the same three state Markov chain for the exogenous aggre-

gate state, we add a growth component which is determined by the realization of the

aggregate temporary shock zt. In particular, we assume that if zt = zj then the growth

rate between t and t+1 is given by gj, and the good (bad) temporary productivity state

is associated with a higher (lower) long-run growth rate shock. Because our Markov

chain is symmetric, each state is ex-ante equiprobable. Hence, we simply consider a

shift factor for the growth rate g ∈ [1.02 + x, 1.02, 1.02 − x] for x ≥ 1. We consider

two cases: small shocks with x = 0.002 and large shocks with x = 0.006. Note that

18The TIPS yields also include a coupon which distorts their comparison to the yields on a pure
discount bond. The minimum yield on a TIPS bond is 0.125%, and the average yield over the whole
period across the different maturities was 0.79%. We computed the pure discount bond yield when
one adjusts for the average coupon rate and found this correction had a negligible effect.
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we are adding volatility with these experiments since the transitory shock process is

unchanged. Since we do not re-calibrate the model to match moments, the following

results should be thought of as only indicative.

In Figure 9 we plot Cochrane’s measure for our three cases, which we can compare

to the results in Figure 7. Note that because the variance of the growth rate coming

from the our specification of the growth process is 2 × x2/3, in all of our cases the

long-run level of the measure is very close to zero. In the short-run the benchmark

and small growth shock cases reasonably closely match the data. In the large shock

case, all three measures (TFP, Y, C) are quite high at the 30 year level, suggesting

that the unit root here is too large relative to the data. Overall this figure highlights

both how minor tweaks can generate measures in the data that suggest a unit root at

modest horizons, and also the problematic nature of these measures; something that is

well-known in the unit root literature (see Phillips and Xiao (1998) discussion of finite

sample properties of unit root tests).

(a) Benchmark Model (b) Small growth shocks Model (c) Large growth shocks Model

Figure 9: Cochrane’s Measure for Our Model

In Table 6 we report some selected results, and Figure 10 plots the yield curve for

all three cases. One can see that the introduction of a unit root had the anticipated

effect of flattening the yield curve and thus lowering the term risk premia. It also raised

the one-period interest rate. We also report average yields from the data for TIPS for

two different sample periods.
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Focusing first on the yield curve data, because the level of interest rates shifts

around, the proper measure is probably the relative yield curve (i.e. the yield relative

to the shortest rate). In the data the relative yield curve in average yields for the

longer period in which we do not have the 30-year bond is [1.0, 1.15, 1.26] and for

the shorter period with 30-year bonds it is [1.0, 1.28, 1.47, 1.55]. This data indicates

that the yield curve, even in average terms, moves around, and also gives us a rough

notion of the relative step size. In the model data the relative yield curve for the

benchmark model values are [1.0, 1.32, 1.61, 1.77], for the small growth shock version

[1.0, 1.25, 1.49, 1.61], while for the large growth shock model [1.0, 1.20, 1.39, 1.47]. The

small and the large growth shocks bracket the relative yield curve in the data, and

both reasonably approximate it (given the data issues mentioned above).19

Version r MPR 5-year 10-year 20-year 30-year V ar(gr C)
V ar(gr Y )

V ar(gr I)
V ar(gr Y )

Benchmark 0.86% 49.8% 1.68% 2.21% 2.71% 2.98% 0.60 1.99
Small Shocks 1.07% 49.5% 1.76% 2.20% 2.62% 2.83% 0.65 1.78
Large Shocks 1.17% 48.5% 1.62% 1.95% 2.25% 2.38% 0.80 1.32

TIPS data 2004-2023 1.73% 1.99% 2.19% n/a
TIPS data 2010-2023 1.38% 1.77% 2.03% 2.14%

Table 6: The TIPS sample mean in the longer sample is from 7/30/2004 to 9/22/2023, while in the
sample with the 30-year bond data, it is from 2/26/2010 on.

In addition to its impact on the yield curve, the introduction of growth shocks

impacted the model’s fit relative to the data in several ways. First, it both raised

the interest rate and lowered the market price of risk, especially for the large shock

growth shock case. Matching risk pricing without major tweaks to the model has

long been recognized as a major challenge. Second, it affected the relative volatility

of consumption and investment. In our benchmark model the relative variance of

19The differences between our conclusion that the yield data suggests a small permanent component
and AJ’s conclusion that it has a large component comes from the fact that our real yield curve is
upward sloping all the way out to thirty years, while in their data it is not.
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Figure 10: Yield Curve with growth shocks.

consumption-to-output, C/Y =0.60, while investment-to-output is I/Y = 1.99. By the

time we get to the large shocks it has switched to C/Y = 0.80 and I/Y = 1.32. Given

that investment volatility is low relative to the data in the benchmark model, this

seems like an important trade-off with production based asset pricing models.20 Since

we simply added the long-run shocks to the model, this highlights the extent to which

growth shocks directly dampen risk pricing and investment volatility.

7 Conclusion

The main departure of our paper from a standard asset pricing model with hetero-

geneous households that face idiosyncratic risk and with limited asset-market partic-

ipation is incorporating firm production, exit, and entry. This allows us to examine

economies with very low real rates. We need to consider three present-value bins: (i)

labor income, (ii) net income from existing firms, and (iii) net income from firms enter-

ing at later dates. Because of household borrowing constraints, the operational budget

constraint of the household only included current assets and current labor income.

20Since we do not have government spending and this component is not that volatile, hitting con-
sumption volatility means necessarily being too low on investment volatility.
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Hence, as long as the value of currently existing firms remains finite, the behavior of

the model is surprisingly standard even with very low real interest rates.

We target different values for the average interest rate while holding fixed the

market price of risk (which measures the extent of that which aggregate risk is priced).

To achieve these targets, we adjust the preference discount factor and the adjustment

costs on capital. The higher discounting induced by firm exit means that dividends

stay positive even as the interest rate falls, and existing firm values do not explode.

However, the horizon over which they must accurately be forecasted extends beyond

200 years making accurate numerical methods crucial for our analysis.

On the household side, while the average interest rate times the discount rate,

(1 + r)β, rises, the increase in the volatility of interest rates is sufficient to constrain

the incentive to increase savings. As a result, the standard deviations of aggregate con-

sumption and output growth are essentially unchanged. For our sophisticated traders,

the standard deviation of consumption growth does rise along with their wealth share,

but only modestly.

It is important to note here that because we go beyond the standard two-aggregate

state Markov chain structure,21 our advanced traders benefit more from their sophis-

tication than in a model where they can only trade a bond and equity. Relaxing this

restriction has significant implications regarding the exposure of households’ wealth to

specific aggregate shocks.

We considered the impact of the fall in interest rates on a growth console. Starting

from the benchmark average real interest rate of 0.80%, reducing the real rate to -

0.89% results in the real price of the console increasing by a factor of slightly more

than 150%, while the present value of labor income grows by 177%. Despite this,

the value of existing firms increases by only 15%. These results indicate both the

21e.g. Guo (2004), Guvenen (2009) and Favilukis (2013).
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surprising extent to which present values stay finite in our model even at quite low

rates and that the dampening effect of firm death is large. Unsurprisingly, we find that

this dampening effect is quite sensitive to the firm exit rate. Lowering the exit rate

from 3.5% to 1% results in clearly counterfactual values of the price-earnings ratio in

our model.
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Appendix

A Computational Method

A.1 Solution Method

Our computational method is broadly based on the method developed by Krusell and

Smith (1998) and more specifically on the algorithm developed by Kubler and Schei-

degger (2019). We extend the classical method by Krusell and Smith (1998) in two

important dimensions that allow us to solve the model efficiently and exclusively on

simulated path of the economy. While we describe the method in the context of our

model, it is generic and can be viewed as an extension of the general method in Krusell

and Smith (1998).

More specifically, we solve all three problems, the household problem, the firm prob-

lem, and market-clearing simultaneously and only on simulated paths of the aggregate

state-space. Since endogenous aggregate variables, in our case, aggregate capital and

the wealth-share of the advanced traders, are usually very correlated a solution method

requiring the household problem to be solved on a hypercubic domain, such as for the

classical Krusell and Smith (1998) method or any approximation method based on a

hypercubic domain,22 would be problematic for two main reasons, which we illustrate

in figure 11. Figure 11 shows realizations of the two endogenous aggregate variables,

capital (horizontal axis) and the wealth share (vertical axis) of the advanced traders,

for each of the exogenous aggregate shocks. The first problem is that the compu-

tational effort spent to solve the model for capital wealth-share combinations in the

upper left and lower right corners would be completely wasted, since the model never

reaches those states. The second problem is that, since the correct shock-contingent

22e.g. adaptive sparse grids as in Brumm and Scheidegger (2017).
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Figure 11: Realizations of the two endogenous aggregate variables, capital (horizontal axis) and the
wealth share (vertical axis) of the advanced traders, for each of the exogenous aggregate shocks on a
simulated path of 10000 periods for the benchmark model.

transitions for the endogenous aggregate variables are only observed on the simulated

path, there is no obvious way how to extend a fitted forecasting rule to an hypercubic

domain. Fernández-Villaverde et al. (2019) illustrate the severity of this challenge and

mitigate it by using neural networks to fit the forecasting rules and extrapolate to

an hypercubic domain. Since our method allows us to solve the model exclusively on

simulated paths, we circumvent the problem completely.

The second main feature of our method is that we extend the endogenous grid

method by Carroll (2006) to be applicable in our setting. For a given aggregate state

and a given exogenous idiosyncratic shock, we approximate the household consumption

policies, which are all we need from the household side, as a piecewise linear function

of the households asset holdings, rendering it very flexible and allowing us to take

advantage of efficient interpolation schemes (see e.g. Druedahl (2021); Auclert et al.

(2021)). For a given value of asset holdings, which lie on a fixed asset grid, and

given exogenous shocks (aggregate and idiosyncratic), we approximate the households’

consumption functions as polynomials in capital and the wealth share of the advanced

traders. Crucially, we fit a separate polynomial for each grid-value of the asset holdings
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and each combination of exogenous shocks, rendering our functional form very flexible

and able to provide an excellent fit, despite the strong nonlinearities in our model.

A.1.1 Solution Algorithm

The exact aggregate state of the economy is given by its exogenous aggregate shock zt

and the joint distribution of households across types, idiosyncratic shocks, and asset

holdings. In the spirit of Krusell and Smith (1998), we find a lower dimensional suf-

ficient statistic to approximate the dependence of aggregate quantities on the wealth

distribution. The two quantities are (detrended) aggregate capital K̂t, as in Krusell

and Smith (1998), as well as the wealth share held by advanced traders, which we

denote with λAt . Aggregate capital is obviously important because, together with the

exogenous aggregate shock, it characterizes the wages in the economy. The wealth dis-

tribution in our model moves a lot. The majority of households can only hold the bond

while the small share of advanced traders hence must hold all the financial risk. As a

result, the share of financial wealth held by the group of advanced traders will increase

substantially following a good aggregate shock and decrease following a bad aggregate

shock. Therefore aggregate capital alone would not be enough to forecast prices. We

find that adding the wealth share held by Arrow traders to aggregate capital, provides

for a very good sufficient statistic to predict endogenous aggregate quantities as well

as their evolution, contingent on the exogenous shocks.

Our method is simulation-based. In every simulation step, we jointly solve for the

households’ policies, the firm’s policy, and market clearing prices. Then, we draw a

new aggregate shock and simulate the economy one period forward. To approximate

the wealth distribution across trader types and idiosyncratic shocks, we use the non-

stochastic simulation method developed in Young (2010). After collecting a sequence of

simulated states, we use the computed prices and policies to update our approximating

58



functions.

Set of functions we need to approximate We need to approximate five types

of functions. First, we approximate the (aggregated) firm’s policy function which

determines the next period’s capital as a function of the approximate aggregate state.

Second, we approximate the (aggregated) firm’s value function which gives the firm’s

value as a function of the approximate aggregate state. Third, we approximate a

forecasting function to approximate the wealth share held by Arrow traders in the

next period conditional on the next period’s exogenous aggregate shock. The remaining

two functions approximate the consumption functions of the advanced traders and non-

participants as a function of the approximate aggregate state, the idiosyncratic shock,

and the idiosyncratic asset holding. We denote our approximations with gx(·), where

the index x denotes what is approximated. The approximations we need are

gK

(
zt, K̂t, λ

A
t

)
≈ K̂t+1 (47)

gV firm

(
zt, K̂t, λ

A
t

)
≈ V̂ firm

t (48)

gλA

(
zt, K̂t, λ

A
t , zt+1

)
≈ λAt+1|zt+1

(49)

gcA

(
zt, K̂t, λ

A
t , ηt,

âztt−1

1 + g

)
≈ ĉAt (50)

gcB

(
zt, K̂t, λ

A
t , ηt,

b̂t−1

1 + g

)
≈ ĉBt . (51)

Simulating the economy while solving for prices, policies, and values Given

the set of approximating functions, we simulate the economy for T periods. We

track the wealth distribution following the non-stochastic simulation method by Young

(2010). At time step t we solve a system of four nonlinear equations for the prices of

the three Arrow securities and the next period’s capital. The four equations are the
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market-clearing conditions for each of the Arrow securities as well as the representative

firm’s first-order condition. Simultaneously, we obtain the households’ policies implied

by the prices and the transition of the aggregate summary statistics. Given a guess for

prices and the next period’s capital, we evaluate the equations the following way.

The firm’s Euler equation is satisfied if K̂t+1 fulfills the aggregated version of equa-

tion (9). Where zt, K̂t, and λ
A
t are given and K̂t+2 is obtained from the approximating

function K̂t+2 = gK

(
zt+1, K̂t+1, λ

A forecast
t+1

)
. The wealth share of advanced traders in pe-

riod t+1 is obtained by using the forecasting function λA forecast
t+1 = gλA

(
zt, K̂t, λ

A
t , zt+1

)
.

To evaluate whether the market clearing conditions are satisfied, we need to know

the financial wealth in the economy, i.e. the value of producing firms, which has to

equal the asset demand by households. To obtain the value of operating firms in period

t + 1, we use the approximating function V̂ firm forecast
t+1 = gV firm

(
zt+1, K̂t+1, λ

A forecast
t+1

)
.

To obtain the asset demand of households, we use the endogenous grid method by

Carroll (2006). Despite its speed and its ability to exploit very efficient interpolation

methods, a further advantage of using the endogenous grid method is that we only

need to evaluate the approximating functions gcA and gcB on a pre-specified asset grid,

corresponding to pre-specified asset positions in period t+ 1. Hence we can achieve a

highly flexible functional form for function approximation by fitting several separate

functions g
zt,ηt,â

zt
t−1/(1+g)

cA

(
K̂t, λ

A
t

)
for each combination of the discretized exogenous

shocks zt and ηt, and each asset holding on the pre-specified grid âztt−1/(1 + g) ∈

Agrid, where Agrid denote the set of points on the pre-specified asset grid for advanced

traders. Analogously Bgrid denotes the set of points on the pre-specified asset grid for

bond traders. Each of the g
zt,ηt,â

zt
t−1/(1+g)

cA

(
K̂t, λ

A
t

)
, g

zt,ηt,b̂
zt
t−1/(1+g)

cB

(
K̂t, λ

A
t

)
, only have

to capture the variation of consumption with aggregate capital and the wealth-share

owned by advanced traders for fixed exogenous shocks and a fixed amount of financial

wealth.
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We choose the same grids for our histogram to track the wealth distribution by

trader type and idiosyncratic shock. We denote the vector of masses of bond traders

with idiosyncratic shock η and asset holdings b̂ztt−1/g on the asset grid Bgrid with µB,η
t

and we denote masses of advanced traders with idiosyncratic shock η and asset holdings

âztt−1/(1+g) on the asset grid Agrid with µA,η
t . We separately compute the asset demand

by bond and by advanced traders. In order to obtain the bond demand by bond traders,

we follow the following steps:23

1. For all possible zt+1 and ηt+1 we obtain the forecasted consumption of bond traders

for a pre-specified grid of asset holdings b̂ztt+1 ∈ Bgrid

ĉ
B,zt+1,ηt+1,Bgrid

t+1 = g
zt+1,ηt+1,Bgrid

cB

(
K̂t+1, λ

A, forecast
t+1

)
(52)

2. We obtain the associated marginal utility of purchasing the bond in period t for

given exogenous shocks in t+ 1 and asset holdings

(V B ′
)
zt+1,ηt+1,Bgrid

t+1 = u′(ĉB,zt+1,ηt+1,Bgrid

)u′(1 + g) (53)

3. For all idiosyncratic shocks in period t, we compute the expected marginal utility

from purchasing the bond when the asset holdings are on the grid Bgrid.

(EV B ′
)ηt,B

grid

t =
∑

zt+1,ηt+1

πz(zt, zt+1)π
η(ηt, ηt+1)(V

B ′
)
zt+1,ηt+1,Bgrid

t+1 (54)

4. Compute the consumption consistent with the households Euler equation and the

23The steps exactly the canonical application of the endogenous grid method, repeated here for
convenience.
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households savings choice lying on the grid Bgrid.

Cηt,Bgrid

t = (u′)
−1

(
β

pbondt

(EV B ′
)ηt,B

grid

t

)
(55)

5. The obtained tuple,
(
Cηt,Bgrid

t ,Bgrid
)
provides us with a mapping from consump-

tion to the optimal (unconstrained) policy. In order to simulate the economy

forward, however, we would like to know the households’ policies when the pe-

riod t asset holdings, not the period t asset choice, lies on the pre-specified

grid, we choose the same as the grid for the asset histogram. Using the house-

holds budget constraint, we back out the asset holdings at the beginning of

period t, which would be consistent with the consumption and savings policies

(ĉB,ηt
t , b̂ηtt+1) ∈

(
Cηt,Bgrid

t ,Bgrid
)

b̂ηtt = ĉB,ηt
t + pbondt b̂ηtt+1(1 + g)− ŵtηt (56)

The resulting tuple
(
b̂ηtt , b̂

ηt
t+1 ∈ Bgrid

)
maps period t asset holdings to the savings

choice, which lies exactly on the pre-specified asset grid.

6. We obtain the unconstrained savings choice for period t asset holdings lying on

the pre-specified grid with piecewise linear interpolation. We then ensure the bor-

rowing constrained are satisfied and obtain our new mapping
(
b̂ηtt ∈ Bgrid, b̂new,ηt

t+1

)
.

7. Using the computed savings policy we compute an updated consumption policy(
b̂ηtt ∈ Bgrid, ĉB,new,ηt

t

)
.

8. The asset demand by bond traders is then given by

dBt =
∑
ηt

∑
b̂
ηt
t ∈Bgrid

µB,ηt(b̂ηtt ) · b̂
new,ηt
t+1 (b̂ηtt )(1 + g) (57)
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The procedure to obtain the advanced traders’ asset demand is similar, with some

modification because they can purchase the aggregate-state contingent securities, each

associated with its own Euler equation, as we outline below.

1. For all possible zt+1 and ηt+1 we obtain the forecasted consumption of bond traders

for a pre-specified grid of asset holdings â
zt+1

t+1 ∈ Agrid

ĉ
A,zt+1,ηt+1,Agrid

t+1 = g
zt+1,ηt+1,Agrid

cA

(
K̂t+1, λ

A, forecast
t+1

)
(58)

2. We obtain the associated marginal utility of purchasing each of the aggregate-

state contingent Arrow securities in period t for given exogenous shocks in t + 1

and asset holdings

(V A′
)
zt+1,ηt+1,Agrid

t+1 = u′(ĉA,zt+1,ηt+1,Agrid

)u′(1 + g) (59)

3. For all idiosyncratic shocks in period t, and all possible shocks zt+1, we compute

the expected marginal utility from purchasing the corresponding Arrow security24

when the asset holdings are on the grid Agrid. In difference to the problem for the

bond traders, the sum goes only over idiosyncratic shocks in time t + 1, and we

are computing separate terms for each of the aggregate shocks zt+1.

(EV A′
)
ηt,zt+1,Agrid

t =
∑
ηt+1

πη(ηt, ηt+1)(V
A′
)
zt+1,ηt+1,Agrid

t+1 (60)

4. Compute the consumption consistent with the households Euler equation and the

households savings choice for each of the Arrow securities lying on the grid Agrid.

In difference to the bond traders, the corresponding consumption now depends

24The marginal utility from purchasing the other Arrow securities, available for trade at time t, is
zero once the aggregate shock zt+1 has realized.
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on the aggregate shock zt+1.

Cηt,zt+1,Agrid

t = (u′)
−1

(
β

p
zt+1

t

(EV A′
)
ηt,zt+1,Agrid

t

)
(61)

5. We now obtained a tuple,
(
Cηt,zt+1,Agrid

t ,Agrid
)
provides us with a mapping from

consumption to the optimal (unconstrained) policy for each of the aggregate state-

contingent securities. Since the asset holdings at t+ 1 lie on the pre-defined grid

for each of the Arrow securities, they are not consistent with each other and we

hence can’t straightforwardly use the budget-constrained to back out the time t

asset holdings, which would be consistent with those choices.

Instead, we choose a larger and denser consumption grid, which we denote by

ĉcommon
t . We then interpolate the mappings

(
Cηt,zt+1,Agrid

t ,Agrid
)

and apply the

borrowing constraint to obtain mappings (ĉcommon
t , â

zt+1,common,ηt
t+1 ) for each asset

(i.e. each zt+1 and each idiosyncratic shock ηt). We then obtain a mapping

from the common consumption grid to total savings, (ĉcommon
t , ŝcommon,ηt

t ), for each

idiosyncratic shock ηt, where

ŝcommon,ηt
t =

∑
zt+1

p
zt+1

t â
zt+1,common,ηt
t+1 (1 + g). (62)

With that savings function, we can now use the budget constraint to compute the

asset holdings consistent with the consumption choice ĉcommon
t .

âcommon,ηt
t = ĉcommon

t + ŝcommon,ηt
t − ŵtηt −

1− Γ

Γµ
ζ̂t, (63)

where ζ̂t denotes the payoff of creating a start-up and the 1−Γ
Γµ

denotes the start-ups

per advanced trader.

As a result, we have two maps: the tuple (âcommon,ηt
t , ĉcommon

t ) maps asset holdings
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at the beginning of period t to period t consumption for each idiosyncratic shock

in period t. The previously obtained tuples

(
Cηt,zt+1,â

zt+1
t+1 ∈Agrid

t ,Agrid

)
map period

t consumption to the (unconstrained) asset choice for each idiosyncratic shock

and each of the three assets.

Next, we use those mapping to obtain period t consumption and portfolio choice

for the beginning of period asset holdings, âzt,ηtt ∈ Agrid, lying on the prede-

fined grid. Interpolating (âcommon,ηt
t , ĉcommon

t ) for values âzt,ηtt ∈ Agrid, we ob-

tain the new consumption policies
(
âzt,ηtt ∈ Agrid, ĉA,new,ηt

t

)
. Next we interpolate(

Cηt,zt+1,â
zt+1
t+1 ∈Agrid

t ,Agrid

)
for values ĉA,new,ηt

t and apply the borrowing constraints

to obtain new policy functions
(
âzt,ηtt ∈ Agrid, â

new,zt+1,ηt
t+1

)
.

6. The asset demand by advanced traders is then given by

d
A,zt+1

t =
∑
ηt

∑
â
zt,ηt
t ∈Agrid

µA,ηt(âzt,ηtt ) · ânew,zt+1ηt
t+1 (âzt,ηtt )g (64)

For markets to clear, we need that for all zt+1, we have

d
A,zt+1

t + dBt = gV firm

(
zt+1, K̂t+1, λ

A forecast
t+1

)
. (65)

Together with the optimality condition for firm investment (i.e. equation (9)), this

gives us four nonlinear equations to solve for the three prices and the next period’s

capital. Once the system of nonlinear equations is solved, we record the new consump-

tion function and the updated firm value, which we will use to update the consumption

and firm value approximations, and simulate the economy one period forward using

the non-stochastic simulation method by Young (2010). We also record the resulting

wealth share held by advanced traders for each possible shock in the next period, which

we will use to update the forecasting functions for the transition of their wealth share.
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Repeating this step for T periods, we obtain the following newly computed se-

quences

1. aggregate shocks {zt}Tt=0

2. aggregate capital {K̂t}Tt=0

3. wealth distribution of advanced traders {ρAt }Tt=0

4. wealth distribution of bond traders {ρBt }Tt=0

5. wealth share owned by advanced traders {λAt }Tt=0

6. prices for the aggregate-state contingent securities {pzt+1

t }Tt=0

7. wealth share of advanced traders in the next period for each possible aggregate

shock, as implied by the households investment policies {λA,zt+1

t+1 }Tt=0

8. aggregate dividends paid by the operating firms {D̂t}Tt=0

9. aggregate value of operating firms {V̂t}Tt=0

10. consumption by advanced traders for each idiosyncratic shock and each grid point

on the asset grid {ĉAt }Tt=0

11. consumption by bond traders for each idiosyncratic shock and each grid point on

the asset grid {ĉBt }Tt=0

Updating the approximating functions

Updating the firm’s policy We use the sequence of exogenous aggregate shocks,

capital, and the wealth share of the advanced traders to update the firms policy

gztK

(
K̂t, λ

A
t

)
. For each exogenous shock zt, we predict K̂pred

t+1 = gztK

(
K̂t, λ

A
t

)
. We then

adjust the parameters of the function approximator to fit a weighted average between
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the predicted capital sequence and the newly obtained sequence K̂t+1, such that

gzt, newK

(
K̂t, λ

A
t

)
≈ (1− αupdate)K̂pred

t+1 + αupdateK̂t+1. (66)

An αupdate > 0 dampens the updating of the policy function. Slow updating is useful in

simulation-based methods to ensure that the domain of the functions (here aggregate

capital and the wealth share of advanced traders) is not changing too quickly between

subsequent iterations. We choose αupdate = 0.05.

Updating the forecasting function for the wealth share of advanced traders

Analogously, we use the sequence of exogenous aggregate shocks, capital, the wealth

share of the advanced traders, and the shock contingent wealth share of advanced

traders in the next period to update the forecasting functions g
zt,zt+1

λA

(
K̂t, λ

A
t

)
. For

each pair of exogenous shock (zt, zt+1), we predict λ
A,zt+1,pred
t+1 = g

zt,zt+1

λA

(
K̂t, λ

A
t

)
. Simi-

lar to capital, we fit the new parameters to a convex combination of the old prediction

and the new values, such that

g
zt,zt+1, new

λA

(
K̂t, λ

A
t

)
≈ (1− αupdate)λ

A,zt+1,pred
t+1 + αupdateλ

A,zt+1

t+1 . (67)

We choose αupdate = 0.05.

Updating the households’ consumption functions For the households’ con-

sumption functions, we follow the same procedure. The main difference is that we

fit separate functions for each combination of the aggregate shock, the idiosyncratic

shock, and each grid point on the individual asset grid. Hence we allow the dependence

of the households’ consumption on capital and wealth to be different depending on the

households’ wealth level. This is, in particular, suitable for our method, where we take
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the extremely correlated endogenous aggregate summary variables, i.e. capital and the

wealth share of the advanced traders, from a simulated path, while having a grid for

the idiosyncratic asset holding. Again we dampen the update by fitting the approxi-

mating function to a weighted average between the newly computed consumption and

the consumption predicted by the previous function approximator.

gηt,zt,ât, new
cA

(
K̂t, λ

A
t

)
≈ (1− αupdate)ĉA,ηt,zt,ât,pred

t + αupdateĉA,ηt,zt,ât
t , (68)

gηt,zt,b̂t, new
cB

(
K̂t, λ

A
t

)
≈ (1− αupdate)ĉB,ηt,zt,b̂t,pred

t + αupdateĉB,ηt,zt,b̂t
t (69)

We choose αupdate = 0.2.

Updating the firm value To update the firm value we use the computed se-

quences of exogenous aggregate shocks, the wealth share of the advanced traders, the

aggregate-state contingent prices, and the paid dividends. First, we compute the firm

value resulting from iterating on the firm’s Bellman equation, which is given in equation

(22), while repeatedly fitting a function to the updated values. We denote the result-

ing firm value by V̂ div
t . As for aggregate capital, we also predict the firm value based

on the old policy approximation and dampen the update, so that the new function

approximator fits

gzt, newV

(
K̂t, λ

A
t

)
≈ (1− αupdate)V̂ pred

t + αupdateV̂ div
t . (70)

We choose αupdate = 0.025.
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Functional form for the function approximators We approximate each of the

approximating functions as

g(K̂, λA) = θ1 + θ2K̂ + θ3K̂
2 + θ4λ

A + θ5(λ
A)2 (71)

and obtain the parameters {θ1, θ2, θ3, θ4, θ5} by least-squares fitting the data.25 Since

we fit a different such function for each (pair of) discrete shocks and each asset grid

point, this functional form provides us with sufficient flexibility to obtain a good fit to

the data.

A.1.2 Accuracy of the solution method

To investigate the accuracy of our solution, we asses the out of sample error of our

function approximators, i.e. the difference between new values collected on the sim-

ulated path of 5000 periods and the corresponding value predicted by our function

approximators, which we obtained in the previous iteration. Table 7 shows that the

remaining errors are low, with the 99th percentile well below 0.1%. Similarly, Table 8

shows the accuracy of the forecasting functions for the evolution of the two endogenous

aggregate quantities that summarize the distribution in the spirit of Krusell and Smith

(1998). As we can see both forecasting rules are accurate.

A.1.3 Necessity of adding the wealth share held by advanced traders

In the standard implementation of Krusell and Smith (1998) capital and the exogenous

shock alone would be used to forecast prices. In our model capital remains important,

since it pins down wages, but it is not enough. To illustrate this, figure 12 shows a

scatter plot of capital against the state price for shock z3, when the economy is in shock

25We use the curve fit command from the Julia library LsqFit.jl.
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ĉA [%] ĉB [%]
ĉA [%]
η1

ĉB [%]
η1

ĉA [%]
η2

ĉB [%]
η2

V̂ firm [%]

Mean 0.01 0.00 0.01 0.00 0.01 0.00 0.01
90th percentile 0.02 0.00 0.02 0.00 0.02 0.00 0.01
99th percentile 0.06 0.01 0.07 0.01 0.04 0.01 0.02

Table 7: Statistics for the absolute difference between the values predicted by the approximating
functions for the households’ consumption and the firm value and the corresponding updated values
obtained from a simulated path of 5000 periods for the benchmark model. The numbers denote the
errors relative to the updated values and are expressed in%.

K̂A [%] λA [%]

λA [%]
z1 → z1
z1 → z2
z1 → z3

λA [%]
z2 → z1
z2 → z2
z2 → z3

λA [%]
z3 → z1
z3 → z2
z3 → z3

Mean 0.00 0.01
0.01
0.01
0.01

0.01
0.01
0.01

0.01
0.01
0.01

90th percentile 0.00 0.02
0.02
0.02
0.02

0.02
0.02
0.02

0.02
0.02
0.01

99th percentile 0.00 0.03
0.03
0.03
0.03

0.04
0.04
0.04

0.03
0.03
0.03

Table 8: Statistics for the forecasting errors for aggregate capital and the wealth-share of the advanced
traders on a simulated path of 5000 periods for the benchmark model. The errors for the capital
forecast are relative errors in%, and the errors for the wealth share forecasts are absolute errors in%.

z1 for 300 realizations along the simulated path in the benchmark model, normalized

by the transition probability πz1→z3 . The circles show a prediction of the price when

fitting a polynomial of the form θ1 + θ2K̂ + θ3K̂
2 + θ4λ

A + θ5(λ
A)2, where K̂ denotes

aggregate capital and λA denotes the wealth share of advanced traders. First, we can

see that aggregate capital alone is not enough to predict the price accurately. Second,

we can see that the prediction based on capital and the simple functional form we are

using, provides a very good fit to the data.26

26While this serves as an illustrative example, our algorithm does not require to forecast prices,
but the households’ consumption. In figure 13 we show that household consumption can be very
accurately predicted as well.
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Figure 12: Realizations for the price of the aggregate-state contingent security for shock z3, when
the economy is in shock z1, against the corresponding values of aggregate capital. The grey circles
show the predictions of a fitted polynomial of the form θ1 + θ2K̂ + θ3K̂

2 + θ4λ
A + θ5(λ

A)2.

Dependence of households’ consumption on aggregates for different wealth

levels As described above, we approximate the households’ consumption functions

with a different function for each aggregate shock, idiosyncratic shock, and the house-

holds’ asset level on a pre-specified grid. This allows us to fit a simple functional form

for each of the functions.

gηt,zt,ât, new
cA

(
K̂t, λ

A
t

)
= θ1 + θ2K̂ + θ3K̂

2 + θ4λ
A + θ5(λ

A)2 (72)

gηt,zt,b̂t, new
cB

(
K̂t, λ

A
t

)
= θ1 + θ2K̂ + θ3K̂

2 + θ4λ
A + θ5(λ

A)2 (73)

Importantly, the parameters θi can differ not only across the exogenous shocks, but also

across the wealth level. Figure 13 shows the household consumption of an advanced

trader in aggregate shock z2 and idiosyncratic shock η1 for two different wealth levels

along 300 realizations on the simulated path of the economy for the benchmark model.

The top panel shows the consumption for a household without any financial wealth,

âz2t = 0. The bottom panel shows the consumption for a rich household, who owns

assets of value âz2t = 14.289, which corresponds to roughly 15 times the average annual
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Figure 13: Consumption of an advanced trader in aggregate shock z2 and idiosyncratic shock η1
for two different wealth levels along 300 realizations on the simulated path of the economy for the
benchmark model. The top panel shows the consumption for a household without any financial wealth,
âz2t = 0. The bottom panel shows the consumption for a rich household, who owns assets of value
âz2t = 14.289. The left panel shows the consumption level scattered against capital, and the right
panel shows the consumption level scattered against the wealth share held by advanced traders.

labor earnings. First, we can observe that neither capital alone, nor the wealth share of

the advanced traders alone would allow us to predict consumption accurately. Second,

figure 13 illustrates that both, capital and the wealth share held by advanced traders,

together with our simple functional form, allow us to obtain an excellent fit. Lastly,

we also see that the relative importance of the two summary variables varies with

the wealth of the household. For the poor household, capital is more important and

would almost be sufficient to approximate their consumption. This is intuitive since the

poor household depends on their wage and the income stream from start-up creation,

which is decreasing in aggregate capital, and less on prices. For the rich household

however, the wealth share held by advanced traders is a better prediction of their

consumption than aggregate capital. This is intuitive since for the richest households,

72



given their wealth, lower asset prices and higher expected asset returns are relatively

more important than the income from labor and start-up creation.

A.2 Calibration

For our calibration exercise, we need a mapping from the two free parameters, the

time-preference parameter and the adjustment costs, to the moment of interest (see

also Scheidegger and Bilionis, 2019; Catherine et al., 2022, for the use of surrogate

models in economics). While our solution method is efficient and would hence allow

us to solve the model on a dense grid for those two parameters, this is not necessary.

Instead, use Gaussian Processes with a squared exponential kernel to approximate the

quantities of interest in surrogate model.27 A further advantage of using a surrogate

model is that it smoothes out remaining fluctuations in mean quantities which arise

from the fact that the mean quantities are obtained from Monte Carlo simulations.

We initially solve the model on a coarse grid of parameter values for patience and

adjustment costs.28 Then we use the fitted surrogate model to guide us in choosing

the parameter values for which we next solve the model. As more models are solved,

update the surrogate model with the new information.

For example, to generate table 2, we solved the model for different parameter values

all generating a market price of risk of about 50%. To generate figure 4, we solved the

model for various exit rates, on top of various combinations of patience and adjustment

costs. For a given firm exit rate, we first use the surrogate model for the mean interest

rate to obtain the patience and adjustment costs parameters required to obtain an

average interest rate of 0.8%. We then use the surrogate model for the expected log

price earnings ratio to obtain an estimate for its value. To produce figure 6, we use a

27See Rasmussen and Williams (2004) for a general introduction to Gaussian Processes and Schei-
degger and Bilionis (2019) for applications in economics.

28We start out with (β, ξadj) ∈ {0.93, 0.96, 0.98} ⊗ {3, 5.5, 7}.
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Gaussian process to estimate the mapping for the interest rate and the market price

of risk to the log mean price of the infinitely lived console.

In the main text, figure 2 shows the market price of risk, the interest rate, as well as

the objective function, which we aim to minimize with our calibration. Figure 3 shows

how the standard deviation of aggregate consumption growth, the standard deviation

of the interest rate, as well as the price-earnings ratio, depend on the time-preference

parameter and the adjustment costs parameter. As discussed in section 3.2.2, these

untargeted moments are roughly in line with what we measure in the data.

B The calibration of the idiosyncratic income pro-

cess (online only)

Storesletten et al. (2004) estimate a process for log earnings of the form

yit = g(xhit, Yt) + uhit (74)

uit = αi + zhit + ϵit (75)

zhit = ρzh−1
i,t−1 + ηit (76)

αi ∼ iid N(0, σ2
α) (77)

ϵit ∼ iid N(0, σ2
ϵ ) (78)

ηit ∼ iid N(0, σ2
t ) (79)

σ2
t =


σ2
E in agg. expansions

σ2
C in agg. contractions

. (80)

Storesletten et al. (2004) estimate σϵ = 0.25, ρ = 0.95 and frequency weighted average

of σE and σC given by 0.17. We abstract from age and the CCV mechanism and focus
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on the non-permanent idiosyncratic component of log earnings, which we denote with

xit. We simulate a process for

xit = ϵit + zit (81)

zit = ρzit−1 + ηit (82)

ϵit ∼ iid N(0, σ2
ϵ ) (83)

ηit ∼ iid N(0, σ2
η), (84)

where we take ρ = 0.95, σϵ = 0.25, and ση = 0.17 from Storesletten et al. (2004). We

then fit an AR(1) process of the form

xit = x̄+ ρxxi,t−1 + σxϵit (85)

ϵt ∼ iid N(0, 1), (86)

and obtain ρx = 0.785, σx = 0.372, and x̄ = −0.00. We discretize the AR(1) process

into a two-state Markov chain using Rouwenhorst (1995) algorithm. Next, we expo-

nentiate the resulting state values and normalize them such that the average earnings

are equal to 1. We obtain

X =

0.463

1.537

 (87)

πX =

0.892 0.108

0.108 0.892

 (88)

The resulting cross-sectional standard deviation of log earnings is 0.60 and matches

the standard deviation of the process simulated in equations (74) - (80) and is in the

ballpark of values typically used in the heterogeneous agents literature (see, e.g. Auclert
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et al., 2021).

C Impact of Firm Death in Deterministic Model

(online only)

To get a sense of how firm survival rates Γ and initial firm size s interact, consider

the following deterministic example. Assume that the growth rate is given by At+1 =

(1+ g)At, which will imply that aggregate capital and output will grow at this rate in

order to keep the marginal product of capital constant from (15). Hence, (14) implies

that the growth rate of capital at the firm level is given by

gk =
1 + g

Γ + (1− Γ)s
.

This in turn implies that the value of a unit-sized firm is given by

ṽt = dt +
gkΓ

1 + r
ṽt+1 = dt +Dṽt+1, where D :=

gkΓ

1 + r
.

So, if the growth rate is 2% and the interest rate is 0.5%, we can construct the effective

discount rate D on the future value of a unit sized firm, as shown in table 9. From

these calculations, one can see that having a finite value for the unit-sized firm requires

a fairly large initial firm size if the survival rate is 0.975 or higher; on the order of 0.75.

With slightly lower survival rate, an effective discount D < 1 can be obtained, even

when the initial firm size is 0.45.

So far, we have assumed that all of the capital in a dying firm is lost. If we instead

assume that some fraction of it is converted into the final good (and therefore can

be used either for investment in another firm or consumption), we get the following
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Γ s gk D

0.975 1.00 1.020 0.990
0.975 0.75 1.026 0.996
0.975 0.50 1.033 1.002

0.965 1.00 1.020 0.979
0.965 0.75 1.029 0.988
0.965 0.50 1.038 0.997
0.965 0.45 1.040 0.999

Table 9: Effect of exit rate and relative startup size on the effective discount factor for firms in a
deterministic model. The first columns shows the survival rate of firms, the second column shows the
relative size of new firms, the third column shows the implied growth rate of capital at the firm level,
and the last column shows the resulting effective firm discount factor.

expression for the value of a unit-sized firm, which shows that the recovery rate relative

to the unit-sized-firm-value cannot be too large if we want to maintain that D < 1.

ṽt = dt +
gk

1 + r
[Γṽt+1 + (1− Γ)R] = dt +

gkṽt+1

1 + r

[
Γ + (1− Γ)R̃t+1

]
D := gk

Γ + (1− Γ)R̃t+1

1 + r
, where R̃t+1 = R/ṽt+1

D Pricing long-term bonds

To explain the main insight from Alvarez and Jermann (2005), we follow their paper

and consider the following simple example. If we denote the price of a bond which 1

unit in k periods by pbk(z
t), then it is given by the natural extension of our one period

price formula (33)

pbk(z
t) =

∑
zt+k≻zt

p(zt+k|zt). (89)
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The associated yield is simply rk(z
t) = k

√
1/pbk(z

t) − 1. In the representative agent

economy with CRRA preferences, the k-period ahead Arrow price is

p(zt+k|zt) = βk

(
C(zt+k)

C(zt)

)−σ

Pr{zt+k|zt}

As in AJ’s example, we focus on the holding period returns when the log of con-

sumption follows a transitory and a random walk process. The one-period holding

return on the bond is determined by the change in price, pbk−1(z
t+1)/pbk(z

t). If con-

sumption follows an AR1 around a deterministic trend, and k is sufficiently large that

the information about the future dies out, and this return is approximately,

AR1:
pbk−1(z

t+1)

pbk(z
t)

≈ β
(
C(zt)/C(zt+1)

)−σ
,

which is perfectly negatively correlated with the one-step ahead stochastic discount

factor.

If instead consumption growth follows an i.i.d. process, then the expectation of

C(zt+k) = E{(1 + g)k}C(zt), and the condition expectation at time t + 1 is E{(1 +

g)k−1}C(zt+1). In this case, the one-period holding return is given by

Log RW:
pbk−1(z

t+1)

pbk(z
t)

=
βk−1E

(
C(zt+k)
C(zt+1)

)−σ

βkE
(

C(zt+k)
C(zt)

)−σ =
E
(

C(zt+k)
C(zt+1)

)−σ

βE
(

C(zt+k)
C(zt+1)

C(zt+1)
C(zt)

)−σ =
1

βE
(

C(zt+1)
C(zt)

)−σ

which is just the inverse of the one-period risk-free rate. This is because the future

scales with the realized growth rate in period t+1, and hence the expected return from

t+ 1 to t+ k is unaffected.

This analysis directly implies that the yield curve on pure discount bonds, especially

at very long horizons, is very informative as to the size of the unit root in the repre-
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sentative agent’s consumption. Alvarez and Jermann (2005) focus on the implications

of nominal bond yields for the real term structure. Stretching our model to assume it

allowed for nominal prices, denoting the nominal price of the k-period ahead nominal

Arrow price as pn(zt+k|zt), and assuming the absence of arbitrage, implies that the

nominal price is related to the real price through the nominal price level P (zt+k) as

pn(zt+k|zt) = P (zt+k)

P (zt)
p(zt+k|zt).

From this it follows that the price of a nominal k-period ahead pure discount bond is

given by

pn,b(zt+k|zt) = E

[
P (zt+k)

P (zt)
p(zt+k|zt)

]
= E

[
P (zt+k)

P (zt)

]
E
[
p(zt+k|zt)

]
+ Cov

[
P (zt+k)

P (zt)
, p(zt+k|zt)

]

From this expression one can see the nominal bond price includes the real bond price,

expected inflation, and an inflation risk-premium that comes in the form of the co-

variance between the real Arrow bond price and inflation. In U.S. bond data, this

covariance appears to have not only changed magnitudes over time but also changed

sign (see Chen et al. (2016)), substantially complicating this relationship.
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