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Abstract

We ask how the advertising mechanisms of digital platforms impact product prices.

We present a model that integrates three fundamental features of digital advertising

markets: (i) advertisers can reach customers on and off-platform, (ii) additional data

enhances the value of matching advertisers and consumers, and (iii) bidding follows

auction-like mechanisms. We compare data-augmented auctions, which leverage the

platform’s data advantage to improve match quality, with managed campaign mecha-

nisms, where advertisers’ budgets are transformed into personalized matches and prices

through auto-bidding algorithms.

In data-augmented second-price auctions, advertisers increase off-platform product

prices to boost their competitiveness on-platform. This leads to socially efficient allo-

cations on-platform, but inefficient allocations off-platform due to high product prices.

The platform-optimal mechanism is a sophisticated managed campaign that conditions

on-platform prices for sponsored products on off-platform prices set by all advertisers.

Relative to auctions, the optimal managed campaign raises off-platform product prices

and further reduces consumer surplus.
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1 Introduction

1.1 Motivation and Results

Digital advertising facilitates the matching of consumers and advertisers online. Large plat-

forms utilize their extensive consumer data to connect online shoppers with their preferred

products and brands. In turn, advertisers join these platforms in order to target a wider

range of potential consumers beyond their existing customer base.

Large digital platforms also enjoy significant market power, which has raised regulatory

concerns. In a recent report, the UK Competition & Markets Authority argues:

“Where an advertising platform has market power [...] advertiser bids in its

auctions are higher, resulting in higher prices. In addition, the platforms may

be able to use levers including the use of reserve prices or mechanisms such as

automated bidding to extract more rent from advertisers. [...]

Higher advertising prices matter because they represent increased costs to the

firms producing goods and services which are purchased by consumers. We would

expect these costs to be passed through to consumers in terms of higher prices

for goods and services, even if the downstream market is highly competitive.”

(See Competition & Markets Authority (2020) 6.19, 6.20, p 314.)

Indeed, digital platforms typically organize the competition for attention among adver-

tisers through an auction-based allocation mechanism. As the market for digital advertising

has grown and become more complex, digital platforms and other advertising intermediaries

often implement bidding on behalf of advertisers. These intermediaries run managed cam-

paigns for advertisers, choosing how to bid across numerous opportunities to create matches.

These managed campaigns are implemented through auto-bidding algorithms that bid on

behalf of the advertisers with certain objectives and relevant constraints explicitly stated.1

In this paper, we explore how the mechanisms by which large digital platforms sell access

to consumers affect product prices both on and off the platform. We take into account three

fundamental aspects of digital advertising. First, advertisers can reach their customers on

and off the platforms. Second, platforms possess valuable data that can enhance matching

efficiency. Third, on-platform matching between viewers and advertisers is governed by

1A recent literature has developed around autobidding algorithms when the bidders formulate their
objective outside of the class of quasilinear utility models in mechanism design. For example, the bidder
may seek to maximize return on investments and have budget or spending constraints. Aggarwal et al. (2019),
Balseiro et al. (2021), and Deng et al. (2021) offer excellent introductions this rapidly growing research area.
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bidding mechanisms. Our model considers a monopolistic digital platform that sells access

to consumers. Advertisers determine their pricing strategy on and off the platform and their

advertising strategies on the platform.

With access to the platform’s data, advertisers can offer prices that reflect consumers’

willingness to pay. This type of third-degree price discrimination broadens the market and

enhances the efficiency of matching on the platform. Thus, the advertiser is using the

additional information to reach more shoppers and improve the matches formed on the

platform. Off the platform, advertisers lack additional data and offer a uniform price. At

this price, those customers with values above the product price will receive an information

rent, while the others will be priced out of the market.

On the platform, consumers act as shoppers and choose the product that offers the highest

net value. As these consumers compare the advertised offers to all firms’ off-platform prices,

advertisers face a “showrooming” constraint: they must ensure their on-platform offers are

at least as attractive as their off-platform offers. Conversely, consumers off the platform are

loyal and buy from a single brand. Consequently, advertisers face a trade-off between setting

optimal prices for their loyal customers off-platform and charging higher personalized prices

to on-platform shoppers.2

Our focus is on how data-intensive mechanisms for selling advertising space affect welfare

both on and off the platform. Our results suggest that any analysis of pass-through of online

advertising costs must account for cross-channel distortions. Indeed, we show that advertisers

raise prices off the platform to gain a competitive edge on the platform. In particular, under

the platform-optimal mechanism, the higher costs of online advertising are passed on to

consumers by means of higher product prices off rather than on the platform.

We begin our analysis with a second-price auction for a single advertising slot where

the platform augments the bidders’ information and solicits bids based on estimated match

values between consumers and advertisers. We refer to this as data-augmented bidding. Each

advertiser can offer a bid for the slot and a price at which to offer the product associated

with the advertising slot. Additionally, each advertiser must decide on the price at which to

offer their product to loyal customers off the platform.

We derive the optimal bidding and pricing strategy of the advertisers (Theorem 1). On

2In pure advertising platforms, where the matching fee is typically incurred before the transaction (e.g.,
through pay-per-impression or pay-per-click fees), the advertiser directly faces the showrooming constraint.
The advertiser wants to pay for the listing only if it leads to a sale, as the offline transaction could have
occurred without the advertising. In other platforms where the fee is based on transactions, such as referral
fees on shopping services like Amazon, the platform often imposes the showrooming constraint through a
most favored nation clause. This clause requires the advertiser to offer the most favorable price online.
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the platform, the second-price auction implements an efficient allocation, and the additional

data allows the advertisers to sell successfully to consumers with lower values without the

need to price them out of the market (Proposition 1). Off the platform, the advertisers

raise their price to their loyal customers relative to the price they would have charged in a

stand-alone market (Proposition 2). By offering their product only at a higher price, each

advertiser can weaken the showrooming constraint and extract more surplus on the platform.

The off-platform prices increase with the number of on-platform shoppers (Proposition 3) and

decrease with the number of bidders (Proposition 4). Finally, as bidders are homogeneous

ex-ante, the platform can impose a participation fee that extracts all their surplus without

affecting the subsequent prices and bids (Proposition 5).

Next, we introduce the concept of a managed campaign. In this more centralized mecha-

nism, the platform proposes to each advertiser an advertising budget, an autobidding algo-

rithm, and a pricing function for the product on the platform. The autobidding algorithm

governs how the managed campaign for every advertiser bids for potential matches as a func-

tion of the value of the match and the off-platform prices. Each advertiser simultaneously

decides whether to enter into the managed campaign or not, and how to price its product

off the platform.3 We show that the platform optimizes its revenue by offering best-value

pricing; that is, the platform implements the efficient allocation but ensures that the efficient

firm always makes the offer with the best value to the consumer (Theorem 2). However, in

doing so, the platform weakens competition, and so the firms raise their posted prices off the

platform in order to extract more surplus from online consumers. We show that best-value

pricing is revenue-optimal for the platform (Theorem 3), and in fact, joint producer surplus

attains the vertical integration benchmark where one firm controls all the advertisers and

the platform (Corollary 1). In consequence, the posted prices off-platform are higher than

under the data-augmented auction (Theorem 4).

Finally, we deploy our model to assess how policy interventions affect the platform,

firms, and consumers. We examine two interventions. First, we consider restricting the

platform’s pricing policy to be independent of the posted prices of competing firms. Here,

we restrict the platform to price based on the consumer’s value for the advertiser’s own

product only, and not on the consumer’s value for other advertisers’ products. The optimal

independent managed campaign mechanism implements an efficient allocation of advertising

3The autobidding algorithm that allocates budgets can be interpreted as maximizing profit subject to a
return on investment constraint. Alternatively, we can decompose the advertising budget into a payment
per winning bid for each consumer value. In this case, one can show that the bidding algorithm boosts the
bids of the advertisers, but never beyond the value of the match. Thus, the autobidding mechanism satisfies
an ex-post participation constraint for every (winning and losing) bid.
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slots (Proposition 6), but relative to either a second-price auction or even a revenue optimal

auction design, it differs along a number of dimensions that have a substantial impact on

the outcomes (Theorem 5). First, by charging the bidders up front for expected matches,

the digital platform can capture a larger share of the surplus yet do so without hurting

the efficiency of the allocation. Under a sufficient condition on the value distribution, the

off-platform posted prices are equal to the stand-alone monopoly prices (Proposition 7).

An independent managed campaign can lead to a more efficient outcome both on- and off-

platform. We show that under a relatively mild condition, posted prices are lowest with an

independent managed campaign, followed by data-augmented bidding (Proposition 8).

The second policy we examine is a privacy restriction, which prevents the platform from

steering consumers and setting prices on the basis of consumers’ detailed data. Instead, we

allow the platform to condition its steer and pricing decision on the basis of coarse information

only, i.e., on the identity of each consumer’s favorite firm. This restriction is equivalent to

removing the ability to price discriminate using the platform’s data. In this scenario, the

firms sell to both on- and off-platform consumers via the same posted price, which we

characterize in Proposition 10. The privacy restriction reduces off-platform prices compared

to the benchmark of a sophisticated managed campaign, but not necessarily relative to data-

augmented bidding. However, the welfare implications of privacy restrictions depend on the

size of the platform. In summary, privacy restrictions lead to lower off-platform prices but

may affect efficiency on the platform, particularly in the case of large platforms.

1.2 Related Literature

In our digital advertising model, each advertiser has a parallel sales channel available off the

platform and faces two segments of consumers, shoppers on the platform and loyal customers

off the platform, as in Varian (1980). The design of the auction is therefore subject to

competition from a separate and distinct market. Earlier papers referred to mechanism

design subject to alternative markets as “partial mechanism design,” or “mechanism design

with a competitive fringe,” e.g., Philippon and Skreta (2012), Tirole (2012), Calzolari and

Denicolò (2015), and Fuchs and Skrzypacz (2015). In these papers, the platform is limited in

its ability to monopolize the market since the firms have access to an outside option. We focus

on digital advertising through auctions rather than competition for the consumer between

on and off-platform firms. Varian (2022) analyzes the relationship between advertising costs

and product prices through the lens of a single (representative) online merchant. The size of

the advertising audience increases sales proportionally at every price level, with a convex cost
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of increasing the audience size. In this simple and separable model, an exogenous increase

in advertising costs does not necessarily lead to an increase in product prices.

Our paper also contributes to the literature on online ad auctions. Recent works have

studied learning in repeated auctions (Balseiro and Gur, 2019; Kanoria and Nazerzadeh,

2020; Nedelec et al., 2022), discriminatory effects (Celis et al., 2019; Ali et al., 2019; Nasr

and Tschantz, 2020), and collusion (Decarolis et al., 2020, 2022). Our focus, instead, lies in

comparing the effects of an auction to other allocation mechanisms in the presence of off-

platform markets in a static setting with a fixed information structure. As such, our approach

is closely related to, yet distinct from, Bar-Isaac and Shelegia (2022), who compare auctions

and auto-bidding mechanisms in a single marketplace under exogenous limits to the ability

to steer and to price discriminate.

A key innovation in our model is that the platform actively manages the firms’ advertising

campaigns. Managed campaigns have become the predominant mode of selling advertise-

ments in real-world digital markets, where advertisers set a fixed budget, specify high-level

objectives for their campaigns, and leave the task of bidding to ”autobidders” offered by

the platform. Several recent papers have focused on auction design in the presence of au-

tobidders (Liaw et al. (2022); Mehta (2022); Deng et al. (2022)) and return-on-investment

constraints (Golrezaei et al. (2021)). Our setting adds an additional dimension related to

display prices: advertisers submit both bids for the sponsored link and tailored prices to

offer consumers. While Li and Lei (2023) also investigate mechanisms that allow for these

display prices, we further explore the impact of activity off the platform on allocations as

well as pricing.

Our paper also relates to the information design literature. In particular, Bergemann

et al. (2015), Haghpanah and Siegel (2022), and Elliott et al. (2022) study the effect of

market segmentations and the achievable combinations of consumer and producer surplus,

i.e., how to use data to make markets more or less competitive.

Finally, the showrooming constraint is related to a growing literature on digital plat-

forms with competing advertisers or multiple sales channels. Recent contributions on these

topics include de Cornière and de Nijs (2016), Bar-Isaac and Shelegia (2020), Miklós-Thal

and Shaffer (2021), and Wang and Wright (2020). However, our model differs in that ad-

vertisers in our setting are concerned about showrooming because selling on the platform

can be more profitable, thanks to the added value of making data-augmented offers. In

parallel work, Bergemann and Bonatti (2022) study on- and off-platform competition with

multi-product firms and associated nonlinear pricing. Their focus is on the implications of
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managed campaigns for the equilibrium product quality, relative to our paper’s exploration

of showrooming and its impact on pricing strategies in the presence of off-platform markets.

2 Model

Payoffs and Information There are J firms indexed 1, 2, ..., J , each selling unique indi-

visible products, and a single digital platform. Each firm has zero production costs. There

is a unit mass of consumers, each demanding a single product. Willingness to pay vj for

each firm j’s product is drawn independently across consumers and firms according to a

distribution function F with support on V = [0, 1]. We assume F admits a log-concave

density f on its support.4 The vector of the willingness-to-pay is the consumer’s value

v = (v1, ..., vJ) ∈ V J = [0, 1]J .

The utility for consumer v of purchasing product j at price pj is

vj − pj.

Initially, values are observed by the consumers and by the platform, but not by the firms.

Because the consumers and the platform share the same information, we are implicitly

assuming that the platform has already learned everything about consumer preferences.

The symmetry in the information is helpful for the welfare comparison but is clearly a

stark assumption. The equilibrium implications are robust to a more general formulation in

which the platform is endowed with partial and potentially endogenous information.

Platform A measure λ ∈ [0, 1] of consumers uses the platform. The platform presents on-

platform consumers with a single “sponsored” result first, followed by organic search results,

i.e., a list of non-sponsored products. The platform sells the sponsored position using either

a second-price auction or a managed campaign. Under either mechanism, the firm in the

sponsored slot can condition its price on the consumer’s value.

Let v denote the full J-dimensional consumer value. An on-platform consumer with

value v will see a sponsored offer, which offers some firm j’s product at some price. In the

remaining sections of the paper, we discuss mechanisms for the platform to determine which

4This is a technical assumption that ensures that first-order conditions for maximization problems we
consider later are well-defined.
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firm’s offer gets shown to on-platform consumers, and at what price. Note the platform does

not ex-ante commit to steer consumers efficiently; that is, value v does not have to see a

sponsored offer from j such that j = argmaxi vi.

Firms and Showrooming In addition to the on-platform prices pj(v) displayed in the

sponsored slot, each firm j posts a price p̄j for its product off the platform. We use the

upper-bar notation here since the showrooming constraint implies that the posted price p̄j is

an upper bound on the amount that any consumer will pay for j’s good. Indeed, each firm j

is subject to a showrooming constraint: for all v, the prices it advertises on the platform must

satisfy pj(v) ≤ p̄j. One interpretation of this constraint is that on-platform consumers can

search for free at any off-platform website or store. Alternatively, the platform may impose

most-favored-nation clauses requiring firms to offer their lowest prices on the platform.

On-platform Consumers The on-platform consumers observe their willingness to pay

v, the “sponsored” offer pj(v) for the firm j that wins the sponsored slot auction, and the

posted prices p̄k for all firms k. Equivalently, we can interpret the model as allowing for free

online search; that is, only a “sponsored” firm can target a price offer to an online consumer,

but the online consumer can search and find the posted prices of all firms, including those

that did not make the sponsored offer.

Off-platform Consumers We assume that the remaining 1 − λ mass of consumers are

loyal, and visit only a single firm’s non-platform store (e.g., physical store, store website).

Thus the off-platform consumer population is divided into J segments of size (1−λ)/J , where

the jth segment shops directly from firm j. Firm j is the only firm in the consideration set

of the jth segment of off-platform consumers. The off-platform consumers view the off-

platform price of the single firm in their consideration set, and choose to buy if and only if

the off-platform price is lower than their willingness to pay.

8



Firm

Custom
Prices

Platform

Posted
Prices

Online
Consumers

Offline
Consumers

own site/
physical store

search (free)showrooming

Figure 1: Depiction of the model.

3 Data-Augmented Bidding

In this section, we characterize the symmetric Bayesian Nash equilibrium of the bidding and

pricing game among the advertisers. Each firm j submits a bid function bj : V
J → R+ and

a sponsored price function pj : V
J → R+, in addition to (simultaneously) posting a price p̄j.

We refer to this as data-augmented bidding, because the platform’s proprietary data enables

the advertisers to condition bids and sponsored prices on the consumer’s full value vector v.

Let us first discuss some of the economic intuition for how the presence of the platform

impacts the prices posted by the firms before presenting the formal analysis. Recall that

the off-platform consumers are loyal, and so in the absence of a platform, all firms post

the monopoly price for their market segment. Adding the platform and the on-platform

consumers has two contrasting effects on the prices posted by the firms. The first effect

is upward pressure due to the increased ability to price discriminate; i.e. since the posted

price sets an upper bound on the prices that a firm can offer to on-platform consumers, the

potential to price discriminate more effectively on-platform pushes firms to raise their posted

prices. However, there is an opposite effect, where competition for the on-platform consumers

introduces an incentive to lower the posted prices—the ability to undercut its competitors

by advertising a lower off-platform price, in order to win more on-platform consumers.

3.1 Bidding Equilibrium

The following result helps characterize the equilibrium strategies of the firms for this setting.

Effectively, the proposition shows that regardless of the profile of posted prices set by the
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firms, the bidding equilibrium on the platform results in a symmetric assignment, where

each on-platform consumer sees a sponsored offer from the firm they like best. This implies

that the sponsored slot allocation resulting from data-augmented bidding is efficient.

Proposition 1 (Efficient Bidding Outcome)

Fix any vector of posted prices p off-platform. Consider an on-platform consumer with value

v. If vj > vk, firm j bids at least as much as firm k for consumer v in any bidding equilibrium.

The proof mostly proceeds by casework, but we provide an intuition here. Suppose a

consumer arrives, and the consumer’s favorite firm is firm 1. Consider a competitor, say firm

2. If firm 1 has set a higher posted price than firm 2, then firm 1 has a larger ability to price

discriminate than firm 2, and hence the consumer is intuitively worth more to firm 1, thus

allowing it to bid more. However, if firm 1 has a lower posted price than firm 2, then firm 2

must concede rent to the consumer because even if 2 won the sponsored slot, the consumer

could still search and find the posted price for firm 1; hence, this disciplines firm 2’s bid, and

we show that this actually constrains 2’s bid to be lower than 1’s.

Proposition 1 is useful because it allows us to separate the bidding stage from the posted

prices; that is, the matches (though not the bids) in the bidding game are invariant with

respect to the posted prices. As a consequence of this Proposition, the set of online consumers

who purchase from firm j is exactly those for whom j = argmaxi vi; that is, the consumers

with the highest value for firm j’s product.

Since we are looking for symmetric equilibria, we suppose all the other firms post price

p′ and consider the best response problem of a single firm:

max
p

{
1− λ

J
p(1− F (p)) + λΩ(p; p′)

}
, (1)

where

Ω(p; p′) =

∫ ∫ v

(min(v−max(v′− p′, 0), p)− (min(v′−max(v− p, 0), p′))+)dF
J−1(v′)dF (v).

This term denotes the expected profit from on-platform consumers that a firm would expect

to make by setting a posted price at p when all other firms set a posted price p′. The term

integrates over v′ = maxj ̸=i vj, which is the highest value the consumer has for any other firm

besides i. Since the firm must concede utility max(v′−p′, 0) to the threat of the on-platform

consumer going to the competitor, the firm setting price p will bid min(v−max(v′−p′, 0), p).

The highest competitor bids (min(v′−max(v−p, 0), p′))+, where (·)+ denotes the nonnegative
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part. It turns out that with some casework, we can simplify this expression for the on-

platform sales further:

Lemma 1 (On-platform Bidding Profit)

The expected on-platform profit satisfy

Ω(p; p′) =

∫ ∫ v

min(v − v′, p) dF J−1(v′) dF (v).

Note that v′ is only integrated on values less than v. The proof is algebraic and left to

the Appendix. The result, however, is quite intuitive. In a standard second-price auction,

the expected surplus of a bidder is the expected gap between the bidder value v and the

value of the second highest bid v′; this form shows that with the showrooming constraints

and strategic bidding behavior in the presence of the off-platform interaction, the firm profit

is v − v′, capped by the posted price.

To solve for the symmetric equilibria, we compute the derivative of Ω with respect to p.

Long but straightforward algebra yields the following expression:

∂Ω(p; p′)

∂p
=

∫
p

F J−1(v − p) dF (v). (2)

Finally, we can write out the first-order condition for profit maximization using (2):

1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

F J−1(v − p)dF (v)

)
= 0.

Rearranging this condition, we summarize the equilibrium characterization as follows.

Theorem 1 (Bidding Equilibrium)

In the unique symmetric equilibrium, the posted prices of the firms satisfy

pB =
1− F (pB) +

λJ
1−λ

(∫
pB

F J−1(v − pB)dF (v)
)

f(pB)
. (3)

Firms bid their true value max(vj, pB) for each consumer on-platform. On-platform con-

sumers buy the sponsored offer, and off-platform consumers buy from the firm they are loyal

to if and only if the posted price pB is below their value vj.

We denote the symmetric equilibrium price for the product off the platform in the pres-

ence of the bidding mechanism on the platform by pB, where we use subscript B as this is

the bidding equilibrium.
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3.2 Welfare and Comparative Statics

We discuss the efficiency implications of the outcome of data-augmented bidding. Proposition

1 implies that the allocation on-platform is socially efficient; since the sponsored offer is

always made by the consumer’s most preferred firm, each on-platform consumer purchases

the product they like best. Off-platform consumers face two sources of inefficiency; first,

they might be unaware of the existence of a firm that they would prefer, and second, since

the firms only sell to off-platform consumers via posted prices, consumers with value for their

firm’s product below the posted price will not buy.

To characterize the efficiency implications for the off-platform consumers, we first define

the posted price a firm would set if it only had its loyal off-platform population:

pM =
1− F (pM)

f(pM)
. (4)

We term this pM , as this is analogous to the monopoly price.

Examining the price equations, one can see that since the expression on the right-hand

side of (3) is a larger function of the price than in (4), the price pB is larger than pM . Note

that higher posted prices entail greater welfare loss off-platform than if the platform did not

exist. Since higher prices mean fewer sales, lower consumer surplus, and less efficiency, the

presence of the on-platform consumers induces firms to price out some off-platform consumers

in order to gain sales on the platform. Recall the two effects discussed at the beginning of

the section—the incentive to raise posted prices to price discriminate and the incentive to

compete for on-platform consumers through posted prices. We show that the former effect

dominates firm competition on-platform.

Proposition 2 (Posted Prices)

Data-augmented bidding results in higher posted prices than would occur without the platform,

pB ≥ pM . The presence of the platform induces lower consumer surplus, higher posted prices,

and lower total welfare off the platform.

We can generalize the insight to show comparative statics with respect to the share λ of

consumers that are on the platform, fixing the total measure of consumers to 1. We will first

define several welfare objects of interest, as functions of the posted price p. The expected

consumer surplus of an off-platform consumer is:

CSoff(p) =

∫ 1

p

(v − p) dF (v).
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The expected consumer surplus of an on-platform consumer is:

CSon(p) =

∫ 1

p

(v − p)dF J(v).

Total consumer surplus is then:

CS(p) = (1− λ)CSoff(p) + λCSon(p).

Because F J describes the distribution of the highest-order statistic, the expected welfare of

an on-platform consumer is always larger than an off-platform consumer’s.

The off-platform profit of a firm, per unit measure of loyal consumers, is given by

Πoff(p) = p(1− F (p)).

The on-platform firm profit per sponsored offer is given by

Πon(p) = JΩ(p; p) = J

∫ [∫ v

min(v − v′, p) dF J−1(v′)

]
dF (v),

by Lemma 1, where the J term comes from the fact that the firm only makes a sponsored

offer to a 1/J fraction of the on-platform consumers. Note that total firm profit is

Π(p) = (1− λ)Πoff(p) + λΠon(p).

Moving on to platform revenue, we note that the revenue generated by a sale to a consumer

on the platform by firm j is min(vj, p). The total platform revenue is given by the expected

value of this minus the value conceded to firms, or

R(p) = λ

(∫
min(v, p)dF J(v)− J

∫ [∫ v

min(v − v′, p) dF J−1(v′)

]
dF (v)

)

= λJ

(∫ [
min(v, p)F J−1(v)−

∫ v

min(v − v′, p) dF J−1(v′)

]
dF (v)

)
= λJ

(∫ p ∫ v

v′dF J−1(v′)dF (v) +

∫
p

∫ v

v−p

v′dF J−1(v′)dF (v)

)
.
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Lastly, the total welfare per consumer off-platform is given by

Woff(p) =

∫ 1

p

v dF (v),

since only consumers with vj ≥ p buy. On-platform, total welfare per consumer is

Won =

∫
v dF J(v),

since there is allocative efficiency on-platform regardless of the posted prices. The total

welfare is

W (p) = (1− λ)Woff(p) + λWon.

We then have the following comparative statics in λ, the market share of the platform.

Proposition 3 (Platform Size λ)

The following comparative statics hold:

1. The posted price with data-augmented bidding pB is increasing in λ.

2. The expected surplus of on-platform and off-platform consumers is decreasing in λ.

3. The expected off-platform firm profit per consumer Πoff is decreasing in λ, and the

expected on-platform firm profit per consumer Πon is increasing in λ.

4. Platform revenue is increasing in λ.

5. Off-platform welfare per consumer Woff is decreasing in λ.

We also have the following comparative statics with respect to the number of firms J .

Proposition 4 (Number of Bidders J)

If J > −1/(lnF (1− pM)), then the following hold:

1. The equilibrium posted price with data-augmented bidding pB is decreasing in J .

2. Expected consumer surplus both off- and on- platform are increasing in J , and so total

consumer surplus increases in J .

3. Welfare per consumer off- and on- platform are both increasing in J , and so total

welfare also increases in J .

The proofs are left to the appendix, but we will illustrate many of these comparative

statics with a simple example.
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Example Consider the setting where the distribution F is uniform on [0, 1]. Note that

in this setting, since the distribution is uniform, the monopoly price is pM = 0.5. We plot

the equilibrium posted prices, total firm profit, and consumer surplus resulting from data-

augmented bidding for J = 3, 5, 7 in Figure 2. As shown in Proposition 3, for any J , the

prices are increasing in λ.

Figure 2: Posted prices as a function of λ. Results are plotted for J = 3, 5, 7.

Figure 3a depicts the consumer surplus as a function of λ. We note that total consumer

surplus is increasing in λ. Initially, the welfare gains from moving consumers from being

loyal to shopping over all firms dominate (moving consumers from welfare level CSoff to

CSon) but as the platform becomes too large, the increasing ability to price discriminate

on the platform dominates and consumers lose welfare. Hence, total consumer surplus is

nonmonotone in λ.

Figure 3b depicts firm profit as a function of λ. Here, firm profits for J = 3 are nonmono-

tone. As mentioned in Proposition 3, the profit per consumer off-platform is decreasing in λ

and the profit per consumer on-platform is increasing in λ, and so the overall effect on total

profit depends on which force dominates.

Figure 3c depicts the platform revenues as a function of λ. As expected, platform revenues

are increasing in λ. However, the interesting feature of this example in platform revenue is

that for very large platforms, λ close to 1, the platform revenue can be nonmonotone in J ,

the number of firms. The two contrasting forces here are that with more firms, the expected

value of second-highest bids will be higher, which would suggest that platform revenue should

be increasing in J . However, with more firms, as shown in Figure 2, posted prices can be

pushed down, thus reducing the price-discriminating ability of the firms on-platform and
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(a) Total Consumer Surplus (b) Total Firm profit

(c) Platform Revenue (d) Total Welfare

Figure 3: Consumer surplus, firm profit, platform revenue, and welfare with data-augmented
bidding as a function of the share of consumers on the platform, λ. Results are plotted for J = 3, 5, 7.

pushing down the platform revenues.

Figure 3d shows that total welfare is increasing in both λ and J , as would be expected.

3.3 Participation Fees

In the bidding model discussed so far, the platform received revenues only from the bids of

the advertisers. We now ask whether tools from optimal auction design such as participation

fees or reserve prices may increase the revenue of the platform.5 In particular, as advertis-

ers have no prior information about the consumers, we investigate how a participation fee

for the second-price auction would affect the division of surplus between the platform and

advertisers. Thus, we consider the following game:

1. The platform sets a participation fee T .

5The importance of such tools in online ad auctions has been widely documented, e.g., by Ostrovsky and
Schwarz (2023) for the case of reserve prices.
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2. The firms choose whether to pay the participation fee and set their posted prices.

3. If all firms accept, the platform runs a second-price auction for the on-platform con-

sumers. If any firm rejects, the platform can assign the sponsored offers however it

would like.

The platform maximizes revenue, and we will assume a firm that is indifferent about ac-

cepting chooses to accept. As such, the platform extracts all the producer surplus, up to an

outside option the firm could obtain by refusing to participate.

Proposition 5 (Equilibrium with Participation Fees)

In equilibrium, all firms join and the off-platform posted prices are given by (3). Firms bid

their true value max(vj, pB). Firm profits are held to their outside option:

ΠO = max
p

{
1− λ

J
p(1− F (p)) + λ

∫
p

pF J−1(v − p) dF (v)

}
. (5)

The transfer charged by the platform holds firms to this outside option.

Intuitively, the pricing and bidding behavior follow as in Theorem 1 due to subgame

perfection. The transfer charged is as large as possible to make firms indifferent between

accepting and rejecting. The proof is in the Appendix.

To gain some intuition for the outside option profit expression, the first part of the

expression is the profit from selling to loyal consumers; the second integral expression denotes

the profit the firm makes due to the ability of on-platform consumers to search; upon rejecting

the platform’s service, the firm could still be found by consumers with a sufficiently high

value for its product, provided the consumer’s value v satisfies v − p > v′, where v′ is the

consumer’s value for the best competitor.

4 Managed Advertising Campaigns

In a managed advertising campaign, the platform determines which firm wins the sponsored

slot, and makes an offer to that consumer on behalf of that firm. The platform collects an

ex-ante fee for this service from each participating firm. Thus, the platform (rather than the

advertising firms) selects the bidding functions and the product prices. The key difference

is therefore that the firms relinquish agency over the on-platform allocation process to the

platform, though they still collect the revenue from on-platform sales. The firms giving up
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this agency is why we refer to this as a managed campaign. However, the firms still make

decisions on participation and on posted prices. Here, we consider sophisticated managed

campaigns where the platform conditions the on-platform sponsored pricing on all the posted

prices of firms. We will be explicit about the extensive form of the game, and we consider

subgame perfect equilibrium.

The platform offers automated pricing on-platform, firms pay a participation fee and

set posted prices. Let aj ∈ {0, 1} denote firm j’s acceptance decision. The game has the

following extensive form:

1. The platform proposes to all firms a mechanism (s, p, T ), where s : V J×{0, 1}J×RJ
+ →

J is a steering policy, p : V J × {0, 1}J ×RJ
+ → R+ is a pricing policy, and T ∈ RJ

+ is a

profile of lump-sum transfers.

2. The firms simultaneously decide whether to accept (aj = 1) or reject (aj = 0) the

platform’s offer and what off-platform price pj to post.

3. If a firm accepts the offer, that firm pays the transfer T , and its product will be offered

to a subset of on-platform consumers according to policies s and p.

Intuitively, a steering policy maps consumer value and a profile of acceptance to a choice

of firm to steer the consumer towards. The pricing policy maps the consumer value for

the steered firm’s product and the acceptance profile into a price. The dependence on the

acceptance profile allows the platform to react to the firms’ participation decisions. In

particular, we use 1⃗ to denote the vector (1, 1, · · · , 1) of all firms participating.

In this mechanism, the platform collects an ex-ante fee for its on-platform consumers

and its data that allows for price discrimination. Thus, it bundles both access and price-

discriminating ability and charges a fee for the bundle. Note that the bundling of these two

services implies that if firms set posted prices off the equilibrium path in the third stage,

the platform still makes price-discriminating offers and some consumers could potentially be

poached by other firms via the search ability of online consumers. That is, the steering policy

guarantees the firms the opportunity to price discriminate on the segment of on-platform

consumers, but the firm could still lose consumers to search. However, in the equilibrium

characterization, we show that this does not happen on-path.

The pricing policy is a function V J × {0, 1}J × RJ
+ → R+; in other words, the platform

can condition its pricing policy on the posted prices set by the firms and the full value vector

of the consumer.
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As a note to break ties, if the platform can propose two revenue-equivalent mechanisms

but one mechanism results in more on-platform consumers purchasing their sponsored of-

fers, the platform prefers the mechanism where more on-platform consumers purchase their

sponsored offers. We first argue that the platform finds it optimal to steer efficiently:

Proposition 6 (Efficient Platform Steering)

An optimal strategy for the platform is to steer the consumer efficiently among the partici-

pating firms:

s(v, a) = argmax
j

vj s.t. aj = 1.

4.1 Best-Value Pricing

We now focus on a specific instance of a sophisticated managed campaign and then show that

this specific pricing policy is revenue-optimal for the platform. Formally, define best-value

pricing as the pricing policy dictated by:

p(v, a, p̄) = min
k ̸=j

(vj, p̄j, vj − vk + p̄k) (6)

where j = s(v, a) is the firm the platform steers the consumer towards. Note that the

arguments in Proposition 6 still hold in this setting, and so the platform steers efficiently.

Intuitively, best-value pricing ensures that there will never be poaching even off the

equilibrium path, or equivalently that the sponsored offer always guarantees the best value

to the consumer. In this sense, the best-value pricing guarantee is stronger than a most-

favored-nation clause that ensures firms offer their goods at a lower price on-platform than

off-platform. In addition to doing so, the guarantee in (6) makes sure no competing firm

offers a lower price than the sponsored firm.

We then obtain the following equilibrium characterization, where we subscript the off-

platform price by V to denote that this results from (best-) value pricing.

Theorem 2 (Best-Value Managed Campaign Equilibrium)

The symmetric managed campaign equilibrium with best-value pricing has the platform offer

efficient steering and the posted prices are characterized by the following implicit equation:

pV =
1− F (pV ) +

λJ
1−λ

(∫
pV

F J−1(v) dF (v)
)

f(pV )
. (7)

The proof is algebraic and involves writing out the profit expressions of the firms and
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deriving the implicit price characterization in (7) from the first order condition, so it is left

to the Appendix.

As it turns out, best-value pricing is revenue-optimal for the platform. That is, best-value

pricing attains the maximum revenue a platform can achieve in the sophisticated managed

campaign setting.

Theorem 3 (Optimal Managed Campaign)

The best-value pricing managed campaign is platform revenue-maximizing among all sophis-

ticated managed campaigns.

Proof. To show this, consider the problem of a vertically integrated platform that jointly

maximizes the profit of firms and the platform. The vertically integrated platform can jointly

coordinate on-platform and off-platform pricing but still faces the showrooming constraint

due to consumer search. The vertically integrated firm’s problem is then to maximize

max
p

{
(1− λ)p(1− F (p)) + λ

∫
min(v, p) dF J(v)

}
.

The first-order condition of the planner problem is

(1− λ)(1− F (p)− pf(p)) + λ

∫
p

dF J(v) = 0.

Expanding dF J , and dividing through by J , we get

1− λ

J
(1− F (p)− pf(p)) + λ

∫
p

F J−1(v) dF (v) = 0.

But by definition, pV exactly satisfies this first order condition, and by the characterization

in Theorem 4, pV are exactly the off-platform prices in the sophisticated managed campaign.

Thus, this implies that the sophisticated managed campaign necessarily maximizes the joint

surplus of the platform and firms.

Now, note that the firms are guaranteed their outside option value (defined in (5)) since

in any managed campaign, the firms could refuse to participate. Additionally, note that in

the sophisticated managed campaign described, the firms make exactly their outside option,

since the transfer the platform charges to each firm makes them exactly indifferent between

joining the platform and not. Since the sophisticated campaign maximizes the joint surplus

of the platform and firm and concedes the smallest possible surplus to the firms, it follows

that the platform earns the most revenue in the sophisticated managed campaign over any
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managed campaign.

In fact, in the proof, we actually showed that the joint surplus obtained by the firms and

the platform is maximized for best-value pricing; that is,

Corollary 1 (Producer Surplus)

Producer surplus (sum of firm profit and platform revenue) is maximized for best-value pric-

ing and equals the profit of a vertically integrated platform that owns the firms.

4.2 Comparing Advertising Mechanisms

We now compare the equilibrium posted prices and the welfare implications under these two

distinct mechanisms, the data-augmented second price auction and the optimal sophisticated

managed campaign mechanism. We start with the comparison of the prices off the platform.

Recall the pricing equations (3) and (7).

Theorem 4 (Welfare and Price Comparison)

The posted prices in the optimal sophisticated managed campaign are higher than the posted

prices under data-augmented bidding

pV ≥ pB ≥ pM

Total consumer surplus and total welfare are lower in the managed campaign than under the

bidding equilibrium.

Proof. Consider the derivative of the best-response profit maximization problem with respect

to the posted price for each of the three models. In the bidding model is, we have

1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

F J−1(v − p)dF (v).

)
In the sophisticated campaign, we have

1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

F J−1(v) dF (v)

)
.

Note that the second expression is larger than the first, since F J−1(v) ≥ F J−1(v−p). Hence,

we must have pV ≥ pB. Note that this also implies pV ≥ pB ≥ pM by Proposition 2.

Since welfare and total consumer surplus are both decreasing in posted price, the welfare

comparative statics follow.
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Theorem 4 shows that the platform offering a best-value pricing policy eliminates the

threat of poaching and weakens competition between firms; this reduced competition thus

results in higher posted prices than bidding. Further, an implication of Theorem 3 is that

platform revenue is higher for the sophisticated managed campaign:

Corollary 2 (Platform Revenue Comparison)

Platform revenue in the optimal sophisticated managed campaign is higher than in the data-

augmented bidding equilibrium.

Intuitively, the sophisticated managed campaign gives the platform the ability to offer

pricing and steering that replicate the bidding equilibrium strategies, and by doing so the

platform could at least attain its revenue from the bidding equilibrium.

5 Policy Interventions

In this section, we investigate the impact of potential interventions that a policymaker might

consider imposing on the platform’s ability to use information on values and posted prices.

5.1 Competition Management

We first analyze a regulatory policy that targets the platform’s role in managing competition

between firms. Suppose that the platform’s pricing policy can only condition on the value

the consumer has for the steered firm and on the participation decisions, and not the posted

prices of other firms. In particular, this forces the platform to price independently of the

posted price decisions and the consumer’s value for alternatives, which curtails the ability

of the platform to soften competition.

Formally, recall that in the sophisticated managed campaign, the platform’s available

pricing policy space was p : V J ×{0, 1}J ×RJ
+ → R+. In this section, we restrict the pricing

policy space to p : V × {0, 1}J → R+; that is, the platform cannot make its pricing policy

contingent on the posted off-platform prices or the consumer’s value for other firms anymore.
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Theorem 5 (Independent Managed Campaign Equilibrium)

The equilibrium posted price in the independent managed campaign is

pI = max(pC , pM). (8)

where pC is defined by the solution to

pC =
1− F (pC) +

λJ
1−λ

(∫
pC

(
F J−1(v)− pC dF J−1(v)

)
dF (v)

)
f(pC)

. (9)

The proof of this result is in the Appendix. The subscript I is used here since pI denotes

the off-platform posted price of the firms for the independent managed campaign; it is

equal to the candidate pC identified by the first-order condition (16) if it is larger than the

monopoly price, but is the monopoly price otherwise. We present two examples that show

that the independent campaign price can indeed be equal to the monopoly price.

Example (pI > pM): Take a uniform distribution of values (F (x) = x), and suppose there

is an equal share of on-platform and off-platform consumers (λ = 1/2), and consider two

firms. From the pricing equation (9), we get

pC = 1− pC + 2

∫
pC

(v − pC) dv ≈ 0.59 > 0.5 = pM .

Example (pI = pM): Consider almost the exact same environment as the previous example

(uniform distribution of values, equal share of consumers on- and off-platform) but now, we

introduce a third firm. From the pricing equation (9), we get

pC = 1− pC + 3

∫
pC

(v2 − pC(2v)) dv ≈ 0.43 < 0.5 = pM .

By adding one firm to the previous example, the competitive effect becomes stronger,

and the posted price falls to the level of the monopoly price pM . This insight regarding

competition generalizes; with enough firms and a regularity condition on F , the independent

campaign does not distort off-platform posted prices.

Proposition 7 (Price Comparison)

Suppose ∃B > 0 such that F (v)/f(v) < B ∀v. Then for all sufficiently high J , pI = pM .

In Proposition 8, we discuss the posted price and welfare implications of independent

managed campaigns, relative to the sophisticated managed campaign (1.) and to data-
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augmented bidding (2.).

Proposition 8 (Price and Welfare Comparisons)

1. The off-platform prices satisfy pV > pI . Both consumer surplus and welfare are higher

in the independent managed campaign than in the sophisticated managed campaign.

2. Suppose that F J−1 is convex. Then pI ≤ pB, and total welfare and total consumer sur-

plus are higher in the independent managed campaign than in data-augmented bidding.

Further, if F J−1 is concave, all the inequalities are reversed.

In words, posted prices are higher in the bidding equilibrium than in the independent

managed campaign equilibrium. Since total welfare and total consumer surplus are both

decreasing, total welfare and consumer surplus are both higher under the managed campaign.

Proposition 8 shows that allowing the platform to run an independent managed campaign

can create a more competitive environment relative to data-augmented bidding; the threat

of poaching is larger, and the competition for on-platform consumers dominates.

To interpret the condition that F J−1 is convex, note that F J−1 represents the cumulative

distribution function of the maximum of J − 1 values drawn from F . For large enough J ,

this cumulative distribution function is convex under relatively weak conditions. Indeed, if

the density f is such that f ′/f is bounded below, then there always exists a J large enough

such that F J−1 is convex.

We now discuss the implications of independent managed campaigns for platform revenue.

Intuitively, since the joint profit of the platform and firms increases with posted prices up to

pV , the platform revenue ordering between bidding and the independent campaign should

follow the price ranking. More precisely,

Proposition 9 (Revenue Comparison)

If pB ≥ pI , platform revenue in a bidding model with participation fees is weakly higher than

in the independent managed campaign. Otherwise, the platform earns less in the bidding

model with participation fees relative to the independent managed campaign.

Proof. Note that in both models, the firms are held to their outside options. Hence, whether

the platform earns more depends exactly on the producer surplus extracted. By Theorem

3, the off-platform price pV induced by the sophisticated managed campaign maximizes

producer surplus. By Theorem 4, pV ≥ pB, pI . Since producer surplus is concave in the

off-platform price, pV maximizes producer surplus, and pV ≥ pB, pI , the producer surplus is

larger in the bidding model iff pB ≥ pI .
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(a) Platform revenue as a function of λ, J = 2 (b) Platform revenue as a function of λ, J = 3

Figure 4: Platform revenue with consumer values distributed as F (v) = v3/4. With J = 2, F J−1

is concave, and with J = 3, F J−1 is convex. In the first figure for J = 2, the platform revenue from
the independent managed campaign lies in between the sophisticated managed campaign revenue
and bidding with participation fees. In the second figure, the relative ordering of bidding and
independent campaigns are switched.

In Figure 4, we plot the revenue generated by the platform in the bidding model and

the independent managed campaign as functions of λ when consumer values are drawn from

value distribution F (v) = v3/4. Figure 4a shows the revenue when there are J = 2 firms,

and Figure 4b plots the revenue for J = 3 firms. Figure 4a demonstrates a scenario where

the independent managed campaign yields more revenue, and Figure 4b demonstrates a case

where data-augmented bidding yields more revenue. However, if we allow the platform to

charge participation fees, it is clear the platform earns more revenue than in the standard

bidding model without a participation fee. It is also true that in a bidding model with

participation fees, the platform earns more than in an independent managed campaign.

Finally, the sophisticated managed campaign results in higher platform revenue than the

independent managed campaign and bidding, as would be expected by Theorem 3.

5.2 Privacy and Data

We now consider assessing the impact of privacy regulation. Suppose the platform cannot

observe the willingness-to-pay of on-platform consumers for each firm, but only which firm

the consumer prefers most. That is, the platform can still steer cohorts of consumers towards

firms, but cannot price discriminate within the cohort. This eliminates the firms’ ability

to price contingent on the consumer data vector. Formally, recall that in the sophisticated

managed campaign, the platform’s available pricing policy space was p : V J×{0, 1}J×RJ
+ →
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R+. Here, the pricing policy space is restricted to p : {0, 1}J×RJ
+ → R+; that is, the platform

cannot price based on the consumer’s individual type vector, but can condition pricing on

other observables (i.e. the accept/reject decisions and the posted prices). This is in contrast

to the independent managed campaign, which conditions advertised prices on the consumer’s

value but not on posted prices.

Proposition 10 (Cohort Privacy)

In equilibrium, the platform steers efficiently. The equilibrium posted price under the privacy

restriction is pP with:

pP =
1− (1− λ)F (pP )− λF J(pP )

(1− λ)f(pP ) + λJF J−1(pP )f(pP ).
(10)

The product price on the platform is identical to the off-platform price pP .

The proof is in the Appendix. Intuitively, firms face a distributional mixture of con-

sumers; a measure (1− λ)/J of consumers are loyal with values distributed according to F ,

and a measure of λ/J consumers are considering them on-platform with values distributed

as F J . Hence, the firm would like to be able to set higher prices to take advantage of a more

favorable distribution of consumer values.

Proposition 11 (Price Impact of Cohort Privacy)

The equilibrium posted price under the privacy restriction satisfies pM < pP < pV .

Proof. The first-order condition for pP is

1− λ

J
(1− F (p)− pf(p)) +

λ

J
(1− F J(p)− JpF J−1(p)f(p)) = 0. (11)

The first-order condition for pV is given by

1− λ

J
(1− F (p)− pf(p)) +

λ

J
(1− F J(p)) = 0. (12)

Since the left-hand side of (12) is larger than the left-hand side of the (11) and both are

decreasing in p, we have pP < pV . To see that pP > pM , note that pP is equal to the inverse

hazard rate of the distribution (1− λ)F + λF J at pP , and pM is equal to the inverse hazard

rate of F at pM . The likelihood ratio of (1−λ)F +λF J relative to F is (1−λ)+λJF J−1(v)

which is monotonically increasing, so the inverse hazard rate of (1 − λ)F + λF J is greater

than the inverse hazard rate of F . Hence, we have pP > pM .
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(a) Off-platform prices as a function of λ, J = 2 (b) Off-platform prices as a function of λ, J = 3

Figure 5: Off-platform prices under the privacy restriction, with and without sponsored offers,
compared to the benchmarks (sophisticated managed campaign and data-augmented bidding).
Prices are plotted as a function of λ for a uniform distribution of values and J = 2, 3. In the large
λ limit for J = 2, the no-offer price is larger than the with-offer price.

Figure 5 depicts the posted prices for a uniform distribution of values, for J = 2, 3 firms.

The plots vary the share of on-platform consumers λ. Note that for a uniform distribution,

the monopoly price pM = 0.5. As would be expected from Proposition 11, the sophisticated

managed campaign price is highest, and the privacy price with offers pP is above pM = 0.5

but below the managed campaign price pV . However, the relative ordering of the bidding

price and the privacy price is ambiguous: for J = 3, on smaller platforms the bidding price

pB can be lower than pP . Intuitively, for sufficiently many firms, the competitive effect of

bidders on each other profits sufficiently outweighs the incentives to raise prices. The welfare

implications of privacy are more ambiguous, as we plot in Figure 6 for a uniform distribution

of consumer values.

(a) Consumer surplus as a function of λ, J = 2 (b) Total welfare as a function of λ, J = 2

Figure 6: Welfare implications of privacy, with a uniform distribution of consumer values.
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Proposition 11 shows that the off-platform posted prices are lower than under the man-

aged campaign, which implies greater consumer surplus and total welfare off the platform.

However, the privacy restriction reduces total welfare on the platform too: the inability to

price discriminate means that low-value on-platform consumers are priced out by the privacy

restrictions. Hence, in the limit of large platforms, the total welfare can be worse under pri-

vacy restrictions than under data-augmented bidding or managed campaigns. The consumer

surplus is larger, however, since the low-value consumers get their surplus extracted away

in the non-privacy benchmarks; that is, the loss in welfare comes primarily from reduced

producer surplus.

6 Conclusion

Many digital platforms such as Google, Meta, Amazon, and TikTok generate revenue through

advertising by placing ads or sponsored slots on their own and partner websites. These

platforms use a bidding and auction mechanism to determine advertisers’ willingness to pay

and a ranking and recommendation mechanism to select the most suitable ad to display

to the viewer. The platform’s knowledge about the match value between consumers and

products is critical to the success of both mechanisms. This knowledge helps generate the

most competitive bids from advertisers in the auction and supports more clicks and other

engagement in the ranking mechanism. We proposed an integrated model that considers

how auction and data jointly determine match formation on digital platforms. We also

highlighted the value of information and data for the platform in the joint deployment of

these services on both sides of the market.

The auction mechanisms on the platform have substantial implications for product prices.

On the platform, the data made available to the advertisers allows for efficient matching,

yet most of the surplus accrues to the platform. Off the platform, the implications of the

bidding algorithms are more dramatic. Advertisers raise prices off the platform to gain a

competitive edge on the platform. The cross-channel distortions become more pronounced

under the sophisticated managed campaign than in the traditional (generalized) second price

auction. This suggests the need for further analysis of how algorithmic bidding on platforms

impacts competition and welfare in all markets, particularly off the platform. Indeed, we

have shown that the higher costs of online advertising under a more extractive mechanism are

passed on to consumers by means of higher product prices off rather than on the platform.
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A Appendix

Proof of Proposition 1

Proof. Suppose vj > vk. Note that since the platform mechanism is a second-price auction,

it is weakly dominant for each firm to bid exactly what the online consumer is worth to that

firm. We proceed using casework. As a useful reference, denote by

u = max(max
i ̸=j,k

(vi − pi), 0),

the utility the consumer would get from all firms except j and k. u thus is a lower bound

on the utility that is conceded to any consumer that does purchase from j or k.

First, consider the cases where pk ≥ pj. Note that this implies vj − pj > vk − pk. There

are two subcases to consider: either vj > pj or vj ≤ pj. In the first subcase, the highest

price that firm j can charge is restricted by showrooming and the nonnegativity constraint,

so bj(v) = max(min(pj, vj − u), 0). If firm k were to win the auction, then firm k’s offer

must guarantee at least vj − pj utility to the consumer to dissuade the consumer from going

off-platform, and hence the most that firm k can offer is

bk(v) ≤ max(min(vk − (vj − pj), vk − u), 0)

= max(min(pj − (vj − vk), vk − u), 0)

< max(min(pj, vj − u), 0) = bj(v).

For the second subcase, since vj ≤ pj, the consumer is worth vj to firm j, so bj(v) =

max(vj − u, 0). Then vk < vj ≤ pj < pk, so the consumer is worth vk to firm k, and the bids

satisfy the following condition

bk(v) = max(vk − u, 0) ≤ max(vj − u, 0) = bj(v).

Now, consider the cases where pj > pk. We have four subcases here.

1. vk < pk and (a) vj < pj or (b) vj ≥ pj,

2. vk ≥ pk and (a) vj ≤ vk + pj − pk or (b) vj > vk + pj − pk.

In subcase (1)(a), vj < pj and vk < pk, so the highest price j can charge is vj and the

highest price k can charge is vk. Then bk(v) = max(vk − u, 0) and bj(v) = max(vj − u, 0),
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and so

bk(v) = max(vk − u, 0) ≤ max(vj − u, 0) = bj(v).

In subcase (1)(b), vj ≥ pj > pk > vk, so vj − u ≥ vk − u and pj ≥ vk − u. Hence

bk(v) = max(vk − u, 0) ≤ max(min(pj, vj − u), 0) = bj(v).

In subcase (2)(a), vk ≥ pk and vj ≤ vk+ pj − pk. Firm j must concede at least vk− pk utility

to the consumer (else the consumer would buy k’s product), and hence the bid

bk(v) = max(min(pk, vk − u), 0)

≤ max(min(pk + (vj − vk), vj − u), 0)

= max(min(vj − (vk − pk), vj − u), 0)

= bj(v).

Finally, in the last subcase, note that vj − pj ≥ vk − pk. The bids are

bk(v) = max(min(pk, vk − u), 0) ≤ max(min(pj, vk − u) ≤ bj(v).

In all cases, bk(v) ≤ bj(v).

Proof of Lemma 1

First consider the regime p < p′. Since the firm only wins the consumers for which v > v′, it

follows that v− p > v′− p′, so the firm never concedes rents to the threat of the second-best

firm. There are three distinct regions to consider here: if v < p, the firm earns v and pays

v′. If v ≥ p, then the firm earns p, but the firm pays 0 if v′ < v − p the firm pays 0, else the

firm pays v′ − (v − p). The Ω term in this region is thus given by:

Ω(p; p′) =

∫ p(∫ v (
v − v′

)
dF J−1(v′)

)
dF (v)

+

∫
p

(∫ v−p

p dF J−1(v′) +

∫ v

v−p

(
p− (v′ − (v − p))

)
dF J−1(v′)

)
dF (v)

=

∫ p ∫ v (
v − v′

)
dF J−1(v′) dF (v)

+

∫
p

(∫ v−p

p dF J−1(v′) +

∫ v

v−p

(
v − v′

)
dF J−1(v′)

)
dF (v)

=

∫ ∫ v

min(v − v′, p) dF J−1(v′) dF (v).
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Now, suppose p ≥ p′. We again proceed with casework. If v < p′, then no constraints bind

and the firm earns v and pays the bid v′. If v ∈ [p′, p] and v′ < p′, the firm once again earns

v and pays v′. If v ∈ [p′, p] and v′ ∈ (p′, v], then the firm earns v − (v′ − p′) and pays p′.

If v > p, then there are 3 subcases for v′. If v′ < v − p, the firm earns p and pays 0. If

v′ ∈ [v − p, p′ + v − p], the firm earns p and pays v′ − (v − p). If v′ ≥ p′ + v − p, then the

firm earns v − (v′ − p′) and pays p′.

Ω(p; p′) =

∫ p′ (∫ v

(v − v′) dF J−1(v′)

)
dF (v)

+

∫ p

p′

(∫ p′

(v − v′) dF J−1(v′) +

∫ v

p′
(v − (v′ − p′)− p′) dF J−1(v′)

)
dF (v)

+

∫
p

(∫ v−p

p dF J−1(v′) +

∫ p′+(v−p)

v−p

(p− (v′ − (v − p))) dF J−1(v′)

)
dF (v)

+

∫
p

(∫ v

p′+(v−p)

(v − (v′ − p′)− p′) dF J−1(v′)

)
dF (v)

)
=

∫ p′ (∫ v

(v − v′) dF J−1(v′)

)
dF (v)

+

∫ p

p′

(∫ p′

(v − v′) dF J−1(v′) +

∫ v

p′
(v − v′) dF J−1(v′)

)
dF (v)

+

∫
p

(∫ v−p

p dF J−1(v′) +

∫ v

v−p

(v − v′) dF J−1(v′)

)
dF (v)

=

∫ ∫ v

min(v − v′, p) dF J−1(v′) dF (v).

Finally, to make sure the first-order condition is valid, we take the second derivative to check

that the objective is concave:

∂2Ω(p)

∂p2
=

∫
p

(
−dF J−1(v − p)

)
dF (v) = −

∫
p

(J − 1)F J−2(v − p)f(v − p)f(v),

which is always negative; so the on-platform profit term is concave.

Proof of Proposition 2

This result is implied by Proposition 3.
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Proof of Proposition 3

Let the right hand sides of the pricing equations (3) and (4) be

ΦB(x) =
1− F (x) + λJ

1−λ

(∫
x
F J−1(v − x)dF (v)

)
f(x)

. (13)

and

Φ(x) =
1− F (x)

f(x)
.

respectively. Clearly ΦB(x) ≥ Φ(x), with inequality holding strictly if x < 1 and λ > 0.

Since, by regularity Φ(x) is decreasing, and pM is a fixed point of Φ and pB is a fixed point

of ΦB, we must have pB ≥ pM .

To see the first statement, note that λ/(1− λ) is increasing in λ, and so the right hand

side of the implicit price equation (13), is increasing in λ. It follows that pB is also increasing

in λ. Then the second statement follows from the first and the fact that CSoff and CSon are

both decreasing in p. Examining Πoff, note that

dΠoff

dp
= 1− F (p)− pf(p) = f(p)

(
1− F (p)

f(p)
− p

)
.

Since by Proposition 2, pB ≥ pM ,

1− F (pB)

f(pB)
− pB ≤ 1− F (pM)

f(pM)
− pM = 0.

So since pB is increasing in λ by the first statement, and Πoff is decreasing in p, it follows

that Πoff is decreasing in λ. For on-platform consumers, Πon is clearly increasing in p, so Πon

is also increasing in λ. For the platform revenue, recall that

R(p) = λJ

(∫ p ∫ v

v′dF J−1(v′)dF (v) +

∫
p

∫ v

v−p

v′dF J−1(v′)dF (v)

)
.

It suffices to show that the parenthesized part is increasing in p, since p is increasing in λ.

Taking the derivative of the parenthesized part, we get

f(p)

∫ p

v′dF J−1(v′)− f(p)

∫ p

v′dF J−1(v′) +

∫
p

(v − p)dF J−1(v − p)dF (v)

=

∫
p

(v − p)dF J−1(v − p)dF (v) > 0.
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Hence, the platform revenue is increasing in λ. Finally, the total off-platform welfare per

consumer is decreasing in p, and has no other λ dependence, so Woff is decreasing in λ.

Proof of Proposition 4

Recall the right hand side of the pricing equation (3) is

ΦB(x) =
1− F (x) + λJ

1−λ

(∫
x
F J−1(v − x)dF (v)

)
f(x)

.

The partial derivative of this expression with respect to J gives

∂ΦB

∂J
=

λ

(1− λ)f(x)

(∫
x

(
F J−1(v − x) + JF J−1(v − x) lnF (v − x)

)
dF (v)

)
=

λ

(1− λ)f(x)

(∫
x

(1 + J lnF (v − x))F J−1(v − x)dF (v)

)
.

Since by assumption 1 < −J lnF (1 − pM), 1 + J lnF (v − x) ≤ 1 + J lnF (1 − pM) < 0 for

x ≥ pM . Hence this derivative is negative with respect to J . Since pB is the fixed point of

ΦB and from Proposition 2 pB ≥ pM , it thus follows that pB must be decreasing in J .

Since pB must be decreasing in J , it follows then CSoff(pB) and Woff(pB) are increasing

in J , since they are decreasing in p and has no other J dependence. Note that Won is

equivalently the expected value of the max of J i.i.d random variables distributed as F , and

hence is increasing in J . Con is the expected value of an increasing function of v max(0, v−p),

where v is distributed as a max of J i.i.d random variables. Hence the partial derivative of

Con with respect to J is positive. Because Con is also decreasing in p and pB decreases in

J , it follows that Con(pB) is increasing in J . Since CS is a fixed (not J-dependent) linear

combination of CSoff and CSon and likewise for W , CS and W are both increasing in J .

Proof of Proposition 5

By Lemma 1, the firm willing to pay the most for any consumer regardless of off-platform

prices is the firm which the consumer has the highest value for; hence, it is not revenue

optimal for the platform to exclude any firm from participating. Consider the subgame after

all firms have paid the participation fee. By Theorem 1, the pricing condition for off-platform

prices is given by (3), and firms bid their true value max(vj, pB). It is then straightforward

to see that the maximum participation fee must hold the firm’s profit to what they could get

from being excluded; hence, it is optimal for the platform to charge transfer fees that make

33



the firm indifferent between joining and not. Since the exclusion profit is given by (5), the

result follows.

Proof of Proposition 6

If the platform’s steering policy were inefficient (i.e., s(v, a) = j for a positive measure of

consumer values v whose highest value is not for firm j), the platform could instead steer

those consumers to their most preferred firms. By doing so, the platform could charge

a higher transfer from each consumer’s most preferred firm, since the consumer is worth

weakly more to the most preferred firm. Hence it is weakly dominant for the platform to

offer each consumer their favorite product.

Proof of Theorem 2

Once again, we consider the best response problem given other firms setting price p′.

First, consider firms setting price p < p′. Here, since the firm will not poach anyone, the

firm collects p on all values above p and the value from all values below p. The firm’s profit

is
1− λ

J
p(1− F (p)) + λ

(∫ p

vF J−1(v) dF (v) +

∫
p

pF J−1(v) dF (v)

)
.

The derivative with respect to p is

1− λ

J
(1− F (p)− pf(p)) + λ

(
pF J−1(p)f(p)− pF J−1(p)f(p) +

∫
p

F J−1(v) dF (v)

)

=
1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

F J−1(v) dF (v)

)
. (14)

Now, consider firms setting price p > p′. The firm profit function is

1− λ

J
p(1− F (p)) + λ


∫ p′

vF J−1(v) dF (v) +
∫ p

p′

∫ p′
v dF J−1(v′) dF (v)

+
∫ p

p′

∫ v

p′
(v − (v′ − p′)) dF J−1(v′) dF (v) +

∫
p

∫ p′+(v−p)
p dF J−1(v′) dF (v)

+
∫
p

∫ v

p′+(v−p)
(v − (v′ − p′)) dF J−1(v′) dF (v)

 .
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The derivative of this expression with respect to p is

1− λ

J
(1− F (p)− pf(p)) + λ


∫ p′

p dF J−1(v′) dF (p) +
∫ p

p′
(p− (v′ − p′)) dF J−1(v′) dF (p)

−
∫ p′

p dF J−1(v′) dF (p)−
∫
p
p dF J−1(p′ + (v − p)) dF (v)

+
∫
p

∫ p′+(v−p)
dF J−1(v′) dF (v)−

∫ p

p′
(p− (v′ − p′)) dF J−1(v′) dF (p)

+
∫
p
p dF J−1(p′ + (v − p)) dF (v)

 .

Everything cancels except the first term in the third line, so with some algebra, we obtain

=
1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

F J−1(p′ + v − p) dF (v)

)
. (15)

Comparing (14) and (15), the derivative matches from the left and right at p = p′, and

so the best-response function is smooth. One can also easily see that
∫
p
F J−1(v) dF (v) is

decreasing in p, so the objective is concave and we can take the first order condition:

0 =
1− λ

J
(1− F (p)− pf(p)) + λ

∫
p

F J−1(v) dF (v).

Rearranging, we get the implicit characterization of posted prices in (7).

Proof of Theorem 5

We first prove two lemmas.

Lemma 2 (Platform Pricing Policy)

It is weakly optimal for the platform to offer first-degree price discrimination up to some cap;

that is, p(vj, 1⃗) = min(vj, p̂), where p̂ is the cap.

Proof. Suppose the platform chooses a price policy, and the subgame posted price equilibrium

resulting from this policy results in posted prices at p. If the price policy offered prices larger

than p, then since the platform weakly prefers sales to occur on-platform, the platform would

instead prefer to cap its prices at p. Hence, the platform anticipates the posted prices set by

the firms and never offers a price larger than the subsequent posted price equilibrium.

Now suppose the platform offers some pricing policy p̃, and the largest price offered to any

value, p̂, is at most the resulting subgame posted price p. If the platform is not first-degree

price discriminating up to p̂, then∫
p̃(v) dF J(v) <

∫
min(v, p̂) dF J(v).
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Since setting a price cap of 0 earns no profit, the intermediate value theorem implies that

there exists a p̂′ < p̂ such that a first-degree price discriminating policy with a cap at p̂′ is

revenue-equivalent to the original pricing policy. That is, p̂′ exists such that∫
p̃(v) dF J(v) =

∫
min(v, p̂′) dF J(v).

Since the cap of this alternative pricing policy is lower than p̂, and each firm gets at least

as much profit in sales on-platform under this alternative pricing policy if it set a posted

price p. If p > pM , then the firms would also lower off-platform posted prices and gain more

surplus, and so the platform could charge a weakly higher transfer for this policy. It could

not be the case that p < pM , since this would imply that since prices online were capped at

p̂ ≤ p, some firm would have had an incentive to raise its price to pM . So the last case to

consider is p = pM . In this case, to check that this policy is without loss, it suffices to check

that firms setting posted prices at pM is still a subgame equilibrium. Since the marginal

incentives for firms to raise or lower posted prices around p are unchanged by switching to

the price discriminating policy capped at p̂′, it remains to argue that there is no profitable

undercutting incentive introduced. But this follows since the first-degree price discriminating

policy minimizes the maximum price charged to an on-platform consumer fixing the value

of on-platform sales, and so it also minimizes the profit from undercutting deviations.

Lemma 3 (Outside Option)

An optimal strategy for the platform sets p(·, a) = 0 if a ̸= 1⃗.

Proof. Since, by Proposition 6, the platform finds it weakly optimal to make sponsored

offers efficiently among participating firms, the platform makes the most revenue from such

a steering policy only when all firms accept since the steering policy is most efficient only

when all firms accept (as otherwise, there is loss due to some on-platform consumers being

shown a sponsored offer for a firm that is not their favorite). Hence, it is optimal for the

platform to set transfers such that all firms are willing to accept. Therefore, the platform

must offer each firm the difference between rejecting and best responding to the resulting

steering policy and accepting. So the optimal strategy of the platform must be to reduce

the firm’s value from rejection as much as possible. Consider the profit firm j could earn by

rejecting. Since Proposition 6 implies that the consumers who would have seen j’s product

in the sponsored slot now a sponsored offer from the next-best, and the rejecting firm j can

only sell via posted price now, firm j’s profit from rejecting is at least ΠO, the outside option

defined in (5). Since offering p(·, a) = 0 for a ̸= 1⃗ exactly attains this lower bound because
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firm j only can sell to consumers who value j’s product p more than any other firm, this is

an optimal strategy for the platform.

We now move on to the proof of the theorem.

Proof: Note that Proposition 6 and Lemma 3 hold, so we consider the pricing policy of

the platform when all firms accept. Because it is optimal for the platform to steer efficiently,

and firms are ex-ante symmetric, we look for symmetric equilibria in the pricing subgame

on the equilibrium path where all firms join the platform. By rearranging (9), pC satisfies

0 =
1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

(
F J−1(v)− p dF J−1(v)

)
dF (v)

)
. (16)

We consider two subcases; when pC ≥ pM and when pC < pM .

First, suppose pC ≥ pM . Suppose firms k ̸= j set off-platform prices p′ and consider the

best-response problem of firm j. By Lemma 2, the pricing policy of the platform has a cap

p̂. When p′ < p̂, the profit function takes two forms, depending on whether p ≥ p′ or p < p′.

If firm j deviates by raising its posted price to p ≥ p′, the firm gets consumers poached away

if vk − p′ > vj − p, or vk > vj + p′ − p. So the profit function is

1− λ

J
p(1−F (p))+λ

(∫ p′

vF J−1(v)dF (v) +

∫ p

p′
vF J−1(p′)dF (v) +

∫
p

pF J−1(v + p′ − p) dF (v)

)
.

The derivative with respect to p in this regime is

1− λ

J
(1− F (p)− pf(p)) + λ

(
pF J−1(p′)f(p)− pF J−1(p′)f(p)

+
∫
p

(
F J−1(v + p′ − p)− p dF J−1(v + p′ − p)

)
dF (v)

)

=
1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

(
F J−1(v + p′ − p)− p dF J−1(v + p′ − p)

)
dF (v)

)
.

In the other regime, firm j, by deviating to a price p < p′, can poach some consumers whose

maximum other value is for some other firm k’s product, but vk − p′ < vj − p. Note that

since firm j is undercutting firm k, j can potentially poach consumers whose value vk > vj.

So the profit of the firm from such a deviation is given by

1− λ

J
p(1− F (p)) + λ

(∫ p

vF J−1(v)dF (v) +

∫
p

pF J−1(min(v + p′ − p, 1)) dF (v)

)
.
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The derivative with respect to p is

1− λ

J
(1− F (p)− pf(p)) + λ

(
pF J−1(p)f(p)− pF J−1(p′)f(p)

)
+λ

∫
p

(
F J−1(min(v + p′ − p, 1))− p dF J−1(min(v + p′ − p, 1))

)
dF (v).

As we are interested in symmetric equilibria, we take p → p′. A quick check confirms that

the profit of the firm is both continuous at p′ and the left- and right- derivatives match at

p = p′. Hence, we get the first order condition

0 =
1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

(
F J−1(v)− p dF J−1(v)

)
dF (v).

)
(17)

Then it is clear that if p̂ ≥ pM , and pC < p̂, the resulting posted price subgame equilibrium

has firms setting prices pC . Now, if p′ ≥ p̂, the left derivative of the best-response profit

function is the same as before, but the right derivative changes; specifically, since the platform

is already capping the price offers at p̂, any price increase only affects the offline population:

that is, the right derivative at p → p′ is 1−λ
J

(1− F (p)− pf(p)), which is nonpositive since

p′ ≥ p̂ ≥ pM . Hence the best response value function of the firms kinks at p′, but the right-

derivative is always negative at the kink. So if p′ ≥ pC , then the optimal best response is pC ,

but if p′ < pC , then p′ is the best response. In particular, this implies that for a particular

set of subgames pM ≤ p̂ < pC (which turn out to be off-path), there are multiple equilibria

in the subgame. That is, any price p′ ∈ [p̂, pC ] is a subgame equilibrium if pC ≥ p̂. However,

since the platform is profit maximizing and make a higher transfer profit for more extractive

pricing policies (higher p̂ ≥ pM), if pC ≥ pM , the platform’s subgame optimal strategy then

is to choose p̂ = pC , after which pC is the unique equilibrium in the posted price subgame.

Now, we turn to the case where pC < pM . Again, by Lemma 2 the platform pricing

policies cap prices at p̂. Consider the best response for a single firm, supposing all other

firms are pricing at p′. If p′ < p̂, then the derivative of the best response function (which we

analyzed taking p → p′ above) is

1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

(
F J−1(v)− p dF J−1(v)

)
dF (v)

)
.

Note that this is decreasing, and zero at pC . So pC is a locally optimal response. However, if

pM > p̂, then the best-response profit function has a right-derivative of 1−λ
J

(1− F (p)− pf(p))

at p̂, which is positive since p̂ < pM . This expression also governs the derivative of the best

38



response on [p̂, pM ]; so the best response has a kink at p̂. Hence, the only two potential

symmetric equilibria are either pC or the monopoly price, pM . Then clearly, if p̂ ≥ pM , the

pricing subgame equilibrium is pC , and if p̂ ≤ pC , the pricing subgame equilibrium is pM .

So it remains to characterize the subgame equilibria if p̂ ∈ (pC , pM). Recall that the

platform seeks to obtain the maximum transfer from the firms for its service; hence, the

platform sets pricing policies to maximize the joint surplus of the platform and firms given

the resulting pricing equilibrium. Since the resulting pricing equilibrium is either p < p̂ or

pM , if the pricing equilibrium is p, the joint surplus is

(1− λ)p(1− F (p)) +

∫
min(v, p) dF J(v).

However, if the platform sets some p̂ such that the resulting pricing equilibrium in the

subgame is pM , the joint surplus is

(1− λ)pM(1− F (pM)) +

∫
min(v, p̂) dF J(v).

Note that by definition of pM , (1 − λ)p(1 − F (p)) < (1 − λ)pM(1 − F (pM)), and p̂ > p;

hence, it follows that the platform’s optimal strategy is to choose the largest possible p̂ such

that pM is a pricing subgame equilibrium. (That is, raising p̂ increases surplus extraction

from on-platform consumers, but the platform cannot raise prices so high that firms want to

undercut each other). Define the deviating profit of a single firm from undercutting (setting

a price below p̂) as

ΠU (p̂) = max
p≤p̂

[
1− λ

J
p(1− F (p)) + λ

(∫ p

vF J−1(v)dF (v) +

∫
p
pF J−1(min(v + p̂− p, 1)) dF (v)

)]
.

We subscript this profit expression with a U to indicate that this is the largest profit that

the firm could get by undercutting other firms. In order for the firms to set pM as the posted

price, the value of ΠU must be less than the firm profit from setting pM , which is

ΠM(p̂) =
1− λ

J
pM(1− F (pM)) + λ

(∫
min(v, p̂)F J−1(v)dF (v)

)
.

Intuitively, ΠM is the profit a firm receives from setting pM when the platform’s pricing

policy caps at p̂. Note that ΠU(pC) < ΠM(pC), since the firm’s best response price to p̂ = pC

is pC . However, ΠU(pM) > ΠM(pM), since the derivative of the maximand of ΠU is negative

at p = p̂ = pM . So there exists a largest price p∗ ∈ [pC , pM ] such that ΠM(p∗) ≥ ΠU(p
∗), and

it is optimal for the platform to cap prices at p∗, and firms to price at pM .
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Proof of Proposition 7

The right-hand side of the pricing condition characterizing pC is

ΦM(p) =
1− F (p) + λJ

1−λ

(∫
p

(
F J−1(v)− p dF J−1(v)

)
dF (v)

)
f(p)

.

Note that pC is the fixed point of ΦM , and ΦM(p) is decreasing in p. Thus, it suffices to

show that for some large enough J , ΦM(pM) < pM , as that implies the fixed point of ΦM is

less than pM . Recall that pM satisfies the FOC 1− F (pM)− pMf(pM) = 0. So

ΦM (pM ) = pM +
λ

(1− λ)f(pM )

(∫
pM

J
(
F J−1(v)− pM dF J−1(v)

)
dF (v)

)
= pM +

λ

(1− λ)f(pM )

(∫
pM

J

(
F (v)

f(v)
− pM (J − 1)

)
F J−2(v)f2(v) dv

)
< pM +

λ

(1− λ)f(pM )

(∫
pM

J (B − (J − 1)pM )F J−2(v)f(v) dv

)
.

If J > 1 +B/pM , the term in parentheses is negative, so ΦM(pM) < pM , and pC < pM .

Proof of Proposition 8

We first compare pC and pV . The FOC defining pC is:

1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

(
F J−1(v)− p dF J−1(v)

)
dF (v)

)
= 0.

The FOC defining pV is

1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

F J−1(v) dF (v)

)
= 0.

Note that the term multiplying λ is larger in the sophisticated managed campaign. Thus, the

marginal profit from raising posted prices is larger in the sophisticated managed campaign,

and hence pV ≥ pC . Note that by Theorem 4, pV > pM . Hence, pV ≥ max(pM , pC) = pI .

Now, we compare pC and pB. The FOC defining pB is:

1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

F J−1(v − p)dF (v)

)
= 0.
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Under the assumption that F J−1 is convex, then we have that

F J−1(v − p) ≥ F J−1(v)− pdF J−1(v).

since the right-hand side is a first-order expansion of F J−1 around v. Thus, the derivative

of profit with respect to posted price is weakly larger in the bidding model, which implies

that pB ≥ pC . Since pB ≥ pM by Proposition 2, pB ≥ pI .

Note that if F J−1 is concave, then the inequality order reverses:

0 ≤ F J−1(v − p) ≤ F J−1(v)− pdF J−1(v),

since the right-hand side is a first-order expansion of F J−1 around v. Using the same argu-

ment as before, pM ≤ pB ≤ pC . As total welfare and total consumer surplus decrease in p,

the welfare comparative statics follow.

Proof of Proposition 10

Note that Proposition 6 and Lemma 3 still hold, so the platform steers efficiently (i.e.

s(j, 1⃗) = j). We first consider the posted-price best response to the following pricing policy

and then show that this pricing policy is optimal for the platform to offer.

Consider the pricing policy p(a, p̄) = minj p̄j. That is, the platform offers the price which

is lowest of all off-platform prices. Suppose all other firms set a posted price of p̄. Consider

the profit-maximizing price for j to set on the segment of consumers who have the highest

willingness to pay for j’s product. If j sets a price p < p̄, j wins each consumer in the

segment; hence, the profit for setting p would be

1− λ

J
p(1− F (p)) +

λ

J

(
p(1− F J(p))

)
If p > p̄, and p is less than j’s posted price, j loses some on-platform consumers to poaching,

and the profit is
1− λ

J
p(1− F (p)) +

λ

J
p̄(1− F J(p̄))

Note that the left derivative of profits at p̄ is:

1− λ

J
(1− F (p)− pf(p)) +

λ

J

(
1− F J(p)− JpF J−1(p)f(p)

)
and the right derivative is just 1−λ

J
(1−F (p)− pf(p)). Setting the left derivative to zero and
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rearranging gives the implicit equation for pP (10). To show that this is an equilibrium for

the firms, it suffices to show that 1− F J(pP )− JpF J−1(pP )f(pP ) is positive (and hence the

best-response function kinks down at pP .

Define

p† =
1− F J(p†)

JF J−1(p†)f(p†)

That is, p† maximizes the on-platform profits facing the distribution of consumer types

F J . Since F J satisfies the monotone-likelihood ratio property (MLRP) with respect to

F , it follows that the inverse hazard rate of F J is larger than the inverse hazard rate of

F , so p† > pM . Additionally, pP can be rewritten as equal to the inverse hazard rate of

(1− λ)F + λF J . Hence, it suffices to argue that pM < pP < p†. The first inequality follows

since the likelihood ratio of (1− λ)F + λF J with respect to F is just (1− λ) + λJF J−1(v)

which is increasing in v. The second inequality follows since the likelihood ratio of F J with

respect to (1− λ)F + λF J is also monotonically increasing in v.

Finally, to show that the pricing policy was optimal, we follow the same argument as

Theorem 3. Consider the vertically-integrated firm problem, with the constraint that the

firm cannot offer a different price to the segments determined by the efficient steering policy.

Since steering is efficient, the vertically integrated firm chooses an off-platform price p̄ and

an on-platform price p such that:

max
p̄≥p

1− λ

J
p(1− F (p)) +

λ

J

(
p(1− F J(p))

)
Note that if the optimization were unconstrained, the values would be p̄ = pM , p = p†. But

we have shown earlier that pM < p†, which violates the constraint. Hence, we consider the

Lagrangian relaxation:

max
p̄,p

1− λ

J
p(1− F (p)) +

λ

J

(
p(1− F J(p))

)
+ ξ(p̄− p)

Since ξ cannot be zero (as we argued above, the unconstrained optimum is infeasible), we

must therefore have p̄ = p, and hence

1− λ

J
p(1− F (p)) + λ

∫
p̄

p̄F J−1(v) dF (v) = 0

Hence, the price set by the vertically integrated firm on- and off-platform is pP . Since the

transfers hold the firms to their outside option, this policy maximizes platform revenue.

42



References

Aggarwal, Gagan, Ashwinkumar Badanidiyuru, and Aranyak Mehta (2019):

“Autobidding with Constraints,” in International Conference on Web and Internet Eco-

nomics, Springer, 17–30.

Ali, Muhammad, Piotr Sapiezynski, Miranda Bogen, Aleksandra Korolova,

Alan Mislove, and Aaron Rieke (2019): “Discrimination through optimization:

How Facebook’s Ad delivery can lead to biased outcomes,” Proceedings of the ACM on

human-computer interaction, 3, 1–30.

Balseiro, Santiago R, Yuan Deng, Jieming Mao, Vahab S Mirrokni, and Song

Zuo (2021): “The Landscape of Auto-Bidding Auctions: Value Versus Utility Maxi-

mization,” in Proceedings of the 22nd ACM Conference on Economics and Computation,

132–133.

Balseiro, Santiago R and Yonatan Gur (2019): “Learning in repeated auctions with

budgets: Regret minimization and equilibrium,” Management Science, 65, 3952–3968.

Bar-Isaac, Heski and Sandro Shelegia (2020): “Search, Showrooming, and Retailer

Variety,” Tech. rep., CEPR Discussion Paper No. DP15448.

——— (2022): “Monetizing steering,” Tech. rep., Centre for Economic Policy Research.

Bergemann, Dirk and Alessandro Bonatti (2022): “Data, Competition, and Digital

Platforms,” Tech. Rep. 2343, Cowles Foundation for Research in Economics.

Bergemann, Dirk, Benjamin Brooks, and Stephen Morris (2015): “The Limits of

Price Discrimination,” American Economic Review, 105, 921–957.

Calzolari, Giacomo and Vincenzo Denicolò (2015): “Exclusive contracts and mar-
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