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1Related papers:Hansen,Heaton and Li, JPE, 2008; Hansen and Scheinkman,
forthcoming Econometrica; Hansen, Fisher-Schultz Lecture
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KOOPMANS AND RECURSIVE PREFERENCES

Koopmans initiated an important line of research on recursive
preferences that pushed beyond the additive discounted utility
framework.

References:

I Stationary Ordinal Utility and Impatience - Econometrica 1960
I Stationary Utility and the Time Perspective - Econometrica 1964

with Diamond and Williamson
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KOOPMANS AND RECURSIVE UTILITY

Utility representation:

Vt = Φ[U(Ct),Vt+1]

as a generalization of

Vt = U(Ct) + βVt+1

where Ct is the current period consumption vector, Vt is the
“continuation value” or what Koopmans called the “prospective”
utility.
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UNCERTAINTY

Kreps-Porteus representation

Vt = Φ [U(Ct),E (Vt+1|Ft)]

as a generalization of expected utility

Vt = U(Ct) + βE (Vt+1|Ft) .

Do not “reduce” intertemporal compound consumption lotteries.
Intertemporal composition of risk matters.

I will feature a convenient special case

V∗t = (1− β) log Ct +
β

1− γ
log E

(
exp

[
(1− γ)V∗t+1

]
|Ft
)

where I have taken a monotone transformation of the continuation
value. Links risk sensitive control and recursive utility.
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EMPIRICAL MACROECONOMICS

I Identify macroeconomic shocks: wt

I Quantify responses to those shocks. How does the future macro
or financial economic vector yt+j depend on the current shock
wt?

I Compare models with alternative mechanism by which these
shocks are transmitted to macro time series
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HOW CAN ASSET PRICING CONTRIBUTE?

I The macroeconomic shocks are the ones that cannot be
diversified.

I Investors that are “exposed” to such shocks require
compensation for bearing this risk.

Add (shadow) pricing counterparts to these impulse responses.

I Pricing dual to an impulse response: What is the current period
“price” of an exposure to future macroeconomic growth rate
shocks?

I Compare how alternative economic models assign prices to
exposures even when these exposures are not in the center of the
support of the historical time series. Structural model in the
sense of Hurwicz.
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SOME HISTORY

The manner in which risk operates upon time
preference will differ, among other things,
according to the particular periods in the
future to which the risk applies.

Irving Fisher (Theory of Interest, 1930)
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RESPONSE AND RISK PRICE TRAJECTORIES
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FIGURE: The horizontal axis is given in quarterly time units. The top panel
gives the impulse-responses of the logarithm of consumption and the bottom
panel gives corresponding risk prices for two alternative models. Blue
assumes recursive utility and red assumes power utility.
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REMAINDER OF THE TALK

1. My approach to characterizing risk-price dynamics.

2. Mathematical support for value decompositions.

3. Model comparisons and long-run components to value.

4. Recursive utility versus power utility: a comparison.

5. Recursive utility: a “robust” interpretation.
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1. CHARACTERIZING RISK-PRICE DYNAMICS

I Use Markov formulations and martingale methods to produce
decompositions of model implications.

I Allow for nonlinear time series models - stochastic volatility,
stochastic regime shifts.

I Use the long-term as a frame of reference.

Stochastic growth and discount factors will be state dependent.
Explore the implications of this dependence when we alter the
forecast or payoff horizon.
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WHY USE THE LONG TERM AS A FRAME OF
REFERENCE?

I growth uncertainty has important consequences for welfare
I stochastic component growth can have a potent impact on asset

values
I economics more revealing for modeling long-run phenomenon
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COMPONENTS OF ASSET VALUES

1. One period returns: bundles of state-contingent payoffs in a
single period or Arrow securities.

I An economic model predicts prices for the components of
single-period payoffs - assigns values to one period risk
exposures.

2. Intertemporal counterpart: price bundled consumption claims
across states and time periods; durable assets.

I An economic model predicts prices of intertemporal cash flows or
hypothetical consumption processes - assigns values to risk
exposures at alternative future points in time.
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ASSET VALUATION AND STOCHASTIC
DISCOUNTING

π =
∞∑

t=0

E [StGt|x0]

where π is the date zero price of a “cash flow” or “dividend” process
{Gt} that grows stochastically over time.

{St} is a stochastic discount factor process. Encodes both discounting
and adjustments for risk. Satisfies consistency constraints - Law of
Iterated Values.

I Economic models imply stochastic discount factor

St Intertemporal investors′ MRS

Work of Koopmans, Kreps and Porteus and others expanded the
array of models of investor preferences.

I Dynamics of pricing are captured by the time series behavior of
the stochastic discount factor. 13 / 49



CHALLENGES

Extract dynamic pricing implications in a revealing
way.

Compare models and model ingredients.
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2. MATHEMATICAL SETUP

I {Xt : t ≥ 0} be a continuous time Markov process on a state
space D. This process can be stationary and ergodic.

I X = Xc + Xd

I Xc is the solution to dXc
t = µ(Xt−)dt + σ(Xt−)dWt where W is

an {Ft} Brownian motion and Xt− = limτ↓0 Xt−τ .
I Xd with a finite number of jumps in any finite interval.

Simple distinction between small shocks and big shocks.
Discrete time works too, but Markov structure is central.
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ADDITIVE FUNCTIONAL - DEFINITION

I Construct a scalar process {Yt : t ≥ 0} as a function of Xu for
0 ≤ u ≤ t.

I An additive functional is parameterized by (β, γ, κ) where:

I) β : D → R and
∫ t

0 β(Xu)du <∞ for every positive t;
II) γ : D → Rm and

∫ t
0 |γ(Xu)|2du <∞ for every positive t;

III) κ : D ×D → R, κ(x, x) = 0.

Yt =
∫ t

0 β(Xu)du +
∫ t

0 γ(Xu) · dWu +
∑

0≤u≤t κ(Xu,Xu−)
↑ ↑ ↑

smooth small shocks big shocks

I Process Y is nonstationary and can grow linearly.
I Sums of additive functionals are additive. Add the parameters.
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MULTIPLICATIVE FUNCTIONAL - DEFINITION

I Let {Yt : t ≥ 0} be an additive functional.
I Construct a multiplicative functional {Mt : t ≥ 0} as

Mt = exp(Yt)

I Process M is nonstationary and can grow exponentially.
I products of multiplicative functionals are multiplicative.

Multiply the parameters.

Use multiplicative functionals to model state dependent growth and
discounting.
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DISCRETE-TIME COUNTERPART

Additive functional

Yt =
t∑

j=1

κ(Xj,Xj−1)

Multiplicative functional

Mt =
t∏

j=1

exp[κ(Xj,Xj−1)]

Use multiplicative functionals to model state dependent growth and
discounting.
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ILLUSTRATION

A Simple Discrete-Time Additive
Functional Y

k(Xt, Xt-1) =+/- 1 
Note: X’s can be temporally dependent    

0
Yo=0

Y1 =Y0 +/- 1

Y2 =Y1 +/- 1 

…

Range of Y grows + or -

1
0

A Simple Multiplicative Functional M made from 
exponentiating Y

Yt = exp[k(X0,X1)]exp[k(X1, X2)]…exp[k(Xt-1,Xt)]

Y0 =0 M0 =exp(0) = 1

Y1= Y0 +/- 1   M1 =exp(0)exp(+/- 1)

Y2 = Y1 +/- 1 M2 = exp(0)exp(+/-1)exp(+/- 1 )

Range of M is non-negative. 

exp(1)

Or 

exp(-1)
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MULTIPLICATIVE DECOMPOSITION

Mt = exp (ρt) M̂t

[
e(X0)
e(Xt)

]
↑ ↑ ↑

exponential trend martingale ratio
. (1)

I ρ is a deterministic growth rate;
I M̂t is a multiplicative martingale;
I e is a strictly positive function of the Markov state;

Observations

I Reminiscent of a permanent-transitory decomposition from time
series. Important differences!

I Not unique and co-dependence between components matters.
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WHY?

I In valuation problems there are two forces at work - stochastic
growth G and stochastic discounting S. Study product SG.

I Decompose pricing implications of a model as represented by a
stochastic discount factor S.

I Term structure of risk prices - look at value implications of
marginal changes in growth exposure as represented by changes
in G.
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FROBENIUS-PERRON THEORY/ MARTINGALES

I Solve,

E [Mte(Xt)|X0 = x] = exp(ρt)e(x)

where e is strictly positive. Eigenvalue problem.
I Construct martingale

M̂t = exp(−ρt)Mt

[
e(Xt)
e(X0)

]
.

I Invert

Mt = exp(ρt)M̂t

[
e(X0)
e(Xt)

]
.
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MULTIPLICATIVE MARTINGALES

Decomposition:

Mt = exp(ρt)M̂t

[
e(X0)
e(Xt)

]
.

Observations about M̂.

1. Converge - often to zero - raise to powers for refined analysis -
Chernoff

2. Change of measure
I preserves Markov structure
I at most one is stochastically stable - Hansen-Scheinkman
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STOCHASTIC STABILITY

exp(−ρt)E [Mtf (Xt)|X0 = x] = e(x)Ê
[

f (Xt)
e(Xt)

|X0 = x
]

Under stochastic stability and the moment restriction:

Ê
[

f (Xt)
e(Xt)

]
<∞,

the right-hand side converges to:

e(x)Ê
[

f (Xt)
e(Xt)

]
Common state dependence independent of f .

Hyperbolic approximation in valuation horizon:

1
t

log E [Mtf (Xt)|X0 = x] ≈ ρ+
1
t

(
log e(x) + log Ê

[
f (Xt)
e(Xt)

])
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LONG-TERM CASH FLOW RISK

ρ(M) = lim
t→∞

1
t

log E [Mt|X0 = x] .

I Cash flow return over horizon t:

E (Gt|X0 = x)
E (StGt|X0 = x)

.

I long-term expected rate of return (risk adjusted):

ρ(G)− ρ(SG).

I long-term expected excess rate of return (risk adjusted):

ρ(G) + ρ(S)− ρ(SG)

using G = 1 as a long run risk free reference.
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3. MODEL COMPARISON
Factorization

Mt = exp(ρt)M̂t

[
e(X0)
e(Xt)

]
.

If M∗t = Mt

[
f (Xt)
f (X0)

]
,

then M and M∗ share the same martingale component.

M = S G
↑ ↑

discount growth

Observations:
I Applied to G - long-term components of consumption processes

or cash flows - in the limit these dominate pricing.
I Applied to S - long-term model components of valuation -

models with common martingale components share the same
long-term value implications.
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TRANSIENT MODEL COMPONENTS
Bansal-Lehmann style decomposition:

S∗t = St

[
f (Xt)
f (X0)

]
.

Same martingale component
Examples

I Habit persistence models - big differences between empirical
macro and empirical asset pricing models

I Solvency constraint models
I Recursive utility models, long-term risk prices coincide with

those from a power utility model
I Preference shock models and social externalities,

I) Santos-Veronesi - asset pricing - transient value implications
relative to power utility model.

II) Campbell-Cochrane - asset pricing - more subtle limiting
analysis.
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RISK PRICE FIGURE REVISITED
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Trajectory for the Growth−Rate Risk Price

FIGURE: The horizontal axis is given in quarterly time units. Blue assumes
recursive utility and red assumes power utility.
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TERM STRUCTURE OF RISK PRICES

Risk price (for horizon j investment) is the marginal change in the risk
premia of a martingale cash flow with payoff in j time periods. Build
martingales from alternative macroeconomic shock processes.

Term structure emphasizes the time dependence on the horizon of the
payoffs being priced.

Risk price in a log-linear model is the cumulative response of the the
stochastic discount factor process to a shock. Constructed much more
generally in a nonlinear Markov environment.

The dynamics for risk prices are encoded in the dynamics of the
stochastic discount factor process.
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RISK PRICES CONTINUED

I parameterize (multiplicative) martingale cash flows : G(α)
I why? eliminate consumption or cash flow dynamics
I how? construct them or extract them from macro or financial cash

flows

I Compute risk prices

−1
t
∂ log E [StGt(α)|X0 = x]

∂α

Observations

I Nonlinear pricing;
I Hyperbolic approximations in the payoff horizon;

30 / 49
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FIGURE: The horizontal axis is given in quarterly time units. Blue assumes
recursive utility and red assumes power utility. Grey line is the hyperbolic
approximation.
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4. RECURSIVE UTILITY INVESTORS

V∗t = (1− β) log Ct +
β

1− γ
log E

(
exp

[
(1− γ)V∗t+1

]
|Ft
)

I Risk sensitive control theory (Jacobson, Whittle) - linked to
recursive utility theory (Kreps-Porteus and Epstein-Zin).
Achieved by applying an exponential risk adjustment to
continuation values. Hansen-Sargent.

I Intertemporal compound lotteries are no longer “reduced.” The
intertemporal composition of risk matters.

I Macroeconomic/asset pricing implications originally studied by
Tallarini - increases risk prices while having modest implications
for stochastic growth models - (stochastic counterparts to
Koopmans’ growth model).

I Asset pricing “success” achieved by imposing high risk aversion
(Tallarini) or a predictable growth component (Bansal and
Yaron).
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REMINDER

The study of asset pricing implications typically
focus on one-period risk prices, but not on the entire
term-structure of risk prices.
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ASSET PRICING

In the discounted version of recursive risk-sensitive preferences, the
stochastic discount factor is;

S∗t = exp(−δt)
(

C0

Ct

)
V̂t

where V̂ is a martingale component of the
{(

Vt
V0

)1−γ
: t ≥ 0

}
where

V is the stochastic process of continuation values.

The process V and hence V̂ are constructed from the underlying
consumption dynamics. δ continues to be the subjective rate of
discount and the inverse ratio of consumption growth reflects a
unitary intertemporal elasticity of substitution in the preferences of
the investor.
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LIMITING STOCHASTIC DISCOUNT FACTOR

I Martingale component for consumption and continuation values:

V̂t = exp(−ρt)
(

Ct

C0

)1−γ e(Xt)
e(X0)

.

I Limiting stochastic discount factor

S∗t =
(

C0

Ct

)
V̂t = exp(−ρt)

(
Ct

C0

)−γ ( e(Xt)
e(X0)

)
.

Different limiting risk-free interest rate but the same long-term risk
prices.
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CONSUMPTION DYNAMICS
Suppose that X and Y evolve according to:

dYt = ν + H1X[1]
t dt +

√
X[2]

t FdWt

dX[1]
t = A1X[1]

t dt +
√

X[2]
t B1dWt,

dX[2]
t = A2(X[2]

t − 1)dt +
√

X[2]
t B2dWt

Variables

I Y is the logarithm of consumption.
I X[1] governs the predictable growth rate in consumption.
I X[2] governs the macro volatility.

Shocks dW

I F1dWt is the consumption shock.
I B1dWt is the consumption growth shock.
I B2dWt is the consumption volatility shock.
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GROWTH-RATE STATE VARIABLE

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

−0.01
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FIGURE: Consumption growth rate and growth-rate state variable.
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VOLATILITY STATE VARIABLE

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
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FIGURE: Smoothed volatility estimates and quartiles.

FIGURE: Smoothed estimate and two quartiles
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RISK PRICE VECTORS

Recall that a risk price for horizon t is:

−1
t
∂ log E [StGt(α)|X0 = x]

∂α

Power utility

St = exp(−δt)
(

Ct

C0

)−γ

Parameterized multiplicative martingale

d log Gt(α) =
√

X[2]
t α′dWt − X[2]

t
|α|2

2
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RISK PRICE LIMITS

I Local risk price vector (Breeden):√
X[2]

0 γF.

I Long-term risk price vector:

Ê
(

X[2]
t

)
[ γF − (B1)′r1 − (B2)′r2 ]

local growth volatility

where

−
√

X[2]
t (r1)′B1dWt

is the surprise movement in

γH1

∫ ∞
0

E
(

X[1]
t+τ |X

[1]
t

)
dτ
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RISK PRICES
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RISK PRICES

0 50 100 150 200 250 300 350 400
0

.05

.10

.15

.20
Consumption Risk Price

0 50 100 150 200 250 300 350 400
0

.05

.10

.15

.20
Growth−Rate Risk Price

investment horizon (quarters)

Recursive Utility Model Expected Utility Model

42 / 49



RISK PRICES
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QUARTILES FOR GROWTH-RATE RISK PRICES

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2
Recursive Utility

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

investment horizon (quarters)

Expected Utility

44 / 49



OTHER EMPIRICAL SPECIFICATIONS

I Explicit production with long-term uncertainty about
technological growth.

I Regime shift models of volatility and growth - “great
moderation”.
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ESTIMATION ACCURACY OF RISK PRICES

Fig. 4.—A, Posterior histogram for the magnitude of the immediate response ofFl F0

consumption to shocks. B, Posterior histogram for the magnitude of the long-runFl(1)F
response of consumption to the permanent shock. The vertical axis in each case is con-
structed so that the histograms integrate to unity. Vertical lines are located at the posterior
medians.Source:Hansen, Heaton, Li (JPE)
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5. HIGH RISK AVERSION OR A CONCERN FOR
MODEL MISSPECIFICATION?

The stochastic discount factor is;

S∗t = exp(−δt)
(

C0

Ct

)
V̂t

where V̂ is a martingale component of the
{(

Vt
V0

)1−γ
: t ≥ 0

}
.

Martingale component in the stochastic discount factor implies a
change of probability measure and manifests the alternative robust
interpretation of risk-sensitive preferences.

I Lack of investor confidence in the models they use.
I Investors explore alternative specifications for probability laws

subject to penalization.
I Martingale is the implied “worst case” model. Parameter γ

determines the penalization.
I Related methods have a long history in “robust” control theory

and statistics.
I Axiomatic treatments in recent decision theory papers.
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WHERE DOES THIS LEAVE US?
I The flat term structure for recursive utility shows the potential

importance of macro growth components on asset pricing.
I Typical rational expectations modeling assumes investor

confidence and uses the “cross equation” restrictions to identify
long-term growth components from asset prices. Instead do asset
prices identify “subjective beliefs” of investors and risk aversion?

I Predictable components of macroeconomic growth and volatility
are hard for an econometrician to measure from macroeconomic
data.

Questions
I Where does investor confidence come from when confronted by

weak sample evidence? Motivates my interest in modeling
investors who have a concern for model specification.

I What about learning? Concerns about model specification of the
type I described make reference to a single benchmark model
and as a consequence abstract from learning.
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NEXT TALK

A formal exploration of learning and ambiguity

Thanks for coming!
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