Matching with Transfers 2015 Koopmans Lecture, Yale University Part 1: Theory

Pierre-André Chiappori
Columbia University
Yale, November 2015

Introduction: markets for heterogeneous products

Introduction: markets for heterogeneous products

- Housing: specific features

Introduction: markets for heterogeneous products

- Housing: specific features
(1) Discrete individual demand

Introduction: markets for heterogeneous products

- Housing: specific features
(1) Discrete individual demand
(2) Heterogeneous products
\rightarrow product-specific price

Introduction: markets for heterogeneous products

- Housing: specific features
(1) Discrete individual demand
(2) Heterogeneous products
\rightarrow product-specific price
(3) Each 'product' (or 'producer') defined by a list of 'characteristics'

Introduction: markets for heterogeneous products

- Housing: specific features
(1) Discrete individual demand
(2) Heterogeneous products
\rightarrow product-specific price
(3) Each 'product' (or 'producer') defined by a list of 'characteristics'
- Size

Introduction: markets for heterogeneous products

- Housing: specific features
(1) Discrete individual demand
(2) Heterogeneous products
\rightarrow product-specific price
(3) Each 'product' (or 'producer') defined by a list of 'characteristics'
- Size
- Location

Introduction: markets for heterogeneous products

- Housing: specific features
(1) Discrete individual demand
(2) Heterogeneous products
\rightarrow product-specific price
(3) Each 'product' (or 'producer') defined by a list of 'characteristics'
- Size
- Location
- View, floor

Introduction: markets for heterogeneous products

- Housing: specific features
(1) Discrete individual demand
(2) Heterogeneous products
\rightarrow product-specific price
(3) Each 'product' (or 'producer') defined by a list of 'characteristics'
- Size
- Location
- View, floor
- Amenities, etc.
\rightarrow price reflects these characteristics

Introduction: markets for heterogeneous products

- Housing: specific features
(1) Discrete individual demand
(2) Heterogeneous products
\rightarrow product-specific price
(3) Each 'product' (or 'producer') defined by a list of 'characteristics'
- Size
- Location
- View, floor
- Amenities, etc.
\rightarrow price reflects these characteristics
(9) Different buyers have different valuations of the product's characteristics

Introduction: markets for heterogeneous products

- Housing: specific features
(1) Discrete individual demand
(2) Heterogeneous products
\rightarrow product-specific price
(3) Each 'product' (or 'producer') defined by a list of 'characteristics'
- Size
- Location
- View, floor
- Amenities, etc.
\rightarrow price reflects these characteristics
(9) Different buyers have different valuations of the product's characteristics
- Notion of 'hedonic models' (Lancaster 1966):

Introduction: markets for heterogeneous products

- Housing: specific features
(1) Discrete individual demand
(2) Heterogeneous products
\rightarrow product-specific price
(3) Each 'product' (or 'producer') defined by a list of 'characteristics'
- Size
- Location
- View, floor
- Amenities, etc.
\rightarrow price reflects these characteristics
(1) Different buyers have different valuations of the product's characteristics
- Notion of 'hedonic models' (Lancaster 1966):
- Product defined by a list of characteristics \rightarrow vector z

Introduction: markets for heterogeneous products

- Housing: specific features
(1) Discrete individual demand
(2) Heterogeneous products
\rightarrow product-specific price
(3) Each 'product' (or 'producer') defined by a list of 'characteristics'
- Size
- Location
- View, floor
- Amenities, etc.
\rightarrow price reflects these characteristics
(1) Different buyers have different valuations of the product's characteristics
- Notion of 'hedonic models' (Lancaster 1966):
- Product defined by a list of characteristics \rightarrow vector z
- Price defined as the price of a particular combination of characteristics, $P(z)$

Introduction: markets for heterogeneous products

- Housing: specific features
(1) Discrete individual demand
(2) Heterogeneous products
\rightarrow product-specific price
(3) Each 'product' (or 'producer') defined by a list of 'characteristics'
- Size
- Location
- View, floor
- Amenities, etc.
\rightarrow price reflects these characteristics
(1) Different buyers have different valuations of the product's characteristics
- Notion of 'hedonic models' (Lancaster 1966):
- Product defined by a list of characteristics \rightarrow vector z
- Price defined as the price of a particular combination of characteristics, $P(z)$
- Buyer's utility depends on z (e.g. $\sum x_{k} z_{k}$, where $x=\left(x_{1}, \ldots, x_{k}\right)$ is buyer-specific)

Introduction: markets for heterogeneous products

Other examples?

- Cars, computers, etc.

Introduction: markets for heterogeneous products

Other examples?

- Cars, computers, etc.
- Heterogeneous products

Introduction: markets for heterogeneous products

Other examples?

- Cars, computers, etc.
- Heterogeneous products
- Heterogeneous buyers' preferences

Introduction: markets for heterogeneous products

Other examples?

- Cars, computers, etc.
- Heterogeneous products
- Heterogeneous buyers' preferences
- Heterogeneous producers (typically heterogeneous costs), who produce several units

Introduction: markets for heterogeneous products

Other examples?

- Cars, computers, etc.
- Heterogeneous products
- Heterogeneous buyers' preferences
- Heterogeneous producers (typically heterogeneous costs), who produce several units
- Labor?

Introduction: markets for heterogeneous products

Other examples?

- Cars, computers, etc.
- Heterogeneous products
- Heterogeneous buyers' preferences
- Heterogeneous producers (typically heterogeneous costs), who produce several units
- Labor?
- Especially highly skilled

Introduction: markets for heterogeneous products

Other examples?

- Cars, computers, etc.
- Heterogeneous products
- Heterogeneous buyers' preferences
- Heterogeneous producers (typically heterogeneous costs), who produce several units
- Labor?
- Especially highly skilled
- Obvious example: CEOs

Introduction: markets for heterogeneous products

Other examples?

- Cars, computers, etc.
- Heterogeneous products
- Heterogeneous buyers' preferences
- Heterogeneous producers (typically heterogeneous costs), who produce several units
- Labor?
- Especially highly skilled
- Obvious example: CEOs
- But also: academics, artists, athletes, ...

Introduction: markets for heterogeneous products

Other examples?

- Cars, computers, etc.
- Heterogeneous products
- Heterogeneous buyers' preferences
- Heterogeneous producers (typically heterogeneous costs), who produce several units
- Labor?
- Especially highly skilled
- Obvious example: CEOs
- But also: academics, artists, athletes, ...
- Interesting aspects: bilateral preferences

Introduction: markets for heterogeneous products

Other examples?

- Cars, computers, etc.
- Heterogeneous products
- Heterogeneous buyers' preferences
- Heterogeneous producers (typically heterogeneous costs), who produce several units
- Labor?
- Especially highly skilled
- Obvious example: CEOs
- But also: academics, artists, athletes, ...
- Interesting aspects: bilateral preferences
- An academic is characterized by a list of characteristics ...

Introduction: markets for heterogeneous products

Other examples?

- Cars, computers, etc.
- Heterogeneous products
- Heterogeneous buyers' preferences
- Heterogeneous producers (typically heterogeneous costs), who produce several units
- Labor?
- Especially highly skilled
- Obvious example: CEOs
- But also: academics, artists, athletes, ...
- Interesting aspects: bilateral preferences
- An academic is characterized by a list of characteristics ...
- ... so is a university (actually a department)

Introduction: markets for heterogeneous products

Other examples?

- Cars, computers, etc.
- Heterogeneous products
- Heterogeneous buyers' preferences
- Heterogeneous producers (typically heterogeneous costs), who produce several units
- Labor?
- Especially highly skilled
- Obvious example: CEOs
- But also: academics, artists, athletes, ...
- Interesting aspects: bilateral preferences
- An academic is characterized by a list of characteristics ...
- ... so is a university (actually a department)
- \rightarrow notion of 'quality of match'

Introduction: markets for heterogeneous products

Other examples?

- Cars, computers, etc.
- Heterogeneous products
- Heterogeneous buyers' preferences
- Heterogeneous producers (typically heterogeneous costs), who produce several units
- Labor?
- Especially highly skilled
- Obvious example: CEOs
- But also: academics, artists, athletes, ...
- Interesting aspects: bilateral preferences
- An academic is characterized by a list of characteristics ...
- ... so is a university (actually a department)
- \rightarrow notion of 'quality of match'
- How about marriage?

Matching Models with Transfers

- Two heterogeneous populations; say, firms and (potential) CEOs

Matching Models with Transfers

- Two heterogeneous populations; say, firms and (potential) CEOs
- Matching: one individual (at most) from each population

Matching Models with Transfers

- Two heterogeneous populations; say, firms and (potential) CEOs
- Matching: one individual (at most) from each population
- Gain generated by such a match, match-specific

Matching Models with Transfers

- Two heterogeneous populations; say, firms and (potential) CEOs
- Matching: one individual (at most) from each population
- Gain generated by such a match, match-specific
- Generalizations: many to one, many to many, 'roommate' matching

Matching Models with Transfers

- Two heterogeneous populations; say, firms and (potential) CEOs
- Matching: one individual (at most) from each population
- Gain generated by such a match, match-specific
- Generalizations: many to one, many to many, 'roommate' matching
- Goal: explain:

Matching Models with Transfers

- Two heterogeneous populations; say, firms and (potential) CEOs
- Matching: one individual (at most) from each population
- Gain generated by such a match, match-specific
- Generalizations: many to one, many to many, 'roommate' matching
- Goal: explain:
- Who is matched with whom?

Matching Models with Transfers

- Two heterogeneous populations; say, firms and (potential) CEOs
- Matching: one individual (at most) from each population
- Gain generated by such a match, match-specific
- Generalizations: many to one, many to many, 'roommate' matching
- Goal: explain:
- Who is matched with whom?
- (in some models): how is the gain allocated?
\rightarrow therefore: endogeneize 'power' and intramatch allocations as functions of the 'environment' (i.e. the 'market')

Matching Models with Transfers

- Two heterogeneous populations; say, firms and (potential) CEOs
- Matching: one individual (at most) from each population
- Gain generated by such a match, match-specific
- Generalizations: many to one, many to many, 'roommate' matching
- Goal: explain:
- Who is matched with whom?
- (in some models): how is the gain allocated? \rightarrow therefore: endogeneize 'power' and intramatch allocations as functions of the 'environment' (i.e. the 'market')
- Equilibrium concept: Stability

Matching Models with Transfers

- Two heterogeneous populations; say, firms and (potential) CEOs
- Matching: one individual (at most) from each population
- Gain generated by such a match, match-specific
- Generalizations: many to one, many to many, 'roommate' matching
- Goal: explain:
- Who is matched with whom?
- (in some models): how is the gain allocated? \rightarrow therefore: endogeneize 'power' and intramatch allocations as functions of the 'environment' (i.e. the 'market')
- Equilibrium concept: Stability
- Robustness vis a vis uni- or bilateral deviations

Matching Models with Transfers

- Two heterogeneous populations; say, firms and (potential) CEOs
- Matching: one individual (at most) from each population
- Gain generated by such a match, match-specific
- Generalizations: many to one, many to many, 'roommate' matching
- Goal: explain:
- Who is matched with whom?
- (in some models): how is the gain allocated? \rightarrow therefore: endogeneize 'power' and intramatch allocations as functions of the 'environment' (i.e. the 'market')
- Equilibrium concept: Stability
- Robustness vis a vis uni- or bilateral deviations
- Interpretation: 'divorce at will'

Matching Models with Transfers

- Two heterogeneous populations; say, firms and (potential) CEOs
- Matching: one individual (at most) from each population
- Gain generated by such a match, match-specific
- Generalizations: many to one, many to many, 'roommate' matching
- Goal: explain:
- Who is matched with whom?
- (in some models): how is the gain allocated? \rightarrow therefore: endogeneize 'power' and intramatch allocations as functions of the 'environment' (i.e. the 'market')
- Equilibrium concept: Stability
- Robustness vis a vis uni- or bilateral deviations
- Interpretation: 'divorce at will'
- Models of competition (although not necessarily perfect)

Matching Models with Transfers

- Links with hedonic models?
\rightarrow very deep:
(Almost) any hedonic model is a matching model (and conversely)

Matching Models with Transfers

- Links with hedonic models?
\rightarrow very deep:
(Almost) any hedonic model is a matching model (and conversely)
- Hedonic models are matching models

Matching Models with Transfers

- Links with hedonic models?
\rightarrow very deep:
(Almost) any hedonic model is a matching model (and conversely)
- Hedonic models are matching models
- An hedonic equilibrium matches a producer and a consumer

Matching Models with Transfers

- Links with hedonic models?
\rightarrow very deep:
(Almost) any hedonic model is a matching model (and conversely)
- Hedonic models are matching models
- An hedonic equilibrium matches a producer and a consumer
- Which product? \rightarrow maximizes (pairwise) surplus

Matching Models with Transfers

- Links with hedonic models?
\rightarrow very deep:
(Almost) any hedonic model is a matching model (and conversely)
- Hedonic models are matching models
- An hedonic equilibrium matches a producer and a consumer
- Which product? \rightarrow maximizes (pairwise) surplus
- (Less obvious): matching models are hedonic equilibria

Matching Models with Transfers

- Links with hedonic models?
\rightarrow very deep:
(Almost) any hedonic model is a matching model (and conversely)
- Hedonic models are matching models
- An hedonic equilibrium matches a producer and a consumer
- Which product? \rightarrow maximizes (pairwise) surplus
- (Less obvious): matching models are hedonic equilibria
- Basic question: Where is the price?

Matching Models with Transfers

- Links with hedonic models?
\rightarrow very deep:
(Almost) any hedonic model is a matching model (and conversely)
- Hedonic models are matching models
- An hedonic equilibrium matches a producer and a consumer
- Which product? \rightarrow maximizes (pairwise) surplus
- (Less obvious): matching models are hedonic equilibria
- Basic question:

Where is the price?

- \rightarrow Basic insight (Shapley-Shubik, Becker)

Intra-pair allocation as a market clearing price

Matching Models with Transfers

- Links with hedonic models?
\rightarrow very deep:
(Almost) any hedonic model is a matching model (and conversely)
- Hedonic models are matching models
- An hedonic equilibrium matches a producer and a consumer
- Which product? \rightarrow maximizes (pairwise) surplus
- (Less obvious): matching models are hedonic equilibria
- Basic question:

Where is the price?

- \rightarrow Basic insight (Shapley-Shubik, Becker) Intra-pair allocation as a market clearing price
- Therefore:

Matching Models with Transfers

- Links with hedonic models?
\rightarrow very deep:
(Almost) any hedonic model is a matching model (and conversely)
- Hedonic models are matching models
- An hedonic equilibrium matches a producer and a consumer
- Which product? \rightarrow maximizes (pairwise) surplus
- (Less obvious): matching models are hedonic equilibria
- Basic question:

Where is the price?

- \rightarrow Basic insight (Shapley-Shubik, Becker)

Intra-pair allocation as a market clearing price

- Therefore:
- intra-pair allocation constrained or pinned down by stability conditions

Matching Models with Transfers

- Links with hedonic models?
\rightarrow very deep:
(Almost) any hedonic model is a matching model (and conversely)
- Hedonic models are matching models
- An hedonic equilibrium matches a producer and a consumer
- Which product? \rightarrow maximizes (pairwise) surplus
- (Less obvious): matching models are hedonic equilibria
- Basic question:

Where is the price?

- \rightarrow Basic insight (Shapley-Shubik, Becker)

Intra-pair allocation as a market clearing price

- Therefore:
- intra-pair allocation constrained or pinned down by stability conditions
- therefore influenced by 'market conditions'

Matching Models with Transfers

- Links with hedonic models?
\rightarrow very deep:
(Almost) any hedonic model is a matching model (and conversely)
- Hedonic models are matching models
- An hedonic equilibrium matches a producer and a consumer
- Which product? \rightarrow maximizes (pairwise) surplus
- (Less obvious): matching models are hedonic equilibria
- Basic question:

Where is the price?

- \rightarrow Basic insight (Shapley-Shubik, Becker)

Intra-pair allocation as a market clearing price

- Therefore:
- intra-pair allocation constrained or pinned down by stability conditions
- therefore influenced by 'market conditions'
- Applications (among many): intrahousehold allocation (crucial!)

Possible interpretation: 'marriage market'

- Two populations, men and women; matching: one individual from each population

Possible interpretation: 'marriage market'

- Two populations, men and women; matching: one individual from each population
- We want to explain matching patterns (who marries whom):

Possible interpretation: 'marriage market'

- Two populations, men and women; matching: one individual from each population
- We want to explain matching patterns (who marries whom):
- assortative matching (by education, income,...);

Possible interpretation: 'marriage market'

- Two populations, men and women; matching: one individual from each population
- We want to explain matching patterns (who marries whom):
- assortative matching (by education, income,...);
- impact on inequality, etc.

Possible interpretation: 'marriage market'

- Two populations, men and women; matching: one individual from each population
- We want to explain matching patterns (who marries whom):
- assortative matching (by education, income,...);
- impact on inequality, etc.
- ... but also: how are the gain from marriage allocated?

Possible interpretation: 'marriage market'

- Two populations, men and women; matching: one individual from each population
- We want to explain matching patterns (who marries whom):
- assortative matching (by education, income,...);
- impact on inequality, etc.
- ... but also: how are the gain from marriage allocated?
- ... and: how does the market for marriage affect behavior:

Possible interpretation: 'marriage market'

- Two populations, men and women; matching: one individual from each population
- We want to explain matching patterns (who marries whom):
- assortative matching (by education, income,...);
- impact on inequality, etc.
- ... but also: how are the gain from marriage allocated?
- ... and: how does the market for marriage affect behavior:
- ex post: behavior (including human capital investment) of existing couples (basic idea: expenditures may depend on the spouses' respective 'powers' - cf collective model).

Possible interpretation: 'marriage market'

- Two populations, men and women; matching: one individual from each population
- We want to explain matching patterns (who marries whom):
- assortative matching (by education, income,...);
- impact on inequality, etc.
- ... but also: how are the gain from marriage allocated?
- ... and: how does the market for marriage affect behavior:
- ex post: behavior (including human capital investment) of existing couples (basic idea: expenditures may depend on the spouses' respective 'powers' - cf collective model).
- ex ante: human capital investment of future spouses. Basic idea: HC improves marital prospects, in many directions \rightarrow a crucial motivation for HC investment, that has been overlooked so far.

Possible interpretation: 'marriage market'

- Two populations, men and women; matching: one individual from each population
- We want to explain matching patterns (who marries whom):
- assortative matching (by education, income,...);
- impact on inequality, etc.
- ... but also: how are the gain from marriage allocated?
- ... and: how does the market for marriage affect behavior:
- ex post: behavior (including human capital investment) of existing couples (basic idea: expenditures may depend on the spouses' respective 'powers' - cf collective model).
- ex ante: human capital investment of future spouses. Basic idea: HC improves marital prospects, in many directions \rightarrow a crucial motivation for HC investment, that has been overlooked so far.
- 'Tractable General Equilibrium'

Possible interpretation: 'marriage market'

- Two populations, men and women; matching: one individual from each population
- We want to explain matching patterns (who marries whom):
- assortative matching (by education, income,...);
- impact on inequality, etc.
- ... but also: how are the gain from marriage allocated?
- ... and: how does the market for marriage affect behavior:
- ex post: behavior (including human capital investment) of existing couples (basic idea: expenditures may depend on the spouses' respective 'powers' - cf collective model).
- ex ante: human capital investment of future spouses. Basic idea: HC improves marital prospects, in many directions \rightarrow a crucial motivation for HC investment, that has been overlooked so far.
- 'Tractable General Equilibrium'
- Different models are better suited for some purposes than for others.

Issues related to matching: two examples

Example 1: Assortative matching and inequality

- Burtless (EER 1999): over 1979-1996, 'The changing correlation of husband and wife earnings has tended to reinforce the effect of greater pay disparity.'

Example 1: Assortative matching and inequality

- Burtless (EER 1999): over 1979-1996, 'The changing correlation of husband and wife earnings has tended to reinforce the effect of greater pay disparity.'
- Maybe $1 / 3$ of the increase in household-level inequality (Gini) comes from rise of single-adult households and $1 / 6$ from increased assortative matching.

Example 1: Assortative matching and inequality

- Burtless (EER 1999): over 1979-1996, 'The changing correlation of husband and wife earnings has tended to reinforce the effect of greater pay disparity.'
- Maybe $1 / 3$ of the increase in household-level inequality (Gini) comes from rise of single-adult households and $1 / 6$ from increased assortative matching.
- Several recent papers (e.g. Greenwood et al 2013): 'if people matched in 2005 according to the 1960 standardized mating pattern there would be a significant reduction in income inequality; i.e., the Gini drops from 0.43 to 0.35 .'

Example 1: Assortative matching and inequality

- Burtless (EER 1999): over 1979-1996, 'The changing correlation of husband and wife earnings has tended to reinforce the effect of greater pay disparity.'
- Maybe $1 / 3$ of the increase in household-level inequality (Gini) comes from rise of single-adult households and $1 / 6$ from increased assortative matching.
- Several recent papers (e.g. Greenwood et al 2013): 'if people matched in 2005 according to the 1960 standardized mating pattern there would be a significant reduction in income inequality; i.e., the Gini drops from 0.43 to 0.35 .'
- Several questions; in particular:

Example 1: Assortative matching and inequality

- Burtless (EER 1999): over 1979-1996, 'The changing correlation of husband and wife earnings has tended to reinforce the effect of greater pay disparity.'
- Maybe $1 / 3$ of the increase in household-level inequality (Gini) comes from rise of single-adult households and $1 / 6$ from increased assortative matching.
- Several recent papers (e.g. Greenwood et al 2013): 'if people matched in 2005 according to the 1960 standardized mating pattern there would be a significant reduction in income inequality; i.e., the Gini drops from 0.43 to 0.35 .'
- Several questions; in particular:
- Which correlation should we consider: Earnings? Wages? Human capital?

Example 1: Assortative matching and inequality

- Burtless (EER 1999): over 1979-1996, 'The changing correlation of husband and wife earnings has tended to reinforce the effect of greater pay disparity.'
- Maybe $1 / 3$ of the increase in household-level inequality (Gini) comes from rise of single-adult households and $1 / 6$ from increased assortative matching.
- Several recent papers (e.g. Greenwood et al 2013): 'if people matched in 2005 according to the 1960 standardized mating pattern there would be a significant reduction in income inequality; i.e., the Gini drops from 0.43 to 0.35 .'
- Several questions; in particular:
- Which correlation should we consider: Earnings? Wages? Human capital?
- Why did correlation change? Did 'preferences for assortativeness' change? How can we define 'preferences for assortativeness'?

Example 1: Assortative matching and inequality

- Burtless (EER 1999): over 1979-1996, 'The changing correlation of husband and wife earnings has tended to reinforce the effect of greater pay disparity.'
- Maybe $1 / 3$ of the increase in household-level inequality (Gini) comes from rise of single-adult households and $1 / 6$ from increased assortative matching.
- Several recent papers (e.g. Greenwood et al 2013): 'if people matched in 2005 according to the 1960 standardized mating pattern there would be a significant reduction in income inequality; i.e., the Gini drops from 0.43 to 0.35 .'
- Several questions; in particular:
- Which correlation should we consider: Earnings? Wages? Human capital?
- Why did correlation change? Did 'preferences for assortativeness' change? How can we define 'preferences for assortativeness'?
- How do we compare single-adult households and couples? What about intrahousehold inequality?

Example 2: College premium and the demand for college education

Example 2: College premium and the demand for college education

- Motivation: remarkable increase in female education, labor supply, incomes worldwide during the last decades.

Figure 3: Fraction of 30- to 34-Year-Olds with College Education, Countries Above Median Per Capita gDP and Below Per Captta GDP, by Sex

Source: See Figure 1.
Source: Becker-Hubbard-Murphy 2009

Example 2: College premium and the demand for college education

- In the US:

Figure 13: Completed Education by Sex, Age 30-40, US 1968-2005

Source: Current Population Surveys.

Example 2: College premium and the demand for college education

Questions:

- why such different responses by gender?

Example 2: College premium and the demand for college education

Questions:

- why such different responses by gender?
- impact on intrahousehold allocation?

Example 2: College premium and the demand for college education

Questions:

- why such different responses by gender?
- impact on intrahousehold allocation?
- impact on household behavior (expenditure, HC investment, etc.)

Roadmap

(1) Matching models: general presentation
(2) The case of Transferable Utility (TU)
(3) Extensions and applications

Roadmap

(1) Matching models: general presentation
(2) The case of Transferable Utility (TU)
(3) Extensions and applications

Matching models: three main families

(1) Matching under NTU (Gale-Shapley) Idea: no transfer possible between matched partners

Matching models: three main families

(1) Matching under NTU (Gale-Shapley)

Idea: no transfer possible between matched partners
(2) Matching under TU (Becker-Shapley-Shubik)

Matching models: three main families

(1) Matching under NTU (Gale-Shapley)

Idea: no transfer possible between matched partners
(2) Matching under TU (Becker-Shapley-Shubik)

- Transfers possible without restrictions

Matching models: three main families

(1) Matching under NTU (Gale-Shapley)

Idea: no transfer possible between matched partners
(2) Matching under TU (Becker-Shapley-Shubik)

- Transfers possible without restrictions
- Technology: constant 'exchange rate' between utiles

Matching models: three main families

(1) Matching under NTU (Gale-Shapley)

Idea: no transfer possible between matched partners
(2) Matching under TU (Becker-Shapley-Shubik)

- Transfers possible without restrictions
- Technology: constant 'exchange rate' between utiles
- In particular: (strong) version of interpersonal comparison of utilities

Matching models: three main families

(1) Matching under NTU (Gale-Shapley)

Idea: no transfer possible between matched partners
(2) Matching under TU (Becker-Shapley-Shubik)

- Transfers possible without restrictions
- Technology: constant 'exchange rate' between utiles
- In particular: (strong) version of interpersonal comparison of utilities
- \rightarrow requires restrictions on preferences

Matching models: three main families

(1) Matching under NTU (Gale-Shapley)

Idea: no transfer possible between matched partners
(2) Matching under TU (Becker-Shapley-Shubik)

- Transfers possible without restrictions
- Technology: constant 'exchange rate' between utiles
- In particular: (strong) version of interpersonal comparison of utilities
- \rightarrow requires restrictions on preferences
(3) Matching under Imperfectly TU (ITU)

Matching models: three main families

(1) Matching under NTU (Gale-Shapley)

Idea: no transfer possible between matched partners
(2) Matching under TU (Becker-Shapley-Shubik)

- Transfers possible without restrictions
- Technology: constant 'exchange rate' between utiles
- In particular: (strong) version of interpersonal comparison of utilities
- \rightarrow requires restrictions on preferences
(3) Matching under Imperfectly TU (ITU)
- Transfers possible

Matching models: three main families

(1) Matching under NTU (Gale-Shapley)

Idea: no transfer possible between matched partners
(2) Matching under TU (Becker-Shapley-Shubik)

- Transfers possible without restrictions
- Technology: constant 'exchange rate' between utiles
- In particular: (strong) version of interpersonal comparison of utilities
- \rightarrow requires restrictions on preferences
(3) Matching under Imperfectly TU (ITU)
- Transfers possible
- But no restriction on preferences

Matching models: three main families

(1) Matching under NTU (Gale-Shapley)

Idea: no transfer possible between matched partners
(2) Matching under TU (Becker-Shapley-Shubik)

- Transfers possible without restrictions
- Technology: constant 'exchange rate' between utiles
- In particular: (strong) version of interpersonal comparison of utilities
- \rightarrow requires restrictions on preferences
(3) Matching under Imperfectly TU (ITU)
- Transfers possible
- But no restriction on preferences
- \rightarrow technology involves variable 'exchange rate'

Matching models: three main families

(1) Matching under NTU (Gale-Shapley)

Idea: no transfer possible between matched partners
(2) Matching under TU (Becker-Shapley-Shubik)

- Transfers possible without restrictions
- Technology: constant 'exchange rate' between utiles
- In particular: (strong) version of interpersonal comparison of utilities
- \rightarrow requires restrictions on preferences
(3) Matching under Imperfectly TU (ITU)
- Transfers possible
- But no restriction on preferences
- \rightarrow technology involves variable 'exchange rate'
(9) Recently: 'general' approaches ('matching with contracts', from Kelso-Crawford to Milgrom-Hatfield-Kominers and friends)
... and links with: auction theory, general equilibrium.

Formal structure: Common components

- Compact, separable metric spaces X, Y ('women, men') with finite measures F and G. Note that the spaces may be multidimensional
- This talk: concentrate on absolutely continuous measures.
- Spaces X, Y often 'completed' to allow for singles: $\bar{X}=X \cup\{\varnothing\}, \bar{Y}=Y \cup\{\varnothing\}$
- A matching defines of a measure h on $X \times Y($ or $\bar{X} \times \bar{Y})$ such that the marginals of h are F and G. Two reasons:
- allow for randomization
\rightarrow it is easy to find TU examples (even in one-dimension) where the unique stable matching involves randomization
- emphasize linearity
- The matching is pure if the support of the measure is included in the graph of some function ϕ
Translation: matching is pure if $y=\phi(x)$ a.e.
\rightarrow no 'randomization'

Formal structure: differences

- Defining the problem: populations X, Y plus

Formal structure: differences

- Defining the problem: populations X, Y plus
- NTU: two funtions $u(x, y), v(x, y)$

Formal structure: differences

- Defining the problem: populations X, Y plus
- NTU: two funtions $u(x, y), v(x, y)$
- TU: one function $s(x, y)$ (intrapair allocation is endogenous)

Formal structure: differences

- Defining the problem: populations X, Y plus
- NTU: two funtions $u(x, y), v(x, y)$
- TU: one function $s(x, y)$ (intrapair allocation is endogenous)
- ITU: Pareto frontier $u=F(x, y, v)$

Formal structure: differences

- Defining the problem: populations X, Y plus
- NTU: two funtions $u(x, y), v(x, y)$
- TU: one function $s(x, y)$ (intrapair allocation is endogenous)
- ITU: Pareto frontier $u=F(x, y, v)$
- Defining the solution

Formal structure: differences

- Defining the problem: populations X, Y plus
- NTU: two funtions $u(x, y), v(x, y)$
- TU: one function $s(x, y)$ (intrapair allocation is endogenous)
- ITU: Pareto frontier $u=F(x, y, v)$
- Defining the solution
- NTU: only the measure h; stability as usual

Formal structure: differences

- Defining the problem: populations X, Y plus
- NTU: two funtions $u(x, y), v(x, y)$
- TU: one function $s(x, y)$ (intrapair allocation is endogenous)
- ITU: Pareto frontier $u=F(x, y, v)$
- Defining the solution
- NTU: only the measure h; stability as usual
- TU: measure h and two functions $u(x), v(y)$ such that

$$
u(x)+v(y)=s(x, y) \text { for }(x, y) \in \operatorname{Supp}(h)
$$

and stability

$$
u(x)+v(y) \geq s(x, y) \text { for all }(x, y)
$$

Formal structure: differences

- Defining the problem: populations X, Y plus
- NTU: two funtions $u(x, y), v(x, y)$
- TU: one function $s(x, y)$ (intrapair allocation is endogenous)
- ITU: Pareto frontier $u=F(x, y, v)$
- Defining the solution
- NTU: only the measure h; stability as usual
- TU: measure h and two functions $u(x), v(y)$ such that

$$
u(x)+v(y)=s(x, y) \text { for }(x, y) \in \operatorname{Supp}(h)
$$

and stability

$$
u(x)+v(y) \geq s(x, y) \text { for all }(x, y)
$$

- ITU: measure h and two functions $u(x), v(y)$ such that

$$
u(x)=F(x, y, v(y)) \text { for }(x, y) \in \operatorname{Supp}(h)
$$

and stability

$$
u(x) \geq F(x, y, v(y)) \text { for all }(x, y)
$$

Implications (crucial for empirical implementation)

- NTU: stable matchings solve

$$
u(x)=\max _{z}\{U(x, z) \mid V(x, z) \geq v(z)\}
$$

and

$$
v(y)=\max _{z}\{V(z, y) \mid U(z, y) \geq u(z)\}
$$

for some pair of functions u and v.

Implications (crucial for empirical implementation)

- NTU: stable matchings solve

$$
u(x)=\max _{z}\{U(x, z) \mid V(x, z) \geq v(z)\}
$$

and

$$
v(y)=\max _{z}\{V(z, y) \mid U(z, y) \geq u(z)\}
$$

for some pair of functions u and v.

- TU: stable matchings solve

$$
u(x)=\max _{y}\{s(x, y)-v(y)\} \text { and } v(y)=\max _{x}\{s(x, y)-u(x)\}
$$

for some pair of functions u and v.

Implications (crucial for empirical implementation)

- NTU: stable matchings solve

$$
u(x)=\max _{z}\{U(x, z) \mid V(x, z) \geq v(z)\}
$$

and

$$
v(y)=\max _{z}\{V(z, y) \mid U(z, y) \geq u(z)\}
$$

for some pair of functions u and v.

- TU: stable matchings solve

$$
u(x)=\max _{y}\{s(x, y)-v(y)\} \text { and } v(y)=\max _{x}\{s(x, y)-u(x)\}
$$

for some pair of functions u and v.

- ITU: stable matchings solve

$$
u(x)=\max _{y}\{F(x, y, v(y))\} \text { and } v(y)=\max _{x}\left\{F^{-1}(x, y, u(x))\right\}
$$

for some pair of functions u and v.

Roadmap

(1) Matching models: general presentation
(2) The case of Transferable Utility (TU)
(3) Extensions and applications

Transferable Utility (TU)

Definition

A group satisfies TU if there exists monotone transformations of individual utilities such that the Pareto frontier is an hyperplane $u(x)+v(y)=s(x, y)$ for all values of prices and income.

- Two remarks:

Transferable Utility (TU)

Definition

A group satisfies TU if there exists monotone transformations of individual utilities such that the Pareto frontier is an hyperplane $u(x)+v(y)=s(x, y)$ for all values of prices and income.

- Two remarks:
- TU is an ordinal concept

Transferable Utility (TU)

Definition

A group satisfies TU if there exists monotone transformations of individual utilities such that the Pareto frontier is an hyperplane $u(x)+v(y)=s(x, y)$ for all values of prices and income.

- Two remarks:
- TU is an ordinal concept
- In particular, TU compatible with concave utilities and risk aversion

Transferable Utility (TU)

Definition

A group satisfies TU if there exists monotone transformations of individual utilities such that the Pareto frontier is an hyperplane $u(x)+v(y)=s(x, y)$ for all values of prices and income.

- Two remarks:
- TU is an ordinal concept
- In particular, TU compatible with concave utilities and risk aversion
- ... and a question:

Transferable Utility (TU)

Definition

A group satisfies TU if there exists monotone transformations of individual utilities such that the Pareto frontier is an hyperplane $u(x)+v(y)=s(x, y)$ for all values of prices and income.

- Two remarks:
- TU is an ordinal concept
- In particular, TU compatible with concave utilities and risk aversion
- ... and a question:
- \rightarrow Consider a model of household behavior: what properties of individual preferences does TU require?

TU and individual preferences

- Model:

TU and individual preferences

- Model:
- n agents

TU and individual preferences

- Model:
- n agents
- Private $\left(q_{i}\right)$ and public (Q) consumptions

TU and individual preferences

- Model:
- n agents
- Private $\left(q_{i}\right)$ and public (Q) consumptions
- Risk sharing, intertemporal, ...

TU and individual preferences

- Model:
- n agents
- Private $\left(q_{i}\right)$ and public (Q) consumptions
- Risk sharing, intertemporal, ...
- Collective (efficient decisions)

TU and individual preferences

- Model:
- n agents
- Private $\left(q_{i}\right)$ and public (Q) consumptions
- Risk sharing, intertemporal, ...
- Collective (efficient decisions)
- Static model: necessary and sufficient condition for TU: 'Affine Conditional Indirect Utility' (ACIU, Chiappori and Gugl 2015).

$$
v_{i}\left(Q, p, \rho_{i}\right)=a(p, Q) \rho_{i}+b_{i}(p, Q)
$$

TU and individual preferences

- Model:
- n agents
- Private $\left(q_{i}\right)$ and public (Q) consumptions
- Risk sharing, intertemporal, ...
- Collective (efficient decisions)
- Static model: necessary and sufficient condition for TU: 'Affine Conditional Indirect Utility’ (ACIU, Chiappori and Gugl 2015).

$$
v_{i}\left(Q, p, \rho_{i}\right)=a(p, Q) \rho_{i}+b_{i}(p, Q)
$$

- Includes GQL (Bergstrom \& Cornes)...

TU and individual preferences

- Model:
- n agents
- Private $\left(q_{i}\right)$ and public (Q) consumptions
- Risk sharing, intertemporal, ...
- Collective (efficient decisions)
- Static model: necessary and sufficient condition for TU: 'Affine Conditional Indirect Utility’ (ACIU, Chiappori and Gugl 2015).

$$
v_{i}\left(Q, p, \rho_{i}\right)=a(p, Q) \rho_{i}+b_{i}(p, Q)
$$

- Includes GQL (Bergstrom \& Cornes)...
- ... but more general

TU and individual preferences

- Model:
- n agents
- Private $\left(q_{i}\right)$ and public (Q) consumptions
- Risk sharing, intertemporal, ...
- Collective (efficient decisions)
- Static model: necessary and sufficient condition for TU: 'Affine Conditional Indirect Utility' (ACIU, Chiappori and Gugl 2015).

$$
v_{i}\left(Q, p, \rho_{i}\right)=a(p, Q) \rho_{i}+b_{i}(p, Q)
$$

- Includes GQL (Bergstrom \& Cornes)...
- ... but more general
- Risk aversion: ISHARA is N and S (Schulhofer-Wohl 2007)

TU and individual preferences

- Model:
- n agents
- Private $\left(q_{i}\right)$ and public (Q) consumptions
- Risk sharing, intertemporal, ...
- Collective (efficient decisions)
- Static model: necessary and sufficient condition for TU: 'Affine Conditional Indirect Utility’ (ACIU, Chiappori and Gugl 2015).

$$
v_{i}\left(Q, p, \rho_{i}\right)=a(p, Q) \rho_{i}+b_{i}(p, Q)
$$

- Includes GQL (Bergstrom \& Cornes)...
- ... but more general
- Risk aversion: ISHARA is N and S (Schulhofer-Wohl 2007)
- Simplest example:

$$
u_{i}\left(q_{i}, Q\right)=\frac{1}{1-\alpha}\left(q_{i} Q+b_{i}(Q)\right)^{1-\alpha}
$$

TU and individual preferences

- Model:
- n agents
- Private $\left(q_{i}\right)$ and public (Q) consumptions
- Risk sharing, intertemporal, ...
- Collective (efficient decisions)
- Static model: necessary and sufficient condition for TU: 'Affine Conditional Indirect Utility' (ACIU, Chiappori and Gugl 2015).

$$
v_{i}\left(Q, p, \rho_{i}\right)=a(p, Q) \rho_{i}+b_{i}(p, Q)
$$

- Includes GQL (Bergstrom \& Cornes)...
- ... but more general
- Risk aversion: ISHARA is N and S (Schulhofer-Wohl 2007)
- Simplest example:

$$
u_{i}\left(q_{i}, Q\right)=\frac{1}{1-\alpha}\left(q_{i} Q+b_{i}(Q)\right)^{1-\alpha}
$$

- Note that: under TU the group behaves as a single individual (whose utility is the sum of utilities)

Duality and optimal transportation

- Consider the following surplus maximization problem, which is an optimal transportation problem (Monge-Kantorovitch): Find a measure h on $X \times Y$ such that:

Duality and optimal transportation

- Consider the following surplus maximization problem, which is an optimal transportation problem (Monge-Kantorovitch): Find a measure h on $X \times Y$ such that:
- the marginals of h are F and G

Duality and optimal transportation

- Consider the following surplus maximization problem, which is an optimal transportation problem (Monge-Kantorovitch):
Find a measure h on $X \times Y$ such that:
- the marginals of h are F and G
- h solves

$$
\max _{h} \int_{X \times Y} s(x, y) d h(x, y)
$$

Duality and optimal transportation

- Consider the following surplus maximization problem, which is an optimal transportation problem (Monge-Kantorovitch):
Find a measure h on $X \times Y$ such that:
- the marginals of h are F and G
- h solves

$$
\max _{h} \int_{X \times Y} s(x, y) d h(x, y)
$$

- Note: linear programming; therefore

Duality and optimal transportation

- Consider the following surplus maximization problem, which is an optimal transportation problem (Monge-Kantorovitch):
Find a measure h on $X \times Y$ such that:
- the marginals of h are F and G
- h solves

$$
\max _{h} \int_{X \times Y} s(x, y) d h(x, y)
$$

- Note: linear programming; therefore
- Existence: easy to establish

Duality and optimal transportation

- Consider the following surplus maximization problem, which is an optimal transportation problem (Monge-Kantorovitch):
Find a measure h on $X \times Y$ such that:
- the marginals of h are F and G
- h solves

$$
\max _{h} \int_{X \times Y} s(x, y) d h(x, y)
$$

- Note: linear programming; therefore
- Existence: easy to establish
- 'Generic' uniqueness

Duality and optimal transportation

- Consider the following surplus maximization problem, which is an optimal transportation problem (Monge-Kantorovitch):
Find a measure h on $X \times Y$ such that:
- the marginals of h are F and G
- h solves

$$
\max _{h} \int_{X \times Y} s(x, y) d h(x, y)
$$

- Note: linear programming; therefore
- Existence: easy to establish
- 'Generic' uniqueness
- There exists a dual program, and duality theorem applies

Duality and optimal transportation (cont.)

- Dual problem: dual functions $u(x), v(y)$ and solve

$$
\min _{u, v} \int_{X} u(x) d F(x)+\int_{Y} v(y) d G(y)
$$

under the constraint

$$
u(x)+v(y) \geq s(x, y) \text { for all }(x, y) \in X \times Y
$$

Duality and optimal transportation (cont.)

- Dual problem: dual functions $u(x), v(y)$ and solve

$$
\min _{u, v} \int_{X} u(x) d F(x)+\int_{Y} v(y) d G(y)
$$

under the constraint

$$
u(x)+v(y) \geq s(x, y) \text { for all }(x, y) \in X \times Y
$$

- In particular, the dual variables u and v describe an intrapair allocation compatible with a stable matching

Duality and optimal transportation (cont.)

- Dual problem: dual functions $u(x), v(y)$ and solve

$$
\min _{u, v} \int_{X} u(x) d F(x)+\int_{Y} v(y) d G(y)
$$

under the constraint

$$
u(x)+v(y) \geq s(x, y) \text { for all }(x, y) \in X \times Y
$$

- In particular, the dual variables u and v describe an intrapair allocation compatible with a stable matching
- Basic result: A measure h is associated with a stable matching (h, u, v) if and only if it solves the primal problem

Duality and optimal transportation (cont.)

- Dual problem: dual functions $u(x), v(y)$ and solve

$$
\min _{u, v} \int_{X} u(x) d F(x)+\int_{Y} v(y) d G(y)
$$

under the constraint

$$
u(x)+v(y) \geq s(x, y) \text { for all }(x, y) \in X \times Y
$$

- In particular, the dual variables u and v describe an intrapair allocation compatible with a stable matching
- Basic result: A measure h is associated with a stable matching (h, u, v) if and only if it solves the primal problem
- Proof:

$$
\begin{aligned}
\int_{X} u(x) d F(x)+\int_{Y} v(y) d G(y) & =\int_{X \times Y}(u(x)+v(y)) d h(x, y) \\
& \geq \int_{X \times Y} s(x, y) d h(x, y)
\end{aligned}
$$

Duality theorem: equality $\Rightarrow u(x)+v(y)=s(x, y) \quad h-$ - a.e.

Duality and optimal transportation (cont.)

- Corollary: Let s and \bar{s} be two surplus functions. Assume there exists two functions f and g, mapping R^{m} to R and R^{n} to R respectively, such that

$$
s(x, y)=\bar{s}(x, y)+f(x)+g(y)
$$

Any stable matching for s is a stable matching for \bar{s} and conversely.

Duality and optimal transportation (cont.)

- Corollary: Let s and \bar{s} be two surplus functions. Assume there exists two functions f and g, mapping R^{m} to R and R^{n} to R respectively, such that

$$
s(x, y)=\bar{s}(x, y)+f(x)+g(y)
$$

Any stable matching for s is a stable matching for \bar{s} and conversely.

- Moreover, if s is Lipschitz then u and v are Lipschitz, therefore differentiable a.e. (Rademacher)

Duality and optimal transportation (cont.)

- Corollary: Let s and \bar{s} be two surplus functions. Assume there exists two functions f and g, mapping R^{m} to R and R^{n} to R respectively, such that

$$
s(x, y)=\bar{s}(x, y)+f(x)+g(y)
$$

Any stable matching for s is a stable matching for \bar{s} and conversely.

- Moreover, if s is Lipschitz then u and v are Lipschitz, therefore differentiable a.e. (Rademacher)
- Since

$$
u(x)=\max _{y} s(x, y)-v(y)
$$

we have that

$$
D_{x} u(x)=D_{x} s(x, y) \text { and } D_{y} v(y)=D_{y} s(x, y)
$$

Duality and optimal transportation (cont.)

- Corollary: Let s and \bar{s} be two surplus functions. Assume there exists two functions f and g, mapping R^{m} to R and R^{n} to R respectively, such that

$$
s(x, y)=\bar{s}(x, y)+f(x)+g(y)
$$

Any stable matching for s is a stable matching for \bar{s} and conversely.

- Moreover, if s is Lipschitz then u and v are Lipschitz, therefore differentiable a.e. (Rademacher)
- Since

$$
u(x)=\max _{y} s(x, y)-v(y)
$$

we have that

$$
D_{x} u(x)=D_{x} s(x, y) \text { and } D_{y} v(y)=D_{y} s(x, y)
$$

- Question: can we solve the first equation in y ?

Links with hedonic models

- Structure: three sets ('buyers' X, 'sellers' Y, 'products' Z) with measures μ, ν, σ.
- Buyer x : quasi linear preferences $U(x, z)-P(z)$; seller y maximizes profit $P(z)-c(y, z)$
- Equilibrium: price function $P(z)$ that clears markets
- Technically: function P and measure α on the product set $X \times Y \times Z$ such that
(i) marginal of α on X (resp. Y) coincides with μ (resp. v)
(ii) for all (x, y, z) in the support of α,

$$
\begin{aligned}
U(x, z)-P(z) & =\max _{z^{\prime} \in K}\left(U\left(x, z^{\prime}\right)-P\left(z^{\prime}\right)\right) \\
\text { and } P(z)-c(y, z) & =\max _{z^{\prime} \in K}\left(P\left(z^{\prime}\right)-c\left(y, z^{\prime}\right)\right) .
\end{aligned}
$$

- Note that: $c(y, z)$ does not depend on x

Links with hedonic models

- Chiappori, McCann and Nesheim (2010): canonical correspondance between QL hedonic models and matching models under TU.
- Specifically, consider a hedonic model and define surplus:

$$
s(x, y)=\max _{z \in Z}(U(x, z)-c(y, z))
$$

Let η be the marginal of α over $X \times Y, u(x)$ and $v(y)$ by

$$
u(x)=\max _{z \in K} U(x, z)-P(z) \text { and } v(y)=\max _{z \in K} P(z)-c(y, z)
$$

Then (η, u, v) defines a stable matching. Conversely, starting from a stable matching (η, u, v), for all (x, y, z) we have:

$$
\begin{aligned}
u(x)+v(y) & \geq s(x, y) \geq U(x, z)-c(y, z) \text { therefore } \\
c(y, z)+v(y) & \geq U(x, z)-u(x)
\end{aligned}
$$

For any z, an equilibrium price is any $P(z)$ such that

$$
\inf _{y \in J}\{c(y, z)+v(y)\} \geq P(z) \geq \sup _{x \in I}\{u(x, z)-u(x)\}
$$

Supermodularity and assortative matching

- Assume X, Y one-dimensional. Then s is strictly supermodular if whenever $x>x^{\prime}$ and $y>y^{\prime}$ then

$$
s(x, y)+s\left(x^{\prime}, y^{\prime}\right)>s\left(x, y^{\prime}\right)+s\left(x^{\prime}, y\right)
$$

Supermodularity and assortative matching

- Assume X, Y one-dimensional. Then s is strictly supermodular if whenever $x>x^{\prime}$ and $y>y^{\prime}$ then

$$
s(x, y)+s\left(x^{\prime}, y^{\prime}\right)>s\left(x, y^{\prime}\right)+s\left(x^{\prime}, y\right)
$$

- Submodularity: similar

Supermodularity and assortative matching

- Assume X, Y one-dimensional. Then s is strictly supermodular if whenever $x>x^{\prime}$ and $y>y^{\prime}$ then

$$
s(x, y)+s\left(x^{\prime}, y^{\prime}\right)>s\left(x, y^{\prime}\right)+s\left(x^{\prime}, y\right)
$$

- Submodularity: similar
- Interpretation: single crossing (Spence - Mirrlees)

Supermodularity and assortative matching

- Assume X, Y one-dimensional. Then s is strictly supermodular if whenever $x>x^{\prime}$ and $y>y^{\prime}$ then

$$
s(x, y)+s\left(x^{\prime}, y^{\prime}\right)>s\left(x, y^{\prime}\right)+s\left(x^{\prime}, y\right)
$$

- Submodularity: similar
- Interpretation: single crossing (Spence - Mirrlees)
- In particular, if s is C^{2} then for all (x, y) :

$$
\frac{\partial^{2} s}{\partial x \partial y}>0 \quad(<0)
$$

Supermodularity and assortative matching

- Assume X, Y one-dimensional. Then s is strictly supermodular if whenever $x>x^{\prime}$ and $y>y^{\prime}$ then

$$
s(x, y)+s\left(x^{\prime}, y^{\prime}\right)>s\left(x, y^{\prime}\right)+s\left(x^{\prime}, y\right)
$$

- Submodularity: similar
- Interpretation: single crossing (Spence - Mirrlees)
- In particular, if s is C^{2} then for all (x, y) :

$$
\frac{\partial^{2} s}{\partial x \partial y}>0 \quad(<0)
$$

- Consequence: matching is assortative

Supermodularity and assortative matching

- Assume X, Y one-dimensional. Then s is strictly supermodular if whenever $x>x^{\prime}$ and $y>y^{\prime}$ then

$$
s(x, y)+s\left(x^{\prime}, y^{\prime}\right)>s\left(x, y^{\prime}\right)+s\left(x^{\prime}, y\right)
$$

- Submodularity: similar
- Interpretation: single crossing (Spence - Mirrlees)
- In particular, if s is C^{2} then for all (x, y) :

$$
\frac{\partial^{2} s}{\partial x \partial y}>0 \quad(<0)
$$

- Consequence: matching is assortative
- Note that the mapping

$$
y \rightarrow \frac{\partial s}{\partial x} \text { is injective }
$$

Generalization: the twist condition

- Problem: supermodularity and assortative matching are 1-dimensional
- Generalization ('twist' condition):

Definition

The function $s \in C^{1}$ satisfies the twist condition if, for each fixed $x_{0} \in X$ and $y_{0} \neq y \in Y$, the mapping

$$
x \in X \mapsto \delta\left(x, y, x_{0}, y_{0}\right)=s(x, y)+s\left(x_{0}, y_{0}\right)-s\left(x, y_{0}\right)-s\left(x_{0}, y\right)
$$

has no critical points.

- Equivalently, for almost all x_{0} in X,

$$
D_{x} s\left(x_{0}, y_{1}\right)=D_{x} s\left(x_{0}, y_{2}\right) \Rightarrow y_{1}=y_{2}
$$

That is, $y \rightarrow D_{x}(x, y)$ is injective

- Then the stable matching is unique and pure

The twist condition

Example 1: Index models

- Definition: there exists $/: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $\sigma: \mathbf{R}^{m+1} \rightarrow \mathbf{R}$ such that:

$$
\begin{equation*}
s(x, y)=\sigma(x, I(y)) \tag{1}
\end{equation*}
$$

The twist condition

Example 1: Index models

- Definition: there exists $/: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $\sigma: \mathbf{R}^{m+1} \rightarrow \mathbf{R}$ such that:

$$
\begin{equation*}
s(x, y)=\sigma(x, I(y)) \tag{1}
\end{equation*}
$$

- NSC:

$$
\frac{\partial}{\partial x_{m}}\left(\frac{\partial s / \partial y_{k}}{\partial s / \partial y_{l}}\right)=0 \quad \forall k, I, m .
$$

The twist condition

Example 1: Index models

- Definition: there exists $/: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $\sigma: \mathbf{R}^{m+1} \rightarrow \mathbf{R}$ such that:

$$
\begin{equation*}
s(x, y)=\sigma(x, I(y)) \tag{1}
\end{equation*}
$$

- NSC:

$$
\frac{\partial}{\partial x_{m}}\left(\frac{\partial s / \partial y_{k}}{\partial s / \partial y_{l}}\right)=0 \quad \forall k, I, m .
$$

- Practical use: then $n=1$ case, with Y replaced with $\tilde{Y}=\operatorname{Im} / \subset \mathbb{R}$ and v with push-forward $\tilde{v}:=I_{\#} v$ of v through I

The twist condition

Example 1: Index models

- Definition: there exists $/: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $\sigma: \mathbf{R}^{m+1} \rightarrow \mathbf{R}$ such that:

$$
\begin{equation*}
s(x, y)=\sigma(x, I(y)) \tag{1}
\end{equation*}
$$

- NSC:

$$
\frac{\partial}{\partial x_{m}}\left(\frac{\partial s / \partial y_{k}}{\partial s / \partial y_{l}}\right)=0 \quad \forall k, I, m
$$

- Practical use: then $n=1$ case, with Y replaced with $\tilde{Y}=\operatorname{Im} / \subset \mathbb{R}$ and v with push-forward $\tilde{v}:=I_{\#} v$ of v through I
- Extension: pseudo-index models

$$
\begin{equation*}
s(x, y)=\alpha(y)+\sigma(x, I(y)) \tag{2}
\end{equation*}
$$

The twist condition

Example 1: Index models

- Definition: there exists $I: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $\sigma: \mathbf{R}^{m+1} \rightarrow \mathbf{R}$ such that:

$$
\begin{equation*}
s(x, y)=\sigma(x, I(y)) \tag{1}
\end{equation*}
$$

- NSC:

$$
\frac{\partial}{\partial x_{m}}\left(\frac{\partial s / \partial y_{k}}{\partial s / \partial y_{l}}\right)=0 \quad \forall k, I, m
$$

- Practical use: then $n=1$ case, with Y replaced with $\tilde{Y}=\operatorname{Im} / \subset \mathbb{R}$ and v with push-forward $\tilde{v}:=I_{\#} v$ of v through I
- Extension: pseudo-index models

$$
\begin{equation*}
s(x, y)=\alpha(y)+\sigma(x, I(y)) \tag{2}
\end{equation*}
$$

- Both cases: if $D_{x} \sigma(x, i)$ is injective in i then

$$
D_{x} s(x, y)=D_{x} \sigma(x, I(y)) \neq D_{x} \sigma\left(x, I\left(y_{0}\right)\right)=D_{x} s\left(x, y_{0}\right)
$$

for any y, y_{0} such that $I(y) \neq I\left(y_{0}\right) \rightarrow$ Twist!

The twist condition

Example 2

- Example (Galichon-Salanié 2013, Dupuy-Galichon 2013, Lindenlaub 2015):

$$
s(x, y)=f_{X}(x)+g_{Y}(y)+\sum_{k=1}^{K} a_{k} f_{k}\left(x_{k}\right) g_{k}\left(y_{k}\right)
$$

- Then

$$
D_{x} s(x, y)-D_{x} s(x, \bar{y})=\left(\begin{array}{c}
a_{1} f_{1}^{\prime}\left(x_{1}\right)\left(g_{1}\left(y_{1}\right)-g_{1}\left(\bar{y}_{1}\right)\right) \\
\vdots \\
a_{K} f_{K}^{\prime}\left(x_{K}\right)\left(g_{K}\left(y_{K}\right)-g_{K}\left(\bar{y}_{K}\right)\right)
\end{array}\right)
$$

- If both the $f \mathrm{~s}$ and the $g \mathrm{~s}$ are strictly monotonic, then twist; therefore uniqueness and purity
- Moreover, matching such that x_{k} increases with y_{k} (Lindenlaub's 'assortative matching')

Intracouple allocation under TU

- Discrete number of agents: equilibrium (stability) conditions impose constraints on individual shares...

Intracouple allocation under TU

- Discrete number of agents: equilibrium (stability) conditions impose constraints on individual shares...
- ... but there exists in general an infinite set of intramatch allocations

Intracouple allocation under TU

- Discrete number of agents: equilibrium (stability) conditions impose constraints on individual shares...
- ... but there exists in general an infinite set of intramatch allocations
- However, with a continuum of agents, intramatch allocation of welfare is typically pinned down by the equilibrium conditions

Intracouple allocation under TU

- Discrete number of agents: equilibrium (stability) conditions impose constraints on individual shares...
- ... but there exists in general an infinite set of intramatch allocations
- However, with a continuum of agents, intramatch allocation of welfare is typically pinned down by the equilibrium conditions
- Known from the outset, but ...

Intracouple allocation under TU

- Discrete number of agents: equilibrium (stability) conditions impose constraints on individual shares...
- ... but there exists in general an infinite set of intramatch allocations
- However, with a continuum of agents, intramatch allocation of welfare is typically pinned down by the equilibrium conditions
- Known from the outset, but ...
- ... much easier than you would think

Pinning down intracouple allocation under TU

Assume X, Y one dimensional and s supermodular. Then 3 steps

- Step 1: supermodularity implies assortative matching: x matched with $y=\psi(x)$ if the number of women above x equals the number of men above $\psi(x)$

Pinning down intracouple allocation under TU

Assume X, Y one dimensional and s supermodular. Then 3 steps

- Step 1: supermodularity implies assortative matching: x matched with $y=\psi(x)$ if the number of women above x equals the number of men above $\psi(x)$
- Step 2: Stability implies

$$
u(x)=\max _{y} s(x, y)-v(y)
$$

with the max being reached for $y=\psi(x)$.
Therefore

$$
u^{\prime}(x)=\frac{\partial s}{\partial x}(x, \psi(x)) \text { and } v^{\prime}(y)=\frac{\partial s}{\partial y}(\phi(y), y)
$$

and

$$
u(x)=k+\int_{0}^{x} \frac{\partial s}{\partial x}(t, \psi(t)) d t, v(y)=k^{\prime}+\int_{0}^{y} \frac{\partial s}{\partial y}(\phi(s), s) d s
$$

\rightarrow Utilities defined up to two additive constants

Pinning down intracouple allocation under TU

- Step 3: pin down the constants
- Note that

$$
u(x)+v(\psi(x))=s(x, \psi(x))
$$

which pins down the sum $k+k^{\prime}$

- If one gender in excess supply (say women): the 'last married' woman indifferent between marriage and singlehood
- Note: typically, discontinuity
- If equal number (knife-edge situation), indeterminate ...
... unless corner solutions

Three extensions

- Imperfectly Transferable Utility (ITU)
- Multidimensional matching and links with AS models (CMcCP 2015)
- Pre-matching investments

Three extensions

- Imperfectly Transferable Utility (ITU)
- Multidimensional matching and links with AS models (CMcCP 2015)
- Pre-matching investments

Imperfectly Transferable Utility (ITU)

Motivation

- Limitation of TU models: all Pareto optimums correspond to the same aggregate behavior
- Therefore, redistributing power between men and women cannot impact the structure of expenditures
- 'Collective' literature: important phenomenon

Imperfectly transferable utilities

General case:

- Transfers possible...
- ... but the 'exchange rate' is not constant.
- In practice:

$$
u(x)=P(x, y, v(y))
$$

with P decreasing in v, usually increasing in x and y.

- Stability:

$$
u(x) \geq P(x, y, v(y)) \forall x \in X, y \in Y
$$

- But: no longer equivalent to a maximization ('total surplus ' not defined).

Imperfectly transferable utility: theory

- Stability

$$
u(x) \geq \max _{y} P(x, y, v(y))
$$

and equality if marriage probability positive. Hence:

$$
u(x)=\max _{y} P(x, y, v(y))
$$

1st O C:

$$
\frac{\partial P}{\partial y}(x, y, v(y))+v^{\prime}(y) \frac{\partial P}{\partial v}(x, y, v(y))=0
$$

satisfied for $x=\phi(y)$

Imperfectly transferable utility: theory

- Stability

$$
u(x) \geq \max _{y} P(x, y, v(y))
$$

and equality if marriage probability positive. Hence:

$$
u(x)=\max _{y} P(x, y, v(y))
$$

1st O C:

$$
\frac{\partial P}{\partial y}(x, y, v(y))+v^{\prime}(y) \frac{\partial P}{\partial v}(x, y, v(y))=0
$$

satisfied for $x=\phi(y)$

- Knowing ϕ, if $\partial P / \partial y>0, v$ defined up to a constant by:

$$
v^{\prime}(y)=-\frac{\frac{\partial P}{\partial y}(\phi(y), y, v(y))}{\frac{\partial P}{\partial v}(\phi(y), y, v(y))}>0
$$

Imperfectly transferable utility: theory

Assortativity

- 1st OC:

$$
H(y, \phi(y))=0 \quad \forall y
$$

where

$$
H(y, x)=\frac{\partial P}{\partial y}(x, y, v(y))+v^{\prime}(y) \frac{\partial P}{\partial v}(x, y, v(y)) .
$$

therefore

$$
\frac{\partial H}{\partial y}+\frac{\partial H}{\partial x} \phi^{\prime}(y)=0 \quad \forall y,
$$

Imperfectly transferable utility: theory

Assortativity

- 1st OC:

$$
H(y, \phi(y))=0 \quad \forall y
$$

where

$$
H(y, x)=\frac{\partial P}{\partial y}(x, y, v(y))+v^{\prime}(y) \frac{\partial P}{\partial v}(x, y, v(y)) .
$$

therefore

$$
\frac{\partial H}{\partial y}+\frac{\partial H}{\partial x} \phi^{\prime}(y)=0 \quad \forall y
$$

- 2nd OC:

$$
\frac{\partial H}{\partial y} \leq 0 \Leftrightarrow \frac{\partial H}{\partial x} \phi^{\prime}(y) \geq 0
$$

or:

$$
\begin{equation*}
\left(\frac{\partial^{2} P}{\partial x \partial y}(\phi(y), y, v(y))+v^{\prime}(y) \frac{\partial^{2} P}{\partial x \partial v}(\phi(y), y, v(y))\right) \phi^{\prime}(y) \geq 0 \forall y \tag{3}
\end{equation*}
$$

Application: matching on wages

- Framework:

Application: matching on wages

- Framework:
- Agents characterized by their wage (or Human Capital) \rightarrow match

Application: matching on wages

- Framework:
- Agents characterized by their wage (or Human Capital) \rightarrow match
- Then labor supply decisions

Application: matching on wages

- Framework:
- Agents characterized by their wage (or Human Capital) \rightarrow match
- Then labor supply decisions
- Utilities:

$$
u_{i}\left(L_{i}, Q\right)=L_{i} Q^{\alpha}
$$

Application: matching on wages

- Framework:
- Agents characterized by their wage (or Human Capital) \rightarrow match
- Then labor supply decisions
- Utilities:

$$
u_{i}\left(L_{i}, Q\right)=L_{i} Q^{\alpha}
$$

- Pareto-efficiency:

$$
\max _{L_{1}, L_{2}, Q} L_{1} Q^{\alpha}+\mu L_{2} Q^{\alpha}
$$

under

$$
Q+w_{1} L_{1}+w_{2} L_{2}=\left(w_{1}+w_{2}\right) T
$$

Application: matching on wages

- Framework:
- Agents characterized by their wage (or Human Capital) \rightarrow match
- Then labor supply decisions
- Utilities:

$$
u_{i}\left(L_{i}, Q\right)=L_{i} Q^{\alpha}
$$

- Pareto-efficiency:

$$
\max _{L_{1}, L_{2}, Q} L_{1} Q^{\alpha}+\mu L_{2} Q^{\alpha}
$$

under

$$
Q+w_{1} L_{1}+w_{2} L_{2}=\left(w_{1}+w_{2}\right) T
$$

- Then $\mu=w_{2} / w_{1}$, and Pareto frontier:

$$
u_{1}=-\frac{w_{2}}{w_{1}} u_{2}+\frac{\alpha}{(1+\alpha)^{2}} \frac{\left(w_{1}+w_{2}\right)^{2}}{w_{1}} T^{2}
$$

Three extensions

- Imperfectly Transferable Utility (ITU)
- Multidimensional matching and links with AS models (CMcCP 2015)
- Pre-matching investments

Matching with different dimensions

- Assume $n<m$
- 'Indifference sets': the same husband y matched with a continuum of potential wives
- In practice:

$$
\left\{x \in X \mid D_{y} s(x, \bar{y})=K(\bar{y})\right\}
$$

- If s non degenerate (i.e. if the rank of $D_{x y}^{2} s=n$) then these sets are submanifolds
- Note that the 'actual' indifference sets depend on the surplus and the measures
- Interesting case: $n=1$

Multi to one dimensional matching $(\mathrm{n}=1)$

- Motivation: 'multidimensional wives' vs 'one-dimensional husbands'
- Crucial notion: iso-husband curve (submanifold if s non degenerate)
- Important for two reasons:
- Theoretical: main outcomes of the matching model; generate testable predictions
- Empirical: easy to identify (requires specific assumption on the stochastic structure, of COQ JPE 2009)
- Particular case: index or pseudo index models
- Here:
- Provide a general method for solving for iso-husband curves
- If works, then the measure conditions pin down the efficient matching
- Sufficient condition: nestedness

Multi to one dimensional matching $(\mathrm{n}=1)$

Construction

- Potential indifference sets:

$$
X_{\bar{y}, k}=\left\{x \in X \mid D_{y} s(x, \bar{y})=k\right\}
$$

If s non degenerate, manifold of dimension $m-1$

- Divides X into two pieces: the sublevel set

$$
\begin{equation*}
X_{\leq}(y, k):=\left\{x \in X \left\lvert\, \frac{\partial s}{\partial y}(x, y) \leq k\right.\right\} \tag{4}
\end{equation*}
$$

and its complement $X_{>}(y, k):=X \backslash X_{\leq}(y, k)$.

- For any given \bar{y}, choose k such that

$$
\mu\left[X_{\leq}(\bar{y}, k)\right]=v[-\infty, \bar{y}]
$$

- Index model: if $s(x, y)=S(I(x), y)$ then
$X_{\leq}(y, k)=\left\{x \in X \mid I(x) \leq k^{\prime}\right\}$ depends on y and k only through k^{\prime}
\rightarrow nested iff twist
- Also true for quasi-index

Multi to one dimensional matching $(\mathrm{n}=1)$

Construction (cted)

In general: more complicated

- Definition: the model is nested if:
- The sublevel sets $y \in Y \mapsto X_{\leq}(y, k(y))$ depend monotonically on $y \in \mathbf{R}$,
- Strict inclusion $X_{\leq}(y, k(y)) \subset X_{<}\left(y^{\prime}, k\left(y^{\prime}\right)\right)$ holding whenever $\nu\left[\left(y, y^{\prime}\right)\right]>0$
- Index model: boils down to Spence-Mirrlees. Indeed:
- The sublevel set $X_{\leq}(y, k)$ does not depend on y (depends on k)
- Monotonicity guaranteed if SM
- Note that the condition does not depend on the measures
- In general: when can we guarantee nestedness?
- Sufficient conditions involve both the surplus and the measures
- Nestedness for all measures requires quasi-index
- \rightarrow companion paper

Competitive version of Rochet-Choné

- Model:
- n-dimensional space of products $z=\left(z_{1}, \ldots, z_{n}\right) \in Z \subset \mathbf{R}_{+}^{n}$;
- n-dimensional space of buyers (measure μ):
$x=\left(x_{1}, \ldots, x_{n}\right) \in X \subset \mathbf{R}_{+}^{n} . \rightarrow$ utility $U(x, z)-P(z)$ where $U(x, z)=\sum_{i=1}^{n} x_{i} z_{i}$,
- One dimensional space of producers (measure v); profit $P(z)-c(y, z)$, where

$$
c(y, z)=\frac{1}{2 y} \sum_{i=1}^{n} z_{i}^{2}
$$

- Either each producer produces one good (real estate), or constant returns to scale
- \rightarrow Rochet-Choné with competitive producers
- Producers heterogeneity is not crucial (v could be Dirac), but competition is.

Competitive version of Rochet-Choné

Resolution:

- Surplus:

$$
s(x, y)=\max _{z \in Z}\left(\sum_{i=1}^{n} x_{i} z_{i}-\frac{1}{2 y} \sum_{i=1}^{n} z_{i}^{2}\right)
$$

Competitive version of Rochet-Choné

Resolution:

- Surplus:

$$
s(x, y)=\max _{z \in Z}\left(\sum_{i=1}^{n} x_{i} z_{i}-\frac{1}{2 y} \sum_{i=1}^{n} z_{i}^{2}\right)
$$

- Solution: $z_{i}=x_{i} y$ therefore

$$
s(x, y)=\frac{1}{2} y\left(\sum_{i=1}^{n} x_{i}^{2}\right) .
$$

Competitive version of Rochet-Choné

Resolution:

- Surplus:

$$
s(x, y)=\max _{z \in Z}\left(\sum_{i=1}^{n} x_{i} z_{i}-\frac{1}{2 y} \sum_{i=1}^{n} z_{i}^{2}\right)
$$

- Solution: $z_{i}=x_{i} y$ therefore

$$
s(x, y)=\frac{1}{2} y\left(\sum_{i=1}^{n} x_{i}^{2}\right) .
$$

- Note: index model with $I(x)=\sum_{i=1}^{n} x_{i}^{2}$;

Competitive version of Rochet-Choné

Resolution:

- Surplus:

$$
s(x, y)=\max _{z \in Z}\left(\sum_{i=1}^{n} x_{i} z_{i}-\frac{1}{2 y} \sum_{i=1}^{n} z_{i}^{2}\right)
$$

- Solution: $z_{i}=x_{i} y$ therefore

$$
s(x, y)=\frac{1}{2} y\left(\sum_{i=1}^{n} x_{i}^{2}\right) .
$$

- Note: index model with $I(x)=\sum_{i=1}^{n} x_{i}^{2}$;
- Then

$$
s(x, y)=S(y, I(x))=\frac{1}{2} y \times I(x)
$$

and S satisfies Spence-Mirrlees!

Competitive version of Rochet-Choné

Resolution:

- Surplus:

$$
s(x, y)=\max _{z \in Z}\left(\sum_{i=1}^{n} x_{i} z_{i}-\frac{1}{2 y} \sum_{i=1}^{n} z_{i}^{2}\right)
$$

- Solution: $z_{i}=x_{i} y$ therefore

$$
s(x, y)=\frac{1}{2} y\left(\sum_{i=1}^{n} x_{i}^{2}\right)
$$

- Note: index model with $I(x)=\sum_{i=1}^{n} x_{i}^{2}$;
- Then

$$
s(x, y)=S(y, I(x))=\frac{1}{2} y \times I(x)
$$

and S satisfies Spence-Mirrlees!

- Consequence: existence, uniqueness, and purity ('assortative matching')

Competitive version of Rochet-Choné

Example of measures (case $\mathrm{m}=2$)

- μ uniform (normalized to have total mass 1) on the quarter disk

$$
\left\{\left(x_{1}, x_{2}\right) \mid x_{1}^{2}+x_{2}^{2} \leq 1, x_{1} \geq 0, x_{2} \geq 0\right\}
$$

- v uniform on $[1,2]$.
- Optimal matching:

$$
F(x)=|x|^{2}+1
$$

- Agent x then buys the product z such that:

$$
z_{i}=x_{i}\left(\sum_{k=1}^{n} x_{k}^{2}+1\right), \quad i=1, \ldots, n
$$

- Note: no bunching

Competitive version of Rochet-Choné

- Utilities:

$$
\frac{\partial u}{\partial x_{i}}(x)=\frac{\partial s}{\partial x_{i}}(x, F(x))=x_{i}\left(1+\sum_{k=1}^{n} x_{k}^{2}\right)
$$

which yields

$$
u(x)=A+\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}+\frac{1}{4}\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}
$$

- Similarly

$$
v(y)=B+\frac{(y-1)^{2}}{4}
$$

and $A+B=0$; assume $A=B=0$ (least productive producer makes zero profit)

- Price: if $Z=\sum_{i=1}^{n} z_{i}^{2}$ then

$$
(Z, P(Z))=\left(y^{2}(y-1), \frac{1}{4}(3 y-1)(y-1)\right)
$$

Competitive version of Rochet-Choné

Competitive R-C: pricing schedule

Competitive version of Rochet-Choné

Conclusions:

- No exclusion; all agents buy products.
\rightarrow not surprising

Competitive version of Rochet-Choné

Conclusions:

- No exclusion; all agents buy products.
\rightarrow not surprising
- No bunching of any type: different agents always buy different goods.

Competitive version of Rochet-Choné

Conclusions:

- No exclusion; all agents buy products.
\rightarrow not surprising
- No bunching of any type: different agents always buy different goods.
- In the previous example

Competitive version of Rochet-Choné

Conclusions:

- No exclusion; all agents buy products.
\rightarrow not surprising
- No bunching of any type: different agents always buy different goods.
- In the previous example
- General property

Competitive version of Rochet-Choné

Conclusions:

- No exclusion; all agents buy products.
\rightarrow not surprising
- No bunching of any type: different agents always buy different goods.
- In the previous example
- General property
- Model of competition under adverse selection \rightarrow matching approach provides a natural definition of an equilibrium in such a framework.

Competitive version of Rochet-Choné

Conclusions:

- No exclusion; all agents buy products.
\rightarrow not surprising
- No bunching of any type: different agents always buy different goods.
- In the previous example
- General property
- Model of competition under adverse selection \rightarrow matching approach provides a natural definition of an equilibrium in such a framework.
- A crucial remark, however, is that the model is characterized by its private value nature, since the producer's profit is not directly related to the identity of the consumer buying its product (it only depends on the characteristics of the product and its price)
\rightarrow different from common value (e.g. RS)

Three extensions

- Imperfectly Transferable Utility (ITU)
- Multidimensional matching and links with AS models (CMcCP 2015)
- Pre-matching investments

Pre-matching investment

- So far, X and Y implicitly considered as exogenously given

Pre-matching investment

- So far, X and Y implicitly considered as exogenously given
- In many cases, though, some characteristics result from some initial investment
\rightarrow typical example: Human Capital

Pre-matching investment

- So far, X and Y implicitly considered as exogenously given
- In many cases, though, some characteristics result from some initial investment
\rightarrow typical example: Human Capital
- Conversely, investment in HC generates two types of benefits:

Pre-matching investment

- So far, X and Y implicitly considered as exogenously given
- In many cases, though, some characteristics result from some initial investment
\rightarrow typical example: Human Capital
- Conversely, investment in HC generates two types of benefits:
- on the labor market ('college premium')
\rightarrow extensively studied

Pre-matching investment

- So far, X and Y implicitly considered as exogenously given
- In many cases, though, some characteristics result from some initial investment
\rightarrow typical example: Human Capital
- Conversely, investment in HC generates two types of benefits:
- on the labor market ('college premium')
\rightarrow extensively studied
- on the marriage market: more education changes:

Pre-matching investment

- So far, X and Y implicitly considered as exogenously given
- In many cases, though, some characteristics result from some initial investment
\rightarrow typical example: Human Capital
- Conversely, investment in HC generates two types of benefits:
- on the labor market ('college premium')
\rightarrow extensively studied
- on the marriage market: more education changes:
- marriage probability

Pre-matching investment

- So far, X and Y implicitly considered as exogenously given
- In many cases, though, some characteristics result from some initial investment
\rightarrow typical example: Human Capital
- Conversely, investment in HC generates two types of benefits:
- on the labor market ('college premium')
\rightarrow extensively studied
- on the marriage market: more education changes:
- marriage probability
- spouse's (expected) education

Pre-matching investment

- So far, X and Y implicitly considered as exogenously given
- In many cases, though, some characteristics result from some initial investment
\rightarrow typical example: Human Capital
- Conversely, investment in HC generates two types of benefits:
- on the labor market ('college premium')
\rightarrow extensively studied
- on the marriage market: more education changes:
- marriage probability
- spouse's (expected) education
- total marital surplus generated

Pre-matching investment

- So far, X and Y implicitly considered as exogenously given
- In many cases, though, some characteristics result from some initial investment
\rightarrow typical example: Human Capital
- Conversely, investment in HC generates two types of benefits:
- on the labor market ('college premium')
\rightarrow extensively studied
- on the marriage market: more education changes:
- marriage probability
- spouse's (expected) education
- total marital surplus generated
- the distribution of that surplus

Pre-matching investment

- So far, X and Y implicitly considered as exogenously given
- In many cases, though, some characteristics result from some initial investment
\rightarrow typical example: Human Capital
- Conversely, investment in HC generates two types of benefits:
- on the labor market ('college premium')
\rightarrow extensively studied
- on the marriage market: more education changes:
- marriage probability
- spouse's (expected) education
- total marital surplus generated
- the distribution of that surplus
- Marriage-market benefits (the 'marital college premium'):

Pre-matching investment

- So far, X and Y implicitly considered as exogenously given
- In many cases, though, some characteristics result from some initial investment
\rightarrow typical example: Human Capital
- Conversely, investment in HC generates two types of benefits:
- on the labor market ('college premium')
\rightarrow extensively studied
- on the marriage market: more education changes:
- marriage probability
- spouse's (expected) education
- total marital surplus generated
- the distribution of that surplus
- Marriage-market benefits (the 'marital college premium'):
- have been largely neglected

Pre-matching investment

- So far, X and Y implicitly considered as exogenously given
- In many cases, though, some characteristics result from some initial investment
\rightarrow typical example: Human Capital
- Conversely, investment in HC generates two types of benefits:
- on the labor market ('college premium')
\rightarrow extensively studied
- on the marriage market: more education changes:
- marriage probability
- spouse's (expected) education
- total marital surplus generated
- the distribution of that surplus
- Marriage-market benefits (the 'marital college premium'):
- have been largely neglected
- may influence investment behavior \rightarrow may explain the puzzle

Pre-matching investment

- So far, X and Y implicitly considered as exogenously given
- In many cases, though, some characteristics result from some initial investment
\rightarrow typical example: Human Capital
- Conversely, investment in HC generates two types of benefits:
- on the labor market ('college premium')
\rightarrow extensively studied
- on the marriage market: more education changes:
- marriage probability
- spouse's (expected) education
- total marital surplus generated
- the distribution of that surplus
- Marriage-market benefits (the 'marital college premium'):
- have been largely neglected
- may influence investment behavior \rightarrow may explain the puzzle
- but a structural model is needed!

Pre-matching investment (ced)

- Basic issue: efficiency
\rightarrow can we expect the pre-matching investment to be set at an efficient level, given that the initial investment is made in a non cooperative way?

Pre-matching investment (ced)

- Basic issue: efficiency
\rightarrow can we expect the pre-matching investment to be set at an efficient level, given that the initial investment is made in a non cooperative way?
- Two arguments suggesting we cannot

Pre-matching investment (ced)

- Basic issue: efficiency
\rightarrow can we expect the pre-matching investment to be set at an efficient level, given that the initial investment is made in a non cooperative way?
- Two arguments suggesting we cannot
(1) ('Private provision of public goods') Investment boosts future income, part of which will be spent on public goods, therefore will also benefit the (future) spouse. The spouse's welfare is not taken into account \rightarrow under provision \rightarrow underinvestment

Pre-matching investment (ced)

- Basic issue: efficiency
\rightarrow can we expect the pre-matching investment to be set at an efficient level, given that the initial investment is made in a non cooperative way?
- Two arguments suggesting we cannot
(1) ('Private provision of public goods')

Investment boosts future income, part of which will be spent on public goods, therefore will also benefit the (future) spouse. The spouse's welfare is not taken into account \rightarrow under provision \rightarrow underinvestment
C2 ('Rat race')
Individual try to outperform their competitors on the marriage market, by investing more than them. Since everyone does it \rightarrow overinvestment ('arm race' version of the prisonners' dilemma)

Pre-matching investment (ced)

- Basic issue: efficiency
\rightarrow can we expect the pre-matching investment to be set at an efficient level, given that the initial investment is made in a non cooperative way?
- Two arguments suggesting we cannot
(1) ('Private provision of public goods')

Investment boosts future income, part of which will be spent on public goods, therefore will also benefit the (future) spouse. The spouse's welfare is not taken into account \rightarrow under provision \rightarrow underinvestment
2 ('Rat race')
Individual try to outperform their competitors on the marriage market, by investing more than them. Since everyone does it \rightarrow overinvestment ('arm race' version of the prisonners' dilemma)
(3) Which one is correct?
\rightarrow None: the investment is typically efficient

Pre-matching investment

- Simple two-stage model:

Pre-matching investment

- Simple two-stage model:
- Stage one: agent i chooses a level of human capital σ_{i}, at a cost $\gamma_{i} C\left(\sigma_{i}\right) \rightarrow$ non cooperative

Pre-matching investment

- Simple two-stage model:
- Stage one: agent i chooses a level of human capital σ_{i}, at a cost $\gamma_{i} C\left(\sigma_{i}\right) \rightarrow$ non cooperative
- Stage two: matching game on $\sigma_{i} \rightarrow$ surplus $S\left(\sigma_{i}, \sigma_{j}\right)$

Pre-matching investment

- Simple two-stage model:
- Stage one: agent i chooses a level of human capital σ_{i}, at a cost $\gamma_{i} C\left(\sigma_{i}\right) \rightarrow$ non cooperative
- Stage two: matching game on $\sigma_{i} \rightarrow$ surplus $S\left(\sigma_{i}, \sigma_{j}\right)$
- Resolution: backwards

Pre-matching investment

- Simple two-stage model:
- Stage one: agent i chooses a level of human capital σ_{i}, at a cost $\gamma_{i} C\left(\sigma_{i}\right) \rightarrow$ non cooperative
- Stage two: matching game on $\sigma_{i} \rightarrow$ surplus $S\left(\sigma_{i}, \sigma_{j}\right)$
- Resolution: backwards
- Stage 2: stability implies that

$$
U\left(\sigma_{i}\right)=\max _{\sigma_{j}} S\left(\sigma_{i}, \sigma_{j}\right)-V\left(\sigma_{j}\right)
$$

therefore:

$$
U^{\prime}\left(\sigma_{i}\right)=\frac{\partial S\left(\sigma_{i}, \sigma_{j}\right)}{\partial \sigma_{i}}
$$

Pre-matching investment

- Simple two-stage model:
- Stage one: agent i chooses a level of human capital σ_{i}, at a cost $\gamma_{i} C\left(\sigma_{i}\right) \rightarrow$ non cooperative
- Stage two: matching game on $\sigma_{i} \rightarrow$ surplus $S\left(\sigma_{i}, \sigma_{j}\right)$
- Resolution: backwards
- Stage 2: stability implies that

$$
U\left(\sigma_{i}\right)=\max _{\sigma_{j}} S\left(\sigma_{i}, \sigma_{j}\right)-V\left(\sigma_{j}\right)
$$

therefore:

$$
U^{\prime}\left(\sigma_{i}\right)=\frac{\partial S\left(\sigma_{i}, \sigma_{j}\right)}{\partial \sigma_{i}}
$$

- Stage 1: agent i solves

$$
\max _{\sigma} U(\sigma)-\gamma_{i} C(\sigma) \Rightarrow U^{\prime}\left(\sigma_{i}\right)=\gamma_{i} C^{\prime}\left(\sigma_{i}\right)
$$

Pre-matching investment

- Simple two-stage model:
- Stage one: agent i chooses a level of human capital σ_{i}, at a cost $\gamma_{i} C\left(\sigma_{i}\right) \rightarrow$ non cooperative
- Stage two: matching game on $\sigma_{i} \rightarrow$ surplus $S\left(\sigma_{i}, \sigma_{j}\right)$
- Resolution: backwards
- Stage 2: stability implies that

$$
U\left(\sigma_{i}\right)=\max _{\sigma_{j}} S\left(\sigma_{i}, \sigma_{j}\right)-V\left(\sigma_{j}\right)
$$

therefore:

$$
U^{\prime}\left(\sigma_{i}\right)=\frac{\partial S\left(\sigma_{i}, \sigma_{j}\right)}{\partial \sigma_{i}}
$$

- Stage 1: agent i solves

$$
\max _{\sigma} U(\sigma)-\gamma_{i} C(\sigma) \Rightarrow U^{\prime}\left(\sigma_{i}\right)=\gamma_{i} C^{\prime}\left(\sigma_{i}\right)
$$

- Finally

$$
\frac{\partial S\left(\sigma_{i}, \sigma_{j}\right)}{\partial \sigma_{i}}=\gamma_{i} C^{\prime}\left(\sigma_{i}\right)
$$

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
- Stage one: agents match (on their cost parameters γ_{i})

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
- Stage one: agents match (on their cost parameters γ_{i})
- Stage two: jointly choose HC investment to maximize joint surplus

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
- Stage one: agents match (on their cost parameters γ_{i})
- Stage two: jointly choose HC investment to maximize joint surplus
- Main result:

The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
- Stage one: agents match (on their cost parameters γ_{i})
- Stage two: jointly choose HC investment to maximize joint surplus
- Main result:

The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game

- However, other equilibria may exist ('coordination failures')

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
- Stage one: agents match (on their cost parameters γ_{i})
- Stage two: jointly choose HC investment to maximize joint surplus
- Main result:

The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game

- However, other equilibria may exist ('coordination failures')
- Important empirical application:

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
- Stage one: agents match (on their cost parameters γ_{i})
- Stage two: jointly choose HC investment to maximize joint surplus
- Main result:

The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game

- However, other equilibria may exist ('coordination failures')
- Important empirical application:
- The two stage game is complex, because of its rational expectation structure (\rightarrow fixed point in a functional space)

Main result (Cole Mailath Postlewaite 2001, Nöldeke Samuelson 2015)

- Same framework
- Fictitious game:
- Stage one: agents match (on their cost parameters γ_{i})
- Stage two: jointly choose HC investment to maximize joint surplus
- Main result:

The stable matching of the fictitious game is always an equilibrium of the initial, two-stage game

- However, other equilibria may exist ('coordination failures')
- Important empirical application:
- The two stage game is complex, because of its rational expectation structure (\rightarrow fixed point in a functional space)
- The fictitious game is much easier to simulate (matching \rightarrow linear programming)

