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Abstract

We study a sender-receiver model where the receiver can commit to a deci-

sion rule before the sender determines the information policy. The decision rule

can depend on the signal structure and the signal realization that the sender

adopts. This framework captures applications where a decision-maker (the re-

ceiver) solicit advice from an interested party (sender). In these applications,

the receiver faces uncertainty regarding the sender’s preferences and the set

of feasible signal structures. Consequently, we adopt a unified robust analysis

framework that includes max-min utility, min-max regret, and min-max ap-

proximation ratio as special cases. We show that it is optimal for the receiver

to sacrifice ex-post optimality to perfectly align the sender’s incentive. The

optimal decision rule is a quota rule, i.e., the decision rule maximizes the re-

ceiver’s ex-ante payoff subject to the constraint that the marginal distribution

over actions adheres to a consistent quota, regardless of the sender’s chosen

signal structure.
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1 Introduction

1.1 Motivation

As a central topic of economic theory, the strategic communication between a sender and

a receiver has been analyzed under various assumptions of commitment power. For instance,

the cheap talk model (Crawford and Sobel (1982)) considers situations where neither the

sender nor the receiver have commitment power. The delegation model (Holmstrom (1980))

conveys commitment power to the receiver. Lastly, in the persuasion model (Kamenica

and Gentzkow (2011)), only the sender has commitment power that allows her to credibly

disclose information.

We consider a model in which both the sender and the receiver have commitment power.

Specifically, in contrast to the persuasion model, before the sender adopts a signal structure

for conveying information, the receiver can commit to decision rules that depend on both

the chosen signal structure and the realized signal. For instance, in a firm, the CEO

(receiver) could request each department manager (sender) to devise an evaluation plan for

the employees (signal structure) in the context of downsizing the company. The CEO can

commit to a policy for terminating employees based on their evaluations, and given this

policy, the manager can commit to an evaluation plan that maximizes their department’s

payoff. Another example that fits into our model is civil law, where the government holds

commitment power over the defendant’s sentencing based on the evidence presented by the

prosecutor. Then the prosecutor can propose an investigation process (signal structure) to

persuade the judge to convict the defendant.

In many applications, the receiver faces uncertainty regarding the sender’s utility func-

tion and the set of available signal structures. Taking the example of downsizing a firm,

the CEO is uncertain about the manager’s preferred department size and the set of possi-

ble evaluation plans the manager can implement. In the presence of such uncertainty, we

adopt the notion of regret, which captures the difference between the optimal payoff with

known utility function and set of available signal structures and the actual payoff achieved

by a specific decision rule without such knowledge. Specifically, we consider the robustness

objective where the receiver commits to a decision rule that minimizes the worst-case regret

over all possible state-independent utility functions and sets of available signal structures

for the sender. Our analyses also extend to a more general notion of regret that incorporates

weighted differences between the optimal payoff without uncertainty and the actual payoff,

encompassing classic max-min utility and min-max approximation ratio as special cases.

Before the robust analysis, we first consider the classic Bayesian benchmark where the

receiver knows the utility function and the set of available signal structures of the sender.
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We show that in the Bayesian benchmark, the receiver can achieve his first-best payoff,

i.e., the payoff achieved by the optimal signal structure and optimal action after any signal

realization. Therefore, the regret, which is inevitable due to the receiver’s ignorance about

the model primitives, measures the difference between the maximum value of information

and the actual payoff of the receiver.

To understand the trade-offs of the receiver in robust settings, we decompose the regret

into efficiency loss and agency loss. The efficiency loss captures the loss stemming from sub-

optimal actions committed by the receiver, while the agency loss captures the loss stemming

from the sender’s strategic choice of a sub-optimal signal structure.

In the robustness setting where the receiver is uncertain about the primitives, one naive

decision rule the receiver can commit to is to take the myopic optimal action for all signal

realizations, as what the receiver would do if he had no commitment power. Such decision

rule completely eliminates the efficiency loss. However, the decision rule is independent of

the sender’s choice of signal structure and is extremely vulnerable to the sender’s strategic

persuasion. In fact, we show that the worst-case regret for the myopic optimal decision rule

is so large that it equals the entire information value of the full revealing signal structures.

In this setting, a more nature conjecture for the optimal decision rule is that it should

maintain a balance between efficiency loss and agency loss based on the receiver’s utility

function and the prior belief.

Perhaps surprisingly, we show that it is optimal for the receiver to adopt another extreme

decision rule that completely avoids agency loss: quota rules. A quota rule is associated

with a quota, which is a distribution over the action space. For any chosen signal structure,

the quota rule specifies a decision rule that maximizes the receiver’s expected payoff subject

to the constraint that the marginal distribution of actions must coincide with the quota.

The quota rule sacrifices some efficiency loss to create an aligned incentive between the

receiver and the sender. Under the quota rule, the sender is indifferent among all signal

structures as they all lead to the same marginal distribution over actions and the sender has

state-independent utility. Therefore, it is incentive-compatible to ask the sender to pick the

receiver’s favorite signal structure. Note that quota rules also have natural interpretations

in applications. In the example of firm downsizing, quota rules correspond to the policies

where the CEO commits to fire, for example, ten percent of the employees in each division

regardless of the managers’ evaluation plans.

We further characterize the optimal quota rules in the special case of binary actions. In

this case, for any given quota, the signal structure that maximizes the regret corresponds

to a binary monotone partition of the state space. This partition allows us to divide the

analysis of regret into two subcases: left-biased error and right-biased error. These subcases
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capture the worst-case regret, where the quota assigns more ex ante probability to action 0

and 1, respectively, compared to optimal decision given the signal structure. We show that

the left-biased error decreases as the quota increases, while the right-biased error increases

with the quota. Consequently, the optimal quota rule strikes a balance between these two

errors, achieving an interior solution that equalizes them.

The explicit characterization with binary actions helps us to perform several comparative

analyses to better understand how the optimal quota is determined. We first show that the

optimal quota on one action is increasing if the random reward of that action increases in

the first-order stochastic order. This is intuitive since the receiver will always become more

favorable to the action with higher rewards even with uncertainty over the primitives. In

addition, we show that the optimal quota also exhibits responsiveness to changes in second-

order stochastic dominance. In particular, we show that if the prior has a mean-preserving

spread over states under which one action is optimal, the optimal quota for that action

would decrease. Intuitively, this implies that the receiver should try to avoid an action

when its relative advantage over other actions becomes more obscure. We highlight that

the statement does not imply that the receiver should optimally avoid one action because

it is more riskier.

1.2 Related Work

Our paper contributes to the literature on principal-expert models, see Zermeno (2011,

2012); Deb et al. (2018); Clark and Reggiani (2021); Li et al. (2022). In those models,

the receiver, i.e., the principal, has commitment power on making decisions contingent

on the information received from the sender. In contrast to our model, the literature on

principal-expert models assumes that both the chosen information structure and the signals

are private information of the sender, and the sender cannot commit to truthfully reveal

the signals to the receiver. The question of identifying the robustly optimal mechanism has

also been explored for the principal-expert models, see Carroll (2019); Chen and Yu (2021).

In those papers, similar to our model, the principal is also ignorant of the set of information

structures available to the sender. The objective of the principal is to design a mechanism

that maximizes the worst case utility, which can be viewed as a special case of minimizing

the generalized regret.

In the robustness setting, the performance measure we take is min-max regret. The

objective of max-min regret has been micro-founded in Stoye (2011), and has been widely

adopted in applications such as monopoly pricing (Bergemann and Schlag (2011)), monopoly

regulation (Guo and Shmaya (2019)), contest design (Beviá and Corchón (2022)), project

choice (Guo and Shmaya (2022)) and bandit learning (Slivkins et al. (2019)). The objective
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of minimizing worst-case generalized regret was recently proposed in Anunrojwong et al.

(2023) for designing robust mechanisms in auction settings, which includes the objective of

max-min utility (see Bergemann and Schlag (2011); Carroll (2017); Brooks and Du (2021))

and min-max approximation ratio (see Hartline and Lucier (2015); Allouah and Besbes

(2020); Hartline et al. (2023) as special cases.

Our paper also relates to the literature on robust persuasion (see Dworczak and Pavan

(2022); de Clippel and Zhang (2022); Babichenko et al. (2022)). The main difference is that

in these papers, the receiver does not have commitment power and can only myopically best

respond to the signals received from the sender. Moreover, the sender in these models faces

uncertainty over the environments and tries to design robust mechanisms to maximize her

worst case performance.

By viewing the information structure of the agent as an abstract observable action, our

model shares similar structure as contract design with observable actions. Laux (2001); Zhao

(2008); Chen (2012) consider the setting where both observable and unobservable actions

are available to the agent, and the principal seeks to minimize the cost of incentivizing a

given effort choice. Guo and Shmaya (2022) consider the project choice problem where the

proposal of the agent can also be viewed as an abstract observable action. Similar to our

paper, they also consider the robust setting where the set of actions available to the agent

is unknown to the principal.

Quota mechanisms have been discussed in other settings as well. For example, it is

discussed in cheap talk Chakraborty and Harbaugh (2007), in mechanism design with large

samples Jackson and Sonnenschein (2007), and in the credibility of Bayesian persuasion Lin

and Liu (2022).1 Chakraborty and Harbaugh (2007) point out that quota rules can help to

elicit information when the sender has state-independent utility. They consider multi-issue

cheap-talk problems, and study equilibria where the Sender assigns a ranking to each issue.

In such equilibria, a message is a complete or partial ordering of all the issues, and any

on-path deviation is a different ordering that maintains the same distribution of rankings.

In a mechanism design setting, Jackson and Sonnenschein (2007) show that the utility

costs associated with incentive constraints become negligible when the decision problem is

linked with a large number of independent copies of itself. This is established by defining

a mechanism in which agents must budget their representations of preferences so that the

frequency of preferences across problems mirrors the underlying distribution of preferences,

and then arguing that agents’ incentives are to satisfy their budget by being as truthful

as possible. In Lin and Liu (2022), quota mechanisms are associated with the credibility

of the sender’s persuasion scheme. They define the sender’s disclosure policy as credible

1Lin and Liu (2022) have a comprehensive literature review on quota mechanisms.
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if the sender cannot profit from tampering with her messages while keeping the marginal

distribution of messages unchanged.

2 Model

2.1 Payoff Environment

We consider a sender-receiver game with finite states θ ∈ Θ and finite actions a ∈ A.

The receiver (he) has state-dependent utility

u(θ, a) : Θ×A → [0, 1],

and the sender (she), on the other hand, has state-independent utility

v(a) : A → [0, 1],

where the payoffs of both players are normalized to [0, 1] without loss of generality.

Both the sender and the receiver have a common prior ρ ∈ ∆Θ over the unknown state.

Additionally, the sender can commit to a signal structure for sending informative signals

to the receiver. Without loss of generality, we take a belief based approach and represent

a signal structure π as a distribution over posteriors that satisfies Bayesian consistency.

Formally, we denote the set of feasible signal structures as

Σ =

{
π ∈ ∆(∆Θ)

∣∣∣∣ ∫
∆Θ

µdπ(µ) = ρ

}
.

We assume that the sender only has limited access to the set of feasible signal structures.

That is, there exists a set:

Π ⊆ Σ

such that the sender can commit to signal structure π only if π ∈ Π.

In contrast to the literature on Bayesian persuasion (Kamenica and Gentzkow, 2011),

we allow the receiver to have commitment power on the decision rules before receiving a

signal from the sender. That is, instead of myopically best responding to the realized signal,

the receiver can ex ante commit to a decision rule:

α(π, µ) : Σ×∆Θ → ∆A,
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Receiver commits to α

Sender commits to π ∈ Π

Realization of state θ, posterior µ

Action a ∼ α(π, µ);
payoffs realized︸ ︷︷ ︸

Persuasion

Figure 1: The timeline of the model.

which maps the signal structure that the sender chooses and the receiver’s posterior belief

after the signal realization to a distribution over actions. Let α(a|π, µ) be the probability

of action a being taken according to distribution α(π, µ). To simplify the exposition, here

we do not allow the receiver to elicit information about the utility function and the set of

available signal structures from the sender. We show that this is in fact without loss of

generality in Section 6.

The timing of the game is illustrated in Figure 1 and is formally described as follows:

1. The receiver publicly commits to a decision rule α.

2. The sender publicly commits to a signal structure π ∈ Π after observing decision

rule α.

3. State θ is realized according to prior ρ, and a signal that leads to posterior belief µ

is sent to the receivers according to signal structure π.

4. Action a is chosen according to distribution α(π, µ). Sender receives payoff v(a) and

receiver receives payoff u(θ, a).

In our model, we assume that the sender is a standard Bayesian decision-maker. That

is, given decision rule α, she chooses

π∗(α, v,Π) ∈ argmax
π∈Π

∫
∆Θ

∑
a

v(a)α(a|π, µ) dπ(µ).

to maximize her expected payoff when her utility function is v.2 As customary in the liter-

ature, we assume a tie-breaking rule in favor of the receiver. Thus, letting u(µ, α(π, µ)) ≜∑
a

∑
θ u(θ, a)µ(θ)α(a|π, µ), the receiver’s expected payoff by committing to decision rule

2The maximization problem might not be well-defined (only) when Π is infinite. Our results hold
under any behavioral assumption of the sender’s choice of signal structures when the max does not
exist.
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α is

U(α, v,Π) =

∫
∆Θ

u(µ, α(π, µ)) dπ(µ), where π = π∗(α, v,Π).

Therefore, the optimal payoff of the receiver in this sender-receiver game given utility v and

set Π is

U∗(v,Π) = sup
α

U(α, v,Π).

2.2 Robustness and Regret

Instead of assuming that the receiver is perfectly informed about the utility function

v and the set Π of available signal structures of the sender, we consider a robust setting

where both and v and Π are not known to the receiver. Therefore, the receiver cannot

design decision rules contingent on the true utility v or set Π. For any decision rule α, the

regret of the receiver due to his ignorance of utility v and set Π is

R(α, v,Π) = U∗(v,Π)− U(α, v,Π). (1)

In this robust setting, the goal of the receiver is to design a decision rule that minimizes

the worst-case regret

R ≜ inf
α

R(α) ≜ inf
α

sup
v,Π⊆Σ

R(α, v,Π).

Generalized Regret For the purpose of delivering intuition, we emphasize regret min-

imization in this paper. However, we establish our results for the γ-generalized regret.

Formally, for any γ ∈ [0, 1), the γ-generalized regret of the receiver is

Rγ(α, v,Π) = γ · U∗(v,Π)− (1− γ) · U(α, v,Π). (2)

The objective of regret minimization is a special case of γ-generalized regret when γ = 1
2 . By

varying the parameter γ, we can recover other robust frameworks commonly studied in the

literature. For example, when γ = 0, the objective corresponds to the max-min framework.

Moreover, there exists γ̂ ∈ (0, 1/2), such that γ̂-generalized regret coincides with maximizing

the worst-case approximation ratio, as discussed in Anunrojwong et al. (2023).

General Decision Rules To simplify the exposition, we assume that the receiver can-

not elicit information about (v,Π) from the sender and can only commit to decision rules as
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a function of the chosen signal structure and realized posterior belief. In Section 6, we show

that this is without loss of generality. Even when the decision rule could also depend on

the report of the sender about her primitives (v,Π), it is without loss to focus on decision

rules that do not depend on it.

3 Managing Bayesian Persuasion

In this section, we consider the Bayesian setting where the utility function and the set

of available signal structures of the sender are known to the receiver. We show that in this

benchmark, the receiver can implement the first best decision rule via a quota rule.

For any utility function v and set Π of available signal structures of the sender, a naive

choice of the receiver is to commit to the decision rule that that maximizes the receiver’s

expected payoff for any realized posterior regardless of the sender’s choice of the experiment

(as it is payoff irrelevant):

a∗(µ) ∈ argmax
a

u(µ, a).

Ideally, if the sender is not strategic and chooses a signal structure πF that maximizes the

receiver’s payoff, the receiver would receive his first-best payoff as

UF(Π) = sup
π∈Π

u∗(π) ≜ sup
π∈Π

∫
∆Θ

u(µ, a∗(µ)) dπ(µ).

We show that the receiver can carefully design decision rules that attain the first best as the

equilibrium payoff when he knows both utility v and the set Π of available signal structures.

Specifically, we consider a special class of decision rules called the quota rules.

Definition 1 (Quota Rules).

A decision rule α is a quota rule with quota q ∈ ∆A if for any signal structure π,3

α(π, ·) ∈ argmax
α̂∈Ψ(q)

∫
∆Θ

u(µ, α̂(µ)) dπ(µ),

where Ψ(q) ≜

{
α̂ : ∆Θ → ∆(A)

∣∣∣∣ ∫
∆Θ

α̂(a|µ) dπ(µ) = q(a), ∀a
}
.

We also use q to represent the quota rule with quota q without ambiguity. Essentially,

the quota rule specifies a quota q as a constraint on the marginal distribution over actions

3The existence of the optimal decision rule for this optimization problem is implied by Lemma 1
in later sections.
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for the decision rule given any chosen signal structure π. For any π, the quota rule is the

optimal decision rule that maximizes the receiver’s expected payoff subject to the quota

constraints.

Proposition 1 (First Best Implementation).

For any utility v and any set Π of available signal structures, there exists a quota rule qΠ

that guarantees the first-best payoff for the receiver:

U∗(v,Π) = U(qΠ, v,Π) = UF(Π).

Note that the incentives of the sender with state-independent utilities are completely

eliminated under quota rules since the distribution over actions for any quota rule is invari-

ant of the chosen signal structure. Therefore, it is incentive-compatible to let the sender

choose the signal structure that maximizes the expected payoff of the receiver based on the

quota rule. To achieve the first-best payoff, the receiver only needs to commit to a quota

rule that is consistent with the marginal distribution over first-best actions of the first-best

signal structure in Π. That is, for any action a,

q∗Π(a) =

∫
∆Θ

1a=a∗(µ) dπ̂(µ), where π̂ ∈ argmax
π∈Π

u∗(π).

4 Regret Minimizing Decision Rule

In this section, we prove the optimality of quota rules for γ−generalized regret given any

γ ∈ [0, 1). In Section 4.1, we show that the loss given any decision rule can be decoupled as

the efficiency loss and the agency loss, and the quota rule is the decision rule that completely

eliminates agency loss with the sacrifice of the efficiency loss. To establish its optimality,

we proceed in two steps. For any γ ∈ [0, 1), Section 4.2 characterizes the optimal quota q∗γ

among all quota rules, and Section 4.3 shows that quota rule q∗γ is optimal among all decision

rules for γ−generalized regret.

4.1 Effiency Loss and Agency Loss

In Proposition 1 we have shown that, when (v,Π) is known, the receiver can achieve

his first-best payoff by committing to quota rule q∗Π. Therefore, the regret of the receiver

defined in (1) given decision rule α simplifies to

R(α, v,Π) = UF(Π)− U(α, v,Π).
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Moreover, the first best quota q∗Π varies across different Π, and therefore the receiver

can not achieve the first-best payoff in the presence of uncertainty about (v,Π). To have

some basic intuition about the trade-offs of the design problem, denote the receiver’s actual

payoff under decision rule α given signal structure π as

U(α, π) =

∫
∆Θ

u(µ, α(π, µ)) dπ(µ). (3)

Letting πF ∈ arg supπ∈Π u∗(π) be a signal structure that maximizes the receiver’s first best

payoff, we can further decompose the regret of the receiver as

R(α, v,Π) =
[
u∗(πF )− U(α, πF )

]
+
[
U(α, πF )− U(α, π∗(α, v,Π))

]
.

This equation decomposes the regret function into efficiency loss and agency loss. In the

first difference, the signal structures are the same (πF ) but the decision rules are different.

It captures the efficiency loss stemming from sub-optimal actions α(πF , ·). In the second

difference, the decision rule are the same (α) but the signal structures are different. It

captures the agency loss stemming from the sender’s strategic choice of a sub-optimal signal

structure π∗(α, v,Π).

Under this view, there are two extremal decision rules. The first one is to completely

eliminate the efficiency loss by choosing the myopic best action. To see why this mechanism

is sub-optimal, suppose the receiver chooses the myopic optimal decision rule α0 such that

supp(α0(π, µ)) ⊆ argmax
a

u(µ, a),

for any signal structure π and posterior belief µ where supp(·) is the support of a dis-

tribution. Denote a0 = argmaxa u(ρ, a) as the optimal action under the prior, which is

generically unique. Then, (one of) the worst-case is (Π0, v0) where

Π0 = {Complete Information, Zero Information}, v0(a0) > v0(a) ∀a ̸= a0.

In this case, the sender either chooses to completely reveal the state and let the receiver take

the first best action or provides zero information to induce a0 with probability 1. Because

the sender with preference v0 strictly prefers action a0 over any other actions, she chooses

No Information and the receiver suffers a regret of

R(α0, v0,Π0) =

∫
Θ
max
a

u(θ, a) dρ(θ)− u(ρ, a0).

The receiver suffers from a large regret because he could have enjoyed the first best value
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if there was no agency problem, but ends up getting no information from the sender.

The second class of extremal mechanisms consists of quota rules (Definition 1), which

completely eliminate any agency loss but result in efficiency loss. One might conjecture

that the optimal design should maintain a balance between efficiency loss and agency loss.

Therefore, it is not immediately clear whether these extremal mechanisms would be optimal.

4.2 Optimal Quota Rules

The choice of the optimal quota q ∈ ∆A itself is a non-trivial problem. We denote the

γ−generalized regret of quota rule q given signal structure π as

Rγ(q, π) = γ · u∗(π)− (1− γ) · U(q, π),

where recall by (3), U(q, π) = maxα∈Ψ(q)

∫
∆Θ u(µ, α(µ)) dπ(µ). Note that the optimization

problem of U(q, π) can be expressed as an optimal transport problem, where instead of

designing decision rule α, the receiver designs the joint distribution F over ∆Θ×A subject

to two marginal constraints:

U(q, π) = max
F

∫
∆Θ×A

u(µ, a) dF (µ, a),

s.t. F (∆Θ, a) = q(a), ∀a ∈ A,

F (N,A) = π(N), ∀N ∈ B(∆Θ).

We endow the space of ∆(∆Θ) with the Wasserstein metric d:

d(π1, π2) = min
G∈∆(∆Θ×∆Θ)

∫
∆Θ×∆Θ

|µ− ν|1 dG(µ, ν),

s.t. G(N,∆Θ) = π1(N), ∀N ∈ B(∆Θ),

G(∆Θ, N) = π2(N), ∀N ∈ B(∆Θ),

where ||1 refers to the L1 norm in Euclidean space. Because ∆Θ is bounded, the Wasserstein

metric induces the vague topology.4 The vague topology is defined over probability space

∆X. A sequence of measure µn converges to µ0 in the vague topology if and only if for

any continuous function f ∈ C(X),
∫
X f dµn →

∫
X f dµ. As a note, the introduction of the

Wasserstein metric is purely instrumental. It is used in a couple of following lemmas which

help us establish Theorem 1, but our primitives and Theorem 1 themselves do not contain

any assumptions on the choice of metric.

4See Theorem 6.9 in Villani (2016).
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Lemma 1 (Lipschitz Continuity).

The optimal solution for U(q, π) exists and hence Rγ(q, π) is well-defined. Moreover,

Rγ(q, π) is continuous in (q, π), and

|Rγ(q, π
′)−Rγ(q, π)| ≤ d(π, π′), ∀q, π, π′.

Now that Rγ(q, π) is well-defined and continuous, and so the the following concepts are

also well-defined since ∆Θ is compact under the vague topology:

Rγ(q) = max
π∈Σ

Rγ(q, π),

Σq = argmax
π∈Σ

Rγ(q, π),

q∗γ = argmin
q∈∆A

Rγ(q).

In the definition of Rγ(q), we only consider worst cases Π = {π} that are singletons.

This is without loss of generality since under the quota rule the sender always chooses the

receiver’s favorite signal structure. The set Σq, which is closed and hence compact, is the

set of worst-case signal structures for quota rule q. We have the following characterization

for optimal quota rules.

Lemma 2 (Local Optimality).

For any γ ∈ [0, 1), a quota rule q is the optimal quota rule if and only if there does not exist

another quota rule q′ such that

max
π∈Σq

Rγ(q
′, π) < Rγ(q).

Considering the optimal quota rule q∗γ and its corresponding worst case signal struc-

tures Σq∗γ , Lemma 2 implies that there does not exist another quota rule q′ which can

uniformly and strictly reduce the regret on Σq∗γ compared to q∗γ . Intuitively, if such q′ ex-

ists, one can slightly adjust the quota q∗γ towards q′. This modification can lower the regret

at all worst cases in Σq∗γ without making significant impact on the regret of other signal

structures that are originally slack. As a result, the overall worst-case regret would be lower

compared to q∗γ .

4.3 The Optimality of the Quota Rule

After establishing some basic understanding of the optimal quota within the class of

quota rules, we are ready to prove the optimality of quota rules. We start by introducing
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generalized quota rules.

Definition 2 (Generalized Quota Rules).

The decision rule α is a generalized quota rule if there exists a function q̄ : Σ → ∆A such

that for any signal structure π,

α(π, µ) ∈ argmax
α′∈Ψ(q̄(π))

∫
∆Θ

u(µ, α′(µ)) dπ(µ).

Intuitively, the generalized quota rule specifies a quota on the marginal distribution over

actions separately for each signal structure. Given the signal structure π and the quota q̄(π),

the decision rule α is the optimal solution that maximizes the receiver’s expected payoff

subject to the quota constraints.

Because the sender’s preference is state-independent, any two decision rules, which lead

to the same marginal distribution over actions in any signal structure, are equivalent as far

as the sender’s incentive is concerned. Thus, the receiver always benefits from choosing the

optimal decision rule that respects the quota.

Lemma 3 (Sufficiency of Generalized Quota Rules). It is without loss of generality to focus

on generalized quota rules.

Now we are ready to prove Theorem 1. We present the full proof in the main text

because the argument is considerably simplified by the fact that the mechanism does not

elicit information about (Π, v) from the sender, yet the fundamental idea is the same as

the proof under more general mechanisms as in Theorem 2 in Section 6, whose proof we

relegate to the appendix.

Theorem 1 (Optimality of Quota Rules).

For any γ ∈ [0, 1), the quota rule q∗γ is optimal for the receiver.

Proof. We first introduce several notations. Let πN be the information structure that

reveals no information. Recall that by definition, U(q, π) is monotonously increasing in the

Blackwell order of π and

Rγ(q, π) = γ · u∗(π)− (1− γ) · U(q, π).

We prove the theorem by contradiction. Suppose there is a decision rule that induces

strictly less regret than the quota rule q∗γ . By Lemma 3, it is without loss of optimality to

assume this improvement is attained by a generalized quota rule q̄, which further implies
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that

Rγ(q̄(π), π) < Rγ(q
∗
γ), ∀π ∈ Σ.

If Σq∗γ is a singleton, denote it as Σq∗γ = {π̄}, then by Lemma 2,

Rγ(q
∗
γ) ≤ max

π∈Σq∗γ

Rγ(q
′, π) = Rγ(q

′, π̄), ∀q′.

This contradicts with q̄ being a strict improvement.

If Σq∗γ is not a singleton, then by Lemma 2, q̄(πN ) can not uniformly improve q∗γ . Thus,

there exists an information structure π′ ∈ Σq∗γ such that

Rγ(q̄(π
N ), π′) ≥ Rγ(q

∗
γ).

This implies that U(q̄(πN ), π′) ≤ U(q∗γ , π
′) and q̄(π′) ̸= q̄(πN ) since q̄ is a strict improvement.

In this case, when the set of information structures available to the sender is
{
π′, πN

}
,

there exists a utility v of the sender such that the sender prefers q̄(πN ) over q̄(π′) so she

chooses πN . The regret of the receiver is

γ · u∗(π′)− (1− γ) · U(q̄(πN ), πN )

≥ γ · u∗(π′)− (1− γ) · U(q̄(πN ), π′)

≥ γ · u∗(π′)− (1− γ) · U(q∗γ , π
′) = Rγ(q

∗
γ),

a contradiction to the assumption that q̄ is a strict improvement.

5 Binary Actions

In Section 4 we proved the optimality of quota rules but did not determine which

quota rule is optimal within this class. To deliver more insight on how model primitives

determine the optimal quota in robust environments, we characterize the optimal quota

rules in a binary action model.

5.1 Optimal Binary Quota Rules

In a binary-action model, the receiver’s preference for each state is summarized by its

expected utility difference between action 0 and action 1. Therefore, it is without loss of
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generality to assume that Θ ⊆ [−1, 1]. Moreover,

u(θ, a) =

θ, a = 1;

0, a = 0.

Let Θ0 ⊆ Θ be the set of states such that θ < 0 and Θ1 ⊆ Θ be the set of states such

that θ > 0. We assume there exists θ, θ′ in the support of ρ such that θ ∈ Θ0 and θ′ ∈ Θ1

(otherwise the information is without value).

We first characterize the worst case signal structure given a quota rule.

Definition 3 (Binary Monotone Partition).

An signal structure π is a binary monotone partition if the signal space is binary {0, 1},
and letting Θ̂s be the set of states that send signal s with strictly positive probability, either

one of the sets Θ̂0, Θ̂1 is empty, or for any θ ∈ Θ̂0 and θ′ ∈ Θ̂1, we have θ ≤ θ′.

−1 1
︸ ︷︷ ︸

Θ̂0

︸ ︷︷ ︸
Θ̂1

Figure 2: An illustration of binary monotone partition.

Intuitively, a binary monotone partition signal structure sends signal 0 for all low states

and signal 1 for all high states. This is illustrated in Figure 2 for state space Θ = [−1, 1].

In the case where the state distribution is discrete, there may exist a middle type such that

the signal structure randomizes the signals for this type. In the binary action environment

we can identify the quota rule q simply by the probability that action a = 1 is chosen:

q = Pr(a = 1).

Lemma 4 (Worst Case Signal Structure).

For any γ ∈ [0, 1) and any quota q, there exists a binary monotone partition signal structure

that maximizes the principal’s regret.

In a binary action model, the regret of the receiver in any binary monotone partition

signal structure can be classified into two categories, the left-biased error and the right-

biased error. The classification depends on whether p1, the probability of signal s = 1, is

larger than the quota q. Specifically, for any quota rule q = Pr(a = 1), the regret given

a signal structure with signal probabilities p1 is called a left-biased error if q ≤ p1 and

a right-biased error if q ≥ p1. This is illustrated in Figure 3. In the left-biased error,
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−1 1θ̂
︸ ︷︷ ︸

Θ̂1

︷ ︸︸ ︷q = Pr
[
θ ≥ θ̂

]
︸ ︷︷ ︸

Θ̂0

(a) left-biased error

−1 1θ̂
︸ ︷︷ ︸

Θ̂0

︷ ︸︸ ︷q = Pr
[
θ ≥ θ̂

]
︸ ︷︷ ︸

Θ̂1

(b) right-biased error

Figure 3: An illustration of two types of errors.

q ≤ p1 and hence the receiver has to take action 0 with a higher probability than in the

first best solution. Consequently, he takes action 0 for sure when he observes signal 0, while

mixing his action between 0 and 1 when he observes signal 1, in order to satisfy the quota

restriction. Similarly, in the right-biased error, q ≥ p1 and hence the receiver has to take

action 1 with a higher probability than in the first best solution. Consequently, he then

chooses action 1 for sure when he observes signal 1, while mixing his action between 0 and 1

when he observes signal 0.

For any quota rule q, let ΣL(q) be the set of binary monotone partition signal structures

with left-biased errors. The worst case left-biased error is

Lγ(q) ≜ max
π∈ΣL(q)

Rγ(q, π).

Similarly, ΣR(q) is the set of binary monotone partition signal structures with right-biased

errors and the worst case right-biased error is

Rγ(q) ≜ max
π∈ΣR(q)

Rγ(q, π).

Let F be the cumulative distribution function of the prior ρ and we define F−1(p) ≜

inf {θ |F (θ) ≥ p}. Note that for any binary monotone partition signal structure π, letting p0

be the probability of the low signal in π, we have

Rγ(q, π) =

(
γ − (1− γ) · 1− p0 − q

1− p0

)
·
∫ 1

p0

F−1(p) dp,

if signal structure π is left-biased for quota q, and

Rγ(q, π) = (2γ − 1) ·
∫ 1

p0

F−1(p) dp− (1− γ) · p0 − 1 + q

p0
·
∫ p0

0
F−1(p) dp,
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if signal structure π is right-biased for quota q. Moreover, let

z1 = sup

{
z

∣∣∣∣ ∫ z

0
F−1(p) dp ≤ 0

}
,

z0 = inf

{
z

∣∣∣∣ ∫ 1

z
F−1(p) dp ≥ 0

}
.

Since signal structure π is left-biased for quota rule q if p0 ∈ [z0, z1] and p0 ≤ 1− q, and is

right-biased for quota rule q if p0 ∈ [z0, z1] and p0 ≥ 1− q, the hence the right-biased error

and the right-biased error are

Lγ(q) = max
p0∈[z0,z1], p0≤1−q

(
γ − (1− γ) · 1− p0 − q

1− p0

)
·
∫ 1

p0

F−1(p) dp,

Rγ(q) = max
p0∈[z0,z1], p0≥1−q

(2γ − 1) ·
∫ 1

p0

F−1(p) dp− (1− γ) · p0 − 1 + q

p0
·
∫ p0

0
F−1(p) dp.

Let mρ be the prior mean and m∗ be the posterior mean such that the receiver is

indifferent between two actions.

Proposition 2 (Optimal Quota Rules).

For any γ ∈ [0, 1) and any prior ρ, the left-biased error is weakly decreasing in quota q and

the right-biased error is weakly increasing in quota q, and inequalities are strict if mρ ̸= m∗.

The optimal quota rule q satisfies Lγ(q) = Rγ(q).

Corollary 1 (Interior Optimal Quota Rule).

The optimal quota is in the interior for γ ∈ (0, 1). The optimal quota is unique if mρ ̸= m∗.

The optimal quota is in the interior except when γ = 0. In this case, our model is equiv-

alent to the max-min framework where the receiver evaluates the decision rule according

to his equilibrium payoff in the worst case. Thus, the optimal quota is simply choosing the

optimal action according to his prior ρ. When mρ ̸= m∗, any action is optimal according

to the prior.

5.2 Comparative Statics

In general it is hard to have a closed-form solution for the optimal quota rule even with

the nice characterization of the worst-case signal structure. To have more insights on what

determines the optimal quota rule, we perform two comparative analysis with respect to

the prior ρ, which is only relevant model primitive. Note that ρ is a joint representation

of the receiver’s utility function and the common prior about the state, so one can have

different interpretations.
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Our first result shows that the optimal quota on one action is increasing if the random

reward of that action increases in the first-order stochastic order. This is intuitive since

the receiver will always become more favorable to the action with higher rewards even with

uncertainty over the primitives.

Proposition 3 (First-Order Stochastic Dominance).

When γ = 1/2, the optimal quota under ρ is weakly lower than the optimal quota under ρ̂

if ρ̂ first-order stochastically dominates ρ.

We believe the quantifier γ = 1/2 is not necessary but the formal proof is currently

missing. In addition, we show that the optimal quota also exhibits responsiveness to changes

in second-order stochastic dominance. To present the result, let us first introduce the

following notion.

Definition 4 (Mean-Preserving Spread).

A distribution ρ is a mean-preserving spread of ρ′ in Θi for i ∈ {0, 1} if ρ(z) = ρ′(z) for

any z ⊆ Θ1−i and ρ is a mean-preserving spread of ρ′.

Proposition 4 (Second-Order Stochastic Dominance).

The optimal quota under ρ is weakly lower (higher) than the optimal quota under ρ′ if ρ is

a mean-preserving spread of ρ′ in Θ1 (Θ0).

Intuitively, Proposition 4 implies that the receiver should try to avoid an action when

its relative advantage over other actions becomes more obscure. Note that this does not

mean the receiver should avoid an action if it is riskier. To see this, note that θ is the payoff

difference of the two actions. Now, suppose we fix the common prior and fix the payoff

of action 1 while change the payoff of action 0 to make it riskier in Θ1 (in states where

action 1 is better). This would lead to a mean-preserving spread of the induced ρ in Θ1.

Thus, Proposition 4 predicts the optimal quota for action 0 increases, although the reward

of action 0 is riskier in the normal sense.

6 Extensions

In this section, we extend the optimality of quota rules to a more general environment.

The extension includes two parts: (i) relaxing the set of possible signal structures, and (2)

allowing general mechanisms for eliciting the sender’s private information.
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Possible Signal Structures In the main specification, we assume the set of all possible

signal structures is

Σ =

{
π ∈ ∆(∆Θ)

∣∣∣∣ ∫
∆Θ

µdπ(µ) = ρ

}
,

and the set of signal structure Π can be any subset of Σ. Namely, the receiver thinks any

signal structure is possible. In this section, we assume Π can be any closed subset of Σ0 ̸= Σ,

where Σ0 has the following property.

Definition 5 (Minimal Element).

The set Σ0 has a minimal element π0, if π0 ∈ Σ0 and any π ∈ Σ0 Blackwell dominates π0.

In the main specification, where Σ0 = Σ, the minimal element is the zero information

πN . We interpret the existence of the minimal element π0 as there being common knowledge

about a minimal source of information that the sender could get. What remains uncertain

to the receiver is how much additional information the sender could access to.

General Mechanisms In the main specification, we consider decision rules

α(π, µ) : Σ×∆Θ → ∆A.

That is, the action taken by the receiver only depends on the signal structure chosen by the

sender and the signal realization. In this subsection, we consider the general mechanism

(π, α) with a closed subset Σ0 ⊆ Σ that has a minimal element π0. In the general mechanism,

the sender first reports the set of available signal structures Π ∈ 2Σ0 and her utility v ∈
V , and based on the report, the mechanism chooses one signal structure π ∈ Π and the

corresponding decision rule α. Specifically,

π(Π, v) : 2Σ0 × V → Σ0,

α(Π, v, µ) : 2Σ0 × V ×∆Θ → ∆A.

We assume the sender’s report on the set of available signal structures Π̂ must be authentic

in the sense that Π̂ ⊆ Π. Invoking the revelation principle, the design problem of the

receiver is to minimize regret subjective to incentive constraints.

inf
π(),α()

sup
v,Π⊆Σ0

Rγ(π, α, v,Π) = γ · U∗(v,Π)− (1− γ) · U(α(Π, v), π(Π, v)),

s.t. (Π, v) ∈ argmax
v̂,Π̂⊆Π

∫
∆Θ

∑
a

v(a)α(a|Π̂, v̂, µ) dπ(Π̂, v̂)(µ).
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To introduce a natural definition of the quota rule in the general environment, recall in

the main specification αq(π, µ) is called a quota rule with quota q if

αq(π, ·) = argmax
α′∈Ψ(q)

∫
∆Θ

u(µ, α′(µ)) dπ(µ), ∀π.

Definition 6 (Quota Rule for General Mechanisms).

The general mechanism (π, α) is a quota rule with q ∈ ∆A, if for any (Π, v),

π(Π, v, µ) ∈ argmax
π∈Π

∫
∆Θ

u(µ, αq(π, µ)) dπ(µ),

α(Π, v, µ) = αq(π(Π, v, µ), µ).

Namely, for any signal structure π that is eventually chosen, the receiver commits to

the same quota rule αq(π, µ) as described in the main specification. For any reported Π,

the mechanism chooses a signal structure π that maximizes the receiver’s payoff, where π

is evaluated by its performance in the quota rule αq(π, µ). This general mechanism can be

implemented by the quota rule in the main specification because the sender can directly

choose π(Π, v) on behalf of the receiver without reporting (Π, v).

Theorem 2 (General Optimality of Quota Rules).

The quota rule q∗γ is the optimal general mechanism, where

q∗γ = argmin
q∈∆A

max
π∈Σ0

Rγ(q, π).

The proof of Theorem 2 is more involved than that of Theorem 1 but the basic intuition

is the same, so we relegate it to the appendix. Note that if Σ0 = Σ, then the optimal

mechanism in both theorems are equivalent. The fact that the optimal quota rule q∗γ varies

as the possible set of signal structures Σ0 changes shall not be surprising. For example, if

Σ0 = {π0}, i.e., the receiver is sure that there is only one possible signal structure, then

clearly the optimal quota rule is the first-bests quota q∗{π0} as in Proposition 1.

7 Conclusion

We considered strategic communication between a sender and a receiver when both sides

had the ability to commit to a policy, an information rule and a decision rule, respectively.

We were interested in finding the optimal decision rule for the sender when he faced uncer-

tainty about the objective and the instruments of the sender. In particular, the receiver was
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uncertain about the state independent preferences and the set of signal structures that are

feasible for the sender. The literature on strategic communication has typically considered

forms of communication where at least one of the players had no ability to commit, as

illustrated in Table 1. In the current paper, we offer both sender and receiver some level of

commitment power.

Sender
Receiver

No Commitment Commitment

No Commitment
Cheap Talk

(Crawford and Sobel, 1982)
Constrained Delegation
(Holmstrom, 1980)

Commitment
Bayesian Persuasion

(Kamenica and Gentzkow, 2011)
this paper

Table 1: Four Forms of Strategic Communication

Our analysis proposes a robust decision rule to deal with the uncertainty about the

sender’s state-independent preference and set of feasible signal structures. There are a

number of possible variations for future work. First, what if the sender’s preference is

known so the only uncertainty is about the set of possible signal structures? We conjecture

that in this case the optimal decision rule might reward the sender if the proposed signal

structure is more precise. Second, what if the sender’s preferences are state-dependent. One

may then ask whether a suitable generalization of the quota rule exists. In the absence of

uncertainty about the feasible signal structure, the sender could then commit to a decision

rule that would penalize the sender if she were to choose any signal structure other than the

receiver’s preferred signal structure. This indeed suggests that some level of uncertainty is

necessary to weaken an overly strong implication of commitment. A possible generalization

of the quota rule might offer transfer rate across pairs of action state vectors that would

guarantee a certain utility level for the receiver.
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A Missing Proofs

Proof of Lemma 1. All proof except for the Lipschitz continuity can be found in the lit-

erature. The classic reference for the existence is Villani (2003) (pp.32) or Villani (2016)

(Theorem 4.11). Villani’s proof might be a bit hand-waving for some readers, so we add

one explanatory note here. One thing that is not very transparent in the reference is why

when a sequence of feasible solutions Fn → F in the vague topology implies F is also feasi-

ble (namely has the marginal distribution (π1, π2)). This is because 1) vague convergence

Fn → F implies the marginal distribution also converges in the vague topology; 2) the

marginal distribution of Fn is just (π1, π2) for any n, so the sequence of marginal distribu-

tion must converge to (π1, π2) in value topology; 3) if two measures over a compact space

coincide on any bounded continuous function, then the two measures coincide.

The proof of Rγ(q, π) being continuous in (q, π), which is essentially a careful application

of Berge’s Maximum Theorem, can be found in Ghossoub and Saunders (2021).

Finally, we prove that Rγ(q, π) is Lipschitz-1 continuous. We first prove that

U(q, π) = max
F

∫
∆Θ×A

u(µ, a) dF (µ, a),

s.t. F (∆Θ, a) = q(a), ∀a ∈ A,

F (N,A) = π(N), ∀N ∈ B(∆Θ),

is Lipschitz-1 continuous. Recall we denote the Wasserstein metric d as:

d(π1, π2) = min
G∈∆(∆Θ×∆Θ)

∫
∆Θ×∆Θ

|µ− ν|1 dG(µ, ν),

s.t. G(N,∆Θ) = π1(N), ∀N ∈ B(∆Θ),

G(∆Θ, N) = π2(N), ∀N ∈ B(∆Θ),

For any π ̸= π′, denote G as the optimal solution of d(π, π′) (the existence of G follows

from the existence result). G, as a joint distribution on ∆Θ×∆Θ, induces the conditional

probability

P π
π′(N |µ) : B(∆Θ)×∆Θ → [0, 1],

where

∫
∆Θ

P π
π′(N |µ) dπ′ = π(N), ∀N ∈ B(∆Θ),

P π
π′(·|µ) is a probability measure on ∆Θ, ∀µ.

Now denote F ∗
π , and F ∗

π′ as the optimal solution of Rγ(q, π) and Rγ(q, π
′) respectively.

26



Because F ∗
π′ is a joint probability measure on ∆Θ×A with marginal distribution π′, we can

combine P π
π′(·|µ) and F ∗

π′ to induce a probability measure on ∆Θ × ∆Θ × A, and denote

its marginal distribution on ∆Θ × A as Fπ, whose marginal distribution on ∆Θ is π. By

construction

Fπ(N, a′) =

∫
∆Θ×A

P π
π′(N |µ)1a=a′ dF

∗
π′(µ, a), ∀a′ ∈ A,N ∈ B(∆Θ).

Thus, ∣∣∣∣∫
∆Θ×A

u(µ, a) dF ∗
π′(µ, a)−

∫
∆Θ×A

u(µ, a) dFπ(µ, a)

∣∣∣∣
=

∣∣∣∣∫
∆Θ×A

[
u(µ, a)−

∫
∆Θ

u(µ′, a) dP π
π′
(
µ′|µ

)]
dF ∗

π′(µ, a)

∣∣∣∣
≤
∫
∆Θ×A

∫
∆Θ

∣∣u(µ, a)− u(µ′, a)
∣∣ dP π

π′
(
µ′|µ

)
dF ∗

π′(µ, a)

≤
∫
∆Θ×A

∫
∆Θ

|µ− µ′|1 dP π
π′
(
µ′|µ

)
dF ∗

π′(µ, a),

=

∫
∆Θ

∫
∆Θ

|µ− µ′|1 dP π
π′
(
µ′|µ

)
dπ′(µ) = d(π, π′).

The last inequality comes from the boundedness of u: u(θ, a) ∈ [0, 1]. Because Fπ has

marginal distribution π on ∆Θ, it is a feasible solution for the optimization problem of

u(q, π). This means

U(q, π) ≥ U(q, π′)− d(π, π′).

We can prove the other direction using a symmetric argument and in conclusion

|U(q, π′)− U(q, π)| ≤ d(π, π′).

Using a similar argument one can show the first best payoff

u∗(π) =

∫
∆Θ

max
a

u(µ, a) dπ(µ) = max
F

{ ∫
∆Θ×A u(µ, a) dF (µ, a),

s.t. F (N,A) = π(N), ∀N ∈ B(∆Θ),

}

is also Lipschitz-1 continuous in π, and so is Rγ(q, π).

Proof of Lemma 2. The only if direction is trivial. We now prove the if direction.

Suppose by contradiction there exists a quota rule q′ with strictly lower worst-case regret

27



on set Σq. Let

δ ≜ Rγ(q)− max
π∈Σq

Rγ(q
′, π) > 0.

For any information structure π ∈ Σ and any ε > 0, let Bπ,ε be an open ball around

information structure π with radius ε. Because Rγ(q, π) is Lipschitz-1 continuous according

to Lemma 1, take ε = δ/2. We know for any π ∈ Σq and any π′ ∈ Bπ,ε,

Rγ(q
′, π′) ≤ Rγ(q

′, π) +
δ

2
.

Let Bε ≜ ∪π∈ΣqBπ,ε and let

δ̂ ≜ Rγ(q)− max
π∈Σ\Bε

Rγ(q, π).

Since Bε is an open set, Σ\Bε is closed. A closed subset of a compact set is compact so

supreme is attained with a maximizer π∗ ∈ Σ\Bε. Therefore,

δ̂ = Rγ(q)−Rγ(q, π
∗) > 0.

Consider the quota rule

q′′ =
δ̂

2(1−Rγ(q) + δ̂)
· q′ +

(
1− δ̂

2(1−Rγ(q) + δ̂)

)
· q.

For any π ∈ Bε, we have

Rγ(q
′′, π) ≤ δ̂

2(1−Rγ(q) + δ̂)
·
(
Rγ(q)−

δ

2

)
+

(
1− δ̂

2(1−Rγ(q) + δ̂)

)
·Rγ(q)

= Rγ(q)−
δ̂ · δ

4(1−Rγ(q) + δ̂)
.

The first inequality holds since the principal can optimize the payoff given the quota rule

constraints for q′′, which is weakly better than optimizing them separately given constraints

for q and q′. Similarly, for any π ∈ Σ\Bε, we have

Rγ(q
′′, π) ≤ δ̂

2(1−Rγ(q) + δ̂)
· 1 +

(
1− δ̂

2(1−Rγ(q) + δ̂)

)
·
(
Rγ(q)− δ̂

)
= Rγ(q)−

δ̂

2
.
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Therefore, the worst-case regret for q′′ is strictly lower than q for all information structures,

a contradiction.

Proof of Lemma 4. We first show that there exists a signal structure with binary signals

that maximizes the principal’s regret.

For any signal structure π, let S0 be the set of posterior beliefs such that action 0 is

the weakly optimal action, and S1 be the the set of posterior beliefs such that action 1 is

the uniquely optimal action. Consider another signal structure π′ with binary signal {0, 1}
by pooling all signals in S0 into 0 and all signals in S1 into 1. Note that u∗(π) = u∗(π′)

since pooling posteriors with the same optimal action does not change the optimal expected

payoff of the receiver. Moreover, pooling signals weakly decreases the expected payoff of

any quota rule. Thus, the expected regret weakly increases.

Next we show that there exists a binary partition signal structure that maximizes the

principal’s regret. Let χ(θ, s) be the joint distribution over states and signals for any θ ∈ Θ

and s ∈ {0, 1}. Let Θ̂s = {Θ : χ(θ, s) > 0} for any s ∈ {0, 1}. Denote the posterior mean

given signal 0 and 1 by m0 and m1 respectively. Note that it is without loss of generality

to assume that m0 ≤ m1. Let m
∗ be the posterior mean such that the receiver is indifferent

between action 0 and 1. If m0 ≥ m∗ or m1 ≤ m∗, by pooling two signals into one signal,

i.e, by considering another signal structure χ̂(θ, 0) = 0 and χ̂(θ, 1) = 1 for all θ ∈ Θ, the

optimal payoff remains unchanged while the expected payoff given the quota rule weakly

decreases. Thus the regret weakly increases. Note that signal structure χ̂ corresponds to

the degenerate case of binary partition signal structure where one of the signals occurs with

probability 0.

Now we focus on the case where m0 < m∗ < m1. Let ps =
∑

θ∈Θ χ(θ, s) be the

probability signal s is sent. We first consider the case where the quota q ≥ p1. The case

where q ≤ p1 can be proved analogously.

Let θs be the smallest state in Θ̂s and θ̄s be the largest state in Θ̂s. Suppose by

contradiction that θ̄0 > θ1. If θ1 > m0, we have θ0 ≤ m0 < θ1 and there exists sufficiently

small constant ε > 0 such that:

(i) ε ≤ χ(θ1, 1);

(ii) ε · θ1−θ0
θ̄0−θ0

≤ χ(θ̄0, 0); and

(iii) ε · θ̄0−θ1
θ̄0−θ0

≤ χ(θ0, 0).

Let f̂(θ̄0) = ε · θ1−θ0
θ̄0−θ0

, f̂(θ0) = ε · θ̄0−θ1
θ̄0−θ0

, f̂(θ1) = −ε, and f̂(θ) = 0 for any θ ̸∈ {θ0, θ̄0, θ1}.
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Consider another signal structure χ̂ such that

χ̂(θ, s) =

χ(θ, s)− f̂(θ) s = 0

χ(θ, s) + f̂(θ) s = 1.

Given signal structure χ̂, the probability of each signal and their posteriors remain un-

changed, and hence the regret remains the same. Moreover, in signal structure χ̂, the

lowest state that sends signal 1 is below m0. Therefore, we can without loss focus on the

case where θ1 ≤ m0 given signal structure χ.

Since θ̄1 ≥ m1 > m0, there exists sufficient small constant ε̄ > 0 such that

(i) ε̄ · m0−θ1
θ̄1−θ1

≤ χ(θ̄1, 1); and

(ii) ε̄ · θ̄1−m0

θ̄1−θ1
≤ χ(θ1, 1).

Let f̄(θ̄1) = ε̄ · m0−θ1
θ̄1−θ1

, and f̄(θ1) = ε̄ · θ̄1−m0

θ̄1−θ1
. Consider another signal structure χ̄ such that

χ̄(θ, s) =

χ(θ, s) + f̄(θ) s = 0

χ(θ, s)− f̄(θ) s = 1.

That is, signal structure χ̄ shifts probability mass f̄ from signal 1 to signal 0. We have the

following two observations:

1. The optimal payoff strictly increases given χ̄. This is because the unique optimal

action for probability mass f̄ is 0 since its conditional expectation is m0 < m∗.

However, the action chosen for this probability mass is 1 given signal structure χ

leading to a strict payoff loss;

2. The expected payoff given the quota rule remains unchanged. This is because when

q ≥ p1, action 1 is chosen when the signal is 1 in both χ and χ̄. By moving probability

mass f̄ from signal 1 to signal 0, since the posterior mean given f̄ coincides with m0,

it is without loss to assign action 1 for probability mass f̄ given signal structure χ̄

and quota q, leading to the same distribution over outcomes, and hence the same

expected payoff.

Therefore, when γ ∈ (0, 1), signal structure χ̄ leads to strictly higher regret, a contradiction.

If γ = 0, then the objective coincides with max-min, and it is easy to verify that no

information maximizes regret, a special case of binary partition signal structures.
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Proof of Proposition 2. Let π̂ ∈ ΣL(q) be the regret maximizing left-biased signal structure

for quota rule q. For any q′ < q, we have ΣL(q) ⊆ ΣL(q
′) since any signal structure that is

left-biased for q is also left-biased for q′. Therefore π̂ ∈ ΣL(q
′).

Let m0 ≤ m∗ ≤ m1 be the posterior means of signals 0 and 1 in signal structure π̂.

First note that it cannot be the case that m0 < m∗ = m1. This is because by pooling two

signals, the optimal payoff remains unchanged and the expected payoff from the quota rule

strictly decreases, contradicting the assumption that π̂ maximizes the regret.

In the case when m0 = m∗ = m1, since the signal structure is left-biased, we must have

mρ ≥ m∗. By decreasing the quota for action 1 from q to q′, the expected payoff of the

receiver strictly decreases if mρ > m∗ and remains the same if mρ = m∗. Therefore,

Rγ(q, π̂) ≤ Rγ(q
′, π̂),

and the inequality is strict if mρ > m∗. If m∗ < m1, by decreasing the quota for action 1

from q to q′, the expected payoff of the receiver strictly decreases. Again we have Rγ(q, π̂) <

Rγ(q
′, π̂). Therefore, the left-biased error is weakly decreasing in q and strictly decreasing if

mρ ̸= m∗. Similarly, the right-biased error is weakly increasing in q and strictly increasing

if mρ ̸= m∗.

To minimize the maximum regret, the quota rule needs to balance the left-biased error

and right-biased error, and the optimal quota is obtained when two errors are equal.

Proof of Corollary 1. We first show that the optimal quota is in the interior. Note that, with

the help of Proposition 2, it is sufficient to show that Lγ(0) > Rγ(0) and Lγ(1) < Rγ(1).

Indeed, when quota q = 0, the only feasible signal structure for right-biased error is no

information, and the worst case regret in this case is

Rγ(0) = γ · u∗(πN )− (1− γ) · u(0, πN ).

However, consider the signal structure π̂ that reveals whether θ > 0. This signal structure

is left-biased, and hence the left-biased error is

Lγ(0) ≥ γ · u∗(π̂)− (1− γ) · u(0, π̂) > γ · u∗(πN )− (1− γ) · u(0, πN ) = Rγ(0),

where the last inequality holds since u∗(π̂) > u∗(πN ) under the assumption that there exist

state θ in the support of the prior such that θ ∈ Θ1, and u(0, π̂) = u(0, πN ) by Bayesian

consistency. Similarly, we can show that Lγ(1) < Rγ(1) and Corollary 1 holds.

Finally, the uniqueness comes from the fact that both the left-biased error and the

right-biased error are strictly monotone in the quota when mρ ̸= m∗.
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Proof of Proposition 4. The proof of Proposition 4 relies on a refined characterization of

worst-case binary partition signal structure for any given quota rule.

Lemma 5. For any γ ∈ [0, 1) and any quota q, there exists a binary partition signal

structure with min Θ̂1 > 0 that maximizes the right-biased regret, and there exists a binary

partition signal structure with max Θ̂0 < 0 that maximizes the left-biased regret.

Proof of Lemma 5. We prove the characterization for right-biased regret, and the other case

holds analogously. To maximize the right-biased error, the lowest type in Θ̂1 is positive.

For any prior ρ, let θ̂ρ be the minimum state that is strictly positive in the support of ρ. For

any quota rule q and any binary partition signal structure π with cutoff type θ̂ ≤ 0 (lowest

type in Θ̂1) such that π is right-biased for quota rule q, let π′ be the binary partition signal

structure with cutoff type θ̂ρ, that is, the sender sends signal 1 if and only if the state is

strictly positive. Note that π′ is also right-biased since the probability of choosing action 1

in the optimal strategy is smaller. Moreover,

Rγ(q, π) = γ · u∗(π)− (1− γ) · u(q, π) ≤ γ · u∗(π′)− (1− γ) · u(q, π′) = Rγ(q, π
′),

where the inequality holds because u∗(π) ≤ u∗(π′), since u∗(π′) achieves the first best payoff

for the receiver, and u(q, π) ≥ u(q, π′), since by increasing the cutoff the allocation is less

assortative for non-positive types, leading to lower expected payoff.

Now we prove Proposition 4. We will show that the optimal quota is weakly increasing

in ρ in second-order stochastic dominance in Θ0. The other direction holds analogously.

For any type θ̂ > 0, let π be the binary partition signal structure with cutoff type θ̂

given prior ρ and let π′ be the binary partition signal structure with cutoff type θ̂ given

prior ρ′, where ρ second-order stochastic dominates ρ′ in Θ0. Note that signal structure π

is right-biased for q if and only if π′ is right-biased for q since both ρ and ρ′ coincide for

types in Θ1. Therefore, the regret of the agent is

Rγ(q, π) = γ · u∗(π)− (1− γ) · u(q, π) = γ · u∗(π′)− (1− γ) · u(q, π′) = Rγ(q, π
′),

where the second equality holds since having a mean preserving spreading for types in

Θ0 does not affect either the optimal payoff or the expected payoff under a fixed quota.

By Lemma 5, it is sufficient to consider signal structures with strictly positive cutoffs to

maximize the right-biased regret. Thus, for any quota q, the right-biased error Rγ(q)

remains unchanged in ρ in second-order stochastic dominance in Θ0.
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Finally, having a mean preserving spread in Θ0 weakly enriches the set of possible

signal structures that is left-biased for any quota q. Therefore, for any quota q, the left-

biased error Lγ(q) is weakly increasing in ρ in second-order stochastic dominance in Θ0.

By Proposition 2, the optimal quota equalizes two errors, and hence the optimal quota is

weakly increasing in second-order stochastic dominance in Θ0.

Proof of Proposition 3. We omit the subscript of γ in notations as γ = 1
2 . In this case, the

left-biased error and the right-biased error are simplified to

L(q) = max
p0∈[z0,z1], p0≤1−q

q

2(1− p0)
·
∫ 1

p0

F−1(p) dp,

R(q) = max
p0∈[z0,z1], p0≥1−q

−p0 − 1 + q

2p0
·
∫ p0

0
F−1(p) dp.

Note that prior ρ̂ first-order stochastically dominates ρ if and only if F̂−1(p) ≥ F̂−1(p)

for any p ∈ [0, 1]. Therefore, the thresholds satisfy ẑ0 ≤ z0 and ẑ1 ≤ z1. Let q be the optimal

quota rule for prior ρ and q̂ be the optimal quota rule for prior ρ̂. If ẑ1 < 1− q, in order to

equalize the left-biased error and right-biased error given prior ρ̂, we have 1− q̂ ≤ ẑ1 < 1−q,

and hence q̂ ≥ q.

Thus it is sufficient to focus on the case when ẑ1 ≥ 1− q. Let pL0 be the probability that

maximizes the left-biased error given prior ρ. Since pL0 ≤ 1 − q ≤ ẑ1, p
L
0 is also a feasible

choice for left-biased error given prior ρ̂. Since F̂−1(p) ≥ F̂−1(p) for any p ∈ [0, 1], the

left-biased error given the choice of pL0 is larger given prior ρ̂ compared to given prior ρ.

Therefore, the left-biased error is larger in ρ̂.

Let y = sup
{
p
∣∣F−1(p) ≤ 0

}
. It is easy to verify that z0 ≤ y ≤ z1. For any p0 ∈ [ẑ0, ẑ1],

since pL0 ≤ 1 − q ≤ ẑ1, the right-biased error given the choice of p0 is smaller when given

prior ρ̂ than when given prior ρ. Moreover, for any p0 ∈ [ẑ0, y], the right-biased error of p0

is smaller than the right-biased error of y given prior ρ. Therefore, the right-biased error

is larger in ρ. By Proposition 2, the optimal quota rule must equalize the left-biased error

and right-biased error, and hence q̂ ≥ q.

Proof of Theorem 2 The proof is a modified version of Theorem 1. We first extend

the notion of generalized quota rules as in Lemma 3.

Lemma 6. It is without loss of generality to focus on generalized quota rules (π, α) where

there exists q(Π, v) such that

α(Π, v, ·) = αq(Π,v)(π(Π, v), ·), ∀(Π, v).
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The proof of Lemma 6 is obvious. We next introduce the following lemma:

Lemma 7. U(q, π) is concave in q, so Rγ(q, π) is convex in q.

Proof of Lemma 7. Recall that

U(q, π) = max
F

∫
∆Θ×A

u(µ, a) dF (µ, a),

s.t. F (∆Θ, a) = q(a), ∀a ∈ A,

F (N,A) = π(N), ∀N ∈ B(∆Θ).

Fixing π, denote F ∗
q as the optimal solution of U(q, π). For any q1, q2, λ ∈ (0, 1) and

qλ = λq1 + (1− λ)q2, we know

Fλ = λF ∗
q1 + (1− λ)F ∗

q2

as a joint distribution over ∆Θ×A is a feasible solution of U(qλ, π). Thus we know

U(qλ, π) ≥ λU(q1, π) + (1− λ)U(q2, π).

Proof of Theorem 2. Recall π0 is the minimum element in Σ0. Recall that by definition,

U(q, π) is monotonously increasing in the Blackwell order of π and

Rγ(q, π) = γ · u∗(π)− (1− γ) · U(q, π).

We prove the theorem by contradiction. Suppose there is a general mechanism that

induces strictly less regret than the quota rule q∗γ . By Lemma 6, it is without loss of

optimality to assume this improvement is attained by a generalized quota rule (q̄(), π̄()).

Denote

Q(Π) = {q| ∃v s.t. q = q̄(Π, v)}.

Because the general quota rule is a strict improvement, we know

Rγ(q, π) < Rγ(q
∗
γ), ∀π ∈ Σ,∀q ∈ Q(π).

Now if Σq∗γ is a singleton, denote it as Σq∗γ = {π∗}, then by Lemma 2,

Rγ(q
∗
γ) ≤ max

π∈Σq∗γ

Rγ(q
′, π) = Rγ(q

′, π∗), ∀q′.
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This contradicts with (q̄, π̄) being a strict improvement.

If Σq∗γ is not a singleton, denote q0 ∈ Q({π0}). According to Lemma 2, there exists

π′ ∈ Σq∗γ such that

Rγ(q
∗
γ) ≤ Rγ(q0, π

′).

Since Rγ(q, π) is convex in q, the lower-contour set is convex. There exists a separating

hyperplane characterized by v′ and c such that q0 · v′ = c and

Rγ(q, π
′) ≥ Rγ(q0, π

′), ∀q s.t. q · v′ ≥ c. (4)

Next, we claim that q0 ∈ Conv(Q({π′, π0})), i.e., the closure of the convex hull ofQ({π′, π0}).
Suppose not, according to Separating Hyperplane Theorem, there exists a utility v′′ such

that

v′′ · q0 > v′′ · q, ∀q ∈ Q({π′, π0}).

This violates the incentive compatibility of the general mechanism, as the sender with utility

v′′ will report Π̂ = {π0} (with an appropriate report on v) when Π = {π′, π0}.
Now that q0 ∈ Conv(Q({π′, π0})), we know q̄({π′, π0}, v′) must satisfies:

q̄({π′, π0}, v′) · v′ = max
q∈Q({π′,π0})

q · v′ = max
q∈Conv(Q({π′,π0}))

q · v′ ≥ q0 · v′ = c.

According to the separating hyperplane characterized in Eq. (4),

Rγ(q̄({π′, π0}, v′), π′) ≥ Rγ(q0, π
′).

We already know U(q, π) is increasing in the Blackwell order, so

U(q̄({π′, π0}, v′), π0) ≤ U(q̄({π′, π0}, v′), π′).

Thus, regardless of the choice of π̄({π′, π0}), we must have

Rγ(q̄({π′, π0}, v′), π̄({π′, π0}, v′))

=γ · u∗(π′)− (1− γ) · U(q̄({π′, π0}, v′), π̄({π′, π0}, v′))

≥γ · u∗(π′)− (1− γ) · U(q̄({π′, π0}, v′), π′)

=Rγ(q̄({π′, π0}, v′), π′)

≥Rγ(q0, π
′) ≥ Rγ(q

∗
γ).
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This contradicts to the hypothesis that the general mechanism (q̄(), π̄()) is a strict improve-

ment.
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