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Abstract: Let N be a finite set of players and let 7 be a class of
coalitions of N . We consider games with and without sidepayments such
that only the coalitions in w play essential roles but not the others.
For an arbitrary = , we get the class of all such games. The purpose
of this note is to provide a necessary and sufficient condition with
respect to 1 for the nonemptiness of the cores of all games in the

class.

1. Introduction

In situations of n-person cooperatives games, it is not necessarily

equally easy to form every coalition. For example, it might be very

hard to form a large coalition because of coalition formation costs.

That is, it might often happen that only some coalitions play essential
roles but not the others. Myerson [7] considered such a situation from

a graph theoretical viewpoint. If a situation, however, has some special
structures and even if all coalitions are permitted, it happens that

only some coalitions play essential roles, e.g., the assignment game

and the assignment market of Shapley and Shubik [10] and Kaneko [4, 5].
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This paper concerns the nonemptiness of the cores of games of such situa-
tions. We define games with and without sidepayments called "partitioning

games, "

which are generalizations of the assignment game of [10] and
the central assignment game of [5]. The main result of this note is a

necessary and sufficient condition for the nonemptiness of the cores

of a class of partitioning games.

2. The Partitioning Games with and without Sidepayments

Initially we provide partitioning games with sidepayments. Let
N be an arbitrary finite number of players. Let N ={1, 2, ..., n}
Let m be a class of nonempty coalitions satisfying {i} ¢ 7 for all

iegN. Wecall S8 in w a basic coalition. For any nonempty S C N,

we call pg ={ iy e T, } a m-partition of S iff

(1) ‘I‘t en forall 1, ..., k and Pg is a partition of S .

Let P(S) be the set of all n-partitions of $ . We call a game in char-

acteristic function form (N,v) a partitioning game with sidepayments

iff it satisfies

(2) v(S) = max } v(T) for all nonempty SC N .,
pSEP(S) Tepg

Note that v satisfies the super-additivity.

The basic idea is very simple. That is, only the basic coalitions
can play essential roles in a partitioning game. A typical example is
the assignment game of Shapley and Shubik [10].

The core of a game (N,v) with sidepayments is the set

{xeR" : ) x; = v(N) & ] x
ieN ies

;2 v(S) for all nonempty S C N} , where



n o .
R is the n-dimensional Euclidean space. The following lemma ensures
that this definition does not contradict our initial motivation mentioned

in Section 1.

Lemma 1. Let (N,v) be a partitioning game with sidepayments. Then

the core coincides with the set {x e R" : ) x; = v(N) & z X, 2 v(D)

ieN ieT 1

for all T e n} .

Proof. Obvious.

The definition (2) is rewritten in terms of an integer programming

as follows: for all nonempty S CN ,

(3) v(S) = max Z XTV(T)
Ter
TCS

subject to I XT =1 for all ie S and XT =0 orl
Terw
Tai for all Ter with TC S,

where (XT)TETT

TS

is a variable. This integer programming is usually

called a set partitioning problem. See Balas and Padberg [1] and Murty

[6]. This representation will play an important role in considering
the nonemptiness of the core of it.
| For any N and w , we denote, by GS(N,7) , the set of all
partitioning games with sidepayments which have the set of players N
and the set of basic coalitions 7 .
Next let us define partitioning games without sidepayments.

Let N and m be given. A partitioning game without sidepayments

(N,V) 1is a function from the set of all nonempty coalitions to a class

of subsets of R" such that all nonempty SC N ,



(4) V(S) is a closed set in R" ,
(5) if x e V(5) and y ¢ R" with vy S % for all i ¢ 8,
then y e V(S) ,
(6) ProS[V(S) - Winterior V({i})] 41is nonempty and bounded,1
ieS
(7 V(s) = U Nov(T) .

pSsP(S) TepS

Assumptions (4)-(6) are the standard technical conditions. Assumption
(7) means that when a coalition is formed, the players in S subdivide
§ 1into a 7m-partition and get payoffs guaranteed by the basic coalitions.
This idea is almost the same as that of partitioning game with sidepay-
ments. A typical example is the central assignment game of Kaneko [5].

The core of a game without sidepayments (N,V) is the set

V(N) - ) interior V(S) . Parallel to Lemma 1, the following lemma holds.
SCN
S#¢

Lemma 2. Let (N,V) be a partitioning game without sidepayments. Then

the core coincides with V(N) -~ 1) interior V(8)
Sem

Proof. Obvious.

There is, however, a minor conceptual difference between the two
above games, i.e., the partitioning game with and without sidepayments.
In a partitioning game with sidepayments, it is permitted to transfer
money (transferable utility) in every coalition, but in a partitioning

game without sidepayments, it is only permitted to transfer something

1 ProSX = {(xi) : x e X} for SC N and X CR" .

ieS



in every basic coalition. This difference appears as follows. A game
with sidepayments (N,v) can be represented as a game without sidepay-

ments (N,v) such that v{(S) = {x ¢ R" : Z X
ieS

A

v(S)} for all nonempty

SCN. Even if (N,v) is a partitioning game with sidepayments,
(N,v) 1is not a partitioning game without sidepayments, i.e., it does
not satisfy (7). But as far as we consider the core, any difficulty
does not appear. Let us consider another game without sidepayments
(ﬂ, Vv) such that

(8) V (8} = v N v(s) for all nonempty S N .
v
pseP(S) TepS

Of course, (N, Vv) is a partitioning game without sidepayments. Then

the following lemma holds.

Lemma 3. Let (N,v) be a partitioning game with sidepayments. Then

the core of (N,v) coincides with the core of (N, Vv) .
Proof. Obvious.

For any N and = , we denote, by G(N,%s) , the set of all
partitioning games without sidepayments which have the set of players
N and the set of basic coalitions 7 . Embedding GS(N,m) into G(N,n)
by the mapping (8): v Vv s+ We can regard GS{(N,w) as a subset of
G(N,T) .

We need another concept to state the main result of this note.

Let us consider the following system of equations:

(9 ) Xp =1 forall ieN and X, >0 for all Tew,
Tew

Toi

T



where (XT) is a wvariable. We say that the system of equations
Ten

(9) has the integral property iff every extreme solution of (9) consists

of integers. 1If (9) has the integral property, there exists a one-to-

one onto mapping from the set of all w-partitions of N to the set of

all extreme sclutions of (9). The extreme solutions also coincide with
the feasible solutions of (3) in the case of S =K .

The main result of this note is the following theorem.

Theorem. The following three statements are equivalent:
(i) The system of equations (9) has the integral property.
(ii) The core of (N,V) is nonempty for all (N,V) in G(N,nw) .

(iii) The core of (N,v) is nonempty for all (N,v) in GS(N,m) .

3. Remarks

3.1. Let us represent the system of equations (9) as the matrix form,

i.e., AX = e & X

v

0, where X = (XT) and e 1is the vector every
Temw

component of which equals 1., A sufficient condition for (9) to have
the integral property is the unimodular property of A, i.e., every
minor determinant of A equals 0, 1 or -1. (Hoffman and Kruskal [2,
Theorem 2}.) Hoffman and Kruskal gave also several necessary and suf-
ficiéﬁt conditions and more convenient sufficient conditions for the
unimodular property.

Let us consider one necessary and sufficient condition of [2].
For more details, see [2]. Let G = (N,E) be an oriented graph (i.e.,
N={1, ..., n} 1is the set of vertices and E is the set of edges)
(a) which has no circular edges, (b) which has at most one edge between

any two given vertices and (c¢) in which each edge has an orientation.



We call (il, 12) a direct (inverse) edge iff (il, 12) € E
((iz, il) e E) . A path is a sequence of distinct vertices

11, ig, eeey 1

1’ such that for each t (1 <t < k-1) , (it,

)

kK’ Tt41

is either a direct or an inverse edge. A path is directed iff every
edge is oriented forward. A path is alternating iff successive edges
are oppositely oriented. A locp is a path which closes back on itself.
A graph is alternating iff every loop in it is alternating.

Let 7 = {Tl, ee.y T} be some set of directed path in G .

k

Then the incidence matrix A = (ai ) is defined by

1 if i 4is in Tj
1] 0 otherwise.

Then it holds:

Theorem (Hoffman and Kruskal [2, Theorem 4]): For A to have a uni-

modular property, it is sufficient that G be alternating. If
consists of the set of all directed paths of G, then for A to have
the unimodular property it is necessary and sufficient that G be

alternating,

It is easily seen that this theorem can be directly applicable
to the partitioning games. For example, let us consider the graph drawn
in Figure 1 and let 1w be some set of directed paths with {i} e =
for all 1 ¢ N .2 Then we can construct the classes G(N,7) and GS(N,7) .

Since the graph is alternating, the core of every game in G(N,n) is

nonempty by the above theorems.

2Every vertex is a path with length 0.



Figure 1. An Alternating Graph (arrows omitted--
all should be upward)

3.2, There are a lot of papers on the set partitioning problem. Some
of them concerned the integral property of (9) and gave preciser con-

ditions for it. See Balas and Padberg [1].

4. Proof of Theorem

We prove that (i) = (ii) = (iii) = (i). Since GS{(N,n)

is a subset of G(N,m) , (il) = (iii) is trivial.

4.1. Proof of (i) = (ii): Let (N,V) be an arbitrary game in G(N,r) .

Due to Scarf's [8] fundamental theorem, it is sufficient to show that

(N,V) 1is a balanced game under the assumption (i).3’4

3Let us call a family vy of nonempty coalitions of N balanced iff
the system of equations

} 8, =1 forall jeN,
S:Saj

has a nonnegative solution with SS =0 for all S ¢ vy . The numbers

{GS} are called balanced weights for y . A game (N,V) without side-

payments is said to be balanced iff the following inclusion statement:

NV(s) v .
Sey



For any nonempty coalition S5 , we define a zero-one matrix

A, = (ag_ ) by
S S:4T’,
Tem
3 IT| or 0 if TcCs
(10) a, .o =
ieny o 0 if Tds
1 if i¢esS
Zals-iT=
Tew °° 0 if 1i¢°8
ag. i1 = 0 if 1 ¢ T,

where [T| is the number of members in T . We call AS a partition
matrix of S . We define D_(b) = (d_ ..(b)) for each b & R°
—_— s 5:4iT ieN

and nonempty coalition S by Ten

1 if 1 e85, i1€T and b e V(D)
(11) d, ..(b) =
S:4T 0 otherwise.

It is easily verified that Pg is a m-partition of 8 if and only if

Pg = {T : ag. 41 = 1 for some {1 ¢ S} for some partition matrix AS of

5 . Hence we get the following lemma.

Lemma 4. V(S) = {b € R" : Ds(b) > A, for a partition matrix A_ of S}

S 5

for all nonempty S C N .

holds for all balanced families <y . The fundamental theorem of Scarf
[8] states that the core of a balanced game with (4), (5) and (6) is
nonempty.

4This proof is a modification of the proof of the main theorem of Shapley
and Scarf [9]. Regretfully, however, their game is not a partitioning
game and so, our theorem does not cover their existence theorem.
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Let us consider another system of inequalities:

(12) Z X . < |T| for all T e«
iT =
ieN
[xﬂ,=1 for all i e N
Ten
XiT >0 for all 1 e¢eN & Ten, XiT = XjT if
i, j e T and XiT =0 if 1 ¢ T,
where (X,.) is a variable.
iT”,
ieN
Tem

Lemma 5. There exists a one-to-one onto and linear mapping f from
the set of all solutions of (9) to the set of all solutions of (12)

such that %o any (XT) satisfying (9), f assigns (XiT)
Terw ieN

such that Tew

XT if 41T

] otherwise.

(13) .=

Proof. It is easily verified that the mapping defined by (13) from the
set of all solutions of (9) to that of all solutions of (12) is a one-

to-one and linear mapping. Conversely we define the mapping which assigns

to each (X,

1T) such that for all T e 7

satisfying (12) (XT)
ieN TeT
Tenr

(14) XT = XiT for some i e T .

It is easily verified that this mapping is the inverse mapping of the

mapping satisfying (13). Q.E.D.
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Proof of the Balancedness: Let Y be an arbitrary balanced family of

coalitions and let b e Y V(S) . Let {55} be balanced weights for
Sey

Y . Then it holds that

Dy (B) L 65D (b)

Sey

For, if dN:iT(b) =1, then dS:iT(b) =1 if 41 ¢ S and dS:iT(b) =0
if 1 ¢ 8 by (11), which implies } 8.dg.,.n(b) = ] §dg,  p(P) = 1,
Sey Sey
Sai
and if dN:iT(b) =0, then dS:iT(b) =0 for all 8 € vy, which implies
I 8gdg,4p(® =0 .
ey

By Lemma 4, there is a partition matrix AS such that Ds(b) > A

S
5

for all S ¢ vy, and so0 we have

L 8gDg() 2 ] 8Ag .
Sey Sey

Call the matrix on the right B ; then we have DN(b) > B . The crucial

fact about B is to satisfy (12). 1In fact, we have by (10},

IT| or 0 4f TCS

g, cm = ) 0oL Bq.qm= ) 8
igN sgy $8:3T - g2y Sien ST 62 81 0 otherwise
= ITi Y6 s 17T s
Sey
SoT
1 if ie S
8.8 = 8 ¥ ag. 8
Tgn SZY 57S:1T Sgy STEﬂ 5:3T Sey 5|0 otherwise
= Y 6. =1
Sey $
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Since a 0 if 1 ¢ T and it follows from (10) that a = a

S:iT S:iT  °8:jT

if i,j e T, we get

Z GSaS:iT =0 if i ¢ T and
Sey

SgyésaS:iT = SZYGSaS:jT- if i, jeT.
So, B satisfies (12). If B consists of integers, then B is already
a parrition matrix of N , which means b ¢ V(N) . Let us assume that

B does not consist of integers. Lemma 4 says that the integral property
of (9) is equivalent to that of (12). Since (9) has the integral property
by the supposition of proof, (12) has the integral property. Therefore,
there are integral extreme solutions of (12) as a convex combination

of which B is represented. Let Bl, ey Bk be such integral extreme
solutions. Then DN(b) > gt for all t =1, ..., k because DN(b)

has only zeroc or one entories. These Bt are partition matrices.

Therefore b belongs to V(N) . Q.E.D.

4.2. Proof of (iii) =—> (i): We assume the negation of (i) and prove

that there is a game (N,v) in GS(N,n) with an empty core.
Since we assume the negation of (i), there is an extreme point

(X%)‘ of the set of all solutions of (9) which is not an integral
Term

point. Let X be the set of all solutions of (9). Since X 1is a

convex polyhedron, there is a vector (uT) such that
Tew
% *
(15) LuXy > § uX, for all (Xp) e X with (X))  # (XD
Tem Tew Tem Tew Tew
Using this (uT) » we define a game (N,v) with sidepayments as follows:

Ten
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(16) v(58) = max E u
TEﬂXT T
TCS

subject to Z X. =1 for all ie S and XT =0orl
T
Tenw
Tai for all Tenw with TCT S .

By Lemma 1, a necessary and sufficient condition for the nonemptiness

of the core of (N,v) 1is that L < v(N} , where

L = min X Xy subject to E X 2 v(T) for all Te n
ieN ieT

The dual of the above linear programming is

M = max Z v(T)YX

Temw T

subject to z XT =1 for all {1 e N and XT >0 for all Ten .5
Tew
Toi

By the duality theorem, it holds that L =M . Since up < v(T) for

all Temw, 1t holds that M' <M, where

M' = max Z u

X
Ten TT

subject to Z XT =1 for all 1 e N and XT >0 forall Tem.
Ten
Tai

The constraint of the above problem coincides with (9). Hence

M! = Z uTx; . Since (X;) is not a feasible solution of (16) in
Tem Tenw

the case of 8 = N because it is not an integral point, v{N) is smaller
than M' by (15). Hence v{(N) < M' <M =1L . This implies that the

core of (N,v) is empty. Q.E.D.

5Note that this is a linear programming with mixed constraints. See
Goldman and Tucker [3].
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