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OPTIMAL UNIQUE-IMPLEMENTATION MECHANISMS‡

Addressing Strategic Uncertainty with Incentives and Information†

By Marina Halac, Elliot Lipnowski, and Daniel Rappoport*

We study the optimal design of incentives and 
information in  multi-agent settings with exter-
nalities. A principal privately contracts with a 
set of agents who then simultaneously choose a 
binary action. There is a hidden state of nature 
that we call the fundamental state. The principal 
offers each agent a contingent individual allo-
cation, and possibly gives agents information 
about the fundamental state and each other’s 
contracts and information. Each agent’s payoff 
depends on the profile of agents’ actions, his 
allocation, and the fundamental state. We solve 
for the principal’s incentive scheme that maxi-
mizes her expected payoff subject to inducing 
a desired action profile as the unique rationaliz-
able outcome.

Our main result is a simplification of 
this  multi-agent problem to a  two-step pro-
cedure in which information is designed 
 agent-by-agent: the principal chooses a 
 fundamental-state-contingent distribution over 
agent rankings, and then, separately for each 
agent, the agent’s information about the funda-
mental state and realized ranking. We highlight 
that such a ranking state together with the fun-
damental state—what we call the total state—
is the right state variable for the principal’s 
problem. Similar state variables appear in prior 
work on unique equilibrium implementation 

in supermodular games; most closely related, 
Oyama and Takahashi (2020); Morris, Oyama, 
and Takahashi (2020); and Halac, Lipnowski, 
and Rappoport (2021). Our analysis elucidates 
that the total state captures agents’ relevant 
uncertainty whenever their incentives are pinned 
down by their relative order in the sequence of 
deletion of dominated actions.

We illustrate our results by studying a 
 team-effort problem, related to Winter (2004); 
Moriya and Yamashita (2020); and Halac, 
Lipnowski, and Rappoport (2021). Our  two-step 
procedure permits an explicit characterization 
of the principal’s solution, and we describe how 
this solution varies with the environment. We 
find that the principal may want to give agents 
no information, public information, or private 
information about the total state.

Our paper joins a growing literature on unique 
implementation, including work on incentive 
contracts and on information design under 
adversarial equilibrium selection. In addition to 
the papers just cited, see Segal (2003); Bernstein 
and Winter (2012); Chassang, Del Carpio, and 
Kapon (2020); Halac, Kremer, and Winter 
(2020, 2022); and Camboni and Porcellacchia 
(2021) on incentive design; Hoshino (2021), 
Mathevet, Perego, and Taneva (2020); Inostroza 
and Pavan (2022); and Li, Song, and Zhao 
(2021) on information design; and work related 
to the latter strand such as Kajii and Morris 
(1997). Our paper studies both of these tools 
jointly. We provide a general methodology that 
can be useful for various applications in which 
strategic uncertainty may be addressed with 
incentives and information.

I. Model

A principal contracts with a set  N  
=  {1,  …, N}   of agents. There is a state of 
nature, or fundamental state, drawn from a 
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finite set  Ω  according to a probability distribu-
tion   p 0   ∈ ΔΩ  with full support.1 The principal 
offers each agent  i ∈ N  a private allocation   
x i   ∈  X i   , and possibly gives agents information 
about the fundamental state and each other’s 
contracts. Agents then simultaneously choose a 
binary action, either 1 or 0.

Formally, a principal’s incentive scheme is  

σ = ⟨q, χ⟩ , where  q ∈ Δ [  ( ℕ   2 )    
N
  × Ω]   is a 

prior with marginal distribution   p 0    on  Ω  and  
χ =   ( χ i  )  i∈N    is an allocation rule, with   χ i   :  
supp ( marg i   q)  →  X i   . Let   T  i  

q  ≔ supp ( marg i   q)    
denote the support of the marginal of  q  along 
dimension  i  and   T   q  ≔  ∏ i∈N    T  i  

q   . The interpreta-
tion is that the principal privately informs each 
agent  i ∈ N  of his type   t i   ∈  T  i  

q   and, through 
the allocation rule, of his prescribed allocation.2 
Hence, an agent may face uncertainty about 
other agents’ contracts and about the fundamen-
tal state, but is completely informed about his 
own contract.3 The choice of  q , specifically the 
correlation between an agent’s type and others’ 
types and the fundamental state, determines how 
much an agent knows about others’ contracts 
and the fundamental state.

An incentive scheme  σ = ⟨q, χ⟩  defines a 
Bayesian game between the agents. In this game,  
⟨  ( T  i  

q )  i∈N  , Ω, q⟩  is a  common-prior type space; 
agents simultaneously make  type-contingent 
decisions of whether to choose  1  or  0 ; and agent  
i ’s payoff is a function   u i   :  2   N  ×  X i   × Ω → ℝ  of 
the set of agents who choose 1, his allocation, 
and the fundamental state. The principal wishes 
to uniquely induce all agents to choose  1  (with 
probability  1 ), with her payoff in that event given 
by   ∑ i∈N  

 
    v i   ( x i  , ω)   for   v i   :  X i   × Ω → ℝ  bounded 

above. Say an action is rationalizable for an 
agent type if it is interim correlated rationaliz-
able, and say an incentive scheme  σ = ⟨q, χ⟩  

1 Throughout, given a set  Z , let  ΔZ  denote the set of 
 finite-support probability distributions over  Z .

2 Given the finite type restriction, since the type itself 
is a strategically irrelevant label (Dekel, Fundenberg, and 
Morris 2007, Proposition 1), it is immaterial that types are 
labeled with natural number pairs.

3 Note, however, that the space of allocations can be rich. 
For example, if   X i    stipulates  fundamental-state-contingent 
payments, then the assumption that agents observe their own 
contracts is consistent with them facing uncertainty about 
their own payments. Even so, this assumption can entail a 
payoff loss for the principal in fixed settings, as we demon-
strate in Section  V of Halac, Lipnowski, and Rappoport 
(2021).

is unique implementation feasible (UIF) if all 
agent types choosing  1  is the unique rationaliz-
able outcome of the Bayesian game induced by  
σ . The principal solves

(1)    sup  
σ is UIF

   V (σ) , 

where  V (σ)   is her total expected payoff given 
scheme  σ = ⟨q, χ⟩  and all agents choosing  1 :

  V (σ)  =   ∑ 
t∈ T   σ ,ω∈Ω

  
 

   q (t, ω)   ∑ 
i∈N

  
 

    v i   ( χ i   ( t i  ) , ω) . 

We make a  dominant-allocation assump-
tion that says that for each agent  i ∈ N , there 
exists    x –  i   ∈  X i    such that choosing action 1 is 
dominant:

   min  
J⊆N\ {i} ,ω∈Ω

   [ u i   (J ∪  {i} ,   x –  i  , ω)  −  u i   (J,   x –  i  , ω) ]   >  0. 

Under this assumption, the principal can always 
make choosing 1 uniquely rationalizable.4 
Our focus is on solving for optimal incentive 
schemes that achieve this goal. The principal’s 
problem in (1) does not generally admit a maxi-
mum, but en route to our characterization of her 
optimal value, we will construct approximately 
optimal incentive schemes.5

REMARK 1: A special case of our model is 
the case of a supermodular game, in which  
 J ↦  u i   (J ∪  {i} ,  x i  , ω)  −  u i   (J,  x i  , ω)   is a weakly 
increasing map on   2   N\ {i}    for every  i ∈ N ,  
  x i   ∈  X i   , and  ω ∈ Ω . In this case, the require-
ment that each type choosing action  1  be 
uniquely rationalizable is equivalent to the 
requirement that it be a unique  Bayes-Nash 
equilibrium.

REMARK 2: We have assumed that the set of 
feasible profiles of allocations is a product 
set   ∏ i∈N    X i    , and that the principal’s objective 
( conditional on all agents choosing 1) is addi-
tively separable. Our tools can be useful even 
without these separability conditions, if we 
suitably generalize our  dominant-allocation 

4 By combining our analysis with that in Morris, Oyama, 
and Takahashi (2020), it may be possible to weaken our 
 dominant-allocation assumption.

5 That is, for any  ε > 0 , our proof constructs a UIF 
scheme   σ ε    such that  V ( σ ε  )  >  sup σ is UIF   V (σ)  − ε .
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assumption.6 In contrast, relaxing our assump-
tions that actions are binary and agent pref-
erences take a  private-value form seems more 
challenging.

II. Solving for Optimal Schemes

We will find it convenient to express proper-
ties of an incentive scheme in terms of the order 
its type realizations induce on agents. Denote 
by  Π  the set of all permutations on  N  (i.e., all  
π ∈  N   N   with   π i   ≠  π j    for all distinct  i, j ∈ N ),  
and consider incentive schemes  σ = ⟨q, χ⟩  
such that every  positive-probability type profile  
t =   ( t  i  

R ,  t  i  
S )  i∈N   ∈  T   q   has   t  i  

R  ≠  t  j  
R   for all dis-

tinct  i, j ∈ N . Any such type profile  t  induces 
a ranking state  π (t)  ∈ Π  given by   π i   (t)   

= | {j ∈ N :  t  j  
R  ≤  t  i  

R } | . A key consequence of 
our analysis will be that the relevant state vari-
able for the principal’s problem consists of the 
ranking state  π ∈ Π  together with the funda-
mental state  ω ∈ Ω . We will refer to   (π, ω)   as 
the total state.

Given a prior  q , agent  i ∈ N , and type   
t i   ∈  T  i  

q  , we have that   t i   ’s belief   μ  i  
q  ( · |  t i  )  ∈  

Δ (Π × Ω)   about the total state is given by

  μ  i  
q  ( π ˆ  ,  ω ˆ   |  t i  )  ≔  q i   ( { t −i   : π ( t i  ,  t −i  )  =  π ˆ  }  ×  { ω ˆ  }  |  t i  ) 

 for all  π ˆ   ∈ Π,  ω ˆ   ∈ Ω, 

where   q i   :  T  i  
q  → Δ ( T  −i  

q   × Ω)   is given by  

  q i   ( t −i  , ω |  t i  )  ≔   1 _ 
 marg i   q ( t i  ) 

   q ( t i  ,  t −i  , ω)  . The total 

state distribution   μ   q  ∈ Δ (Π × Ω)   is given by

   μ   q  ( π ˆ  ,  ω ˆ  )  ≔ q ( {t : π (t)  =  π ˆ  }  ×  { ω ˆ  } ) 

 for all  π ˆ   ∈ Π,  ω ˆ   ∈ Ω. 

For any agent  i ∈ N  and belief   μ i   ∈  
Δ (Π × Ω)   that he might hold, let us define 

6 Specifically, our analysis implies that the principal’s 
program can still be reduced to a  two-step procedure: first, 
choose a  fundamental-state-contingent distribution over 
what we will call ranking states and assign an optimal prin-
cipal value to any profile of agent beliefs about the funda-
mental and ranking states; second, design an information 
structure concerning the realized fundamental and ranking 
states. If the principal’s value is independent of the funda-
mental state, the analysis of Morris (2020) (and the classic 
work cited therein); Ziegler (2020); or Arieli et al. (2021) 
can be applied.

his sufficient allocations   x i   ∈  X i    as those that 
induce the agent to choose action 1 under the 
hypothesis that all agents  j ∈ N\ {i}   with rank   
π j   <  π i    choose action 1. Letting

   I i   ( x i  , π, ω) 

  ≔   min  
J⊆N\ {i} :J⊇ {j∈N: π j  < π i  } 

   [ u i   (J ∪  {i} ,  x i  , ω)  

 −  u i   (J,  x i  , ω) ] , 

the agent’s set of sufficient allocations is given 
by

    i  
⁎  ( μ i  )  

 ≔  { x i   ∈  X i   :   ∑ 
π∈Π,ω∈Ω

  
 

    μ i   (π, ω)   I i   ( x i  , π, ω)  > 0} . 

By our  dominant-allocation assumption, this set 
is nonempty as it contains allocation    x –  i   .

DEFINITION 1: A strict ranking scheme is an 
incentive scheme  σ = ⟨q, χ⟩  such that:

 1. Every  positive-probability  t ∈  T   q   has   
t  i  
R  ≠  t  j  

R   for all distinct  i, j ∈ N .

 2. Every  i ∈ N  and   t i   ∈  T  i  
q   have   χ i   ( t i  )  ∈  

  i  
⁎  ( μ  i  

q  ( · |  t i  ) )  .

The next lemma shows that strict ranking 
schemes are useful because they ensure choos-
ing  1  is uniquely rationalizable and, up to rela-
beling of types, constitute all such incentive 
schemes. See the online Appendix for proofs of 
all of our results.

LEMMA 1: Every strict ranking scheme is UIF. 
Moreover, if an incentive scheme  σ  is UIF, 
there exists a strict ranking scheme   σ   ⁎   with  
 V ( σ   ⁎ )  = V (σ)  .

The proof is constructive: we relabel types 
so that the order in which agents have action 0 
eliminated in an iterated deletion sequence coin-
cides with the ranking state  π ∈ Π .

Lemma  1 implies that to solve the princi-
pal’s problem in (1), it is without loss to focus 
on strict ranking schemes. For any agent  i ∈ N  
and belief   μ i   ∈ Δ (Π × Ω)   that he might hold, 
define the principal’s interim value function by

   v  i  
⁎  ( μ i  )  ≔   sup  

 x i  ∈   i  
⁎  ( μ i  ) 

     ∑ 
π∈Π,ω∈Ω

  
 

    μ i   (π, ω)   v i   ( x i  , ω) . 
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The principal’s problem is then to choose a 
prior in order to maximize the expectation of  
  ∑ i∈N  

 
    v  i  

⁎  ( μ i  )  . Our main result is a simplification 
of this problem to a  two-step procedure in which 
information is designed  agent-by-agent: first, 
the principal chooses a total state distribution  
μ ∈ Δ (Π × Ω)  ; second, separately for each 
agent, she chooses what information to provide 
to the agent about the realized total state   (π, ω)  .  
Formally, for any agent  i ∈ N  and distribution  
μ ∈ Δ (Π × Ω)  , define

(2)    ̂  v   i  
⁎  (μ)  ≔   sup  

 τ i  ∈ΔΔ (Π×Ω) 
    ∫ 

 
  
 

   v  i  
⁎  ( μ i  )  d τ i   ( μ i  ) 

subject to

  ∫ 
 
  
 

   μ i   d τ i   ( μ i  )  = μ, 

which is the  pointwise-lowest concave function 
above   v  i  

⁎  . Denote the set of allowable total state 
distributions by   ( p 0  )  =  {μ ∈ Δ (Π × Ω)  :  
marg Ω   μ =  p 0  } .  

THEOREM 1: The principal’s optimal value 
satisfies

    sup  
σ is UIF

   V (σ)  =   sup  
μ∈ ( p 0  ) 

     ∑ 
i∈N

  
 

     ̂  v   i  
⁎  (μ) . 

The reduction in Theorem  1 is sig-
nificant. Instead of optimizing over 
 fundamental-state-contingent distributions over 

type profiles  q ∈ Δ [  ( ℕ   2 )    
N
  × Ω]  , the principal 

simply chooses a  fundamental-state-contingent 
distribution over rankings  μ ∈ Δ (Π × Ω)  .  
Then,  agent-by-agent, the principal solves 
the  single-agent information design problem 
in (2)—a well-understood problem given the 
extensive literature on persuasion (see Kamenica 
2019).

The proof of Theorem  1 establishes that   
sup σ is UIF   V (σ)  ≤  sup μ∈ ( p 0  )     ∑ i∈N  

 
     ̂  v   i  

⁎  (μ)   by 
using Lemma 1 and program (2), and shows that 
this inequality holds with equality by construct-
ing a sequence of strict ranking schemes that 
approximates the payoff bound. The construc-
tion is the same as that in Halac, Lipnowski, and 
Rappoport (2021), but with types augmented to 
convey information about the total state.7

7 In that paper’s setting, this augmentation was not needed 
as providing no information was optimal.

We close this section by noting that an opti-
mum exists in many natural cases.

DEFINITION 2: Say   (μ,   ( τ i  )  i∈N  )   is optimal if  
μ ∈  arg max  μ ̃  ∈ ( p 0  )     ∑ i∈N  

 
     ̂  v   i  

⁎  ( μ ̃  )   and   τ i    is an 
optimum of program (2) defining    ̂  v   i  

⁎  (μ)   for 
every  i ∈ N .

FACT 1: If   v  i  
⁎   is upper semicontinuous for each  

i ∈ N , then some optimal   (μ,   ( τ i  )  i∈N  )   exists.

III. Team Effort with Transfers

We illustrate our results by studying a sim-
ple  team-effort problem. Our  two-step proce-
dure permits an explicit characterization of the 
principal’s solution, and we describe how this 
solution varies with the environment. In particu-
lar, we show that the principal may want to give 
agents no information, public information, or 
private information about the total state.

Consider a special case of our model in 
which a set  N =  {1, 2}   of agents privately 
choose whether to work (choose  1 ) or shirk 
(choose  0 ) on a joint project. The fundamental 
state  ω  is drawn uniformly from  Ω =  {1, 2}   
and determines agents’ costs of effort, given by  
  c i   (ω)  > 0  for  i ∈ N . The project succeeds 
with probability   P k    if  k  agents work and the 
rest shirk, and the allocation   x i   ∈  X i   =  ℝ +    
is a bonus that the principal pays agent  i  in the 
case of success. We thus write agent  i ’s payoff 
as   u i   (J,  x i  , ω)  =  P |J|    x i   −  c i   (ω)   𝟏 i∈J   . The prin-
cipal’s goal is to uniquely induce the agents 
to work at the least possible incentive cost, so  
  v i   ( x i  , ω)  = −  x i   .

We assume  P  is strictly increasing (i.e.,  1 ≥  
P 2   >  P 1   >  P 0   ≥ 0 ) and strictly supermod-
ular (i.e.,   P 2   −  P 1   >  P 1   −  P 0   ), meaning that 
agents’ efforts are productive and complemen-
tary. Since an agent’s incentive to work is then 
always increasing in the other agent’s effort, the 
agent’s set of sufficient allocations takes a sim-
ple form. Specifically, denote by   μ  i  

Π  ∈ ΔΠ  and   
μ  i  

Ω  ∈ ΔΩ  the marginals of   μ i    along  Π  and  Ω  
respectively, and let   π   i  ∈ Π  be the ranking state 
in which agent  i  is ranked second. Defining the 
expected marginal product

   ι i   ( μ  i  
Π )  ≔  [1 −  μ  i  

Π  ( π   i ) ]  ( P 1   −  P 0  )  

 +  μ  i  
Π  ( π   i )  ( P 2   −  P 1  ) , 
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and given that the agent’s expected cost of effort 
is   c i   ( μ  i  

Ω )  ≔  ∑ ω∈Ω  
 
    μ  i  

Ω  (ω)   c i   (ω)  , direct compu-
tation yields     i  

⁎  ( μ i  )  =  { x i   ∈  X i   :  x i    ι i   ( μ  i  
Π )  >  

c i   ( μ  i  
Ω ) } .  Hence,   v  i  

⁎  ( μ i  )  = −  c i   ( μ  i  
Ω )  /  ι i   ( μ  i  

Π )  , 
and replacing the objective with its negative, the 
principal’s problem can be written as

(3)    inf  
  

μ∈ ( p 0  ) ,
   

 τ 1  , τ 2  ∈ΔΔ (Π×Ω) 
 

     ∑ 
i∈N

  
 

    ∫ 
 
  
 

     
 c i   ( μ  i  

Ω ) 
 _ 

 ι i   ( μ  i  
Π ) 

   d τ i   ( μ i  ) 

subject to

  ∫ 
 
  
 

   μ 1   d τ 1   ( μ 1  )  =  ∫ 
 
  
 

    μ 2   d τ 2   ( μ 2  )  = μ. 

We next present different examples that vary 
in how agents’ effort costs depend on the fun-
damental state. We denote by   τ  i  

Π  ∈ ΔΔΠ  and   
τ  i  

Ω  ∈ ΔΔΩ  the distributions of the margin-
als of   μ i    along  Π  and  Ω  respectively, and let  
 φ ≔  ( P 1   −  P 0  )  /  ( P 2   −  P 1  )  ∈  (0, 1)  .

An Example with No Information: Suppose 
agents’ effort costs are constant.

PROPOSITION 1: Take   c 1   (1)  =  c 1   (2)  ≕  
c H   ≥  c L   ≔  c 2   (1)  =  c 2   (2)  . Then a feasi-
ble   (μ,  τ 1  ,  τ 2  )   is optimal if and only if   τ  1  Π  ( μ   Π )   
=  τ  2  

Π  ( μ   Π )  = 1  and

  μ   Π  ( π   1 ) 

=  
{

   
 √ 
_

  c H     − φ  √ 
_

  c L    
  __________________  

 (1 − φ)  ( √ 
_

  c H     +  √ 
_

  c L    ) 
    : φ  √ 

_
  c H     <  √ 

_
  c L         

1
  

: otherwise.
    

In particular, in every optimum, neither agent 
learns anything about the ranking state; and 
some optimum exists in which neither agent 
learns anything about the fundamental state.

This result corresponds to a special case of 
the results in Halac, Lipnowski, and Rappoport 
(2021). When   c i    is constant for each  i ∈ N , 
the interim value functions   v  i  

⁎   are all concave, 
so    ̂  v   i  

⁎  =  v  i  
⁎   and providing no information to the 

agents about the realized ranking state is strictly 
optimal. Because the fundamental state is irrel-
evant, the principal is indifferent to providing 
information about it, as long as agents learn noth-
ing about the ranking state. Our  two-step proce-
dure therefore reduces to a single  optimization 

over  μ ∈  ( p 0  )   in this setting. The solution 
in Proposition 1 shows that the higher agent 1’s 
effort cost is relative to agent 2’s, the higher the 
probability  μ  places on ranking state   π   1   that 
ranks agent 1 second.

An Example with Public Information: 
Suppose agents are  ex ante identical but their 
effort costs are perfectly negatively correlated: 
one has a high cost and the other a low cost, 
depending on the fundamental state.

PROPOSITION 2: Take   c 1   (1)  =  c 2   (2)  ≕  
c H   >  c L   ≔  c 2   (1)  =  c 1   (2)  . Then there is a 
unique optimal   (μ,  τ 1  ,  τ 2  )  . Each  i ∈ N  has  
  τ i   ( β  1  

⁎  ⊗  δ 1  )  =  τ i   ( β  2  
⁎  ⊗  δ 2  )  = 1 / 2,  where

  β  1  
⁎  ( π   1 )  =  β  2  

⁎  ( π   2 ) 

=  
{

   
 √ 
_

  c H     − φ  √ 
_

  c L    
  __________________  

 (1 − φ)  ( √ 
_

  c H     +  √ 
_

  c L    ) 
    : φ  √ 

_
  c H     <  √ 

_
  c L         

1
  

: otherwise.
    

In particular, in the unique optimum, agents 
learn the fundamental state and hold identical 
beliefs about the total state.

The proposition shows that providing public 
information is strictly optimal in this setting. 
In the unique optimum, each agent learns the 
fundamental state, and in turn learns something 
about the ranking state. Moreover, because each 
agent holds a unique belief in each fundamen-
tal state, it follows that agents perfectly learn 
each other’s beliefs—that is, information must 
be public. The intuition is that the principal 
benefits from correlating agents’ ranking state 
beliefs with their relative effort costs and thus, 
here, with the fundamental state. In fact, observe 
that ranking state beliefs are the same function 
of effort costs as in Proposition 1: because the 
fundamental state is publicly revealed, it is as if 
the principal optimizes the contracts separately 
over two deterministic environments.

An Example with Private Information: 
Suppose the effort cost of only agent  1  varies 
with the fundamental state, and for simplicity let 
agent  2 ’s constant effort cost be equal to agent 
 1 ’s in one of the fundamental states.

PROPOSITION 3: Take   c 1   (1)  ≕  c H   >  
c L   ≔  c 2   (1)  =  c 2   (2)  =  c 1   (2)  . Then a feasible  
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  (μ,  τ 1  ,  τ 2  )   is optimal if and only if   τ 1   ( β  ω  ⁎⁎  ⊗  δ ω  )   

= 1/2  for each  ω ∈ Ω  and   τ  2  
Π  ( ∫    

 
   β  ω  ⁎⁎  d p 0   (ω) )   

= 1 , where

  ( β  1  
⁎⁎  ( π   1 ) ,  β  2  

⁎⁎  ( π   1 ) ) 

=    (  
 (2 + φ)   √ 

_
  c H     − 3φ  √ 

_
  c L    
  _______________  

 (1 − φ)  (3  √ 
_

  c L     +  √ 
_

  c H    ) 
  ,

 {    
 (2 − φ)   √ 

_
  c L     − φ  √ 

_
  c H    
  ________________  

 (1 − φ)  (3  √ 
_

  c L     +  √ 
_

  c H    ) 
  )  :   

 √ 
_

  c H    
 _  √ 

_
  c L       ≤   3 _ 

1 + 2φ  

  (1, 1/3)  : otherwise. 

In particular, in every optimum, agent  1  has 
strictly more information than agent  2  about 
both the ranking state and the fundamental state.

The proposition shows that providing pri-
vate information is strictly optimal in this set-
ting. Agent 1 (whose effort cost varies with the 
fundamental state) learns the fundamental state 
and in turn something about the realized rank-
ing state. In contrast, agent 2 (whose effort cost 
is constant) is given no information about the 
ranking state, and therefore is given strictly less 
information about the fundamental state than 
agent 1.

More Examples: In the examples above, the 
principal optimally gives an agent either no 
information or full information about the fun-
damental state. We can show, however, that this 
is not a general property. For example, con-
sider  perfectly positively correlated agent effort 
costs:    c 1   (1)  =  c 2   (1)  >  c 2   (2)  =  c 1   (2)  .  
Because the principal would like to correlate 
each agent’s ranking state belief with the fun-
damental state in the same direction, it turns out 
that giving an agent partial information about 
the fundamental state is strictly optimal.

A natural extension of our  team-effort prob-
lem is to let the probability of project success 
depend on the fundamental state. For  ω ∈ Ω ,  
suppose the project succeeds with probabil-
ity   P k   (ω)   if exactly  k  agents work. By similar 
logic as in Proposition  1, we can show that if   
P 2    and    ( c i  )  i∈N    are constant, then it is optimal to 
give agents no information about the realized 
total state. More generally, providing public or 
private information may be optimal when both 
project success and effort costs depend on the 
fundamental state, and our methodology can 

be used to solve for the optimal joint design of 
incentives and information.
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