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Abstract

A general asymptotic theory is established for sample cross moments of nonstationary

time series, allowing for long range dependence and local unit roots. The theory provides

a substantial extension of earlier results on nonparametric regression that include near-

cointegrated nonparametric regression as well as spurious nonparametric regression. Many

new models are covered by the limit theory, among which are functional coefficient regressions

in which both regressors and the functional covariate are nonstationary. Simulations show

finite sample performance matching well with the asymptotic theory and having broad rele-

vance to applications, while revealing how dual nonstationarity in regressors and covariates

raises sensitivity to bandwidth choice and the impact of dimensionality in nonparametric

regression. An empirical example is provided involving climate data regression to assess

Earth’s climate sensitivity to CO2, where nonstationarity is a prominent feature of both

the regressors and covariates in the model. This application is the first rigorous empirical

analysis to assess nonlinear impacts of CO2 on Earth’s climate.

JEL Classification: C13, C22.

Key words and phrases: Climate sensitivity, cointegration, functional coefficient, nonlinear re-

gression, nonstationarity, spurious regression.

1 Introduction

In time series econometrics a key element in the asymptotics for nonstationary regression was

the development of limit theory for the sample moments and cross moments of nonstationary

processes. This development was largely completed by the mid 1990s enabling a full understand-

ing of estimation and testing in linear regression with integrated and fractionally integrated

time series, covering both cointegrated and spurious model specifications. A much wider class

∗Phillips acknowledges research support from the NSF (Grant No. SES 18-50860) and a Kelly Fellowship at
the University of Auckland. Ying Wang acknowledges the research support from the National Natural Science
Foundation of China (Grant No.72103197).
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of econometric applications involves nonparametric and semiparametric regressions. But these

models present more substantial difficulties in the development of asymptotic theory. Early foun-

dational research addressing some of these complexities appeared in Park and Phillips (1999,

2000, 2001), Karlsen and Tjstheim (2001), and Ptscher (2004); and later work on nonparamet-

ric cointegrated regression includes Wang and Phillips (2009a,b, 2016), Phillips (2009), Phillips

et al. (2017), and Wang et al. (2021).

To encompass a wide class of econometric applications a long desired and necessary objective

in the development of nonparametric regression asymptotics is a general local limit theory for

statistics that take the following sample cross moment form

Sn =
cn
n

n∑
k=1

g(Ynk)f(cnXnk), (1.1)

involving two nonstationary standardized arrays Xnk and Ynk, a continuous function g(·) and

a function f(·) that includes kernels of the type commonly used in nonparametrics. Sample

moments such as (1.1) play a central role in large proportion of econometric estimation and

inference. An important aspect of the generality in (1.1) is the presence of two numerical

sequences: a sample size n→∞ and a bandwidth related sequence cn →∞ for which cn/n→ 0.

These features are essential for full asymptotic analysis of the sample covariance functional in

(1.1). The arrays Xnk and Ynk that appear in this functional are suitably standardized time

series for which the weak convergence

(
Y[nt], X[nt]

)
⇒ (Yt, Xt) (1.2)

holds on the Skorohod space DR2 [0, 1].

Asymptotic theory of Sn in this general form was first considered in Phillips (2009), where

the theory essentially required independence between the time series Xnk and Ynk, so there was

no linkage between the variables. That work was primarily relevant to the study of spurious

nonparametric regression and the analysis therein extended earlier work on linear spurious re-

gression (Phillips, 1986), showing that all of the main asymptotic features of spurious regression

coefficients, tests and diagnostics carried over to the nonparametric case upon adjustment of

convergence and divergence rates to take account of the nonparametric nature of the regression.

In more recent work, Wang et al. (2021) investigated the asymptotics of Sn allowing for an

explicit linkage between the variables. Their work considered the situation where Xnk is close to

being linearly cointegrated with Ynk with an asymptotically constant coefficient and a stationary

shift subject to an asymptotically negligible error.
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The present paper contributes to this past body of research by providing a general framework

that encompasses all these models as well as various new models and intermediate formulations,

thereby providing a unified theory for use in econometric work involving nonparametric regres-

sions of many different types. Our analysis assumes that the process Ynk is scalar, but extensions

to the vector case follow directly and are therefore not detailed. Further, in addition to (1.1),

limit distribution theory in nonparametric regression typically also requires treatment of sample

covariance statistics of the form

Mn =
(cn
n

)1/2 n∑
k=1

g(Ynk)f(cnXnk)uk, (1.3)

where uk is conditioned so that Mn has a martingale structure. The asymptotics for (1.3)

are straightforward using Wang (2014)’s extended martingale central limit theorem once the

asymptotic theory and weak convergence of Sn itself is established. The important element in

that limit theorem is its use of weak convergence rather than convergence in probability of the

sample moment (1.1). A limit distribution theory for more general versions of Mn that are

useful in practical work is given in Theorem 3.2 below. Some regression model implementations

of that theory that reveal its generality are given in Section 4.

With results for the covariance functionals (1.1) and (1.3) in hand, the limit theory for

nonparametric and semiparametric regression statistics follows in a straightforward manner, as

shown later in the paper. The limit theory also applies to spurious nonparametric regression,

extending Phillips (2009), and various semiparametric functional coefficient models for time

series (Gao and Phillips, 2013; Sun et al., 2013; Tu and Wang, 2022; Phillips and Wang, 2023)

and panel regressions (Phillips and Wang, 2022).

The remainder of the paper proceeds as follows. Assumptions and preliminary results are

given in Section 2. Section 3 gives the main result. Sections 4, 5 and 6 provide applications,

simulations and empirics. Our climate data application is, to the best of our knowledge, the

first nonparametric statistical analysis to assess potential nonlinear impacts of CO2 on Earth’s

climate sensitivity. Proofs are in Section 8.

Throughout the paper, we use conventional notation except explicitly mentioned. For x =

(xij)1≤i≤m,1≤j≤k, ||x|| =
∑m

i=1

∑k
j=1 |xij |. (n,K)seq → ∞ denotes that n → ∞ followed by

K →∞. AT denotes the transpose of a vector or matrix A. We denote constants by C,C1, ...,,

which may differ at each appearance.
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2 Assumptions and preliminaries

Let λi = (εi, ηi1, ..., ηid), i ∈ Z, be a sequence of iid random vectors on R × Rd for some integer

d ≥ 1 with Eε0 = 0, Eε20 = 1 and E(ε0η0k) = γk, k = 1, ..., d. Let ξj =
∑∞

k=0 φk εj−k, j ≥ 1, be a

linear process whose coefficients φk, k ≥ 0, satisfy one of the following conditions:

LM. φk ∼ k−µ a(k), where 1/2 < µ < 1 and a(k) is a function slowly varying at ∞.

SM.
∑∞

k=0 |φk| <∞ and φ ≡
∑∞

k=0 φk 6= 0.

Suppose that lim supt→∞ t
δ|Eeitε0 | < ∞ for some δ > 0 throughout this paper. This distribu-

tional smooth condition on ε0 is required to establish the convergence to local time for a partial

sum process of ξj , as seen in the proof of the main result. To establish asymptotic theory for Sn,

and later S1n in (3.5), the following assumptions on Xnk, Ynk, uk, g(x) and K(x) are employed.

A1 Xnk = xk/dn where xk = ρnxk−1 + ξk with ρn = 1 − τn−1 for some τ ≥ 0, x0 = oP (
√
n)

and d2n = E
(∑n

k=1 ξk
)2

;

A2 Ynk = yk/dyn where d2yn = var(yn)→∞ and, on DR3 [0, 1],

( 1√
n

bntc∑
i=1

ε−i,
1√
n

bntc∑
i=1

εi, Yn,bntc
)
⇒

(
B−t, Bt, Yt

)
,

where {Yt}t≥0 is a path continuous Gaussian process, {Bt}t≥0 is a standard Brownian

motion and {B−t}t≥0 is an independent copy of {Bt}t≥0.

A3 (i) g(x) is a continuous function on R;

(ii) f(x) is a real function on R satisfying
∫∞
−∞

(
|f(x)|+ f2(x)

)
dx <∞.

A4 {uk,Fk}k≥1 forms a martingale difference with σ2k = E
(
u2k | Fk−1

)
→a.s. σ

2 > 0 as k →∞,

and supk≥1 E
[
|uk|2I(|uk| ≥ K) | Fk−1

]
<∞, as K →∞, where Fk is an σ-field generated

by uk, uk−1, ..., u1; yk+1, yk, ..., y1; λk+1, λk, ....

A1 allows for the nearly integrated process xk to be generated either from short memory

(under SM) or long memory (under LM) innovations, giving a general framework for practical

work. It is well-known that

d2n = E|
n∑
k=1

ξk|2 ∼
{
cµ n

3−2µa2(n), under LM,
φ2 n, under SM,

(2.1)
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where cµ is a constant – see, e.g., Wang et al. (2003). Since a(k) is slowly varying at infinity, it

is readily seen that, for all k ≤ n and n sufficently large,

C1 (k/n)1−δ ≤ dk/dn ≤ C2 (k/n)1/2, (2.2)

for some µ− 1/2 > δ > 0, where C1 > 0 and C2 > 0 are two absolute constants.

A2 is a minor requirement on Ynk and the innovations εk that generate Xnk, which is close

to being necessary for the derivation of asymptotics of Sn when Xnk has a linear structure of

the type given in A1. No restrictions are imposed between the limit processes Yt and Bt (B−t),

indicating that many types of potential linkages between Xnk and Ynk are allowed. In particular,

a simple sufficient condition for A2 is the following A2′:

A2′ Ynk = 1√
n

∑k
s=1 α

T vs, where α = (α1, α2, ..., αdv)T ∈ Rdv and vs = (vs1, ...vsdv)T is a linear

dv-vector process with dv ≤ d satisfying the following conditions:

(i) vs =
∑∞

l=0 Ψl ηs−l with dv × d coefficient matrices Ψl satisfying
∑∞

l=0 l
1/2||Ψl|| < ∞ with

matrix norm || · || and Ψ :=
∑∞

l=0 Ψi of full rank dv;

(ii) E||η1||2 <∞ where ηj = (ηj1, ..., ηjd) and E
(
η1η
′
1

)
= Ω = (ωij)i,j=1,...,d is a positive definite

matrix.

Indeed, by A2′(ii), we have

( 1√
n

bntc∑
i=1

ε−i,
1√
n

bntc∑
i=1

εi,
1√
n

[nt]∑
j=1

ηj
)
⇒ Zt := (B−t, Bt,Λt), (2.3)

where Z = {Zt}t≥0 is a 2 + d-dimensional Gaussian process with mean zero, independent in-

crements and covariance matrix Ωt = t

1 0 0
0 1 γT

0 γ Ω

 , recalling that γ = (γ1, ..., γd)
T with

γk = E(ε0η0k). Therefore, it follows from A2′(i) and Phillips and Solo (1992) that Ynk =

αTΨ 1√
n

∑k
j=1 ηj + oP (1) and, on DR3 [0, 1],

( 1√
n

bntc∑
i=1

ε−i,
1√
n

bntc∑
i=1

εi, Yn,[nt]
)
⇒ Zt := (B−t, Bt, α

TΨ Λt), (2.4)

with Yt = αTΨ Λt.

We further mention that A2, together with standard functional limit theory [see Buchmann

and Chan (2007) or Theorem 2.21 of Wang (2015) with a minor modification], implies the joint

convergence

( 1√
n

bntc∑
i=1

ε−i,
1√
n

bntc∑
i=1

εi, Xn,bntc, Yn,bntc
)
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⇒
(
B−t, Bt, Xt, Yt

)
, (2.5)

on DR4 [0,∞), where Xt is defined by

Xt = F̃ (t) + τ

∫ t

0
e−τ(t−s)F̃ (s)ds

with F̃t =

{
F3/2−µ(t), under LM

F1/2(t), under SM
, where FH is a fractional Brownian motion with repre-

sentation

FH(t) = κH

∫ t

−∞
(t− u)

H−1/2
+ − (−u)

H−1/2
+ dBu,

where we use the notation a+ = max{a, 0} and κH is a standardizing constant so that EF 2
H(1) =

1. The diffusion Xt is a fractional Ornstein-Uhlenbeck process having continuous local time

LX(s, x) defined by

LX(s, x) = lim
ε→0

1

2ε

∫ s

0
I(|Xt − x| ≤ ε)dt.

When A3 (i) holds (i.e., g(t) is a continuous function), the following integral exists:

S(x) :=

∫ 1

0
g(Ys)LX(ds, x), (2.6)

which is involved in the limit distributions of Sn and Mn. A3 (ii) is quite weak and close to being

necessary for the asymptotic theory of Sn and Mn given in next section, which was originally

used in Wang and Phillips (2009a) in case that g(x) = 1. A4 ensures that Mn has a martingale

structure, which is standard in literature.

3 Main results

We start with the following theorem and some extensions which are subsequently used in the

asymptotic analysis of sample covariance statistics that are useful in applications.

Theorem 3.1. Suppose A1–A3 hold. Then, for any cn →∞ and cn/n→ 0, we have

Sn =
cn
n

n∑
k=1

g(Ynk)f(cnXnk) →D S = S(0)

∫ ∞
−∞

f(t)dt, (3.1)

and the following joint convergence also holds:

( 1√
n

bntc∑
i=1

εi,
1√
n

bntc∑
i=1

ε−i, Xn,[nt], Yn,[nt], Sn
)
⇒

(
Bt, B−t, Xt, Yt, S

)
. (3.2)
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Remark 3.1. When g(x) = 1, Theorem 3.1 reduces to Theorem 2.1 of Wang and Phillips

(2009a). In comparison with the later paper, our condition on Xnk is slightly stronger but more

direct for practical applications. As it is well known in the literature, the condition cn → ∞
is necessary for a limit result such as (3.1). Indeed, if cn = 1, the limit distribution of Sn is a

standard stochastic integral, namely

1

n

n∑
k=1

g(Ynk)f(Xnk) →D

∫ 1

0
g(Yt)f(Xt)dt

=

∫ ∞
−∞

f(s)

∫ 1

0
g(Yt)LX(dt, s)ds 6= S(0)

∫ ∞
−∞

f(s)ds. (3.3)

As shown in Wang and Phillips (2009a), some simple sequential limit arguments help to reveal

the nature of these differences. Start by rewriting the average Sn so that it is indexed by twin

sequences cm and n defining Sm,n = cm
n

∑n
k=1 g(Ynk)f(cmXnk) and noting that Sm,n = Sn when

m = n. If we hold cm fixed as n → ∞, then standard limit theory leads to the following limit

behavior

Sm,n →D cm

∫ ∞
−∞

f(cms)

∫ 1

0
g(Yt)LX(dt, s)ds

=

∫ ∞
−∞

f(s)

∫ 1

0
g(Yt)LX(dt, s/cm)ds := Sm,∞. (3.4)

Clearly, Sm,∞ →a.s.

∫ 1
0 g(Yt)LX(dt, 0)

∫∞
−∞ f(s)ds = S(0)

∫∞
−∞ f(s)ds when cm →∞ as m→∞,

so that (3.1) may be regarded as a limiting version of (3.4). The goal and the technical difficulty

is to turn this sequential argument as n→∞, followed by m→∞, into a joint limit argument

so that cn may play an active role as a bandwidth parameter in density estimation and kernel

regression.

Theorem 3.1 may be extended by allowing Sn to include certain stationary variables. Indeed,

by setting

S1n =
cn
n

n∑
k=1

g(Ynk)f1(cnXnk, λk, · · · , λk−m), (3.5)

where m ≥ 0 is an integer and f1(·, ·) has well defined real functions in each component, we have

the following corollary.

Corollary 3.1. Suppose A1-A2 and A3(i) hold. Suppose that

A5. (i) for any x ∈ R and y ∈ R2(m+1) and for some β > 0, |f1(x, y)| ≤ T (x)(1 + ||y||β),

where T (x) is a bounded and integrable function;

(ii) E||λ0||2∧(2β) <∞.

Then, for any cn →∞ satisfying cn/n→ 0, we have( 1√
n

[nt]∑
k=1

εk,
1√
n

[nt]∑
k=1

ε−k, Xn,[nt], Yn,[nt], S1n

)
⇒

(
Bt, B−t, Xt, Yt, S1

)
(3.6)

on DR4 [0,∞), where S1 = S(0)
∫∞
−∞ f̃1(x)dx with f̃1(x) = Ef1(x, λm, ..., λ0).
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Remark 3.2. The proof of Corollary 3.1 involves demonstrating negligibility of the residual

difference

Rn =
cn
n

n∑
k=1

g(Ynk)
[
f1
(
cnXnk, λk, ..., λk−m)− f̃1(cnXnk)

]
.

Using similar ideas, a further extension of this result is possible, along the lines of Theorem 4.1

in Wang et al. (2021), in which f1(cnXnk, λk, ..., λk−m) in (3.5) is replaced by f1(cnXnk, λk)

in which λk is a linear process and f1(x, y) satisfies certain smoothness conditions. Since this

extension only involves some complicated additional calculations rather than new ideas, the

details are omitted.

Remark 3.3. In a sequence of papers, Wang and Phillips (2009b, 2011, 2022) developed asymp-

totics of sample covariances such as (n/cn)1/2Sn or (n/cn)1/2S1n when g(x) = 1 in the ‘zero en-

ergy’ case where
∫∞
−∞ f(x)dx = 0 or

∫∞
−∞ f̃1(x)dx = 0. The proofs in those papers are technical

and involve considerable care in the use of the zero energy nature of the functions. However, in

the proof of Theorem 3.1 (and similarly for Corollary 3.1), the key idea is a block decomposition

of the form in (8.7), where the estimation of a particular remainder term S1,nε depends on values

of |f(Xnk)| rather than f(Xnk) due to the involvement of the nonstationary time series Ynk, so

that the advantages of a zero energy condition in obtaining sharp results are lost. Except for

some special situations (e.g., where a martingale structure is imposed) as shown in Theorem 3.2

below, it is unclear how to bridge these different techniques at present. So a completely general

analysis of the zero energy case is left for future work.

3.1 Asymptotics for sample covariance statistics

Regression applications often require limit theory for sample covariance statistics Mn and M1n

of the following form

Mn =
(cn
n

)1/2 n∑
k=1

g(Ynk)f
[
cn(Xnk + c′nx)

]
uk,

M1n =
(cn
n

)1/2 n∑
k=1

g(Ynk)f1
[
cn (Xnk + c′nx), λk, ..., λk−m

]
uk,

where x is fixed and the constant sequence c′n → 0 or c′n = 1. Using Theorem 3.1 and Corollary

3.1, together with the extended martingale limit theorem given in Wang (2014), we obtain the

second main result.

Theorem 3.2. If A1, A2 ′, A3(i) and A4 hold, and if f(x) is a bounded integrable real function,

then (
S̃n, Mn

)
→D

(
S̃, σ S̃1/2N

)
, (3.7)

for any cn →∞ and cn/n→ 0, where S̃n = cn
n

∑n
k=1 g

2(Ynk)f
2
[
cn(Xnk + c′nx)

]
,

S̃ =

∫ 1

0
g2(Ys)LX(ds, x′)

∫ ∞
−∞

f2(t)dt with x′ =

{
0, if c′n → 0,

x, if c′n = 1,
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and N is a standard normal variate independent of X = {Xt}t≥0 and Y = {Yt}t≥0.

Similarly, if in addition to A1, A2 ′, A3(i), A4 and A5(i), E||λ0||4β+2 <∞, and f1(x) is

a bounded integrable real function, then(
S̃1n, M1n

)
→D

(
S̃1, σ S̃

1/2
1 N

)
, (3.8)

for any cn →∞ and cn/n→ 0, where

S̃1n =
cn
n

n∑
k=1

g2(Ynk)f
2
1

[
cn(Xnk + c′nx), λk, ..., λk−m

]
,

and

S̃1 =

∫ 1

0
g2(Ys)LX(ds, x′)

∫ ∞
−∞

Ef21 (x, λm, ..., λ0)dx, with x′ =

{
0, if c′n → 0

x, if c′n = 1
.

Remark 3.4. Theorem 3.2 imposes a martingale structure on Mn and M1n, a condition that is

common in regression contexts particularly predictive regression, and it seems difficult to extend

in the present general sample covariance context, at least using presently available techniques.

Indeed, even when uk = εk so that Mn and M1n both lead to endogeneity (as in the much

simpler framework of Wang and Phillips (2009b) where g(x) = 1) it is unclear at present how

to establish the limit theory of Mn and M1n with general g(x) 6= 1, as explained in Remark 3.3.

Remark 3.5. Theorem 3.2 uses A2′ to assist in proving asymptotic normality but this con-

dition can be relaxed. For instance, Theorem 3.2 still holds only if yk satisfies A2 with

yk = l(λk, λk−1, ...) where l(...) is a well-defined measurable function of its components. The

proof is similar to that of Theorem 3.2 by verifying the condition of Wang (2014)’s extended

martingale central limit theorem, and hence the details are omitted.

4 Regression Applications

Nonlinear cointegrating regressions with functional coefficients were introduced in Xiao (2009)

and Cai et al. (2009), where the authors suggested a model of the form

zk = yTk β(xk) + uk, (4.1)

in which xk, zk and uk are all scalars, yk = (yk1, · · · , ykq)T is of dimension q that will be

specified later, β(·) is a q× 1 vector of unknown smooth functions defined on R and AT denotes

the transpose of a vector or matrix A. Xiao (2009) dealt with the case where the functional

covariate xk in (4.1) is stationary; Cai et al. (2009) restricted the model to cases where either

the functional covariate xk in (4.1) or the regressor yk is stationary.

Extensions of the model (4.1) to cases where both xk and yk are nonstationary are much more

complex but also have extremely relevant empirical applications such as the climate sensitivity

implementation of our methods in Section 6, where nonstationary regressors and covariates can
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normally be expected. The required limit theory for these extensions is given in the present

section.

Some related versions of the model (4.1) can be found in Gao and Phillips (2013), Li et al.

(2017), Hirukawa and Sakudo (2018) and Tu and Wang (2019, 2020). Further recent develop-

ments can be found in Tu and Wang (2022), Phillips and Wang (2023), Liang et al. (2023), and

in a panel regression context by Phillips and Wang (2022). Phillips and Wang (2023) provided

a correction to the limit theory in the previous nonstationary kernel regression literature, show-

ing that conventional bias terms can influence both the asymptotic variance and the optimal

convergence rate in functional coefficient nonstationary regression.

We develop a general limit theory of estimation and inference in model (4.1) for the local

level kernel estimator β̂n(x) of β(x) defined by

β̂n(x) =arg min
β

n∑
k=1

[zk − yTk β]2K
(xk − x

h

)
=
[ n∑
k=1

yky
T
kK
(xk − x

h

)]−1 n∑
k=1

yk zkK
(xk − x

h

)
, (4.2)

where K(x) is a nonnegative real kernel function and the bandwidth parameter h ≡ hn → 0 as

n→∞. The results in Section 3 are used here to accommodate dual nonstationarity where both

regressors yt and covariate xt are nonstationary time series. For the same model and improved

estimation of β(x) this section also considers local linear estimation and provides asymptotics

under additional restrictions between xk and yk.

To avoid additional complexity, except where explicitly mentioned, we employ in what

follows the same notation and conditions as in previous sections. Specifically, the variates

λi = (εi, ηi1, ..., ηid), i ∈ Z, are assumed to be a sequence of iid random vectors on R × Rd for

some integer d ≥ 1 with Eε0 = 0, Eε20 = 1 and E(ε0η0k) = γk, k = 1, ..., d; and the variates xk

and uk are defined as in A1 and A4, respectively. Let vj = (vj1, ...vjdv)T , dv ≤ d, be a linear

vector process defined as in A2′ and suppose that yk =
∑k

j=1 vj .

Let x be a fixed constant in R and in a neighbourhood of x consider the following local linear

and quadratic conditions on the functional coefficient β(·).

A6. (i) ||β(y + x)− β(x)− β′(x)y|| ≤ Cx |y|1+ν , or

(ii) ||β(y + x)− β(x)− β′(x)y − 1
2β
′′(x)y2|| ≤ Cx |y|2+ν ,

for some 0 < ν ≤ 1, where Cx is a constant depending only on x.

Under these conditions the next result provides the asymptotic theory of β̂n(x).
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Theorem 4.1. Suppose that K(x) is a positive real function with finite support satisfying∫∞
−∞K(s)ds = 1. Then, under A6(i), we have

h−1
[
β̂n(x)− β(x)

]
→P β′(x)

∫ ∞
−∞

sK(s)ds, (4.3)

for any h→ 0 satisfying min{nh2, nh/dn} → ∞. If A6(ii) holds, we have

( n∑
k=1

yky
T
kK
[
(xk − x)/h

])1/2 [
β̂n (x)− β (x)− hL1n β

′(x)− 1

2
h2L2n β

′′(x)
]

→D σβ Ndv , (4.4)

for any h satisfying n2h5+2ν/dn → 0 and nh/dn →∞, where, for j = 1 and 2,

Ljn =

{
n∑
k=1

yky
T
kK
[
(xk − x)/h

]}−1 n∑
k=1

yky
T
kKj

[
(xk − x)/h

]
, Kj(s) = sjK(s), (4.5)

σ2β = σ2
∫∞
−∞K

2(x)dx and Ndv ∼ N (0, Idv) is a standard dv-dimensional normal vector.

Remark 4.1. Result (4.3) shows that, under linear local behavior of β(·) in condition A6(i),

β̂n(x) is a consistent estimator of β(x) when h→ 0 and, as n→∞, h satisfies min{nh2, nh/dn} →
∞. Observe that in this nonstationary functional regression context two effective sample size

conditions are used to achieve consistency: the first is
√
nh→∞ for the signal associated with

the near I(1) regressor yt; and the second is nh/dn →∞ for the signal associated with the local

functional covariate xt.
1 Under local quadratic behavior, in place of the self normalized limit

theory given in (4.4), we also have the (mixed) normal limit theory(n2h
dn

)1/2 [
β̂n (x)− β (x)− hL1n β

′(x)− 1

2
h2L2n β

′′(x)
]
→D σβ Y−1/2Ndv , (4.6)

where Y is a random matrix independent of Ndv defined by Y =
∫ 1
0 Ψ ΛsLX(ds, 0) with Ψ Λs

being given in (2.4) with P(Y 6= 0) = 1, as shown in the proof of Theorem 4.1 – see (8.18). The

limiting signal matrix Y is therefore positive definite almost surely.2 Scaling the numerator and

denominator of L1n and using Proposition 4.1 below gives

1

n

n∑
k=1

yky
T
kK1

[
(xk − x)/h] = Op[(nh/dn)1/2],

1See Theorem 3.1 and Remark 3.3 of Wang and Phillips (2009a), where the condition nh/dn → ∞ was used

and discussed in the context of nonstationary nonparametric regression with potential long memory. When the

covariate is I(1) or near I(1) then dn =
√
n and the condition is

√
nh → ∞, in contrast to the usual effective

sample size condition nh→ ∞ that is employed in stationary kernel regression.
2The nonsingularity of the limit matrix Y simplifies the asymptotic theory of estimation and inference in

model (4.1) with multiple regressors in comparison to similar cointegrating regression models with time varying

parameter (TVP) coefficients of the form zk = yTk β(k/n) + uk in place of (4.1). In models of the latter type,

the limiting signal matrix is singular because kernel regression asymptotics focus attention on a single point in

time, thereby reducing full signal strength to a single direction determined by the limiting process Yt, where

Yn,bntc ⇒ Yt with Ynk = yk/dn. This singularity leads to multiple rates of convergence in different (random)

directions in the limit – see Phillips et al. (2017) for a full analysis of the asymptotic theory for this model of

TVP cointegration.
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and from Theorem 3.1 with cn = dn/h we have

dn
hn2

n∑
k=1

yky
T
kK
[
dn

(
xk
dn
− x

dn

)
/h
]
→D Y.

It follows that the asymptotic impact of the O(h) bias term on the distribution of β̂n (x) is given

by(
n∑
k=1

yky
T
kK
[
(xk − x)/h]

)1/2

hL1n = h

(
n∑
k=1

yky
T
kK
[
(xk − x)/h]

)−1/2 n∑
k=1

yky
T
kK1

[
(xk − x)/h]

= (hdn)1/2
(
dn
hn2

n∑
k=1

yky
T
kK
[
(xk − x)/h]

)−1/2
1

n

n∑
k=1

yky
T
kK1

[
(xk − x)/h]

= (hdn)1/2 ×Op
(
nh

dn

)1/2

= Op(
√
nh) (4.7)

which diverges by virtue of the effective sample size condition
√
nh→∞.

Remark 4.2. Liang et al. (2023) investigated the model (4.1) in the case where yk are stationary

variables satisfying certain conditions; and Wang and Phillips (2009a, 2011) considered the pure

nonparametric regression model in which yk = 1. In comparison with (4.4), the result given in

Liang et al. (2023) and Wang and Phillips (2009a, 2011) has the form:( n∑
k=1

yky
T
kK
[
(xk − x)/h]

)1/2 [
β̂n(x)− β(x)− h2β

′′
(x)

2

∫ ∞
−∞

s2K(s)ds

]
→D σβ Ndv ,

i.e., in (4.4) and (4.6), the linear term hL1n β
′(x) disappears and L2n in the limit theory (4.4)

can be replaced by
∫∞
−∞ s

2K(s)ds when yk is stationary. The reason for the difference is that

when yk is stationary
∑n

k=1 yky
T
kK
[
(xk − x)/h] has a reduced signal with divergence rate nh

dn

rather than n2h
dn

, so that (nh
dn

)1/2
hL1n β

′(x) = OP (h) = oP (1)

and L2n can be replaced by
∫∞
−∞ s

2K(s)ds by virtue of a simple calculation. See Liang et al.

(2023) fo details. And when yk is nonstationary Phillips and Wang (2023) found explict limit

formulae showing that the bias term can affect both the asymptotic variance and the convergence

rates in nonstationary functional coefficient cointegrating regression even when xk is stationary.

The present results provide further extension of these findings to the case of multiple nonstation-

ary regressors and a nonstationary functional covariate both of which are important in practical

applications.

We may improve Theorem 4.1 by using local linear estimation (e.g., Fan and Gijbels (1996))

and imposing more restrictions between xk and yk. The local linear estimator β̂L(x) of β(x) in

functional coefficient regression is defined by(
β̂L(x)

β̂
′
L (x)

)
= arg min

β,β1

n∑
k=1

{
zk − yTk [β + β1(yk − x)]

}2
K
(xk − x

h

)
,

12



leading to

β̂L(x) =
(
Vn0 − Vn1V −1n2 Vn1

)−1 n∑
k=1

[
I − Vn1V −1n2 (xk − x)

]
ykzkK

(
xk − x
h

)
, (4.8)

where Vnj =
∑n

k=1 yky
T
k K

(
xk−z
h

)
(xk − x)j for j = 0, 1 and 2.

Theorem 4.2. Let εi, i ∈ Z be independent of (ηi1, ..., ηid), i ∈ Z. Suppose that K(x) is a

positive real function with finite support satisfying
∫∞
−∞K(x)dx = 1 and

∫∞
−∞ xK(x)dx = 0.

Then, under A6(ii), we have

( n∑
k=1

yky
T
kK
[
(xk − x)/h]

)1/2 [
β̂L(x)− β(x)− h2β

′′
(x)

2

∫ ∞
−∞

s2K(s)ds

]
→D σβ Ndv , (4.9)

for any h satisfying max{n2h5+2ν/dn, nh
4} → 0 and nh/dn →∞, where σ2β = σ2

∫∞
−∞K

2(x)dx

and Ndv ∼ N (0, Idv) is a standard dv-dimensional normal vector.

Remark 4.3. The independence condition between xk and yk is imposed to establish the fol-

lowing Proposition 4.1, which plays a key part in the proof of Theorem 4.2. Since
∫∞
∞ l(x)dx = 0

is assumed in this result, the sample moment Sn,l given below in (4.10) is referred to as a ‘zero

energy’ statistic following the discussion in Remark 3.3. As explained there, we are presently

unable to relax this condition even when only a rough estimate of the order of Sn,l is needed.

Proposition 4.1. Under the conditions of Theorem 4.2, for any bounded real function l(x)

satisfying
∫∞
−∞ l(x)dx = 0 and

∫∞
−∞ |xl(x)|dx <∞, we have

Sn,l :=
1

n

n∑
k=1

yky
T
k l[(xk − x)/h] = OP

[
(nh/dn)1/2

]
. (4.10)

Remark 4.4. In comparison with Theorem 4.1, the local linear estimator in model (4.1) has

bias reducing properties. This property matches that of stationary time series regression where

both xk and yk are stationary but differs from the model in which yk is stationary and xk is

nonstationary. In the latter case Liang et al. (2023) proved that the bias reducing advantage

in local linear estimation is lost, a limitation that was first noticed in the work of Wang and

Phillips (2009b, 2011) on nonstationary kernel regression.

Remark 4.5. For practical applications model (4.1) can be readily extended to include an

intercept in the regression with its own functional coefficient, as in a model of the following form

zk = χTk β(xk) + uk, (4.11)

where xk and uk are defined as in A1 and A4, respectively, and χk = (`′k, y
′
k)
′ in which `′k =

(1, k, ..., kp) is a vector of polynomial time trends including an intercept and yk =
∑k

j=1 vj where

vj = (vj1, ...vjdv)T , with dv ≤ d, is a linear vector process defined as in A2′. Let ΨΛt be given

as in (2.4) and write

Wt = (1, t, ..., tp, (ΨΛt)
T ).

13



It is readily seen that, on DR1+p+dv [0, 1],

G−1n χbntc ⇒W (t), where Gn = diag(1, n, ..., np,
√
nIdv),

and
∫ 1
0 g(Wt)LX(ds, a) is well-defined for any continuous function g(...) on R1+p+dv . Based

on these facts, by the same arguments as those used in establishing Theorem 4.2 we have the

following result for the local linear estimator
˜̂
βL(x) of β(x) in model (4.11) defined by

˜̂
βL(x) =

(
Ṽn0 − Ṽn1Ṽ −1n2 Ṽn1

)−1 n∑
k=1

[
I − Ṽn1Ṽ −1n2 (xk − x)

]
χkzkK

(
xk − x
h

)
, (4.12)

where Ṽnj =
∑n

k=1 χkχ
T
k K

(
xk−z
h

)
(xk − x)j for j = 0, 1 and 2.

Theorem 4.3. Let εi, i ∈ Z be independent of (ηi1, ..., ηid), i ∈ Z. Suppose that K(x) is a

positive real function with finite support satisfying
∫∞
−∞K(x)dx = 1 and

∫∞
−∞ xK(x)dx = 0.

Then, under A6(ii), we have( n∑
k=1

χkχ
T
kK
[
(xk − x)/h]

)1/2 [˜̂
βL(x)− β(x)− h2β

′′
(x)

2

∫ ∞
−∞

s2K(s)ds

]
→D σβ N1+p+dv , (4.13)

for any h satisfying max{n2h5+2ν/dn, nh
4} → 0 and nh/dn →∞, where σ2β = σ2

∫∞
−∞K

2(x)dx

and N1+p+dv ∼ N (0, I1+p+dv) is a standard (1 + p+ dv)-dimensional normal vector.

The bandwidth conditions in Theorem 4.3 seem reasonable for most applications. For instance,

in the important case where dn =
√
n, the conditions require that h = o(1/n1/4) in conjunction

with
√
nh→∞ which, as noted earlier, is the effective sample size condition in nonparametric

regression with unit root and local unit root nonstationary time series. The estimator (4.12) and

limit theory of Theorem 4.3 are particularly useful in applications where the regression model

(4.11) includes an intercept and deterministic trend. For example, in the empirical study of

Section 6 it is important to allow for a covariate xt representing atmospheric CO2, which is a

nonstationary time series that manifests both a stochastic trend and drift over the historical

period of observation.

4.1 Specification testing

This section constructs a simple specification test that is useful for later empirical application.

More general settings require certain technical extensions, which will be considered in subsequent

works. Consider a nonlinear cointegrating regression model with functional coefficients

zk = β0(xk) + β1(xk)h(yk) + uk, (4.14)

in which yk and uk are defined as in A2 and A4 respectively, xk satisfies A1 with τ = 0, β0(x)

and β1(x) are unknown smooth functions defined on R, and h(x) is a homogeneous function

defined by

h(λx) = v(λ)H(x) +R(λ, x) (4.15)
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so that v(λ) > 0 for all λ > 0, H(x) is continuous on R and limλ→∞ sup|x|≤K |R(λ, x)/h(λx)| = 0

for any K <∞. We aim to test the hypothesis:

H0 : β0(x) = β01 + β02x, β1(x) = β1 for x ∈ R. (4.16)

Write Gk = (1, xk, h(yk)) and θ = (β01, β02, β1). As in Wang and Phillips (2016), we make

use of the following test statistic:

Tn =

∫ ∞
−∞

{ n∑
k=1

K[(xk − x)/h]
(
zk − θ̂nGTk

)}2
π(x)dx,

where π(x) is a positive integrable function satisfying
∫∞
−∞(1 +x2)π(x)dx <∞, K(x) is a kernel

function having a compact support and satisfying that

|K(x)−K(y)| ≤ C|x− y|

whenever |x− y| is sufficiently small, h is a bandwidth satisfying h ≡ hn → 0 as the sample size

n→∞, and θ̂n is a LS estimator of the unknown parameter θ under the null H0, i.e.,

θ̂n =

(
n∑
k=1

GkG
T
k

)−1 n∑
k=1

zkGk.

The statistic Tn is a modification of the test statistic discussed by Härdle and Mammen (1993)

for the random sample case, which was also used in Gao et al. (2012) for a nonlinear cointegrating

model with a martingale error structure. We have the following result.

Theorem 4.4. Under the null hypothesis H0, we have

Tn,d :=
dn
nh

Tn →D τ0 LX(1, 0), (4.17)

for any h satisfying nh2 log n/dn → 0 and n1−δ0h/dn →∞, where

τ0 = σ2
∫ ∞
−∞

K2(s)ds

∫ ∞
−∞

π(x)dx (4.18)

and δ0 can be as small as required.

Remark 4.6. As noted in Wang and Phillips (2016), in the short memory case (i.e., xk satisfies

A1 with τ = 0 under SM), dn = φ
√
n and result (4.17) reduces to

Tn,0 =
φ√
nh
Tn →D τ0 LB(1, 0). (4.19)

When uk is a stationary martingale difference, σ2 = Eu20, which can be estimated by

σ̂2n =

∑n
k=1

(
zk − θ̂nGTk

)2
K
[
(xk − x)/h

]∑n
k=1K

[
(xk − x)/h

] ,
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based on a localized version of the usual residual sum of squares. Further, φ can be estimated

by a standard HAC method or other alternative methods, indicating that in the short memory

case the test Tn,0 is directly applicable. However, in the long memory case, the scaling in the

statistic (4.17) relies on the expansion rate parameter d2n ∼ cµ n
3−2µ a2(n), which in turn relies

on the unknown value of µ. Even in the simple case where a(n) is constant and dn ∼ cn
1
2
+d

for some constant c, the required scaling depends on the (typically unknown) value of the long

memory parameter d = 1 − µ. In consequence, the statistic Tn,d is not well suited for practical

implementation in this type of specification testing when the near integrated time series xk is

driven by long memory innovations. We refer to Wang and Phillips (2016, Section 3) for further

details on that complication.

Remark 4.7. To investigate asymptotic power, as in Wang and Phillips (2016), we may consider

the following local alternative model:

H1 : β0(x) = β01 + β02x+ ρnm(x), β1(x) = β1 for x ∈ R. (4.20)

where ρn is a sequence of constants measuring local deviations from the null and m(x) is a real

function. Suppose that, in a neighbourhood of x,

|m(x+ y)−m(x)| ≤ C |y|γm1(x),

for some γ ∈ (0, 1], where m(x) and m1(x) are real functions satisfying that
∫∞
−∞[1 + m2(x) +

m2
1(x)]π(x) dx < ∞ and

∫∞
−∞m

2(x)π(x) dx > 0. A similar argument to that used in Theorem

3.2 of Wang and Phillips (2016) yields the following result under the alternative H1

lim
n→∞

P
( dn
nh

Tn ≥ t0
)

= 1,

for any t0 > 0, any h→ 0 satisfying n1−δ0h/dn →∞ where δ0 can be as small as required, and

any ρn satisfying nhρ2n/dn → ∞. This result indicates that the Tn test has nontrivial power

against local alternatives of the form (4.20) whenever ρn → 0 at a rate that is slower than

[dn/(nh)]1/2, as nh/dn →∞.

Remark 4.8. By imposing more restrictions between xk and yk, it is feasible to consider a

different test statistic. In fact, as in Wang and Phillips (2012), we may introduce the kernel-

smoothed test statistic

T̃n =
n∑

k,j=1,k 6=j
ûkûjK

[
(xk − xj)/h

]
,

where ûk = zk − θ̂nGTk . The following result provides a standard normal limit distribution free

of any nuisance parameters, facilitating practical application.

Theorem 4.5. Suppose that {xk}k≥1 is independent of {yk}k≥1 and xk satisfies A1 under

SM with additional coefficient condition
∑∞

k=0 k
1+δ|φk| < ∞ for some δ > 0 and Eε60 < ∞.

Furthermore, in addition to A4, supk≥1 E
(
u4k|Fk−1

)
<∞. Then, under the null hypothesis, we

have

T̃n√
2σ̃n

→D N (0, 1), (4.21)

for any h satsfying nh2 →∞ and nh4 log2 n→ 0 , where

σ̃2n =

n∑
k,j=1,k 6=j

û2kû
2
j K

2
[
(xk − xj)/h

]
.
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5 Simulations

This section explores the finite sample performance of the functional coefficient regression esti-

mators proposed in Section 4. The following two models are considered:

• M1: zk = ykβ(xk) + uk,

• M2: zk = β0(xk) + y∗kβ1(xk) + uk.

In the simulations, the covariate xk is generated according to xk = xk−1 + ξk. For the linear

process ξk =
∑∞

j=0 φjεk−j , we employ the model (1 − L)dξk = εk with 0 ≤ d < 0.5 and

innovations εk ∼iid N (0, 0.12). The regressor yk follows yk = yk−1+vk, where vk = 0.5vk−1+wk,

and wk = (εyk + θεk)/
√

1 + θ2. The process εyk is iid standard normal and independent of

εk. The regressor y∗k = yk + 0.1k so that y∗k is a unit root process with additive drift that

mimics the property of the regressor lnCO2,k in the empirical study of climate sensitivity. The

regression error has the composite form uk = (ek + λ1εyk + λ2εk)/
√

1 + λ21 + λ22, where the

ek are iid standard normal and independent of the innovations (εyk, εk), a formulation that

accommodates the possibility of endogeneity in the regressor yk. The setting x1 = 0 is used to

examine pointwise estimation accuracy at x = 0. To avoid problems of a weak signal in the

regressor in nonparametric estimation of model M1, the initialization y0 = 10 is employed, which

avoids occasional clustering of near zero observations in small samples. For M1, we consider

the functional coefficient β(x) = 1 + x + x2, and for M2, we consider β0(x) = 1 + x + x2,

β1(x) = 1 − x − x2. A Gaussian kernel is used throughout and the number of replications is

50,000.

The pointwise estimation accuracy of the local level estimator β̂n(x) in model M1 is reported

in Table 1. The two figures in each entry are the finite sample bias and standard error (shown

in square brackets). A fixed bandwidth h = Chn
γ is used where the constant scale coefficient

Ch and power parameter γ are indicated in the table. Here, and later for model M2, a fixed

bandwidth h = Chn
γ is used in demonstrating the performance of the local level and local

linear estimators. The usual bandwidth formula h = Chσ̂xn
γ is inappropriate in the present

context because the standard deviation of a nonstationary regressor or covariate diverges and

this typically leads to bandwidth divergence.

The left panel with γ = −3/10 meets the bandwidth condition given in Theorem 4.1, whereas

the right panel with γ = −1/5 does not. When (θ, λ1, λ2) = (0, 0, 0), xk and yk are independent

and both are independent of the equation error uk. Other scenarios demonstrate finite sample

performance when that independence is removed. The local level estimator seems to work well
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with diminishing bias and standard error in all the scenarios considered. The performance is

not sensitive to the correlation parameters (θ, λ1, λ2), thereby indicative of robustness including

robustness to endogeneity in the regression, a result that mirrors earlier findings on nonpara-

metric cointegrating regression in Wang and Phillips (2009b). A larger bandwidth choice with

higher γ seems to make both bias and standard error worse, as may be expected. On the other

hand, a larger memory parameter d raises signal strength and helps to reduce the bias. These

results are obtained using a fixed given bandwidth. It might be expected that improved re-

sults could be achieved with variable bandwidth choices better suited to the specific generating

mechanism. The present limit theory only provides general guidance and optimal bandwidth

results are well known to be scarce in nonstationary nonparametric regression, although Wang

and Phillips (2023) provide some findings for nonlinear cointegrated regression. The difficulties

of developing a general theory of optimal bandwidth choice are substantially greater here with

nonstationarity in the covariate as well as the regressor.

Table 1: Finite sample mean bias and standard error (in square brackets) of the local level

estimator β̂n(x) at point x = 0 for model M1 with h = 0.5nγ

γ = −3/10 γ = −1/5

n d = 0 d = 0.4 d = 0 d = 0.4

(θ, λ1, λ2) = (0, 0, 0)

100 0.016 [0.076] 0.013 [0.073] 0.040 [0.142] 0.033 [0.119]

400 0.008 [0.041] 0.007 [0.051] 0.026 [0.089] 0.022 [0.076]

800 0.005 [0.031] 0.004 [0.045] 0.019 [0.065] 0.016 [0.059]

(θ, λ1, λ2) = (1, 0, 0)

100 0.017 [0.072] 0.014 [0.071] 0.043 [0.136] 0.034 [0.115]

400 0.008 [0.040] 0.006 [0.051] 0.026 [0.084] 0.022 [0.073]

800 0.005 [0.031] 0.004 [0.045] 0.020 [0.061] 0.017 [0.058]

(θ, λ1, λ2) = (0, 1, 1)

100 0.017 [0.074] 0.010 [0.070] 0.040 [0.143] 0.031 [0.119]

400 0.007 [0.039] 0.005 [0.048] 0.027 [0.090] 0.020 [0.074]

800 0.005 [0.029] 0.004 [0.040] 0.019 [0.064] 0.016 [0.057]

(θ, λ1, λ2) = (1, 1, 1)

100 0.016 [0.071] 0.013 [0.068] 0.042 [0.135] 0.035 [0.116]

400 0.007 [0.037] 0.005 [0.046] 0.026 [0.083] 0.020 [0.072]

800 0.005 [0.028] 0.003 [0.039] 0.020 [0.061] 0.016 [0.056]

Table 2 collects parallel results for the local linear estimator β̂L(x). The local linear estimator

is much more sensitive to bandwidth than the local level estimator. Poor bandwidth choice may

cause the bias and/or standard error to increase and make the estimator seem inconsistent.

When γ = −1/5, which does not satisfy the bandwidth condition in Theorem 4.2, the bias
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seems to increase from n = 100 to 400, and then decrease from n = 400 to 800. We have tried

increasing the sample size and confirmed that the bias is decreasing, but at a very slow rate.

Results with γ = −3/10 seem satisfactory. The results again seem insensitive to the correlation

parameter (θ, λ1, λ2), showing that the local linear estimator retains robustness to endogeneity.

The bias is smaller and the standard error is larger when there is stronger memory in ξk (larger

d). Compared to the results in Table 1, the findings for the local linear estimator indicate that

it outperforms the local level estimator in terms of both bias and standard deviation under the

same bandwidth conditions.

Table 2: Finite sample mean bias and standard error (in square brackets) of the local linear

estimator β̂L(x) at point x = 0 for model M1 with h = 0.5nγ

γ = −3/10 γ = −1/5

n d = 0 d = 0.4 d = 0 d = 0.4

(θ, λ1, λ2) = (0, 0, 0)

100 0.006 [0.037] 0.005 [0.055] 0.006 [0.040] 0.010 [0.053]

400 0.005 [0.029] 0.004 [0.048] 0.012 [0.027] 0.013 [0.043]

800 0.004 [0.025] 0.003 [0.044] 0.012 [0.023] 0.011 [0.038]

(θ, λ1, λ2) = (1, 0, 0)

100 0.006 [0.036] 0.005 [0.054] 0.007 [0.039] 0.010 [0.053]

400 0.005 [0.030] 0.004 [0.049] 0.013 [0.027] 0.012 [0.043]

800 0.004 [0.027] 0.003 [0.045] 0.012 [0.023] 0.011 [0.038]

(θ, λ1, λ2) = (0, 1, 1)

100 0.006 [0.030] 0.003 [0.046] 0.006 [0.036] 0.008 [0.047]

400 0.005 [0.024] 0.003 [0.040] 0.013 [0.024] 0.012 [0.036]

800 0.004 [0.021] 0.002 [0.036] 0.012 [0.020] 0.011 [0.032]

(θ, λ1, λ2) = (1, 1, 1)

100 0.005 [0.031] 0.003 [0.045] 0.006 [0.035] 0.007 [0.046]

400 0.005 [0.025] 0.003 [0.040] 0.013 [0.024] 0.011 [0.037]

800 0.004 [0.022] 0.002 [0.038] 0.012 [0.019] 0.011 [0.032]

We next consider model M2. The finite sample bias and standard error of the local level

estimator for the two functional coefficients are collected in Table 3. We use h = 1.5n−3/10 with

an increased scale coefficient Ch = 1.5 which helps to avoid near singularity in the weighted

signal matrix. The results show that the slope coefficient β1(x) is more accurately estimated

than the intercept coefficient β0(x), reflecting the different signal strengths in the corresponding

regressors. Also noted is that estimation accuracy deteriorates as the memory parameter d

increases. The explanation is simply that with stronger memory in ξk = ∆xk, the covariate

xk wanders more extensively, leading to fewer observations being available in local estimation.

Estimation is again seen to be insensitive to the correlation parameters (θ, λ1, λ2), showing
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that robustness to endogeneity applies in the estimation of model M2 also. Table 4 reports

similar results for the local linear estimator
˜̂
βL(x). The estimator performance is extremely

sensitive to bandwidth, especially when d = 0.4. A larger scale coefficient Ch = 2 is used

to avoid singularity in the weighted signal matrix. Results in the SM case with d = 0 show

monotonically decreasing bias and standard error. In the LM case with d = 0.4, the bias

sometimes does not decay monotonically. These simulation findings suggest that estimator

performance in this scenario is extremely sensitive to bandwidth. Consequently, it appears that

finding an appropriate bandwidth selection rule that applies in all situations with a diverse range

of nonstationarity in the variables is a challenging problem for future investigation.

Table 3: Finite sample mean bias and standard error (in square brackets) of the local level

estimator at point x = 0 for model M2 with bandwidth h = 1.5n−3/10

d = 0 d = 0.4

n β0(x) β1(x) β0(x) β1(x)

(θ, λ1, λ2) = (0, 0, 0)

100 1.827 [6.661] -0.235 [0.566] 2.484 [10.405] -0.299 [0.958]

400 0.821 [4.910] -0.112 [0.326] 0.820 [6.795] -0.115 [0.623]

800 0.472 [4.313] -0.070 [0.236] 0.460 [6.001] -0.070 [0.554]

(θ, λ1, λ2) = (1, 0, 0)

100 2.711 [7.778] -0.306 [0.689] 3.905 [13.517] -0.433 [1.277]

400 1.194 [5.227] -0.140 [0.380] 1.287 [8.893] -0.158 [0.843]

800 0.711 [4.473] -0.084 [0.277] 0.762 [7.939] -0.098 [0.759]

(θ, λ1, λ2) = (0, 1, 1)

100 1.867 [6.724] -0.234 [0.566] 2.379 [10.200] -0.290 [0.931]

400 0.747 [4.874] -0.108 [0.324] 0.649 [7.697] -0.097 [0.714]

800 0.449 [4.271] -0.068 [0.235] 0.309 [6.434] -0.053 [0.586]

(θ, λ1, λ2) = (1, 1, 1)

100 2.702 [7.849] -0.302 [0.685] 3.584 [13.390] -0.400 [1.259]

400 1.193 [5.180] -0.139 [0.379] 1.096 [8.888] -0.136 [0.841]

800 0.727 [4.396] -0.083 [0.272] 0.534 [7.742] -0.075 [0.729]

These simulation findings in the present functional coefficient model setting, where both

the regressor yk and the smoothing covariate xk are nonstationary, show that nonparametric

estimation can be very sensitive to bandwidth. This sensitivity is found to be become severe

when there are multiple regressors and local linear methods are used. Poor choice of bandwidth

can worsen finite sample performance, sometimes with increasing bias and/or variance even as

the sample size rises from n = 100 to n = 400, and larger sample sizes are needed to obtain

improvements in performance. This high sensitivity is primarily due to the random wandering

nature of the covariate xk and its functional interaction with the nonstationary regressor yk by
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virtue of the nonparametric treatment of the functional coefficient. Standard cross validation,

which is not validated in the present setting of dual-source nonstationarity, does not materially

improve matters even if implemented within each replication. Use of small bandwidths typically

increases the risk of the locally weighted signal matrix being close to singular, leading to a form

of ill-posed inverse problem analogous to, but originating differently from, that which arises

in certain microeconometric instrumental variable regressions (e.g., Hall and Horowitz (2005)).

Problems of this type also arise in nonparametric regression whenever signal information is

limited to very few observations, as when strong effects of long memory are present in the data

(e.g., Wang and Phillips (2022)). In such circumstances, estimation can become volatile and

unreliable, which in turn interferes with the performance of methods such as cross validation. It

therefore appears that such problems as ill-posed inversions and the curse of dimensionality in

nonparametric estimation are exacerbated in the functional coefficient dual-source nonstationary

setting. Tackling these issues systematically using methods such as regularization is a challenging

task to be addressed in future research.

Table 4: Finite sample mean bias and standard error (in square brackets) of the local linear

estimator at point x = 0 for model M2 with bandwidth h = 2n−3/10

d = 0 d = 0.4

n β0(x) β1(x) β0(x) β1(x)

(θ, λ1, λ2) = (0, 0, 0)

100 -1.633 [3.722] 0.161 [0.330] -1.904 [7.835] 0.188 [0.728]

400 -0.542 [2.816] 0.034 [0.201] -0.056 [5.673] -0.008 [0.541]

800 -0.169 [2.200] -0.004 [0.135] 0.062 [5.391] -0.023 [0.522]

(θ, λ1, λ2) = (1, 0, 0)

100 -1.884 [4.267] 0.186 [0.393] -2.177 [9.869] 0.217 [0.942]

400 -0.627 [3.015] 0.044 [0.233] -0.075 [7.743] -0.005 [0.747]

800 -0.183 [2.306] -0.001 [0.157] 0.084 [7.241] -0.024 [0.705]

(θ, λ1, λ2) = (0, 1, 1)

100 -1.685 [3.676] 0.167 [0.332] -2.407 [7.827] 0.239 [0.738]

400 -0.558 [2.806] 0.036 [0.199] -0.497 [5.283] 0.035 [0.508]

800 -0.192 [2.198] -0.002 [0.138] -0.297 [4.508] 0.012 [0.441]

(θ, λ1, λ2) = (1, 1, 1)

100 -1.921 [4.232] 0.190 [0.396] -2.864 [9.828] 0.285 [0.950]

400 -0.649 [3.016] 0.047 [0.235] -0.646 [6.287] 0.053 [0.614]

800 -0.210 [2.350] 0.004 [0.164] -0.404 [5.872] 0.025 [0.579]

5.1 Test performance

This section examines the finite sample performance of the two test statistics proposed in Section

4.1. First, convergence in both (4.17) and (4.21) is found to be slow and the finite sample density
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of Tn,0 is more concentrated at the origin than that of the limit τ0LX(1, 0), which results in severe

under-sizing. Second, the density of T̃n/
√

2σ̃2n is biased to the left and has smaller variance than

the standard normal, leading to bias distortion. The wild bootstrap procedure is adopted to

improve the finite sample performance of these statistics. Our experiments focus on model M2

to provide more useful insight on the performance of the tests that are employed in the empirical

work.

In the short memory case with d = 0, the bootstrap size and local power of the two statistics

are reported in Table 5. The bandwidth is h = n−1/3, which meets the requirements in Theorems

4.4 and 4.5. We consider H0 : β0(x) = 1 + z, β1(x) = 1 and m(x) = x2, ρn = n−1/15, which

satisfy the conditions in Remark 4.7. From Table 5 it is evident that both tests have good size

and local power performance. The T̃n statistic is slightly undersized when n = 100 but has good

size when n = 400. The Tn,d statistic seems somewhat more powerful than the T̃n statistic.

Importantly, dependence between xk and yk and endogeneity in (xk, yk) have negligible effects

on test performance. These finite sample properties of the tests support use of the bootstrap

procedure in empirical work such as the climate data sensitivity application in Section 6.

Table 5: Finite sample size and local power of bootstrap procedure in model M2 with d = 0

Tn,d T̃n
size local power size local power

n 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

(θ, λ1, λ2) = (0, 0, 0)

100 1.6 5.9 11.7 6.7 17.9 26.2 0.6 2.4 6.7 4.9 10.5 15.0

400 0.7 5.3 10.9 78.9 87.1 90.9 0.9 4.9 9.6 72.0 81.1 85.3

(θ, λ1, λ2) = (1, 0, 0)

100 0.7 5.5 10.0 7.3 16.7 24.3 0.5 3.0 6.1 5.2 11.6 17.3

400 1.1 6.0 10.5 78.7 87.0 90.0 0.6 4.9 9.5 73.1 82.3 85.9

(θ, λ1, λ2) = (0, 1, 1)

100 0.7 5.0 10.7 10.7 23.9 32.0 0.3 2.6 5.7 6.8 14.2 20.4

400 0.7 3.9 8.0 85.8 93.1 96.1 1.0 5.2 9.9 82.5 89.0 91.5

(θ, λ1, λ2) = (1, 1, 1)

100 0.6 5.3 11.4 9.8 21.3 29.2 0.4 2.9 5.9 7.0 13.9 20.2

400 1.1 5.1 10.4 85.9 92.9 94.4 0.8 4.7 10.1 80.5 87.7 90.2

We also examined the performance of the bootstrap procedure in the LM case with d = 0.4.

This implementation works under the assumption of SM innovations (with d = 0) whereas the

true generating mechanism has d = 0.4. The results are collected in Table 6 with (θ, λ1, λ2) =

(0, 0, 0). Results for other combinations of (θ, λ1, λ2) are similar and are omitted. Evidently,

both statistics are seen to be slightly undersized when n is small. When n = 400, the statistic
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Tn,d still suffers from undersizing but T̃n has good size performance. This outcome matches the

conjecture in Wang and Phillips (2016) that Tn,d would become more conservative as d increases.

What may be unexpected in the findings is the high power performance. Since the statistics

themselves are not designed to accommodate long memory, and the limit theory of the bootstrap

is not investigated here, these properties are issues left for future research.

Table 6: Finite sample size and local power performance in model M2 with d = 0.4 and

(θ, λ1, λ2) = (0, 0, 0)

Tn,d T̃n
n 1% 5% 10% 1% 5% 10%

size

100 0.7 3.6 8.5 0.3 3.2 7.9

200 0.6 3.3 8.9 0.9 4.9 10.3

400 0.3 4.4 8.2 1.4 5.4 11.1

local power

100 75.8 87.0 91.2 79.9 85.2 87.9

200 97.9 99.9 99.9 99.3 99.4 99.6

400 99.0 99.7 99.7 100.0 100.0 100.0

6 Application to Global Climate Sensitivity

As an application of our methods we consider the problem of estimating Earth’s climate sensi-

tivity to a given increase in atmospheric CO2 concentration. As described in Storelvmo et al.

(2018), this is an issue on which there is much ongoing research, primarily with the use of

large scale global climate models. In these global climate modeling exercises analysis relies on

computer simulation data generated from immensely detailed models of Earth’s climate using

an ensemble of initializations of the variables that help to assess model sensitivity. An alter-

native approach that instead relies on observational data is to use econometric methods to fit

much simpler dynamic panel models from which parameter estimates may be obtained to assess

the impact on climate of rising atmospheric CO2 concentrations. The methodology has been

developed in recent work by Magnus et al. (2011), Storelvmo et al. (2016) and Phillips et al.

(2020). An advantage of the approach is that observationally based confidence intervals may be

constructed for the key parameters that are involved in measuring climate change dynamics and

the long term impact of rising CO2 concentrations. Recent research (Yuan et al., 2022) indicates

that use of observational data, rather than climate model simulations from multiple ensembles,

helps to narrow the confidence interval in the estimation of the Earth’s climate sensitivity.

Our application here uses three observational data sets: temperature (Tit), surface level solar

23



radiation (Rit) and CO2 equivalent greenhouse gas concentrations (CO2,t). The temperature and

surface radiation data record time series at multiple surface stations and thereby conform to usual

panel data with individual station and time series observations, whereas the CO2 data varies

only over the temporal dimension. Since a primary goal of empirical research with this data is

to measure the recent historical impact of aggregate CO2 on Earth’s climatic temperature, the

panel model framework necessarily involves the use of time and station level series in conjunction

with possible communal variables that affect climate in aggregate. Such communal variables in

the present case are aggregate CO2 levels and aggregate solar radiation levels measured at the

Earth’s surface.

It is convenient in this application to use the same data as in Phillips et al. (2020), which is

recorded over the 42-year period from 1964 to 2005 over 1484 land-based observation stations.

Using this data enables comparisons of various nonlinear functional coefficient specifications

with the linear specifications employed in Phillips et al. (2020). For example, we are able to

assess whether the impact of CO2 works nonlinearly through the functional coefficients or simply

linearly as a common time effect regressor. For more information about the data, see Phillips

et al. (2020) and Storelvmo et al. (2016) and the references therein.3

Figure 1 plots the aggregated time series data4. An obvious feature of these aggregate data

series are their nonstationarity. Trend characteristics of varying types are evident in the global

temperature, radiation, and CO2 series, with greater year-to-year volatility in temperature and

radiation than in CO2. These series were modeled in Phillips et al. (2020) by allowing for

stochastic and deterministic linear trends as well as linear cointegrating linkages among the

three aggregate series. As might be expected, much greater variation occurs in the disaggregated

station level data. Linear cointegrating regression analysis was used in Phillips et al. (2020)

in studying the aggregate series and an asymptotic theory for the estimated coefficients was

obtained, including asymptotics for a composite parameter that measures climate sensitivity to

CO2.

In Magnus et al. (2011) and Storelvmo et al. (2016) disaggregated station-level data were

employed, standard linear dynamic panel within group and GMM methods were used in esti-

mation, and no attention was paid to possible nonstationarity in the data or nonlinearity in the

relationships. The present application utilizes the nonparametric regression modeling method-

ology developed here, allowing for the presence of functional regression coefficients that depend

3For a general discussion of Earth’s climate sensitivity to greenhouse gases and for references to recent work

in this field of climate science, readers are also referred to Storelvmo et al. (2018).
4Minor differences between the CO2 graphic in Figure 1 and that shown in Phillips et al. (2020) arise because

more decimal places are used here than in Phillips et al. (2020)
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Figure 1: Time series plot of Station-averaged temperature (T t,
◦Celsius; blue solid), downward

surface radiation (R̄t, Watts per m2; red dashed) and logarithms of CO2 (Pg: metric gigatons;

black dotted) ranging from 1964 to 2005

on an aggregate variable with nonstationary trending characteristics. The goal of the applica-

tion is to assess the impact of the global influences on Earth’s temperature of CO2 and surface

(downwelling) solar radiation and to determine whether linear specifications of the type used

in earlier research is justified. The implementation of this paper’s methodology that follows

specifically addresses nonstationarity in the aggregate data, so the tests and confidence intervals

obtained in our empirics are supported by the theory of the present paper.

We first investigate the relation among these three variables using the aggregated time series

data plotted in Figure 1. The nonstationarity in each of these variables is plainly evident in

the figure and confirmed in the analysis reported in Phillips et al. (2020). Both T t and R̄t were

found to be well characterized as stochastic (unit root) trend processes and CO2 as a stochastic

trend with drift. Upon normalization, these variables therefore satisfy the requirements of

Assumptions 1-35 and the limit theory of Theorem 4.3 holds.

To explore the sensitivity of temperature to CO2, earlier work in the literature has used

linear regression of temperature on CO2 via linear modeling or linear cointegration modeling,

as in Phillips et al. (2020). To allow for a possibly nonlinear coefficient impact of CO2 on

temperature, where aggregate levels of downwelling radiation may potentially affect the impact

5In the case of CO2, the corresponding limit process is a Brownian motion with drift.
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Figure 2: Estimated functional coefficients of model (6.1)

of CO2, we use the functional coefficient regression formulation

T t = β0(R̄t) + β1(R̄t) ln(CO2,t) + et, (6.1)

where T t and R̄t denote the cross-station average of Tit and Rit, respectively. The estimated

functional coefficients from local linear regression and the corresponding asymptotic 95% confi-

dence bands based on the limit theory in Theorem 4.3 are plotted in Figure 2. The bandwidth

used is h = 2n−3/10, following the guidance obtained from simulation. The fitted functional

coefficient estimates show that the intercept function β0(R̄t) exhibits an upward trend with ra-

diation, suggesting that the level impact on temperature rises with solar radiation, as expected.

On the other hand, the slope coefficient function β1(R̄t) exhibits a downward trend, suggesting

lower correlation between temperature and CO2 when radiation is higher. This outcome may be

partly explained by the fact that downwelling solar radiation rises when atmospheric conditions

are clearer with less pollutants (like sulfur dioxide) and in such cases the greenhouse gas effects

of rising CO2 on temperature may be attenuated because of greater infrared radiation into space

and aerosol/cloud interactions (Wild, 2012).

To see whether the linear relation assumption between temperature and CO2 is supported

by the data, we consider the following partial linear model

T t = β0(R̄t) + β1 ln(CO2,t) + vt. (6.2)

The estimated curve of β0(R̄t) is plotted in Figure 3 with 95% confidence bands, and the estimate

of β1 is 4.20 with the 95% confidence interval [3.47, 4.92]6. The estimated curve β0(R̄t) in Figure

6The confidence bands in Figure 3 and the confidence interval for β1 may be inaccurate because the asymptotic

theory for the model (6.2) with nonstationary data characteristics is presently unavailable in literature. According

to the tests in Phillips et al. (2020), R̄t has a stochastic trend and ln(CO2,t) has a stochastic trend with drift.

26



170 171 172 173 174 175

R̄t

-11.6

-11.5

-11.4

-11.3

-11.2

-11.1

-11

Figure 3: Estimated functional coefficient β0(R̄t) of model (6.2)

3 shows a clear upward trend, revealing strong positive effects from radiation to temperature.

To test the constancy of β1(R̄t) in model (6.1), or equivalently, the linear relation assumption

between temperature and CO2, we employ a likelihood ratio test to test the null model of (6.2)

against the alternative model of (6.1). The test gives a p-value of 0.52, suggesting acceptance of

a linear relation between temperature and CO2 that embodies the positive impact of radiation

on temperature through the functional dependence on radiation of the intercept.

To further investigate the nature of the impact of radiation on temperature, we consider

testing the constancy of β0(R̄t) in model (6.2). A likelihood ratio test gives a p-value of 0.019,

suggesting rejection of the commonly used simple linear model T t = β0 +β1 ln(CO2,t) + εt. This

result strongly demonstrates the significant role of radiation on temperature. Moreover, from

the estimated curve shown in Figure 3 for the intercept function, it seems that radiation has

an approximate linear impact on temperature. We therefore proceed to test whether β0(R̄t) in

model (6.2) can be accepted as a linear function of R̄t. That is, we test a linear model of the

following form

T t = α0 + α1R̄t + β1 ln(CO2,t) + εt, (6.3)

against the partial linear model in (6.2). Using a likelihood ratio test gives a p-value of 0.75, sug-

gesting that the linear model specification in (6.3) is an adequate one to describe the dependence

of temperature on radiation and CO2. Furthermore, we employ the two test statistics proposed

in Section 4.1 to test the null model of (6.3) against the FC model (6.1). Both statistics return

p-values greater than 0.4, which again support the linear model specification in (6.3). The linear

model in (6.3) has precisely the form of the global linear (cointegrating) relation among the

variables that was used in Phillips et al. (2020).

These empirical findings show that functional coefficient regression models can be helpful in

guiding and justifying parametric specifications when both nonstationary covariates and nonsta-
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tionary regressors are present. The nonparametric regression results and functional specification

tests obtained provide empirical support for the aggregate linear models that have recently been

used in climate econometric research to study the impact on temperature of CO2 greenhouse

gases and downwelling solar radiation.

7 Conclusion

While this paper adds to the scope of the existing limit theory and widens the field of potential

applications of nonlinear regressions with nonstationary time series, there is scope for further

extension. Some additions that would extend the present theory involve relaxation of the mds

condition on the equation error ut, develop bias reduction methods, and cope with further

induced endogeneity. In the context of time varying parameter cointegration, Phillips et al.

(2017) developed a version of fully modified regression that worked successfully in that context.

General forms of the regression model (4.1) with nonlinear functional coefficient vector β(xk)

and stationary errors have considerably more complex elements and it seems that new methods

may be needed to achieve these extensions. This work is left for future research.

Simulations are generally supportive of the functional coefficient limit theory in the presence

of both a nonstationary regressor and smoothing covariate. But our findings reveal that finite

sample performance is affected by reduced local signal strength and increased sensitivity to

bandwidth choice. These issues are exacerbated in multiple regressor cases and in the use of

local linear estimation. They arise from the random wandering nature of the covariate xk and its

functional interaction with the nonstationary regressor yk. The combined impact of this dual-

source nonstationarity in regression is to reduce kernel-weighted signal strength in the relevant

estimation locality by virtue of the nonparametric treatment of the functional coefficient. Small

bandwidths typically reduce the number of relevant observations and raise the risk of singularity

in the locally weighted signal matrix. Increasing the bandwidth helps to resolve the ill-posed

inversion but also raises bias in the regression. Thus, while the originating source differs from

existing ill-posed inverse problems in econometrics, the effects turn out to be similar. Addressing

this issue and the curse of dimensionality in nonstationary nonparametric regression is a further

challenge for future research.

8 Proofs

Proof of Theorem 3.1. We only prove (3.1) since the joint convergence (3.2) is immediate after

some routine notation changes in view of (2.5). We first assume that g(x) is bounded and
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continuous on R. This restriction will be removed later. Write

L1n,ε =
1

n

n∑
k=1

g(Ynk)φε(Xnk)

∫ ∞
−∞

f(x)dx,

L2n,ε =
cn
n

n∑
k=1

g(Ynk)

∫ ∞
−∞

f
[
cn (Xnk + zε)

]
φ(z)dz,

where φε(x) = 1
ε
√
2π

exp
{
− x2

2ε2

}
and φ(x) = φ1(x). Recalling (2.5), it follows from the continuous

mapping theorem and the continuity of LX(t, x) that

L1n,ε ⇒
∫ 1

0
g(Yt)φε(Xt)dt

∫ ∞
−∞

f(x)dx, (as n→∞)

=

∫ 1

0

∫ ∞
−∞

g(Yt)φ(x)LX(dt, εx)dxdt

∫ ∞
−∞

f(x)dx

→a.s.

∫ 1

0
g(Yt)LX(dt, 0)dt

∫ ∞
−∞

f(x)dx = S, as ε→ 0.

Result (3.1) will follow if we prove: for any ε > 0,

L1n,ε − L2n,ε = oP (1), (8.1)

and, as n→∞ followed by ε→ 0,

Sn − L2n,ε = oP (1). (8.2)

We start with some basic preliminaries before proving (8.1) and (8.2). Recall A1 and

lim supt→∞ t
δ|Eeitε0 | < ∞ for some δ > 0. It follows from Theorem 2.18 of Wang (2015)

that, for all k ≥ 1, xk/dk has a density pk(x) which is uniformly bounded by a constant C and,

conditional on Fj = σ(εj , εj−1, ...), (xk − xj)/dk−j has a pkj(x) satisfying

sup
x
|pkj(x+ u)− pkj(x)| ≤ C min{|u|, 1}, (8.3)

for all j ≥ 1 and k − j ≥ n0 for some n0 ≥ 1. Using these facts, for any integrable function l(x)

and an > 0, we have

E|l(anXnk)| ≤ C a−1n (dn/dk)

∫
|l(x)|dx, (8.4)

and

∣∣E({l(anXnk)− l[an(Xnk + zε)]
}
| Fj

)∣∣
=

∣∣ ∫ ∞
−∞

{
l(cnXnj +

andk−j
dn

y)− l
[
(anXnj + zε) +

cndk−j
dn

y
]}
pkj(y)dy

∣∣
≤ Ca−1n (dn/dk−j)

∫ ∞
−∞
|l(y)|

∣∣∣pkj(y − anXnj

andk−j/dn

)
− pkj

(y − an(Xnj + zε)

andk−j/dn

)∣∣∣dy
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≤ Ca−1n (dn/dk−j) min{1, dn|z|ε/dk−j}, (8.5)

for all j ≥ 1 and k − j ≥ n0.

Return to the proofs of (8.1) and (8.2). (8.1) is simple. In fact, by the boundedness of g(x)

and the fact that

L2n,ε =
1

n

n∑
k=1

g(Ynk)

∫ ∞
−∞

f(y)φε(y/cn −Xnk)dy,

it follows from (8.4) with an = 1 that, for any ε > 0,

E |L1n,ε − L2n,ε| ≤ C

n

n∑
k=1

∫ ∞
−∞

f(y)E
∣∣φε(y/cn −Xnk)− φε(Xnk)

∣∣ dy
≤ Cdn

n

n∑
k=1

d−1k

∫ ∞
−∞

f(y)

∫ ∞
−∞
|φε(y/cn − x)− φε(x)|dx dy

≤ Cdn
n

n∑
k=1

d−1k

∫ ∞
−∞

f(y)
[
I(|y| ≥

√
cn) + (εcn)−1/2

]
dy

≤ Cdn
n

n∑
k=1

d−1k

[ ∫
|y|≥√cn

f(y)dy + (ε cn)−1/2
∫
f(y)dy

]
→ 0,

yielding (8.1).

We next consider (8.2). First note that, by the tightness of {Yn,[nt]}0≤t≤1 and continuity of

g(x),

max
1≤j≤n/m

max
(j−1)m+1≤k≤jm

|g(Ynk)− g(Yn,(j−1)m+1)| = oP (1), (8.6)

as n→∞ followed by ε→ 0, where m = bn/Kεc and Kε →∞ as ε→ 0. We may take Kε →∞

sufficiently slow so that εηKε → 0 for any η > 0.

Let Tn = bn/mc. We may write

Sn =
cn
n

Tn∑
j=1

jm∑
k=(j−1)m+1

g(Ynk) f(cnXnk) + S2n,ε

=
cn
n

Tn∑
j=1

g(Yn,(j−1)m+1)

jm∑
k=(j−1)m+1

f(cnXnk)

+
cn
n

Tn∑
j=1

jm∑
k=(j−1)m+1

[
g(Ynk)− g(Yn,(j−1)m+1)

]
f(cnXnk) + S2n,ε

:=
cn
n

Tn∑
j=1

g(Yn,(j−1)m+1)

jm∑
k=(j−1)m+1

f(cnXnk) + S1n,ε + S2n,ε, (8.7)
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where

|S2n,ε| ≤ C
cn
n

n∑
k=Tnm+1

|f(cnXnk)|.

It follows from (8.4) with an = cn that

E|S2n,ε| ≤ C n−1
n∑

k=n−m
dn/dk ≤ C1m/n ≤ C1K

−1
ε ,

i.e., S2n,ε →P 0 as n→∞ followed by ε→ 0. Similarly, we have cn
n

∑n
k=1

∣∣f(cnXnk)
∣∣ = OP (1),

from which it follows from (8.6) that

|S1n,ε| ≤ max
1≤j≤n/m

max
(j−1)m+1≤k≤jm

|Ynk − Yn,(j−1)m+1|
cn
n

n∑
k=1

∣∣f(cnXnk)
∣∣→P 0,

Taking these estimates into (8.7), we obtain

Sn =
cn
n

Tn∑
j=1

g(Yn,(j−1)m+1)

jm∑
k=(j−1)m+1

f(cnXnk) + Sn,ε, (8.8)

where Sn,ε = oP (1) as n→∞ followed by ε→ 0. Similarly, we have

L2n,ε =
cn
n

Tn∑
j=1

g(Yn,(j−1)m+1)

jm∑
k=(j−1)m+1

∫ ∞
−∞

f
[
cn (Xnk + zε)

]
φ(z)dz + Ln,ε, (8.9)

where Ln,ε = oP (1) as n→∞ followed by ε→ 0.

In terms of (8.8) - (8.9), the boundedness of g(x) and
∫
φ(z)dz = 1, result (8.2) will follow

if we prove:

cn
n

Tn∑
j=1

|Ijm| → 0, (8.10)

as n→∞ followed by ε→ 0, where

Ijm =

∫ ∞
−∞

jm∑
k=(j−1)m+1

{
f(cnXnk)− f

[
cn (Xnk + zε)

]}
φ(z)dz.

The proof of (8.10) is similar to (2.69) of Wang (2015), but with different details. An outline is

given as follows. Write

Znk(z) = f(cnXnk)− f [cn(Xnk + zε)].

Using (8.4) and (8.5), uniformly for all z ∈ R,

jm∑
k=(j−1)m+1

[
E |Znk(z)|+ EZ2

nk(z)
]
≤ Cc−1n dn

jm∑
k=(j−1)m+1

d−1k
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≤ C c−1n mdn/dm ≤ C c−1n mK1−δ
ε (8.11)

due to (2.2), and for any |z| ≤ log−1 ε (letting
∑j

k=i = 0 if i > j) and i ≥ (j − 1)m,

i+n0∑
k=i+1

∣∣E{Znk(z)Zni(z)} ∣∣ ≤ 2
[ i+n0∑
k=i+1

EZ2
nk(z) + n0 EZ2

ni(z)
]
,

jm∑
k=i+n0+1

∣∣E{Znk(z)Zni(z)} ∣∣
≤ E

{
|Zni(z)|

( (j−1)m+εm∑
k=i+n0+1

+

jm∑
k=(j−1)m+εm

)∣∣E (Znk(z) | Fi)
∣∣}

≤ C c−2n (dn/di)
[ εm∑
k=1

dn/dk + ε log−1 ε
m∑

k=1+εm

(dn/dk)
2
]

≤ C c−2n (dn/di)
[
εmdn/dεm + εm log−1 ε (dn/dm) (dn/dεm)

]
≤ C c−2n (dn/di)mεδ log−1 εK2(1−δ)

ε ,

where we have used the facts: dn/dm ≤ C (n/m)1−δ ≤ C K1−δ
ε and

dn/dεm ≤ C εδ−1(n/m)1−δ ≤ C εδ−1K1−δ
ε ,

due to (2.2). Consequently, for any |z| ≤ log−1 ε and 1 ≤ j ≤ Tn, we have

Λn,j(ε) ≡
c2n
n2

E
[ jm∑
k=(j−1)m+1

Znk(z)
]2

≤ c2n
n2

jm∑
k=(j−1)m+1

EZ2
nk(z) +

2 c2n
n2

jm∑
i=(j−1)m+1

jm∑
k=i+1

∣∣E{Znk(z)Zni(z)} ∣∣
≤ C cnn

−2m (dn/djm) + C n−2mεδ log−1 εK2(1−δ)
ε

jm∑
k=(j−1)m+1

dn/di

≤ C cn n
−2mK1−δ

ε + Cn−2m2 εδ log−1 εK3(1−δ)
ε . (8.12)

Using (8.11) - (8.12) and recalling the fact that Kε → ∞ is so slow so that εηKε → 0 for any

η > 0, we have

cn
n

Tn∑
j=1

E |Ijm|

≤
Tn∑
j=1

∫ ∞
−∞

cn
n

E
∣∣∣ jm∑
k=(j−1)m+1

Znk(z)
∣∣∣φ(z) dz

≤
Tn∑
j=1

∫
|z|≥log−1 ε

cn
n

E
∣∣∣ jm∑
k=(j−1)m+1

Znk(z)
∣∣∣φ(z) dz +

∫
|z|≤log−1 ε

Λ
1/2
n,j (ε)φ(z) dz
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≤ C K1−δ
ε

∫
|z|≥log−1 ε

φ(z) dz + C εδ/2 log−1/2 εK3(1−δ)/2
ε → 0,

as n → ∞ followed by ε → 0. This proves (8.10), and completes the proof of (3.1) under the

additional assumption that g(x) is bounded on R.

Finally, we remove the additional restriction on the boundedness of g(x). For each N > 0,

gN (x) = g(x)ξN (x) with

ξN (x) =


1 |x| ≤ N
2− |x|/N N < |x| < 2N
0 |x| ≥ 2N

.

Let Sn,N = cn
n

∑n
k=1 gN (Ynk)f(cnXnk). Since gN (x) is bounded and continuous, the first part

proof yields that, for each N > 0,

Sn,N →D SN :=

∫ 1

0
gN (Ys)LX(ds, 0)

∫ ∞
−∞

f(t)dt.

This imples (3.1) without assuming the boundedness of g(x) since

P
(
Sn 6= Sn,N

)
+ P

(
S 6= SN

)
≤ P

(
max
1≤k≤n

|Ynk| ≥ N
)

+ P
(

sup
0≤t≤1

|Yt| ≥ N
)
→ 0,

as n→∞ followed by N →∞, due to the facts that Yn,[nt] ⇒ Yt on DR[0, 1] and that the limit

Gaussian process Yt is path continuous. The proof of Theorem 3.1 is now complete. 2

Proof of Corollary 3.1. As in Theorem 3.1, without loss of generality, we assume that g(x)

is bounded and continuous. Recall f̃1(x) = Ef1(x, λm, ..., λ0)dx and write

Rn =
cn
n

n∑
k=1

g(Ynk)
[
f1
(
cnXnk, λk, ..., λk−m)− f̃1(cnXnk)

]
.

Since f̃1(x) is bounded and integrable, by Theorem 3.1, (3.6) will follow if we prove:

Rn = oP (1). (8.13)

To this end, we first note that (8.4) can be extended to include certain stationary variables,

i.e., the following result still holds:

E|l(anXnk, λk, ..., λk−m)| ≤ C a−1n (dn/dk)

∫
E|l(x, λm, λm−1, ..., λ0)|dx,

for any k ≥ m+m0 and some fixed m0 > 0. See, Lemma 7.1 of Wang et al. (2021) for instance.

Now, the same argument as in the proof of (8.7) yields that

Rn =
cn
n

Tn∑
j=1

g(Yn,(j−1)m+1)

jm∑
k=(j−1)m+1

[
f1
(
cnXnk, λk, ..., λk−m)− f̃1(cnXnk)

]
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+Rn,K ,

:=
m

n

Tn∑
j=1

g(Yn,(j−1)m+1)
cn
m
Amj +Rn,K (8.14)

where m = bn/Kc, Tn = bn/mc and Rn,K →P 0, as (n,K)seq → ∞. As in the proof of (7.37)

with i = 2 in Wang et al. (2021), we have

cn
m

E|Amj | ≤
(
E|cn
m
Amj |2

)1/2 → 0,

uniformly for 1 ≤ j ≤ Tn ≤ K + 1 as (n,K)seq → ∞. It follows from the boundedness of g(x)

that

m

n

Tn∑
j=1

|g(Yn,(j−1)m+1)|E
∣∣cn
m
Amj

∣∣ ≤ C max
1≤j≤K+1

cn
m

E|Amj | → 0,

i.e., m
n

∑Tn
j=1 g(Yn,(j−1)m+1)

cn
mAmj →P 0, as (n,K)seq → ∞. Taking this estimate into (8.14),

we obtain (8.13), and also completes the proof of Corollary 3.1. 2

Proof of Theorem 3.2. We only prove (3.8) and assume c′n = 0. The extension to general

c′n is standard (e.g., Wang and Phillips (2009a)) and (3.7) is similar except simpler. Note that

M1n =
∑n

k=1mnkuk, where mnk =
(
cn
n

)1/2
g(Ynk)f1(cnXnk, λk, ..., λk−m) depending only on

λk, λk−1, .... We may establish (3.8) by using the extended martingale limit theorem given in

Wang (2014). To this end, let g̃η(x) = |g(x)|2+η and f̃η(x, y) = |f1(x, y)|2+η. Due to A5(i),

there exists a bounded and integrable function T̃ (x) so that, for any −1 ≤ η ≤ 1/β,

|f̃η(x, y)
∣∣ ≤ T̃ (x)(1 + |y|(2+η)β),

i.e., A5(i) still holds if we replace f1 by f̃η and β by (2 + η)β. Since g̃η(x) is still continuous, it

follows from Corollary 3.1 (with g and f1 replaced by g̃η and f̃η, respectively) that

( 1√
n

[nt]∑
k=1

εk,
1√
n

[nt]∑
k=1

ε−k, Xn,[nt], Yn,[nt],
cn
n

n∑
k=1

g̃η(Ynk)f̃η
(
cnXnk, λk, ..., λk−m

))
⇒

(
Bt, B−t, Xt, Yt,

∫ 1

0
g̃η(Ys)dLX(s, 0)Ef̃η(x, , λm, λm−1, ..., λ0)dx

)
, (8.15)

for any −1 ≤ η ≤ 1/β. Consequently, it is readily seen that

max
1≤k≤1

|mnk| ≤
[(cn
n

)1+1/(2β)
n∑
k=1

g̃1/β(Ynk)f̃1/β
(
cnXnk, λk, ..., λk−m

)]2β/(1+2β)
= oP (1)

and

1√
n

n∑
k=1

|mnk| = c−1/2n

cn
n

n∑
k=1

g̃−1(Ynk)f̃−1
(
cnXnk, λk, ..., λk−m

)
= oP (1),
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due to cn →∞ and cn/n→ 0. Result (3.8) now follows from Theorem 2.1 of Wang (2014). 2

Proof of Theorem 4.1 . We first prove (4.3). Let Dn =
∑n

k=1 yky
T
kK[(xk − x)/h]. We have

β̂n (x)− β (x)− hL1n β
′(x) = D−1n

n∑
k=1

ykK

(
xk − x
h

)
uk +D−1n Rn, (8.16)

where, under A6(i),

||Rn|| ≤
n∑
k=1

||ykyTk ||
∣∣∣∣β (xk)− β(x)− β′(x)(xk − x)

∣∣∣∣K[(xk − x)/h]

≤ C h1+ν
n∑
k=1

||yk yTk ||K
(
xk − x
h

)
.

Let Xnk = xk/dn, Ỹnk = yk/
√
n and cn = dn/h. Recall that Ynk = αT Ỹnk where α ∈ Rq (e.g.,

see A2′). By Theorem 3.2 and the continuous mapping theorem, we have

cn
n2

αT Dnα =
cn
n

n∑
k=1

Y 2
nkK[cn(Xnk − x/dn)] →D

∫ 1

0
Y 2
t LX(dt, 0), (8.17)

indicating that ||D−1n || = OP (cn/n
2) due to the fact that

P
( ∫ 1

0
Y 2
t LX(dt, 0) 6= 0

)
= 1, for any α ∈ Rd and α 6= 0, (8.18)

by using (2.3) and (2.4). Similarly, when cn → ∞ and cn/n → 0, it follows from Theorem 3.2

that

cn
n2

n∑
k=1

||yk yTk ||K
(
xk − x
h

)
= OP (1),

and, jointly with (8.17),( cn
n2

)1/2 n∑
k=1

αT ykK

(
xk − x
h

)
uk =

(cn
n

)1/2 n∑
k=1

YnkK[cn(Xnk − x/dn)] uk

→D

[ ∫ 1

0
Y 2
t LX(dt, 0)

]1/2
N (0, σ2β), (8.19)

and, jointly with (8.17),

cn
n2

n∑
k=1

(αT yk)
2K1

[
(xk − x)/h] =

cn
n

n∑
k=1

Y 2
nkK1[cn(Xnk − x/dn)]

→D

∫ 1

0
Y 2
t LX(dt, 0)

∫
K1(s)ds. (8.20)

As a consequence, we have D−1n Rn = OP (h1+ν) ,

D−1n

n∑
k=1

ykukK

(
xk − x
h

)
= OP

[
(cn/n

2)1/2
]

= OP
[
(dn/n

2h)1/2
]

= oP (h)
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whenever min{nh2, nh/dn} → ∞, and L1n →P I
∫
sK(s)ds where I is an identity matrix.

Taking these estimates into (8.16), we obtain (4.3).

We next prove (4.4). Similar to (8.16), we have

D1/2
n

[
β̂n (x)− β (x)− hL1n β

′(x)− 1

2
h2L2n β

′′(x)
]

= D−1/2n

n∑
k=1

ykukK

(
xk − x
h

)
+D−1/2n R1n, (8.21)

where, under A6(ii),

||Rn|| ≤
n∑
k=1

||ykyTk ||
∣∣∣∣β (xk)− β(x)− β′(x)(xk − x)− 1

2
β′′(x)(xk − x)2

∣∣∣∣K[(xk − x)/h]

≤ C h2+ν
n∑
k=1

||yk yTk ||K
(
xk − x
h

)
,

i.e., whenever n2h5+2ν/dn → 0,

||D−1/2n R1n|| ≤ OP (1)h2+ν(n2h/dn)1/2 = oP (1).

Since (8.19) holds jointly with (8.17), result (4.4) follows from (8.21) and the continuous mapping

theorem. The proof of Theorem 4.1 is now complete. 2

Proof of Theorem 4.2. Since β̂L(x) =
(
Vn0 − Vn1V −1n2 Vn1

)−1∑n
k=1

[
I − Vn1V −1n2 (xk − x)

]
ykzkK

(
xk−x
h

)
,

we have

n∑
k=1

[
I − Vn1V −1n2 (xk − x)

]
yky

T
kK[(xk − x)/h](xk − x)

=
n∑
k=1

yky
T
kK[(xk − x)/h](xk − x)− Vn1V −1n2

n∑
k=1

yky
T
kK[(xk − x)/h](xk − x)2 = 0,

where Vnj =
∑n

k=1 yky
T
k K

(
xk−z
h

)
(xk − x)j for j = 0, 1 and 2. Then, similar to β̂n (x), we may

write

β̂L(x)− β(x)− 1

2
h2β′′(x)

∫
s2K(s)ds = ∆−1n

[
Pn +

1

2
h2Tnβ

′′(x) +R2n

]
, (8.22)

where ∆n = Vn0 − Vn1V −1n2 Vn1,

Pn =
n∑
k=1

[
I − Vn1V −1n2 (xk − x)

]
ykK[(xk − z)/h]uk,

Tn =

n∑
k=1

[
I − Vn1V −1n2 (xk − x)

]
yky

T
k K2[(xk − x)/h]−∆n

∫
s2K(s)ds

=
n∑
k=1

[
I − Vn1V −1n2 (xk − x)

]
yky

T
k K̃2[(xk − x)/h],
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with Kj(s) = sjK(s), j = 1, 2, and K̃2(s) = K2(s)−K(s)
∫
K2(t)dt, and, under A6(ii),

||R2n|| ≤
n∑
k=1

||ykyTk || ||
[
I − Vn1V −1n2 (xk − x)

]
||

×
∣∣∣∣β (xk)− β(x)− β′(x)(xk − x)− 1

2
β′′(x)(xk − x)2

∣∣∣∣K[(xk − x)/h]

≤ C h2+ν
n∑
k=1

||yk yTk || ||
[
I − Vn1V −1n2 (xk − x)

]
||K[(xk − x)/h].

We can now use Proposition 4.1, together with some similar arguments to those given in the

proof of Theorem 4.1, to establish (4.9). Write Dn =
∑n

k=1 yky
T
kK[(xk − x)/h] and

Djn =
n∑
k=1

yky
T
kKj [(xk − x)/h], j = 1, 2.

As in the proof of Theorem 4.1, we have D−1n + D−12n = OP (dn/n
2h) and, for any function l(x)

having finite support,

n∑
k=1

yky
T
k l[(xk − x)/h] = OP (n2h/dn),

n∑
k=1

yk l[(xk − x)/h]uk = OP
[
(n2h/dn)1/2

]
.

These facts, together with Proposition 4.1 (e.g., D1n = OP
[√
n (n2h/dn)1/2

]
as
∫
K1(t)dt = 0

and nh4 → 0), yield that

∆n = h2D2nDn − h2D2
1n = h2D2nDn

[
1 +OP

(
dn/nh

)]
, (8.23)

Pn = h2D2n

n∑
k=1

ykK[(xk − x)/h]uk − h2D1n

n∑
k=1

ykK1[(xk − x)/h]uk

= h2D2n

[ n∑
k=1

ykK[(xk − x)/h]uk −OP (n1/2)
]

(8.24)

Tn =
n∑
k=1

[
I − Vn1V −1n2 (xk − x)

]
yky

T
k K̃2[(xk − x)/h]

= h2D2n

n∑
k=1

yky
T
k K̃2[(xk − x)/h]− h2D1n

n∑
k=1

yky
T
k K̂2[(xk − x)/h][

K̂2(x) = xK̃2(x) and recall
∫
K̃2(t)dt = 0

]
= h2D2nOP

[√
n (n2h/dn)1/2

]
, (8.25)

and

||R2n|| ≤ C h2+ν
n∑
k=1

||yk yTk || ||
[
I − Vn1V −1n2 (xk − x)

]
||K

(
xk − x
h

)
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≤ C h2+ν
[
h2||D2n||+ h2||D1n||

] n∑
k=1

||yk yTk ||K
(
xk − x
h

)
≤ h2||D2n||OP

[
h2+ν (n2h/dn)

]
. (8.26)

Taking these estimates into (8.22), we obtain that

D1/2
n

[
β̂L(x)− β(x)− 1

2
h2β′′(x)

∫
s2K(s)ds

]
=

D
−1/2
n

1 +OP
(
dn/nh

){ n∑
k=1

ykK[(xk − x)/h]uk +OP
[
h2+ν (n2h/dn)

]
+OP (n1/2) +OP

[√
nh2 (n2h/dn)1/2

]}
=

D
−1/2
n

1 +OP
(
dn/nh

) n∑
k=1

ykK[(xk − x)/h]uk

+OP
[
(n2h5+2ν/dn)1/2

]
+OP (

√
nh2) +OP

[
(dn/nh)1/2

]
→D σβ Nd, (8.27)

for any h satisfying n2h5+2ν/dn → 0, nh4 → 0 and nh/dn → ∞, i.e., we have (4.9). The proof

of Theorem 4.2 is now complete. 2

Proof of Proposition 4.1. It suffices to show that, for any α ∈ Rq,

An := αTSn,lα =

n∑
k=1

Y 2
k l[(xk − x)/h] = OP

[
(nh/dn)1/2

]
, (8.28)

where Yk = αT yk/
√
n. We start with some preliminaries. First recall that, conditional on

Fj = σ(εj , εj−1, ...), (xk−xj)/dk−j has a bounded density function pkj(x) satisfying (8.3) for all

j ≥ 1 and k − j ≥ n0 for some n0 ≥ 1 as seen in the proof of Theorem 3.1. This yields that, for

all j ≥ 1 and k − j ≥ n0,

E
(
l[(xk − x)/h]|Fj

)
=

∫
l
(ydk−j

h
+
xj − x
h

)
pkj(y)dy

=
h

dk−j

∫
l(y) pkj

( yh

dk−j
− xj − x

h

)
dy.

Now, by using (8.3) and
∫
l(y)dy = 0, we have

∣∣E(l[(xk − x)/h]|Fj
)∣∣

≤ h

dk−j

∫
l(y)

∣∣∣pkj( yh

dk−j
− xj − x

h

)
− pkj

(
− xj − x

h

)∣∣∣ dy
≤ C

h2

d2k−j

∫
|y l(y)|dy ≤ C1

h2

d2k−j
, (8.29)

for all j ≥ 1 and k − j ≥ n0.
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We return to the proof of (8.28). For N ≥ 1, let YkN = YkI(|Yk| ≤ N) and AnN =∑n
k=1 Y

2
kN l[(xk − x)/h]. Using (8.4), (8.29) and the independence between Yk and xk, we have

EA2
nN =

n∑
k=1

n∑
j=1

E
[
YkN YjN l[(xk − x)/h]l[(xj − x)/h]

]
≤ N2

( ∑
|k−j|≤n0

E
∣∣ l[(xk − x)/h]l[(xj − x)/h]

∣∣
+2

n∑
j=1

n∑
k=j+n0

E
{∣∣K[(xj − x)/h]

∣∣ ∣∣E(l[(xk − x)/h]|Fj
)∣∣})

≤ CN2
(
h

∑
|k−j|≤n0

d−1k + h2
n∑
j=1

n∑
k=j+n0

d−1j d−2k−j

)

≤ C1N
2nh/dn

(
1 + h

n∑
k=1

d−2k

)
,

i.e. for each N ≥ 1, AnN = OP
[
(nh/dn)1/2

]
since nh4 → 0 implies h

∑n
k=1 d

−2
k = o(1) . This

implies (8.28) since, as N →∞,

P (An 6= AnN ) ≤ P
(

max
1≤k≤n

|Yk| ≥ N
)
→ 0.

The proof of Proposition 4.1 is complete. 2

Proof of Theorem 4.4. Without loss of generality, assume that R(λ, x) ≡ 0 in (4.15). The

extension to the general situation is standard and involves only routine calculations. Write

Γn = diag(1, dn, v(dyn)), where dn and dyn are defined as in A1 and A2. Note that

θ̂n =
( n∑
k=1

GkG
T
k

)−1 n∑
k=1

zkGk = θ +
( n∑
k=1

GkG
T
k

)−1 n∑
k=1

ukGkG
T
k . (8.30)

It is readily seen by standard arguments that

Γn (θ̂n − θ) = OP (n−1/2). (8.31)

Using (8.31) and recalling (4.14), we have

Tn =

∫ ∞
−∞

{ n∑
k=1

K[(xk − x)/h]
[
uk + (θ − θ̂n)GTk

]}2
π(x)dx

= T1n + T2n + T3n, (8.32)

where T1n =
∫∞
−∞

{∑n
k=1K[(xk − x)/h]uk

}2
π(x)dx, |T3n|2 ≤ 4T1n T2n by Hölder’s inequality

and

T2n =

∫ ∞
−∞

{ n∑
k=1

K[(xk − x)/h]
[
(θ − θ̂n)GTk

]}2
π(x)dx
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= OP (n−1)

∫ ∞
−∞

{ n∑
k=1

K[(xk − x)/h]Γ−1n GTk

}2
π(x)dx.

In terms of (8.32), the result (4.17) will follow if we prove

dn
nh

T1n →D τ0 LX(1, 0) (8.33)

and

∆n :=
( dn
nh

)2 ∫ ∞
−∞

{ n∑
k=1

K[(xk − x)/h]Γ−1n GTk

}2
π(x)dx = OP (1). (8.34)

The approach to proving (8.33) is the same as that in the proof of Proposition 7.3 of Wang

and Phillips (2016) with minor modifications, so the details are omitted. To show (8.34), let

Ĝk = GkI(|xk|/dn ≤ N, |yk|/dyn ≤ N) and

∆̂n =
( dn
nh

)2 ∫ ∞
−∞

{ n∑
k=1

K[(xk − x)/h]Γ−1n ĜTk

}2
π(x)dx.

Recall that h(yk) = v(dyn)H(yk/dyn) and H(x) is a continuous function. It is readily seen that,

for each N ≥ 1,

∆̂n ≤ CN
( dn
nh

)2 ∫ ∞
−∞

{ n∑
k=1

K[(xk − x)/h]
}2
π(x)dx = OP (1),

where CN is a constant dependening only on N and we have used (7.12) with m(x) = 1 in

Proposition 7.3 of Wang and Phillips (2016). This implies (8.34) since, by A1 and A2,

P (∆n 6= ∆̂n) ≤ P ( max
1≤k≤n

|xk| ≥ dnN) + P ( max
1≤k≤n

|yk| ≥ dynN)→ 0,

as N →∞.The proof of Theorem 4.4 is now complete. 2

Proof of Theorem 4.5. Without loss of generality, assume that σ2 = 1 in A4 and R(λ, x) ≡ 0

in (4.15). As in the proof of Theorem 4.4, by letting Γn = diag(1, dn, v(dyn)), we have

T̃n = 2
n∑
k=2

uk Ank + 2 (θ − θ̂)
n∑

j,k=1
j 6=k

ujG
T
kK
[
(xk − xj)/h

]

+

n∑
j,k=1
j 6=k

(θ − θ̂n)GTk (θ − θ̂n)GTj K
[
(xk − xj)/h

]

= 2

n∑
k=2

uk Ank +OP (n−1/2) ||T̃1n||+OP (n−1) T̃2n, (8.35)

where Ank =
∑k−1

j=1 ujK
[
(xk − xj)/h

]
, T̃1n =

∑n
j,k=1
j 6=k

ujΓ
−1
n GTkK

[
(xk − xj)/h

]
and

|T̃2n| ≤
n∑

j,k=1
j 6=k

||Γ−1n GTk || ||Γ−1n GTj ||K
[
(xk − xj)/h

]
.
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Similarly, we have

σ̃2n =
n∑

j,k=1
j 6=k

u2ku
2
jK

2
[
(xk − xj)/h

]
+ 2

n∑
j,k=1
j 6=k

(û2k − u2k) û2j K2
[
(xk − xj)/h

]
:= σ̃21n +O(n−1/2) σ̃22n, (8.36)

where

σ̃22n ≤
n∑

j,k=1
j 6=k

||Γ−1n GTk || |ûk + uk| û2j K2
[
(xk − xj)/h

]

≤ 4
n∑

j,k=1
j 6=k

||Γ−1n GTk ||
[
|uk|+ OP (n−1/2)||Γ−1n GTk ||

]
[
|uj |2 + OP (n−1)||Γ−1n GTj ||2

]
K2
[
(xk − xj)/h

]
.

Recalling Γ−1n GTk = (1, xk/dn, H(yk/dyn) and d2n � n under SM, we may prove

||T̃1n|| = OP
(
n5/4h3/4

)
, (8.37)

T̃2n + σ̃22n = OP (n3/2 h). (8.38)

To this end, let ĤN (x) = H(x)I(|x| ≤ N) and Ĝk = (1, xk/dn, ĤN (yk/dyn)). Since {xk}k≥1
is independent of {yk}k≥1, the same argument as in the proof of Propsoition 6.2 of Wang and

Phillips (2012) yields that, for each N ≥ 1,

||T̂1n|| := ||
n∑

j,k=1
j 6=k

ujΓ
−1
n ĜTkK

[
(xk − xj)/h

]
||

≤ C n−1/2 ||
n∑

j,k=1
j 6=k

ujxkK
[
(xk − xj)/h

]
||+ ||

n∑
j,k=1
j 6=k

uj
(
1, ĤN (yk/dyn)

)
K
[
(xk − xj)/h

]
||

= OP
(
n5/4h3/4

)
.

This implies (8.37), i.e., ||T̃1n|| = OP
(
n5/4h3/4

)
, since, by A2,

P
(
T̃1n 6= T̂1n

)
≤ P

(
max
1≤k≤n

|yk/dn| ≥ N
)
→ 0,

as (n,N)seq → ∞. The proof of (8.38) is similar. In fact, it follows from Proposition 6.1 of

Wang and Phillips (2012) that, for each N ≥ 1,

||T̂1n|| := ||
n∑

j,k=1
j 6=k

||Γ−1n ĜTk || ||Γ−1n ĜTj ||K
[
(xk − xj)/h

]
||

≤
n∑

j,k=1
j 6=k

(
1 +N + |xk|/

√
n
)
K
[
(xk − xj)/h

]
= OP (n3/2h),
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indicating T̃2n = oP (n3/2 h). Similarly, we also have σ̃22n = OP (n3/2 h).

Taking (8.37) - (8.38) into (8.35) and (8.36), we obtain

T̃n = 2

n∑
k=2

uk Ank +OP
[
(nh)3/4

]
(8.39)

and

σ̃2n = σ̃21n +OP (nh) = 2
n∑
t=2

A2
nt + oP (n3/2 h), (8.40)

where we have used (3.6) of Wang and Phillips (2012) in the second step of (8.40). Result (4.21)

now follows from (8.39)-(8.40) and Theorem 3.3 of Wang and Phillips (2012). 2
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