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Summary 

The present study examines the assumptions, modeling structure, and 
preliminary results of DICE-2023, the revised Dynamic Integrated Model 
of Climate and the Economy (DICE), updated to 2023. The revision 
contains major changes in the carbon and climate modules, the treatment 
of non-industrial greenhouse gases, discount rates, as well as updates on 
all the major components. The major changes are a significant reduction 
in the target for the optimal (cost-beneficial) temperature path, a lower 
cost of reaching the 2 °C target, an analysis of the impact of the Paris 
Accord, and a major increase in the estimated social cost of carbon.  

Supplementary materials including the Appendices and Background Papers 
are available at https://bit.ly/3TwJ5nO.  
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I. Background  
 

A. Integrated Assessment Models  
 
Many areas of the natural and social sciences involve complex systems 

that link together multiple physical or social networks. This is particularly true 
for environmental problems, which are intrinsically ones having firm roots in 
the natural sciences and requiring social and policy sciences to solve in an 
effective and efficient manner. A good example is climate change science and 
policy, which involve a wide variety of sciences such as atmospheric chemistry 
and climate dynamics, ecology, economics, political science, game theory, and 
international law. 

As understanding progresses across the different fronts, it is increasingly 
necessary to link together the different areas to develop effective 
understanding and efficient policies. In this role, integrated assessment 
analysis and models play a key role. Integrated assessment models (IAMs) can 
be defined as approaches that integrate knowledge from two or more domains 
into a single framework. These are sometimes theoretical but are increasingly 
computerized dynamic models of varying levels of complexity.  

 
B. DICE-2023 
 
The DICE model views climate change in the framework of economic 

growth theory. In a standard neoclassical optimal growth model known as the 
Ramsey model, society invests in capital, thereby reducing consumption today, 
in order to increase consumption in the future. The DICE model augments the 
Ramsey model to include climate investments, which are analogous to capital 
investments in the standard model. The model contains all elements of the 
process from economic activity and emissions through climate change to 
damages and policy in a manner that represents simplified best practice in 
each area. 

The DICE model (Dynamic Integrated model of Climate and the 
Economy) and its regional version, RICE (Regional Integrated model of Climate 
and the Economy), have gone through several revisions since their first 
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development around 1990. The latest published versions are the RICE-2010 
and DICE-2016 models, and this study describes the revision of DICE, whereas 
an updated version of RICE (joint with Zili Yang) will be available shortly. We 
begin with a description of the DICE-2023 model, after which we provide the 
detailed equations. This section draws heavily on earlier discussions (see 
Nordhaus 2017, 2018, 2018a, Yang 2020, Nordhaus and Sztorc 2013, and 
Nordhaus and Boyer 2000).  

 
II.  Objectives or goals of IAMs 

 
IAMs can be divided into two general classes – policy optimization and 

policy evaluation models. Policy evaluation models generally are recursive or 
equilibrium models that generate paths of important variables but do not 
optimize an economic outcome. Policy optimization models have an objective 
function or welfare function that is maximized and can be used to evaluate 
alternative paths or policies.  

The DICE model is primarily designed for policy optimization, although it 
can also be run as an evaluation model for given policies. In both settings, the 
approach is to maximize an economic objective function (the goal implicit in 
the problem). For the DICE model, the objective function refers to the 
economic well-being (or utility) associated with a path of consumption.  

The use of optimization can be interpreted in two ways: First, from a 
positive point of view, as a means of simulating the behavior of a system of 
competitive markets; and second, from a normative point of view, as a possible 
approach to comparing the impact of alternative paths or policies on economic 
welfare.  

In the DICE model, the world or individual regions are assumed to have 
well-defined preferences, represented by a social welfare function, which 
ranks different paths of consumption. The social welfare function is increasing 
in the per capita consumption of each generation, with diminishing marginal 
utility of consumption. The importance of a generation’s per capita 
consumption depends on the size of the population.  

The relative importance of different generations is affected by two 
central normative parameters: the pure rate of social time preference 
(“generational discounting”) and the elasticity of the marginal utility of 
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consumption (the “consumption elasticity” for short). These two parameters 
interact to determine the discount rate on goods, dimensionally the same as a 
real interest rate, which is critical for intertemporal economic choices. In the 
modeling, we set the normative parameters to be consistent with observed 
economic outcomes as reflected by market interest rates, risks, and rates of 
return on capital. The choice of discount rates is central to the results and is 
extensively discussed in the literature on discounting. 

The DICE model assumes that economic and climate policies should be 
designed to optimize the flow of consumption over time. It is important to 
emphasize that consumption should be interpreted as “generalized 
consumption,” which includes not only traditional market goods and services 
like food and shelter but also non-market items such as leisure, health status, 
and environmental services. It may also include non-human factors such as the 
welfare of other species or ecosystems.4 

We add a note of interpretation of the equilibrium in the DICE model. We 
have specified the baseline case so that, from a conceptual point of view, it 
represents the outcome of market and policy factors as they currently exist. In 
other words, the baseline model attempts to project, from a descriptive 
perspective, the levels and growth of major economic and environmental 
variables as would occur with existing climate-change policies. The baseline is 
distinguished from a “no controls” policy, such as might have existed in the 
1960s, with no policies anywhere targeted to slow climate change. Similarly, 
the baseline does not include countries’ announced or aspirational policies. 

Finally, we emphasize that the approach does not make a case for the 
social desirability of the policies or of the distribution of incomes over space or 
time of existing conditions, just as a marine biologist normally makes no moral 
judgment on the equity of the eating habits of whales or minnows.  

 
 

 
4 Specifically, the DICE-2023 quantification of climate damages includes estimates of the 
value of the impacts of non-market goods and services where available. Income levels 
are initialized based on conventional output measures.  The inclusion of non-market 
values in income levels would affect the level of total income, but because of the 
normalization of market output, it would not have a significant effect on the key results in 
our framework.  
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III. Equations of the DICE-2023 model 
 
We next develop the equations of the model. We will distinguish major 

from minor revisions. This section is technical and may be skipped by those 
who would like to get the significant results. 

 
A. Objectives 

 
To begin with, we assume that policies are chosen to maximize a general 

concept of economic welfare. More precisely, we maximize a social welfare 
function, W, which is the discounted sum of the population-weighted utility of 
per capita consumption, where c is per capita consumption, L is population, 
and Ψ  is the discount factor, all of which are discussed as we proceed. 
Equation (1) is the mathematical statement of the objective function. This 
representation is a standard one in modern theories of optimal economic 
growth.

 

     
Ψ

=

= ∑
1

1
T max

t
( ) W U[c(t),L(t )] (t )  

There are several further assumptions underlying this choice of an 
objective function. First, it involves a specific representation of the “utility” of 
consumption. The DICE model assumes that utility is represented by a constant 
elasticity utility function, as shown in Equation (2).  
     
 

ϕ ϕ(2)      1-

1-[1.5]

U [ c(t),L(t)] = L(t)[ c (t) / (1- )]
              = L(t)[ c (t) / (1- [1.5])]

 

            t = time periods = 2020, 2025, 2030, …. 
 
Note that here and below, we have included the actual parameters of the 
equations with numerical terms in brackets, such as [1.5].  

This Equation assumes a constant elasticity of the marginal utility of 
consumption, 𝜑𝜑. The elasticity is a parameter that represents the extent of 
substitutability of the consumption of different years or generations. If 𝜑𝜑 is 
close to zero, then the consumptions of different generations are close 
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substitutes; if 𝜑𝜑 is high, then the consumptions are not close substitutes. Often, 
𝜑𝜑 will also be used to represent risk aversion, but these are quite distinct 
concepts and should not be confused. Additionally, the elasticity is distinct 
from personal behavioral characteristics. We calibrate 𝜑𝜑 in conjunction with 
the pure rate of time preference, as is discussed below.  
 Second, this specification assumes that the value of consumption in a 
period is proportional to the population. 

Third, this approach applies a discount on the economic well-being of 
future generations, as is defined in Equation (3). 

 
Ψ =
=

(3)      
          

-t(t )  (1+ ρ)
ρ  0.01 / yr  

 
  In this specification, Ψ (t )  is the discount factor, while the pure rate of 
social time preference, ρ , is the discount rate which provides the welfare 
weights on the utilities of different generations.  

Equations (2) and (3) have been slightly revised in DICE-2023 
(specifically with ρ decreased from 0.015 to 0.010 and 𝜑𝜑 increased from 1.45 
to 1.5). The purpose is to lower the real interest rate to reflect the decline in 
market interest rates over recent years. The impact is that the average real rate 
of return for 2020-2100 was revised from 4.2%/yr in DICE-2016  to 3.9%/yr 
in DICE-2023. Note as well that in the Ramsey model used to calculate 
economic variables in DICE-2023, real interest rates decline over time from 
4.5%/year in 2020 to 3.4%/yr in 2100. See Appendix G for a more detailed 
discussion. 
 

B. Population, output, and productivity 
 

The economic sectors are standard to the economic growth literature. 
The main difference from standard analysis is the very long time frame that is 
required for climate-change modeling. While most macroeconomic models run 
for a few years, or in the development context a few decades, climate-change 
projects necessarily must run a century or more. The result is that many of the 
projections and assumptions are based on very thin evidence.  
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We begin with the standard approach to economic growth. The DICE 
model is simplified relative to many models because it assumes a single global 
commodity, which can be used for either consumption or investment. 
Consumption should be viewed broadly to include not only food and shelter 
but also non-market environmental amenities and services. Regional outputs 
and capital stocks are aggregated using purchasing power parity (PPP) 
exchange rates, as is now widely accepted in the economic-growth and IAM 
communities. 

The next set of equations determines the evolution of world output over 
time. Population and the labor force are exogenous. These are simplified to be 
logistic-type equations. The assumed growth rate declines so that total world 
population approaches a limit of 10.8 billion. These numbers are from UN 
projections and have seen only small modifications in recent revisions. 

Output is produced with a Cobb-Douglas production function in capital 
and labor, with adjustments for damages and abatement. Output is measured 
in purchasing power parity (PPP) exchange rates using World Bank and IMF 
estimates. Future productivity growth is based largely on estimates from 
Christensen et al. (2018). Technological change takes two major forms: 
economy-wide technological change and carbon-saving technological change. 
Carbon-saving technological change is represented in two ways: first, as 
reducing the baseline ratio of CO2 emissions to output and, second, as reducing 
the cost of the backstop technology. 

Production is represented by a modification of a standard neoclassical 
production function. Global output is shown in Equation (4): 
 

(4)     𝑄𝑄(𝑡𝑡) = [1 − Λ(𝑡𝑡)][1 − Ω(𝑡𝑡)]𝐴𝐴(𝑡𝑡)𝐾𝐾(𝑡𝑡)𝛾𝛾𝐿𝐿(𝑡𝑡)1−𝛾𝛾 
          𝛾𝛾= 0.3 
          𝐿𝐿(0) =  7753 million 
          𝐿𝐿(𝑡𝑡 + 1) =  𝐿𝐿(𝑡𝑡) [10825/𝐿𝐿(𝑡𝑡)]0.145  
          𝐴𝐴(0) =  5.84164 in 2019 US$    

                         A(𝑡𝑡) = 𝐴𝐴(𝑡𝑡 − 1)/(1− 0.082 exp[-0.0072∙5∙(t-1)])  
 

In this specification, Q(t) is measured global output net of damages and 
abatement, L(t) is population and labor inputs, A(t) is total factor productivity, 
and K(t) is capital stock and services. The additional variables in the 
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production function are Ω(𝑡𝑡) and 𝛬𝛬(𝑡𝑡), which represent climate damages and 
abatement costs and are discussed in the next section. 

 
C. Damages 

 
Equation (5) represents the economic impacts or damages of climate 

change, which is the thorniest issue in climate-change economics. These 
estimates are indispensable for making sensible decisions about the 
appropriate balance between costly emissions reductions and climate 
damages. However, providing reliable estimates of the damages from climate 
change over the long run has proven extremely difficult.  

 
(5)     𝛺𝛺(𝑡𝑡)   = 𝜓𝜓1𝑇𝑇𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝜓𝜓2[𝑇𝑇𝐴𝐴𝐴𝐴(𝑡𝑡)]2 
           = [0.0]𝑇𝑇𝐴𝐴𝐴𝐴(𝑡𝑡) + [0.003467][𝑇𝑇𝐴𝐴𝐴𝐴(𝑡𝑡)]2  

 
The damage function in DICE is simplified and assumes that the increase 

in global mean surface temperature from pre-industrial levels (centered on 
1765) is a reasonable sufficient statistic for damages. This specification omits 
or only indirectly captures cumulative effects (such as the effects of prolonged 
warming rather than instantaneous temperature on sea-level rise) and also 
omits effects that depend on the speed of temperature change. The damage 
function also implicitly assumes that damages scale proportionately with 
income. Based on recent reviews, we further assume that a quadratic damage 
function best captures the impact of climate change on output (Nordhaus and 
Moffat, 2017; Hsiang et al., 2017). 

The 2023 model uses the same structure as earlier versions but contains 
several updates. The damage assessment is preliminary in “beta” status, and 
the current formulation is as follows.  

The first component of damages is a synthesis of the current literature 
on damages. This compendium adds studies that were published since the 
review of Nordhaus and Moffat (2017) that was the basis for the earlier 
estimates. Our update focuses on studies surveyed in Piontek et al. (2021), 
which overlaps closely with global damage studies reviewed by the IPCC’s AR6 
(O’Neill et al., 2022). The updated results imply a 1.62% GDP-equivalent loss at 
3 °C warming over pre-industrial temperatures, up from 1.22% in the previous 
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version. It is important to note that the studies which form the basis of this 
estimate generally omit potentially significant climate change impact channels, 
such as biodiversity loss, ocean acidification, extreme events, social unrest, etc.  

Second,  we have added the results of a comprehensive study of tipping 
points (Dietz et al. 2021), which estimates an additional 1% loss of global 
output due to 3 °C warming.  

Third, we have increased the judgmental adjustment for other excluded 
impacts to 0.5% of output at 3 °C warming. This adjustment reflects (i) 
concerns over climate change impacts not yet reliably quantified in the 
literature, (ii) uncertainty, and (iii) recent research that is not reflected in our 
synthesis of aggregate damage estimates, as described in Appendix I. 

Including all these adjustments, damages are estimated to be around 
3.12% of output at a 3°C global warming over pre-industrial temperatures and 
12.5% of output with 6 °C warming. The resulting damage coefficient is larger 
by a factor of almost two compared to the 2016 model and results in a major 
increase in the social cost of carbon. 

We put a warning label on Equation (5) when applied to large 
temperature increases. The damage function has been calibrated for damage 
estimates in the range of 1 to 4 °C. This limited range of application is 
appropriate because the temperatures in the different scenarios lie in this 
range for the first 100 years. Further, the evidence is necessarily very limited 
for higher warming. Note also that the quadratic functional form in (5) does 
not reflect potential concerns about threshold damages which might appear at 
1.5 or 2.0 °C warming beyond those included in the Dietz et al. (2021) tipping 
points study. 
 

D. Abatement 
 
The next Equation is the abatement-cost function, shown in (6). 

 
(6)    Λ(t)  =  𝜃𝜃1(𝑡𝑡)𝜇𝜇(𝑡𝑡)𝜃𝜃2 
         𝜃𝜃1(0) =  0.109062 
         𝜃𝜃2 =  2.6 
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The abatement cost equation in (6) is a reduced-form type model in 
which the costs of emissions reductions are a function of the emissions control 
rate, μ(t). The abatement cost function assumes that abatement costs are 
proportional to output and are a polynomial function of the emissions-control 
rate. The cost function is estimated to be highly convex, indicating that the 
marginal cost of reductions rises from zero more than linearly with the 
reductions rate. The intercept, θ1(t ) , represents the fraction of output that is 
required to reduce emissions to zero, beginning around 11% of output in 2020. 
For a discussion of trends in this parameter over time, see below in this 
section. 

The DICE model includes a “backstop technology,” which is a technology 
that can replace all fossil fuels, albeit at a relatively high price. The backstop 
technology is a benign zero-carbon technology. It might be solar or wind 
power, safe nuclear power, or some as-yet-undiscovered source. Conceptually, 
at the cost of the backstop technology, the economy achieves zero net carbon 
emissions.  

The 2023 model uses the same functional form as earlier versions. Two 
minor revisions are noteworthy. 

Estimates of the cost of the backstop technology are controversial, with 
the DICE model having a high cost relative to some estimates of the cost of 
renewables or carbon capture. The cost function is derived from highly 
detailed process models. Examining estimates of the marginal cost of scenarios 
with zero net emissions, we can estimate the marginal cost of the backstop 
technology. A statistical analysis from the results of the ENGAGE study (Riahi 
et al., 2021, 2021a) indicates a backstop price of $515/tCO2 in 2019$ in 2050, 
which is the earliest year that most models can reach zero net emissions. 
Models assume improvements over time in the technologies needed to attain 
zero emissions. The decline rate of the cost of the backstop technology is 
assumed to be 1%/yr from 2020 to 2050, and then 0.1%/yr after that. The 
backstop technology is introduced into the model by setting the time path of 
the parameters in the abatement-cost Equation (6) so that the marginal cost of 
abatement at a control rate of 100 percent is equal to the backstop price.  

By construction, the cost of a zero-emissions policy is determined by the 
cost of the backstep technology and the emissions-output ratio. A little algebra 
in the Appendix shows that the share of output devoted to abatement at zero 
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net emissions (𝜓𝜓), is equal to 𝜓𝜓 =  𝑝𝑝𝐵𝐵𝜎𝜎/𝜃𝜃2, where 𝜓𝜓,𝑝𝑝𝐵𝐵 ,𝜎𝜎, and 𝜃𝜃2 are the output 
share of abatement at zero net abatable emissions, the cost of the backstop 
technology, the no-controls emissions-output ratio, and the exponent of the 
abatement cost function. Zero-emissions abatement cost is 11% of output in 2020, 
declining at 1.7 percent per year from 2020 to 2100 to 2.7% of output in 2100. 

The other revision is the inclusion of emissions other than energy CO2 . 
This addition is basically a scalar increase in the abatement cost function. For 
further discussion, see the section on emissions below as well as Appendix H. 
  

E. Major accounting equations 
 

The next three equations are standard accounting equations. Equation 
(7) states that output is divided between consumption and gross investment. 
Equation (8) defines per capita consumption. Equation (9) states that the 
capital stock dynamics follows a perpetual inventory method with an 
exponential depreciation rate. Note that the time step is five years, so the 
coefficient in (9) is five-year depreciation. 

 
(7)     Q(t) = C(t)+ I(t)  
(8)     c(t) = C(t) / L(t)  

δ= − −(9)     1KK(t) I(t ) K(t )  
 
F. Emissions 
 
 DICE-2023 has a major revision in its treatment of GHG emissions. In 

earlier versions, only industrial CO2 emissions were controllable (abatable), 
and other GHGs and forcings were taken to be exogenous. This was a 
reasonable simplification, but it is untenable in low- or zero-emissions 
scenarios where substantial fractions of warming potential comes from other 
sources, such as land emissions, methane, and CFCs. The current version 
therefore includes all “abatable” emissions in the endogenous category and 
excludes only a small fraction of forcings as “non-abatable emissions.” A full 
discussion of the methods is contained in Appendix H. 

The lion’s share of GHG emissions is from CO2. However, a large suite of 
processes and gases also contribute to radiative forcings. Total CO2-equivalent 
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abatable emissions are 140% of industrial emissions in 2020, declining to 
121% of industrial CO2 emissions in 2100. This ratio indicates the increase in 
abatable emissions in DICE-2023 compared to DICE-2016. The cost function is 
from studies of the abatement cost function for non-CO2 emissions. Inclusion of 
CO2 from land use and abatable non-CO2 emissions will increase CO2-
equivalent abatable emissions by 35% in 2050. This extension allows a larger 
potential abatement and the potential for attaining more ambitious targets in 
an ideal world. Of course, to the extent that the non-industrial-CO2 sources are 
more difficult to control (for example, methane emission from ruminants), the 
estimated abatement may overestimate what is realistically possible. 

Projections of baseline emissions are a function of total output, a time-
varying emissions-output ratio, and an emissions-control rate. The baseline 
emissions control rate reflects current policy, which we estimate to be a 
control rate of about 5% or a carbon price of about $6/tCO2. The emissions-
control rate is determined by the climate-change policy under examination. 
The cost of emissions reductions in (3) is parameterized by a log-linear 
function, which is calibrated to recent studies of the cost of emissions 
reductions. There is no major change in the parameters of the abatement-cost 
function from earlier DICE models, but the extension to non-industrial CO2 
emissions is completely new and based on studies of the abatement cost 
function of those sources. 

Early versions of the DICE model used the emissions control rate as the 
control variable in the optimization because it is most easily used in linear-
program algorithms. In recent versions, we have also incorporated a carbon 
tax as a control variable. Using the carbon price is advantageous when 
considering uncertainty or using price-type administrative regimes, but the 
solutions are identical in deterministic cases. 

The final two equations in the economic block are the emissions 
equation and the resource constraint on carbon fuels.  
 

(10)     𝐸𝐸𝐸𝐸𝐸𝐸2𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) = 𝜎𝜎(𝑡𝑡)𝑌𝑌(𝑡𝑡) + 𝐸𝐸𝐸𝐸𝐸𝐸2𝐿𝐿𝑏𝑏𝐿𝐿𝐿𝐿(𝑡𝑡) +  𝐸𝐸𝐸𝐸𝐸𝐸2𝑒𝑒𝑁𝑁𝑁𝑁𝐿𝐿𝑁𝑁𝑁𝑁2𝐺𝐺𝐺𝐺𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏(𝑡𝑡) 
(11)     𝐸𝐸𝐸𝐸𝐸𝐸2𝑒𝑒(𝑡𝑡)  = 𝐸𝐸𝐸𝐸𝐸𝐸2𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)[1−𝜇𝜇(𝑡𝑡)]   
 
𝜎𝜎(0) = [0.291 𝑡𝑡𝐸𝐸𝐸𝐸2/(1000 𝑌𝑌(𝑡𝑡)] 
𝐸𝐸𝐸𝐸𝐸𝐸2_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) = 5.9 𝐺𝐺𝑡𝑡𝐸𝐸𝐸𝐸2  (0.9)𝑡𝑡−1  
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𝐸𝐸𝐸𝐸𝐸𝐸2𝑒𝑒_𝑁𝑁𝑁𝑁𝐿𝐿𝐸𝐸𝐸𝐸2𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝐿𝐿𝑡𝑡𝑒𝑒(𝑡𝑡) = 9.96 𝐺𝐺𝑡𝑡𝐸𝐸𝐸𝐸2𝑒𝑒  (1.0069)𝑡𝑡−1  
     t = 2020, 2025, 2030, …. 
   

Equation (10) defines baseline abatable emissions measured on a CO2-
equivalent basis. The first term is annual industrial emissions, given by a level 
of carbon intensity, σ(t), times output. The second term is land-use emissions 
of CO2, which decline by 10% per 5-year period. The third term is the abatable 
non-CO2 GHG emissions. The no-controls industrial carbon intensity, σ(t), is 
taken to be exogenous and declines initially at a rate of 1.5% per year. Other 
emissions are taken from the SSP2 scenario (IIASA, 2022). In Equation (11), 
total CO2-equivalent emissions are reduced by one minus the emissions-
reduction rate, 1- μ(t), described above. 

Equation (12) is a limitation on the total resources of carbon fuels, given 
by CCum. The model assumes that incremental extraction costs are zero and 
that carbon fuels are efficiently allocated over time by the market, producing 
the optimal Hotelling rents on carbon fuels when the limit is binding. In 
practice, current projections indicate that the constraint does not bind in the 
baseline case, with cumulative carbon emissions in the base path slightly more 
than half of total fossil-fuel carbon of 6000 GtC, so the constraint is usually 
omitted. 

 
=

= ≥ ∑
1

(12)     6000
T max

Ind
t

CCum GtC E (t)  

G. Geophysical sectors 
 

A key feature of IAMs is the inclusion of geophysical relationships that 
link the economy with the different forces affecting climate change. In the DICE 
model, these relationships include the carbon cycle, a radiative forcing 
equation and the climate-change equations. The purpose of including these is 
that they operate in an integrated fashion rather than taking inputs as 
exogenous inputs from other models or assumptions. 

The next equations (13) to (21) link economic activity and greenhouse-
gas emissions to the carbon cycle, radiative forcings, and climate change. These 
relationships have proven a major challenge because of the need to simplify 
what are inherently complex dynamics into a small number of equations that 
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can be used in an integrated economic-geophysical model. As with the 
economics, the modeling philosophy for the geophysical relationships has been 
to use parsimonious specifications so that the theoretical model is transparent 
and so that the optimization model is empirically and computationally 
tractable. 

As noted above, DICE-2023 includes the full suite of long-lived GHGs as 
abatable – that is, gases that are subject to control. So, in addition to industrial 
CO2, the abatable gases include land CO2 , methane, chlorofluorocarbons, and 
other well-mixed gases.  

For purposes of the carbon/forcings/climate modules, CO2  emissions are 
linked to the carbon cycle and thence to forcings. The other GHGs are linked 
directly to forcings and short-circuit the atmospheric chemistry. This shortcut 
will introduce small errors into the correct forcings, but the size of those is 
likely to be small relative to total forcings. 
 

H. Carbon Cycle 
 

The major structural revision of the DICE-2023 model is the introduction 
of the DFAIR module (the DICE version of the FAIR model discussed below), 
which represents the dynamics of the carbon cycle. The carbon cycle and 
climate model are key components of any IAM. DICE-2023 has made a major 
change in the treatment of these modules, particularly the carbon cycle. Earlier 
versions in DICE and most other IAMs have used linear carbon-cycle 
structures. While these approaches seemed acceptable as a simplification, they 
did not allow for the important finding that the ability of non-atmospheric 
sinks to absorb CO2 declines with higher emissions (see NAS 2017 for a 
discussion).  

Carbon saturation was discussed as early as 1957 in Revelle and Seuss 
(1957). The latest and most extensive multimodel carbon-cycle comparison 
was in Joos et al. (2013). This study showed that the atmospheric retention at 
100 years would be 70% for a pulse of 100 GtC compared to only 30% for a 
pulse of 5000 GtC. 

While the importance of saturation has been known for many years, a 
simple modeling approach has become available over the last decade: the FAIR 
or Finite Amplitude Impulse-Response model developed by Millar et al. (2017). 
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The FAIR model is based on a linear four-reservoir impulse-response model of 
the response of CO2 concentrations to emissions. A key innovation in the FAIR 
model is to introduce a structural parameter, .tα This parameter increases the 
fraction of total CO2 emissions that resides in the atmosphere as cumulative 
CO2 emissions increase. 

While the “reservoirs” may have geophysical names (“permanent,” 
“long,” etc.), they have no physical or structural interpretation but are 
variables in reduced-form dynamic equations. As a result, and important for 
scenarios with negative emissions, the reservoirs may take on negative values 
– a fact that was ignored in some earlier implementations of FAIR.  

Simulations reported in the Appendix indicate that the FAIR model 
tracks the historical emissions-concentrations paths closely, as well as small 
emissions pulses. However, the FAIR atmospheric retention for very large 
pulses (e.g., the 5000 GtC pulse in Joos et al.) tracks the full carbon-cycle 
models poorly. 

The equations of the DFAIR model are the following. Equation (13) is the 
set of equations for the four reservoirs, whose contents are i

tR . We note that 
only CO2 emissions (industrial and land-based) enter the carbon cycle, that is, 
CO2-equivalent emissions from other gases are not included in the emissions 
term 𝐸𝐸𝑡𝑡. Equation (14) then sums the four reservoirs to obtain atmospheric 
CO2, .tMAT  Equation (15) provides the Equation for accumulated CO2 in non-
atmospheric sinks, defined as .tCacc  Equation (16) yields the predicted 100-
year integrated impulse response function 𝐼𝐼𝐼𝐼𝐼𝐼100𝑡𝑡 and (17) implicitly defines 
the saturation parameter 𝛼𝛼𝑡𝑡 . All equations are straightforward to calculate 
except for (17). 

(13)    Δ𝐼𝐼𝑡𝑡𝑖𝑖  =  𝜉𝜉𝑖𝑖𝐸𝐸𝑡𝑡  − �
𝐼𝐼𝑡𝑡𝑖𝑖

𝛼𝛼𝑡𝑡𝜏𝜏𝑖𝑖
�  ,  i = 1, 2, 3, 4 

(14)   𝑀𝑀𝐴𝐴𝑇𝑇𝑡𝑡 −𝑀𝑀𝐴𝐴𝑇𝑇0 = �𝐼𝐼𝑡𝑡𝑖𝑖
4

𝑖𝑖=1

 

(15)   𝐸𝐸𝐿𝐿𝐶𝐶𝐶𝐶𝑡𝑡 = � 𝐸𝐸𝑣𝑣

𝑡𝑡

𝑣𝑣=1765

− (𝑀𝑀𝐴𝐴𝑇𝑇𝑡𝑡 −𝑀𝑀𝐴𝐴𝑇𝑇0) 

(16)    𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼100𝑡𝑡  =  𝜍𝜍0  +  𝜍𝜍𝑁𝑁𝐸𝐸𝐿𝐿𝐶𝐶𝐶𝐶𝑡𝑡 + 𝜍𝜍𝐴𝐴𝑇𝑇𝑡𝑡  
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(17)    𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼100𝑡𝑡  = �𝛼𝛼𝑡𝑡𝜉𝜉𝑖𝑖𝜏𝜏𝑖𝑖 �1 − 𝑒𝑒𝑒𝑒𝑝𝑝 �
−100
𝛼𝛼𝑡𝑡𝜏𝜏𝑖𝑖

��
4

𝑖𝑖=1
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The values of the parameters are described in the Appendix. 
 

I. Climate equations 
 

The other equations of the climate system contain the relationships for 
radiative forcing and for global mean temperature. These follow closely earlier 
versions of the DICE model, and changes include primarily updates of initial 
conditions. 

On the whole, existing climate research models are much too complex to 
be included in economic models, particularly economic models used for 
optimization. Instead, we employ a small structural model that captures the 
basic relationship between GHG concentrations, radiative forcing, and the 
dynamics of climate change.  

Accumulations of GHGs lead to warming at the earth’s surface through 
increases in radiative forcing. The relationship between GHG accumulations 
and increased radiative forcing is derived from empirical measurements and 
climate models, as shown in Equation (18). 

 
 (18)     𝐼𝐼(𝑡𝑡) = 𝐼𝐼CO22x{ 𝑙𝑙𝑁𝑁𝑙𝑙2[𝑀𝑀𝐴𝐴𝐴𝐴(𝑡𝑡)/𝑀𝑀𝐴𝐴𝐴𝐴(1750)]} + 𝐼𝐼𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐼𝐼𝐴𝐴𝐸𝐸(𝑡𝑡) 

     = [3.93]{ 𝑙𝑙𝑁𝑁𝑙𝑙2[𝑀𝑀𝐴𝐴𝐴𝐴(𝑡𝑡)/[588]]} + 𝐼𝐼𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐼𝐼𝐴𝐴𝐸𝐸(𝑡𝑡) 
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 F(t) is the change in total radiative forcings of greenhouse gases since 

1765 from anthropogenic sources such as CO2   and other GHGs. FEX(t) is 
exogenous forcings from non-abatable GHGs and other sources, and FABATE(t) is 
the forcings from abatable non-CO2  GHGs. (These sources were discussed 
above.) The Equation uses estimated carbon stocks and temperature in the 
year 1765 as the pre-industrial equilibrium. We omit the description of the 
treatment of non-CO2 GHGs, which is discussed in Appendix D. 

The climate module uses a two-box model of the temperature response 
to radiative forcing developed by IPCC AR5 and parameterized in Millar et al. 
(2017). The structure is similar to that used in earlier versions of the DICE 
model, but it has been revised to use the equation structures of AR5 and Millar 
et al. In this approach, higher radiative forcing warms the atmospheric layer, 
which then warms the upper ocean, gradually warming the deep ocean. The 
lags in the system are primarily due to the diffusive inertia of the different 
layers. The latest version of the models adjusted the equilibrium climate 
sensitivity (ECS) and transient climate response (TCR) climate sensitivity to 
the center of the IPCC range of 3.0 °C for ECS and 1.8 °C for TCR from the IPCC 
Sixth Assessment Report (2021). The equations of the revised model are the 
following: 

 

 −

+ = − + + −
+ = − + + −
+ = + + +

2 11 = 0.324 
2 

(19)    1 1    1 5 1 1 1 1 5 1
(20)    2 1    2 5 2 2 1 1 5 2
(21)    1      1 1 2 1
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Tbox1(t) and Tbox2(t) represent, respectively, (i) the mean temperature 

of the surface and shallow ocean and (ii) the temperature of the deep oceans. 
Note that the equilibrium temperature sensitivity (ETS) is given by 

= + = × + =CO22x 1 2 3 93 0 324 0 44 3 0ECS F (teq teq ) . ( . . ) . . The model’s transient 
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climate response (TCR) is 1.80 °C (for the complex formula defining the value, 
see Millar 2017, eq. 5). This completes the description of the DICE-2023 model. 
A full discussion of the DFAIR module – including updates such as initial 
conditions relevant for 2020 – is in Appendix B.  
 

J. Computational and algorithmic aspects 
 

IAMs are generally computationally complex compared to physical 
science models, such as climate models, which use recursive time-stepped 
algorithms. The DICE model is a nonlinear optimization problem with 
nonlinear inequality and equality constraints. The model is usually solved 
using the CONOPT or NLP solver in the GAMS modeling system (See Brooke et 
al. 2005). This is based on the generalized reduced gradient (GRG) algorithm. 
The basic approach is to embed a linear programming algorithm inside an 
algorithm that linearizes the nonlinear equations. While this algorithm does 
not guarantee that the solution is the global optimum, our experience over the 
years has not suggested any solutions other than those found by the algorithm. 
The model can also be run using EXCEL Solver (most conveniently using the 
Risk Solver Platform or other premium products). Using EXCEL Solver is also 
much easier to understand and detect programming errors. DICE-2023 has not 
yet been implemented, but we expect to do so soon. For the standard run for 
500 years and 11 scenarios, the execution time in GAMS is 12 seconds on a 
high-end 2021 PC.  

One of the unfortunate byproducts of greater attention to the details of 
various sectors, such as the carbon cycle, is the increased complexity of the 
DICE model over the years. The 2023 version has about 2½ times more 
variables and equations that the 1992 version. However, the 1992 version, 
code, and computers took 180 times longer than the 2023 version, code, and 
computers (the 1992 experience is reported in Nordhaus 1992). Computers 
and software have vastly outpaced modeling, but whether that has improved 
accuracy will await a few more decades of experience.  

The code and a description of the model are available at 
https://bit.ly/3TwJ5nO. 
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IV. Modeling Issues in DICE-2023 
 
 This sketch of the DICE model makes it clear that it is a highly simplified 
representation of the complex economic and geophysical realities. While small 
and comprehensive models have many advantages, they also have major 
shortcomings because of their simplifications. We discuss those related to 
production, taxation, and functional forms as examples. 
 One example of simplification is the use of a single commodity to 
represent all consumption, investment, and government-provided goods and 
services. The use of a single commodity is particularly restrictive in the context 
of international trade, where the essence of trade is the heterogeneity of goods 
across regions. This point is particularly important in the question of whether 
to use market exchange rates (MER) or purchasing power parity exchange 
(PPP) rates in measuring relative national outputs. While the issue of which 
approach to use in IAM modeling was for many years controversial, use of PPP 
measures of output is now established best-practice.  
 Another important set of important issues concerns taxation. The 
simplest models ignore the structure of the tax system. This is particularly 
important for energy and capital taxes and subsidies, which have large effects 
on energy use and on the rates of return used in making long-term decisions in 
the energy sector. Some of the detailed IAMs include more realistic detail on 
the U.S. tax and regulatory system, but they oversimplify or ignore the issues 
raised by international tax systems. The structure of tax systems is particularly 
important for the estimation of the optimal level of carbon pricing or taxation 
because of the need to consider the interaction of carbon pricing with the 
structure of pre-existing tax and regulatory distortions. (See particularly the 
several important studies by Lawrence Goulder and colleagues, e.g., Goulder 
and Hafstead, 2018.) 
 The issue of tax structure is just one of many inefficiencies and 
externalities in the real-world economy that are not reflected in the DICE 
model. These market failures include the co-products of fossil fuels and their 
impacts on public health, monopoly and regulation in the energy sector, 
economies of scale, and (of the greatest importance) informational 
inefficiencies such as endogenous technological change. Treatment of these 
inefficiencies is beyond the scope of the DICE model. 
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 Many simplifications are also buried in the functional forms of models. 
For example, the DICE model relies on the Cobb-Douglas function to represent 
the production process. This is likely to overestimate substitution in some 
areas and underestimate it in others. Additionally, it may suggest a degree of 
smoothness in substitution that is not present when there are only a small 
number of processes, in which case an activity analysis framework would be 
preferable. 
 We must put these concerns about oversimplification in the context 
of the questions that are being asked. The purpose of models is not to be an 
exact replica of real-world processes. Aside from the impossibility of achieving 
that goal, greater detail would actually be less valuable for many purposes. 
Instead, models are used for insights into key questions. For example, if we are 
concerned about the long-run intertemporal tradeoffs between consumption 
today and consumption in the future, a relatively simple model can illustrate 
the issues. Similarly, to determine the uncertainties associated with future 
climate change, the model must be sufficiently small and manageable so that 
the uncertainties (including the covariation of uncertain variables) can be 
estimated and for which Monte Carlo or other techniques can be used to 
capture all the major uncertainties. However, for many other questions, such 
as the impact of changes in tax policies or international trade or carbon 
leakage or international cooperation, more detail is needed to capture the 
international and sectoral reactions to policy changes.  
 
 V. Scenarios to evaluate 
 
 Integrated assessment models such as the DICE model have a wide 
variety of applications. Among the most important ones are the following: (1) 
making consistent projections, i.e., ones that have consistent inputs and 
outputs of the different components of the system; (2) calculating the impacts 
of alternative assumptions on important variables such as output, emissions, 
temperature change, impacts, prices, and economic growth; (3) tracing 
through the effects of alternative policies on all variables in a consistent 
manner; (4) estimating the costs and benefits of alternative strategies, and (5) 
estimating the uncertainties associated with alternative variables and 
strategies. The current study presents a suite of scenarios as follows. 
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Baseline: In this scenario, current policies as of 2023 are extended 

indefinitely. This approach is standard for forecasting, say of government 
budgets, and is appropriate for a world of evolving climate policies. As 
discussed above, the baseline assumption is that the average price on CO2 
emissions is about $6/tCO2, or a global emissions reduction rate of 5% of 
abatable GHG emissions. The “baseline” scenario foresees this carbon price as 
growing at 1% per year.  

No controls: We sometimes will refer to a “no-controls” path. This is a 
run with a zero carbon price. It is for reference in calculating variables and is 
not used as a scenario for evaluation. 

Optimal: In this scenario, climate-change policies maximize economic 
welfare, with full participation by all nations starting in 2025 and without 
climatic constraints. The “optimal” scenario assumes the most efficient 
climate-change policies. In this context, efficiency involves a balancing of the 
present value of the costs of abatement and the present value of the benefits of 
reduced climate damages. Although highly unrealistic, this scenario provides 
an efficiency benchmark against which other policies can be measured. 

Temperature-limited: In this scenario, the optimal policies are 
undertaken subject to a further constraint that global temperature does not 
exceed 2 °C (or other targets) above pre-industrial levels. The “temperature-
limited” scenarios are variants of the optimal scenario that build in a 
precautionary constraint that a specific temperature increase is not exceeded. 
With current assumptions, the scenario limiting temperature to 1½ °C is not 
feasible without an unrealistic increase in emissions reductions or a 
catastrophic reduction in output (see below under results for carbon prices). 

Alternative discount rates. The assumptions about discounting are deeply 
controversial and have major implications for policies. We use alternatives by 
setting constant discount rates of  1%, 2%, 3%, 4%, and 5% per year. These are 
modeled by adjusting the parameters of the preference function to match the 
calibrated real interest rates.  

Alternative damage function. The DICE damage function has been 
criticized as omitting several important damages. We therefore use an 
alternative damage function that has been derived by from Howard and 
Sterner (2017, 2022). The damage function has the same structure as the DICE 
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version. While there are several potential results to choose from in Howard 
and Sterner, a reasonable middle ground of their preferred estimates is a 9% 
damage/output ratio at a 3 °C increase. This temperature-damage coefficient is 
3 times larger than the one used in the current DICE model. While we have 
reservations about their sample and procedures that are discussed briefly in 
the background paper, the results are a reasonable and more pessimistic view 
of the damages literature and impacts. 

Paris Accord. The Paris Accord of 2015 codified a policy that would aim 
to limit climate change to 2 °C above pre-industrial levels. To achieve this goal, 
under the Paris Agreement, countries agree to make their best efforts through 
“nationally determined contributions.” For example, China announced that it 
would reduce its 2030 carbon intensity by 60 - 65% compared to 2005 levels. 
For the analysis, countries are assumed to meet their objectives for national 
contributions in 2030 according to the revised pledges as of summer 2022. We 
then take the implicit changes in emissions control rates from 2020 to 2030 (of 
about 1 percentage point per year in the aggregate) and project slightly less 
than ½ percentage point increase per year in the control rate from 2030 to 
2100.  It should be emphasized that any projections beyond 2030 do not rely 
upon country commitments, and projections differ greatly among modelers of 
the Paris Accord. This scenario assumes that all countries meet their objectives 
and that pledges are implemented through a system of harmonized carbon 
prices or of national emission caps with full emissions trading within and 
among countries. We note that all these assumptions are highly optimistic. 

All scenarios have some important constraints built in. One constraint is 
that climate policies have limits on implementation. These involve emission 
control rates increasing at a maximum of 12% per five-year period. 
Additionally, the emissions control rate is limited to 100% through 2120 and 
to 110% after that. The control limits are drawn from runs that stress high-
resolution IAMs with extremely high carbon prices. Finally, all scenarios 
assume 100% participation with harmonized and comprehensive carbon 
prices. These assumptions about policy, particularly participation and 
harmonization,  are clearly optimistic in the extreme and will lead to lower 
costs and better implementation of targets than scenarios where country 
actions and international agreements fall short of the ideal. 
 



 
23 

 

VI. Results 
 
 We now report on a set of representative results. All scenarios ran 
smoothly with the exception of the 1.5 °C limit, which was on the borderline of 
feasibility, had anomalous results, and is omitted from this discussion. 
 
A. Emissions, Concentrations, Temperature 
 
 For the major results, we report the baseline, optimal, 2 °C, and Paris 
policies. Table 1 and Figure 1 report the results for CO2 emissions under 
different scenarios. The trajectory clearly needs to turn down soon to make 
any of the objectives.  
 Table 2 and Figure 2 report the results for CO2 concentrations for 
different scenarios. The current policy baseline is well above the trajectories 
needed for achieving policy objectives. Note that the Paris Accord will reduce 
concentrations about one-third of the way to the 2 °C target.  

Table 3 and Figure 3 report the results for global temperature. The 
baseline run finds 2100 temperature at 3.8 °C, while the optimal (or cost-
benefit) run has 2100 temperature of 2.7 °C. The optimal is significantly above 
the level for the 2 °C run because damages, while substantial, do not increase 
sharply at that temperature level. In 2100, the Paris Accord slows the 
temperature increase by about one-third of the way from the base path to the 2 
°C target. Note that these temperature calculations are slightly above 
conventional measures because they use the pre-industrial (1765) baseline 
rather than later benchmarks.   

 
B. Policies and Impacts on Income 

 
 We next show key policy variables (a discussion of the social cost of 
carbon is in the next section). Table 4 and Figure 4 show the results for the 
emissions control rate. Recall that this applies to all of the CO2 emissions as 
well as abatable non-CO2 GHGs. The baseline emissions control rate is very low 
for this century because of the weak level of current policy. The emissions 
control rates for policies in 2050 are 25%, 40%, and 58% for the Paris, 
optimal, and 2 °C targets; and in  2100 are 45%, 76%, and 99% for the Paris, 
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optimal, and 2 °C targets. These rates are low relative to earlier DICE models 
and to some current models because of the comprehensive nature of the 
controlled gases and because the runs assume complete efficiency and 
participation in policies, as discussed above.  

Table 5 and Figure 5 show the results for the carbon price (the price of 
CO2 emissions). These reflect either the trading price for universal capped 
emissions or the harmonized level of universal carbon taxes. The baseline 
price for 2022 is estimated to be $6/tCO2 (2019$). Policy prices for 2040 are 
$90, $47, and $155/tCO2 for the optimal, Paris, and 2 °C runs. In these 
calculations, the average carbon prices are modest relative to other estimates 
primarily because the emissions control rates are lower. Note also that the 
prices are constrained by policy to rise at what we consider to be a feasible 
rate for the global price given that the current global price is around $6/tCO2. 

We note that the 1.5 °C scenario is “infeasible” within the constraints of 
realism and the model. As an example, we removed constraints on the 
emissions control rates for a test run. In an unconstrained situation, the 1.5 °C 
limit was met, but it required an increase in the harmonized global carbon 
price from $6/tCO2 in 2020 to $400 in 2040. The present value economic cost 
was almost $1 quadrillion. While the likelihood of this target can be debated 
for a few more years, the debate will soon end as the target is likely to be 
passed before the end of this decade. 

Table 6 shows the total “wealth” in each run. These are calculated as the 
present value of consumption (technically, this is the present value of utility 
calibrated to first-period consumption). The stakes in an efficient program are 
absolutely large but relatively small. The optimal program increases wealth by 
$107 trillion, or somewhat less than one year’s output. There are minor 
differences between the optimal program and the 2 °C program because the 
emissions paths are similar. The Paris program makes a substantial 
improvement. 

 
C. The social cost of carbon 

 
 The most important single economic concept in the economics of climate 
change is the social cost of carbon (SCC). This term designates the economic 
cost caused by an additional ton of carbon dioxide emissions or its equivalent. 
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More precisely, it is the change in the discounted value of economic welfare 
from an additional unit of CO2-equivalent emissions. The SCC has become a 
central tool used in climate change policy, particularly in the determination of 
regulatory policies that involve greenhouse gas emissions. Estimates of the SCC 
are necessarily complex because they involve the full range of impacts from 
emissions, through the carbon cycle and climate change, and including 
economic damages from climate change. 
 The mathematics of the SCC is the following.  Taking the equations of the 
DICE model yields the SCC at time t: 
 

(22)   ∂ ∂
∂ ∂ ∂ ∂≡ ≡

t t
W WSCC t t tE C C E      

 
 The key definition is in the middle term. The numerator is the marginal 
welfare impact of emissions at time t, while the denominator is the marginal 
welfare impact of a unit of aggregate consumption in period t. The ratio of 
those two variables gives the third term of (22) in which the SCC equals the 
economic impact of a unit of emissions in terms of t-period consumption as a 
numéraire. In actual calculations, we take a discrete approximation to (22). 
Note that the SCC is time-indexed since the marginal damage of emissions 
changes over time.  
 Table 7 and Figure 6 show estimates of the social cost of carbon (SCC). 
The SCC in the baseline run is $61/tCO2 for the 2020 period (in 2019 
international $). This is above the SCC for the optimal run of $53/tCO2 because 
damages are smaller in the optimum. It is far below the SCC for the 2 °C run of 
$85/tCO2. The higher SCC in the temperature-limited run reflects the economic 
interpretation that a tight temperature limit is equivalent to a damage function 
with a sharp kink at the temperature limit and therefore to a sharply higher 
damage function above 2 °C. Note that the estimates of the SCC in the current 
DICE version are significantly above those in earlier vintages for reasons 
discussed in other sections, see particularly the next section. 
 One of the most instructive findings involves the importance of 
discounting for the SCC and other policies. Table 7 shows the powerful impact 
of discounting on the SCC. The social cost of carbon at a 5% discount rate is 
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two-thirds of the DICE optimal estimate for 2020, while that of a 1% discount 
rate is 8 times the DICE optimal estimate for 2020. 
 Additionally, Figure 7 compares estimates of the SCC with several other 
current values. The GIVE model is a comprehensive estimate prepared by 
researchers at Resources for the future using probabilistic estimates of output 
and other components of damage estimates (Rennert et al., 2022). It uses a 
relatively low discount rate and has a relatively high social cost of carbon. A 
second set of estimates pertains to the SCC used by the federal government and 
prepared by an interagency working group. Figure 7 shows draft SCC estimates 
from EPA (2022) for both their overall assessment and specific to a damage 
module based on the DSCIM model (Climate Impacts Lab, 2022) for near-term 
discount rates from 1.5% to 2.5%. Conditional on discounting assumptions, the 
EPA estimates align very closely with those of DICE-2023.  Figure 7 also shows 
a draft update (OMB, 2021) based on earlier methods and models which did 
not contain recommended methodological updates. This estimate is notably 
lower than the corresponding value in DICE-2023. The key takeaway from 
Figure 7 is the importance of the discount rate in determining the SCC.  

 
D. Comparison with earlier DICE versions 

 
 We show a limited comparison of the results of the current modeling 

and earlier versions in Table 8. The two comparisons are with the original 
DICE model of 1992 and the latest version, DICE-2016. Panel A of Table 8 
shows the comparison for projections to 2015, while the bottom is the 
comparison of projections to 2100.  

Looking at Panel A, to 2015, which is history, the 1992 model had 
remarkably reliable projections for concentrations and temperature, but only 
middling projections for emissions. The 2016 version did well for all variables 
for 2015 (but the model was constructed before actual data were available).  

For the 2100 projections (still far in the future), baseline CO2 industrial 
emissions and concentrations have been revised upwards in the latest model, 
while temperature has varied considerably and is revised downwards in the 
latest model.  

The history of output projections is a complete disaster. A major part of 
the change is due to the movement from MER to PPP exchange rates. The other 
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part – shown in the last row of Table 8B – is a revised Zeitgeist for world 
output. Note that this combines slightly lower projections of population and 
much higher projected growth in output per person. This revision reflects 
highly stagnationist views about growth in the 1980s (such as seen in The 
Limits to Growth) to more robust growth assessments in the late 2010s. The 
latest assessments for 2100 are slightly downward, reflecting the impacts of 
deglobalization, the pandemic, and concerns about continued conflicts of many 
kinds. 

A major change in the results of the DICE model over the years has been 
the rising estimates of the social cost of carbon. The original DICE-1992 model 
did not calculate a SCC, which came later to climate-change economics. 
However, rerunning the baseline scenario for the 1992 model gives an 
estimate of $18/tCO2 compared to $61/tCO2 in the 2023 model (in 2019$). The 
upward revision is a notable illustration of the evolving scientific 
understanding of damages, discount rates, and levels of output. Further 
research will provide a decomposition of the sources of the change in SCC due 
to different components. 

 
VII. Open Issues 

 
This analysis is a report on the “beta3” version of DICE-2023. It is 

circulated for comments and criticisms from researchers and interested 
parties. We highlight some questions that need further discussion and analysis. 

First, we note that the carbon-cycle component of the DFAIR model 
included here is a new implementation and has not been widely used or 
reviewed. In part, the concern is the model itself, which is a parametric 
adjustment of earlier models. In addition, the implementation here contains 
calibration for the five-year model and initial conditions. The model therefore 
needs further review. 
          Second, the damage module continues to be the most uncertain part of 

the economic analysis. This is inherent in the estimation of damages, but 
additionally, the estimates and techniques are highly divergent across different 
studies and syntheses. The damage function used here is preliminary and 
subject to revision. 
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Third, the approach here assumes “perfect implementation” of climate 
policy: the policies are universal and harmonized across and within all 
countries. This assumption is sure to be too optimistic in that some countries 
are unlikely to join, and the policies within and across countries are almost 
sure to diverge. While we know the sign of the impact of imperfect 
implementation, we do not know the size. Will the emissions regime cover 
90% of emissions or 30% of emissions? Will policies be harmonized, or will 
they be a dog’s breakfast of taxes, cap-and-trade, exclusions, subsidies, and 
regulations? 

Fourth, the modeling continues to treat technological change as 
exogenous. The evidence is overwhelming that innovation responds to prices 
and regulations. Here again, the specification of the induced-innovation 
relationships is poorly understood, and modeling induced innovation poses 
algorithmic challenges for models. 

Fifth, it will be useful to review the impact of changes in DICE from the 
2016 version to the 2023 version. This is on the agenda for future work. 

Other issues remain. However, we believe these are the most important 
concerns that readers and users should weigh as they consider DICE-2023.  
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Figure and Tables 
 

                 CO2 emissions, GtCO2/year

Scenario 2020 2025 2050 2100

Optimal 43.2 44.0 40.5 24.5
 T < 2°C 43.2 44.0 27.8 1.0
 T < 1.5 °C 43.2 12.4 5.9 0.0
Alt damage 43.2 43.8 22.0 0.0
Paris extended 43.2 44.5 50.1 55.9
Base 43.2 46.2 61.7 90.0
 R = 5% 43.2 43.4 45.7 42.4
 R = 4% 43.2 44.9 42.8 34.2
 R = 3% 43.2 46.4 37.0 21.8
 R = 2% 43.2 47.8 26.0 5.6
 R = 1% 43.2 48.3 21.1 0.0  

 
Table 1. Results for CO2 emissions in different scenarios. 
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Figure 1. Results for CO2 emissions in different scenarios 
[Figures and Tables are linked to DICE22-collate-figs&tables-011923.xlsx.] 
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CO2 concentrations, ppm

Scenario 2020 2025 2050 2100 2150
Optimal 416.2 430.5 494.0 599.8 584.6
 T < 2°C 416.2 430.4 477.7 475.5 463.6
 T < 1.5 °C 416.2 414.6 413.1 404.7 399.0
Alt damage 416.2 430.4 470.7 465.5 413.0
Paris extended 416.2 430.7 510.2 710.1 914.2
Base 416.2 431.6 529.2 842.9 1,322.2
 R = 5% 416.2 430.2 501.9 660.7 772.0
 R = 4% 416.2 430.9 497.8 630.5 686.0
 R = 3% 416.2 431.6 490.1 581.3 571.8
 R = 2% 416.2 432.3 479.5 511.4 454.7
 R = 1% 416.2 432.6 478.4 454.2 400.0  

 
Table 2. CO2 concentrations, parts per million (ppm) 
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Figure 2. CO2 concentrations, ppm 
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Global temperature,  °C relative to 1765

Scenario 2020 2025 2050 2100 2150
Optimal 1.25         1.43         1.95         2.73         2.78         
 T < 2°C 1.25         1.43         1.86         2.00         2.00         
 T < 1.5 °C 1.25         1.36         1.49         1.50         1.50         
Alt damage 1.25         1.43         1.83         1.93         1.66         
Paris extended 1.25         1.43         2.05         3.25         4.18         
Base 1.25         1.43         2.15         3.80         5.42         
 R = 5% 1.25         1.43         2.00         3.03         3.65         
 R = 4% 1.25         1.43         1.97         2.88         3.27         
 R = 3% 1.25         1.43         1.93         2.62         2.70         
 R = 2% 1.25         1.43         1.87         2.22         1.97         
 R = 1% 1.25         1.44         1.87         1.85         1.56          

 
Table 3. Global temperature increases under different scenarios 
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Figure 3. Global temperature increases under different scenarios 
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                                Emissions control rate (%)

2020 2030 2040 2050 2060 2100
Optimal 5% 24% 32% 40% 46% 76%
 T < 2°C 5% 24% 44% 58% 73% 99%
 T < 1.5 °C 5% 24% 48% 72% 90% 100%
Alt damage 5% 24% 48% 67% 76% 100%
Paris extended 5% 13% 21% 25% 29% 45%
Base 5% 6% 7% 7% 8% 10%
 R = 5% 5% 19% 24% 30% 34% 56%
 R = 4% 5% 24% 30% 36% 42% 66%
 R = 3% 5% 24% 39% 47% 53% 79%
 R = 2% 5% 24% 48% 64% 70% 95%
 R = 1% 5% 24% 48% 72% 90% 100%  

 
Table 4. Emissions control rate for CO2 and abatable GHGs (percent of no 
control) 
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        Carbon price (2019$/tCO2)

Scenario 2020 2040 2060

Optimal 6                   90                 148               
T < 2°C 6                   155               306               
T < 1.5 °C 6                   176               431               
Alt damage 6                   176               330               
Paris extended 6                   47                 70                 
Base 6                   7                   9                   
R = 5% 6                   58                 92                 
R = 4% 6                   82                 126               
R = 3% 6                   128               184               
R = 2% 6                   176               288               
R = 1% 6                   176               431                

 
Table 5. Price of CO2 emissions (2019 $/tCO2) 
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Figure 5. Price of CO2 emissions (2019 $/tCO2) 
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Table 6. Total global wealth (present value of consumption), 2019 US$. 
 
These figures use the objective function of the GAMS program to estimate the 
overall economic impacts of policies in units that are present value of 
consumption. They are benchmarked so that the value of the objective function 
in the baseline scenario is equal to the present value of consumption in that 
scenario.  
  

 Present value of 
consumption 

Difference from 
base

Scenario [Trillions of 2019 US international $]

Base 6,266                           0.0

Optimal 6,373                           106.8

 T < 2°C 6,349                           82.8

Paris, updated 2022 6,342                           76.4
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    Social cost of carbon ($/tCO2, 2019$)

Scenario 2020 2025 2050
Optimal 53                     62                     127                   
T < 2°C 85                     100                   236                   
T < 1.5 °C 3,538                4,162                16,694              
Alt damage 132                   156                   293                   
Paris extended 58                     68                     142                   
Base 61                     72                     150                   
R = 5% 33                     39                     77                     
R = 4% 51                     60                     110                   
R = 3% 87                     103                   170                   
R = 2% 170                   200                   289                   
R = 1% 429                   505                   609                    

Table 7. Social cost of carbon, alternative scenarios (2019$/tCO2) 
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Figure 6. Social cost of carbon, alternative scenarios (2019$/tCO2) 
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Figure 7. Social cost of carbon, 2020, alternative discount rates and models 
(2019$/tCO2) 
 
The figure shows the relationship between the discount rate on goods and the 
SCC in different scenarios of the DICE-2023 model and several other models. 
Results in order of the list are: “DICE 2023” is the solid green line connecting 
the runs for constant discount rates in DICE-2023; “DICE-opt” is the DICE-2023 
estimate for the optimal scenario along with the average discount rate for the 
period 2020 – 2050; “GIVE-2021” is the estimate from the GIVE model 
(Rennert et al. 2021); “EPA-2022” are the draft EPA social costs of greenhouse 
gas estimates based on an overall  assessment (EPA, 2022); “DSCIM-EPA” are 
the estimates specific to a damage module based on the DSCIM framework 
(CIL, 2022); “OMB-2021” is a preliminary OMB estimate (OMB 2021) which did 
not, according to OMB, reflect the potential changes that would likely result in 
a major increase of the SCC. Discount rates for EPA values correspond to near-
term rates in their assessment. 
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Table 8. Comparison of results for DICE-2023 with DICE-2016 and DICE-1992 
 

The table shows the results for three vintages of models. These are the current 
version, the 2018 version of DICE-2016, and the original DICE model of 1992. 
The series are industrial emissions, CO2 concentrations, global mean 
temperature, and global output. The output data in 1992 were measured in 
market exchange rates and thus are conceptually different. The runs are for the 
“base” scenario, which is current policy. 
  

A. Base projections, actual for 2015
D1992 D2016 D2023

Industrial emissions 42.3         35.7         36.5             
CO2 concen. (ppm) 399           400           402              
Temperature (°C) 1.17         1.16         1.15             
Global output (2019$) 41.9         113.4       118.3           

B. Base projections for 2100
D1992 D2016 D2023

Industrial emissions 78.7         70.8         91.6             
CO2 concen. (ppm) 670           854           884              
Temperature (°C) 3.28         4.49         3.97             
Global output (2019$) 109.3       816.3       774.1           
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