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Abstract

The paper develops a model of non-market allocation of resources through grantmaking. On the

supply side, the available budget of grants is awarded to applicants who are evaluated most favorably

according to the noisy information available to reviewers. On the demand side, stronger candidates

are more likely to obtain grants and thus self-select into applying. Leveraging a technique based

on the quantile function, we characterize a broad set of allocation rules under which an increase

in evaluation noise in a field raises applications in that field—and reduces applications in all other

fields. We illustrate the practical relevance of the model by exploiting a change in the budget

allocation rule at the European Research Council, showing that a one standard deviation increase in

own evaluation noise leads to a 0.3 standard deviation increase in the number of applications and

budget share. We also derive some subtle implications for the design of grantmaking institutions in

terms of the endogenous choice of noise by fields and the optimal pooling of fields into panels.
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“The just, then, is a species of the proportionate . . . proportion is equality of ratios

Bi

B j

=
ai

a j

and, therefore, alternando
Bi

ai

=
B j

a j

. . . all men agree that what is just in distribution must be according to merit in some sense,

though they do not all specify the same sort of merit, but democrats identify it with the

status of freeman, supporters of oligarchy with wealth (or with noble birth), and supporters

of aristocracy with excellence.”

Aristotle, Nicomachean Ethics, Book V, Chapter 3

1 Introduction

Over the sweep of history, artists and scientists have long relied on wealthy patrons and public support

to finance their inventions and discoveries. In 1610 Galileo Galilei wrote to his former pupil Cosimo

de’ Medici, the Grand Duke of Tuscany, subtly asking for financial support to explore the sky with

his new powerful telescope. To lure the patron, Galileo named Jupiter’s moons he had just discovered

the Medician stars and promised “many discoveries and such as perhaps no other prince can match.”

Cosimo was duly impressed and granted Galileo a full teaching buyout at the University of Pisa.1

A more systematic process for funding talented scholars emerged in embryonic form in the first

half of the nineteenth century, when science academies in France and England started offering encour-

agements and grants to support worthy projects by their members.2 To ensure the best use of funds,

learned societies began formalizing the application cycle and the review process for the selection of

grant recipients. Similar selection procedures had been in place for centuries at university colleges for

assigning scholarships to promising students from families with limited means.3

With its roots steeped in patronage, grantmaking evolved in the modern era to become an effective

method for identifying prospects worthy of funding. As Carnegie, Rockefeller, and Russell Sage and

other industrial tycoons turned philanthropists at the beginning of the twentieth century, the private

foundations they endowed to “promote the wellbeing of humankind” were inundated by requests for

donations. Leveraging their business experience, trustees of these large foundations refined grantmak-

ing as a systematic approach to “wholesale” giving. Modern philanthropic foundations select which

applications to fund with the assistance of specialized evaluation panels and delegate to grantees the

“retail” implementation of the charitable work.4

1The quote from Galileo is reported in Westfall (1985, p. 22). For more on Galileo’s patronage see also Biagioli (1990)

and references therein.
2See MacLeod (1971) and Crosland and Gálvez (1989).
3Rashdall (1895, p. 200–204) describes the examination procedures for selecting applicants at the first university college,

the College of Spain founded at the University of Bologna from a bequest in 1367 and still active today.
4See Zunz (2012) and Leat (2016).
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As World War II drew to a close, John Maynard Keynes (1945) stewarded the adoption of the

grantmaking model with the creation of the Arts Council of Britain by the UK government to “stimulate,

comfort and support” independent artistic initiatives in drama, music and painting.5 At around the same

time in the US, Bush (1945), building on his success as director of the wartime Office of Scientific

Research and Development, forcefully argued in favor of federal support of the best, curiosity-driven

“basic research in the colleges, universities, and research institutes” for a wide range of sciences. In

1946 the National Institutes of Health (NIH) greatly expanded its extramural grants program to cover

all areas of biomedical research, while in 1950 the National Science Foundation (NSF) was established

to fund basic research across a broad range of scientific disciplines.

As grantmaking grew exponentially in the post-war period, funding organizations developed struc-

tured procedures for soliciting and evaluating grant applications.6 While expert peer reviewers can be

entrusted with relative evaluation of projects within a specific field, the apportionment of budget across

fields requires balancing opposing requests and is inherently more thorny, given that investment pro-

duces returns that are distant in time and difficult to quantify. Universities face similar problems when

deciding how to allocate resources and positions across departments.

A number of major funders, like the NIH, the European Research Council (ERC) and the main

Canadian funding agencies, adopt a “bottom up” approach based on an apportionment formula that

allocates the total available budget to different fields depending on the applications received in each

field. These research funding organizations allocate the bulk of their budget B for extramural research

in proportion to applications a1,a2, ...,aN received in each field i= 1,2, ...,N, resulting in budget

Bi =
ai

∑
N
j=1 a j

B (PA)

for field i. In such a system, fields compete against each others for funding on the basis of the num-

ber of applications that they attract. It is therefore important to understand what drives applications

across different fields and how sensitive the funding of a given field is to what happens in other fields.

Answering these questions is crucial to improve the design of the funding process.

A recent change in the apportionment rule at the ERC, the largest research funding organization in

the EU, suggests that funding rules can have major effects on applications and the resulting allocation.

Before 2014, ERC funds were allocated in proportion to applications to panels within each of three

disciplinary domains, representing Life Sciences (LS), Physical Sciences and Engineering (PE), and

Social Sciences and Humanities (SH). After 2014, the PA formula was applied across the board, so that

each panel’s budget became proportional to applications received in that panel relative to applications

5The US Congress chartered the National Endowment for the Arts in 1965. The grantmaking model for supporting the

arts has since been adopted by governments throughout the world, both at the local and national level; see Upchurch (2016).
6Nowadays, US federal institutions such as the NIH or the NSF fund research across different fields at the tune of 172

billion dollars per year. The funding budget of the Horizon Europe program amounts to 95.5 billion euros for the period

from 2021-2027.
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Figure 1: Budget Shares in ERC Funding by Disciplinary Domain.
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Notes: This figure shows the evolution of the budget shares for

the three large fields covered by ERC funding. The 2014 reform

is indicated by the vertical dashed line. Source: ERC data.

submitted to all panels belonging to all domains—rather than relative only to applications to the panels

within its domain as before. As shown in Figure 1, the reform was followed by a substantial change in

relative applications and in budget shares across panels, with a 60 percent increase in the funding for

SH panels and a 20 percent decrease for LS panels.

To understand how budget allocation rules and evaluation noise impact the incentives to apply

across fields, this paper formulates a foundational model of non-market allocation of resources through

grantmaking. Activities are characterized by their ex-ante uncertain merit type, which captures the

externality from financing the activity. Proponents of activities can come forth by applying at a cost.

The review panel within each field then evaluates and ranks applications based on noisy information,

with the aim of selecting the most worthy activities. Evaluation is noisy because it involves an important

component of expert judgment with subjective evaluation.

As we argue, a key element determining the allocation of funds across fields is the relative evalu-

ation noise in different fields. While in some fields researchers are likely to agree on the quality and

novelty of projects, other fields that lack of a shared paradigm are characterized by more disagreement.

The paper derives a general set of conditions under which an increase in evaluation noise in a field in-

creases the applications for grants in that field and its funding, at the expense of other fields. According

to our headline result, in fields with little evaluation noise, researchers who are not at the cutting edge

refrain from applying because they stand a low chance of being funded, thus reducing available funds

in those fields. In turn, noisy fields obtain relatively more funds, which further raise their applications.
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Our framework captures key features of a wide range of other non-market resource allocation prob-

lems, such as the admission of students across courses or university degree programs, the selection of

papers to publish in journals, the funding of business projects in conglomerates, and the selection of in-

dividuals to support or businesses to subsidize by government grant-in-aid programs. The next section

gives a roadmap of the paper and summarizes the main insights of our analysis mainly in the context

of science funding, while referring to other applications in passing. Section 9 casts our contribution

within the literature. Section 10 concludes.

2 Roadmap and Main Insights

Grantmaking in a Single Field. To warm up, Section 3 sets the stage by analyzing the baseline

specification with a single field populated by a continuum of candidates parametrized by their merit

type. Submitting an application is costly, but allows the applicant to obtain a private benefit if the

application is successful. The evaluator appraises the merit of each application received on the basis of

a noisy signal—allowing for imperfect information is essential to justify the fact that many applicants

do not succeed. To showcase the generality of the result, we model the information (or noise) content

of the signal following a quantile function approach pioneered by Lehmann (1988). This approach is

more applicable to economic problems than the classic Blackwell (1951) approach typically used in

economics.

Given the limited budget available for distribution in the field, grants are supplied to the applica-

tions that receive sufficiently favorable evaluations. The evaluation on the supply side, in turn, induces

candidates to apply only when they perceive a chance of success sufficiently high to compensate for the

application cost. Because higher merit applicants receive more favorable evaluations, on the demand

side candidates with a merit type above a threshold self-select into applying. We establish the follow-

ing key comparative statics result: as evaluation becomes noisier, the probability of winning a grant

becomes less responsive to the applicant’s type, thus increasing the equilibrium amount of applications

for given budget.

As we show, the number of grants awarded increases more (or less) than proportionally in applica-

tions when the distribution of types has increasing (or decreasing) hazard rate. Intuitively, as applica-

tions increase, the distance between the type of the marginal applicants and the average inframarginal

applicants increases (or decreases). Thus, an increase in the available budget of grants results in an

increase (or decrease) in the average success probability among applicants.7

7Supplementary Appendix D confronts this prediction with the impact of the spike in funding following the American

Recovery and Reinvestment Act (ARRA) of 2009.
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Percentiling and Grading on a Curve. When raw scores are used to decide the allocation across

fields, specialized panels in each field have an incentive to inflate scores to attract more resources to

their field. To counteract the resulting grade inflation across panels, from 1988 the NIH started per-

centiling scores within each panel (known as study section at the NIH) and introduced the payline

system.8 In each panel grants are assigned to projects that obtain percentiled scores above a level,

known as payline, that is equalized across panels. Note that the payline system is equivalent to pro-

portional allocation, given that PA implies that the success rate in field i, defined as the fraction of

successful applications in field i

pi =
Bi

ai

=
B

∑
N
j=1 a j

, (1)

is automatically equalized across all fields, pi = p. Expert evaluators in each panel are then asked to

select the most fund-worthy applications so as to exhaust 100× p percent of the budget requested by

the applications in the field.

Similarly, teachers have incentives to give high grades to students to increase enrollment in their

classes to the benefit of their department; see Johnson (2013).9 With grading on a curve, a constant

fraction of p students enrolling in a class (or degree program) can be awarded honors, so that the

budget of awards pa is proportional to enrollment. The case with constant payline directly captures

grading on a curve for a course that awards a given fraction of distinction grades or honors to enrolled

students.

As shown in Section 3.2, the constant-payline equilibrium is unique and stable if the type distribu-

tion has increasing hazard rate. Multiple equilibria arise only when the type distribution has decreasing

hazard rate, so that the marginal type that is added to the applicants’ pool as applications increase

becomes closer to the average type of the inframarginal applicants.

Paradox of Relative Evaluation. As the evaluation signal in a field becomes less noisy, applica-

tions in that field in all stable equilibria unambiguously decrease—and decrease more than under fixed

budget. Consider the limit case in which the grantmaker can perfectly evaluate applicants merit types

without noise. Under constant payline, only a fraction p < 1 of applicants win. With perfect infor-

mation, candidates know their ranking. Candidates not in the top 100× p percent of the applicants

pool anticipate that they have no chance of succeeding and thus hold off to save the application cost.

8See Mandel’s (1996, p. 182–188) historical account. “A percentile ranks your application relative to the other applica-

tions reviewed by your study section . . . Percentiling counters a phenomenon called “score creep” where study sections

give applications increasingly better scores. As a result, scores cluster in the exceptional range, making it impossible to

discriminate among applications. Each study section can apply the NIH review criteria differently, scoring either more

harshly or more favorably. Percentiling counters these trends by ranking applications relative to others scored by the same

study section.” https://www.niaid.nih.gov/grants-contracts/understand-paylines-percentiles
9Relative grading can also be induced by regulation. For example, according to Texas’ Top 10% Rule, students who

graduate in the top ten percent of their high school class are guaranteed automatic admission to state-funded universities.

See Cullen, Long, and Reback (2013) for an empirical analysis.

4



Iterating the logic, when the evaluation is perfect the equilibrium always unravels: no candidate applies

in the only outcome compatible with equilibrium. Reversing the logic leading to market breakdown in

Akerlof (1970), here good types, when they are perceived as such, make competition for scarce grants

tougher and thus drive out bad types. But as applications decrease, the pool of grants is proportionally

reduced, so that top types dig their own grave. Remarkably, with relative evaluation, symmetric infor-

mation lead to breakdown. While in classic market settings trading breaks down when information is

asymmetric, in our non-market environment asymmetry of information is needed to avoid breakdown.

This is the paradox of relative evaluation.

More subtly, we show that unraveling holds when the grantmaker signal is sufficiently informative,

provided that the hazard rate of the type distribution is bounded, even when the hazard rate is increasing

(e.g., with logistic types). When the type distribution has vanishing hazard rate, as in the Weibull

distribution with tail thicker than exponential, there is a stable equilibrium with unraveling for any

level of noise—and the unraveling equilibrium is unique when the evaluation is sufficiently precise.

Partial Equilibrium. When a field is sizeable, under PA an increase in applications in a field reduces

the success rate, still holding constant applications in the other fields. Our general analysis of the partial

equilibrium characterizes the allocation resulting in a non-negligible field.10 We show that when the

payline decreases in applications, uniqueness and comparative statics are preserved when the type

distribution has increasing hazard rate. Uniqueness is lost with decreasing hazard rate, but all the stable

equilibria retain our comparative statics—applications increase in noise.

General Equilibrium across Fields. Building on the partial equilibrium analysis, Section 4 turns

to grantmaking across fields where applicants in each field are possibly characterized by different pa-

rameters: application cost and grant benefit, type and signal distributions, and noise in the evaluator

signal. The general equilibrium takes into account the supply-side interdependence through the bud-

get allocation rule. We derive conditions for sub-proportional budget allocation rules (encompassing

fixed budget and PA as special cases) under which equilibrium applications in a field increase when the

evaluation in the same field becomes noisier and decrease when the evaluation in other fields becomes

noisier.

Empirical Validation. Leveraging the 2014 reform of the ERC budget apportionment rule presented

above, Section 5 empirically tests the key comparative statics prediction about the impact of noise on

applications. This change in apportionment rule allows us to identify the effect of evaluation noise on

the number of applications in each field, relying on a difference-in-difference design. To that effect,

10This case is analogous to a partial equilibrium analysis in an international trade model, where the country is large

enough to affect the terms of trade. The constant-payline case corresponds to the partial equilibrium for a small country. In

our context, a field does not affect the payline when it has a negligible amount of applications relative to the other fields.
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we provide novel evidence on evaluation noise across fields using unique data on reviewer grades of

grant applications at the Research Council of Norway (RCN). We find stark differences in evaluation

noise across fields, with social sciences and applied sciences displaying more noise. We then show

that the relative differences in evaluation noise across fields significantly predict changes in the number

of applicants following the 2014 reform. Moreover, we find that a one standard deviation change in

evaluation noise in a given field leads to an increase in the budget allocation of about 0.3 standard

deviation, implying that the effect is sizeable and policy relevant.

Endogenous Evaluation Noise: Game among Fields. Section 6 endogenizes the level of evaluation

noise in different fields by analyzing a game played by field representatives defending the professional

interests of their field. Through this representative, each field, acting as a collective, has some capacity

to introduce noise in the evaluation in their field, for example by affecting the quality of the panel

members or introducing some randomization in the signal obtained by the panelists.11

If field representatives care about the quality of the research that is financed in their respective field,

they face a tradeoff. Increasing noise increases applications, but reduces the average quality of the

projects selected. In the resulting Nash equilibrium of the game, fields add noise provided that the

initial noise is not too high. When the initial noise is already high in at least one of the fields, in the

final Nash equilibrium the noise across fields remains asymmetric as in our baseline analysis, showing

robustness. When the initial noise is relatively low in all fields, we show that the addition of noise in

all fields resulting in equilibrium levels the playing field, neutralizing the initial asymmetry in noise.

When, in addition to being relatively low, the initial noise is sufficiently asymmetric across fields, the

final Nash equilibrium allocation results in higher social welfare than the (highly inefficient) initial

asymmetric allocation.

Sorting across Fields/Courses. Section 7 extends the analysis to incorporate the demand-side inter-

dependence generated by the ability of candidates to select courses/fields depending on their chance

of obtaining a high grade. Grades have a discernible impact on the future of students (Murphy and

Weinhardt 2020). Given that students tend to select courses where they expect to obtain better grades,

instructors have incentives to grade generously (Achen and Courant 2009). To curb grade inflation

universities respond by limiting the fraction of students who can obtain top grades and honors (Johnson

2013).

While in the baseline model candidates choose whether or not to apply/enroll, in this extension

they choose one of two courses, for example physics or literature, by comparing their chance of rank-

ing among the top 100×p candidates. In the spirit of Roy’s (1953) model of occupational sorting,

11In the case of the ERC, the representative could be the chair of the field panel or the member of the scientific council

more closely associated with the field.
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suppose that candidates have a two dimensional type, corresponding to their mathematical and verbal

skill. Holding fixed the acceptance/merit standards, a field attracts more talented candidates when its

evaluation becomes less noisy—intuitively, less talented candidates prefer to hide in the noisier field.

As we argue, in equilibrium applications increase in the field’s noise and decrease in the noise in the

other field and the effect is stronger with grading on a curve than under fixed budget.

Design of Funding Rules. Section 8 turns to organizational design questions. Section 8.1 compares

the general equilibrium allocation in the baseline model with the optimal allocation for the evalua-

tor. The optimal amount of applications in a field increases in the evaluation noise in another field,

contrary to what happens in the equilibrium induced by a sub-proportional allocation rule. Starting

from the symmetric allocation resulting when fields have symmetric parameters, general equilibrium

applications in a field increase excessively in noise relative to the socially optimal allocation. Evalu-

ator welfare can then be improved by decreasing proportionality in fields characterized by less noisy

evaluation.

Pooling Fields and Benchmarking. Section 8.2 considers the impact of pooling a noisier field with a

more consensual field into a single panel. Supposing that applicants are still evaluated in the same way,

what matters for funding once fields are pooled is the position of a candidate in the mixture distribution

of scores in the two fields. Now, candidates evaluated with more (or less) noise are less (or more) likely

to be at the top of the distribution. Intuitively, more accurate information increases dispersion in the

scores, which matches more closely the underlying type distribution. This way, the more accurate field

gains the lion’s share of grants within the pooled panel, at the expense of the noisier field. Pooling

fields with heterogeneous noise thus dampens the perverse effect of meritocracy on relative evaluation.

3 Grantmaking in a Single Field

This section sets the stage by formulating our baseline model of grantmaking in a single field. The

field is populated by a continuum of candidates parametrized by their merit type θ , corresponding to

the value created if the project is financed. Candidates know their merit, which follows distribution G

in the population, with size normalized to one. For convenience assume that G admits a continuously

differentiable and strictly positive density g on a connected support
[
θ ,θ

]
, possibly unbounded on

either side.12

To be considered for a grant award, candidates must apply at cost c, the opportunity cost of the time

spent preparing the application and describing the work.13 Applicants who are awarded grants obtain a

12We have G−1 (0) = θ =−∞ if the support is unbounded below and G−1 (1) = θ =∞ if the support is unbounded above.
13Application costs can well be sizeable. According to survey evidence by von Hippel and von Hippel (2015) on as-
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private benefit v in terms of career advancement and kudos.14

An evaluator (review panel) allocates a budget of grants B to applicants on the basis of a noisy

signal x about the merit type θ of each applicant. The signal is distributed according to

Fσ (x |θ) , (2)

with continuously differentiable and strictly positive density fσ and connected support, possibly un-

bounded on either side. We assume that the signal satisfies the monotone likelihood ratio (MLR)

property

fσ

(
x |θ ′

)
fσ (x |θ)

increases in x for any θ
′ > θ , (MLR)

so that a higher signal indicates higher merit. A key role in our analysis is played by the parameter σ ,

which measures the noise in the signal in the following non-parametric way

Fσ

(
F−1

σ (q |θ) |θ ′
)

increases in σ for any θ
′ > θ and any percentile q ∈ [0,1] . (3)

As shown in Lemma 1, an increase in noise according to this criterion (3) corresponds to a reduction in

information in the sense of Lehmann (1988): any decision maker with suitably monotonic preferences

gains from a reduction in noise.15

For algebraic tractability we often illustrate our results for the special case with additive noise

where the signal has a location-scale structure, x = θ +σε , with noise distribution F (ε) = F
(

x−θ

σ

)
and support [ε,ε], possibly unbounded on either side. The signal perfectly reveals the merit when

σ = 0 and becomes completely uninformative as σ → ∞.16

Candidates and the evaluator have common knowledge of the model and its parameters. The eval-

uator allocates grants to the applicants that generate the most favorable noisy signals. The timing is as

follows:

1. Candidates observe their own type θ and decide whether to apply.

tronomers and social and personality psychologists who submitted applications for basic research grants to NASA, the NIH,

and the NSF, principal investigators spent on average 116 hours preparing the applications. This represents a major increase

to the early day of science funding. For comparison, in 1921 the prominent German biochemist Otto Warburg submitted

to the Notgemeinschaft der Deutschen Wissenschaft (Emergency Association of German Science, the forerunner of the

Deutsche Forschungsgemeinschaft) a funding application with a single sentence: ‘I require 10,000 marks’; see Koppenol,

Bounds, and Dang (2011).
14The model can also easily accommodate the addition of an embarrassment or psychological cost d borne by the candi-

date when the application is turned down. The cost benefit ratio c/v, which determines demand incentives, is then replaced

by (c+d)/(v+d).
15More precisely, any decision maker with preferences in the general interval dominance ordered class introduced by

Quah and Strulovici (2009) obtains a higher expected payoff state by state when σ is reduced. This preference class encom-

passes as special cases monotone decision problems (Karlin and Rubin 1956) and single-crossing preferences (Milgrom and

Shannon 1994).
16When the noise is additive, inverting the signal distribution y = F ((x−θ)/σ), the quantile function of the signal is

x= θ+σF−1 (y). For every percentile y, the quantile difference
[
θ +σF−1 (y)

]
−
[
θ + σ̄F−1 (y)

]
decreases in y for σ < σ̄ .

Equivalently, the quantile transform θ +σF−1 (F ((x−θ)/σ̄)) = σx/σ̄ +(1−σ/σ̄)θ is increasing in θ for σ < σ̄ .
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2. The evaluator awards the available budget of grants to the applicants on the basis of the signal

realizations x.

3.1 Fixed-Budget Equilibrium

To illustrate the logic of the model this section considers the case with fixed budget of grants, B. In

general, equilibria have the following monotonic structure, allowing us to solve the model through a

simple representation in terms of demand and supply, even though no prices are involved:

• On the supply side, the evaluator awards grants to applications with x ≥ x̂, because E [θ |x] in-

creases in x by the MLR property.

• On the demand side, candidates with higher merit are more likely to win by MLR, and thus apply

for θ ≥ θ̂ .

As we show, there always exists a unique fixed-budget equilibrium and this equilibrium is stable.

This version of the model allows us to uncover the logic that drives the comparative statics with respect

to noise: an increase in noise necessarily raises the amount of applications submitted in the fixed-budget

equilibrium.

Application Demand: Self-Selection. Expecting the evaluator to accept whenever the signal is above

x̂, candidates apply if their benefit from the grant times the expected probability of obtaining a grant

outweighs the application cost

v [1−Fσ (x̂ |θ)]≥ c. (4)

For any given acceptance standard x̂, by the MLR property candidates apply if θ ≥ θ̂ , where θ̂ is the

marginal applicant implicitly defined by

1−Fσ

(
x̂ | θ̂
)
= c/v, (5)

the type whose winning probability is equal to the cost benefit ratio.

The top panel of Figure 2 illustrates the signal distribution functions for the marginal type θ̂ and

for an inframarginal type θ
′ > θ̂ . The horizontal axis corresponds to the signal realization x. Note that

the distribution for θ
′ lies to the right of the distribution for θ̂ , given that the MLR property implies

first-order stochastic dominance. Inverting (5), the acceptance standard x̂ that makes type θ̂ indifferent

about applying satisfies

x̂= F−1
σ

(
1− c/v | θ̂

)
. (6)

This indifference for the marginal type pins down the demand. In the top panel, the winning probability

for a given type θ can be visualized as the difference between 1 and the value of the distribution of the

9



Figure 2: Fixed-budget equilibrium construction. Top panel (a): The black curves depict the signal

distributions for θ̂ (curve to the left) and θ
′ > θ̂ (curve to the right) with noise σ as a function of

the signal realization x. The winning probabilities at acceptance standard x̂ for type θ̂ and type θ
′

are marked in both panels as black and green vertical segments with arrows. Bottom panel (b): The

black curve is the winning probability as a function of G(θ) for a uniform example with G(θ) = θ .

According to the demand condition, the winning probability of the marginal type θ̂ is equal to c/v. The

light blue area under the winning probability is the amount of grants awarded to all applicants.
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signal computed at x= x̂, according to (5): for the marginal type θ̂ the winning probability is equal to

c/v.

The winning probability for inframarginal type θ
′ > θ̂ is higher than c/v, as depicted in the figure.

The bottom panel of Figure 2 directly displays the winning probability 1−Fσ (x̂ |θ) as a increasing

function of the agent type θ on the horizontal axis, for given acceptance standard x̂. Thus, all inframar-

ginal types strictly prefer to apply.

Given that the distribution function increases in the signal but decreases in the type, we can see

from (5) that the marginal type, θ̂ (x̂), is an increasing function of the acceptance standard, x̂. The

application demand

aD (x̂) = 1−G(θ̂ (x̂)). (7)

is then a downward sloping function of the acceptance standard, x̂. As the acceptance standard in-

creases, it becomes more difficult to obtain a grant, inducing fewer candidates to apply. The marginal

applicant θ̂ = G−1 (1−a) expects to obtain a grant with probability 1−F
(
x̂ |G−1(1−a)

)
. Setting

the winning probability for the marginal applicant equal to the cost-benefit ratio and solving for the

acceptance standard that makes the marginal applicant indifferent, we conclude:17

Proposition 1 (Demand) (a) The evaluator can induce a applications by setting the acceptance stan-

dard at

x̂D (a) = F−1
σ

(
1− c/v |G−1(1−a)

)
. (8)

The inverse demand is downward sloping: to induce more candidates to apply, the evaluator must

reduce the acceptance standard.

Grants Awarded: Evaluation. Having derived the demand condition, the second key step of the

equilibrium construction turns on the answer to the following question: How many grants must be

awarded in order to induce a candidates to apply? According to the demand condition (8), by setting the

acceptance standard at x̂D(a), each type above the marginal, θ ≥ G−1 (1−a), self-select into applying

and obtains a grant with probability 1−F
(
x̂D(a) |θ

)
. The grants awarded are then

A(a) =
∫

θ̄

G−1(1−a)

[
1−F

(
x̂D(a) |θ

)]
g(θ)dθ , (9)

the sum of the winning probability of all applicants, weighted by their density. As applications increase,

awards increase through two channels. First, the additional applicants are awarded some grants when-

ever they clear the acceptance standard. Second, to induce more applications, the acceptance standard

x̂D(a) must be reduced, thus resulting in more awards to inframarginal applicants. Overall:

17In the special case with additive noise, the marginal type is θ̂ = x̂− σF−1 (1− c/v), demand is aD (x̂) = 1−
G
(
x̂−σF−1 (1− c/v)

)
, and inverse demand is x̂D(a) = G−1 (1−a) + σF−1 (1− c/v). When information is perfect

(σ = 0), the inverse demand is equal to the counter-quantile function of the type distribution.
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Proposition 1 (Grants Awarded: Monotonicity) (b) To induce a applicants, the evaluator must award

A(a) grants according to (9), an increasing function of a.

Fixed-Budget Equilibrium. A fixed-budget equilibrium results when the budget of grants available

is equal to the budget of grants awarded, according to (9). As in all specifications of the model, equilib-

rium existence follows by the intermediate value theorem, given that the award function is continuous.

An equilibrium is defined to be stable if any local perturbation leads back to the equilibrium. We have:

Proposition 1 (Fixed-Budget Equilibrium) (c) There exists a fixed-budget equilibrium. The fixed-

budget equilibrium is unique and stable.

Impact of Noise. What is the impact of an increase in noise to σ̄ > σ? At the new level of noise, in

general the initial marginal type θ̂ is no longer indifferent. As a first step in the argument, modify the

acceptance standard to restore indifference for type θ̂ . To ensure that the winning probability for type

θ̂ remains constant at the initial level, set the standard at ŷ implicitly defined by

1−Fσ̄

(
ŷ|θ̂
)
= 1−Fσ

(
x̂|θ̂
)
. (10)

Inverting (10) and substituting (6), we obtain the explicit expression for the adjusted acceptance stan-

dard

ŷ= F−1
σ̄

(
Fσ

(
x̂ | θ̂
)
| θ̂
)
= F−1

σ̄

(
1− c/v | θ̂

)
. (11)

The top panel of Figure 3 illustrates the construction.

Now, consider an inframarginal type θ
′ > θ̂ , who strictly prefers to apply at the initial standard x̂.

At the adjusted standard, ŷ, the winning probability for type θ
′ decreases provided that

1−Fσ̄

(
ŷ |θ ′

)
< 1−Fσ

(
x̂ |θ ′

)
. (12)

We now link this condition to Lehmann informativeness criterion. Substituting (11) and (6) we obtain

Fσ

(
F−1

σ

(
1− c/v | θ̂

)
|θ ′
)
< Fσ̄

(
F−1

σ̄

(
1− c/v | θ̂

)
|θ ′
)
.

This condition holds under (3), which in turn is equivalent to signal Fσ̄ being Lehmann-noisier than

signal Fσ by Lemma 1 in the Appendix. Intuitively, an increase in noise reduces meritocracy and thus

makes the winning probability for any type less responsive to merit. As seen in the bottom panel of

Figure 3, when the acceptance standard is adjusted to keep the initial marginal type indifferent, the

winning probability of all inframarginal types is reduced, as illustrated by the shift from the black to

the dashed red curve.
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Figure 3: Impact of noise increase to σ̄ > σ . Top panel (a): Impact on signal distributions. As noise

increases, the signal distributions shift from the black to the red curves. Bottom panel (b): Impact

on winning probabilities. If the marginal type θ is held constant (applications do not change), as noise

increases the winning probability of inframarginal type θ
′ is reduced from the green to the red segment,

marked with arrows in both panels. Grants awarded under the dashed red curve are below the budget.

To spend the initial budget the marginal applicant must be reduced, as shown by the blue segment,

equating the area under the blue curve to the area under the black curve.
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Weighting (12) by the density of the corresponding inframarginal types and summing (12) over all

θ
′ ≥ θ̂ , we conclude that the budget assigned will be under-spent,∫

θ̄

θ̂

[1−Fσ̄ (ŷ |θ)]g(θ)dθ <
∫

θ̄

θ̂

[1−Fσ (x̂ |θ)]g(θ)dθ ,

whenever we retain indifference by the initial marginal type.

Proposition 1 (Impact of Noise on Award Function) (d) As noise σ in the evaluator’s signal increases,

fewer grants are awarded for any given level of applications.

To re-equilibrate, the acceptance standard, in the new equilibrium for fixed budget B and higher

noise σ̄ , must necessarily be reduced below ŷ, in order to encourage more applications from agents

with types below the initial θ̂ . Thus, we obtain our keystone comparative statics:

Proposition 1 (Impact of Noise on Fixed-Budget Equilibrium Applications) (e) As noise σ in the

evaluator’s signal increases, fixed-budget equilibrium applications increase.

The remainder of the paper shows that this comparative statics holds more generally—and is actu-

ally strengthened—when the budget allocated to a field increases with applications. Before proceeding,

we step back and prod the robustness of this result to the simplifying assumption that candidates have

perfect information about their merit.

Noisy Self-Selection. Does evaluation noise increase applications also when candidates have a noisy,

rather than perfect, signal t about their type θ? For the case with bilateral noisy information, we

can leverage the quantile function approach to easily extend the result once we restrict to parametric

signals for which we can prove the Lehmann (1988) property. For example, suppose types are normally

distributed, θ ∼ N(0,1), and the evaluator as well as the candidates observe normal and conditionally

independent signals, x|θ ∼ N(θ ,σ2) and t|θ ∼ N(θ ,τ2), respectively. To decide whether to apply,

candidates must now forecast what their type is likely to be. Upon observing signal t, a candidate’s

updated belief about their type is θ |t ∼ N

(
1

1+τ2 t, τ2

1+τ2

)
. Candidates with higher signals are more

likely to believe that their type is high. Knowing that the evaluator observes a noisy signal, x|θ ∼
N
(
θ ,σ2

)
, the candidate’s belief about the signal the evaluator observes is x|t ∼ N

(
1

1+τ2 t,σ2+ τ2

1+τ2

)
,

so that an increase in σ reduces Lehmann (1988) information. Thus, exploiting the general argument

presented above, an increase in the evaluator noise σ makes the winning probability less responsive

to the candidate’s signal about the type. Applications increase for any given budget of awards, as in

the baseline model. In addition, we can establish that an increase in candidate noise τ also reduces

Lehmann (1988) information and thus reduces applications.
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Figure 4: Award function. Left panel (a): Super-proportional, with increasing rays. Right panel (b):

Sub-proportional, with decreasing rays.

3.2 Partial Equilibrium with Sub-Proportional Budget Allocation

This section considers a single-field model where the budget of grants B(a) depends on applications,

where a is the fraction of applicants within the unit-size population of candidates in the field. We

restrict attention to the budget rules that are (weakly) increasing and sub-proportional

∂

∂a

B(a)

a
≤ 0, (13)

i.e., the grant budget per application (weakly) decreases in applications.18 Graphically, the segment

that connects any point (a,B(a)) in the graph to the origin (0,0) lies entirely below the graph itself.

Equivalently, the rays of the function become less steep as a increases, so that none of the area be-

low the graph of the function is hidden from an observer at the origin by the graph itself. Intuitively,

(13) relaxes concavity by requiring the average, rather than the derivative, of the function to decrease.

Sub-proportional budget encompasses fixed budget, B(a) = B, as well as the case with constant pay-

line, B(a) = pa, where the fraction of grants is proportional to applications. This formulation allows

us to deal with a partial equilibrium version of the full model where the payline p(a) decreases in

applications in a field, holding fixed the amount of applications in all other fields.

Shape of Award Function. The characterization of the equilibrium in terms of uniqueness, stability,

and comparative statics hinges on the shape of the award function (9), which gives the grant awards

necessary to induce a candidates to apply. Notice that the award function in the example depicted in

18This is the opposite of a differentiable version of sharshaped, as defined by Marshall and Olkin (2007, p. 690-691).
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the bottom panel of Figure 2 is super-proportional

∂

∂a

A(a)

a
≥ 0,

as illustrated in the top panel of Figure 4. This is the opposite of condition (13) we imposed for the

budget. Restricting attention to signals with additive noise, this property hinges on monotonicity of the

hazard rate of the type distribution:

Proposition 2 (Grant Awarded: Shape) (a) The award function A(a) is super-proportional, sub-proportional

or linear if the type distribution G has respectively increasing, decreasing or constant hazard rate.

Remarkably, the curvature of the award function depends only on the type distribution, and it is not

affected by the noise distribution. The rest of the section explains the logic behind this central result.

As a preliminary step, through a change of variable t = G(θ), rewrite the integrand in (9) as a

function of the type percentile t = G(θ)

A(a) =
∫ 1

1−a

[
1−F

(
x̂D(a) |G−1(t)

)]︸ ︷︷ ︸
w(x̂(a)|t):=

dt.

Thanks to this expression, the budget necessary to induce a applications can be visualized as the area

below the winning probability curve w(x̂(a)|t). Equivalently, we can express this area as a rectangle

with a basis that spans the integration segment (of length a) and height equal to the average winning

probability under a applications, A(a)/a, as in the bottom panel of Figure 2. The average winning

probability when a fraction a of the population applies is precisely the average of the budget necessary

to induce a applications. Graphically, the average winning probability is the slope of the segment

connecting (a,A(a)) to the origin. By definition of super-proportionality, our claim follows if we

demonstrate that A(a)/a has the same monotonicity as the hazard rate of G.

Next, consider an increase in applications from a to a′ > a. To induce additional applicants, the

acceptance standard must be reduced. The winning probability of all inframarginal applicants rises.

The additional budget required to finance this operation is precisely the difference between the areas

underlying the two winning probability curves in the bottom panel of Figure 2. The crucial point is to

understand how the additional budget is divided along type percentiles.

To this end, let

t(x̂(a)|w) = G
(
x̂(a)−σF−1 (1−w)

)
(14)

be the percentile-type winning with probability w under application level a. As w varies, this percentile

traces the inverse of the winning probability curve. By monotonicity of w(x̂(a)|t), the top-percentile

1− t(x̂(a)|w) wins with probability greater than w. Clearly, including more applicants dilates the top-

percentile of candidates winning with probability w to 1− t(x̂(a′)|w) > 1− t(x̂(a)|w). Indeed, slicing
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horizontally the winning probability curves in the bottom panel of Figure 2, note that 1− t(x̂(a′)|w) is

equal to 1− t(x̂(a)|w), the solid segment, plus the dashed segment. Equivalently, the ratio between the

two

ρ(w) =
1− t(x̂(a′)|w)
1− t(x̂(a)|w) (15)

is always greater than 1—this is the top-percentile dilation ratio. How does this dilation ratio vary

with w? Here is where the shape of the distribution G comes into play. As shown in Lemma 2 in

the Appendix, ρ (w) is increasing, decreasing or constant in w if the type distribution respectively has

increasing, decreasing or constant hazard rate.

In the boundary case with exponentially distributed types, the top-percentile dilation ratio ρ(w)

is a constant. Suppose application level is a, resulting in average winning probability A(a)/a. In

order to increase applications to a′ > a, the acceptance standard must be reduced—as a result, the

winning probability of all inframarginal applicants goes up. When types are exponential, the fraction

of applicants winning with any given probability increases by a constant ratio ρ > 1, maintaining

their proportion constant between the two application levels. In this case, the relative composition of

applicants in terms of winning probability does not change as applicants increase, resulting in a constant

average winning probability: A(a)/a= A(a′)/a′.

When G has increasing hazard rate, as the mass of applicants rises, the top-percentile dilation ratio

ρ(w) increases with w. We can visualize this fact in the bottom panel of Figure 2 for an example

with uniformly distributed types. As the winning probability rises, the dashed segment, measuring the

horizontal displacement between the two winning probability curves, decreases more slowly than the

solid segment. In relative terms, the proportion of applicants winning with higher probability increases

more than the proportion of applicants winning with lower probability. Thus, relatively more applicants

win with higher probability, raising the average winning probability: A(a′)/a′ > A(a)/a. Intuitively,

under increasing hazard rate stronger applicants are absorbing relatively more incremental grants than

weaker applicants. The budget of awards required to incentivize additional applicants then increases

more than proportionally in applications. The logic is reversed with decreasing hazard rate, leading to

the opposite result.

Partial Equilibrium. As illustrated in the left panels of Figures 4 and 5, with increasing hazard rate

the award function is super-proportional and crosses once and from below the sub-proportional budget

function for an interior a ∈ (0,1) provided that B′ (0)> A′ (0) and B(1)< A(1).19 This equilibrium is

stable, given that a small increase (or decrease) in a above (or below) the equilibrium level results in

an increase (or decrease) in grants awarded above (or below) the budget, thus inducing an adjustment

19These two conditions are rather natural. If the hazard rate of the type distribution is unbounded, we have A′ (0) = c/v,

so that B′ (0) > A′ (0) avoids the trivial case in which the budget is so scarce that nobody applies. Condition B(1) < A(1)
imposes that the budget is too scarce to accommodate all applications.
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back to the equilibrium:20

Proposition 2 (Partial Equilibrium) (b) If the type distribution has increasing hazard rate and the

budget rule is subproportional, there is a unique partial equilibrium and this equilibrium is stable.

The right panels of Figures 4 and 5 illustrate sub-proportional award functions resulting when the

type distribution has decreasing hazard rate. To understand the role of the hazard rate condition on the

equilibrium, consider the special case with proportional budget, B(a) = pa, where p > 0 represents

the grants available per application. In this case with constant payline, when the type distribution has

decreasing hazard rate, the unique stable equilibrium is always at the corner. If A′ (0) > p, unraveling

a= 0 results in the unique stable equilibrium; if instead A′ (0)< p, all agents apply a= 1 in the unique

stable equilibrium.

When types are exponentially distributed, G(θ) = 1− exp(−αθ), with constant hazard rate equal

to α , the award function is proportional, i.e., linear in a with slope increasing in c/v and decreasing

in α and in σ .21 Thus, when there is a boundary level of payline p̌ > c/v such that any a ∈ [0,1] is

a constant payline equilibrium, for p < p̌ there is a unique equilibrium with unraveling and for p > p̌

there is a unique equilibrium with a= 1.

Impact of Budget on Success Rate The impact of an anticipated increase in the budget on the success

rate, also known as payline—the widely reported fraction of successful applications—depends on the

monotonicity of the hazard rate:

Proposition 2 (Impact of Budget on Success Rate) (c) If the type distribution has increasing (or de-

creasing) hazard rate, the equilibrium success rate increases (or decreases) in the budget.

Intuitively, if the type distribution has increasing hazard rate (or decreasing hazard rate), it also has

decreasing (or increasing) residual expectation

∂E
[
θ − θ̂ |θ ≥ θ̂

]
∂ θ̂

< 0 (or> 0),

see Bagnoli and Bergstrom’s (2005) Theorem 6.22 Under increasing hazard rate, as applications in-

crease, the distance between the average type of the inframarginal applicants and the merit type of the

20When B′ (0) < A′ (0), there is a stable corner equilbrium with unraveling a = 0, in which noboby applies. When

B(1)> A(1), there is a stable corner equilbrium a= 1 in which all agents apply. In all cases, the equilbrium is unique and

stable.
21For example, when the signal is also exponential, F (ε) = 1− exp(−ε), the award function is A(a) = (c/v)ασ−ασc/v

1−ασ
a,

with slope limα→0 A′ = 1 and limα→∞ A′ = c/v.
22A logconcave density grows at a decreasing rate and declines at an increasing rate. By Prekopa’s theorem, logconcavity

(logconvexity) of the density g(θ) implies logconcavity (logconvexity) of the countercumulative distribtion 1−G(θ),

which in turn implies logconcavity (logconvexity) of the right-hand integral H (θ) =
∫

θ̄

θ

[
1−G

(
θ̃
)]

dθ̃ , which in turn is

equivalent to the fact that the residual expectation E
[
θ − θ̂ |θ ≥ θ̂

]
is decreasing (increasing).
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Figure 5: Comparative statics. Left panel (a): A super-proportional award function (red) crosses a sub-

proportional budget (blue) only once from below, resulting in a unique stable equilibrium. As noise

increases, the award function shifts to the right to the red dashed curve, resulting in an increase in

applications larger than under fixed budget (dashed black horizontal segment) but smaller than under

constant payline (green straight segment). Right panel (b): With sub-proportional award function mul-

tiple equilibria are possible. Here there is an unraveling stable equilibrium, an unstable equilibrium

with intermediate applications, and a stable equilibrium with high applications. As noise increases, the

unstable equilibrium decreases and the interior stable equilibrium increases.

marginal applicant θ̂ (which is reduced as a goes up) also increases. Thus, inframarginal applicants

become stronger relative to the marginal applicant. Given that along the demand curve the success

probability of the marginal applicant is fixed at c/v by construction, in equilibrium the average suc-

cess probability of the inframarginal applicants—the success rate p—must increase in a. The opposite

conclusion holds if the type distribution has a decreasing hazard rate. In the boundary case when the

type distribution is exponential (with constant hazard rate), applications increase proportionally with

the budget, leaving the success rate unchanged. Supplementary Appendix D confronts this prediction

with the outcome of the increase in NIH budget following the 2009 Stimulus Bill.

Impact of Noise on Applications. We now return to our headline comparative statics with respect

to evaluation noise σ . Recall from Proposition 1.d that an increase in noise σ shifts down the award

function. Given that the budget function is increasing and subproportional, if the award function is

superproportional, as in the left panel of Figure 5, from Proposition 2 we conclude that applications in
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the unique and stable equilibrium increase in σ more than under constant budget.23

When instead the award function is sub-proportional (at least on a subinterval) we have to take

care of the possibility of multiple equilibria, as illustrated in right panel of Figure 5. Given that the

award and budget functions are both continuous, equilibria alternate in terms of stability. In accordance

with Samuelson’s (1947) correspondence principle, the sign of the comparative statics is reversed for

unstable equilibria. Our headline result remains valid for all stable equilibria:

Proposition 2 (Partial Equilibrium) (d) As noise σ in the evaluator’s signal increases, in any stable

partial equilibrium the application level a increases.

In addition, whenever a field’s budget increases in applications, application level increases in noise

more than under fixed budget, as shown in the figure.

Unraveling: The Paradox of Relative Evaluation. Turning to an extreme version of this compar-

ative statics result, consider the outcome resulting when the evaluation is based on a perfect signal

without noise, σ = 0. With fixed budget B, the most efficient allocation results, with the best a agents

applying and obtaining the grant with probability 1.

What if instead the budget is proportional to applications B = pa, with a constant payline p < 1?

Given any acceptance standard x, with perfect information all applicants with θ ≥ x anticipate that

they will succeed and thus apply in order to secure v > c. However, under constant payline only a

fraction p of these applicants can succeed. Thus, if a> 0, a fraction 1− p of applicants cannot succeed.

But then applicants with types below the 1− p quantile of the conditional type distribution among

applicants, having perfect information and thus anticipating that they will not succeed, strictly prefer

not to apply and save the application cost. The process goes on, until we obtain that the constant-payline

equilibrium for p< 1 with perfect information always unravels: zero applications are submitted a= 0

in the unique equilibrium.24 This unraveling logic highlights how grading on the curve, if perfect,

destroys participation incentives. More generally, we have:

Proposition 2 (Unraveling) (e) If the evaluation is based on perfect information, σ = 0, and B(a)< a,

in the unique partial equilibrium no candidate applies.

The result follows immediately from the observation that the award function without noise is A(a)=

a. When information is perfect, applicants can anticipate how they will be evaluated and thus do not

apply when they are sure they will not obtain a grant.

It is worth stressing that while perfect information is sufficient, it is not necessary for unraveling.

Actually, well beyond the case with perfect information, unraveling results provided that B(0) = 0 and

23The comparative statics is strict when the equilibrium is interior, but it holds weakly for corner equilibria.
24Or, equivalently, only the highest type θ (measure-zero) applies and is awarded a fraction p of the grant.
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A′ (0) < B′ (0). For type distributions with vanishing hazard rate, limθ→∞ g(θ)/[1−G(θ)] = 0, such

as Weibull with top tail thicker than exponential, we have A′ (0) = 1 for all σ ; unraveling then results

whenever B′ (0) < 1 for any level of noise. More generally, when the limit of the hazard rate of the

type distribution is bounded (e.g., with logistic types), we have A′ (0)> c/v for any σ < ∞ with A′ (0)

decreasing in σ , so that with with constant payline B′ (0) = p> c/v unraveling results for σ < σ̃ for σ̃

bounded away from zero.

4 Grantmaking across Fields

We now turn to the problem of grant allocation across fields i= 1, ...,N, each populated by a continuum

of candidates representing the pool of potential applicants. Field i is characterized by specific parame-

ters, such as type distribution Gi, signal noise distribution Fi, noise dispersion σ i, application cost ci,

and private benefit vi from obtaining a grant.25 As in the baseline model, candidates are atomistic and

thus they do not take into account the impact of their application decision on the acceptance standard.

In each field, the evaluator (think of the review panel) allocates to field i a budget Bi (a1, ...,aN) depen-

dent on the applications submitted in all fields. In each field grants are awarded to applications with the

highest expected merit within the field.

Appendix B characterizes the equilibria in the model with multiple fields, with particular attention

to budget rules that satisfy a multidimensional generalization of sub-proportionality (13), condition

SPA. As shown in Proposition 4, quasi-proportional budget allocation rules

Bi =
a

ρ i

i

∑
N
j=1 a

ρ j

j

B (QPA)

with proportionality coefficients ρ i ∈ [0,1] satisfy SPA. This class encompasses the PA rule used by the

ERC, NIH, and Canadian research funding organizations (for ρ i = 1 for all i ) and the fixed budget rule

adopted by the NSF as well as by UK and Australian agencies (for ρ i = 0 for all i), but more generally

allows for field-specific budget responsiveness ρ i.

If we combine sub-proportionality with increasing hazard rate, we obtain a unique stable equilib-

rium that preserves the comparative statics we derived for the partial equilibrium—applications increase

in own noise—and reverses it for other fields—applications decrease in noise in other fields:

25The model can be easily extended to allow for fields to have different size, ni, and for the individual budget, qi, that

each applicant can request to vary across fields, so that if fraction ai of candidates apply in field i the total funds requested in

the field are niqiai. In practice, grant calls typically set upper bounds to the size of the award applicants can ask, sometimes

depending on the career stage of the applicant. The ERC sets the maximum allowed awards at the same level for all fields.

Given that almost all applicants request (and successful applicants are awarded) approximately the maximum allowed, we

do not model the individual choice of amount by the applicant. In the more general case in which grant applicants request

awards of different size, panel i selects the projects with the highest score so as to distribute the fraction 100× p of the total

funds applied for in field i.
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Figure 6: Construction of general equilbria at the crossing of the partial equilibrium correspondences

for two fields: a j (ai) represents the set of partial equilibrium applications in field j as a function the

application level in field i. All stable equilibria, here (i), (iii), and (v), satisfy (16) and (17).

Proposition 3 (Unique General Equilibrium) (a) If the type distributions in every field have increas-

ing hazard rate (IHR) and the budget rule is sub-proportional, SPA, the general equilibrium (i) is

unique, (ii) stable, and (iii) satisfies the comparative statics that an increase in noise in a field i in-

creases applications in that field

daE
i

dσ i

≥ 0 (16)

and decreases applications in any other field j

daE
j

dσ i

≤ 0. (17)

To understand this result, note that by Proposition 1.e, for any given budget size, noisier fields tend

to attract more applications. As the budget in a field increases in applications, the increased number of

applications results in an increase in the budget, which in turn induces a further increase in applications.

If applications increase less than proportionally with the budget, as is the case when the type distribution

has increasing hazard rate, and the budget is sub-proportional in applications, the process converges to

a unique interior equilibrium that features more applications in the noisier field and fewer applications

in the other fields.
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Multiple Equilibria. For general type distributions violating IHR, we lose equilibrium uniqueness,

as already noticed for the partial equilibrium. However, Appendix B shows that the comparative statics

for all stable equilibria remains well behaved for symmetric budget rules such as PA:

Proposition 3 (Multiple General Equilibria) (b) For general type distributions and proportional bud-

get rule, PA, in any stable general equilibrium, applications in a field increase in the noise of that field,

(16).

Figure 6 illustrates the construction of the general equilibrium and the logic of the comparative

statics result with N = 2 fields in an example featuring multiple equilibria. In each of two fields types

follow a mixture of two normal distributions with a non-monotonic hazard rate (increasing for low

types, decreasing for intermediate types, and increasing again for high types). To understand the shape

of field 2’s partial equilibrium correspondence (red curve in the figure) a2 (a1), given applications a1 in

field 1, note that the level of applications in field 1 impacts the equilibrium in field 2 only through the

budget function B2 (a1,a2), which decreases in a1. As can be seen from Figure 5.b, the budget reduction

created by the increase in a1 results in a decrease in applications at any stable partial equilibrium—and

in an increase in applications at any unstable partial equilibrium. The two decreasing arms of the partial

equilibrium correspondence a2 (a1) in Figure 6 depict stable partial equilibria, while the increasing

arm depicts an unstable interior partial equilibrium. A similar construction applies to field 1’s partial

equilibrium correspondence a1 (a2) (blue curve in the figure).

The points of intersection of the partial equilibrium correspondences a2 (a1) and a1 (a2) are general

equilibria. In this example there are five interior general equilibria, marked by colored dots in the

figure. A general equilibrium is stable when a2 (a1) crosses a1 (a2) from below at points at which both

a2 (a1) and a1 (a2) are downward sloping. Here, general equilibria (i), (iii), and (v) are stable, while

(ii) is general-equilibrium unstable (a2 (a1) crosses a1 (a2) from above) and (iv) is partial-equilibrium

unstable (a2 (a1) is upward sloping at the crossing).

Consider an increase in noise in field 1. By Proposition 2.d, a1 (a2) shifts to the right (dashed blue

curve). All stable equilibria satisfy both own and cross comparative statics, (16) and (17), given that at

a stable equilibrium a2 (a1) slopes down and is flatter than the downward-sloping a1 (a2).

5 Empirical Validation: The 2014 ERC Funding Reform

This section exploits the natural experiment of the 2014 reform of the European Research Council

(ERC) funding rules to test and quantify the central prediction of our theory about the impact of noise

on applications and budget shares.
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Figure 7: Changes in Budget Shares in ERC Funding by Panel.
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Notes: This figure shows the relative change in funding for each ERC panels for the years 2009-

2013 compared to 2016-2021, leaving out the years around the 2014 reform. LS: Life Sciences,

PE: Physical Sciences and Engineering, SH: Social Sciences and Humanities. LS01 covers molec-

ular biology, biochemestry, structural biology and molecular biophysics. SH3 covers demography,

sociology, anthropology, education and communication. Source: ERC data.

5.1 Institutional Background

The ERC funding scheme was set up in 2007 by the European Union and has since then funded over

10,000 researchers across all fields of research with a budget of about 1.7 billion euros per year. Before

2014, ERC used to set the budget for each of the three disciplinary domains, respectively at about 39

percent for Life Sciences (LS), 44 percent for Physical Sciences and Engineering (PE), and 17 percent

for Social Sciences and Humanities (SH). Within each of these domains, the budget was then allocated

to panels in proportion to the budgetary demand by proposals submitted to the panels within the same

domain according to PA. From 2015 the ERC started allocating funds proportionally across all panels,

making a panel’s budget dependent on the applications to panels from all three domains.26 As shown in

Figure 1, the relative budgets of the three domains were stable until the date of the reform, but started

to diverge after 2015 with a sharp decline in the budget share devoted to LS and an increase for SH.

The reform had also consequences within domains as shown in Figure 7. Within SH, panels such as

environmental studies, geography, and demography (SH3), cultural studies (SH5), and history (SH6)

26For example, up to 2014 SH1’s (economics and management) budget depended only on applications submitted to SH

panels, but from 2015 it was linked to applications to all panels in LS, PE, and SH.

24



saw an increase in the share of their budget, whereas the relative budget of economics and management

(SH1) stayed constant. Within LS, a number of basic-research panels ranging from molecular biology

(LS1) to neurosciences (LS5), saw a sustained decline, whereas more applied panels like non-medical

biotechnology (LS9) had a small increase in their budget share. Whether these large changes in budget

allocation can be explained by evaluation noise requires a more precise evaluation that we conduct

below.

5.2 Econometric Specification

Proposition 3 relates the number of applications aist to evaluation noise, σ i, where s indicates the se-

niority of the grant call.27 To each panel we associate a panel group Git within which budget allocations

are made in year t, where Nit indicates the number of panels in Git . Group membership is changing

over time, due to the reform of the ERC funding described above. Before the reform, panels belonging

to the same domain were competing for funds only with other panels belonging to the same domain;

thus, panels are assigned to three groups depending on their domain LS, PE, and SH. After the reform,

panels started competing for the overall budget regardless of the domain—thus all panels are assigned

to a single group regardless of their domain.

The model developed above implies that the level of applications in a given panel i depends both on

the reviewer noise in that panel as well as the noise in the panels in the same group. For the empirical

analysis, we hypothesize that applications in a panel depend on the difference σ i− σ̄ t(i), where σ̄ t(i)

is the average of the reviewer noise in the relevant group to which the panel belongs, Git . We estimate

the following econometric model with a classic difference-in-difference structure

aist = α is+α t+β a [σ i− σ̄ t(i)]+ ε ist . (18)

We allow for panel times seniority fixed effects (α is) as well as year fixed effects (α t). The identifying

variation derives from the reform that changed the funding allocation and its specific effect across pan-

els. We supplement the analysis by relating the resulting share of the budget allocation to each panel

and seniority call, Bist , to evaluation noise in a similar way as in equation (18) and we denote the mar-

ginal effect of evaluation noise on the budget share by β B. The regression assumes that the disturbances

ε ist are potentially heteroskedastic, contemporaneously correlated across panels, and autocorrelated.

5.3 Measuring Evaluation Noise

In order to estimate equation (18), we construct a measure of evaluation noise σ i for each panel. We

relate evaluation noise, σ i, to agreement among grades of reviewers evaluating grant applications in

27The ERC has annual calls for three separate levels of seniority: Starting, Consolidator, and Advanced grants.
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the field represented in a given panel. Panels in which a larger share of reviewers agree on a grade are

panels with lower noise.

Given that reviewer evaluations at the ERC are not available, we quantify evaluation noise by re-

search field using data on grant evaluations at the Norwegian Research Council (RCN). We obtained

complete data including grades for the universe of RCN applications, whether successful or not over

an extended period from 2002 to 2021. We focus on all the proposals that were submitted within the

FRIPRO program, which funds curiosity-driven academic research proposed by researchers across all

disciplines in a similar way as the ERC. The median amount of the grant is about 1.3 million dollars in

2020 and is awarded to individual researchers, rather than research centres. The referees are mostly se-

nior scholars of international standing with a median age of 52 and based in 42 different countries, with

the UK, Germany, and Sweden being the most frequent origin in 2020-2021. Given that the setting is

comparable to the ERC, we assume that the evaluation dispersion at the RCN and the ERC are similar.

To evaluate reviewer agreements in the panels defined by the ERC, we need to assign each RCN

application to one of the 25 ERC panels. We then measure reviewer agreements based on the grades of

each application in a given panel. We explain each step below.

The FRIPRO program is divided into broad domains based on the fields of the applicant. Given that

FRIPRO domains are similar to those used at the ERC, it is straightforward to assign each application

to one of the ERC domains (LS, PE, and SH).

The next step is to assign each RCN application to one of the ERC panels within each domain.

There are 6 panels in the SH domain, 10 in PE, and 9 in LS. To this end, we exploit text information

to construct a prediction algorithm to assign applications into panels. We use text from both titles and

abstracts of ERC and RCN applications. We use a total of 10,962 ERC applications (corresponding to

the universe of successful applications between 2007 and 2020) and 9,964 RCN applications (including

both successful and unsuccessful applications). In both sets of applications, the text (title and abstract)

describing the research project has a total of about 2,100 characters corresponding to about 300 words.

The classification is done using machine learning techniques combining BERT (Biredictional Encoder

Representations from Transformers) with a neural network algorithm to classify each application. Ap-

pendix C.1 provides more details on the method. The validation accuracy ranges from 74 to 83 percent.

In the main analysis, we allocate each application to an ERC panel, based on the highest predicted

probability. As a robustness check, we also perform a bootstrap analysis where we randomly assign a

given application to a panel according to the vector of probabilities of belonging to a particular panel.

Having assigned RCN applications to ERC panels, we develop a measure of evaluation noise for

each ERC panel based on the agreement among reviewer grades in the RCN applications assigned to

that panel. Overall, we have 39,077 observations of RCN reviewer grades, or about 4.05 grades per

application. We calculate a measure of reviewer agreement based on all RCN applications that we

assigned to a particular ERC panel, using the grades that each reviewer gave to the application.
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Figure 8: Interrater Agreement by ERC Panel.
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Notes: This figure shows the interrater agreement, computed as Gwet’s AC, based on reviewer

grades for RCN funding applications. Each application has been assigned to an ERC panel, based

on text analysis. LS: Life Sciences, PE: Physical Sciences and Engineering, SH: Social Sciences

and Humanities. SH06 covers history, whereas PE01 covers mathematics. Source: RCN and ERC

data.

We borrow methods and statistics developed in education and psychology for measuring reviewer

agreement based on a comparison of grading patterns of multiple evaluators. The simplest measure

is the percentage agreement between reviewers, i.e., the number of times any pair of reviewers agree

on the same grade divided by the number of possible pairs. This measure tends to over-estimate the

amount of agreement as it does not take into account chance agreements that would occur (Cohen 1960,

1968). To adjust for chance agreements, measures such as Cohen’s kappa, Fleiss’ kappa, Gwet’s AC

and Brennan AC have been developed; see Gwet (2014) for a review and Appendix C for further details.

We compute these different measures and we find them to be highly correlated with each other, with

pair-wise correlations ranging between 0.84 to 0.99.

For illustration, Figure 8 plots the interrater agreement computed as Gwet’s AC. The largest agree-

ment among reviewers are in panels belonging to the PE domain, and in particular in mathematics

(PE01) and universe sciences (PE09), while the lowest agreement occurs in the SH domain, especially

in history (SH06) and in cultural studies (SH05). Table 3 in Appendix C provides a complete list of

different agreement measures across all panels, with standard errors. As a measure of evaluation noise

we use minus the interrater agreement measure.
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Table 1: Effect of Evaluation Noise on Funding Outcomes

Evaluation noise Requested Budget

based on: Funding (β a) Shares (β B)
Percent agreement 0.305∗∗∗ 0.372∗∗∗

(0.061) (0.119)

Cohen kappa 0.303∗∗∗ 0.291∗
(0.078) (0.15)

Fleiss kappa 0.31∗∗∗ 0.301∗∗
(0.079) (0.152)

Gwet AC 0.305∗∗∗ 0.375∗∗∗
(0.06) (0.118)

Brennan AC 0.305∗∗∗ 0.372∗∗∗
(0.061) (0.119)

(0.129)

Observations 845 850

Note: This table shows the effect of evaluation noise computed from different inter-reliability agreement on the requested

funding, the probability of funding and allocated budget shares, see equation (18). The coefficients are expressed in standard

deviation effects. Each cell is a separate regression, controlling for time and panel*seniority fixed effects. Panel-corrected

standard errors are calculated using a Prais-Winsten regression, where a panel*seniority specific AR(1) process is assumed.

This also allows the error terms to be panel*seniority specific, heteroskedastic, and contemporaneously correlated across

panels*seniority groups. Significance level: *** p<0.01, ** p<0.05, * p<0.1.

5.4 Effect of Evaluation Noise on Applications

The estimated coefficients β a and β B from equation (18) are displayed in Table 1. The table displays

five regressions, based on different definitions of the evaluation noise. All effects are expressed in stan-

dard deviation changes. Column 1 displays the results for grant applications. A one standard increase

in the evaluation noise in a field increases applications in that field by 0.3 of a standard deviation. The

effect is rather similar when using different definitions of reviewer agreement (and therefore evaluation

noise). Given the econometric model, the comparative statics predictions of Proposition 3 translate to

∂aist

∂σ i

= β a > 0
∂aist

∂σ i′
=−β a

Nit

< 0, i′ ∈ Git . (19)

We thus find empirical confirmation for the predictions of our theory. Turning to the effect of evaluation

noise on grant allocation shares, we also find consistent and statistically significant effects that

∂Bist

∂σ i

> 0. (20)

A standard deviation increase in own evaluation noise increases the budget of that field by 0.3 to

0.4 of a standard deviation, or by 0.5 percent from a baseline of 4 percent. In all four specifications,

the reform led to a significant change in the level of funding (and therefore applications), with the ERC

28



fields with the lowest evaluation noise lagging behind. Appendix Table 4 shows that the results are

robust to using a probabilistic classification of proposals into ERC panels.

Overall, we conclude that a simple model that accounts for differences in evaluation noise across

fields is able to explain the changes in ERC budget allocations that occurred after the reform, even at

the finer 25-panel subdivision.

6 Endogenous Evaluation Noise: Game among Fields

Our baseline analysis takes the evaluation noise in each field as exogenously given. However—given

that under proportional apportionment the application level and thus the budget allocated to a field

increases in noise—each field acting as a collective might be tempted to raise its noise level, for instance

by reducing the quality of panelists. Coordination at the level of each field could be achieved through

a representative appointed by the scholarly association in the field. Similarly, in the application to

grading, teachers in each course could easily add noise to their grades. To analyze these situations,

this section sketches a game-theoretic extension of the model in which fields independently choose the

noise level in their own evaluation process.

As a proof of concept, consider two fields, i= 1,2, with additive noise and an identical distribution

of types, Gi (θ) = G(θ). In a first stage, suppose that each field i acts as a player and simultaneously

sets its noise level σ i aiming to maximize the merit of the funded projects in the field

Ui (σ i,σ−i) :=
∫

θ

G−1(1−ai)
θ

[
1−F

(
G−1(1−ai)+σ iF

−1(1− c/v)−θ

σ i

)]
g(θ)dθ , (21)

where ai = ai (σ i,σ−i) is the level of applications that results in the general equilibrium in the second

stage and σ−i is the noise in the other field.28 Suppose that the action set for field i is [σ i
0,∞): field i

can voluntarily increase its level of noise, but cannot decrease it below a set level σ i
0 corresponding to

the field’s initial “intrinsic” noise level. While decreasing the level of noise is prohibitively costly, the

field can freely increase the level of noise above σ i
0.

The noise levels (σ i,σ−i) chosen in the first-stage game are publicly observed. In the second stage,

candidates in each field apply and the total budget B is allocated to the two fields in proportion to

applications. For any given (σ i,σ−i), the second-stage equilibrium is then determined by the solution

of the system∫
θ

G−1(1−ai)

[
1−F

(
G−1(1−ai)+σ iF

−1(1− c/v)−θ

σ i

)]
g(θ)dθ =

ai

a1+a2

B

for i= 1,2.

28Clearly, if instead fields only cared about maximizing the number of grants assigned to their field, each field would aim

to make its signal as noisy as possible.
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Figure 9: Equilibrium regimes in the field game with normal noise and normal types. The blue and red

curves are the best replies and the green curve is level curve for the total payoff at (σ∗,σ∗).

For an example with ε i and θ i normally distributed, Figure 9 displays field 2’s best reply σ2 =

R2(σ1) in red as a function of field 1’s noise and similarly σ1 = R1(σ2) in blue. To understand the

shape of the best replies, note that when evaluation in the other field is perfect, σ−i = 0, it is enough

for field i to set an infinitesimal σ i to obtain the entire budget. As σ−i increases, field i obtains less

budget, resulting in reduced applications. Then, provided that the expected merit of the marginally

funded applicant is positive, it becomes optimal to increase noise to obtain a larger budget. On the

one hand, holding fixed the level of applications, an increase in noise reduces the effectiveness of

evaluation and thus has a negative direct effect on the field’s payoff—this effect becomes stronger as

noise increases. On the other hand, as noise increases, equilibrium applications rise, in turn increasing

the budget allocated to the field. At the best reply level of noise, the negative effect associated with

the reduced quality in winning candidates is exactly offset by the positive marginal effect of obtaining

more budget. Raising the level of noise past this level reduces the field’s payoff. Best replies are upward

sloping for low levels of noise and concave—increasing noise has diminishing marginal returns.29

Depending on the initial level of noise σ0 =
(
σ0

1,σ
0
1

)
, there is always a unique stable equilibrium,

with a basin of attraction equal to the entire action profile. As illustrated in Figure 9, there exists

a benchmark level of noise σ∗ > 0, such that there are three equilibrium regimes depending on the

parameters:

1. Low initial noise in all fields: When σ0
1 ≤ σ∗ and σ0

2 ≤ σ∗, both fields sets their noise to the

29Best replies can eventually decrease if the expected type in the population of candidates is negative and the fraction of

applicants is sufficiently high, for example because the budget is high relatively to c/v.
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same level σ∗, resulting in the symmetric equilibrium (σ∗,σ∗). For these initial conditions, noise

is equalized across fields—resulting in a fully-levelled playing field in the equilibrium of the field

game.

2. Highly asymmetric initial noise across fields: When σ0
1 ≥ σ∗ and σ0

2 ≤ R2(σ
0
1), the equilib-

rium is on the red curve
(
σ0

1,R1(σ
0
1)
)
, as illustrated by the vertical arrows. In this case, field 2

increases its noise up to R2(σ
0
1), while field 1, which would prefer to decrease its noise, keeps it

at the initial σ0
1. Symmetrically, when σ∗ ≤ σ0

2 and σ0
1 ≤ R1(σ

0
2), the equilibrium is on the blue

curve
(
R1(σ

0
2),σ

0
2

)
, as illustrated by the horizontal arrows. For parameters in this second region,

the increase in noise by the less noisy field only partly levels the playing field—part of the initial

asymmetry in noise persists in equilibrium.

3. High initial noise in all fields: When σ0
1 ≥ R1(σ

0
2) and σ0

2 ≥ R1(σ
0
1) (and thus σ0

1 ≥ σ∗ and

σ0
2 ≥ σ∗), both fields do not modify their noise levels. For these parameters, the equilibrium is

at
(
σ0

1,σ
0
2)
)
, equal to the initial level in both fields—all the initial asymmetry in noise persists.

What is the effect of the increase in noise on the total payoff in the two fields, U1(σ1,σ2) +

U2(σ1,σ2)? The solid curve corresponds to the level curves of the total payoff achieved at (σ∗,σ∗).

Strikingly, we conclude that when fields are only allowed to increase (but not to decrease) their noise,

starting off from a relatively low but sufficiently asymmetric level of initial noise, the addition of noise

in the field game can generate a gain in total payoff. For example, suppose that initially the noise levels

are (σ1
0,σ

2
0) = (1,1/3) outside the green isopayoff, but within the parameters that lead to (σ∗,σ∗).

The social planner gains by allowing field 2 to raise optimally its level of noise to R2(1), to which field

1 replies with R1 (R2 (1)), eventually reaching (σ∗,σ∗) with total payoff

U1(σ
∗,σ∗)+U2(σ

∗,σ∗)>U1(σ
1
0,σ

2
0)+U2(σ

1
0,σ

2
0).

In this second-best world, the improvement in efficiency associated with a more balanced allocation of

the budget across fields is larger than the reduction in efficiency due to the less meritocratic allocation

within fields.

7 Sorting across Fields/Courses

To isolate the effect of the supply-side interdependence induced by the budget allocation rule, our

baseline model restricts candidates to apply in a single field. However, in the context of grantmaking,

researchers who work at the crossroad between fields often have some leeway in choosing the field

where they stand a better chance of funding. Similarly, university students, when selecting their major

field and elective courses, might take into account their chance of obtaining an honors degree, which is
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typically awarded to the top 10 or 15 per cent of students in the class. This section extends the model

to incorporate the demand-side interdependence generated by the ability of candidates to select which

field to apply in—or which course to enroll in.

In the spirit of Roy (1951), suppose that candidates are characterized by two dimensions of talent,

θ 1 and θ 2, with identical and independent distributions, Gi(θ i) = G(θ i). Candidates choose to apply

in either of two fields, where field i evaluates dimension i of the applicant’s θ i through noisy signal

xi = θ i+σ iε satisfying the MLR property. For example, candidates who apply to physics are evaluated

in terms of their mathematical talent, while verbal talent matters for literature candidates.

On the supply side, awards are allocated either (i) through a fixed budget, Bi < 1/2, or (ii) in pro-

portion to applications, aiB, where B< 1 represents the total budget and ai the number of applications

in field i.30 On the demand side, we set for simplicity the application cost to zero in both fields, ci = 0.

Nevertheless, given that candidates can submit a single application, they face an opportunity cost equal

to the foregone probability of winning a grant in the other field. In equilibrium candidates choose the

field that maximizes their winning probability.

With either budget allocation rule, by the MLR property the evaluator implements a cutoff accep-

tance policy to assign grants according to xi ≥ x̂i. The equilibrium is characterized by (i) the demand-

side indifference condition

1−F

(
x̂1− θ 1

σ1

)
= 1−F

(
x̂2− θ 2

σ2

)
, (22)

which defines an upward sloping indifference boundary θ̂ 2 (θ 1)= x̂2+
σ2

σ1
(θ 1− x̂1) in the space (θ 1,θ 2)

such that for any given θ 1 types θ 2 ≤ θ̂ 2 (θ 1) apply to field 1 and otherwise apply to field 2 and (ii)

supply-side budget equations for each field

∫
θ̄

θ

∫
θ̂ 2(θ 1)

θ

[
1−F

(
x̂1− θ 1

σ1

)]
g(θ 1)g(θ 2)dθ 2dθ 1 = B1,∫

θ̄

θ

∫
θ̄

θ̂ 2(θ 1)

[
1−F

(
x̂2− θ 2

σ2

)]
g(θ 1)g(θ 2)dθ 2dθ 1 = B2.

To illustrate the construction, start off from initial noise levels σ1 and σ2, resulting in equilibrium

acceptance standards x̂1 and x̂2. The solid black line in Figure 10 illustrates the indifference boundary

resulting with symmetric noise σ1= σ2 and acceptance standards x̂1= x̂2, with axes expressed in terms

of type percentiles (G(θ 1) ,G(θ 2)).
31 What is the impact of an increase in σ2/σ1, the noise in field 2

relative to field 1, on equilibrium applications in the two fields for the case with fixed budget?

First, the change in relative noise has an impact on selection. Holding fixed the acceptance standards

(x̂1, x̂2), the increase in σ2/σ1 induces an anti-clockwise rotation of the indifference boundary (22)

30If budget were abundant B> 1, grants would always be awarded to the entire population.
31Beyond the symmetric case, the indifference boundary θ̂ 2 (θ 1) in the type percentile space is non-linear.
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Figure 10: Comparative statics with respect to an increase in noise σ2. Panel (a) on the left represents

case (a) in which the increase in noise in step 1 results in a reduction in a2 holding fixed (x̂1, x̂2) at the

initial level. Panel (b) on the right represents the opposite case.

around (G(x̂1) ,G(x̂2)), corresponding to the dotted green curve. Types in the upper-right region to the

right of the dashed red curve and above the black curve—who are highly talented in both dimensions—

have an incentive to flee the relatively noisier field 2 and join field 1, where they are now relatively

more likely to clear the acceptance bar. Intuitively, the winning probability of these candidates is now

higher in the relatively more meritocratic field 1, even though they are even more talented in dimension

θ 2 than θ 1. At the same time, candidates in the lower-left region (to the left of the dashed red curve and

below the black curve) with lower talent in dimension θ 1 now find the noisier field 2 more attractive,

even though they are relatively worse in dimension θ 2 than θ 1. Overall, the more meritocratic field 1

attracts more talented candidates, while less talented candidates prefer to hide in the noisier field 2.

To understand how noise impacts the level of applications in the two fields, note that as a result

of the first step, application levels either (a) decrease or (b) increase, depending on the relative size of

the regions of types switching field, as represented respectively by the two panels in Figure 10. As a

proof of concept, consider the extreme case in which evaluation becomes perfect in field 1, σ ′1 = 0,

resulting in a vertical indifference boundary (red dotted curves). The second step consists in adjusting

the acceptance standard in field 1 until applications in field 1 are reset to the initial level. This is

achieved at x̂1 = G−1 (1/2), given that we started from a symmetric situation. In case (a), x̂1 should

be reduced to increase applications by translating the indifference boundary to the dashed red line—by

construction the area to the right of the dashed curve and to the left of the black curve (high-merit

applications gained) is equal to the area to the left of the dashed curve and to the right of the black

curve (low-merit applications lost). A similar construction applies to case (b), when x̂1 should instead
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be increased to move the indifference boundary to the left and thus reduce applications in field 1.

Third, with perfect information all applicants in field 1 are awarded a grant for sure.32 Having

restored applications to the initial level, grant awards would be 1/2> B1, thus overspending the initial

budget. When the budget is fixed, to re-equilibrate the imbalance in the budget, x̂1 must necessarily

increase relative to the level in the second step, shifting the indifference boundary to the right, as

represented by the red curves in the two panels of figures. Hence, in the new equilibrium a1 must

decrease to a′1 = B1 < 1/2 and thus a2 must increase to a′1 = 1−B1 > 1/2.

Finally, turn to the outcome under proportional budget allocation. Unraveling results in field i when

evaluation is perfect in that field (σ i = 0) or completely noisy in the other field (σ−i → ∞). Under

proportional apportionment all types can guarantee the average winning probability by applying to

field 2—thus, candidates who would win with probability below this level leave field 1, and the process

continues until field 1 unravels, a1 = 0. More generally, when candidates choose field with normal

types and normal noise we verified numerically that (i) equilibrium applications increase in the field’s

noise and decrease in the noise in the other field and (ii) the effect is stronger under proportional than

fixed budget.33

8 Organization of Funding with Noisy Evaluation

8.1 Design of Funding Rules

The optimal allocation for the grantmaker maximizes the total merit across fields

N

∑
i=1

∫
θ̄ i

G−1
i (1−ai)

θ

[
1−Fi

(
x̂D (ai)−θ

σ i

)]
gi (θ)dθ

subject to the demand system x̂D
i (ai) =G−1

i (1−ai)+σ iF
−1
i (1− ci/vi) given the total budget available

for distribution

N

∑
i=1

Ai (ai) =
N

∑
i=1

∫
θ̄ i

G−1
i (1−a)

[
1−Fi

(
x̂D

i (ai)−θ

σ

)]
gi (θ)dθ = B.

To illustrate how the equilibrium compares to the optimal allocation, consider initially two symmet-

ric fields with normally distributed types and signals and a PA budget rule. The identical equilibria in

the first and second field are represented in the left and right panel of Figure 11 by the black dot marked

32In general, the composition of applicants in field 1 has now improved in the first-order stochastic order. Actually, the

density for types below (above) a critical level θ̃ is reduced (increased), implying stochastic dominance.
33We also verified that the main results of the paper extend to the field choice model with normal noise when

types in each field follow the generalized normal distribution (also known as exponential power) with density g(θ) =

βe−(|θ−µ|/α)β / [2αΓ(1/β )], encompassing the Laplace (β = 1), normal (β = 2), and uniform (β →∞) distributions. When

the type distribution has increasing hazard rate (β > 1), the equilibrium is unique; unraveling results when the upper tail is

thicker than exponential, β < 1.
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Figure 11: Optimal design of responsiveness of allocation rule. The left (a) and right (b) panels repre-

sent equilibria in field 1 and 2 respectively, where award and budget functions cross, The black dots (i)

are the initial symmetric equilibria. The red dots (ii) are the equilibria with PA allocation following an

increase in noise in field 1. The blue dots are the optimal allocations, which can be implemented with

a subproportional budget rule in which the budget is less responsive in field 1 than 2.

as (i), at the crossing of the red curve Ai (ai) and the black curve Bi (ai). In this symmetric setting, the

PA equilibrium allocation is also optimal.

As noise dispersion σ1 in the first field increases, the award function in field 1 shifts down to the

dashed red curve in the left panel, so that the partial equilibrium applications increase in field 1 from

the level corresponding to the black dot (i) to the green dot. The right panel shows the reduction in

the budget in field 2 to the dashed curve due to the increase in applications in field 1, as we adjust to

the general equilibrium represented by the red dot (ii). In turn, this reduction in applications in field

2 increases the budget available in field 1 to the dashed curve in the left panel, leading to a further

increase in applications, eventually resulting in a new general equilibrium at the red dot (ii).

As noise increases in field 1, it becomes optimal for the grantmaker to transfer some of the overall

budget from the noisier field 1 to the relatively more accurate field 2, resulting in the grantmaker optimal

allocation (iii) marked by the blue dots. Departing from proportional allocation PA, the grantmaker can

implement this optimal allocation within the QPA class of budget rules by reducing proportionality ρ2

in the second field.

8.2 Pooling Fields

In the baseline model each panel evaluates a single field and is characterized by a field-specific level of

evaluation noise for all applicants in the panel. In reality, panels at research funding organizations are
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Figure 12: Impact of pooling fields. The distributions of scores for field 1 and 2 are represented in green

and black respectively, When fields are evaluated in isolation, grantees correspond to the top segments

of the separate distributions of scores for field 1 (green) and 2 (black). When fields are merged, scores

follow the mixture distribution (blue) resulting in a loss of awards in field 1 (dashed red) and a gain in

awards in field 2 (dashed green).

typically assigned applications that belong to different fields. What is the impact of pooling heteroge-

neous fields into a single panel, relative to assigning each field to a separate panel?

As a proof of concept, suppose there are two fields within the same discipline. Think of the basic and

clinical research within a medical specialty such as pancreatic cancer research. Suppose that evaluation

is noisier for clinical than basic research, σ2 > σ1.

It is useful to reinterpret the selection of grantees in a constant payline equilibrium for a single

field as follows. Express the acceptance standard, rather than in terms of the signal x, in terms of the

corresponding posterior expectation Eσ i
[θ |ai,x] about the application merit θ computed via Bayes’

rule. Given ai, the constant payline acceptance standard expressed in terms of the posterior expectation

(or score) Eσ i
[θ |ai,x] is then

1−Hi

(
Êi

)
= p.

Given that the score Eσ i
[θ |ai,x] is an increasing function of x by the MLR property, the two rep-

resentations are clearly equivalent when all applicants are evaluated with a common signal structure

Fσ i
, as in the baseline model. The expected merit score of the marginally accepted candidate satisfies

Eσ i
[θ |ai, x̂i] = Êi, linking x̂i and Êi.

For a field evaluated in isolation with noise σ1 and given application level a1, the score Eσ1
[θ |a1,x]

is distributed according to H1. Under constant payline the marginal score is Ê1, as illustrated by the
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green curve in Figure 12 when both types and signals are normally distributed. Similarly, for a noisier

field evaluated in isolation, the black curve corresponds to distribution H2 of scores Eσ2
[θ |a2,x], result-

ing in marginal score Ê2. As illustrated for this example, a reduction in noise (or increase in accuracy)

induces a mean-preserving clockwise rotation in the score distribution.34

Turn now to the case in which applicants in the two fields are pooled in the same panel. Suppose that

applications are still evaluated by the same experts in each field and that σ
1

and σ2 remain unaffected.

The pooled scores in the joint panel are distributed according to a mixture of H1 and H2, with weights

determined by the relative level of applications in the two fields

H12 =
a1

a1+a2

H2+
a2

a1+a1

H2,

corresponding to the dashed blue curve in Figure 12 for the case a1 = a2. The resulting marginal score

for given payline p is now Ê12, solving 1−H12

(
Ê12

)
= p.

For a realistically low payline—when the winning scores with pooled fields is above the rotation

point—we have

Ê2 < Ê12 < Ê1,

as illustrated in the figure. Intuitively, the winning proposals above the payline are disproportionately

originating from the more accurate field a, where scores are more extreme. Applicants in field 1 with

scores between Ê12 and Ê1 (the green dashed segment in the figure) are now awarded grants at the

expense of applicants in field 2 with scores between Ê2 and Ê12 (red dashed segment). The more accu-

rate field is able to increase the fraction of successful applications above the payline p and thus enjoys

a higher effective payline, 1−H1

(
Ê12

)
. Conversely, the noisier field experiences a lower effective

payline, 1−H2

(
Ê12

)
.

Through this mechanism, pooling fields with heterogeneous noise dampens the perverse effect of

meritocracy on the level of applications. The more consensual field obtains the lion’s share of grants

within the panel. This pattern is in line with Martin, Lindquist, and Kotchen’s (2008) empirical finding

that basic research has a higher success rate than clinical research at the NIH, where paylines across

panels (also known as study sections) are nevertheless equalized. Clinical research suffers from being

less consensual because it is pooled with basic research within the same panels, consistent with our

prediction. If clinical studies and basic science were regrouped in separate panels, their success rate

would be automatically equalized. However, according to our analysis, more applications would be

submitted for clinical studies and fewer for basic science.

Noisier fields thus have a strong incentive to split from more consensual fields and lobby to have

their own separate panel. Not only will the fraction of accepted applications increase for noisier fields

34In the limit as signal noise σ → ∞, the distribution of the posterior expectation becomes a step function at the prior

E[θ |a]. As σ → 0, the distribution of the posterior expectation converges to the prior distribution, G(θ |a).
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that set up their own panel, but also incentives to apply will be stepped up, in turn resulting in an

increase in awards. Conversely, more consensual fields prefer to be merged with noisier fields.

While under proportional allocation fields that are assigned to separate panels have a perverse incen-

tive to increase noise relative to the other panels, pooling with other fields induces a virtuous incentive

to decrease their noise relative to other fields in the same panel, thus gaining awards at the expense of

other fields within the same panel.

8.3 Benchmarking

This logic can also shed light on a benchmarking practice adopted by the NIH, according to which per-

centiles are computed by pooling scores across recent evaluation cycles at the same panel, also known

as study sections. As explained by National Institutes of Health (1988), percentiles for applications

in each evaluation cycle are calculated by pooling current scores with scores given by the same study

sections to the applications evaluated in the preceding two cycles, a system that is still in operation

today.35

What might look like an inessential tweak to the payline system has important consequences. If

some applications were submitted in the previous two circles, at−1+ at−2 > 0, even if in the current

cycle evaluation were perfect, σ t = 0, some budget would always be available for distribution. Hence,

unraveling would not result. More generally, benchmarking dampens the impact of noise on applica-

tions by reducing the responsiveness of the budget to applications.

Similar to pooling, benchmarking can actually reverse the perverse comparative statics of propor-

tional allocation with respect to noise. By improving its accuracy in this cycle compared to the previous

cycle, a panel is able to increase the fraction of successful applications above the payline. Under the

reasonable assumption that reviewers aim at assigning as many grants as possible to applicants in their

panel (possibly at the expense of other panels), they now have an incentive to be more accurate than in

the previous cycle, so as to increase dispersion in the posterior expectation and thus increase the number

of funded applications in the panel. Through this channel, the NIH method of computing percentiles

relative to the applications previously evaluated by the same panel incentivizes accurate evaluation,

triggering virtuous incentives to increase accuracy, in contrast to the vicious incentives highlighted in

our baseline analysis.

9 Contribution to Literature

Economists have given short shrift to grantmaking. While we perform a largely positive analysis of

commonly used non-market resource allocation schemes, most previous work focuses on normative

35See https://www.niaid.nih.gov/grants-contracts/understand-paylines-percentiles for a detailed account.
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aspects. In a pioneering application of marginal analysis, Peirce (1867) sketches the normative theory

of resource allocation across research fields for a planner. As stressed at least since Arrow (1962),

market forces tend to underprovide research, mostly because invention is non-rival. Governments,

however, have limited information about the benefits of research in different fields. Weisbrod (1963)

offers an early attempt to quantify the social benefits of medical research across diseases.36 Weinstein

and Zeckhauser (1973) link the problem of the optimal allocation of budget to fields to the decision

theoretic approach underlying hypothesis testing.

Turning to positive analyses, Wildavsky (1964) describes the incremental nature of the budget ap-

portionment process for determining government funding of the NIH in the early days; our static model

abstracts from dynamic considerations.37 Zuckerman and Merton (1971) notice that acceptance rates

at leading scholarly journals vary across academic disciplines, with higher rejection rates in social

sciences and humanities compared to physical sciences; our analysis shows that the performance of al-

location rules with proportional elements is particularly problematic when fields are heterogeneous.38

Rejection rates also vary along similar lines across directorates at the National Science Foundation.39

In terms of theory, Lazear (1997) outlines a lottery model of research funding (researchers can

increase their chance of obtaining a grant by buying more tickets) but abstracts away from self-selection

and noisy evaluation on which we focus. Scotchmer (2004, Chapter 8) formulates a simple dynamic

model of demand for funding where high-type researchers self-select into applying and are disciplined

to deliver because they expect to be funded in the future. Building on a setting with continuous types

and scale-location signals similar to ours, Leslie (2005) sketches the demand side for submissions to

academic journals—in addition to a complete analysis of the demand side, we add (noisy) evaluation

on the supply side and characterize the equilibrium depending on the budget allocation rule.40 See also

Stephan’s (2012, Chapter 6) discussion of science funding and Azoulay and Li’s (2020) overview of

the fledgling empirical literature on grant funding for science.41

In our model the application cost, akin to what Nichols and Zeckhauser (1982) call an ordeal,

induces more worthy applicants to self-select. In our model, the evaluator uses an additional noisy

signal about the applicant’s type so that the application cost acts as an endogenous screening device.

36In a review of the NIH, Zeckhauser (1967) also argues that disease burden should guide funding choices.
37See also the formalization by Davis, Dempster, and Wildavsky (1964). Savage (1999) gives a historical account of the

influence process behind university earmarks in comparison to merit-based public funding of research.
38Zukerman and Merton (1971, page 77) write: “. . . the more humanistically oriented the journal, the higher the rate of

rejecting manuscripts for publication; the more experimentally and observationally oriented, with an emphasis on rigour of

observation and analysis, the lower the rate of rejection.” Referee please take notice.
39Cole and Cole’s (1981) landmark study documents differences in agreement among reviewers (as measured by inter-

rater reliability) across fields at the NSF.
40See also Cotton (2013) and Taylor and Yildirim (2011), focusing on discrimination issues, which we skirt.
41Gans and Murray (2012) overview the main funding sources available for scientists (government, private firms’ internal

R&D, and foundations), with a focus on comparing their different disclosure and openness requirements. Boudreau, Guinan,

Lakhani, and Riedl (2016) investigate the role of the intellectual distance between evaluators’ expertise and the research

proposals in systematically shaping funding outcomes.
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The noise in the evaluation process thus plays a key role in our model as in the literature on statistical

discrimination, pioneered by Phelps (1972) and surveyed by Moro and Fang (2001). In that strand,

Cornell and Welch (1996) argue that competition for ranking in a tournament discriminates against

candidates the evaluator is less informed about. Our base model moots this channel by focusing on

an evaluator who is equally informed about applicants belonging to the same field. The new effect we

uncover, instead, operates across fields. Competition within a field with more noisy evaluation becomes

closer to a lottery and thus encourages more applications. In turn, when the budget of grants available

to a field increases in applications, the evaluator ends up inefficiently discriminating against candidates

evaluated with less noise—the opposite of Cornell and Welch’s outcome.

Within the agency literature, Che, Dessein, and Kartik (2013), Alonso (2018), and Frankel (2021)

largely focus on how to optimally constrain biased evaluators—in our model, instead, evaluators within

each field are unbiased. While our model zooms in on the noisy evaluation process of applicants, the

literature on tournaments and contests—from Lazear and Rosen (1981) to O’Keeffe, Viscusi, and Zeck-

hauser (1984), Moldovanu and Sela (2001), Che and Gale (2003), Siegel (2009), Gross and Bergstrom

(2019), and Fang, Noe, and Strack (2020)—mostly focuses on the incentives of contestants to exert

effort, from which we abstract. Closer to our setting, Morgan, Sisak, and Várdy (2018) analyze the

incentives of applicants to select different fields in a setting with exogenous supply, while we focus on

endogenously determining the supply through the budget allocation.42

At a technical level, we leverage Lehmann’s (1988) quantile-function approach to derive sharp pre-

dictions on the impact of evaluation noise.43 Exploiting the structure of the problem, where evaluation

noise in a field affects the other fields only through the budget allocation rule, we are able to obtain

unambiguous comparative statics. Our results linking comparative statics to stability are in line with

Samuelson’s (1947) correspondence principle; see Hale et al. (2014) for an overview of the tools. Rel-

ative to the literature on fair division of resources among claimants, recently summarized by Thomson

(2019), our model endogenizes the claims (applications are costly) and introduces imperfect verifica-

tion (evaluation is noisy).

10 Conclusion

Our analysis emphasizes the central role of evaluation noise across fields in the allocation of resources.

By developing a non-parametric approach to information, we derive the testable comparative statics

prediction that applications increase in noise in all stable equilibria. In addition to empirically validating

42We also abstract away from dynamic considerations. See Board, Meyer-ter-Vehn, and Sadzik (2020) for a model

of recruitment where the accuracy of evaluation endogenously depends on past recruits; Moisson and Tirole (2020) for

a foray into the dynamics of cooptation; and Bardhi, Guo, and Strulovici (2020) for a characterization of when costly

experimentation amplifies or dampens small differences in ability.
43This approach is little known in economics, with the notable exception of Persico (2000).
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this result, we extend the analysis to allow candidates to choose field or course, as is most relevant in

applications to course selection. Noisier fields are more attractive for weaker candidates who win with

lower probability, thus reinforcing our baseline comparative statics.

We also show that incentives of fields to add noise in their evaluation tend to rebalance initial

asymmetries, to the point of even increasing allocation efficiency in the spirit of second best. However,

when the initial noise is sufficiently high, initial asymmetries persist as in the baseline analysis. To

maximize efficiency, budget rules should be optimally designed by making the budget allocation less

responsive to applications in less noisy fields. Finally, the detrimental effect of noise on selection can

be dampened by pooling fields with heterogeneous noise. When pooled with noisier fields, less noisy

fields obtain the lion’s share of grants because their informative scores tend to be more extreme and

thus end up at the top of the score distribution.

Back to the specific proportional allocation PA rule that motivated our analysis, this rule appears

to be fair in treating all fields in the same way by automatically equalizing the fraction of successful

projects over applications across different fields. Proportional allocation also eliminates administrative

discretion and political meddling in funding allocation, given that the budget allocation is determined

automatically only on the basis of relative demand from applications across fields. As another im-

portant virtue, the proportional allocation scheme has the merit of flexibly responding to demand-side

signals. In spite of its simplicity, we argue that formula-based funding—as well as a general class of

sub-proportional allocation rules SPA we characterize—has important pitfalls when fields are hetero-

geneous, as they typically are.

Our analysis of proportional allocation immediately applies also to large research fellowships pro-

grams, such as the EU-wide Marie Skłodowska-Curie Action (MSCA) scheme that assigns its total

budget (6.16 billion euros for the period 2014-2020) in proportion to applications across all disci-

plines.44 The drawbacks our analysis highlights are particularly severe for mechanisms that link the

budget across very heterogeneous fields, as is the case for the ERC and MSCA, but perhaps less prob-

lematic for funders (like the NIH) that focus on research in a single domain (like medicine, even though

NIH study sections cover a wide variety of disciplines, methodologies, and topics).45

The bottom-up formula-based approach to funding apportionment analyzed here can be contrasted

to alternative top-down approaches, such as those prevailing at the NSF, in the UK, and Australia,

where legislators discretionally allocate the budget across programs, following a yearly consultation

process and a detailed proposal by the directors of the research funding organizations. Even at agencies

that adopt proportional allocation, success rates for different programs and across fields are regularly

published and closely monitored. While differences in success rates across fields in non-proportional

44The Canadian SSHRC Doctoral Fellowships program (covering all humanities and social sciences) also follows PA.
45While the great majority of NIH institutes/centers adopt the payline system and publish paylines, it is only understand-

able that some institutes/centers at the NIH prefer not to publish their paylines, thus retaining some flexibility when treating

proposals from different panels.

41



systems persist over time, there is an implicit pressure to reduce the budget for fields with higher success

rates in favor of fields with lower success rates.

General-interest academic journals are subject to a similar pressure to allocate space to different

subfields in proportion to submissions. When co-editors are given a common target acceptance rate,

fields with less accurate (or consensual) evaluation will attract more submissions.46 Similarly, univer-

sity admission boards are tempted to admit students to different programs in proportion to applications—

or to increase slots available in areas that attract more applications. Giving in to this temptation may

spark a race to the bottom in terms of quality of admitted students.
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A Proofs

This appendix establishes two simple lemmas that play a key role in Propositions 1 and 2, which are

proved in the text. Proposition 3 is proved in Appendix B.

Lemma 1 (Lehmann Equivalence) Noise increase in the sense of Lehmann

F−1
σ̄
(Fσ (x |θ) |θ) decreases in θ for any σ̄ > σ and for any signal realization x (23)

if and only if

Fσ

(
F−1

σ (q |θ) |θ ′
)

increases in σ for any θ
′ > θ and any percentile q ∈ [0,1]

according to (3).

Proof of Lemma 1. Fixing σ̄ > σ , θ
′ > θ and q ∈ [0,1], condition 3 gives

Fσ

(
F−1

σ (q |θ) |θ ′
)
< Fσ̄

(
F−1

σ̄
(q |θ) |θ ′

)
.

Define x= F−1
σ (q |θ) and y= F−1

σ̄
(q |θ), we can rewrite

Fσ

(
x |θ ′

)
< Fσ̄

(
y |θ ′

)
.
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Applying F−1
σ̄
(· |θ ′) on both sides, substituting y= F−1

σ̄
(Fσ (x|θ) |θ) in terms of x, we have

F−1
σ̄

(
Fσ

(
x |θ ′

)
|θ ′
)
< F−1

σ̄
(Fσ (x |θ) |θ).

Since q is arbitrary, any signal realization can be obtained as x = F−1
σ (q |θ), so that condition (23)

holds. The other direction proceeds along similar lines.

Lemma 2 (Top Percentile Dilation) With additive noise, Fσ (x|θ) = F
(

x−θ

σ

)
, the top-percentile dila-

tion ratio ρ(w) defined in (15) is increasing, decreasing or constant in w whenever the type distribution

G respectively has increasing, decreasing or constant hazard rate.

Proof of Lemma 2. Fix a′ > a . From the definition (14) of the percentile t(x̂(a)|w), we obtain

ρ(w) =
1−G(x̂(a′)−σF−1(1−w))

1−G(x̂(a)−σF−1(1−w))
=

1−G(θ(x̂(a′)|w))
1−G(θ(x̂(a)|w))

where we define θ(x̂(a)|w) = x̂(a)− σF−1(1−w) and θ(x̂(a′)|w) = x̂(a′)− σF−1(1−w). Given

that the acceptance standard x̂ is decreasing in applications a by the demand condition (6) where

θ̂ (a) = G−1 (1−a), for any w we have θ(x̂(a)|w) > θ(x̂(a′)|w). By the location structure we have
d

dw
θ(x̂(a)|w) = d

dw
θ(x̂(a′)|w)> 0, given that θ(x̂(a)|w) is the inverse of the winning probability, which

increases with θ for any level of applications a.

Denoting the hazard rate of G by h(θ) = g(θ)
1−G(θ) , we can write

1−G(θ) = exp

(
−
∫

θ

0
h(x)dx

)
.

Exploiting the fact that the exponential transforms quotients into differences, the additivity of the inte-

gral and θ(x̂(a)|w)> θ(x̂(a′)|w), we obtain

ρ(w) = exp

(∫
θ(x̂(a)|w)

θ(x̂(a′)|w)
h(x)dx

)
.

By Leibniz integral rule, collecting the term δ (w) := d
dw

θ(x̂(a)|w) = d
dw

θ(x̂(a′)|w), we have

d

dw
ρ(w) = ρ(w)δ (w)[h(θ(x̂(a)|w))−h(θ(x̂(a′)|w))].

As θ(x̂(a)|w)> θ(x̂(a′)|w) and δ (w)> 0, this quantity is positive/constant/negative if and only if h is

increasing/constant/decreasing.
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B Equilibrium with Multiple Fields

A general equilibrium aE =
(
aE

1 , . . . ,a
E
N

)
solves in every field i,

Ai(ai,σ i)

ai

=
Bi (ai,a−i)

ai

equating the average awards and the average budget per applicant. By the implicit function theorem,

the comparative statics with respect to noise are given by

∂a

∂σ
=−

[
∂ (A/a)

∂a
− ∂ (B/a)

∂a

]−1
∂ (A/a)

∂σ

where J = ∂ (A/a)/∂a−∂ (B/a)/∂a is the Jacobian matrix of the system with respect to applications.

By Proposition 1.d, Lehmann informativeness guarantees that ∂ (A/a)/∂σ is a negative diagonal ma-

trix and therefore the comparative statics have the same sign pattern as the inverse of the Jacobian,

J−1.

An equilibrium can also be interpreted as the steady state of a dynamic adjustment process: if excess

average grants are awarded in field i, A(ai;σ)/ai > B(ai)/ai, then the grantmaker raises the acceptance

standard, which induces fewer applications and reduces the average grants awarded; and vice versa.

Formally, this is modelled as the differential equation

dai

dt
=−Hi

(
Ai(ai;σ i)

ai

− Bi (ai,a−i)

ai

)
where the speed of adjustment H increases in the distance from the equilibrium, H ′i > 0, and is zero

at equilibrium, H(0) = 0. In the neighborhood of an equilibrium, the linear approximation of the

adjustment process is

dai

dt
≈ −H ′i

(
Ai

(
aE

i ;σ i

)
ai

−
Bi

(
aE

i ,a
E
−i

)
ai

)
{(

∂ (Ai/ai)

∂ai

− ∂ (Bi/ai)

∂ai

)(
ai−aE

i

)
−∑

j 6=i

∂ (Bi/ai)

∂a j

(
a j−aE

j

)}

where the partial derivatives are evaluated at the equilibrium. This can be expressed in matrix form

−DJ
(
a−aE

)
, where D is a positive diagonal matrix with element dii≡H ′i

(
Ai(aE

i ;σ i)
ai

− Bi(aE
i ,a

E
−i)

ai

)
> 0

and J is the Jacobian of the equilibrium system. In order for the system to be dynamically stable, −DJ

must be a stable matrix: every eigenvalue of −DJ must have a negative real part. Equivalently, every

eigenvalue of DJ must have a positive real part.
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Proof of Proposition 3.b. First, note that under the proportional budget rule, PA, the Jacobian J =

∂ (A/a)/∂a−∂ (B/a)/∂a is symmetric, and therefore has real eigenvalues. If the system is stable, all

the eigenvalues have positive real parts. Combined with symmetry, this implies that all the eigenvalues

are real and positive, and therefore the matrix is positive definite. Second, recall that the inverse of a

positive definite matrix is also positive definite, and that positive definite matrices have positive diagonal

elements. Therefore
[

∂ (A/a)
∂a
− ∂ (B/a)

∂a

]−1

has a positive diagonal. Thus, applications in field i increase

in noise dispersion in that field.

Next, we define sub-proportionality for a multivariate budget rule.

Definition 1 (Sub-Proportional Budget) A budget function B(a1, . . . ,an) is sub-proportional if the

negation of the Jacobian of the average budget per applicant

−
[

∂ (B/a)

a

]
=−


∂ (B1/a1)

∂a1

∂ (B1/a1)
∂a2

· · · ∂ (B1/a1)
∂aN

∂ (B2/a2)
∂a1

∂ (B2/a2)
∂a2

· · · ∂ (B2/a2)
∂aN

...
...

. . .
...

∂ (BN/aN)
∂a1

∂ (BN/aN)
∂a2

· · · ∂ (BN/aN)
∂aN

 (SPA)

has:

1. non-negative principal minors

det

(
−
[

∂ (B/a)

a

]ι)
≥ 0 for ι ∈P (N ) , (SPA1)

where P(N ) is the set of all subsets of N = {1, ...,N} and−
[

∂ (B/a)
a

]ι

is the submatrix obtained

by eliminating any set ι ∈ P(N ) of rows and corresponding columns, with strict inequality for

minors of order 1, and

2. non-positive cofactors

Cι
ji = (−1)|ι

−|(−1)(i+ j) det

(
−
[

∂ (B/a)

a

]ι

ji

)
≤ 0 for ι ∈P (N ) , (SPA2)

of the submatrices obtained by eliminating the row and the column containing element j, i from

principal submatrices −
[

∂ (B/a)
a

]ι

, where the cardinality |ι−| of the set

ι
− = {k ∈ ι : min〈i, j〉< k <max〈i, j〉} (24)

counts the number of diagonal elements with indices in ι that have been displaced off the diagonal

once row j and column i are deleted from the original matrix.
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Condition SPA is a multivariate generalization of condition (13) analyzed above for the case with

N = 1 field. Condition SPA1 requires that the determinants of principal submatrices−dpι , obtained by

eliminating any set ι ∈ P(N ) of rows and corresponding columns, are non negative (or equivalently

that −dp is a P0 matrix; see Johnson, Smith, and Tsatsomeros 2020). Condition SPA2 imposes a

restriction on the cofactors of the off-diagonal elements, Cι
ji, which are the signed determinants of the

submatrices obtained by eliminating the row and the column containing element j, i from principal

submatrices −dpι .

The proof of Proposition 3.a relies on the properties of M-matrices. A matrix A is a non-singular

M-matrix if it can be expressed in the form

A= sI−B

where B is a non-negative matrix and s is greater than the spectral radius (the maximum of the absolute

values of the eigenvalues) of A. An M-matrix has non-positive off-diagonal elements and there is a

large number of equivalent conditions for a matrix with non-positive off-diagonal elements to be an M-

matrix. We will use the following two equivalences; see Chapter 6 of Berman and Plemmons (1994).

Theorem 2 Let A be a real square matrix with non-positive off-diagonal elements. Then the following

two statements are equivalent to A being an M-matrix:

1. All the eigenvalues of A have positive real parts.

2. A is inverse positive: A−1 ≥ 0.

Proof of Proposition 3.a. Fix any field i. By IHR, Ai (ai)/ai is strictly increasing in ai and, by the

strict inequality of SPA1, Bi (ai,a−i)/ai is strictly decreasing in ai Hence, the general equilibrium is

unique.

Next we show that the inverse of the Jacobian J−1 is an M-matrix. As the off-diagonal elements of

an M-matrix are non-positive and the diagonal elements are positive, this yields the desired compara-

tive statics. Furthermore, since M-matrices are closed under positive diagonal multiplication, for any

positive diagonal matrix D, J−1D−1 is also an M-matrix and hence all its eigenvalues have positive real

parts. It follows that all the eigenvalues of DJ have positive real parts, and therefore the equilibrium

system is dynamically stable.

First, we show that the Jacobian is invertible and hence the equilibrium is generic and the compar-

ative statics are well-defined. Computing the determinant of the Jacobian, we obtain

det(J) =
N

∑
|ι |=0

∑
ι∈P|ι |(N )

det

(
−
[

∂ (B/a)

∂a

]ι)
︸ ︷︷ ︸

≥0

∏
i∈ι

∂ (Ai/ai)

∂ai︸ ︷︷ ︸
>0

> 0
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where the first sign follows from SPA1 and the second sign from IHR. To see that the inequality is

strict, observe that −∂Bi(a1,..,an)/ai

∂ai
= det(−d(B/a)ι)> 0 for ι =N \{i}, by the strict inequality part

of SPA1, hence the sum involves strictly positive addends.

Having established the inverse exists, to prove it is an M-matrix we show it has non-positive off-

diagonal entries (i.e. it is a Z-matrix) whose inverse has nonnegative entries. To sign the off-diagonal

elements, since the determinant of J is positive, the sign of the off-diagonal entries of J−1 is the sign of

the off-diagonal cofactors of J. Denoting by C ji the cofactor obtained by removing the jth row and ith

column, we have

C ji =
N−2

∑
|ι |=0

∑
ι∈P|ι |(N r{i, j})

C ι
ji︸︷︷︸
≤0

∏
k∈ι

∂ (Ak/ak)

∂ak︸ ︷︷ ︸
>0

≤ 0,

where the first sign follows from SPA2 and the second from IHR. To show inverse-positivity, IHR

implies that
∂ (Ai/ai)

∂ai
> 0, and SPA2 together with the strict inequality part of SPA1 ensures that

∂ (B/a)
∂a

is non-positive and so
∂ (A/a)

∂a
− ∂ (B/a)

∂a
must be non-negative. Therefore the inverse Jacobian J−1 is an

M-matrix, and hence the equilibrium is dynamically stable with the desired comparative statics.

Proposition 4 Quasi-proportional allocation QPA with ρ i ∈ [0,1] is sub-proportional SPA.

Proof of Proposition 4. We verify SPA1 by computing the determinants of the principal minors

det(−dpι) = BN−|ι |
∏

i∈N rι

a
ρ i−2

i(
∑

i∈N
ai

)N+1−|ι |

 ∑
i∈N rι

a
ρ i

i ∏
j∈N rι ,

j 6=i

(
1−ρ j

)
+ ∏

i∈N rι

(1−ρ i)∑
k∈ι

a
ρk

k

 ,
which are non negative whenever ρ i ∈ [0,1] for i∈N . To verify SPA2, the cofactors of the off-diagonal

element i, j

C ι
i j =−BN−|ι |−1 ρ i

aia j
∏

m∈N rιr{i, j}
(1−ρm)

∏
m∈N rι

a
ρm−2
m(

∑
l∈N

a
ρ l

l

)N−|ι | ,

are non positive whenever ρ i ∈ [0,1] for i ∈N .

C Empirical Validation: Details and Robustness

C.1 RCN Applications Classification

We describe here the machine learning procedure we set up to assign RCN applications to ERC panels,

based on the text analysis of the titles and the abstracts of the applications.
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Table 2: Training Characteristics and Parameters

Fields LS PE SH

Characteristics of training sets:

Number of Panels 9 10 6

Number of Observations 3,643 4,909 2,409

Hyperparameters for training:

Learning rate 2e-5 5e-5 5e-5

Number of epochs 5 3 3

Prediction accuracy:

Validation accuracy (%) 74 83 83

Test accuracy (%) 72 80 81

C.1.1 Datasets

Our data consists of three pairs of datasets, one for each of the ERC domains: Life Sciences (LS),

Physical Sciences and Engineering (PE) and Social Sciences and Humanities (SH). Domains are further

divided into panels: 9 in LS, 10 in PE, and 6 in SH, see Table 2. The challenge is to assign a panel

to unlabeled abstracts. For each field, the training set has two columns: {Title + Abstract} and Label.

We call the “prediction set” the dataset of unlabeled abstracts containing only the {Title + Abstract}
column. The prediction is the output obtained by feeding this set to our trained model, as described

below.

C.1.2 Training

We classified text using BERT (Biredictional Encoder Representations from Transformers), a state-

of-the-art language representation model that enables us to achieve high accuracy. Following Devlin

et al. (2018), we combine BERT with a neural network algorithm. More precisely, BERT is a pre-

trained model in the sense that it has an underlying vocabulary that maps each text input into a single

token sequence. In this sequence, each token is represented not only by its content, but also by its

position in the sentence. The representation map is the by-product of prior pre-training by the Google

team on a large corpus of texts. Then, BERT can be adapted to the specific task, a step called fine-

tuning, with only one additional output layer. This step is straightforward and involves the choice

of common hyperparameters for neural networks. For the learning rate, we obtain good results with

hyperparameters in the recommended range in BERT’s foundational paper. Our batch size is fixed at

8, constrained by our GPU power. The number of epochs, the number of complete passes through the

training dataset, is also in the range of recommended values. We report the parameters chosen for each

field in Table 2.
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Figure 13: Predicted Probabilities of RCN Applications Assignment.
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Notes: This figure shows the average probabilities for RCN applications of belonging to a par-

ticular ERC panel. The assigned ERC panel is based on the highest predicted probability. The

probabilities sum to one over columns. In many cases, the probability of belonging to a particular

panel is over 90 percent on average. Source: Own calculations combining RCN and ERC data.

C.1.3 Performance

We report two types of performance metrics: the validation and the test accuracy. The validation accu-

racy is obtained when all of the training set is used in the training process. We first split the data and we

use the fraction p of observations in the neural network loop while the parameters are iteratively eval-

uated and adjusted to maximize the percentage of correct predictions on the 1− p remaining fraction.

This value is the validation accuracy. In contrast, the test accuracy requires an additional earlier split.

Only a fraction q of the data is used in the training process. The steps described above are therefore

executed with the fractions qp and q(1− p) of the training dataset. Test accuracy is then estimated on

the remaining fraction 1−q of the dataset. Naturally, since the calculation of the test accuracy involves

the prediction on a dataset never encountered by the neural network, test accuracy is generally smaller

than validation accuracy. We report in Table 2 validation and test accuracy.

C.1.4 Predicted Panel

The outcome of the classification is a vector of probabilities for each RCN application, measuring the

likelihood of belonging to a particular ERC panel. We assign each application based on the highest

probability among all existing panels. The prediction is usually very sharp, in the sense that the al-
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gorithm most often picks one ERC panel with a very large probability. The highest probability of

belonging to a particular ERC panel is equal to 85 percent on average, the next highest prediction is

only equal to 6 percent on average. This means that few applications are marginally assigned to a

panel. There is some heterogeneity across fields as depicted in Figure 13. While applications that are

classified in mathematics (PE01) rarely share a similarity with applications in any other fields, it is less

the case for applications that are assigned to SH2 (Institutions, Governance and Legal Systems) or SH3

(The Social World and its Diversity). This is also the case for applied life sciences such as LS07 (Pre-

vention, Diagnosis and Treatment of Human Diseases) that shares similarities with more fundamental

life science panels. Part of this variation may be due to measurement error, but it is also a fact that some

applications are at the boundary between fields and that researchers in some disciplines have a choice

of multiple panels in which they would stand a chance of winning. We deal with this uncertainty below

by performing a bootstrap analysis.

C.2 Interrater Agreement

Once each RCN application is assigned to a particular ERC panel, we turn to the analysis of the RCN

grading. On average, each application is reviewed by about 4.05 reviewers and each reviewer grades

about 12.3 applications. Our data contains about 40,000 grades in total. Grading at the RCN is done

on a scale of 1 to 7, although in practice 98 percent of the grades range between 3 and 7. The average

grade is 5.05 and the standard deviation is equal to 1.1.

We use these data to construct inter-rating agreement measures for each ERC panel. We construct

four different measures. The first one is the simple percent agreement between reviewers. Define ni j as

the number of applications graded by two raters assigning grades i and j. Denoting the total number of

applications by n, the percentage agreement is calculated as

p0 =
∑i=1 nii

n
.

While simple, this measure tends to over-estimate agreement, as two graders may simply give the

same grade by chance. There is a substantial literature on accounting for chance agreement, with

several Kappa statistics such as Cohen’s kappa or Fleiss’ kappa, the latter taking explicitly into account

the possibility of multiple reviewers. Gwet (2014) developed an Agreement Coefficient (AC) that

incorporates both the number of rating categories and the frequency with which they are used by the

raters. In the case of Cohen’s kappa, chance agreement is computed as

pe =
1

n2 ∑
j

∑
i

ni j ∑
i

n ji

and the statistic is then

κ =
p0− pe

1− pe

.
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Table 3: Interrater Agreement by ERC Panels.

Percent Cohen’s Fleiss’ Gwet’s Observations

Agreement kappa AC AC

(1) (2) (3) (4) (5)

SH01 0.274∗∗∗ 0.04∗∗∗ 0.04∗∗∗ 0.17∗∗∗ 1643
(0.011) (0.014) (0.014) (0.013)

SH02 0.274∗∗∗ 0.04∗∗∗ 0.04∗∗∗ 0.169∗∗∗ 9147
(0.005) (0.006) (0.006) (0.005)

SH03 0.285∗∗∗ 0.048∗∗∗ 0.048∗∗∗ 0.182∗∗∗ 4900
(0.006) (0.008) (0.008) (0.007)

SH04 0.288∗∗∗ 0.049∗∗∗ 0.047∗∗∗ 0.187∗∗∗ 1680
(0.011) (0.014) (0.014) (0.013)

SH05 0.265∗∗∗ 0.04∗∗∗ 0.04∗∗∗ 0.158∗∗∗ 2378
(0.009) (0.011) (0.011) (0.01)

SH06 0.261∗∗∗ 0.017 0.016 0.155∗∗∗ 1580
(0.011) (0.014) (0.014) (0.013)

LS01 0.346∗∗∗ 0.064∗∗∗ 0.06∗∗∗ 0.26∗∗∗ 891
(0.016) (0.021) (0.022) (0.018)

LS02 0.291∗∗∗ 0.046∗∗ 0.045∗∗ 0.191∗∗∗ 1051
(0.014) (0.018) (0.018) (0.016)

LS03 0.315∗∗∗ 0.034 0.033 0.223∗∗∗ 569
(0.019) (0.026) (0.026) (0.022)

LS04 0.292∗∗∗ 0.054∗∗∗ 0.053∗∗∗ 0.191∗∗∗ 2096
(0.01) (0.013) (0.013) (0.011)

LS05 0.28∗∗∗ 0.019 0.019 0.179∗∗∗ 2023
(0.01) (0.013) (0.013) (0.012)

LS06 0.355∗∗∗ 0.1∗∗∗ 0.1∗∗∗ 0.268∗∗∗ 1695
(0.012) (0.015) (0.015) (0.013)

LS07 0.28∗∗∗ 0.044∗∗∗ 0.044∗∗∗ 0.177∗∗∗ 10246
(0.004) (0.006) (0.006) (0.005)

LS08 0.295∗∗∗ 0.019 0.019 0.199∗∗∗ 2518
(0.009) (0.012) (0.012) (0.01)

LS09 0.294∗∗∗ 0.023∗∗ 0.023∗∗ 0.198∗∗∗ 3225
(0.008) (0.011) (0.011) (0.009)

PE01 0.406∗∗∗ 0.094∗∗∗ 0.093∗∗∗ 0.334∗∗∗ 950
(0.016) (0.023) (0.023) (0.018)

PE02 0.361∗∗∗ 0.063∗∗∗ 0.062∗∗∗ 0.279∗∗∗ 1151
(0.014) (0.02) (0.02) (0.016)

PE03 0.324∗∗∗ 0.06∗∗∗ 0.059∗∗∗ 0.232∗∗∗ 923
(0.015) (0.02) (0.02) (0.018)

PE04 0.32∗∗∗ 0.056∗∗∗ 0.056∗∗∗ 0.227∗∗∗ 1103
(0.014) (0.019) (0.019) (0.016)

PE05 0.295∗∗∗ 0.036∗∗ 0.035∗∗ 0.197∗∗∗ 1574
(0.011) (0.015) (0.015) (0.013)

PE06 0.3∗∗∗ 0.061∗∗∗ 0.06∗∗∗ 0.2∗∗∗ 2003
(0.01) (0.013) (0.013) (0.012)

PE07 0.287∗∗∗ 0.03∗∗ 0.029∗∗ 0.188∗∗∗ 1815
(0.011) (0.014) (0.014) (0.012)

PE08 0.308∗∗∗ 0.054∗∗∗ 0.054∗∗∗ 0.211∗∗∗ 5401
(0.006) (0.008) (0.008) (0.007)

PE09 0.413∗∗∗ 0.121∗∗∗ 0.12∗∗∗ 0.339∗∗∗ 681
(0.019) (0.027) (0.027) (0.022)

PE10 0.315∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.223∗∗∗ 7419
(0.005) (0.007) (0.007) (0.006)

Note: The table displays inter-rating agreement measures based on grades of funding applications at the RCN.
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Table 4: Effect of Evaluation Noise on Funding Outcomes: Bootstrap Analysis.

Effect of st dev 95% interval

evaluation noise

Requested funding (β a)

Percent Agreement .178 (.025) [.128,.227]

Cohen’s kappa .31 (.039) [.23,.386]

Fleiss’ AC .404 (.215) [.004,.896]

Gwet’s AC .398 (.218) [.001,.924]

Budget shares (β B)

Percent Agreement .476 (.07) [.33,.62]

Cohen’s kappa .582 (.381) [-.117,1.467]

Fleiss’ AC .569 (.387) [-.135,1.507]

Gwet’s AC .476 (.064) [.344,.604]

Note: This table shows bootstrap estimates of the effect of inter-reliability agreement measures on the trend in funding

after the reform. The effects are expressed in standard deviation effects. Each row reports the statistics computed from

500 replications. The estimation also controls for time, panel*seniority fixed effects and an aggregate time trend after the

reform.

We refer the reader to Gwet (2014) for further details on other measures. Table 3 displays the results

for all interrater agreement measures by ERC panel. In practice, the different measures are highly

correlated, with correlation coefficients ranging from 0.84 to 0.99.

C.3 Robustness Using Bootstrap Analysis

To complement Section 5 we assess the robustness of the results to relax the assumption of assigning the

RCN applications based on the most likely ERC panel. We exploit the fact that we have instead a vector

of probabilities of belonging to any panel, for each application. We implement a bootstrap analysis

based on multiple replications where we stochastically assign each grant application to a panel, based

on the vector of assignment probabilities. For each replication, we re-calculate the interrater agreement

measures and re-estimate model (18). We replicate this procedure 500 times. The results are displayed

in Table 4. As in the main analysis, we find that the coefficient β a is positive and statistically significant,

across all the different statistics we use to measure evaluation noise.

56



D Supplementary Appendix: Impact of ARRA Budget Increase

As part of the stimulus bill introduced by the US Congress in 2009 in the aftermatch of the great

financial crisis, the American Recovery and Reinvestment Act (ARRA) allocated an additional $8.97

billion to extramural research grants at the NIH in two parts:

• Part of the funds (19.3%) of the total ARRA budget appropriated to the NIH were allocated

to “not ARRA solicited” applications that had been previously submitted and reviewed in recent

evaluation cycles, but were marginally rejected. Park, Lee, and Kim (2015) empirically document

that “not ARRA solicited” applications resulted in less high-impact articles than regular projects.

• The remainder of the funding bonanza was set aside to increase the budget for “ARRA solicited”

grant competitions. In this case, potential applicants were informed of the larger budget. A

second fact, documented by Stephan (2012, p. 145), is that such applications increased so much

that the success rate actually decreased.

These two facts can be rationalized within the framework we developed above. First, the budget

allocated to “not ARRA solicited” applications corresponds to an unanticipated increase in the budget.

Compared to the pre-policy equilibrium, the policy change shifts the supply to the right. Holding fixed

the amount of applications ā= aB at the pre-policy equilibrium level for the initial budget B, the model

predicts that the applications funded as a result of the increase in the budget to B′ > B are of lower

quality

E

[
θ |θ ≥ 1−G(ā) ,x ∈ [x̂B′ (ā) , x̂B (ā)]

]
< E

[
θ |θ ≥ 1−G(ā) ,x≥ x̂B (ā)

]
,

by the MLRP of the signal (2).

The impact of the anticipated increase in the budget on the success rate depends on the monotonicity

of the hazard rate. By Proposition 2.d , applications must increase more than proportionally with the

budget for the success rate to decrease as the budget increases—and this occurs in equilibrium if and

only if the type distribution has decreasing hazard rate. This is exactly what happened as a result

of the “ARRA solicited” part of budget increase in 2009. This observation is consistent with a type

distribution with decreasing hazard rate at the top, as is natural to expect for the talent of scientists and

artists; see Seglen (1992) and Caves (2000).47

47Distributions with decreasing hazard rate are more right skewed than the exponential distribution. They can be obtained

stretching an exponential distribution toward the top tail through a convex transformation. A distribution has decreasing

hazard rate whenever it is larger than the exponential distribution in van Zwet (1964) convex transform order. Given two

distributions G and H, van Zwet (1964) defines G to be smaller than H in the convex transform order, denoted G ≺c H,

whenever H−1(G(·)) is convex. As shown by van Zwet (1964), a distribution G with increasing (or decreasing) hazard

rate can be obtained through an increasing and concave (or convex) transformation G−1(GExp(·)) of a random variable

with exponential distribution. To gain intuition, visualize the random variable G−1 on the vertical axis as an increasing

transformation of an exponential random variable G−1
Exp on the horizontal axis through a Q–Q plot. Concavity (or convexity)

of G−1(GExp(·)) contracts (or stretches) the top tail and makes it thinner (or thicker) than the top tail of an exponential.
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