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Abstract

This paper studies an information intervention designed and implemented in the context of

a school assignment mechanism in Mexico City. We find that providing students from socio-

economically disadvantaged backgrounds with feedback about their academic performance

contributes to placing applicants in schools that better fit their skills, allowing them to gradu-

ate on time from high school at a higher rate. We also quantify the effect of a counterfactual

and yet feasible implementation of the information intervention at a much larger scale. Simula-

tion results demonstrate substantial heterogeneity in the demand-side responses, which trigger

sorting and displacement patterns within the assignment mechanism. The equilibrium effects

of the intervention may possibly hinder the subsequent academic trajectories of high-achieving

and socio-economically disadvantaged students.
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1 Introduction

One of the key drivers behind the increasing adoption of randomized evaluations in economics and

other social sciences has been a genuine ambition to directly inform policy making. The com-

pelling evidence provided by field experiments has contributed to the government implementation

of effective programs or policies in various countries (Duflo 2017, 2020). Such a laudable goal

has, however, been undermined by a “scale-up problem”. This is the tendency for the size effect of

an intervention to diminish, if not vanish, when that intervention is scaled up to reach a larger (and

more diverse) population of recipients (List 2022).

Several studies have focused on the technological challenges associated with scaling up a given

program. Indeed, one of the most common threats to scalability, with respect to the protocol of

an experiment, is to ensure the fidelity of the implementation at scale.1 This paper is, instead,

concerned with situations where such scaling up is quite straightforward. This is the case of infor-

mation interventions in which it is often feasible to follow the original blueprint of the program.

Conversely, the large-scale implementation of these interventions is prone to generating a variety

of spillover and equilibrium effects, which may either offset or sustain the effectiveness of the

policy. In markets for educational services, for instance, information provision has been shown

to alter the equilibrium price and quality of schools through supply-side responses (Andrabi et al.

2017, Neilson et al. 2019).

We design and evaluate an intervention that provides students with individualized feedback on

their academic skills in the context of a centralized school assignment mechanism in Mexico City.

Students apply to the system during the second-to-last term while in the ninth grade (i.e., the last

year of middle school) by submitting rank-ordered lists of their preferred high school programs. At

the end of the school year, all applicants take a unique standardized admission test, which assesses

curricular knowledge as well as verbal and analytical aptitude. The somewhat unusual timing of

these events implies that high-stake decisions regarding school choice are not able to incorporate

all relevant information about an applicant’s academic skills. We administer a mock version of the

admission test among a sample of approximately one percent of the applicants (N=2,493) across 90

middle schools and communicate individual score results to a randomly chosen subset of students

before the school rankings are submitted. In this setting, the score in the mock exam provides

students with a signal about their own academic potential that is easy to interpret and contains

relevant information on the individual-specific returns of attending different high school programs.

1See, e.g., Al-Ubaydli et al. (2020), Banerjee et al. (2017), Muralidharan & Niehaus (2017) for the recent literature
on scaling up randomized experiments and Agostinelli, Avitable & Bobba (2021), Caron et al. (2021) on the issues of
accurately replicating the exact program designs at a larger scale. Eligible participants in the experimental evaluation
may also be positively selected and not representative of the general population (Allcott 2015, Davis et al. 2021).
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Results from the experiment show that providing individual feedback on exam scores substan-

tially shifts students’ belief distributions regarding their own academic performance. We document

relatively larger updates among lower performing students, who display wider gaps between the

expected score and their actual performance in the mock exam. While on average, the information

intervention does not systematically alter school choices or placement outcomes, it differentially

improves the alignment between actual skills and the demand for academically-oriented schools.

Better performing (lower performing) students in the treatment group increase (decrease) the share

of academic vis-a-vis non-academic options in their school rankings when compared to those in

the control group. This choice response translates into differential placement outcomes, which,

in turn, systematically alters subsequent educational trajectories. Three years after school assign-

ment, the probability of graduating from high school on time is, on average, 4 percentage points

higher among students who received performance feedback (p-value=0.055). This corresponds to

a seven percent increase when compared to the sample average of high school graduation rates

for the control group. The effect of the intervention on this relevant downstream educational out-

come is more pronounced at the lower-end of the academic achievement distribution. Since lower

performing students are less likely to successfully complete their upper secondary education, the

information treatment contributes to reducing education inequality in our setting.

We next study the effects of a counterfactual scaled-up version of the experimental intervention

that mandates the application of the admission exam and the disclosure of the individual score

results to all applicants before the submission of their school rankings. We rely on a simple discrete

choice model that captures rich heterogeneity across students regarding their valuations over the

available schooling alternatives (see, e.g., Abdulkadiroglu et al. 2017, 2020, Arcidiacono et al.

2016). Taking the mock exam without receiving feedback on their score results makes applicants in

the experimental control group comparable to the average applicant in the assignment mechanism,

in terms of the information on their own academic skills. This assumption, coupled with the

parametric structure of the school choice model, allows us to extrapolate the estimated demand-side

parameters for the students in the experimental control group toward the much larger population of

applicants in the school assignment mechanism. Analogously, the estimated model parameters for

the students in the experimental treatment group (i.e., those who were provided with information

on their performance in the mock exam) approximate the counterfactual policy scenario whereby

all applicants would be provided with their admission test scores.

We simulate out-of-sample the predicted school valuations for the approximately 280,000 ap-

plicants who did not participate in the experiment, and quantify the effect of the information inter-

vention at scale, accounting for equilibrium effects. Supply-side responses are held constant in the
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matching equilibrium, since schools simply accept or reject prospective applicants in descending

order, based on their priority, until capacity constraints are reached, which are assumed invariant

to the intervention. The estimated distribution of school valuations under the status quo scenario

tracks the average assignment patterns observed in the data remarkably well, in addition to the

equilibrium cutoff scores at the school level. The new matching equilibrium for the counterfactual

regime of the information intervention effectively takes into account the sorting and displacement

effects resulting from aggregate changes in the demand side, as well as the associated movements

in cutoff scores.

On average, the provision of information makes students slightly more likely (by two percent-

age points) to be assigned to a school of their choice. More importantly, the share of students

assigned to their most preferred school option increases by 9 percentage points, from 16 percent

to 25 percent. These findings suggest a positive average impact of the information intervention

on student welfare. The bulk of the changes in the school choices between the status quo and the

policy scenarios are concentrated among applicants who live in relatively wealthy areas. These ap-

plicants increase their demand for academic schools and symmetrically decrease the demand for

highly selective and prestigious (elite) schools as a result of the information intervention. Instead,

and in line with the experimental evidence, applicants who reside in relatively more disadvantaged

neighborhoods are, on average, unresponsive to the information intervention. These sorting pat-

terns spur reallocation effects within the assignment system. The lower demand-side pressure on

elite programs leaves open seats available for high-achieving and socio-economically disadvan-

taged applicants. Indeed, the information intervention effectively doubles the representation of

applicants from low-income neighborhoods in elite high school programs, from 10 percent to 20

percent. This result underscores the quantitative importance of equilibrium effects that arise during

the large-scale implementation of the information intervention in our setting.

In the last part of the analysis, we leverage sharp discontinuities in admission probabilities

generated by the strict-priority feature of the assignment mechanism, in order to gauge the conse-

quences of such an equilibrium effect on socio-economically disadvantaged applicants. Marginal

admission to an elite school decreases the rate at which low-income students graduate on time from

high school by 11-12 percentage points. These findings are in line with previous evidence from

the same setting, which documents a negative effect of marginal elite admission on the educational

outcomes of academically weaker students (Dustan et al. 2017, Pariguana & Ortega 2022). The

regression-discontinuity estimates are, of course, local in nature, thus, it is difficult to extrapolate

these effects to other disadvantaged applicants who have admission scores that are sufficiently far

away from the admission cutoff scores of elite schools. However, we show that the sub-set of ap-
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plicants who would gain admission into elite schools under the counterfactual policy simulation for

the most part coincide with the marginally admitted applicants under the regression discontinuity

design. Therefore, the regression-discontinuity evidence is policy relevant for this group.

Taken together, the body of the evidence presented in this paper fully characterizes the impacts

of an information intervention implemented in the context of a school assignment mechanism in

Mexico City. Experimental results drawn from a relatively small sample of applicants demon-

strate that providing students from less advantaged socioeconomic backgrounds with informative

feedback about their academic performance triggers a substantial reallocation effect across high

school tracks, which allows students to graduate on time from high school at a higher rate. Further

insights generated from a counterfactual and yet feasible large-scale implementation, combined

with quasi-experimental variations of unpredictable admission cutoffs, suggest that the sorting and

displacement effects of the intervention at scale may partly offset the impact on on-time graduation

documented in this small-scale evaluation. In fact, on-time graduation rates likely decrease among

high-achieving and disadvantaged students who would otherwise be admitted to elite schools under

the intervention at scale when compared to those who are admitted to non-elite schools.

Relationship to the literature There is an emerging consensus that information interventions in

educational settings can shift subjective beliefs and individual choices, although the specific effects

depend on context, implementation, and design details (see, e.g., Haaland et al. 2023, Lavecchia

et al. 2016). We build on this line of work by focusing on the role of perceptions about one’s

own ability in a context where beliefs are tightly linked to concrete, immediate, and high-stake

choices. While other papers have studied the mechanisms through which feedback on students’

academic performance affects educational decisions and outcomes (Azmat et al. 2019, Bergman

2021, Dizon-Ross 2019), the longitudinal span of our data enables us to assess the medium-run

impact on academic trajectories triggered by the short-term changes in placement outcomes.

Evidence regarding the equilibrium effects of large-scale information interventions remains

scarce in the literature. In the context of educational policies, Andrabi et al. (2017) evaluate a

market-level experiment in Pakistani villages showing that information on school quality and price

can lead to changes in aggregate educational outcomes. Neilson et al. (2019) is probably the closest

contribution to our study. The authors study a small-scale experiment in Chile that provides per-

sonalized information to parents about the characteristics of nearby schools and they approximate

the effects of such a program at large. These papers crucially rely on modelling assumptions on the

supply-side of the education market, which is the driver behind the equilibrium increase in school

quality. One advantage of our study is the presence of a centralized assignment mechanism, which

considerably simplifies the simulation of the market equilibrium (Agarwal & Somaini 2020). This
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feature enables us to unpack the equilibrium effects of the information intervention in a transparent

way. Another benefit of our analysis is that we are able to track the medium-run consequences of

such equilibrium effects.

Methodologically, our approach builds upon recent attempts to combine natural or field ex-

periments with model-based estimation techniques (see, e.g., Galiani & Pantano 2021, Low &

Meghir 2017, Todd & Wolpin 2023). Our experimental design enables us to flexibly incorporate

the provision of information into the model of school choice by exploiting the differential valua-

tions over the schooling alternatives across applicants in the treatment and the control groups. In

turn, a discrete choice model with rich (observed) heterogeneity along applicants’ characteristics

serves to extrapolate the demand-side responses outside of the experimental sample. Finally, a

credible source of variation from discontinuities that effectively randomize applicants near admis-

sion cutoff scores into different high school tracks (elite vs. non-elite) allows us to causally link

the model predictions and subsequent schooling trajectories. Thus, we fully leverage the synergies

between different empirical approaches in order to generate new insights into the science of scaling

(Al-Ubaydli et al. 2020).

2 Context and Data

2.1 Centralized School Assignment in Mexico City

Since 1996, a local commission (COMIPEMS, by its Spanish acronym) has centralized public high

school admissions in Mexico City’s metropolitan area by means of an assignment mechanism. In

2014 (the year of our intervention), over 238,000 students were placed in 628 public high schools,

accounting for approximately three-quarters of enrollments in the entire metropolitan area. The

remaining portion of high school students sought enrollment in public schools with open admission

(10 percent) or private schools (15 percent).

Students apply to the centralized system during the second-to-last term while in ninth grade

(i.e., the last year of middle school). Prior to registration, they receive a booklet outlining the

timing of the application process and corresponding instructions, as well as a list of available

schools, their basic characteristics, and their cutoff scores in the last three rounds. In addition to the

registration form, students complete a socio-demographic survey and a ranked list of 20 schools,

at most. At the end of the school year, all applicants take a unique standardized achievement test.

The submission of school preferences before the application of the admission exam is an unusual

feature of the COMIPEMS system in relation to other centralized assignment mechanisms that use

strict priority rules. The timing of the events in the Mexican case is designed to provide public
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officials and sponsoring institutions with a “ballpark estimate” of the number of seats that should

be made available within the assignment process.

Based on their scores, students are ranked in descending order, and the matching algorithm

goes down the list to sequentially assign applicants to their most preferred schooling option with

available seats. Each applicant is matched with one school. Whenever a tie in the score occurs,

members of the local commission agree on whether to admit all of the tied students, or none

of them. Unplaced applicants can request admission to other schools with available seats after the

allocation process is over or to search for a seat in schools with open admissions outside the system.

When an applicant is not satisfied with their placement, they can request admission to another

school in the same way unplaced applicants do. In this way, the assignment system discourages

applicants from remaining unplaced and/or to list schools that they will ultimately not enroll in;

specifically, participating in the second round will almost certainly imply being placed in a school

that is not included in the student’s original ranking. In practice, the matching algorithm performs

well: among all applicants who graduate from middle school and take the admission exam, only

12.8% remain unplaced and 3.2% are admitted through the second round of the matching process.

The Mexican system offers three educational tracks at the upper secondary level: General,

Technical, and Vocational Education. Each school within the assignment system offers a unique

track. The general track is academically oriented and includes traditional schools that are more fo-

cused on preparing students for tertiary education. Technical schools cover most of the curriculum

of general education programs, but they also provide additional courses allowing students to be-

come technicians upon completion of high school. The vocational track exclusively trains students

to become technically adept.2

A small sub-set of schools (32 out of 628) within the assignment system in Mexico City is

affiliated with two higher education institutions (the National Polytechnic Institute and the National

Autonomous University, IPN and UNAM by their Spanish acronyms), which are highly selective

and prestigious universities, and as such these high schools are highly demanded. These programs

exclude from consideration students with a middle school GPA lower than seven out of a 10-point

grade scale. However, most of the applicants meet this requirement (more than 90 percent in every

round of the assignment system). In what follows, we define UNAM- and IPN-sponsored high

school programs as ’elite schools’. All the non-elite general track schools are considered ’academic

schools’ while the remaining technical and vocational programs are ’non-academic schools’. As

2Data from a nationally representative survey of individuals aged 26-35 in urban Mexico (ENTELEMS, 2008)
shows that less than 40 percent of the graduates from technical or vocational high schools successfully obtain a tertiary
education degree. Attending the academic track yields a positive premium of 12 percentage points in terms of average
hourly wages.
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Figure 1: Distribution of Cutoff Scores
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Note: Cutoff scores for each high school program refer to the 2014 assignment process. ‘Academic’ schools are defined
as the high school programs in the general track, ‘Non-academic’ schools are those in the technical and vocational
tracks, and ‘Elite’ schools are affiliated with two higher education institutions (the National Polytechnic Institute and
the National Autonomous University, IPN and UNAM by their Spanish acronyms).

shown in Figure 1, academic schools are, on average, slightly more selective than non-academic

schools, but there is a large overlap in the distributions of equilibrium cut-off scores across these

two tracks. Elite schools clearly stand out in terms of selectivity and peers’ quality (e.g., median

scores are almost perfectly correlated with cutoff scores).

2.2 The Information Intervention

Figure 2 depicts the timing of the activities related to the intervention. The admission exam is

applied three to four months after students have submitted their rank-ordered lists of preferred

high school programs, by mid-June in each academic year. During the second half of the 2013-14

academic year, we administered a mock exam in 90 middle schools as our experimental sample

(see Section 2.3). One or two weeks later, and just before the submission of the school rankings,

surveyors provided students with individual feedback on their performance in the mock exam. The

delivery of the test scores took place in a setting secluded from other students or school staff in
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Figure 2: Timeline of Events
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order to avoid reporting biases due to the influence of peers and/or social image concerns (Burks

et al. 2013, Ewers & Zimmermann 2015). Surveyors showed each student a personalized graph

with two pre-printed bars: the average score in the universe of applicants during the 2013 edition

of the school assignment mechanism and the average mock exam score in the student’s class.

Surveyors plotted a third bar corresponding to the student’s score in the mock exam. Both pre-

printed bars served the purpose of providing the student with additional elements to better frame

her own score, which is the main object of interest of the performance feedback.

The mock exam was designed by the same institution responsible for the official admission

exam, in order to mirror the latter in terms of structure, content, level of difficulty, and duration

(three hours). The test is comprised of 128 multiple-choice questions worth one point each, without

negative marking, covering a wide range of subjects that correspond to the public middle school

curriculum (Spanish, mathematics, social sciences and natural sciences) as well as mathematical

and verbal aptitude sections.3 We informed students, parents, and school principals about the

benefits of additional practice for the admission exam. We also made sure that the school principal

was able to assign the person who is usually in charge of the academic discipline and/or a teacher

to proctor the exam, alongside the survey enumerators.

In order to support the notion that students took the mock exam seriously, we look at the pattern

of skipped questions (Akyol et al. 2018). Without negative marking, the expected value of guessing

is always higher than leaving a question blank, which implies that students have no incentive to

skip a question. Indeed, the average number of skipped questions in the mock exam was only 1.4

3Since the mock exam took place before the end of the school year, 13 questions related to curricular content that
was not yet covered were not graded. We normalize the raw scores obtained in the 115 valid questions to the 128-point
scale.
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out of 128, and more than 80 percent of the students did not leave any question unanswered. Figure

B.1 in the Appendix shows that the average patterns of skipping questions are more consistent with

binding time constraints, rather than a lack of effort exerted in test taking. Furthermore, we do not

find differential skipping patterns according to either the score in the admission exam or individual

traits linked to effort and persistence.

We argue that the score in the mock exam was easy to interpret for the applicants in the as-

signment mechanism while providing additional and relevant information about their academic

skills. The linear correlation in our sample between performance in the mock exam and the actual

exam is 0.82. This relationship does nor vary along the exam score distribution. In turn, the linear

correlation between a freely available signal, such as the middle school GPA and the admission

exam score, is only 0.48. The mock exam score also predicts later educational outcomes for the

applicants in the control group: a one-standard-deviation increase in the mock exam score is asso-

ciated with a 4.7 percentage-point increase (std.err.=0.019) in the probability of graduating from

high school on time.

2.3 Sample Selection and Randomization

To select the experimental sample, we focus on middle schools with a considerable mass of ap-

plicants (more than 30) in a previous round of the centralized mechanism and that are located in

neighborhoods with high or very high poverty levels (according to the National Population Coun-

cil in 2010). The latter criterion reflects previous evidence that shows that less privileged students

tend to be relatively more misinformed when making educational choices (Avery & Hoxby 2012,

Hastings & Weinstein 2008, Jensen 2010).

Table 1 shows that the experimental sample is largely comparable to the general population

of applicants in terms of initial credentials, such as GPA or college aspirations. However, the

applicants in our sample score 4-points lower (0.2 standard deviations) in the admission exam.

Consistent with our focus on relatively disadvantaged neighborhoods, the applicants in the exper-

imental sample are less likely to have parents with tertiary education, they attend middle schools

with lower performing students, and reside in neighborhoods with a much higher prevalence of

poverty. The average difference in the poverty index computed at the neighborhood-level between

the population of applicants and our sample is 1.5 standard deviations.

Schools that comply with our sample selection criteria are grouped into four geographic regions

and terciles of school-average math performance amongst ninth graders. Treatment assignment is

randomized within strata at the school level. As a result, 44 schools are assigned to a treatment

group in which we administer the mock exam and provide face-to-face feedback on performance,
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Table 1: Applicants’ Characteristics in the Population and in the Sample

All COMIPEMS Experiment Difference [p-values]
Admission exam score 69.506 65.400 4.107

(20.705) (19.401) [0.000]
Grade Point Average in middle school (GPA) 8.058 8.119 -0.061

(0.871) (0.846) [0.001]
Has some disabilities (1=yes) 0.118 0.145 -0.027

(0.323) (0.352) [0.000]
Scholarship in middle school (1=yes) 0.116 0.110 0.006

(0.320) (0.313) [0.401]
Indigenous 0.041 0.093 -0.052

(0.198) (0.290) [0.000]
Plans to go to college (1=yes) 0.662 0.670 -0.008

(0.473) (0.470) [0.378]
One parent with at least tertiary education (1=yes) 0.236 0.147 0.089

(0.425) (0.354) [0.000]
Average math score in middle school (z-score) 0.000 -0.208 0.208

(1.000) (0.712) [0.000]
Neighborhood poverty index (z-score) 0.000 1.504 -1.504

(1.000) (0.494) [0.000]
Observations 284,412 2,493

NOTE: The first two columns report means and standard deviation (in parentheses) of individual characteristics between the overall
population of applicants and the experimental sample. The third columns displays mean differences and the associated p-values (in
brackets) for the null hypothesis of equal means. The observations in the ‘All COMIPEMS’ column comprise all the applicants in the
year 2014 who were eligible to be assigned through the matching algorithm. The observations in the ‘Experiment’ column comprise
the evaluation sample of the randomized information intervention.

while 46 schools are assigned to the control group in which we only administer the mock exam.

Within each school, we randomly select one ninth grade classroom to participate in the experiment.

Since the provision of feedback about test performance took place during the survey (see Sec-

tion 2.4), it cannot induce differential attrition patterns. The match rate between the survey and

the application records is 88 percent (2,828 students) and it is not differential across the treatment

and the control groups (see column 1 of Table B.3 in the Appendix). We focus our empirical anal-

ysis on the 2,493 participating applicants who were eligible for assignment through the matching

algorithm.4

Appendix Table B.1 provides basic descriptive statistics and a balancing test of the randomiza-

tion for various applicants’ characteristics. Mean differences are very small in magnitude, with no

significant differences detected across the treatment group and the control group. On average, 14

percent of the applicants report previous exposure to a mock version of the admission exam with

4There are a few observations with missing values in the survey data (247 observations) and in the scores of the
mock exam (146 observations, with 78 missing in both variables), which implies an effective sample size of 2,178
applicants for the analysis presented in Section 3.1.
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performance feedback, and this share is balanced between the treatment and the control group.

2.4 Data and Measurement

Our study relies on several data sources. First, we have access to administrative data on different

cohorts of applicants for several rounds of the assignment mechanisms. These records include

socio-demographic variables, such as gender, age, household assets, parental education and occu-

pation, personality traits, and study habits, among others. They also contain information on school

preference rankings, admission exam scores, and placement outcomes. We can link these records

with middle school-level test scores in mathematics for students in the ninth grade in a national

standardized examination (Evaluacion Nacional de Logros Academicos en Centros Escolares, EN-

LACE).

Second, we collect detailed survey data with information on the subjective distribution of be-

liefs about performance in the admission exam for the students in the experimental sample. In order

to help students understand probabilistic concepts, the survey relies on visual aids (Delavande et al.

2011). We explicitly link the number of beans placed in a cup to a probability measure, where zero

beans means that the student assigns zero probability to a given event and 20 beans means that the

student believes the event will occur with certainty. Students are provided with a card divided into

six discrete intervals of the score. Surveyors then elicit students’ subjective expectations about test

performance by asking them to allocate the 20 beans across the intervals to represent the chances

of scoring in each bin. Appendix A provides more detail on the elicitation of the individual data

on beliefs in our setting.

Third, we assemble and harmonize data from each of the nine public institutions in the central-

ized assignment system on individual trajectories through upper secondary education for the 2014

applicants in the sample. It is not possible to track students who enrol in schools outside the cen-

tralized system. The resulting panel dataset allows us to measure enrollment and drop-out during

the first year in high school (tenth grade) for all the students in our sample as well as graduation

on time from high school (twelfth grade) for more than 90 percent of the students. While we also

have access to either individual grades or end-of-year GPAs for a few high school programs in the

centralized system, we do not use this information in the empirical analysis, since it is available for

less than one-third of the observations in our sample. Furthermore, grades are difficult to compare

across high school programs.

Since we have access to the longitudinal schooling trajectories exclusively for the experimental

sample, we rely on an alternative strategy in order to construct an indicator variable for on-time

graduation from high school for all the other applicants to the centralized system. Previous evi-
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dence from Mexico shows that the probability of taking the ENLACE test in the twelfth grade is a

good proxy for the probability of graduating from high school (Dustan 2020, Dustan et al. 2017,

Estrada & Gignoux 2017). The coverage of the ENLACE evaluation was universal throughout

the 2008-2013 school years, except for the UNAM-sponsored high schools (see Section 2.1).5 We

have access to administrative records from the 2005-2009 rounds of the centralized system and we

match these at the individual level with the corresponding ENLACE scores collected three years

after high school assignment.

3 Experimental Evidence

Providing information about individual performance in the mock exam potentially allows students

to revise their own beliefs and make more informed choices, which, in turn, may lead to better

educational outcomes in the medium-run. In this section, we document the effect of performance

feedback in the experimental sample on beliefs, school choices, and placement, as well as down-

stream outcomes shown by the completion of upper secondary education.

Different treatment effect parameters are estimated using simple OLS models: all specifications

include the treatment assignment indicator, as well as a set of dummy variables that correspond to

the randomization strata, pre-determined characteristics (gender, characteristics of the school of

origin, previous experience with practice exams providing feedback, aspirations to attend college,

an index of personality traits, an index of parental characteristics, and a household asset index),

as well as a set of indicator variables for whether each of the covariates has missing data (Zhao &

Ding 2021). Given the relatively large array of hypotheses considered throughout the analysis, we

complement the usual asymptotic inference by computing p-values that are adjusted for multiple

hypothesis testing across different families of outcomes (List et al. 2019).

3.1 Subjective Expectations about Test Performance

Panel A in Figure 3 relies on data from the control group and presents the cumulative distribution of

the perception gap, defined as the difference between the expected score and the actual performance

in the mock exam. Assuming a uniform distribution within each interval of the score, the expected

scores are constructed as the summation over intervals of the product of the mid-point of the bin

and the probability assigned by the student to that bin. The great majority of applicants, over

5The ENLACE examination was discontinued after the school-year 2013 to be eventually replaced from 2015
onward with another standardized test that was administered only among a (relatively small) random sample of students
within schools; that is, the National Plan for Learning Evaluation (PLANEA).
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Figure 3: Gap between Expected Score and Mock Exam Score
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NOTE: Using data for the control group, Panel A shows the cumulative density of the difference between the expected
scores (as captured in the survey) and scores in the mock version of the admission exam. Panel B depicts the density of
the performance index (y-axis on the left), which is a GLS-weighted average of the GPA in middle school, mock exam
score, and exam score (Anderson 2008). Overlaid on the density, we show non-parametric locally weighted estimates
of the relationship between the absolute value of the gap in beliefs and the performance index separately for applicants
in the treatment and control groups (y-axis on the right).

80%, overestimate their performance in the test. Moreover, gaps in performance estimation are

substantial for a large share of students. Half of the sample overestimates their performance by

more than 14.7 points and 25% of students exhibit absolute gaps greater than 26.7 points out of a

128-point scale.

Panel B in Figure 3 presents evidence on the relationship between the absolute value of the per-

ception gap and academic achievement separately for students in the treatment group and control

groups. Achievement is captured through a Generalized-Least-Squares (GLS)-weighted average

of the GPA in middle school, the score in the mock exam, and the score in the admission exam (An-

derson 2008).6 Updates on the expected score in response to performance feedback occur along

the entire distribution of the performance index, with relatively larger gap reductions among lower

performing students, who are also those who display larger prior biases.

Table 2 shows the corresponding OLS estimates of the effect of the information intervention

on the absolute value of the difference between the expected score and the score in the mock

6The procedure accommodates the construction of the index, even when data on one of the individual performance
measures is missing. It does so by setting missing indicator values to zero, which is the mean of the reference group
following normalization. The GLS-weighting approach increases efficiency by ensuring that outcomes that are highly
correlated with each other receive less weight, while outcomes that are uncorrelated and thus represent new information
receive more weight. O’Brien (1984) found this procedure to be more powerful than other popular strategies in the
repeated-measures setting.
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Table 2: Perception Gap about Test Performance

Abs(Gap)
All Sample By Performance Index

Tercile I Tercile II Tercile III
Treatment -6.809 -8.341 -6.827 -5.170

[0.000] [0.000] [0.000] [0.000]
{0.001} {0.001} {0.001} {0.001}

Mean Control 18.8 23.8 18.0 14.6
Number of Observations 2178 683 740 755
Number of Clusters 90 90 90 87
R-squared 0.100 0.131 0.132 0.114

NOTE: All specifications include a set of dummy variables which correspond to the ran-
domization strata, pre-determined characteristics (sex, characteristics of the school of origin,
previous experience with practice exams providing feedback, aspirations to attend college,
an index of personality traits, an index of parental characteristics, and a household asset
index), and indicator variables for whether each of the covariates has missing data. The
dependent variable “Abs(Gap)” is the absolute value of the difference between the expected
score (as captured in the survey) and the score in the mock exam. p-values reported in
brackets refer to the conventional asymptotic standard errors while those reported in curly
brackets are adjusted for testing each null hypothesis across multiple outcomes through the
step-wise procedure described in Romano & Wolf (2005a,b, 2016). All inference proce-
dures take into account the clustering of error terms at the middle school level and the block
randomization design.

exam. Table B.2 in the Appendix documents additional evidence on the effect of the information

intervention for other moments of the individual belief distributions. The delivery of the individual

scores in the mock exam shrinks the absolute value of the perception gap by 6.8 points on average,

as shown in the first column of Table 2. The magnitude of this effect is quite large as it is over

one-third of the mean absolute gap in the control group. The additional columns in Table 2 further

document that gap reductions are more pronounced among the lowest performing students, who

are also those with greater average perception gaps. For students in the bottom tercile of the

performance index distribution, feedback provision reduces the absolute value of the perception

gap by 8.3 points on average. While significant gap reductions occur in the second and third

terciles, the size of the updating is smaller in absolute terms. In relative terms, the decrease in the

perception gap is similar across the distribution of academic achievement and equivalent to about

one-third of the perception gap in the control group.

On average, students in our sample seem to hold rather over-optimistic expectations about their

performance in the test. Providing information about individual performance in the mock exam

allows them to substantially revise their beliefs more toward their performance provided by the
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mock exam score. While the information intervention is effective at partly correcting biased self-

views about academic performance, an important part of the perception gap (about two-thirds, on

average) remains unexplained. These findings underline the informativeness of the score in the

mock exam while, at the same time, point toward a high degree of persistence of priors in the

distribution of posterior beliefs. We explore these issues in further details in our companion paper

(Bobba & Frisancho 2022).

3.2 School Choices and Placement Outcomes

In our setting, the high school programs that are available through the centralized assignment

system differ in terms of the curricular track that they offer. Academically-oriented schools tend

to provide students with general skills and adequate training to pursue a college education. Non-

academic schools, that are either technical or vocational, focus more on fostering specific skills

that can enable access to the labor market after the completion of secondary schooling. Schools

also differ greatly in terms of ”peer quality” and the type of college career that their graduates may

pursue. For instance, elite high school programs have the highest performing applicants within the

centralized admission system (see Figure 1).

As mentioned in Section 2.1, school placement under the assignment mechanism depends ex-

clusively on two student-level observable factors: individual school rankings and the score in the

admission exam. Exposure to performance feedback does not systematically affect the fraction

of applicants assigned in the first or second round of the assignment process (see Table B.4 in the

Appendix), or the scores in the admission exam (see column 2 in Table B.3 in the Appendix).7 Any

treatment-control differences in the final assignment of students are mainly driven by the observed

differential changes in their school choices.

Table 3 presents the treatment impacts of feedback provision on school rankings and place-

ment outcomes. The first row in the table shows that, on average, the provision of performance

feedback does not affect applicants’ demand or placement across high school tracks. However,

the estimated coefficients on the interaction term between the performance feedback indicator

and the performance index (Treat× Performance Index) imply a substantial reallocation effect

across tracks of the information intervention. The estimates in the first column indicate that a

one-standard-deviation increase in students’ scholastic success in the treatment group decreases

the share of non-academic schools requested by 3.2 percentage points. This effect is precisely es-

7This evidence is consistent with recent experimental findings reported in Azmat et al. (2019), whereby the short-
term responses to the provision of information on the ordinal ranking of college students in Spain tend to rapidly fade
over time. In our setting, the admission exam takes place more than four months after the provision of feedback about
performance in the mock exam (see Figure 2).
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Table 3: School Choices and Placement Outcomes

Non-academic Schools Academic Schools Elite Schools
Share in ROL Placement Share in ROL Placement Share in ROL Placement

Treatment 0.002 0.047 -0.001 -0.045 -0.000 -0.002
[0.918] [0.074] [0.923] [0.076] [0.986] [0.845]
{0.999} {0.195} {0.999} {0.195} {0.999} {0.998}

Performance Index -0.031 -0.079 -0.054 -0.086 0.084 0.165
[0.002] [0.000] [0.000] [0.000] [0.000] [0.000]
{0.007} {0.001} {0.001} {0.001} {0.001} {0.001}

Treat× Performance Index -0.032 -0.065 0.030 0.041 0.002 0.024
[0.010] [0.015] [0.008] [0.046] [0.865] [0.243]
{0.030} {0.041} {0.023} {0.107} {0.999} {0.549}

Mean Control 0.363 0.401 0.328 0.369 0.309 0.114
Number of Observations 2493 2493 2493 2493 2493 2493
Number of Clusters 90 90 90 90 90 90
R-squared 0.154 0.101 0.129 0.061 0.264 0.335

NOTE: All specifications include a set of dummy variables that correspond to the randomization strata, pre-determined characteristics (sex, characteristics
of the school of origin, previous experience with practice exams providing feedback, aspirations to attend college, an index of personality traits, an index
of parental characteristics, and a household asset index), and indicator variables for whether each of the covariates has missing data. The dependent
variable “Share in ROL” in the odd columns denotes the share of high school programs in the school rankings submitted by each applicant that belong to
a given group of schools (i.e., Non-academic, Academic, and Elite schools). The dependent variable “Placement” in even columns denotes an indicator
variable that is equal to one if the applicant is assigned to a given group of schools. The performance index is a GLS-weighted average of the GPA in
middle school, mock exam score, and exam score. p-values reported in brackets refer to the conventional asymptotic standard errors, while those reported
in curly brackets are adjusted for testing each null hypothesis across multiple outcomes through the step-wise procedure, as described in Romano & Wolf
(2005a,b, 2016). All inference procedures take into account the clustering of the error terms at the middle school level and the block randomization
design.

timated (p-values range between 0.01 and 0.03) and sizable, as it corresponds to about 10 percent

of the average share of non-academic options in the school rankings of applicants in the control

group. This composition change in the demand for non-academic schools significantly alters the

assignment patterns realized under the mechanism, as shown in the second column of Table 3.

Placement in non-academic schools decreases along the distribution of academic achievement for

the students in our sample. A one-standard-deviation increase in the performance index among

students in the treatment group is associated with a 6.5 percentage-point lower probability of be-

ing placed into a non-academic program (or a 16 percent decrease when compared to the average

probability of assignment in the control group).

The third and fourth columns in Table 3 present the estimated effects of the information in-

tervention on school choices and placement into (non-elite) academic programs. A one-standard-

deviation increase in achievement increases the share of academic schools in the submitted rank-

ings by 3 percentage points for the applicants who receive the performance feedback. This effect is

statistically significant and it is similar in magnitude to that presented in column 1, which suggests

that higher performing students who receive the performance feedback substitute non-academic

with academic programs in their school rankings almost one-to-one. Column 4 shows the esti-
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mated treatment effects on placement into academic programs. The impact is symmetric relative

to the estimated effect on placement into non-academic programs, as reported in column 2. A

one-standard-deviation increase in academic achievement for the applicants who receive the per-

formance feedback increases placement into such programs by approximately 4 percentage points.

Finally, the estimates reported in the last two columns of Table 3 show that the provision

of performance feedback does not systematically alter preferences for or assignment into elite

schools. Given the relatively large changes in beliefs documented above (see Section 3.1), the

finding that the demand for elite programs is relatively insensitive to information about students’

own academic skills is consistent with the fact that the applicants of the centralized mechanism do

not factor-in their chances of admission when ranking their preferred schools. Hence, the choice

responses observed here should be interpreted as mainly stemming from changes in the individual

valuations over the schooling alternatives proposed within the assignment system.

These findings indicate that the provision of performance feedback has real consequences on

the sorting patterns across high school tracks in our setting. While the average effect of the infor-

mation intervention on school choices and placement outcomes are small and statistically insignif-

icant, higher performing students in the treatment group are less likely to be placed in a vocational

or technical high school program, and they are more likely to sort into a (non-elite) academic

program. The observed composition effect across high school tracks is consistent with the perfor-

mance feedback, thus enabling greater alignment between applicants’ observed individual skills

and the careers that they are able to access through the centralized assignment mechanism.

3.3 Educational Outcomes

The centralized assignment mechanism appears to generate school-placement outcomes that are

satisfactory for the great majority of the applicants, at least in the short-run. Administrative records

from the 2016-17 academic year show that about 80 percent of the students in the control group

enroll in the school to which they were assigned through the centralized process. However, among

this same group of students, only 52 percent graduate on time from high school. There is very

little heterogeneity ascribed by high school track, with timely graduation rates in the academic and

non-academic tracks at 50 and 54 percent, respectively. These figures clearly reflect inadequate

academic progress through upper secondary education, due to either school dropout or grade re-

tention, which are both strong indicators of a mismatch between schooling careers and students’

individual skills. As shown in the previous sub-section, the provision of performance feedback

likely improves the alignment between (measured) academic skills and high school track choices.

The associated change in the sorting patterns of students across schools may thus result in a better
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Table 4: Education Outcomes in Upper Secondary

Enrollment Dropout in 1st year Graduation on Time
Treatment -0.005 0.015 0.040

[0.751] [0.500] [0.075]
{0.697} {0.614} {0.055}

Mean Control 0.8 0.2 0.6
Number of Observations 2492 2023 1888
Share of Missing Data 0.000 0.189 0.243
Lee lower bound 0.008 0.035
Lee upper bound 0.011 0.060
R-squared 0.064 0.167 0.127

NOTE: All specifications include a set of dummy variables that correspond to the institution in which
the student was placed, pre-determined characteristics (sex, characteristics of the school of origin, pre-
vious experience with practice exams providing feedback, aspirations to attend college, an index of
personality traits, an index of parental characteristics, and a household asset index), and indicator vari-
ables for whether each of the covariates has missing data. The dependent variable “Enrollment” denotes
an indicator variable that is equal to one if students enroll in the high school programs they were as-
signed to, and zero otherwise. The dependent variables “Dropout, 1st year” captures whether the student
stopped attending classes or actively dropped out of school, conditional on enrollment. The dependent
variable “Graduation on Time” denotes an indicator variable that is equal to one if the student success-
fully completes the high school programs three years after enrolling in tenth grade, and zero otherwise.
Lee bounds (Lee 2009) are reported at the bottom of the table in order to account for potentially non-
random sample attrition. p-values reported in brackets refer to the conventional asymptotic standard
errors, while those reported in curly brackets are adjusted for by testing each null hypothesis across
multiple outcomes through the step-wise procedure, as described in Romano & Wolf (2005a,b, 2016).
All inference procedures take into account clustering of the error terms at the middle school level and
the block randomization design.

match that may potentially alter students’ academic trajectories and improve downstream educa-

tional outcomes.

The point estimate reported in the first column of Table 4 shows that, on average, there are

no discernible differences in the high school enrollment rates between students in the treatment

and control groups. Conditional on enrollment, the second column documents that changes in the

sorting patterns across tracks induced by feedback provision do not systematically alter dropout

rates during the first year of high school. While censoring in the high school sample is unlikely

to be differential across the treatment and the comparison group (see estimates in the first column

of Table 4), we still report Lee bounds (Lee 2009) at the bottom of the second column in order to

account for potentially non-random sample attrition. The bounds are narrow and broadly consistent

with the very small point estimate for the effect of the performance feedback on dropout rates

during the first academic year of high school.

While these findings appear to show only small and insignificant early effects on academic
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trajectories, the information intervention does seem to play a role in the medium term. The point

estimate reported in the third column of Table 4 documents that the probability of graduation on

time is almost 4 percentage points higher for students who receive performance feedback when

compared to those who do not. While only marginally significant (p-values range between 0.055

and 0.075), the magnitude of this average effect is quite remarkable, as it corresponds to a 7 percent

increase in high school graduation rates when compared to the sample average in the control group.

The effect size also roughly coincides with the magnitude of the impact of a one-standard-deviation

increase of the score in the mock exam on the rate of graduation on time for the control group (see

Section 2.4).

It is important to note that the sample of students included in the regression analysis displayed

in the third column is conditional both on high school enrollment and the availability of high school

records (see Section 2.4). The censoring due to high school enrollment is unlikely to generate

differential attrition patterns, as shown in Column 1. However, any additional censoring due to

missing high school records in our sample (8 percent) may potentially bias the estimated treatment

effect on graduation on time. The Lee bounds (Lee 2009) associated with the overall attrition rate

(high school enrollment+missing records) in the graduation on time sample range between 3.5 and

6 percentage points. Hence, they are fully informative about the size of the estimated average

treatment effect in the presence of the attrition rate in our sample.

The sustained impact of the feedback provision on high school graduation rates is a com-

pounded effect of the school choice and assignment responses to the information provision and

subsequent changes in the schooling environment, such as peers and other school inputs. Relative

to the control group, the information intervention contributes to successfully placing students in

schools that provide a better fit with their skills and allows them to progress through high school

at a relatively smoother pace. The average effect displayed in Column 3 of Table 4 may mask

potential heterogeneity along the achievement distribution. Figure 4 displays evidence on the re-

lationship between the rates of graduation on time and the performance index separately for the

treatment and control groups. The plot clearly shows that the effects of performance feedback are

present along the entire distribution of academic achievement, with larger effects around the left

tail. Since lower performing students also tend to have lower graduation rates, the information

intervention contributes to “levelling the playing field” in our setting.
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Figure 4: Graduation on Time and Academic Achievement
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NOTE: This plot depicts non-parametric locally weighted estimates of the relationship between the graduation on
time and the performance index, which is a GLS-weighted average of middle school GPA, mock exam score, and
exam score (Anderson 2008). “Graduation on Time” denotes an indicator variable that is equal to one if the student
successfully completes the high school programs three years after enrollment in tenth grade, and zero otherwise.

4 Scaling-up the Information Experiment

The experimental evidence reported in the previous section might suggest that the centralized as-

signment system can improve the allocation of students across high school tracks. This would be

achieved by implementing a policy that mandates the application of the admission exam and the

disclosure of the individual score results to all applicants before the submission of the rank-ordered

lists. This conclusion, however, is not warranted.

There are at least two threats to scalability in our setting. First and most importantly, the exper-

imental evaluation comprises only a small portion (approximately one percent) of the applicants in

the assignment system. Given the nature of the matching equilibrium (i.e., schools simply accept

or reject prospective applicants in descending order based on their exam scores until seat capacities

are met), aggregate changes in the demand-side would necessarily trigger feedback effects into the

assignment system. Sorting and displacement effects across applicants would, in turn, alter the

cutoff scores for the different schooling alternatives. Second, the experiment focuses on appli-

cants from relatively disadvantaged backgrounds (see Section 2.3), thereby making it difficult to

extrapolate the experimental treatment effects to a larger and more diverse population of students.
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In this section, we embed the experimental data in an empirical model of school choice in order

to simultaneously overcome both of these challenges and quantify the effect of the intervention at

scale.

4.1 School Choice Model

Following the school choice literature (see, e.g., Abdulkadiroglu et al. 2017, 2020, Arcidiacono

et al. 2016) and drawing from the experimental evidence discussed in the previous Section, we rely

on a multinomial Logit model that captures rich heterogeneity across applicants in the experimental

sample in terms of their preferences for schools within the assignment system. We model the

(indirect) utility that student i gets from attending school j as:

uij = αj + β
′
jxi + γ

′xidij + εij, (1)

where the composite term αj+β
′
jxi denotes the net returns of attending a particular high school

within the centralized system. We allow these net returns to flexibly vary between a school-specific

component, αj , and a student-school match effect, β′
jxi. The vector xi contains a broad array of

proxies of academic preparation, such as the individual score in the mock exam, the cumulative

GPA in middle school, the poverty index at the neighborhood-level, the middle school-average of

ENLACE math test scores, and parental education (see Sections 2.3 and 2.4).

The same vector of individual characteristics is also interacted with the geodesic distance dij
(in kilometers) between the location of the middle school of each applicant and each high school,

available through the centralized assignment system. The γ parameter vector captures the individ-

ual cost of attending a particular high school program, while accounting for potential heterogeneity

in applicants’ willingness to travel to a given school. Tuition fees are negligible in this setting and

the small differences in the out-of-pocket expenses across school programs are captured by the

αj parameters. Conditional on xi, dij is assumed orthogonal to the preference shock (εij). This

assumption is usually invoked in the school choice literature (see, e.g., Agarwal & Somaini 2020).

It is violated if students systematically reside near the schools for which they have idiosyncratic

tastes, while it may provide a reasonable approximation in our case as we have rich micro-data on

students. Furthermore, priorities in the school assignment mechanism do not depend on student

locations, thereby alleviating issues related to strategic residential sorting.

All residual unobserved tastes are captured in the error term, εij , that is assumed to be i.i.d.

across i and j following a type-I extreme value distribution with normalized scale and location.

Since discrete choice models depend on differences in payoffs without loss of generality, we nor-
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malize the student’s mean utility of not being assigned to any COMIPEMS school program to

zero. This outside option captures the value of other schools that are not part of the centralized

assignment mechanism or any other labor market entry opportunity not directly observed in the

data.

We embed the information intervention into the model of school choice (1) by allowing all

parameters to vary with the treatment assignment indicator (αT
j ,β

T
j ,γ

T , T ∈ {0, 1}). This spec-

ification captures the fact that feedback provision likely alters the choice environment in which

applicants operate. The main advantage of such an approach is that it permits us to incorporate

preference heterogeneity over the schooling alternatives in a fully flexible manner that is directly

informed by the experimental data on choices. Using this framework, the effect of the interven-

tion at scale on both school choices and assignment outcomes will originate through the estimated

differential demand-side responses across treated and untreated applicants in the experiment.

4.2 Estimation Procedure and Results

We have access to applicant-level data on rank-ordered lists and realized assignment outcomes.

While both sources are potentially valuable in order to infer the distribution of school valuations in

our setting, school rankings may in fact deviate from true preference orderings due to the limited

uncertainty regarding admission outcomes in our setting. School cutoff scores are highly persis-

tent over time, and information about the previous three rounds of the assignment is contained in

the booklet that is provided to students when they apply (see Section 2.1). Furthermore, the per-

formance feedback provided with the experiment may decrease the noise in perceived admission

probabilities. The institutional cap of 20 schools in the submitted rank-ordered lists is another

potential source of truth-telling violation (Haeringer & Klijn 2009, Calsamiglia et al. 2010). A

possibly more robust estimation approach relies on a stability assumption of the realized matching

equilibrium, which is likely satisfied in the large-market matching mechanism under study. Under

stability, the observed match between an applicant and a given school can be interpreted as the

outcome of a discrete choice model with individual-specific choice sets (Fack et al. 2019). In our

setting, stability-based choice sets depend solely on students’ scores in the admission exam.

The size of the experimental sample is too small to precisely estimate the 600+ school-specific

intercepts (αj) and the associated interaction terms (βj). We thus group the various high school

programs in the centralized system into 17 college-specific intercepts, or groups of schools, that

share the same track and that belong to the same public institution of upper secondary education.

By doing so, we substantially reduce the number of parameters that need to be estimated in the

school choice model (1). Additional variations in the applicants’ valuations of high school pro-
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Table 5: Average Marginal Effects for Selected School-Student Match Parameters

Control Sample Treatment Sample
Coefficient Std. Error Coefficient Std. Error

Academic × GPA 0.0005 0.0016 0.0036 0.0020
Academic × Poverty -0.0061 0.0024 -0.0074 0.0036
Elite × GPA 0.0053 0.0046 0.0046 0.0057
Elite × Poverty 0.0064 0.0081 0.0348 0.0099
Selectivity × GPA 0.0027 0.0012 0.0039 0.0014
Selectivity × Poverty -0.0042 0.0019 -0.0058 0.0026

NOTE: This table depicts the estimated average marginal effects for selected school-student match
parameters, which are computed using the model estimates shown in Table B.5. These coefficients
show the change in the conditional probability that student i chooses a school j with a given char-
acteristic (academic, elite, and the degree of selectivity), resulting from a one-unit increase in the
individual covariates (GPA and Poverty). Standard errors are computed using the delta method.

grams within colleges is incorporated in the model in two ways. First, the geodesic distance term

and its interactions with the vector xi allows students to differently value schools based on their

geographic proximity. Second, we incorporate the admission cutoff score observed by the appli-

cants in the previous round of the assignment mechanism into the model as a proxy for the degree

of selectivity of each high school program, along with its interaction terms with the vector xi of

applicants’ characteristics. The assignment mechanism described in Section 2.1 generates sorting

across schools based on individual performance in the admission exam (see Figure 1). The admis-

sion cutoff score is thus a good proxy for the quality of peers and the associated level and pace of

instruction within the school.

The parameters of the school choice model (1) are estimated by maximum likelihood and the

resulting estimates are reported in Table B.5 in the Appendix. The first four columns show that

the estimated school valuations for the control group are similar across alternative specifications.

Whether or not we include the score in the mock exam, replacing it with the expected score of the

test performance or adding random coefficients to selected colleges, does not systematically alter

the magnitudes or signs of the estimated net returns of attending the different colleges for those

applicants who did not receive the performance feedback.8 Table 5 shows the average marginal

effects as implied by the model estimates for selected school-student match parameters. The es-

8The estimated standard deviations of the two normally distributed random coefficients included in the specifi-
cation in the third column are not reported in Appendix Table B.5. Their magnitudes are reasonably small, both at
approximately one-third of the respective mean coefficient, indicating that the rich sources of observed heterogeneity
included in the school choice model (1) may be sufficient to capture substitution patterns across schools in our set-
ting. Indeed, the (negative) value of the log-likelihood at convergence does not decrease much under the specification
with random coefficients when compared to the other specifications. Perhaps most importantly, the p-value of the
Likelihood-Ratio test statistic against a nested model with no random coefficients is equal to 0.45, indicating that we
cannot reject the null hypothesis that the coefficients on the two colleges are fixed.
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timated match-specific returns for treated applicants differ somewhat from their counterparts for

the applicants in the control group, confirming that feedback provision changes the choice envi-

ronment of the students in our sample. This result is broadly consistent with previous empirical

school choice models that allow for imperfect information (Neilson et al. 2019, Wiswall & Zafar

2015).

While the single estimated coefficients are difficult to interpret, in general, we highlight some

patterns that may be relevant for the out-of-sample predictions and the associated simulations that

are discussed in Sections 4.3 and 4.4. A marginal increase in the GPA in middle school increases

the probability of choosing an academic school seven-times more in the treatment group than in the

control group. Applicants who receive the performance feedback and are more socio-economically

disadvantaged are five-times more likely to choose an elite school when compared to those in

the control group. Notice that these marginal effects hold after conditioning on the degree of

selectivity/peer quality of the schools, which in fact reveals the opposite sign on the effect of

poverty on choice probabilities.

4.3 Out-of-Sample Predictions and Model Fit

We extrapolate the estimated school valuations from the experimental sample to the universe of

applicants in the centralized assignment system. The out-of-sample prediction uses the paramet-

ric linear form of the students’ indirect utility (1). The only difference with the experimental

set-up is that here we replace the individual scores in the mock exam with the individual scores

in the admission exam. The underlying assumption is that the intervention at large would pro-

vide timely information about applicants’ academic skills that is comparable to the information

provided through the delivery of mock exam scores.

The estimated model parameters for the students in the experimental control group (i.e., those

who took the mock exam but were not provided with information on their performance) likely cap-

ture the status quo scenario for the much larger population of applicants in the school assignment

mechanism. As discussed in Section 2.3, applicants may have access to preparatory courses for

the admission exam, likely featuring a socioeconomic gradient.9 We assume that taking the mock

exam without receiving personalized feedback puts the relatively disadvantaged applicants of the

experimental sample in a position similar to that of the average applicant in the system, in terms of

the information set about their own academic skills.
9Administrative records from the 2012 assignment round indicate that 44 percent of the applicants enrolled in

schools from more affluent neighborhoods took preparatory courses before submitting their school rankings, but this
figure drops to 12 percent among applicants from schools in high poverty areas. This information was not made
available in subsequent rounds of the assignment mechanism (including the year of our intervention, 2014).
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Table 6: Model Fit on Average Assignment Outcomes

Data Model Difference
Applied in the system (1=yes) 1.00 0.99 -0.01
Assigned in the system (1=yes) 0.87 0.89 0.02
Assigned in:
Vocational schools 0.14 0.11 -0.03
Technical schools 0.26 0.26 -0.00
Academic schools 0.38 0.41 0.03
Elite schools 0.23 0.22 -0.00
Selectivity (z-cutoff score) 0.75 0.74 -0.01
Academic (above-median selectivity) 0.50 0.50 -0.01
Academic (below-median selectivity) 0.10 0.13 0.03
Non-academic (above-median selectivity) 0.25 0.24 -0.01
Non-academic (below-median selectivity) 0.15 0.13 -0.02

NOTE: The moments displayed in the first column are computed from the data of the
assignment mechanism in the year 2014 (see Section 2). The moments displayed in
the second column are computed by running the Serial Dictatorship algorithm that is
in place for the COMIPEMS system, using the simulated rank-ordered lists from the
estimates reported in the fourth column in Appendix Table B.5, the individual scores in
the admission exam, and the school capacities as inputs.

We provide two pieces of evidence that lend support to this assumption. First, we compare

average moments of assignment patterns from the data with those from the matching equilibrium

computed using the simulated rank-ordered lists for all the applicants in the system.10 Table 6

reports overall means across all applicants for selected assignment outcomes (columns 1 and 2).

Mean-differences are very small in size throughout the set of outcomes considered (see column 3 in

Table 6), which indicates that the estimated model parameters using the experimental control group

appear to adequately approximate the overall assignment patterns observed in the data. Second,

the linear correlation between the observed schools’ cutoff scores and the model-based simulated

cutoff scores (averaged over multiple replications of the matching equilibrium, each time with a

different ε draw of the preference shock) is 0.85. Figure 5 provides more nuanced evidence on the

comparison in the cutoff scores between the model and the data. The extrapolated choice model

using the experimental control group broadly fits the cutoff distribution in the data throughout the

entire spectrum of schools in the system (i.e., non-academic and academic, more or less selective,

and elite schools).

The estimated model parameters for the students in the experimental treatment group (i.e.,

those who were provided with information on their performance in the mock exam) approximate

the counterfactual scenario in which all applicants would be given their test scores for the actual

10Section 4.4 provides a more detailed description on how we compute the matching equilibrium in our simulations.
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Figure 5: Model Fit on Schools’ Cutoff Scores
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NOTE: The observed cutoffs are computed from the data of the assignment mechanism in the year 2014 (see Section
2). The (average) simulated cutoff scores displayed in the scatter plot are computed by running 50 times the Serial
Dictatorship algorithm that is in place for the COMIPEMS system using the simulated rank-ordered lists (each time
with a different ε draw of the preference shock), the individual scores in the admission exam, and the school capacities
as inputs.

assignment exam. Using the simulated rank-ordered lists, we can compute the new matching equi-

librium in the centralized system under the policy counterfactual of interest (see Section 4.4). This

approach overcomes the key challenge to scaling-up in our setting to the extent that the simulated

assignment patterns effectively embed the equilibrium sorting and displacement effects resulting

from shifts in the aggregate demand.11

4.4 The Impact of Information Provision at Scale

While we estimate the school choice model (1) by assuming stable matching but not truth-telling,

we can allow students to be truthful in order to study matching outcomes. This holds as long

as preference estimates are consistent (Artemov et al. 2023). We use the simulated rank-ordered

11One potential caveat with our school choice framework is that it precludes applicants from reacting to (expected)
policy-induced changes in peer composition across schools. While summary measures of peer quality can be included
as school characteristics in the students’ indirect utility (1), the endogenous determination of peer quality compromises
the interpretation of the estimates for counterfactual or equilibrium calculations. In a setting of decentralized allocation
of students across schools, Allende (2019) documents the importance of preferences for peers in the study of school
competition, which is beyond the scope of this paper.
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Table 7: The Effect of the Information Intervention on Assignment Outcomes

Status Quo Information Intervention Difference
Applied in the system (1=yes) 0.99 0.99 0.00
Assigned in the system (1=yes) 0.89 0.91 0.02
Rank of assigned school 6.41 5.43 -0.98
Assigned in top choice 0.16 0.25 0.09
Assigned in elite schools 0.22 0.22 0.00
Assigned in academic schools 0.41 0.40 -0.01
Assigned in non-academic schools 0.37 0.38 0.01

NOTE: The average moments displayed in the first column are obtained by applying the Serial Dictatorship
algorithm to the simulated rank-ordered lists based on the model estimates for the control group. The average
moments displayed in the second column are computed by running the Serial Dictatorship algorithm using
the simulated rank-ordered lists based on the model estimates for the treatment group. The corresponding
estimates are reported in the fourth and fifth columns of Table B.5 in the Appendix.

lists, the individual scores in the admission exam, and the school capacities from the assignment

mechanism in the 2014 round as inputs to run the same Serial Dictatorship algorithm that is in

place in the centralized assignment system.12 Since school preferences are vertical, this algorithm

delivers the unique stable matching equilibrium allocation (Roth & Sotomayor 1992).

Table 7 shows some features of the equilibrium allocation under the information intervention

when compared to the status quo allocation. First, there are no changes in the participation rate

in the admission process. With the additional information provided, some students may have

preferred their outside options and hence opted out of the assignment system. This is not the case

in our setting. Second, the share of assigned students through the Serial Dictatorship algorithm

increases by 2 percentage points. Albeit marginal, an increase in the number of assigned students

is an important result. Unmatched students participate in a second round of assignments where

they can only choose between the relatively low-quality schooling alternatives that still have open

seats after the first round (see Section 2.1). Third, and perhaps most importantly, students are

more likely to get assigned to their preferred options. When moving from the status quo to the

counterfactual policy, the average applicant is placed in a school that is one position above her

school rankings (5.4, vs. 6.4). Accordingly, the share of students assigned to their most preferred

option increases by nine percentage points, from 16 percent to 25 percent. Finally, the average

share of applicants assigned across high school tracks does not systematically change with the

equilibrium allocation under the information intervention at scale.

12The simulated rank-ordered lists included in the algorithm are those that give a higher utility to the applicants
when compared to the outside option. In order to mimic the actual assignment mechanism, we truncate the length of
the simulated rank-ordered lists to the institutional constraint of 20 and impose the GPA constraint (above 7/10) for
the elite school admissions.
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Figure 6: The Effect of the Information Intervention on School Choice
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(a) Aggregate Shares of Academic Schools
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(b) Aggregate Shares of Elite Schools
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(c) Share of Academic Schools by Poverty Levels
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(d) Share of Elite Schools by Poverty Levels

NOTE: This figure displays the empirical distributions of the shares of academic schools and elite schools in the
applicants’ simulated rank-ordered lists as implied by the model estimates for the control group (Status Quo) and for
the treatment group (Information Policy). The corresponding estimates are reported in the fourth and fifth columns
of Table B.5 in the Appendix. The central lines within each box denote the sample medians, whereas the upper and
lower level contours of the boxes denote the 75th and 25th percentiles, respectively. The whiskers outside of the boxes
denote the upper and lower adjacent values, which are values in the data that are furthest away from the median on
either side of the box, but are still within a distance of 1.5 times the interquartile range from the nearest end of the box
(i.e., the nearer quartile).

These aggregate sorting patterns may mask substantial heterogeneity in the effect of the inter-

vention across different groups of applicants. In fact, it is informative to compare the distributions

of school choices as predicted by the estimated model for the control group with the corresponding

distributions predicted by the estimated model for the treatment group. Figure 6 displays box-

and-whisker plots for the shares of academic and elite schools in the simulated rank-ordered lists.

Panels A and B show the distributions across the whole applicants’ pool in the Status Quo sce-
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Figure 7: The Effect of the Information Intervention on Cutoff Scores
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NOTE: The (average) simulated cutoff scores displayed in the x-axis are computed by running 50 times the Serial
Dictatorship algorithm that is in place for the COMIPEMS system using the predicted school rankings (each time with
a different ε draw) based on the model estimates for the control group. The (average) simulated cutoff scores displayed
in the y-axis are computed by running 50 times the Serial Dictatorship algorithm that is in place for the COMIPEMS
system using the predicted school rankings (each time with a different ε draw) based on the model estimates for
the treatment group. The corresponding estimates are reported in the fourth and fifth columns of Table B.5 in the
Appendix.

nario (red) versus the Information Policy scenario (gray). Overall, the gray bars show that the

information intervention leads to an increase in the demand for academic schools and a symmetric

decrease in demand for elite schools. The box plots further reveal that both the location and the

scale of the choice distributions for academic schools increase (i.e., the inter-quantile range more

than doubles). The same pattern holds for the scale of the choice distribution for elite schools

under the information intervention.

Panels C and D display the same effects, but they are broken down by discrete levels of neigh-

borhood poverty. The overall effect of the information intervention observed in the upper-panels

can be mostly explained by the associated changes in the simulated rank-ordered lists for relatively

better-off applicants (i.e., those who live in neighborhoods with very low, or low poverty levels).13

13This pattern can be traced back to the estimates of the school choice model, as shown in Table 5. The neigh-
borhood poverty variable generates a large, positive, and statistically different average marginal effect on the choice
probabilities of elite schools in the experimental treatment group when compared to the control group. Poverty also
has a stronger negative average marginal effect on the choice probabilities of academic schools among applicants in
the experimental treatment group, although the difference in the estimated coefficients with the control group is neither
large nor statistically significant.
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Figure 8: The Effect of the Information Intervention on the Composition of Students at Elite
Schools
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NOTE: This figure shows the simulated shares of applicants from low-income neighborhoods (Panel A) and from
schools in the bottom 20 percent of math achievement in the national evaluation (ENLACE), that would result in being
assigned to elite schools under both the Status Quo and the Information Policy scenarios.

The fact that socio-economically disadvantaged applicants are, on average, unresponsive to the

intervention is consistent with the experimental evidence presented in Section 3.2.

The decreased demand-side pressure on elite programs is likely to spur some reallocation ef-

fects within the system, possibly towards (less selective) academic programs. This can be seen

through changes in the simulated schools’ cutoff scores, as depicted in Figure 7. Under the In-

formation Policy scenario, the cutoff scores for most of the elite schools slightly decrease when

compared to the Status Quo scenario. Instead, the cutoff scores of academic programs increase on

average. Non-academic programs feature a more erratic pattern of positive and negative changes in

their equilibrium cutoffs. Jointly, the movements in the cutoff scores and the underlying changes in

the demand for academic schools and elite schools may explain the muted effect of the intervention

on the average sorting patterns across high school tracks (see Table 7).

The composition changes in the demand for elite programs by neighborhood poverty levels

may induce some differential sorting and displacement effects of the information intervention at

scale. The reduction in the demand for elite programs among the relatively better-off applicants

would necessarily leave some open seats in those programs for high-achieving and relatively dis-

advantaged students. In this scenario, the scaled-up intervention would alter the composition of

the student population admitted to elite schools in favor of the relatively disadvantaged students.

Figure 8 shows that this is precisely what happens in the (simulated) data. The information inter-

vention doubles the representation of students from low-income neighborhoods in elite schools,
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where the admission share starts at 13 percent in the Status Quo scenario to 22 percent in the In-

formation Policy scenario (see Panel A). Similarly, Panel B in the same figure further shows that

the share of applicants from the most disadvantaged middle schools (defined as those in the first

quintile of the math-score distribution) increases from 7 to 10 percent under the Information Policy

scenario.

The equilibrium effect of the information intervention on elite admission for low-income ap-

plicants could not possibly be detected in the small-scale evaluation. Indeed, the experimental

evidence of Section 3.2 documents no effect of feedback provision on the probability of assign-

ment to elite schools, as shown in the last column of Table 3. Our approach shows that this type of

indirect effect that exclusively arises during large-scale policy implementations can be fully char-

acterized, even with partial knowledge of the demand side, in a setting where supply-side responses

are muted.

5 The Medium-run Consequences of Displacement

The simulation results presented in the previous section show that low-income and high-achieving

applicants are disproportionately more likely to be admitted to elite schools under the large-scale

implementation of the information intervention. This effect reflects a displacement effect of rela-

tively better-off applicants, who decrease their demand for elite programs under this scenario. In

this section, we attempt to assess the impact of such indirect (equilibrium) effect of the intervention

on the educational outcomes of low-income applicants.

We consider on-time graduation from high school as our main outcome of interest. As shown in

Section 3.3, this variable adequately captures the student-school match effects that are likely at play

in our setting. Since the administrative records at our disposal do not cover UNAM-sponsored high

schools, we focus on the effects of admission to IPN schools among the elite schools (see Section

2.1). We apply the same definition of socio-economic disadvantage (low-income) that we have

used throughout the analysis. Namely, we focus on applicants who reside in neighborhoods with

high or very high poverty levels. Differing from the analysis discussed in Section 3.3, we treat

admission as equal to enrolment, because enrolment at elite schools is almost universal (97%).

5.1 Regression Discontinuity Design

All elite schools are over-subscribed, and admission requires clearing their admission cutoffs (see

Figure 1). These cutoffs can be exploited to identify the effect of marginal admission to an elite

school on the probability of on-time graduation from upper secondary education. We focus on
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approximately 10 percent of the low-income applicants (N=18,011), whose score barely places

them in an elite school (instead of a non-elite school), as well as those who just miss elite placement

and end up in a non-elite school. Since we consider only two groups of institutions, elite and non-

elite, we have students whose first best is an elite school and their second best is a non-elite school

in the local institution ranking (Kirkeboen et al. 2016). Table B.6 in the Appendix illustrates the

intuition behind our sample selection, which implies that applicants who are at the margin of elite

admission have the same ordinal preferences.

We use the following Regression Discontinuity (RD) regression model for students with a score

close to the relevant cutoff scores:

yij = η + θElitei + δ(si − ck(i)) + τ(si − ck(i))× Elitei + νij, (2)

where yij is an indicator variable that denotes whether student i in high school j graduates

on time. We center the running variable si by the IPN-specific admission cutoffs, ck(i), such that

a positive value of (si − ck(i)) indicates admission to an elite school. In our estimation sample,

each student has a minimum cut-off for elite admission, ck(i), that depends on her preferences.

The indicator variable Elitei takes the value of one when a student is admitted to an elite school,

and zero otherwise, and νij is an error term that is clustered at the school×year level. Given the

continuity of potential outcomes in terms of the admission cutoffs, the parameter θ would capture

the effect of marginal admission to an elite school on high school graduation on time. We estimate

this non-parametrically by local linear regressions that are defined within the mean squared error

(MSE) optimal bandwidths (Calonico et al. 2014).

Manipulation of the running variable in terms of the RD threshold is unlikely in our context,

for two reasons. First, admission cutoffs are determined in equilibrium after students submit their

applications and take the admission exam. Second, students do not know their score in the ad-

mission exam until the end of the admission process. If manipulation was to occur, we would

expect to observe bunching in the empirical density of the admission score just above the admis-

sion cutoffs of elite schools. Figure B.2 in the Appendix confirms that there is no evidence of

manipulation in our sample (T=-1.0, p-value=0.31). Accordingly, Appendix Table B.7 documents

that the pre-determined individual-level covariates are smooth in relation to the RD threshold, with

point estimates that are small relative to the respective means in the local sample and that are not

statistically different from zero.
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Figure 9: Threshold-crossing and Marginally Admitted Low-income Applicants
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(b) Applicants Admitted under Policy Counterfactual

NOTE: Panel A of this figure shows the binned means of the outcome variable in terms of the elite admission thresh-
olds, defined by following the IMSE-optimal evenly spaced method by Calonico et al. (2015). Solid lines represent
the predictions from local polynomial (quadratic) regressions estimated separately for observations to the left and to
the right of the admission threshold. Panel B depicts the empirical density for the sub-set of low-income applicants
who would be admitted to elite (IPN) schools under the large-scale implementation of the information intervention
(see Panel A of Figure 8). The vertical line in Panel B represents the MSE-optimal bandwidth (see Table 8).

5.2 The Causal Effect of Elite School Admission for Low-income Students

We start by showing graphical evidence of marginal admission to an elite school of on-time gradu-

ation from high school. Panel A of Figure 9 documents clear evidence that low-income applicants

who are marginally admitted to an elite school experience relatively worse rates of on-time high

school graduation when compared to those who are marginally rejected. Away from the cutoff, the

observed positive correlation between the rate of on-time graduation and the running variable is

consistent with the notion that the score in the admission exam captures relevant academic skills.

Panel B of Figure 9 depicts the empirical density of the comparable running variable under

the large-scale implementation of the information intervention studied in Section 4 for the sub-set

of low-income applicants who would be admitted to elite (IPN) schools. The chart shows that

the majority of these applicants would indeed be marginally admitted to elite schools. More than

80 percent of these applicants are within the optimal bandwidth of 13.4 centered-score points, as

shown by the vertical bar in Panel B of Figure 9, and the median lies at a 5-point difference between

the admission score and the relevant minimum cutoff score for elite admission.

Table 8 reports the corresponding non-parametric estimates of the RD regression model (2).

The magnitude and sign of the estimated θ parameter are remarkably consistent between the dif-

ferent specifications displayed across the various columns of the table and the graphical evidence
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Table 8: Threshold Crossing Effect on Graduation on Time

Baseline Cohort-FE Quadratic Half BW Double BW
Elite Admission -0.112 -0.112 -0.123 -0.117 -0.119

(0.021) (0.020) (0.030) (0.028) (0.017)
Bias-corrected CI [-0.157;-0.061] [-0.156;-0.061] [-0.196;-0.064]
Optimal BW 13.368 13.575 12.962
Ad Hoc BW 6.684 26.737
Mean Dep. Var. 0.463 0.463 0.463 0.466 0.455
Nb. of Obs. 10828 10828 10226 5984 16021

NOTE: This table displays non-parametric estimates of marginal admission to elite schools of on-time graduation for
a stacked sample across five consecutive cohorts (2005-2009) of applicants who reside in low-income neighborhoods.
Standard errors reported in parentheses are clustered at the school×year level. The first column displays a baseline
specification using local-linear regressions and a triangular kernel. In the second column, we include indicator variables
for the different years of the assignment mechanism as additional covariates. In the third column, we consider local
polynomial (quadratic) functions of the centered admission score. Finally, the last two columns show local linear regres-
sion models that use ad-hoc bandwidth choices, respectively half and double the MSE-optimal bandwidth of the baseline
model. For the specifications that are defined within optimal bandwidths, we also report the bias-corrected confidence
intervals obtained using the robust estimator proposed in Calonico et al. (2014).

reported in Panel A of Figure 9. Marginal admission to an elite school decreases the rate at which

low-income students graduate on time from high school by 11-12 percentage points. The mag-

nitude of this local effect is substantial given that, on average, only 46 percent of the marginally

rejected students from elite schools tend to graduate on time from high school.

The evidence presented in this section suggests that it is not clear whether low-income ap-

plicants would in fact benefit from the equilibrium effect that arises under the large-scale imple-

mentation of the information intervention. Marginally admitted students at elite schools are likely

to experience negative consequences on their subsequent academic trajectories, possibly through

grade retention, switching across high schools, or dropping-out from upper secondary education.

While there may be other channels through which low-income applicants may take advantage of

elite admission, such as peer effects or social networks that may determine future educational or

employment opportunities, comparable evidence from Chile shows that these gains are muted for

students outside of historically advantaged groups (Zimmerman 2019).

The sub-sample of low-income applicants who would gain admission into elite schools under

the counterfactual policy simulation is largely comparable to the marginally admitted applicants of

the RD analysis presented in this section. Taken together, these findings suggest that the sorting

and displacement effects of the intervention are likely to offset, at least in part, the positive average

impact of the small-scale intervention on on-time graduation, as discussed in Section 3.3.
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6 Conclusion

The aim of this paper is to characterize the effect of an intervention in education, while taking

into account the equilibrium effects that often arise during a large-scale implementation (see, e.g.,

Agostinelli, Luflade & Martellini 2021, Heckman et al. 1998a,b, Khanna 2023). We study a ran-

domized experiment designed and implemented within a centralized school assignment mechanism

in Mexico City. The treatment consists of providing ninth-graders with timely performance feed-

back regarding their academic skills through the application of a mock version of the admission

exam used to determine priorities within the assignment mechanism. The experimental evidence

documents that, relative to a control group, applicants in the treatment group are placed in better

school-student matches, which yields higher rates of on-time graduation by the end of the twelfth

grade.

While these findings point toward a positive impact of the information intervention in our

setting, it is not clear whether the results are also informative when the same intervention is imple-

mented at scale. The key challenge to scaling-up in our setting is because providing information

about individual scores in the admission exam to all applicants would necessarily trigger aggregate

sorting and displacement effects within the centralized mechanism, and this would then potentially

alter individual placement outcomes. We embed an empirical model of school choice in a matching

equilibrium that is consistent with the centralized assignment mechanism in order to overcome this

challenge and quantify the effect of the intervention at scale. The modelling framework leverages

the variation induced by the experiment in terms of the differential valuations over the schooling

alternatives between treated and untreated applicants. We do so in order to extrapolate the coun-

terfactual effects of the information intervention toward a larger and more diverse population of

applicants.

Comparing simulated assignment outcomes between the status quo and the policy counterfac-

tual reveals a positive average impact of the information intervention on student welfare. We also

document substantial heterogeneity in the school choice responses across the diverse spectrum of

applicants, which unlocks equilibrium effects within the centralized system that ultimately hinder

the educational trajectories of socio-economically disadvantaged and high-achieving applicants.

We conclude that the information intervention has quantitatively sizable equilibrium effects that

only occur at scale, and that may partly offset its effectiveness for the sub-population of applicants

targeted by the small-scale randomized evaluation.

This paper contributes to the current debate about the challenges to scale-up experimental eval-

uations. Some authors argue that one way in which experiments can be made more representative

and hence have a greater impact on policy is by means of at-scale implementations (Muralidharan
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& Niehaus 2017). Others propose an iterative process of sequential experimentation so as to gradu-

ally build external validity from small-scale trials to larger-scale evaluations (Banerjee et al. 2017).

We argue that solely relying on randomized control trials is unlikely to generate real progress in the

science of scaling for at least three reasons. First, it takes time and significant resources to imple-

ment at-scale evaluations in many applications, which then makes it difficult to provide quantitative

policy advice in a timely way. Second, shifting the behavior of a large number of individuals of-

ten spurs nontrivial equilibrium/spillover effects. To the extent that these market-level changes

systematically influence individual outcomes, it is difficult to think about experimental designs

that are robust to possible violations of the stable unit treatment value assumption, or SUTVA

(Imbens & Rubin 2015).14 Lastly, as we show in our analysis, these indirect effects can have nega-

tive consequences on beneficiaries, and so quantifying them through ex-ante counterfactual model

simulations seems a sensible (and ethical) alternative to ex-post program evaluation.

Another related strand of the literature attempts to bridge small-scale experimental work and

structural macro analysis in the study of the aggregate and distributional effect of development

policies (Bergquist et al. 2022, Buera et al. 2021, 2023). The authors advocate for a blend of

models and data as a “middle ground”, in order to make progress on the complex issues that arise

in scaling-up such policies. The mixed empirical approach pursued in this paper fits well into this

characterization, which we hope will become a blueprint for future work that intends to study the

impact of large-scale interventions.

14In contexts, different from ours, whereby equilibrium effects can be assumed spatially concentrated, or “local”
in nature, an obvious solution is to enlarge the unit of randomization in order to account for those in the experimental
analysis (Egger et al. 2022, Muralidharan et al. 2023).
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You? A Natural Field Experiment on Relative Performance Feedback in Higher Education’,
Management Science 65(8), 3714–3736.

Banerjee, A. V., Banerji, R., Berry, J., Duflo, E., Kannan, H., Mukerji, S., Shotland, M. & Wal-
ton, M. (2017), ‘From proof of concept to scalable policies: Challenges and solutions, with an
application’, Journal of Economic Perspectives 31(4), 73–102.

Bergman, P. (2021), ‘Parent-child information frictions and human capital investment: Evidence
from a field experiment’, Journal of Political Economy 129(1), 286–322.

Bergquist, L. F., Faber, B., Fally, T., Hoelzlein, M., Miguel, E. & Rodriguez-Clare, A. (2022),
Scaling agricultural policy interventions, Working Paper 30704, National Bureau of Economic
Research.

Bobba, M. & Frisancho, V. (2016), Perceived Ability and School Choices, TSE Working Papers
16-660, Toulouse School of Economics (TSE).

Bobba, M. & Frisancho, V. (2022), ‘Self-perceptions about academic achievement: Evidence from
Mexico City’, Journal of Econometrics 231(1), 58–73.

Buera, F. J., Kaboski, J. P. & Shin, Y. (2021), ‘The Macroeconomics of Microfinance’, Review of
Economic Studies 88(1), 126–161.

Buera, F. J., Kaboski, J. P. & Townsend, R. M. (2023), ‘From Micro to Macro Development’,
Journal of Economic Literature (forthcoming).

Burks, S. V., Carpenter, J. P., Goette, L. & Rustichini, A. (2013), ‘Overconfidence and social
signalling’, The Review of Economic Studies 80(3), 949–983.

Calonico, S., Cattaneo, M. D. & Titiunik, R. (2014), ‘Robust nonparametric confidence intervals
for regression discontinuity designs’, Econometrica 82, 2295–2326.

Calonico, S., Cattaneo, M. D. & Titiunik, R. (2015), ‘Optimal data-driven regression discontinuity
plots’, Journal of the American Statistical Association 110(512), 1753–1769.

Calsamiglia, C., Haeringer, G. & Klijn, F. (2010), ‘Constrained School Choice: An Experimental
Study’, American Economic Review 100(4), 1860–1874.

Caron, E., Bernard, K. & Metz, A. (2021), Fidelity and properties of the situation, challenges and
recommendations, in ‘The Scale-up Effect in Early Childhood and Public Policy. Edited by John
A. List, Dana Suskind, and Lauren H. Supplee’, Routledge.

Cattaneo, M. D., Jansson, M. & Ma, X. (2020), ‘Simple local polynomial density estimators’,
Journal of the American Statistical Association 115(531), 1449–1455.

Davis, J., Guryan, J., Hallberg, K. & Ludwig, J. (2021), Studying properties of the population:
Designing studies that mirror real world scenarios, in ‘The Scale-up Effect in Early Childhood
and Public Policy. Edited by John A. List, Dana Suskind, and Lauren H. Supplee’, Routledge.

38
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Appendices

A Beliefs Data
We collect rich survey data with detailed information on the subjective distribution of beliefs about
performance in the admission exam. In order to help students understand probabilistic concepts,
we explicitly linked the number of beans placed in a cup to a probability measure, where zero
beans means that the student assigns zero probability to a given event and 20 beans means that the
student believes the event will occur with certainty. Students were provided with a card divided
into six discrete intervals of the score. Surveyors then elicited students’ expected performance in
the test by asking them to allocate the 20 beans across the intervals so as to represent the chances
of scoring in each bin.

We include a set of practice questions before eliciting beliefs:

1. How sure are you that you are going to see one or more movies tomorrow?

2. How sure are you that you are going to see one or more movies in the next two weeks?

3. How sure are you that you are going to travel to Africa next month?

4. How sure are you that you are going to eat at least one tortilla next week?

If respondents grasp the intuition behind our approach, they should provide an answer for
question 2 that is larger than or equal to the answer in question 1, since the latter event is nested in
the former. Similarly, respondents should report fewer beans in question 3 (close to zero probability
event) than in question 4 (close to one probability event). Whenever students made mistakes, the
surveyor repeated the explanation as many times as necessary before moving forward. We are
confident that the elicitation of beliefs has worked well since only 11 students (0.3%) ended up
making mistakes in these practice questions. The survey question eliciting beliefs reads as follows
(authors’ translation from Spanish):

“Suppose that you were to take the COMIPEMS exam today, which has a maximum
possible score of 128 and a minimum possible score of zero. How sure are you that
your score would be between ... and ...”

During the pilot activities, we tested different versions with less bins and/or fewer beans to
evaluate the trade-off between coarseness of the grid and students’ ability to distribute beans across
all intervals. We settled for six intervals with 20 beans as students were at ease with that format.
Only 6% of the respondents concentrate all beans in one interval, which suggests that the grid
was too coarse only for a few applicants. The resulting individual ability distributions seem well-
behaved: using the 20 observations (i.e., beans) per student, we run a normality test (Shapiro &
Wilk 1965) and reject it for only 11.4% of the respondents.
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B Additional Figures and Tables

Figure B.1: Average Skipping Patterns in the Mock Exam
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Note: The x-axis orders the 128 questions of the exam in order of appearance. Different colors are used to group
together questions from the same section in the exam. Questions in red are the ones excluded from grading since the
school curriculum did not cover those subjects by the time of the application of the mock exam.
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Figure B.2: Manipulation of the Elite Admission Cutoff
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Note: The figure displays the empirical densities with the corresponding confidence intervals for the admission score
running variable. The density is computed separately before and after the admission cutoffs of elite schools using the
local-polynomial estimator proposed in Cattaneo et al. (2020).
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Table B.1: Summary Statistics and Randomization Check

Control Group Treatment Group Treatment-Control
Mock exam score 60.540 62.366 1.496

(15.416) (16.290) [1.065]
Exam score 65.541 65.248 –0.169

(19.516) (19.284) [1.248]
GPA (middle school) 8.116 8.122 –0.013

(0.846) (0.846) [0.047]
Scholarship in MS 0.106 0.115 0.007

(0.308) (0.319) [0.015]
Grade retention in MS 0.125 0.131 0.010

(0.331) (0.338) [0.019]
Does not skip classes 0.971 0.971 –0.001

(0.169) (0.169) [0.010]
Plans to go to college 0.670 0.671 –0.003

(0.470) (0.470) [0.022]
Male 0.444 0.461 0.016

(0.497) (0.499) [0.020]
Disabled student 0.142 0.148 0.006

(0.349) (0.355) [0.015]
Indigenous student 0.085 0.101 0.017

(0.278) (0.302) [0.014]
Does not give up 0.878 0.889 0.015

(0.327) (0.315) [0.014]
Tries his best 0.735 0.722 –0.016

(0.442) (0.448) [0.021]
Finishes what he starts 0.720 0.712 –0.015

(0.449) (0.453) [0.020]
Works hard 0.725 0.739 0.010

(0.447) (0.439) [0.022]
Experienced bullying 0.142 0.152 0.010

(0.349) (0.359) [0.013]
Parental background and supervision 0.032 0.058 0.011

(0.786) (0.760) [0.035]
High SES (asset index) 0.463 0.485 0.019

(0.499) (0.500) [0.025]
Took prep courses 0.488 0.467 –0.026

(0.500) (0.499) [0.026]
Exam Preparation 0.421 0.443 0.027

(0.494) (0.497) [0.033]
Previous mock exam 0.269 0.290 0.017

(0.444) (0.454) [0.037]
Previous mock exam with feedback 0.133 0.166 0.028

(0.340) (0.372) [0.033]
N. Obs. 1290 1203 2493

NOTE: The first two columns report means and standard deviations (in parenthesis). The last column displays the OLS
coefficients of the treatment dummy along with the standard errors clustered at the middle school level (in brackets)
for the null hypothesis of zero effect.
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Table B.2: Belief Updating

Mean Median IQR
Treatment -6.519 -8.449 -2.898

[0.000] [0.000] [0.000]
{0.001} {0.001} {0.001}

Mean Control 75.6 78.8 24.2
Number of Observations 2246 2246 2246
Number of Clusters 90 90 90
R-squared 0.156 0.156 0.044

NOTE: The dependent variable “Mean Beliefs” is constructed as the
summation of the mid-values in each discrete interval of the score mul-
tiplied by the associated probability assigned by the student. The de-
pendent variable “Median Beliefs” is defined as the midpoint of the
interval in which the cumulative density of beans first surpasses 0.5 (11
beans or more). The dependent variable “Inter-Quantile Range (IQR)
of Beliefs” is defined as the difference between the midpoints of the
intervals that accumulate 75 percent and 25 percent of the probability
mass. All specifications include a set of dummy variables which corre-
sponds to the randomization strata, pre-determined characteristics (sex,
characteristics of the school of origin, previous experience with prac-
tice exams providing feedback, aspirations to attend college, an index of
personality traits, an index of parental characteristics, and a household
asset index), and indicator variables for whether each of the covariates
has missing data. p-values reported in brackets refer to the conven-
tional asymptotic standard errors while those reported in curly brack-
ets are adjusted for testing each null hypothesis across multiple out-
comes through the step-wise procedure described in Romano & Wolf
(2005a,b, 2016). All inference procedures take into account clustering
of the error terms at the middle school level and the block randomiza-
tion design.
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Table B.3: Treatment Effects on Application Outcomes

Participates Exam Length Max cutoff Min cutoff
COMIPEMS Score of ROL in ROL in ROL

Treatment 0.000 -0.669 0.126 1.641 -0.366
[0.987] [0.348] [0.564] [0.247] [0.637]
{0.983} {0.908} {0.982} {0.777} {0.982}

Performance index 0.023 16.147 0.079 4.019 4.368
[0.000] [0.000] [0.475] [0.000] [0.000]
{0.001} {0.001} {0.978} {0.001} {0.001}

Treatment X Performance index -0.002 0.223 -0.108 0.262 0.483
[0.777] [0.582] [0.489] [0.757] [0.510]
{0.982} {0.982} {0.978} {0.982} {0.978}

Mean Control 0.881 65.541 9.465 90.491 35.022
Number of Observations 3160 2493 2493 2493 2493
Number of Clusters 90 90 90 90 90
R-squared 0.609 0.735 0.032 0.266 0.243

NOTE: Standard errors clustered at the middle school level. All specifications include a set of dummy variables which
corresponds to the randomization strata, pre-determined characteristics (sex, characteristics of the school of origin,
previous experience with practice exams providing feedback, aspirations to attend college, an index of personality
traits, an index of parental characteristics, and a household asset index), and indicator variables for whether each of
the covariates has missing data. Sample in column 1 includes all students in the survey records. Sample in columns
2-5 consists of placed applicants. p-values reported in brackets refer to the conventional asymptotic standard errors
while those reported in curly brackets are adjusted for testing each null hypothesis across multiple outcomes through
the step-wise procedure described in Romano & Wolf (2005a,b, 2016). All inference procedures take into account
clustering of the error terms at the middle school level and the block randomization design.
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Table B.4: Average Treatment Effects on Admission Outcomes

Placed in Placed Ranking of
1st Round Any placement school

Treatment -0.004 -0.006 0.141
[0.796] [0.719] [0.411]
{0.963} {0.961} {0.804}

Performance index 0.068 0.064 -0.690
[0.000] [0.000] [0.000]
{0.001} {0.001} {0.001}

Treatment X Performance index -0.007 -0.005 -0.000
[0.647] [0.751] [1.000]
{0.934} {0.963} {1.000}

Mean Control 0.857 0.884 3.692
Number of Observations 2824 2824 2493
Number of Clusters 90 90 90
R-squared 0.068 0.080 0.085

NOTE: Standard errors clustered at the middle school level. All specifications include a set of dummy variables which
corresponds to the randomization strata, pre-determined characteristics (sex, characteristics of the school of origin,
previous experience with practice exams providing feedback, aspirations to attend college, an index of personality
traits, an index of parental characteristics, and a household asset index), and indicator variables for whether each
of the covariates has missing data. Sample in columns columns 2-3 include all students who are matched in the
administrative records of the COMIPEMS exam. Sample in column 3 consists of placed applicants. p-values reported
in brackets refer to the conventional asymptotic standard errors while those reported in curly brackets are adjusted for
testing each null hypothesis across multiple outcomes through the step-wise procedure described in Romano & Wolf
(2005a,b, 2016). All inference procedures take into account clustering of the error terms at the middle school level
and the block randomization design.
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Table B.5: Model Estimates

Control Sample Treatment Sample
Baseline Beliefs Random Coeff. Mock Score Mock Score

zsel 1.1220 1.1137 1.1215 1.1002 1.5163
(0.1865) (0.1874) (0.1866) (0.1882) (0.2135)

zselXzgpa 0.1708 0.1677 0.1709 0.1353 0.1561
(0.0614) (0.0626) (0.0614) (0.0657) (0.0677)

zselXzmarg -0.1006 -0.0959 -0.1004 -0.0961 -0.2217
(0.1040) (0.1042) (0.1040) (0.1050) (0.1239)

zselXzcal mat 0.1280 0.1191 0.1275 0.1092 0.2556
(0.0841) (0.0856) (0.0841) (0.0854) (0.0837)

zselXedu 0.5391 0.5342 0.5391 0.5126 -0.0602
(0.1718) (0.1739) (0.1719) (0.1740) (0.1726)

zselXzmu1 0.0049
(0.0067)

zselXzscore 0.1033 0.1670
(0.0718) (0.0723)

geodist -0.2755 -0.2751 -0.2768 -0.2757 -0.2005
(0.0197) (0.0197) (0.0197) (0.0197) (0.0239)

geodistXzgpa 0.0094 0.0106 0.0096 0.0030 0.0076
(0.0064) (0.0066) (0.0064) (0.0070) (0.0076)

geodistXzmarg 0.0021 0.0021 0.0027 0.0019 -0.0450
(0.0116) (0.0116) (0.0116) (0.0116) (0.0149)

geodistXzcal mat 0.0215 0.0239 0.0218 0.0173 0.0212
(0.0083) (0.0085) (0.0083) (0.0086) (0.0098)

geodistXedu 0.0302 0.0324 0.0305 0.0252 0.0042
(0.0160) (0.0163) (0.0161) (0.0163) (0.0176)

geodistXzmu1 -0.0009
(0.0007)

geodistXzscore 0.0151 0.0170
(0.0072) (0.0074)

school d2Xzgpa -0.4900 -0.4854 -0.4921 -0.4536 -0.3656
Continued on next page

VIII



Table B.5 Model Estimates – Continued from Previous Page

Control Sample Treatment Sample
Baseline Beliefs Random Coeff. Mock Score Mock Score
(0.1680) (0.1707) (0.1680) (0.1786) (0.1895)

school d2Xzmarg 0.0459 0.0535 0.0399 0.0239 1.1455
(0.3011) (0.3015) (0.3011) (0.3030) (0.3797)

school d2Xzcal mat 0.1057 0.0689 0.1027 0.1550 -0.0927
(0.2153) (0.2179) (0.2153) (0.2198) (0.2555)

school d2Xedu -0.5865 -0.5755 -0.5906 -0.5215 0.2154
(0.4330) (0.4363) (0.4330) (0.4390) (0.5107)

school d2 2.1514 2.0977 2.1650 2.3253 -0.1198
(0.5141) (0.5158) (0.5143) (0.5276) (0.6189)

school d2Xzmu1 0.0018
(0.0186)

school d2Xzscore -0.1272 -0.4005
(0.2122) (0.2157)

school d3Xzgpa -0.3409 -0.3590 -0.3422 -0.3890 -0.5132
(0.1882) (0.1916) (0.1882) (0.2014) (0.1995)

school d3Xzmarg 0.4562 0.4650 0.4508 0.3995 1.1633
(0.3427) (0.3432) (0.3427) (0.3485) (0.3941)

school d3Xzcal mat 0.4423 0.3767 0.4384 0.4091 -0.3214
(0.2318) (0.2339) (0.2318) (0.2358) (0.2483)

school d3Xedu -0.4164 -0.4436 -0.4187 -0.4239 -0.0141
(0.4882) (0.4916) (0.4881) (0.4945) (0.5370)

school d3 -0.6555 -0.7139 -0.6442 -0.4159 -1.9262
(0.5814) (0.5822) (0.5815) (0.6048) (0.6309)

school d3Xzmu1 0.0147
(0.0205)

school d3Xzscore 0.2645 0.0489
(0.2337) (0.2149)

school d4Xzgpa 0.0030 -0.0004 0.0010 0.0189 -0.2476
(0.5471) (0.5478) (0.5471) (0.5606) (0.8303)

school d4Xzmarg -0.3096 -0.2683 -0.3161 -0.3621 2.0701
Continued on next page
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Table B.5 Model Estimates – Continued from Previous Page

Control Sample Treatment Sample
Baseline Beliefs Random Coeff. Mock Score Mock Score
(1.4066) (1.4046) (1.4060) (1.3662) (1.8677)

school d4Xzcal mat 0.4560 0.3904 0.4510 0.4019 -0.3692
(0.6966) (0.7100) (0.6962) (0.7206) (1.2363)

school d4Xedu -1.0015 -1.0365 -1.0043 -0.9636 -7.3388
(1.2642) (1.2748) (1.2640) (1.2587) (76.2827)

school d4 2.1428 1.9942 2.1575 2.1849 -2.6485
(2.0790) (2.0944) (2.0780) (2.0571) (2.7534)

school d4Xzmu1 0.0159
(0.0615)

school d4Xzscore 0.3300 -0.2664
(0.7165) (1.1829)

school d5Xzgpa -0.4680 -0.4464 -0.4692 -0.5051 0.0477
(0.3380) (0.3441) (0.3381) (0.3680) (44.0106)

school d5Xzmarg 0.6763 0.6712 0.6708 0.6364 0.1239
(0.5203) (0.5173) (0.5204) (0.5193) (111.0151)

school d5Xzcal mat 0.2031 0.2014 0.1983 0.1772 0.3491
(0.5232) (0.5276) (0.5233) (0.5329) (74.2039)

school d5Xedu -0.5802 -0.5535 -0.5807 -0.6255 0.6071
(1.1287) (1.1304) (1.1284) (1.1306) (87.1108)

school d5 1.3488 1.3315 1.3599 1.5062 -6.8738
(1.1428) (1.1383) (1.1430) (1.1599) (186.2420)

school d5Xzmu1 -0.0160
(0.0358)

school d5Xzscore 0.1638 0.5097
(0.4216) (40.7020)

school d6Xzgpa -0.5034 -0.6263 -0.5053 -0.6576 -0.1901
(0.2606) (0.2709) (0.2606) (0.2800) (0.2474)

school d6Xzmarg -0.4732 -0.4307 -0.4791 -0.5044 0.1023
(0.3856) (0.3896) (0.3856) (0.3887) (0.4312)

school d6Xzcal mat -0.3591 -0.3816 -0.3609 -0.4022 0.5233
Continued on next page
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Table B.5 Model Estimates – Continued from Previous Page

Control Sample Treatment Sample
Baseline Beliefs Random Coeff. Mock Score Mock Score
(0.3955) (0.3883) (0.3953) (0.3984) (0.3026)

school d6Xedu -1.2103 -1.3210 -1.2116 -1.4034 0.3299
(0.8684) (0.8714) (0.8685) (0.8961) (0.6197)

school d6 2.0773 1.9030 2.0908 2.1907 0.9946
(0.6938) (0.7097) (0.6941) (0.7063) (0.7585)

school d6Xzmu1 0.0441
(0.0288)

school d6Xzscore 0.5917 -0.4600
(0.3262) (0.2707)

school d7Xzgpa -0.4686 -0.4647 -0.4705 -0.5108 -0.7586
(0.1595) (0.1622) (0.1596) (0.1710) (0.1816)

school d7Xzmarg 0.2240 0.2314 0.2173 0.1635 0.9612
(0.2751) (0.2754) (0.2751) (0.2790) (0.3458)

school d7Xzcal mat 0.1418 0.1060 0.1384 0.1153 0.1620
(0.2068) (0.2084) (0.2068) (0.2108) (0.2295)

school d7Xedu -0.8298 -0.8226 -0.8327 -0.8419 0.0578
(0.4437) (0.4464) (0.4437) (0.4511) (0.4746)

school d7 1.3646 1.3242 1.3789 1.6000 -0.3695
(0.4717) (0.4721) (0.4718) (0.4900) (0.5717)

school d7Xzmu1 0.0011
(0.0174)

school d7Xzscore 0.2551 -0.0882
(0.2034) (0.2021)

school d8Xzgpa -0.4209 -0.4408 -0.4109 -0.3449 -0.5504
(0.2753) (0.2792) (0.2749) (0.2859) (0.3131)

school d8Xzmarg 0.5170 0.4736 0.5296 0.5121 2.0198
(0.4912) (0.4927) (0.4909) (0.4903) (0.5712)

school d8Xzcal mat -0.2240 -0.3229 -0.2221 -0.1521 -0.8218
(0.3503) (0.3537) (0.3502) (0.3594) (0.4050)

school d8Xedu -1.5097 -1.5752 -1.5016 -1.4205 0.7425
Continued on next page
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Table B.5 Model Estimates – Continued from Previous Page

Control Sample Treatment Sample
Baseline Beliefs Random Coeff. Mock Score Mock Score
(0.6523) (0.6575) (0.6522) (0.6551) (0.7090)

school d8 2.8707 2.7543 2.8343 3.1237 0.0656
(0.8756) (0.8764) (0.8743) (0.9074) (1.0629)

school d8Xzmu1 0.0382
(0.0299)

school d8Xzscore -0.2418 -0.8604
(0.3727) (0.3814)

school d9Xzgpa -0.8674 -1.0825 -1.5338 -0.4433 -0.8429
(0.6517) (0.7667) (1.2238) (0.7054) (0.7255)

school d9Xzmarg -3.9261 -4.0808 -5.8883 -4.4321 1.7951
(4.0107) (4.2425) (6.4934) (4.3531) (1.4758)

school d9Xzcal mat 0.3388 0.3707 -0.4466 0.5158 1.1686
(1.1657) (1.2460) (1.9763) (1.2804) (1.0350)

school d9Xedu -6.6213 -7.0666 -18.0524 -8.5800 -7.7138
(18.5332) (21.3624) (3.2e+03) (35.3352) (42.5010)

school d9 8.6761 7.8062 8.4710 10.6771 -0.2287
(4.9403) (5.3762) (7.2752) (5.3848) (2.9337)

school d9Xzmu1 0.1297
(0.1364)

school d9Xzscore -1.7571 -0.9392
(0.9231) (0.9438)

school d10Xzgpa -1.7266 -1.8671 -1.7272 -1.9192 -0.8270
(0.5639) (0.5980) (0.5640) (0.5713) (0.9407)

school d10Xzmarg 2.2972 2.7499 2.2940 2.5223 3.8977
(0.8357) (1.0006) (0.8360) (0.9385) (2.6261)

school d10Xzcal mat 0.6398 0.5967 0.6372 0.6962 -0.2802
(1.1149) (1.1127) (1.1153) (1.1210) (1.0640)

school d10Xedu 0.3447 0.4360 0.3434 0.2131 -7.0258
(1.0174) (1.0343) (1.0174) (1.0135) (73.9448)

school d10 -5.5771 -7.0059 -5.5702 -6.3276 -9.0535
Continued on next page
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Table B.5 Model Estimates – Continued from Previous Page

Control Sample Treatment Sample
Baseline Beliefs Random Coeff. Mock Score Mock Score
(2.1025) (2.6035) (2.1034) (2.4699) (5.5151)

school d10Xzmu1 0.0873
(0.0557)

school d10Xzscore 1.1159 -0.6322
(0.5822) (1.0539)

school d11Xzgpa -0.0696 -0.0567 -0.0717 -0.1399 -0.1929
(0.1709) (0.1735) (0.1709) (0.1834) (0.2037)

school d11Xzmarg -0.3847 -0.3727 -0.3888 -0.4173 -0.2980
(0.2955) (0.2960) (0.2954) (0.2981) (0.3966)

school d11Xzcal mat 0.1265 0.1059 0.1234 0.0825 0.4417
(0.2233) (0.2237) (0.2233) (0.2291) (0.2759)

school d11Xedu -0.9143 -0.8896 -0.9150 -0.9300 -0.6561
(0.5300) (0.5321) (0.5300) (0.5377) (0.6377)

school d11 0.1453 0.0974 0.1539 0.3222 -0.4086
(0.4892) (0.4901) (0.4893) (0.5039) (0.6524)

school d11Xzmu1 -0.0016
(0.0183)

school d11Xzscore 0.2641 -0.7440
(0.2103) (0.2367)

school d12Xzgpa -0.5456 -0.4731 -0.5480 -0.5830 -0.1712
(0.2072) (0.2092) (0.2071) (0.2243) (0.2145)

school d12Xzmarg -0.2134 -0.1925 -0.2201 -0.2652 0.7170
(0.3599) (0.3589) (0.3599) (0.3628) (0.4180)

school d12Xzcal mat 0.8073 0.9102 0.8028 0.7823 0.2892
(0.2923) (0.3032) (0.2921) (0.2961) (0.2733)

school d12Xedu -1.6815 -1.4674 -1.6829 -1.6647 -0.1300
(0.7086) (0.7122) (0.7084) (0.7152) (0.5924)

school d12 0.3454 0.2105 0.3597 0.5492 -1.3730
(0.6347) (0.6379) (0.6349) (0.6478) (0.7469)

school d12Xzmu1 -0.0542
Continued on next page
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Table B.5 Model Estimates – Continued from Previous Page

Control Sample Treatment Sample
Baseline Beliefs Random Coeff. Mock Score Mock Score

(0.0222)

school d12Xzscore 0.1626 -0.6003
(0.2543) (0.2323)

school d13Xzgpa -0.2689 -0.2504 -0.2697 -0.3052 -0.0992
(0.1793) (0.1830) (0.1793) (0.1910) (0.2065)

school d13Xzmarg -0.0140 -0.0080 -0.0192 -0.0515 0.9202
(0.3112) (0.3111) (0.3113) (0.3137) (0.4200)

school d13Xzcal mat 0.2582 0.2417 0.2554 0.2353 -0.2489
(0.2383) (0.2382) (0.2383) (0.2417) (0.3014)

school d13Xedu -0.4517 -0.4199 -0.4519 -0.4605 -0.2792
(0.5552) (0.5592) (0.5552) (0.5634) (0.6476)

school d13 1.1265 1.0897 1.1364 1.2961 -0.7107
(0.5466) (0.5469) (0.5468) (0.5669) (0.7262)

school d13Xzmu1 -0.0097
(0.0194)

school d13Xzscore 0.1650 -0.3089
(0.2318) (0.2328)

school d14Xzgpa -0.4737 -0.4427 -0.4745 -0.5208 -0.3661
(0.1648) (0.1678) (0.1647) (0.1748) (0.1816)

school d14Xzmarg 0.2396 0.2491 0.2353 0.2097 0.2678
(0.2767) (0.2769) (0.2767) (0.2803) (0.3556)

school d14Xzcal mat 0.1451 0.1340 0.1420 0.1185 -0.1823
(0.2324) (0.2330) (0.2324) (0.2356) (0.2639)

school d14Xedu -0.9139 -0.8581 -0.9143 -0.9059 0.0955
(0.5757) (0.5785) (0.5757) (0.5817) (0.4909)

school d14 -0.3591 -0.4182 -0.3511 -0.2067 -0.6650
(0.4722) (0.4743) (0.4722) (0.4970) (0.5929)

school d14Xzmu1 -0.0183
(0.0177)

school d14Xzscore 0.1913 -0.3536
Continued on next page
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Table B.5 Model Estimates – Continued from Previous Page

Control Sample Treatment Sample
Baseline Beliefs Random Coeff. Mock Score Mock Score

(0.2131) (0.2009)

school d15Xzgpa -0.4223 -0.3837 -0.4237 -0.4413 -0.1745
(0.1433) (0.1459) (0.1432) (0.1563) (0.1630)

school d15Xzmarg -0.1938 -0.1955 -0.1982 -0.2282 -0.2634
(0.2424) (0.2426) (0.2424) (0.2453) (0.3076)

school d15Xzcal mat 0.0406 0.0482 0.0371 0.0219 0.5696
(0.1831) (0.1833) (0.1831) (0.1868) (0.2143)

school d15Xedu -0.5312 -0.4541 -0.5317 -0.5103 0.1797
(0.4082) (0.4117) (0.4082) (0.4153) (0.4259)

school d15 0.6226 0.5969 0.6314 0.7729 0.4014
(0.4040) (0.4041) (0.4040) (0.4223) (0.5192)

school d15Xzmu1 -0.0205
(0.0153)

school d15Xzscore 0.1187 -0.4891
(0.1818) (0.1772)

school d16Xzgpa -0.0527 -0.1297 -0.0542 -0.3235 0.3034
(29.9480) (40.6054) (1.0e+04) (33.9656) (1.5405)

school d16Xzmarg 0.1215 0.0704 0.1196 0.2465 0.4916
(50.3901) (61.0544) (1.7e+04) (66.1300) (3.0450)

school d16Xzcal mat 0.5501 0.4532 0.5413 0.4017 1.8845
(37.0224) (46.0118) (1.2e+04) (50.0650) (1.9489)

school d16Xedu -0.4988 -0.5767 -0.4859 -0.6337 -7.5862
(43.3660) (52.7771) (1.5e+04) (59.4293) (87.9174)

school d16 -4.2685 -4.7037 -15.9019 -5.8524 -2.0386
(104.3225) (127.4938) (3.5e+04) (176.0093) (6.7791)

school d16Xzmu1 0.0362
(3.4851)

school d16Xzscore 0.7880 0.7052
(50.9079) (2.2986)

school d17Xzgpa -0.2929 -0.3021 -0.2902 -0.2693 0.0685
Continued on next page
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Table B.5 Model Estimates – Continued from Previous Page

Control Sample Treatment Sample
Baseline Beliefs Random Coeff. Mock Score Mock Score
(0.3025) (0.3073) (0.3023) (0.3160) (0.3356)

school d17Xzmarg 0.1280 0.1103 0.1267 0.0713 2.3590
(0.5937) (0.5925) (0.5946) (0.5961) (0.5964)

school d17Xzcal mat 0.8140 0.7299 0.8086 0.7971 -0.3870
(0.3915) (0.3941) (0.3916) (0.3987) (0.3985)

school d17Xedu -2.8503 -2.8997 -2.8418 -2.7196 1.0096
(0.7347) (0.7395) (0.7346) (0.7361) (0.7239)

school d17 4.2555 4.1349 4.2529 4.3824 -0.2632
(1.0180) (1.0202) (1.0183) (1.0367) (1.1303)

school d17Xzmu1 0.0314
(0.0320)

school d17Xzscore -0.0428 -0.6045
(0.4250) (0.3984)

school d18Xzgpa -0.2760 -0.2781 -0.2581 -0.1992 0.4907
(0.3790) (0.3906) (0.3892) (0.3891) (0.4923)

school d18Xzmarg 0.2244 0.1621 0.2318 0.2275 2.4687
(0.6832) (0.6886) (0.6928) (0.6865) (0.7835)

school d18Xzcal mat 0.3536 0.2837 0.3601 0.4095 -0.1632
(0.4610) (0.4768) (0.4670) (0.4677) (0.5454)

school d18Xedu -1.8263 -1.8711 -1.7942 -1.6847 1.2642
(0.8288) (0.8369) (0.8431) (0.8299) (0.9170)

school d18 3.4045 3.4123 3.3414 3.5000 -2.1179
(1.2318) (1.2695) (1.2631) (1.2871) (1.5437)

school d18Xzmu1 0.0206
(0.0416)

school d18Xzscore -0.1878 -0.5527
(0.4973) (0.5583)

N. of Obs. 637901 637901 637901 637901 590526
Log lik -4414 -4399 -4413 -4401 -4189

NOTE: This table displays the full set of maximum-likelihood estimates and standard errors (in parenthesis) of the parameters
of the school choice model (1).
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Table B.6: Stylized Example of Two Applicants at the Margin (RD Sample)
Ranking Institutions Cutoff
1st best Non-IPN 82
2nd best IPN 78
3rd best Non-IPN 76
4th best Non-IPN 53

Application score=79
Local Institution Ranking
Preferred IPN Yes
Next-best Non-IPN No

Application score=77
Local Institution Ranking
Preferred IPN No
Next-best Non-IPN Yes

NOTE: This table provides an example where two applicants
are on the margin of receiving an offer for an elite school
and a non-elite school. One applicant has a application score
of 79 and receives an offer from an IPN school, whereas the
other receives an offer from another non-IPN school because
she has a slightly lower application score of 77. By com-
paring the outcomes of these applicants we can estimate the
effect of getting an offer of elite schools, while ruling out that
differences in their outcomes are driven by unobserved het-
erogeneity.

Table B.7: Covariate Smoothness Around the Admission Threshold

Female Number of Mother with Father with Age
Siblings High School High School

IPN Admission 0.032 0.072 -0.021 -0.018 0.029
(0.025) (0.073) (0.016) (0.022) (0.041)

Bias-corrected CI [-.017 ; .091] [-.106 ; .23] [-.063 ; .011] [-.074 ; .029] [-.077 ; .118]
Optimal BW 13.701 12.488 12.246 10.699 9.479
Mean Dep. Var. 0.432 2.005 0.186 0.319 15.555
Nb. of Obs. 10,828 9,077 8,854 7,452 8,186

NOTE: This table displays non-parametric estimates of marginal admission in elite schools on individual-level char-
acteristics of the applicants. Standard errors reported in parenthesis are clustered at the school×year level. All the
specifications are defined within mean-square error optimal bandwidths (BW). We also report the bias-corrected con-
fidence intervals obtained using the robust estimator proposed in Calonico et al. (2014).
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