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Abstract

Consider the problem of placing a valuable resource on a network before demands
are realized, anticipating costs of subsequent transportation. We say that a node reach
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1 Introduction

Suppose some resources have to be placed on nodes on a network before demands are realized,
anticipating that reallocation will involve costly transportation. Examples range from the
placement of medical or military personnel and equipment before the onslaught of a pandemic
or an attack by enemy forces to the placement of production and storage facilities to the
allocation of resources within an organization or across different firms. Where should the
resources be placed? This is the question we address in this paper.

We assume that nodes in the network represent agents whose private values are inde-
pendent draws from commonly known distributions. Transportation occurs along the edges
of the network and involves a constant marginal cost, which, like the network structure,
is commonly known. To fix ideas, consider first the problem with identical distributions,
assuming that ex post efficient reallocation is always possible, with ex post efficient reallo-
cation dictating that, for any given initial resource placement, the resources be shipped to
the agent with the highest value net of transportation costs, which involves of course the
possibility that they are not shipped at all.

To see what governs the placement that maximizes expected social surplus, consider a
H-network with six nodes. If the transportation cost is so large that the resources are only
ever shipped the length of one edge, the number of immediate neighbors of a node entirely
determines the value of placing the resources at that node. Because the nodes at the opposite
ends of the horizontal line in this H-network each have three immediate neighbors while all
the other ones only have one, it follows that the optimal placement can be confined to these
nodes when the marginal cost of transportation is so large. As this cost decreases, eventually
shipping the length of two nodes will sometimes become ex post efficient. Because all nodes
have two neighbors at a distance of two, it follows that optimal placements are still confined
to these two nodes. In fact, this extends to any smaller marginal cost of transportation since
these two nodes have more and closer neighbors than any of the other nodes. Formally,
call the vector that contains the fraction of other nodes at various distances a node’s reach
vector. In our example, the reach vectors are (2/5, 3/5) for the nodes at the opposite ends
of the horizontal line and (1/5, 2/5, 2/5) for all the other nodes, using the convention of not
displaying elements that are zero. The nodes at the opposite ends of the horizontal line reach
dominate the other ones for any marginal cost of transportation because cumulatively they
have a higher fraction of nodes at distances of no more k ∈ {1, 2, 3} links away. As we show,
if there are nodes that are reach dominant, optimal placements are confined to these, and
optimal placements never involve nodes that are reach dominated. Notice that the reach
vector of a completely connected node is one, which implies that with completely connected
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agents optimal placements are confined to these. This means that, for example, in a star or
wheel network, it is optimal to place all resources at the hub.

In general, whether a node is reach dominant may depend on the marginal cost of trans-
portation. To see this, consider a wide H-network in which there is an additional node in the
middle of horizontal line, so that there are seven nodes. The reach vectors of the agents at
the opposite ends of the horizontal line are (1/2, 1/6, 1/3), while the reach vector of the agent
in its middle is (1/3, 2/3) and the reach vectors of all other nodes are (1/6, 1/3, 1/6, 1/3).
When the marginal cost of transportation is so large that only shipments of length one are
ex post efficient, the nodes at the opposite ends of the horizontal line are reach dominant.
As shipments of length two or more become ex post efficient, these nodes and the one in the
middle can no longer be ranked by reach dominance. However, they always reach dominate
the peripheral nodes, which means that the resources are never optimally placed at a pe-
ripheral node. One can show that for uniformly distributed values on the unit interval, the
resources are optimally placed at the opposite ends of the horizontal line when the marginal
cost of transportation is sufficiently large and at the node in the middle otherwise. This has
the interesting and perhaps counterintuitive feature that a reduction in transportation (or
transaction) costs leads to optimal placements at a node that is more “metroplitain” insofar
as it has fewer close neighbors but more at an intermediate distance.

If placing resources at a node confers control or ownership rights over these to that node,
then ex post efficient reallocation may not be possible, subject to incentive compatibility,
individual rationality and no-deficit constraints. We show that ex post efficiency is never
possible with extremal ownership and, possibly more surprisingly, for any ownership struc-
ture if the marginal cost of transportation is sufficiently large. With this in mind, we first
derive the constrained efficient reallocation mechanism and then use this mechanism to de-
termine the optimal ownership structure, which, loosely speaking, finds a balance between
incentive and transportation costs. While in general this optimal ownership structure is not
determined via reach dominance, we show that the reach dominance arguments extend to
optimal ownership if the resource is indivisible, as in the case of a production plant, and the
agents draw their values from identical distributions.

Because profit maximization is isomorphic to social surplus maximization, it follows di-
rectly that the reach dominance argument for optimal placements—that is, when placement
does not confer control—extends to the case where the planner’s objective is profit max-
imization rather than social surplus. Further, assuming ex post efficient reallocation, the
idea of reach dominance can be extended to allow for both heterogeneous distributions and
links between nodes that are of different lengths. The key is to replace the fraction of agents
at a given distance from a node by the distribution of the highest draw from the agents not
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further away from a node (including the distribution of the agent at that node) than some
given distance. The ranking is then based on stochastic dominance, which is why we refer
to this generalization as stochastic reach dominance. We also show that the analysis extends
to the case in which the cost of transportation is a fixed cost, which seems an appropriate
description when the cost relates to difficulties of communication.

This paper relates to the literature on the (im)possibility of ex post efficient trade initi-
ated by Vickrey (1961) and Myerson and Satterthwaite (1983) and debates surrounding the
Coase Theorem (Coase, 1960). That extremal ownership prevents ex post efficient trade fol-
lows from an extension of the impossibility theorem of Myerson and Satterthwaite to costly
transportation.1 That ex post efficient trade is not possible for any ownership vector if the
marginal cost of transportation is sufficiently large is, to our knowledge, a new impossibility
theorem. The fact that, if the marginal cost of transportation is small, the designer trades
off incentive costs against transportation costs builds on the insight from the partnership
literature that, without costly transportation, ex post efficient trade is possible with ap-
propriately structured ownership; see, for example, Cramton et al. (1987), Che (2006), or
Figueroa and Skreta (2012). We show that this insight extends to costly transportation,
provided the marginal cost of transportation is sufficiently small. To solve the designer’s
problem, the paper builds on the work related to optimal trading mechanisms for asset
markets—problems in which each agent’s trading positions (buy, sell, remain inactive) are
determined endogenously—and partnership models by Lu and Robert (2001) and Loertscher
and Wasser (2019).2 There is a related literature on networks,3 including Akbarpour and
Jackson (2018), which examines how diffusion patterns depend on the network placement of
heterogeneous agents, and Houde et al. (2023), which shows that incentives for tax avoid-
ance led Amazon to distort its distribution network in a way that increased transportation
costs. In contrast, we examine how trade patterns depend on the ownership (or placement)
of resources, holding fixed the network locations of the agents.

The remainder of this paper is structured as follows. Section 2 contains the setup together
with the definitions of the various problems of interest and basic results. Sections 3 analyzes
the problem when resource placement does not confer control, and 4 analyzes the problem
when it does confer control. Extensions are presented in Section 5, and Section 6 concludes
the paper.

1Of course, it is also an extension of the bilateral trade setup to settings with multiple buyers and one
seller, but that extension is already in the literature (see e.g. Gresik and Satterthwaite, 1989).

2The term “asset market” has been used by Loertscher and Marx (2020, 2023) and Delacrétaz et al.
(2022). Analyses of asset market problems (that do not use that label) are also provided by Lu and Robert
(2001) and Li and Dworczak (2021).

3Condorelli et al. (2017) also examine trade on a network, but their focus is on dynamic bilateral
bargaining with binary types and no transportation costs.

3



2 Setup

We assume n agents indexed by i ∈ N ≡ {1, . . . , n} and a resource whose total supply
is 1. Each agent i ∈ N is located at a node in an undirected graph that connects all
agents, where dij ∈ {0, 1, . . . , n− 1} is the length of the minimum path through the network
between agents i and j (for all i ∈ N , dii = 0). Before trade occurs, each agent i ∈ N holds
a resource amount ri ∈ [0, 1] and

∑
i∈N ri = 1. Each agent i has constant marginal value vi

for the resource, which is independently drawn from the distribution Fi, which we assume
has support that is bounded by 0 and 1 and that contains both 0 and 1. For some of our
results, we assume that all agents draw their values from the same distribution F .

We assume that the cost of transporting x units of the resource from agent i to agent
j is xcdij, where c ≥ 0 is the commonly known marginal transportation cost per edge
traveled. The n× n symmetric matrix C = (Cij)i,j∈N is called a transportation cost matrix,
with component Cij representing the transportation cost between agents i and j, if for all
i, j ∈ N , Cii = 0 and Cij = Cji = cdij.

Two agents i and j are directly connected if dij = 1. We say that a network is complete
if every agent is directly connected to every other agent. Agent i is said to be completely
connected if agent i is directly connected to every other agent, and we say that agent i is
maximally connected if no other agent is directly connected to a larger number of other
agents than is agent i.

For example, the star network with n ≥ 3 agents is defined as having agent 1 as the hub
and a transportation cost matrix such that for i > 1, C1i = c, and for 1 < i < j, Cij = 2c.

We define a wheel network with n ≥ 5 agents to also have agent 1 as the hub, but with a
transportation cost between two agents i and j with i < j of Cij = c if either (i) i = 1 or (ii)
i > 1 and j − i ∈ {1, n− 2}, and otherwise a transportation cost of Cij = 2c.

A trading mechanism 〈Q,M〉 consists of allocation rule Q = (Qi)i∈N , where Qi(v) spec-
ifies agent i’s quantity following trade, and payment rule M, where Mi(v) specifies the
payment made by agent i to the mechanism. For the allocation rule, Qi : [0, 1]n → [0, 1] such
that

∑
i∈N Qi(v) = 1. For the payment rule, Mi : [0, 1]n → R.
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2.1 Ex post efficient trade

Given realized types v, define the n× n binary matrix V e(v), each of whose rows sums to 1
by:4

V e
ij(v) =

{
1 if vj − Cij ≥ max` v` − Ci` and vj − Cij > max`<j v` − Ci`,
0 otherwise.

This says that V e
ij(v) = 1 only if moving agent i’s resources to agent j maximizes value net

of transportation costs. If there are ties, then we (arbitrarily) identify the lowest indexed
agent j with whom the maximum net value is achieved.

The ex post efficient allocation rule assigns to agent i the resources of agents j with
V e
ji(v) = 1, that is Qe

i,r(v) ≡
∑

j∈N V
e
ji(v)rj. Maximized social surplus is therefore

SSer(v) =
∑
i∈N

∑
j∈N

(vi − Cji)V e
ji(v)rj, (1)

with expected value

sse(r) ≡ Ev[SSer(v)] =
∑
j∈N

rjEv

[∑
i∈N

(vi − Cji)V e
ji(v)

]
. (2)

Total transportation costs under the ex post efficient allocation rule are
T er (v) ≡

∑
i∈N

∑
j∈N CjiV

e
ji(v)rj, and their expected value is

ter ≡ Ev[T er (v)] =
∑
j∈N

rjEv

[∑
i∈N

CjiV
e
ji(v)

]
. (3)

2.2 Placement problems

In a placement problem, a central authority or social planner places resources with agents
before types are realized. In this setting, we refer to r as the placement vector. The planner
retains control over the resources, meaning that after agents’ types are realized, the planner
can direct the reallocation of resources subject to incentive compatibility and individual
rationality constraints, where each agent’s outside option is zero.

Reallocation in the placement problem is a one-sided allocation problem in which the
agents are buyers with their outside options and worst-off types equal to zero. Because the
planner can, for example, run a second-price auction, where each agent’s bid is adjusted

4This specification of V e uses a particular tie-breaking rule, but given our assumptions ties are zero
probability events and so the particular tie-breaking rule does not affect our results.
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for the required transportation cost, the reallocation phase always permits an incentive
compatible and individually rational solution that does not run a deficit.5

We consider objectives for the planner of either social surplus maximization or profit
maximization. In either case, the planner first places resources on the network and then
implements an incentive compatible, individually rational mechanism that reallocates the
resources and collects payment from the agents, with the planner paying for the associated
transportation costs. A social-surplus-maximizing planner uses the incentive compatible,
individually rational mechanism that maximizes expected social surplus net of transporta-
tion costs. A profit-maximizing planner uses the incentive compatible, individually rational
mechanism that maximizes the planner’s revenue net of transportation costs.

2.3 Ownership problems

In an ownership problem, a market designer determines resource ownership by the agents,
where ownership gives an agent property rights or control over the resources. In this set-
ting, we refer to r as the ownership vector. Then, following type realizations, the designer
implements an incentive compatible, individually rational reallocation mechanism that does
not run a deficit, i.e., the expected revenue to the designer is sufficient to cover expected
transportation costs. The individual rationality constraints affecting the mechanism vary
with the resource ownership because each agent’s outside option is to consume its owned re-
sources. Thus, an ownership problem is more constrained than a placement problem, where
the agents’ outside options are zero.

In the an ownership problem, if there is extremal resource ownership, i.e., ri = 1 for some
agent i, then the reallocation phase is a two-sided allocation problem with one seller (agent
i) and n − 1 buyers. In contrast, if resource ownership is dispersed among multiple agents,
then the reallocation phase becomes what is sometimes called an “asset market” because the
trading positions of the agents—buy, sell, or do not trade—depend, in general, on their own
realized types and the realized types of all other agents.

For some, but not all, ownership vectors, there exists an incentive compatible, individually
rational, deficit-free trade mechanism that implements ex post efficient trade. For ownership
vectors for which ex post efficient trade is not possible, a social-surplus maximizing designer
specifies the constrained-efficient mechanism, i.e., the mechanism that maximizes expected
social surplus subject to incentive compatibility, individual rationality, and revenues that
at least cover the transportation costs. A profit-maximizing designer specifies the incentive

5By standard arguments, it can always be made to balance the budget; see e.g., Börgers and Norman
(2009).
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compatible, individually rational mechanism that maximizes the designer’s expected revenue
from the agents net of the transportation costs.

For the analysis involving constrained-efficient and profit-maximizing reallocation mech-
anisms (defined below), we assume continuous distributions with densities fi > 0 on [0, 1]

and that each agent i’s virtual type functions,

ΨB
i (v) ≡ v − 1− Fi(v)

fi(v)
and ΨS

i (v) ≡ v +
Fi(v)

fi(v)
,

are increasing. Despite this monotonicity of the virtual types, which corresponds to what
Myerson (1981) calls the “regular” case, the mechanism design problem in the reallocation
phase will not be regular away from extremal ownership. In the case of identical distributions,
we simply write ΨB(v) and ΨS(v).

With the designer’s trade mechanism in hand, whether it be ex post efficient, constrained
efficient, or profit maximizing, we can then work backwards to determine the ownership
vector that maximizes the designer’s objective.

3 Optimal placement

As mentioned above, the first-best involves optimal resource placement followed by ex post
efficient trade. In this section, we first characterize the optimal placement for a social-
surplus-maximizing planner, and then we consider the case of a profit-maximizing planner.

3.1 Extremal placement is always optimal

The linearity in r of social surplus under ex post efficient trade, SSer(v), which is defined in
(1), implies that its expectation, sse(r) defined in (2), is also linear in r. This in turn implies
that an extremal placement, i.e., ri = 1 for some i ∈ N , is always optimal.6 We state this
in the following proposition:

Proposition 1. The placement problem has a solution involving extremal placement followed
by ex post efficient trade.

Proof. See Appendix A.

While extremal placement is not necessarily uniquely optimal, and while not any extremal
placement will be optimal, one extremal placement always will be. Specifically, noting that

6Linearity of SSe
r(v) in r means the for any r, r′ and any a ∈ [0, 1], we have SSe

ar+(1−a)r′(v) = aSSe
r(v)+

(1− a)SSe
r′(v).
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rn = 1 −
∑n

i=1 ri and writing expected social surplus as a function only of r−n, then, given
agent j ∈ {1, . . . , n−1} with ∂sse(r−n)

∂rj
= max`∈{1,...,n−1}

∂sse(r−n)
∂r`

≥ 0, the extremal placement

that has rj = 1 is optimal; and if ∂sse(r−n)
∂rj

< 0 for all j ∈ {1, . . . , n− 1}, then the extremal

placement that has rn = 1 is uniquely optimal. If ∂sse(r−n)
∂rj

= 0 for all j ∈ {1, . . . , n− 1}, as
is the case, for example, if c = 0, then any r is optimal.

3.2 Reach dominance and the first-best

In this subsection, we assume that Fi = F for all i ∈ N . This is mainly done for illustrative
purposes since, as we show in Section 5.2, the key insights and mechanics hold more generally.

To develop an understanding of what determines optimal placement in the planner’s
problem, assume first that c ∈ (1/2, 1). In this case, only the immediate neighbors of an
agent are candidate trading partners for that agent. We denote by ni(1) the degree centrality
of agent i, which is defined as the number of immediate neighbors of agent i divided by n−1,
where n−1 is the maximum possible number of immediate neighbors (Jackson, 2008, p. 38).
It then follows that ri = 1 is optimal if and only if i has the maximum number of immediate
neighbors, that is,

ni(1) = max
j∈N

nj(1).

If there are multiple agents with the maximum number of immediate neighbors, then optimal
placement can be dispersed across these agents.

For c less than 1/2, we also have to take into account agents other than the immediate
neighbors of agent i when determining the value of having ri = 1. For any given c ∈ (0, 1),
the maximum reach that needs to be considered is min{d1/ce, n− 1}, where dxe denotes the
largest integer no larger than x.

For any agent i, we let ni = (ni(1), . . . , ni(n− 1)) be the n− 1-dimensional vector where
for ` ∈ {1, . . . , n− 1},

ni(`) ≡
1

n− 1
|{j ∈ N\{i} | dij = `}| .

In words, ni(`) is the number of agents at distance ` from agent i, normalized by n− 1. We
refer to ni as the reach vector of agent i. Then for any i ∈ N , we have

n−1∑
j=1

ni(j) = 1.

Let s(n) denote the expected social surplus associated with placement of the resource to
an agent with reach vector n, anticipating ex post efficient trade. Because closer neighbors
are more valuable as potential trading partners, it follows that s(·) increases in the number
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of close neighbors. Formally, given n such that n(` + 1) > 0 for some ` ∈ {1, . . . , n − 2},
and given n̂ that is derived from n by moving a neighbor at distance ` + 1 to be one unit
closer, that is, n̂ satisfies n̂(j) = n(j) for all j /∈ {`, ` + 1} and n̂(`) = n(`) + 1

1−n and
n̂(`+ 1) = n(`+ 1)− 1

1−n , we have
s(n̂) ≥ s(n),

where the inequality is strict if and only if ` < d1/ce.
Drawing on the concept of reach centrality from the graph theory literature, given k ∈

{1, . . . , n− 1}, agent i’s k-step reach centrality is:7

σi(k) ≡
k∑
j=1

ni(j).

We can then employ k-step reach centrality to define reach dominance: agent i reach domi-
nates (RDs) agent h given c if for all k ∈ {1, . . . , d1/ce},

σi(k) ≥ σh(k), (4)

with a strict inequality for at least one k. Reach dominance induces an incomplete order and
is equivalent to first-order stochastic dominance, with better outcomes having cumulatively
higher probability, but, because there is is nothing stochastic here, we use the alternative
term.

Given c, let D(c) denote the set of of agents who are reach dominated by some other
agent. That is,

D(c) = {h ∈ N | ∃ i ∈ N s.t. i RDs h given c}.

If follows that if r is part of the solution of the planner’s problem, then rj = 0 for all j ∈ D(c).
We define the (possibly empty) set of reach dominant agents given c, denoted T (c), to

be the set of agents such that any agent not in T (c) is reach dominated given c by every
agent in T (c) and for all i, j ∈ T (c) and all ` ∈ {1, . . . , d1/ce}, (4) holds with equality. For
example, if c ∈ (1/2, 1), T (c) is the set of agents with the maximum number of immediate
neighbors. It follows that:

Proposition 2. Assume Fi = F for all i ∈ N . Under the first-best, resources are never
placed with agents in D(c). If T (c) is nonempty, then under the first-best, resources are only
placed with agents in T (c).

A first corollary to Proposition 2, is, as foreshadowed above, the following:

7See, e.g., Borgatti et al. (2018, Chapter 10.3.5), Sosnowska and Skibski (2018).
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Corollary 1. Assume Fi = F for all i ∈ N . If c ∈ (1/2, 1), then T (c) is nonempty and
consists of the agents with the maximum number of immediate neighbors. Further, if the set
of completely connected agents J is nonempty, then J = T (c) for any c ∈ (0, 1).

The reason is simple: Completely connected agents are reach dominant for any c ∈ (0, 1).
Consequently, we have for the star and wheel networks:

Corollary 2. Assume Fi = F for all i ∈ N . For star and wheel networks with c ∈ (0, 1),

all resources are optimally placed at the hub.

As an illustration and application, begin by considering a line network with five nodes.
We label the three inner nodes from left to right as 1, 2 and 3, and we label the peripheral
nodes as 0 and 4 as shown in Figure 1(a). For this network, the reach vectors are:

n1 = n3 = (2/4, 1/4, 1/4) , n2 = (2/4, 2/4) and n0 = n4 = (1/4, 1/4, 1/4, 1/4) .

It follows that agents 0 and 4 are reach dominated for any c by agents 1, 2, and 3. For
c ∈ (1/2, 1), T (c) = {1, 2, 3}, and for c < 1/2, T (c) = {2}. Thus, this is a network for which
the set of first-best placement is determined entirely by reach dominance. While T (c) varies
with c, it does so monotonically in the sense of set inclusion.

To see what happens beyond networks with this property, we amend the above network
by adding a link to node 1 and a link to node 3, which we denote by 0′ and 4′, respectively,
as shown in Figure 1(b). For this “H network,” the reach vectors are:

(a) Line network

0 1 2 3 4

(b) H network

0

1

0′

2 3

4′

4

Figure 1: Panel (a): A network in which first-best placement varies monotonically with c. Panel (b): A
network in which first-best placement varies nonmonotonically with c.

n1 = n3 = (3/6, 1/6, 2/6) , n2 = (2/6, 4/6) , and ni = (1/6, 2/6, 1/6, 2/6) ,
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for i ∈ {0, 0′, 4, 4′}.
The set of reach dominated agents now consists of the nodes {0, 0′, 4, 4′}. For c ∈ (1/2, 1),

T (c) = {1, 3}, and otherwise T (c) = ∅. Thus, for c < 1/2, determining the optimal place-
ment depends on c and requires computation. It will, of course, be confined to agents that
are not reach dominated. For example, for F uniform, r1 = 1 and r3 = 1 are optimal for
c > 0.09, and r2 = 1 is optimal otherwise. Thus, the set of nodes that are most central—to
whom resources are optimally placed—varies with c in a nonmonotonic way. For c large,
resources are placed with agents 1 or 3, which have a more immediate neighbors. In contrast,
when c is small, agent 2, which has few immediate neighbors but has all agents within a
distance of two, is optimally the sole initial holder of the resources.

3.3 Optimal placement under profit maximization

While it is sensible to think of a planner as maximizing social surplus, it is also conceiv-
able that a planner, i.e., an entity that retains control of the resources after placement,
maximizes its expected profit, subject to the agents’ incentive compatibility and individual
rationality constraints. With that in mind, we now examine the profit-maximizing mech-
anism and placement for the planner. Its profit is defined as payments from the agents
minus transportation costs. We begin by taking the placement as given and deriving the
profit-maximizing mechanism, and then we optimize over the placement. Throughout this
subsection, we assume that for all i ∈ N , Fi is a continuous distribution with support [0, 1]

and density fi > 0 that exhibits an increasing virtual value function ΨB
i (v).

Because the planner retains control over the resources, it acts as a seller with all agents
acting as buyers, including the agent with whom the resources are initially placed. Thus, the
planner’s optimal mechanism reallocates units to agents in order according to their virtual
values net of transportation costs if and only if the net virtual value is positive. Specifically,
the planner’s profit-maximizing allocation rule is given by

QP
i,r(v) ≡

∑
j∈N

V P
ji (v)rj,

where

V P
ij (v) ≡


1 if ΨB

j (vj)− Cij = max` ΨB
` (v`)− Ci` ≥ 0

and ΨB
j (vj)− Cij > max`<j ΨB

` (v`)− Ci`,
0 otherwise.

To define the planner’s expected profit, it will be useful to have the following lemma, which
follows from standard mechanism design arguments:
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Lemma 1. For the planner’s problem, given an incentive compatible mechanism 〈Q,M〉,
agent i’s expected payment to the mechanism is Ev[Mi(v)] = Ev

[
ΨB
i (vi)Qi(v)

]
.

Using Lemma 1, the expected profit to the planner not including transportation costs is

ΠP
r ≡ Ev

[∑
i∈N

ΨB
i (vi)Q

P
i,r(v)

]
= Ev

[∑
i∈N

∑
j∈N

ΨB
i (vi)V

P
ji (v)rj

]
,

and expected transportation costs are

tPr ≡ Ev

[∑
i∈N

∑
j∈N

CjiV
P
ji (v)rj

]
,

giving the planner maximized expected profit conditional on r of ΠP
r − tPr , which, notably,

is linear in r.
Thus, just as in the case of a planner that maximizes expected social surplus, extremal

ownership is optimal for a planner that maximizes its expected profit. In particular, it is
optimal to assign all resources to the agent j with the highest value of∑

i∈N

(
Ev[(ΨB

i (vi)− Cji)V P
ji (v)]

)
.

The key observation regarding optimal placement under profit maximization is a simple
isomorphism between the maximizing expected social surplus and profit. To see this, let
F̃i(ψ) = Fi(Ψ

B−1

i (ψ)) for ψ ∈ (0, 1], and F̃i(ψ) = Fi(Ψ
B−1

i (0)) otherwise, be the distribution
of i’s virtual value, conditional on its being positive. Note that, just like the values, the
nonnegative virtual values are independent random variables, whose distributions are F̃i
rather than Fi, and their support is [0, 1]. Letting ψ = (ψ1, . . . , ψn), we then have V P

ji (v) =

V e
ji(ψ) and thus

∑
i∈N

(
Ev[(ΨB

i (vi)− Cji)V P
ji (v)]

)
=
∑
i∈N

(
Eψ[(ψi − Cji)V e

ji(ψ)]
)
.

This basic observation yields the corollaries that follow.8 The first one is an implication of
Proposition 1:

Corollary 3. Extremal ownership is optimal for a profit-maximizing planner.

8The observation that profit and social surplus maximization are isomorphic in this sense was made and
exploited by Loertscher et al. (2022). Whether that was the first explicit formalization of that fact we do not
know. Clearly, it is implicit in the analysis of regular mechanism design problems, such as optimal auctions
or bilateral trade problems à la Myerson (1981) and Myerson and Satterthwaite (1983).
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In the case of identical distributions, that is, Fi = F for all i ∈ N , we have of course
F̃i(ψ) = F̃ (ψ) for all i ∈ N and all ψ ∈ [0, 1], where F̃ (ψ) = F (ΨB−1

(ψ)) for ψ ∈ (0, 1], and
F̃ (ψ) = F (ΨB−1(0)) otherwise. Proposition 2 then yields the next corollary:

Corollary 4. Assuming Fi = F for all i ∈ N and a profit-maximizing planner, resources
are never placed with agents in D(c), and if T (c) is nonempty, then resources are only placed
with agents in T (c).

Of course, our earlier Corollaries 1 and 2 also extend to the setting with profit maxi-
mization. For example, in the H network with n = 7 shown in Figure 1 and uniformly
distributed types, we show above that for a social-surplus-maximizing planner, r1 = 1 and
r3 = 1 are both optimal for c ∈ (0.09, 1), but only r2 = 1 is optimal for c ∈ (0, 0.09). In the
case of a profit-maximizing planner, the range where r2 = 1 is uniquely optimal extends to
all c ∈ (0, 0.175). Thus, the profit-maximizing planner places resources with the agent with
fewer immediate neighbors (but with all agents within a distance of 2) for a larger range
of costs. As intuition, notice that the planner’s expected profit in the profit-maximizing
mechanism is the same as in the ex post efficient mechanism, but with types drawn from
different distributions, i.e., with agent i’s type drawn from the distribution of ΨB

i (vi). Be-
cause ΨB

i (vi) < vi for vi ∈ [0, 1), it is as if the profit-maximizing planner faces agents with
a worse distribution. When facing a worse distribution, the planner values having the extra
“draws” within close range (specifically within a distance of 2), that come with having the
resources placed with agent 2 rather than with agents 1 or 3. As the distribution becomes
worse, having access to additional type realizations becomes more valuable.9

4 Optimal ownership

We now consider ownership problems, which as mentioned above, arise when agents are
endowed with ownership of resources at their nodes. We first derive conditions for ex post
efficiency to be (im)possible. Then we derive the constrained-efficient mechanism when ex
post efficient trade is not possible and characterize conditions under which only constrained-
efficient trade is possible. We can then derive the optimal ownership for a social-surplus-

9For example, consider ex post efficient trade and types drawn from Fi = F , where F is the uniform
distribution on [`, 1], where ` < 1. Then for ` = 0, the problem is one of a social-surplus-maximizing
planner facing types drawn from the uniform distribution on [0, 1]. For ` = −1, the problem is one of a
profit-maximizing planner facing types drawn from the uniform distribution on [0, 1] because in that case the
agents’ virtual values are uniformly distributed on [−1, 1]. For the H network with n = 7, r2 = 1 is uniquely
optimal for c ∈ (0, c(`)), and r1 = 1 and r3 = 1 are optimal for c ∈ (c(`), 1), where c(`) is decreasing in `,
implying that the range of costs for which r2 = 1 is optimal decreases with `.
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maximizing and a profit-maximizing designer. Throughout this section, assume that for all
i ∈ N , Fi is a continuous distribution with support [0, 1] and density fi > 0.

4.1 Impossibility of ex post efficient trade

We begin by establishing two sets of impossibility results. The first, in the tradition of
Vickrey (1961) and Myerson and Satterthwaite (1983), is based on the observation that ex
post efficient trade is impossible under extremal ownership. This implies that the first-best
is not possible when the first-best dictates extremal ownership, which is, for example, the
case for the star and wheel networks with identical distributions. Second, we show that ex
post efficiency is impossible for any ownership vector when c ≥ 1/2.

Impossibility with extremal ownership

Consider an extremal ownership vector in which r1 = 1, so that agent 1 is the seller whenever
there is trade. Trade between agent 1 and agent i ∈ {2, . . . , n} is ex post efficient if and only
if vi − C1i = maxj∈{2,...,n} vj − C1j and vi − C1i > v1. We denote by ieff the index of such an
agent i. Consider then the market-clearing (Walrasian) prices that establish ex post efficient
trade given types v. Without loss of generality, we let the seller bear the transportation
cost.

If (pW1 , . . . , p
W
n ) is a Walrasian price vector, then it has to satisfy v1+C1ieff ≤ pWieff ≤ vieff so

that agent 1 is willing to pay the transportation cost C1ieff to sell to agent ieff at price pWieff and
so that agent ieff is willing to buy at this price. In addition, for j ∈ {2, . . . , n}\ieff, we require
that vj ≤ pWj so that agent j does not want to buy at price pWj and pWj − C1j ≤ pWieff − C1ieff

so that agent 1 does not want to sell to agent j instead of agent ieff. Putting these together,
the largest range of trading prices involves pWj = vj for all j ∈ {2, . . . , n}\ieff and pWieff such
that

pW ≡ max
j∈{2,...,n}\ieff

{v1, vj − C1j}+ C1ieff ≤ pWieff ≤ vieff ≡ pW ,

where pW and pW denote the lowest and highest Walrasian prices, respectively, at which
trade occurs.

As is reasonably well known and easily established, a trading buyer’s payment in the VCG
mechanism is pW and a trading seller’s payment is pW (see e.g. Delacrétaz et al., 2022).10

10The gains from trade with agent ieff present, but excluding its value for the allocation, are −v1−C1ieff ,
whereas gains from trade with agent ieff reporting a value of 0 are max{0,maxj∈{2,...,n}\ieff vj − C1j −
v1}. Hence, the VCG transfer of agent ieff is max{0,maxj∈{2,...,n}\ieff vj − C1j − v1} − (−v1 − C1ieff) =
max{v1,maxj∈{2,...,n}\ieff vj − C1j} + C1ieff = pW . Similarly, gains from trade with agent 1 present, but
without its value for the allocation, are vieff , whereas they are 0 with the seller reporting a cost of 1. Hence,
the VCG payment that agent 1 receives is vieff = pW .
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Consequently, if trade occurs under ex post efficiency, then the revenue of the mechanism is

pW − pW ≤ 0,

where the inequality is strict unless maxj∈{2,...,n}\ieff vj −C1j = vieff −C1ieff . Because ties have
probability 0 with continuous distributions, it follows that the VCG mechanism almost al-
ways runs a deficit when trade is ex post efficient (and never a budget surplus). Consequently,
in expectation, the VCG mechanism runs a deficit. Because the ex post and hence interim
expected payoffs are zero for buyers of type 0 and for the seller of type 1, it follows that
the VCG mechanism satisfies the interim individual rationality constraints with equality.
By the payoff equivalence theorem, this implies that no other ex post efficient, (Bayesian
or dominant strategy) incentive compatible, and interim individually rational mechanism
runs a smaller deficit. Because the VCG mechanism runs a deficit, it follows that ex post
efficiency is impossible for any network when ownership is extremal. We summarize this in
the following result:

Proposition 3. If ri = 1 and Cij < 1 for some j ∈ N\{i}, then ex post efficient trade is
impossible.

If C1i ≥ 1 for all i 6= 1, then trade is never ex post efficient, and ex post efficient trade
is possible in the same trivial way that it would be possible in Myerson and Satterthwaite
(1983) if the upper bound of the support of the buyer’s value distribution were less than the
lower bound of the support of the seller’s cost distribution.

Corollary 2 and Proposition 3 imply immediately:

Corollary 5. In an ownership problem, for star and wheel networks with Fi = F for all
i ∈ N and c ∈ (0, 1), the first-best cannot be achieved.

Universal impossibility

Proposition 3 and Corollary 5 are, as foreshadowed, impossibility results in the tradition of
Vickrey (1961) and Myerson and Satterthwaite (1983) insofar as they depend on extremal
ownership. They imply that one will need to consider constrained-efficient trade if ri = 1

for some i ∈ N . But they leave open the question of whether there exists nonextremal
ownership vectors that permit ex post efficient trade. Intuition based on Cramton et al.
(1987) may suggest that the answer is affirmative.

With that in mind, our next result is probably unexpected because it states that for
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c ≥ 1/2, ex post efficient trade is impossible for any ownership vector.11 As intuition for the
result, note that under ex post efficiency, any agent of type v ≤ 1− c ever only trades as a
seller, and any agent of type v ≥ c ever only trades as a buyer. Consequently, for c ≥ 1/2,
agents with types v ∈ [1 − c, c] never trade and have payoffs of 0. As a result, for c ≥ 1/2,
the trading problem is not only ex post two-sided but already ad interim—knowing only its
type, every agent knows whether it will trade as a buyer (if v > c) or as a seller (if v < 1− c)
if it trades and agents with types between 1 − c and c know that they will never trade.
As in the proof of Proposition 3, it therefore suffices to verify that transportation costs are
not covered under VCG transfers, and that the VCG mechanism satisfies the agents’ ex post
individual rationality constraints with equality. This then also means that it satisfies interim
individual rationality with equality.

Proposition 4. In an ownership problem, for c ≥ 1/2, ex post efficient reallocation is
impossible for any network and any ownership vector.

Proof. See Appendix A.

Proposition 4 provides a simple sufficient condition for ex post efficient reallocation to
be impossible. The result is a form of “Non-Coase Theorem” because it provides a condition
under which ex post efficient reallocation is impossible for any ownership vector. While
Proposition 4 shows that incentive costs together with sufficiently large transportation costs
imply insurmountable transactions costs, it has the positive implication that reducing trans-
portation costs has the additional, seemingly overlooked, benefit of making markets work
better.

4.2 Possibility for small costs and dispersed ownership

We now provide a necessary and sufficient condition for ex post efficient trade to be possible.
To do so, it will be useful to begin with two lemmas, which characterize, for any incentive
compatible mechanism, agents’ worst-off types and expected payments to the mechanism.

Consider an incentive compatible mechanism 〈Q,M〉 and let ui(v) ≡ qi(v)v−mi(v)−riv
denote agent i’s interim expected gains from participation in the mechanism, net of its outside
option. Incentive compatibility implies that qi is nondecreasing, from which it follows that
the first-order condition u′i(v) = qi(v) − ri = 0 characterizes a global minimum for agent
i interim expected payoff, provided that it is satisfied for some v. The following lemma,
a version of which was first established by Cramton et al. (1987), characterizes the set of
worst-off types for any allocation rule such that qi is nondecreasing:

11 This uses our assumption that the support of the agents’ type distribution is [0, 1]. For a more general
support of [v, v], the required condition on transportation costs is that c ≥ (v + v)/2.
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Lemma 2. Given an incentive compatible, individually rational mechanism 〈Q,M〉, if there
is a vi such that qi(vi) = ri, then the set of worst-off types for agent i is {vi | qi(vi) = ri}.
If qi(vi) 6= ri for all vi ∈ [0, 1], then the set of worst-off types for agent i is the singleton set
{vi | qi(v) < ri ∀v < vi and qi(v) > ri ∀v > vi}.

As observed by Cramton et al. (1987), intuitively, the worst-off type of an agent expects
on average to be neither a net buyer nor a net seller, and therefore an agent with the worst-
off type has no incentive to overstate or understate its valuation and so does not need to be
compensated to induce truthful reporting, which is why it is the worst-off type.

Given an incentive compatible mechanism, we can use standard mechanism design tech-
niques to write an agent’s expected payment to the mechanism in terms of its worst-off type
and its virtual type functions. Defining

Ψi(v;ω) ≡

{
ΨS
i (v) if v ≤ ω,

ΨB
i (v) if v > ω,

we have:

Lemma 3. For a placement problem with ownership r and incentive compatible trade mech-
anism 〈Q,M〉, for any agent i and ωi ∈ [0, 1], agent i’s expected payment to the mechanism
can be written as

Ev[Mi(v)] = Ev [Ψi(vi;ωi)Qi(v)]− riωi − ui(ωi),

where ui(ωi) ≡ Ev−i [Qi(ωi,v−i)ωi −Mi(ωi,v−i)]− riωi.

Proof. See Appendix A.

Letting ωei,r denote agent i’s worst-off type (or one of its worst-off types) under the ex
post efficient allocation rule Qe

i,r, and using Lemma 3, we obtain an expression for the ex-
pected budget surplus (not including transportation costs) of an ex post efficient reallocation
mechanism that satisfies the agents’ individual rationality constraints with equality:

Πe
r ≡ Ev

[
n∑
i=1

Ψi(vi;ω
e
i,r)Q

e
i,r(v)

]
−

n∑
i=1

ωei,rri.

Thus, ex post efficient reallocation is possible without running a deficit if and only if Πe
r ≥ ter.

It follows that the necessary and sufficient condition for the possibility of ex post efficient
reallocation is

Ev

[
n∑
i=1

n∑
j=1

(Ψi(vi;ω
e
i,r)− Cji)V e

ji(v)rj

]
≥

n∑
i=1

ωei,rri. (5)
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Condition (5) implicitly defines the set of combinations of ownership vectors r and trans-
portation cost matrices C such that ex post efficient trade is possible. We can use (5) to
calculate, for a given r, the maximum c such that ex post efficient trade is possible, denoted
by cmaxn (r) (and defined to be −∞ if no such c exists). Further, for each c ≤ maxr c

max
n (r),

the boundary of the set of ownership vectors such that ex post efficient trade is possible
is defined by vectors r that satisfy (5) with equality. For example, if we consider a star
or wheel network with r = (r, (1 − r)/(n − 1), . . . , (1 − r)/(n − 1)), then for each r and
each c ≤ maxr c

max
n (r), we can calculate the maximum r, such that ex post efficient trade is

possible, denoted by rn(c). We illustrate this in Figure 2 for uniformly distributed types.

(a) First-best permitting region
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Figure 2: Panel (a): Values for (r, c) that permit ex post efficient reallocation and expected social surplus
for star networks. As illustrated, r2(0) = 0.7887, r3(0) = 0.7654, r4(0) = 0.7647, and r5(0) = 0.7689.
Further, cmax

2 = 0.217, cmax
3 = 0.187, cmax

4 = 0.1675, and cmax
5 = 0.150. Panel (b): Expected social surplus

under ex post efficient reallocation, sse(r), and under constrained-efficient reallocation, ssce(r). Assumes
r = (r, 1−r

n−1 , . . . ,
1−r
n−1 ) and uniformly distributed types.

As illustrated in Figure 2, for a star network with n = 2 and c = 0, the first-best is possible
for all r ∈ [0.21, 0.79], which corresponds to the values obtained by Cramton et al. (1987).
For n = 2, if c > cmax2 , then R(c) is empty (for uniformly distributed types, this occurs
for c > 0.217), in which case the constrained-efficient mechanism is used, implying that the
ownership r = (1/2, 1/2) maximizes expected social surplus. While Figure 2 illustrates that
rn(0) need not be monotone in n, if one properly accounts for the expansion in the number
of agents by calculating the resources accounted for by the first x ∈ [0, 1] share of agents,
giving us a distribution of resources Gn defined by

Gn(x) ≡

{
nxrn(0) if x ≤ 1/n,

1− (1− x)n1−rn(0)
n−1 if x > 1/n,

then one finds that, at least for uniformly distributed types, Gn first-order stochastically
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dominates Gn′ if n < n′ (see Appendix ??). Thus, with more agents, the boundary of R(0)

shifts towards greater concentration at the hub.

4.3 Constrained-efficient reallocation mechanism

An implication of Proposition 3 is that we must have either a nonextremal ownership or trade
that is not ex post efficient, or both. And as illustrated above, for some transportation costs,
ex post efficient trade is not an option for any ownership vector. Thus, we next characterize
constrained-efficient reallocation mechanisms. This analysis assumes that for each i ∈ N ,
the virtual types functions ΨB

i (v) and ΨS
i (v) are increasing.

The constrained-efficient reallocation mechanism maximizes the sum of the agents’ ex-
pected surpluses subject to incentive compatibility, individual rationality, and no deficit,
which requires that the expected budget surplus of the mechanism must be sufficient to
cover the expected transportation costs. To define the mechanism, it is useful to introduce
the notion of weighted virtual types and their ironed counterparts. For a ∈ [0, 1], we denote
by Ψi,a(v; v̂) the weighted virtual type of agent i with type v and threshold type v̂,

Ψi,a(v; v̂) ≡

{
ΨS
i,a(v) if v ≤ v̂,

ΨB
i,a(v) if v > v̂,

where ΨS
i,a(v) ≡ v + (1 − a)Fi(v)

fi(v)
and ΨB

i,a(v) ≡ v − (1 − a)1−Fi(v)
fi(v)

are agent i’s weighted
virtual cost and virtual value functions. (With identical distributions, we write ΨS

a (v) ≡
v + (1 − a)F (v)

f(v)
, ΨB

a (v) ≡ v − (1 − a)1−F (v)
f(v)

and Ψa(v; v̂) in lieu of Ψi,a(v; v̂).) Although, as
noted above, we assume that ΨS

i (v) and ΨB
i (v) are increasing, which implies that ΨS

i,a(v)

and ΨB
i,a(v) are increasing for all a ∈ [0, 1], nevertheless, Ψi,a(v; v̂) is not monotone, and so,

as we shall see, will require ironing. We let Ψi,a(v; v̂) denote the ironed weighted virtual type
of an agent with type v and threshold type v̂, defined by

Ψi,a(v; v̂) ≡


ΨS
i,a(v) if ΨS

i,a(v) < z,

z if ΨB
i,a(v) ≤ z ≤ ΨS

i,a(v),

ΨB
i,a(v) if z < ΨB

i,a(v),

where the ironing parameter z satisfies∫ v̂

0

max{0,ΨS
i,a(v)− z}dFi(v) =

∫ 1

v̂

max{0, z −ΨB
i,a(v)}dFi(v). (6)

The constrained-efficient mechanism, as shown by Loertscher and Wasser (2019), is the
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solution to a saddle point problem that simultaneously chooses the allocation rule to maxi-
mize expected social surplus given agents’ worst-off types, subject to constraints, and chooses
the agents’ worst-off types to minimize their expected payoffs given the allocation rule.

Focusing on the maximization problem for the moment, let ωi denote agent i’s worst-off
type. Then letting ρ be the Lagrange multiplier on the no-deficit constraint and µi be the
Lagrange multiplier on agent i’s individual rationality constraint, and using Lemma 3, we
have the Lagrangian

L ≡ Ev

[
n∑
i=1

(Qi(v)vi −Qi(v)Ψi(vi;ωi) + riωi + ui(ωi))

+ρ

(
n∑
i=1

(Qi(v)Ψi(vi;ωi)− riωi − ui(ωi))− Tr(Q(v))

)]
+

n∑
i=1

µiui(ωi),

where Tr(Q(v)) is the total transportation cost under allocation rule Q and type vector v
when the ownership vector is r. Rearranging this, we have

L = ρEv

[
n∑
i=1

Qi(v)Ψi, 1
ρ
(vi;ωi)− Tr(Q(v))

]
+ (1− ρ)

n∑
i=1

riωi +
n∑
i=1

(1− ρ+ µi)ui(ωi).

Given ω and ρ, we can then solve for Q pointwise, subject to the constraint that Q is
nondecreasing (thus, requiring ironing). Specifically, given Lagrange multiplier ρ and worst-
off types ω, the constrained-efficient reallocation rule for agent i is given by

Qce
i,r(v; ρ,ω) ≡

∑
j∈N

V ce
ji (v; ρ,ω)rj,

where V ce is defined analogously to V e, but with actual types replaced by ironed virtual
types:

V ce
ij (v; ρ,ω) ≡


1 if Ψj,1/ρ(vj;ωj)− Cij ≥ max` Ψ`,1/ρ(v`;ω`)− Ci`

and Ψj,1/ρ(vj;ωj)− Cij > max`<j Ψ`,1/ρ(v`;ω`)− Ci`,
0 otherwise.

Using Lemma 3, the expected budget surplus under binding individual rationality is

Πce
r (ρ,ω) ≡ Ev

[
n∑
i=1

Ψi(vi;ωi)Q
ce
i,r(v;ρ,ω)

]
−

n∑
i=1

ωiri.
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Expected transportation costs under the constrained-efficient allocation rule are:

tcer (ρ,ω) ≡ Ev[
n∑
i=1

n∑
j=1

CjiV
ce
ji (v; ρ,ω)rj].

Given this, we can state the following result:

Proposition 5. The constrained-efficient reallocation rule is the same as the ex post efficient
reallocation rule if Πe

r ≥ ter, and otherwise it is defined by Qce
r (v; ρ∗,ω∗), where ω∗ and ρ∗

are such that for all i ∈ N , Ev−i [Q
ce
i,r(ω

∗
i ,v−i; ρ

∗,ω∗)] = ri and ρ∗ = arg minρ{ρ ≥ 1 |
Πce

r (ρ,ω∗) ≥ tcer (ρ,ω∗)}.

The constrained-efficient reallocation mechanism has the allocation rule specified by
Proposition 5 along with the payment rule given by Lemma 3, with ω equal to ω∗. Figure
3 illustrates the contrast between the ex post efficient and constrained-efficient reallocation
rules for the case of two agents. In setups with identical distributions and no transportation
costs, the constrained-efficient reallocation rule coincides with the ex post efficient realloca-
tion when both agents have small values and when both agents have large values if ironing
occurs in the interior (see Loertscher and Wasser, 2019; Loertscher and Marx, 2022). To see
this, assume v1 > v2 and observe that under the optimal mechanism with c = 0 trade occurs
if and only if ΨS

a (v1) > ΨS
a (v2) when both types are small, respectively ΨB

a (v1) > ΨB
a (v2)

when both types are large. With identical distributions this is equivalent to v1 > v2.
Interestingly, this feature does not extend to a settings with positive transportation costs,

in which case it is easy to obtain, locally, more trade than under ex post efficiency. To see
this, assume ironing occurs in the interior and consider v1 and v2 with v1 > v2, both of which
are sufficiently small so that trade of r2 occurs if and only if ΨS

a (v1) > ΨS
a (v2) + c, which is

equivalent to

v1 > v2 + (1− a)

[
F (v2)

f(v2)
− F (v1)

f(v1)

]
+ c. (7)

Under the constrained-efficient mechanism, a = 1/ρ∗ < 1, and so the right side of (7) is
smaller than v2 + c—which is the condition for trade under ex post efficiency—if F/f is
increasing. (And when both types are large, trade of r2 occurs if and only if v1 > v2 + (1−
a)
[
1−F (v1)
f(v1)

− 1−F (v2)
f(v2)

]
+c, whose right-hand side is less than v2 +c if (1−F )/f is decreasing.)

These hazard rate properties are satisfied, for example, by the uniform distribution. This
possibility of locally excessive trade is illustrated in Figure 3(c), which is plotted for the
uniform distribution. At the boundaries, the contours of the constrained-efficient reallocation
lie “inside” the contours for the ex post efficient allocation. Away from the boundaries, the
constrained-efficient reallocation is shifted towards giving a greater quantity to the agent with
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greater initial resources (agent 1 in Figure 3), relative to the ex post efficient allocation.12

(a) Efficient allocation rule
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Figure 3: Efficient and constrained-efficient reallocation rules. Assumes n = 2, r = (0.9, 0.1), c = 0.1,
and uniformly distributed types. The constrained-efficient results are based on numerical calculations of
ρ∗ = 1.18 and ironing parameters z∗1 = 0.8047 and z∗2 = 0.1953.

12This possibility of locally excessive trade depends simultaneously on transportation costs and on the
ironing ranges being interior. For example, if c > 0 is the fixed cost of producing a public good, in the
optimal mechanism production occurs if and only if

∑
i ΨB

a (vi) > c, which for any a < 1 is more restrictive
than the condition for production under ex post efficiency. Likewise, if c is a transportation cost but ironing
ranges are at the bounds, for example because r2 = 1, trade occurs if and only if ΨB

a (v1) > ΨS
a (v2) + c,

where for any any a < 1, the left-hand side is less than v1 and the right-hand is larger than v2 + c.
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4.4 Optimal ownership under social-surplus maximization

Above we show that in a placement problem, extremal placement is optimal. This raises the
question whether extremal ownership is optimal in an ownership problem. We next show that
it is not, which implies that the first-best is not possible in an ownership problem whenever
extremal placement is uniquely optimal in the placement problem. In an ownership problem,
extremal ownership creates a tension with incentives, and this tension is at the center of the
analysis that follows.

The results of this section establish that given a network with at least one completely
connected agent: for c > 0 sufficiently small, an ownership problem with a social-surplus-
maximizing designer is solved by ownership that differs from the optimal placement in the
corresponding placement problem; for c < 1 sufficiently large, the optimal ownership matches
the optimal placement, albeit with a different reallocation mechanism; and for intermediate
c, the ownership problem is solved by both different ownership and a different reallocation
mechanism than for the placement problem.

It will be useful to define four sets of ownership vectors, parameterized by the transporta-
tion cost by c. First, let R(c) be the set of ownership vectors, possibly empty, satisfying
(5), where ex post efficient trade is possible. Second, let RB(c) denote the set of ownership
vectors on the “boundary” of R(c) that minimize expected transportation costs subject to
allowing ex post efficient trade, if such a ownership vectors exists. Thus, for c such that
R(c) 6= ∅, we define RB(c) ≡ {r ∈ R(c) | r ∈ arg minr t

e
r}. Third, we let RP (c) denote the

planner’s set of optimal placement vectors, and, fourth, we let RD(c) denote the designer’s
set of optimal ownership vectors.

We consider different levels of transportation cost in turn, beginning with a result for
the case of zero transportation costs. In that case, any ownership vector that allows ex post
efficient trade is optimal for the designer in the ownership problem:

Proposition 6. For c = 0, the ownership problem with a social-surplus-maximizing designer
is solved by any r ∈ R(0), i.e., RD(0) = RB(0) = R(0).

Further, for a network with one completely connected agent, for c ∈ (0, 1), RP (c) contains
only extremal ownership, and using Proposition 3, R(0) does not contain any extremal
ownership. Thus, by continuity, in such a network, for c > 0 sufficiently close to zero, the
set of solutions to the ownership problem has an empty intersection with the set of solutions
to the placement problem:

Proposition 7. For a network with one completely connected agent, there exists ĉ ∈ (0, 1)

such that for all c ∈ (0, ĉ), RD(c) ∩RP (c) = ∅.
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Turning to the case of sufficiently high transportation costs, we begin by noting that this
case is simplified by each agent having the same worst-off type.

Lemma 4. If c ≥ 1/2, then 1/2 is a worst-off type for every agent.

Proof. See Appendix A.

Using Proposition 5, the maximized objective under the constrained-efficient reallocation
rule can be written as:

L∗(r) ≡ ρ∗Ev

[
n∑
i=1

n∑
j=1

(
Ψi, 1

ρ∗
(vi;ω

∗
i )− Cji

)
V ce
ji (v;ρ∗,ω∗)rj

]
(8)

+(1− ρ∗)
n∑
j=1

ω∗jrj +
n∑
j=1

(1− ρ∗ + µ∗j)uj(ω
∗
j).

For c ≥ 1/2, we have ω∗1 = · · · = ω∗n = 1/2, so in that case
∑n

j=1 ω
∗
jrj = 1/2, and the only

direct effects of r occur in the expression in (8) in square brackets. Further, as the following
lemma shows, we can rewrite the expectation of the term in square brackets in (8) in terms
of the ironed rather than unironed weighted virtual types:

Lemma 5. For c ≥ 1/2 and Fi = F for all i ∈ N , the maximized objective L∗(r) can be
written as:

L∗(r) = ρ∗Ev

[ n∑
j=1

n∑
i=1

(
Ψi, 1

ρ∗
(vi; 1/2)− Cji

)
V ce
ji (v;ρ∗,1/2)rj

]
+

1− ρ∗

2
+

n∑
j=1

(1− ρ∗ + µ∗j)uj(1/2).

Proof. See Appendix A.

Using Lemma 5, we see that the expression in square brackets in (8) is the same as the
objective for the unconstrained problem of maximizing Ex

[∑n
j=1

∑n
i=1 (xi − Cji)V e

ji(x)rj

]
,

where xi is drawn from the distribution of Ψi, 1
ρ∗

(vi; 1/2). And, for a network in which the set
of completely connected agents is nonempty, this objective is maximized by giving ownership
of all the resources at one or more of the completely connected agents. Thus, using Lemma
5, we have the following result:

Proposition 8. Assuming that Fi = F for all i ∈ N , if the set of completely connected
agents I is nonempty, then for all c ≥ 1/2 and r ∈ RD(c), we have ri = 0 for all i ∈ N\I.

Proposition 8 implies that for symmetric distributions and star or wheel networks, the
hub optimally has ownership of all resources for sufficiently large transportation costs.
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In cases in which ex post efficient trade is possible, we have ρ∗ = 1, and so

L∗(r) = Ev

[ n∑
j=1

n∑
i=1

(vi − Cji)V e
ji(v)rj

]
+

n∑
j=1

µ∗juj(ω
∗
j),

where again the term in square brackets is the objective for the unconstrained problem
and so solved with extremal ownership. Thus, for a star or wheel network with solution to
the ownership problem of r∗ = (r, 1−r

n−1 , . . . ,
1−r
n−1) and Fi = F for all i ∈ N , if r∗ ∈ R(c),

then r∗1 = max{r1 | (r1, r−1) ∈ R(c)}. This says that for a star or wheel network, when
the solution to the ownership problem involves ex post efficient trade, then the optimal
ownership vector is on the boundary of the region permitting ex post efficient trade.

Combining these results, we see that for a star or wheel network, for a range of interme-
diate values for c, the solution to the ownership problem has r∗ that does not permit ex post
efficient trade, and is not extremal, and so the solution is intermediate between the solution
to the ownership problem with c = 0 and with c ≥ 1/2. We illustrate this in Figure 4.

(a) R(c) and rD(c) for a star network with n = 3

0. 0.1 0.2 0.3 0.4 0.5
c0.

0.2

0.4

0.6

0.8

1.
r

ℛ(c)

r
D(c)

Figure 4: Values for (r, c) that permit ex post efficient trade and rD(c) for a star network. Assumes
r = (r, 1−r

n−1 , . . . ,
1−r
n−1 ) and uniformly distributed types.

Wheel networks

For wheel networks, the solution to placement problem is the same as for a star network and
involves placing all resources with the hub. But the solution to the ownership problem will
differ between the two network structures because in a wheel network, peripheral agents can
trade with their immediate neighbors if they have positive endowments. As a result, for wheel
networks and small c, ex post efficient trade is possible with a more extreme (closer to the
planner’s optimum) ownership, i.e., increased resources at the hub. We illustrate the contrast
in Figure 5, which shows that for c close to zero and n = 5, the region permitting ex post
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efficient trade for the wheel network includes larger values of r than does the corresponding
region the star network.

(a) First-best permitting region: wheel

n=5 wheel
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(b) First-best permitting region: star and wheel
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Figure 5: Values for (r, c) that permit ex post efficient trade for a wheel network and also contrasted with
star networks. For the n = 5 wheel, cwmax = 0.19 and rw5 (0) = 0.782. Assumes r = (r, 1−r

n−1 , . . . ,
1−r
n−1 ) and

uniformly distributed types.

Results for a wheel network emphasize that having more trades does not mean that a
market achieves greater efficiency. For example, for the wheel network with n = 5 and
c = 0.05, the optimal placement has all the resources at the hub. In this case the proba-
bility of there being no trade is approximately 25%, and the expected number of trades is
approximately 0.75. In contrast, for ownership with r = 0.7280, which is on the boundary
of the region permitting ex post efficient trade, the probability of no trade is 0.01% and
the expected number of trades is approximately 0.77. While the planner delivers the more
efficient outcome, there are more trades under the designer.

Table 1: Wheel network outcomes for the planner with r = (1, 0, 0, 0, 0) and the designer with r = (r, (1 −
r)/(n−1), . . . , (1− r)/(n−1)) with r = 0.7280, followed by ex post efficient trade. Assumes n = 5, c = 0.05,
and uniformly distributed types. Based on a simulation using 10,000 draws of v ∈ [0, 1]5.

no trade only 1 agent is a buyer 2 agents are buyers expected trades

planner 25.12% 74.88% 0 0.7488

designer 0.01% 87.95% 12.04% 0.7662

In the placement problem, the optimal ownership has resources at the hub, so the possi-
bilities are that we have no trade at all or one trading cluster whereby the hub sells to the
spoke with the highest value. In contrast, for the ownership problem with r ∈ (0, 1), we can
have zero, one, or two trading clusters. These correspond to whether there are zero, one,
or two agents that are allocated more than their initial holdings, which we refer to here as
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“buyers.” In an n = 5 wheel, it is not possible to have more than two buyers. As illustrated
in Table 1, in the ownership problem, of the 88% of cases in which only one agent was a
buyer, those can be divided into 20% of cases in which the trading cluster involved the hub
and 68% in which trading was along the ring road only. The 12% of cases in which there
were two trading clusters, can be divided into 4% that had one cluster involving the hub
and one along the ring road and 8% where there were two trading clusters, neither of which
involved the hub, implying that there were two separate trading clusters both along the ring
road.

4.5 Optimal ownership under profit maximization

We conclude this section with an analysis of a designer that seeks to maximize its expected
profit. This analysis continues to assume that for each i ∈ N the virtual types functions
ΨB
i (v) and ΨS

i (v) are increasing.
Given worst-off types ω, the designer’s profit-maximizing allocation rule QD is defined

analogously to Qce, but with the ironed weighted virtual types replaced by the ironed un-
weighted (i.e., weight equal to zero) virtual types:

QD
i,r(v;ω) ≡

∑
j∈N

V D
ji (v;ω)rj,

where V D is defined by

V D
ij (v;ω) ≡


1 if Ψj,0(vj;ωj)− Cij ≥ max` Ψ`,0(v`;ω`)− Ci`

and Ψj,0(vj;ωj)− Cij > max`<j Ψ`,0(v`;ω`)− Ci`,

0 otherwise.

Then we have the following result:

Proposition 9. The designer’s profit-maximizing allocation rule is QD
r (v;ω∗), where ω∗ is

such that for all i ∈ N , Ev−i [Q
D
i,r(ω

∗
i ,v−i;ω

∗)] = ri.

Using Lemma 3, given ω, the expected profit to the designer not including transportation
costs is

ΠD
r (ω) ≡ Ev

[∑
i∈N

Ψi(vi;ωi)Q
D
i,r(v;ω)

]
−
∑
i∈N

ωiri,
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and expected transportation costs are:

tDr (ω) ≡ Ev

[∑
i∈N

∑
j∈N

CjiV
D
ji (v;ω)rj

]
.

Thus, the designer’s maximized expected profit is

ΠD
r (ω∗)− tDr (ω∗),

where ω∗ is as defined in Proposition 9.
Turning to the optimal ownership vector for a profit-maximizing designer, in the case

of the designer, ownership affects not only transportation costs, but also the individual
rationality constraint, which affects the profit-maximizing allocation rule. The tradeoffs
differ somewhat from the case of a social-surplus-maximizing designer because it is as if
the profit-maximizing designer faces agents with worse distributions, i.e., sellers with higher
types and buyers with lower types.

5 Extensions

In this section, we provide extensions that consider the designer’s problem with an indivisible
resource, define stochastic reach dominance for problems with heterogeneous distributions,
and allow for fixed costs of transportation per edge traveled.

5.1 Reach dominance and optimal ownership

Characterizing the optimal ownership is, in general, plagued by the problem that optimal
ownership may be shared, which implies that the constrained-efficient mechanism varies non-
trivially with r. The “asset market” nature of this mechanism renders characterizing optimal
ownership difficult in general. However, the problem simplifies dramatically if the resource is
indivisible, as is the case, for example, for a network with a single production plant. In this
case, ri = 1 for some i ∈ N . In this case, the constrained-efficient reallocation mechanism
is simply the constrained-efficient mechanism for a two-sided allocation problem in which
agent i is the seller and all other agents are buyers. This constrained-efficient mechanism is
an extension of the second-best mechanism derived by Myerson and Satterthwaite (1983) to
a setting with multiple buyers and costly transportation. We now show that, with identical
distributions and indivisible resource, the optimal ownership is governed by reach dominance
in the same way as is the optimal placement.
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Proposition 10. If the resource is indivisible and the agents’ draw their types from identical
distributions, then the optimal ownership is confined to the set of reach dominant agents,
provided this set is nonempty. Agents who are reach dominated are never given positive
ownership.

Proof. See Appendix A.

The proof shows that, with identical distributions, if agent i reach dominates agent j,
then the expected social surplus under the constrained-efficient reallocation mechanism is
larger when resources are owned by agent i. The argument relies on a revealed preference
argument that shows that the mechanism at i could treat the agents the same way it does
at j, thereby either directly generating more social surplus or positive revenue, which can
then be used to increase social surplus by reoptimizing.13

5.2 Stochastic reach dominance

Our analysis of optimal placement based on reach dominance rested on the assumption that
the agents’ distributions were identical and, like the entire analysis up to this point, that links
were of equal length, implying that the cost of transportation between any two neighbors
is the same. We now show that both of these assumptions can be dropped simultaneously
without qualitatively altering the conclusions or mechanics at work.

To this end, let us first allow for heterogeneous distributions while keeping the length
of each link the same. For every agent i, let Ai(k) be the set of agents that are k ∈
{0, 1, . . . , d1/ce} links away from i, and let Ai(k) ≡ ∪kh=1Ai(h) be the set of agents that are
within k links of agent i. Denote by

Lik(v) ≡
∏

j∈Ai(k)

Fj(v)

the distribution of the highest draw among all neighbors of agent i that are not farther away
than k links. Accordingly agent (or node) i is said to stochastically reach dominate (SRD)
agent j given c if for all k ∈ {0, 1, . . . , d1/ce} and all v ∈ [0, 1]

Lik(v) ≤ Ljk(v) (9)

holds, with a strict inequality for some v and k. Stochastic reach dominance extends the
insight that more and closer neighbors are better, which holds under identical distributions,

13The argument is similar to the proof in Loertscher and Marx (2019) that shows that a merger between
two suppliers harms a powerful buyer.
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to something like “stronger agents with stronger, more, and closer neighbors are better.”
With identical distributions, reach dominance and stochastic reach dominance are equiv-
alent because having more draws and stochastic dominance are equivalent with identical
distributions.

To see that the concept of stochastic reach dominance extends straightforwardly to set-
tings in which links between agents are not necessarily of equal length, for any distance
x ∈ (0, 1/c) from i, Ai(x) is now the set of agents not farther away from i than x and, ac-
cordingly, Lix(v) =

∏
j∈Ai(x) Fj(v) is the distribution of the highest draw among i’s neighbors

that are not farther away than x, and i SRDs j if Lix(v) ≤ Ljx(v) holds for all x ∈ (0, 1/c)

and all v ∈ [0, 1], with strict inequality for some.

5.3 Fixed cost of communication

In some applications, it is more appropriate to think of transportation as involving a fixed
cost per link that is independent of the amount being shipped. For example, the agent
shipping and the agent receiving the good may need to communicate about the specifics of the
shipment and what it requires. This communication may be costly due to lack of a common
language or cultural differences, but once the cost is borne and a common understanding is
established, the shipment is free and hence the cost does not vary with the quantity shipped.
This kind of problem is pervasive for resource (re-)allocation within organizations, where
different units and departments have their own culture and language.

If agents i and j are directly linked, then it is ex post efficient for agent i to ship ri to
agent j if and only if c < ri(vj − vi) or equivalently

vi +
c

ri
< vj.

The larger is ri, the more likely is agent i thus to ship ri units to agent j. Moreover, the
gains from trade ri(vj − vi)− c increase in ri.

If c ∈ [1/2, 1), then with nonextremal placement, at most one agent will be able to ship
because c/ri ≥ 1 for any ri ≤ 1/2. If c ∈ [0, 1/2), then the analysis above related to reach
dominant agents applies. This gives us the following result:

Proposition 11. Assume that Fi = F for all i ∈ N . If c ∈ [1/2, 1), then optimal placement
has ri = 1 for some i; and if c ∈ [0, 1/2), then optimal placement has ri = 1 for an agent i
that is reach dominant agent whenever such an agent exists.

Proof. See Appendix A.
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Proposition 11 provides conditions under which the placement problem with fixed costs
is solved by extremal placement when agents have identical distributions. More generally, if
one of the solutions to the placement problem under constant marginal cost of transportation
involves extremal placement, then with fixed costs, extremal placement is uniquely optimal.
In all of these cases in which the first-best requires extremal placement, we of course obtain
the result that in the ownership problem, the first-best is impossible

6 Conclusions

We study trade on networks with linear transportation costs. We show that absent individ-
ual rational and no-deficit constraints an extremal placement of resources, that is, placing
the entire resource with a specific single agent, is always optimal for the planner, irrespec-
tive of agents’ type distributions, the transportation cost, and the network structure. For
incomplete networks, such as the star with three or more agents, or the wheel with five or
more agents, placing the entire resource at the hub is uniquely optimal with identical distri-
butions, provided that transportation cost is positive but not prohibitively large. However,
as we show, if resource holdings bestow an agent with property rights over the resource, then
extremal ownership conflicts with individual rationality and no-deficit constraints. We then
solve for optimal ownership, anticipating that a constrained-efficient rather than ex post effi-
cient reallocation mechanism may be required for trade once agents’ types are realized. Even
though the optimal placement is the same for the star and the wheel networks, the optimal
ownership strcutures that account for individual rationality and no-deficit constraints differ
because the wheel offers additional opportunities of trade along the ring road.
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A Proofs

Proof of Proposition 1. Letting veji(C) = Ev[V e
ji(v)], we have te(r) =

∑n
i=1

∑n
j=1Cjiv

e
ji(C)rj

and sse(r) = Ev

[∑n
i=1

∑n
j=1 viV

e
ji(v)rj

]
− te(r). Using rn = 1−

∑n−1
`=1 r`, we have

sse(r) = Ev

[
n∑
i=1

n−1∑
j=1

viV
e
ji(v)rj +

n∑
i=1

viV
e
ni(v)

(
1−

n−1∑
`=1

r`

)]

−
n∑
i=1

n−1∑
j=1

Cjiv
e
ji(C)rj −

n∑
i=1

Cniv
e
ni(C)

(
1−

n−1∑
`=1

r`

)
,

so for j ∈ {1, . . . , n− 1}, we have

∂sse(r)

∂rj
= Ev

[
n∑
i=1

vi
(
V e
ji(v)− V e

ni(v)
)]
−

n∑
i=1

(
Cjiv

e
ji(C)− Cniveni(C)

)
,

which is independent of rj (and any other ri). This implies that an extremal ownership
vector is always optimal, independently of network structure and distributions. �

Proof of Proposition 4. Suppose c ≥ 1/2, in which case agents only ever trade with their
immediate neighbors. Let Ni ⊂ N be the set of agent i’s immediate neighbors. Consider
the mechanism in which agent i can buy from agent j ∈ Ni at (per-unit) price max{vj +

c,maxh∈Nj vh} and agent i can sell to agent j ∈ Ni at (per-unit) price vj−c. This mechanism
induces agent i to demand rj units from agent j if vi > max{vj + c,maxh∈Nj vh}, and
zero units otherwise, and it induces agent i to offer ri units to agent j if vi < vj − c and
vj = max`∈Ni v`, and zero units otherwise. Thus, this mechanism induces the ex post efficient
trade with trading buyers paying the lowest Walrasian price and trading sellers receiving the
highest Walrasian price. Agents with type 1/2 do not trade and have zero payments. These
types are worst-off, implying that worst-off types satisfy ex post and interim individual
rationality constraints with equality. Turning to the budget surplus of this mechanism, if
vi > max{vj + c,maxh∈Nj vh}, then agent i purchases rj units from agent j and makes a
payment of rj max{vj + c,maxh∈Nj vh}, while agent j is paid rj(vi− c). Thus, budget surplus
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associated with trades involving agent i is

∑
`∈Ni s.t. vi>max{v`+c,maxh∈N` vh}

(
r` max{v` + c,max

h∈N`
vh} − r` (vi − c)

)

=
∑

`∈Ni s.t. vi>max{v`+c,maxh∈N` vh}

r`

(
max{v` − vi + 2c,max

h∈N`
vh − vi + c}

)
,

where v`−vi+2c = (v`+c)−vi+c < vi−vi+c = c and maxh∈N` vh−vi+c < vi−vi+c = c,

which says that the transportation costs are not covered (on a trade-by-trade basis). This
completes the proof of the impossibility of ex post efficient trade. �

Proof of Lemma 3. Define
ui(v) ≡ qi(v)v −mi(v)− riv,

implying that the individual rationality condition can be stated as for all v ∈ [v, v], ui(v) ≥ 0.

By incentive compatibility, ui(v) = maxv̂ qi(v̂)v − mi(v̂) − riv, which implies that ui is
differentiable almost everywhere and by the envelope theorem, whenever it is differentiable,
we have

u′i(v) = qi(v)− ri.

Thus, for all ω ∈ [v, v],

ui(v) =

∫ v

ω

(q(x)− r)dx+ ui(ω).

From this, it follows that

mi(v) = qi(v)v − riv −
∫ v

ω

(q(x)− r)dx− ui(ω)

and so

Evi [mi(vi)] =

∫ v

v

(qi(x)− ri)xdFi(x)−
∫ v

v

∫ y

ω

(q(x)− r)fi(y)dxdy − ui(ω)

=

∫ v

v

(qi(x)− ri) Ψi(x;ω)dFi(x)− ui(ω)

=

∫ v

v

qi(x)Ψi(x;ω)dFi(x)− riω − ui(ω)

= Evi [qi(vi)Ψi(vi;ω)]− riω − ui(ω),

which completes the proof. �
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Proof of Lemma 4. Let qi(v) be agent i’s interim expected allocation when of type v and let
ri be its initial resources. For v ≥ 1 − c, we have qi(v) ≥ ri because i cannot never act as
a seller. For v ≤ c, we have qi(v) ≤ ri because i cannot never act as a buyer. This implies
that for c > 1/2, in which case we have 1 − c ≤ c, the agent’s interim expected allocation
satisfies qi(v) = ri for all v ∈ [1 − c, c]. Hence, for c ≥ 1/2, all types v ∈ [1 − c, c] will be
worst-off. �

Proof of Lemma 5. Assume that Fi = F for all i ∈ N . Define the function ẑ(v̂, a) to be the
implicit solution for the ironing parameter z that solves (6) (this is the same for all i given
the assumption that Fi = F for all i ∈ N ). When c ≥ 1/2, ex post efficient trade is not
possible by Proposition 4, so we have ρ∗ > 1. Thus, ẑ(1/2, 1/ρ∗) ∈ (0, 1), and we can let
ĉ ∈ [1/2, 1) be such that for all c ≥ ĉ, we have

1− c < ẑ(1/2, 1/ρ∗) < c. (A.1)

Focusing on the expression in (8) in square brackets, if 1 − c < z(1/ρ∗, ω∗) ≡ z∗ < c,

then in order to have V e
ij = 1 for i 6= j, we require that Ψ 1

ρ∗
(vi;ω

∗
i ) < z∗, which implies

that Ψ 1
ρ∗

(vi;ω
∗
i ) = Ψ 1

ρ∗
(vi;ω

∗
i ), and Ψ 1

ρ∗
(vj;ω

∗
j) > z∗, which implies that Ψ 1

ρ∗
(vj;ω

∗
j) =

Ψ 1
ρ∗

(vj;ω
∗
j). So the term in square brackets can be written as

n∑
i=1

∑
j∈N\{i}

(
Ψ 1

ρ∗
(vi;ω

∗
i )− Cji

)
V ce
ji (v;ρ∗,ω∗)rj +

n∑
i=1

Ψ 1
ρ∗

(vi;ω
∗
i )V

ce
ii (v;ρ∗,ω∗)ri.

But notice that, dropping the arguments on V ce,

Ev

[(
Ψ 1

ρ∗
(vi;ω

∗
i )−Ψ 1

ρ∗
(vi;ω

∗
i )
)
V ce
ii

]
= Ev

[(
z∗ −Ψ 1

ρ∗
(vi;ω

∗
i )
)
V ce
ii | Ψ 1

ρ∗
(vi;ω

∗
i ) = z∗

]
Pr
(

Ψ 1
ρ∗

(vi;ω
∗
i ) = z∗

)
= Ev

[
z∗ −Ψ 1

ρ∗
(vi;ω

∗
i ) | Ψ 1

ρ∗
(vi;ω

∗
i ) = z∗, V ce

ii = 1
]

Pr
(

Ψ 1
ρ∗

(vi;ω
∗
i ) = z∗, V ce

ii = 1
)

= Ev

[
z∗ −Ψ 1

ρ∗
(vi;ω

∗
i ) | Ψ 1

ρ∗
(vi;ω

∗
i ) = z∗

]
Pr
(

Ψ 1
ρ∗

(vi;ω
∗
i ) = z∗

)
= 0,

where the first equality uses the fact that the ironed and unironed virtual types are identical
outside of the ironing range, the second equality uses the binary nature of V ce, the third
equality uses the result that if vi is in the ironing range and c > ĉ, then it is not possible
for agent i to trade and so V̂ ce

ii = 1, and the final equality uses the definition of the ironing
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parameter given in (6). Thus, the expectation of the expression in (8) in square brackets is

Ev

[ n∑
j=1

n∑
i=1

(
Ψ 1

ρ∗
(vi;ω

∗
i )− Cji

)
V ce
ji (v;ρ∗,ω∗)rj

]
,

which completes the proof. �

Proof of Proposition 10. We need to show that the expected social surplus of giving ownership
to agent i is larger than giving it to agent j if i reach dominates j. Consider a vector of
neighbors n = (n1, . . . , nd1/ce) and a vector n̂ that reach dominates n. The expected social
surplus in the constrained-efficient mechanism generated when ownership is given to an agent
with neighbors n̂ is strictly larger than for an agent with neighbors n because at the node
with n̂, the agents could be treated the same as at the node with n in the following sense:
closer agents in n̂ are moved “outward” to obtain ñ = (n1, . . . , nd1/ce−1, nd1/ce + h), where
h ≥ 0 is the number of additional agents in n̂. Agents that are moved outward in n̂ are then
treated the same way as those in n, i.e., they are allocated the good in the same instances as
they would have been if their true location were where they are now in ñ, and the additional
h at distance d1/ce away are allocated the good only in the instance in which the the agent
with the highest value among the other nd1/ce agents at distance d1/ce is allocated the good
when the h additional agents are not there and when the highest value of these h agents
is larger than the highest value among the other nd1/ce agents. This mechanism generates
strictly more revenue than the constrained-efficient mechanism at n if n̂k > nk for some
k < d1/ce because of transportation cost savings, which means that by reoptimzing over the
allocation rule, one can generate strictly more social surplus, and it generates more social
surplus if n̂k = nk for all k < d1/ce, because the good is allocated to an agent with a higher
value some of the time. (It also generates positive revenue because it can use a second-price
auction among the h agents at distance d1/ce with a reserve equal to the highest value among
the nd1/ce agents when one of the h agents obtains the good.) �

Proof of Proposition 11. First consider the case with c ∈ [1/2, 1). If rj ≤ c for all j, then
there is no trade and social surplus is simply E[v]. If ri > c for some agent i, then social
surplus is E[v]+riGFTi(ri), where GFTi(ri) is the expected gain in social surplus associated
with trades involving agent i, necessarily as a seller, given ri. Because GFTi(ri) is positive
and increasing in ri (because c/ri is less than one and decreases with ri), social surplus is
maximized for ri ∈ (c, 1] at ri = 1. It then remains to choose the agent i to maximize
GFTi(1).

Now consider the case with c ∈ [0, 1/2). Suppose that agent i reach dominates agent j

37



given cost c, and consider the gains from trade associated with trades involving agents i and
j. To allow for the possibility that there are gains from trade, we assume that the sum of
ownership shares of agents i and j satisfies ri + rj > c, which makes sure that for sufficiently
extremal ownership, there are positive gains from trade. Then we have

riGFTi(ri) + rjGFTj(rj) ≤ riGFTi(ri) + rjGFTi(rj)

< riGFTi(ri + rj) + rjGFTi(ri + rj)

= (ri + rj)GFTi(ri + rj),

where the first inequality uses that agent i reach dominates agent j, and the second inequality
is strict because GFTi(·) is strictly increasing in its argument when it is positive. Thus, social
surplus is increased by shifting ownership towards the reach dominating agent. It then
follows that if the set of reach dominant agents is nonempty, then the optimal ownership
places resources only with reach dominant agents. Further, if there are two risk dominant
agents, then it is optimal to place all resources with a single one of them because of the
increasing returns to scale in the gains from trade. �
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