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Abstract

We study equilibrium uniqueness in entry games with private informa-

tion. Our framework embeds models commonly used in applied work, allow-

ing rich forms of firm heterogeneity and selective entry. We introduce the

notion of strength, which summarizes a firm’s ability to endure competition.

In environments of applied interest, an equilibrium in which entry strate-

gies are ranked according to strength, called herculean equilibrium, always

exists. Thus, when the entry game has a unique equilibrium, it must be

herculean. We derive simple sufficient conditions guaranteeing equilibrium

uniqueness and, consequently, robust counterfactual analyses.
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1 Introduction

Understanding firms’ market entry decisions is a key element of economic policy

and regulation. Predicting whether there will be timely entry after a merger or

regulatory change requires a framework that determines the number and types of

competitors. More broadly, a model with endogenous entry, prices, product char-

acteristics, and welfare outcomes can be used to evaluate policies prospectively.

When performing such analysis, researchers use the counterfactual equilibrium of

an estimated model to assess the impact of the policy under consideration. A

common challenge in this setting is the existence of multiple equilibria. Under

multiplicity, the model may not yield a unique prediction to the applied question,

difficulting policy analysis (Berry and Tamer, 2006; Borkovsky et al., 2015). Com-

puting these multiple equilibria may also prove challenging when using numerical

methods, which may limit the researcher’s ability to gain a complete understanding

of the impacts of a policy of interest (Iskhakov et al., 2016).

We study equilibrium uniqueness in entry games with private information. Our

framework allows for rich forms of firm heterogeneity and selective entry. Our main

contribution is to provide a sufficient condition that guarantees equilibrium unique-

ness. The condition is solely based on the model’s fundamentals and verifying it

does not require equilibrium computation. In many common applications, the suf-

ficient condition can be checked by performing a simple calculation. For example,

in the influential articles of Roberts and Sweeting (2013) and Grieco (2014), the

authors use numerical methods to show that their fitted models have a unique

equilibrium. Using their estimates and our sufficient condition, we can confirm

equilibrium uniqueness in their fitted models, highlighting the usefulness of our re-

sults. Thus, our findings provide new tools for applied researchers studying entry.

We characterize firms’ equilibrium behavior using a simple index that we call

strength, which summarizes a firm’s ability to endure competition. The strength of

a firm is the unique symmetric threshold-strategy that makes the firm indifferent

to enter the market. A stronger firm is simultaneously more willing to enter the

market than a weaker competitor, despite facing more competition. The use of

strength in entry games is similar to the use of a Gittins index in multi-armed

bandit games (Gittins, 1979), as it aggregates the game’s relevant information,

facilitating the search for equilibria. For the class of models studied, we show that

there always exists an equilibrium in which the threshold strategies for entry are

ordered according to strength. We call this a herculean equilibrium. Thus, when
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an entry game has a unique equilibrium, it must be herculean. Identifying the

herculean equilibrium, via the firms’ strength, is the starting point to develop our

sufficient condition for uniqueness. Among the advantages of using strength to

find equilibria is that it reduces the computing power necessary to estimate entry

models, as strength provides bounds for the herculean equilibrium strategies.

Our proposed framework embeds entry models commonly used in applied work.

It accommodates a large variety of post-entry models, including auctions and com-

petitions in price or quantity. The framework also allows for rich forms of firm

heterogeneity. Firms are allowed to differ in their payoff functions or in their dis-

tribution of types, capturing that firms might be heterogeneous in their public

characteristics (e.g., firms might differ in their product characteristics, geographic

locations, or in their levels of vertical integration). Payoffs might depend on both

actions and the realized types of competitors, allowing a level of strategic inter-

action often ignored by the entry literature (auctions being an exception). For

example, if firms are privately informed about their marginal costs of produc-

tion, facing a potential competitor with a lower marginal cost decreases a firm’s

expected profit. The magnitude of this decrease depends on the firms’ realized

marginal costs, their degree of product substitutability, and the number of en-

trants. We enrich the set of models available to applied researchers by including

these environments.

In the theoretical literature on market entry, Mankiw and Whinston (1986)

study welfare in a symmetric model under complete information. Closer to our

approach, Brock and Durlauf (2001) examine a symmetric environment in which

privately-informed agents choose a binary action. Our modeling shares the idea

that both the action and type of an agent affect the payoffs of other agents, but

differs in that entry decisions are strategic substitutes and in that we allow for

asymmetric agents. There is a large literature of costly entry into auctions. Levin

and Smith (1994) examine a symmetric scenario in which bidders learn their valu-

ations after entry. Samuelson (1985) studies ex-ante symmetric bidders, which are

perfectly and privately informed about their valuations before entry. In Ye (2007),

bidders are partially informed at the moment of entry and fully learn their valua-

tions after entry occurs. Our framework embeds these informational environments,

as a firm’s private information might correspond to its type or to a signal about

its type. We provide a general equilibrium characterization and an equilibrium

uniqueness result to a wider class of entry models.
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In the empirical literature, Bresnahan and Reiss (1990, 1991) and Berry (1992)

develop the first empirical models of market entry that explicitly accounted for

the strategic interaction between post-entry market competition and firms’ entry

decisions. Under complete information, the entry game often contains multiple

equilibria. Tamer (2003) show that, without further assumptions, multiple equi-

libria can lead to set, rather than point, identification.1 Using numerical methods,

Seim (2006) show that private information may solve the problem of equilibrium

multiplicity. Berry and Tamer (2006), however, construct examples of multiple

equilibria under private information, raising the question of when uniqueness can

be achieved. We contribute to this discussion by identifying a sufficient condition

guaranteeing equilibrium uniqueness in entry games with private information.

The importance of allowing for private information in entry models lies beyond

the possibility of solving the multiple equilibria problem. Using complementary

methodologies, Grieco (2014) and Magnolfi and Roncoroni (2021) test and reject

the hypothesis that firms possess complete information at the moment of entry.

Furthermore, compared to models that allow for private information, they show

that assuming complete information delivers model estimates that can lead to

qualitatively different predictions. Roberts and Sweeting (2013, 2016) provide

evidence of selection at the moment of entry, which cannot be accounted for by

complete information models. Finally, when firms receive signals about their true

type, we can observe behavior consistent with ex-post regret; i.e., entry into an

ex-ante profitable market but with negative observed outcomes. This type of

outcomes is incompatible with complete information models.

The article is organized as follows. Section 2 introduces the model, discusses

its properties, and provides examples illustrating its scope. Section 3 introduces

and discusses the notions of firm strength and herculean equilibrium. Our main

results are presented in Section 4, which shows that the existence of a herculean

equilibrium is guaranteed and provides a sufficient condition for when the herculean

equilibrium is the unique equilibrium of the game. Finally, Section 5 concludes.

All the proofs are relegated to Appendix A.

1 Sweeting (2009) shows that multiplicity can help with the model’s identification when the
values of staying ‘in’ or ‘out’ of the market are both endogenously determined. De Paula and
Tang (2012) show that multiplicity can be used to infer the signs of strategic interactions.
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2 A Model of Market Entry

2.1 The Baseline Model

Set up. Consider n firms simultaneously deciding on whether to enter a mar-

ket. Firms are privately informed about their type vi (a scalar), summarizing

the firm’s information about its profitability upon entering the market.2 Firm i’s

post-entry profit depends on the entry decision of every firm, firm i’s type, and

the types of other entrants. The value vi distributes according to Fi; a continu-

ously differentiable atomless distribution, with full support on [a, b] where a, b ∈ R
(the extended reals). The draws of types are independent across firms but not

(necessarily) identically distributed.

Let ei ∈ {0, 1} be an indicator function taking the value 1 when firm i enters

the market, and 0 otherwise. Denote by e = (e1, e2, . . . , en) the vector of ex-

post entry decisions, we also refer to e as the (realized) market structure. Let

Ei = {e : ei = 1} be the set of market structures in which firm i enters. For a given

market structure e, define I(e) = {i : ei = 1} to be the set of firms participating

in market e. Similarly, define Ii(e) = {j 6= i : ej = 1} and Oi(e) = {j 6= i : ej = 0}
to be the set of i’s competitors that are in and out of the market under structure

e, respectively. Denote by v = (v1, v2, . . . , vn) the vector with the realized types

of every firm. Similarly, v−i represents the realized types of every firm except

firm i and ve ≡ (vk)k∈I(e) the vector of realized types for every firm participating

in market structure e. Finally, for any market structure in which firm i enters

(e ∈ Ei), e \ i denotes the market structure e without firm i in it. Similarly, for

a market structure in which firm j stays out (e 6∈ Ej), e ∪ j denotes the market

structure e but with firm j participating in it.

With a slight abuse of notation, let πi(ve) be a real valued function representing

firm i’s post-entry profit when the realized market structure is e and the realized

types are ve. By adopting this notation, we implicitly assume that the types of non-

entrants are payoff irrelevant. To illustrate the workings of the notation observe

that πi(vi) represents firm i’s post-entry profit when i is the sole entrant and draws

vi. Similarly, πi(v) = πi(vi, v−i) represents i’s profit when every firm enters the

market and the vector of realized types is given by v. We normalize the payoff of a

non-entrant to zero. Finally, we assume that πi(ve) is continuous, integrable (with

2Although vi could also represent an informative signal about firm i’s true type, to ease
exposition we simply refer to it as type.
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finite expectation) in each dimension of ve, and differentiable in vi. We denote

such derivative by π′i(ve).

The timing of the game is as follows. Before making any entry decision, each

firm privately observes vi. After observing vi and without observing v−i, each

firm independently and simultaneously decides whether to enter the market. After

entry decisions are made, market structure e is realized and each firm entering the

market gets a payoff πi(ve). The tuple (πi, Fi)
n
i=1—which includes the number of

potential entrants n—is commonly known by every potential entrant.

Main assumptions. For a given market structure e in which firm i enters the

market (e ∈ Ei), firm i’s profit function satisfies the following four properties.

A1 (Monotonicity): The profit function πi(ve) is weakly increasing in vi and

strictly increasing if firm i is the sole entrant.

A1 gives economic meaning to the firms’ type. Upon entering the market, and

regardless of the realized market structure e, firm i’ profit increases in vi. In terms

of traditional competition models, a higher vi can represent a lower marginal cost

of production, a lower entry cost, a higher product quality, a better managerial

ability, or a higher valuation for a good in an auction.3

A2 (Competition): For each j ∈ Ii(e), πi(ve) is weakly decreasing in vj. For

each j ∈ Oi(e), πi(ve) ≥ πi(ve∪j).

A2 concerns the impact of competition on profits. It states that competition

weakly decreases profits. In particular, πi(ve) decreases with entry or when faced

with more productive (higher type) competitors.

A3 (Substitutes): For every firm j, there exists a market structure e in which

j does not participate (j ∈ Oi(e)) such that πi(ve) > πi(ve∪j) for vj ≥ vj.

A3 says that for every potential entrant, there exists a market structure for which

that entrant is a substitute. This is a minimal assumption about the degree of

substitutability among firms, as it does not require that every pair of firms to be

direct competitors. The impact that firm j has on i, for instance, can be through

affecting the equilibrium behavior of other firms participating under market struc-

ture e.4 Most models of competition, however, satisfy a stronger version of A3 in

3The weakly increasing assumption accommodates environments with intense rivalry, such
as price competitions with homogeneous goods or second-price auctions, in which competition
might preclude higher types to increase ex-post payoffs.

4Consider a Hotelling model in which firms 1 and 2 are located at each end of the street. If
transport costs are high, entry by 1 does not affect 2’s profit if they are the only entrants. Entry
by 1 can harm 2, however, if there is a third firm located in between 1 and 2.
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which entry by firm j has the potential to decrease firm i’s profit under any market

structure e.5

Before stating the next assumption, define φ(ve) =
∏

j∈I(e) fj(vj) to be the joint

density of types of every firm participating in market structure e.

A4 (Costly and interior entry): There exist values vi < vi in the interior of

the support of Fi(vi)—i.e., vi, vi ∈ (a, b)—such that:

(i) πi(vi) = 0 and,

(ii) ∫
[a,b]n−1

πi(vi, v−i)φ(v−i)d
n−1v−i = 0,

where the multiple integral is over each of the n− 1 dimensions of v−i.

A4 concerns the nature of the entry problem. Condition (i) simply states that

entry is costly. Firms need a sufficiently good type, vi > a, to be willing to enter

the market as the sole entrant. Jointly with assumption A2, A4 implies that,

when vi < vi, firm i would never choose to enter the market under any market

structure. That is, the value vi represents the minimal type required to enter

the market.6 Condition (ii) states that any firm will enter the market if its type

is sufficiently high. In particular, there exists a value vi < b such that drawing

vi > vi ensures entry, even if every potential competitor always enters the market.

The assumption that [vi, vi] ⊂ (a, b) guarantees that every equilibrium is interior;

i.e., no firm optimally chooses either to never or to always enter the market.

Strategies and equilibrium. A cutoff strategy for firm i is a threshold xi

such that firm i enters the market whenever vi ≥ xi and stays out otherwise.

Let x = (x1, x2, . . . , xn) be a vector of cutoff strategies. Firm i’s expected profit of

entering the market with type vi and facing opponents playing the cutoff strategies

x−i is

Πi(vi,x−i) ≡
∑
e∈Ei


 ∏
j∈Oi(e)

Fj(xj)

∫ b

(xj)j∈Ii(e)

πi
(
vi, ve\i

)
φ(ve\i)d

ne−1ve\i

 (1)

5In our analysis, we can dispense of A3. If firm j is never a substitute of i, however, it does
not affect i’s equilibrium behavior and becomes irrelevant to determine whether i’s behavior is
consistent with a unique equilibrium. We adopt A3 for brevity in the proofs.

6Notice that A4 is compatible with firms making non-negative variable profit upon entry. It
simply states that the entry cost is sufficiently high, so that the non-negative variable profit
cannot overcome the entry cost for low types.
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where ne =
∑

j ej is the number of entrants in market structure e.7 Firm i’s

expected profit from entry consists of the probability-weighted sum of i’s expected

payoffs in each market structure in which firm i participates, i.e., e ∈ Ei. The

payoffs in market structure e correspond to the expectation of πi(vi, ve\i) over the

realizations of types of the competitors in e, ve\i. This expectation takes into

account that competitor j ∈ Ii(e) only enters the market if its valuation is above

its cutoff xj. Appendix B shows that (1) is strictly increasing in firm i’s type

vi. Firm i’s expected profit also increases in an opponent’s cutoff, xj; a higher

entry cutoff lowers the competitor’s probability of entry, inducing firm i to face

less competition.

A Bayesian equilibrium is a vector of cutoff strategies x such that, for every

firm i, Πi(x) = 0; i.e., in equilibrium, when opponents play their equilibrium cutoff

strategy x−i, firm i is indifferent to enter the market when draws a type equal to

its equilibrium cutoff, xi. Online Appendix C shows that an equilibrium always

exists and that every equilibrium is in cutoff strategies; i.e., our focus on cutoff

strategies is without loss of generality. We denote the partial derivative of Πi(x)

with respect to xi by Π′i(x).

2.2 Selective Entry

Recent empirical work on market entry has shown the need to account for selection

in the entry process (c.f. Roberts and Sweeting, 2013). Selective entry occurs when

firms are partially informed about their type before making their entry decisions

and only become fully informed after costly entry has occurred.8 Our framework

accommodates selective entry models by adding a weak affiliation assumption be-

tween firms’ private information and their true type.

Let Fi(vi, θi) be firm i’s joint cumulative distribution of signals vi and types θi

with support on [a, b] × [c, d] with c < d. The distributions Fi are independent

across firms and not necessarily identically distributed. Before making their costly

entry decisions, a firm privately observes its signal vi, which allows it to make

inferences about its true type, θi. Firms learn their type after entering the market.

Let Fi(vi) =
∫ d
c
Fi(vi, s)ds and let Fi(θi|vi) = Fi(vi, θi)/Fi(vi) be the CDF of θi

7The following (standard) notation is used throughout:
∑
∅ k = 0,

∏
∅ k = 1, and

∫
∅ kdx = k.

8Selective entry allows firms to have ex-post regret. For instance, complete and private in-
formation models cannot account for a market with a sole entrant (the most profitable outcome
under our assumptions) having negative post-entry profit. This outcome, however, is feasible
under selective entry.
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conditional on vi.

A5 (Affiliated Signals): For v′i > vi, Fi(θi|v′i) < Fi(θi|vi) for all θi.

A5 states that higher signals lead to a higher expected type in terms of first

order stochastic dominance (FOSD) (c.f. Marmer et al., 2013; Gentry and Li, 2014).

Let π̂i(θe) be firm i’s profit under market structure e and the vector of types for

every participating firm is θe = (θj)j∈I(e). Then, we re-interpret πi(ve) as

πi(ve) =

∫ d

c

π̂i(θe)
∏
k∈I(e)

fk(θk|vk)dneθe

where the integral is across the ne dimensions of θe. Given the properties of FOSD,

it is straightforward to see that if the profit function π̂i(θe) satisfies analogous con-

ditions to A1-A4, then πi(ve) would also satisfy A1-A4, and the results presented

below go through.

2.3 Model Discussion

An important feature of the model is that it allows for general forms of publicly

observed ex-ante firm heterogeneity. Firms can differ in their distribution of types

Fi. The model also allows for firm heterogeneity in the profit function πi(ve); i.e.,

even if firms face the same draws of types, profits might be different. Heterogeneity

in profits may come from firms having different entry costs, production costs,

production capacities, product characteristics, contracts with suppliers, or different

geographic locations. The heterogeneity in profitability may also be due to the way

firms compete after entry has occurred. Firm heterogeneity can accommodate the

existence of dominant firms or a predetermined order of play in the post-entry

market, such as, competition à la Stackelberg. The proposed framework can also

accommodate firms receiving aggregate or idiosyncratic random shocks after entry.

In such cases, πi(ve) would correspond to the expected post-entry profit. Finally,

we highlight that the model can also accommodate entry into occupied markets.

That is, even though πi(vi) denotes the profit of a single entrant, the market may

already have firms competing in it.

The proposed formulation of πi(ve), however, does impose some restrictions

on the nature of post-entry competition. First, πi(ve) is a function rather than a

correspondence, imposing that either the post-entry game has a unique equilibrium

or, under multiplicity of post-entry equilibria, there is market consensus about
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which equilibrium will be played. Second, πi(ve) does not depend on the profile of

cutoff strategies x. A natural interpretation for the model is that entering firms’

private information becomes public after entry occurs but before firms compete in

the product market. Consequently, firms carry no beliefs about their competitors’

private information to the post-entry game. Finally, our setting is consistent with

cases where the type is irrelevant for post-entry strategies (e.g., firms are privately

informed about their entry costs) or that no information is revealed after entry;

πi(ve) is only observed at the end of the game.

To see why the omission of x in πi(ve) is restrictive, consider the case in which ve

remains private in the post-entry game but the market structure e is observed. In

such scenario, firms may base their strategies in the post-entry game on their beliefs

about the private information of their competitors. Through Bayesian updating,

these beliefs would depend on the strategy profile x and the observed market

structure e, making it part of the post-entry profit function. Although important,

the analysis of such models lies outside of the scope of this article.

2.4 Examples

We present several examples used in applied work that satisfy our assumptions to

illustrate the relevance of our results.

Example 1 (Linear model). We say that the profit function is linear when πi(ve) =

πi(e) + vi, where πi(e) is firm i’s profit under market structure e, which does not

depend on the realization of ve. In this scenario, the type of a competitor j does not

directly affect firm i’s payoff. Firm j’s type does, however, affect firm i indirectly

through j’s entry decision. The most common interpretation of the linear model

is that −vi represents firm i’s entry cost. Below we discuss three variations used

in the empirical literature:9

(a) Heterogeneous competition: In studying entry into the video retail indus-

try, Seim (2006) used a linear model of the form

πi(ve) = ηi +
∑
j∈Ii(e)

δij + vi

9In addition to the articles mentioned in the examples, other work involving linear entry
models with private information include: Aguirregabiria and Mira (2007); Bajari et al. (2007);
Pakes et al. (2007); Pesendorfer and Schmidt-Dengler (2008); Sweeting (2009); Aradillas-Lopez
(2010); Bajari et al. (2010); De Paula and Tang (2012); Vitorino (2012); Mazzeo et al. (2016).
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where ηi is a scalar summarizing both market and firm characteristics.10 The

term δij > 0 captures how entry by firm j affects i’s profit. This model captures

different degrees of substitution among firms, as entry by different competitors

may have a different impact on firm i’s profit. This differential effect, however, is

independent of the number of competitors entering the market.

(b) Decreasing marginal impact of competition: In studying entry into air-

lines routes, Berry (1992) studies a complete information version of the following

entry model11

πi(ve) = ηi − δi
ne−1∑
k=1

rk−1
i + vi

where ne is the number of entrants in market structure e. In this model, the

impact that entry has on i’s profit is independent of the entrant’s identity. The

model, however, captures that the marginal impact of entry is decreasing in the

number of competitors. Entry by a new competitor decreases profits at a fraction

ri ∈ [0, 1] of the previous entrant. In Example (a), as the number of entrants

increases, profits diverge to −∞. In this model, on the other hand, the effect of

competition is bounded by ηi − δi/(1− ri) + vi.

(c) Auctions with private entry cost: Consider an auction environment in

which each bidder is privately informed about its entry cost and only learns its

valuation (and potentially the identity of participating competitors) after paying

the entry cost (c.f. Krasnokutskaya and Seim, 2011, for the case of a first-price

auction). This environment is captured by πi(ve) = πi(e) + vi where πi(e) repre-

sents firm i’s expected profit of participating in an auction under realized market

structure e. Because entry costs are independent of valuations, entry strategies

do not affect the bidding behavior in market structure e.

Observe that, in a scenario with n = 2 potential competitors, as in Grieco (2014),

the three models above can be represented by πi(ve) = ηi − Ij∈I(e)δi + vi, where

Ij∈I(e) is an indicator reflecting entry by the competitor.

Example 2 (Auctions with selective entry). Consider a second-price auction where

bidders are partially (and privately) informed about their own valuation before

making entry decisions. The valuation of bidder i is given by θi = viεi, where

10Observe that, although the term ηi is commonly known by the firms’, an econometrician
may not observe some elements in ηi. Typically, ηi = Xiβi + ζi where Xi is a vector of observed
firm and market characteristics and ζi is heterogeneity unobserved by the econometrician.

11Berry (1992) instead uses a logarithmic version of the model: πi(ve) = ηi− δi ln(ne− 1) + vi.
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the signal vi is observed before the participation decision is made and the noise

εi ∼ Gi, which is independent from vi, is observed after paying the participation

cost Ki > 0 but before submitting a bid.12

For a given realization of signals and market structure ve, define Φ(s, ve) =∏
j∈I(e) Gj(s/vj) to be the probability that every firm participating in market struc-

ture e obtains a valuation less than s. Then, if r ≥ 0 is the reserve price of the

auction, the (expected) payoff of a firm that participates under ve is:

πi(ve) =

∫ b

r/vi

(∫ viεi

−∞
(viεi −max{r, s})dΦ

(
s, ve\i

))
dGi(εi)−Ki.

A participating firm i pays the entry cost Ki and, given the signal vi, bidder i

values the good by θi = viεi, which distributes according to Gi(ε). Participating

firms submit a bid equal to their valuation only if they value the good more than

the reserve price r. Bidder i obtains the good when it is the highest valuation

firm. The distribution of the highest valuation among i’s opponents is Φ(s, ve). It

can be readily checked that this model satisfies assumptions A1-A5. Variations of

this model have been studied by Roberts and Sweeting (2013, 2016), Gentry and

Li (2014), and Sweeting and Bhattacharya (2015).

Example 3 (Oligopolistic competition). Our framework also accommodates tra-

ditional forms of oligopolistic competition. For instance, entry into a market in

which firms compete in prices under differentiated products can be modeled with

a logit demand, such as

πi(ve) = (pi − ci)Si(ve)M−Ki, where Si(ve) =
Di

D

Dλ

(1 +Dλ)

is firm i’s market share, which is determined by Di = exp((ηi + vi − αpi)/λ) and

D =
∑

j∈I(e) Dj. The model is described by the market size M as well as firm

i’s entry costs Ki, marginal cost ci and product/market characteristics, ηi. The

parameter α captures consumers’ tastes and λ ∈ [0, 1] captures the strength of

the consumers’ outside option. Every potential entrant commonly knows all these

parameters. The vector of equilibrium prices, pe = (pj)j∈I(e), and market shares are

a function of the realized market structure e and the draws of types of the entrants,

12If we further assume that E(εi) = 1, the signal vi becomes an unbiased predictor of the
valuation θi. That is, for a given realization of vi, the expected valuation is given by E(θi|vi) =
vi
∫∞
−∞ εidGi(εi) = vi.
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ve. In this scenario, vi represents a product characteristic (such as quality) that

is privately known before entry decisions are made, but becomes publicly known

after entry occurs. This model satisfies assumptions A1-A4. Complete information

versions of this model (i.e., not incorporating the vi term) have been studied by

Ciliberto et al. (2020) in the context of entry and by Bresnahan (1987), Berry

(1994), and Berry et al. (1995) when the number of competitors is exogenous.

3 Strength and Herculean Equilibrium

This section introduces two key concepts: firm strength and herculean equilib-

rium. Strength uses the game fundamentals—(Fi, πi)
n
j=1—to rank firms according

to their ability to endure competition. We use strength to identify the equilibrium

that remains when the game has a unique equilibrium: the herculean equilibrium.

Identifying the herculean equilibrium is the starting point to develop our sufficient

condition for equilibrium uniqueness.

Definition (Strength). Let σi(v) ≡ Πi(v, . . . , v), where Πi(x) is given by (1). The

strength of firm i is the unique number si ∈ R that solves σi(si) = 0; i.e.,

σi(si) =
∑
e∈Ei


 ∏
j∈Oi(e)

Fj(si)

∫ b

(si)j∈Ii(e)

πi
(
si, ve\i

)
φ(ve\i)d

ne−1ve\i

 = 0. (2)

We say that firm i is stronger than firm j if si < sj.

Lemma 1. σi(s) is strictly increasing and crosses zero once.

The strength of firm i is the unique cutoff si that is a best response to every

other competitor playing the same cutoff strategy si. Intuitively, strength ranks

firms according to their ability to endure competition. A lower cutoff strategy for

firm i implies that the firm is more likely to enter the market, as it enters for lower

types. Similarly, a lower cutoff strategy by competitors implies that firm i is more

likely to face competition. Firm i being stronger than firm j (si < sj) indicates

that firm i, despite facing more competition than j, is more likely than j to enter

the market. Lemma 1 shows that strength is well defined, as it assigns a unique

scalar si to each firm i and, therefore, delivers a complete ranking of the firms.

Strength motivates our next definition.

Definition (Herculean Equilibrium). An equilibrium is called herculean if equi-

librium cutoffs are ordered by strength, with stronger firms playing lower cutoffs.
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Intuitively, because stronger firms are more able to endure competition, they

should be more inclined to enter the market than weaker firms. Therefore, an

equilibrium in which cutoffs are ordered by strength should naturally emerge in

entry games. Figure 1 illustrates this intuition graphically in an environment with

two asymmetric entrants. The functions σ1(s) and σ2(s) define the strength of

each firm. By Lemma 1, the functions σi(s) are strictly increasing, crossing the

horizontal axis once, at s1 and s2, respectively. In this scenario, firm 1 is stronger

than firm 2, as s1 < s2.

[Figure 1 around here]

We use strength to construct a herculean equilibrium in this asymmetric sce-

nario. Let bi(x) be firm’s i best response to a cutoff x. Because expected profits are

increasing in the firm’s type, firm i’s best response decreases in x; i.e., when faced

with less competition (higher x), firm i is willing to enter at a lower type. Assume

that firm 2 plays the cutoff s2. Because best responses are decreasing, we have

b1(s2) < b1(s1) = s1 (see Figure 1), where the equality follows from the definition

of strength. In turn, if firm 1 plays b1(s2) < s2, we have b2(b1(s2)) > b2(s2) = s2,

where strength was again used in the equality. Consequently, we have shown that

b1(s2) < s1 < s2 < b2(b1(s2)). Continuing with these iterated best responses,

we can construct monotonic sequences. By assumption A4, these sequences are

bounded, converging to an equilibrium x1 < x2 in which cutoffs are ordered by

strength—an herculean equilibrium. The previous argument does not preclude

the existence of multiple herculean or non-herculean equilibria. The next section

shows the existence of herculean equilibria more broadly and provides a sufficient

condition guaranteeing equilibrium uniqueness.

4 Existence and Uniqueness

In this section, we show the existence of a herculean equilibrium in three set-

tings that are commonly used in applied work. As a consequence of this result,

if the entry game has a unique equilibrium, it must be herculean. We establish a

sufficient condition guaranteeing equilibrium uniqueness and provide examples il-

lustrating how the proposed condition can be used in practice. The next definition

is instrumental for the sufficient condition.
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Definition (Expected profit loss). For any vector of cutoff strategies x define the

expected profit loss that entry by firm j inflicts on firm i to be

∆i,j(x) =
∑

e∈Ei\Ej


 ∏
k∈Oi(e)

Fk(xk)

∫ ∞
(xk)k∈Ii(e)

δi,j(xi, xj, ve\i)φ(ve\i)d
ne−1ve\i

 > 0 (3)

where δi,j(xi, xj, ve\i) = πi(xi, ve\i)−πi(xi, xj, ve\i) is firm i’s profit loss inflicted by

firm j entry in market structure e when the realized types of the other entrants is

ve\i. By assumption A2, we know that δi,j(xi, xj, ve\i) ≥ 0.

The expected profit loss captures the decrease in profit that firm i experiences

when firm j marginally decreases its entry cutoff xj and firm i draws type xi.
13

A small change in xj only affects firm i’s expected profit at firm j’s pivotal draw,

vj = xj. At that draw, firm j’s entry occurs, inducing firm i to lose ∆i,j(x).

The expected profit loss will help us characterize how firm j’s best response to

firm i’s behavior affects firm i’s profitability. As we shall see below, if firm j’s

best response has a bounded effect in firm i’s profitability (and reciprocally), the

entry game has a unique equilibrium. Although assumption A2 only implies that

δi,j(xi, xj, ve\i) ≥ 0, together with assumption A3 we have that ∆i,j(x) > 0.

4.1 Ex-ante Symmetric Games

We now study existence and uniqueness of herculean equilibrium in the context

of ex-ante symmetric firms; i.e., firms that have the same ex-ante characteristics

but different ex-post outcomes due to particular realizations of the firms’ type.

Symmetric entry games have been studied, for example, by Bresnahan and Reiss

(1990, 1991), in the context of complete information, and by Brock and Durlauf

(2001), Sweeting (2009), and Grieco (2014) in the context of private information.

We say that firm i’s profit function is anonymous if, for every market structure

e ∈ Ei, firm i’s profit function does not depend on the identities of the entrants;

i.e., πi(ve) = πi(vi,vne−1) where vr is an r-dimensional vector of realized types and

ne is the number of entrants in e. An entry game is called symmetric when every

firm has the same distribution of types, Fi(vi) = F (vi), and profit functions are

anonymous and symmetric, πi(ve) = π(vi,vne−1).

Proposition 1. In symmetric entry games, there exists a unique herculean equi-

librium, where a firm’s cutoff is given by its strength. That is, xi = s for every

13Observe that ∆i,j(x) does not integrate over the i and j dimensions.
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firm i, where s is the unique number that solves

σ(s) =
n−1∑
r=0

{(
n− 1

r

)
F (s)n−1−r

∫ b

s

π(s,vr)φ(vr)d
rvr

}
= 0.

Moreover, the herculean (i.e., symmetric) equilibrium is the only equilibrium of the

game if the condition
f(xi)

F (xi)

∆i,j(x)

Π′i(x)
< 1, (4)

holds for any pair of firms i and j, and for every vector x such that each dimension

satisfies xk ∈ [v, v].

In symmetric entry games, there always exists a unique herculean equilibrium,

as, under symmetry, the herculean cutoffs coincide with the firms’ strength and,

by Lemma 1, strength is uniquely defined. Proposition 1’s main contribution is

to provide a sufficient condition under which no asymmetric equilibria exists. The

sufficient condition (4) is a stability condition. It guarantees that the gain in firm

i’s expected profit induced by an increase in its own cutoff xi cannot be overcome

by any best response by its competitors’.

To illustrate the main steps of the proof, consider the case with two symmetric

firms. Let b2(x1) be firm 2’s unique best response to x1, b2(x1) is decreasing

in x1. Observe that every equilibrium of the game satisfies Π1(x1, b2(x1)) = 0.

Consequently, if Π1(x1, b2(x1)) is strictly increasing in x1, the function crosses

zero once and a unique equilibrium exists. Let x = (x1, b2(x1)), differentiating

Π1(x1, b2(x1)) with respect to x1 we obtain

dΠ1(x)

dx1

= Π′1(x) + b′2(x1)
∂Π1(x)

∂x2

> Π′1(x)− f(x1)

F (x1)
∆1,2(x) > 0.

The first step of the uniqueness proof consists of providing a bound to the interac-

tion between the slope of firm 2’s best response and its impact on firm 1’s profit.

Sufficient condition (4) plays an important role in establishing this bound, as is

used to establish the first inequality. The second inequality follows from condition

(4) as well.

Computing the equilibrium is not necessary to check whether condition (4)

holds, as it only makes use of the information given in the fundamentals of the

game. As shown below, depending on the application, condition (4) might require

only a simple calculation. Because of symmetry, the condition only needs to hold
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for any pair of potential firms. It is sufficient to check it where entry is feasible—

i.e., xk ∈ [v, v]—as deviations outside this range are always outside the equilibrium

path.

The next set of examples illustrate how sufficient condition (4) works in prac-

tice. We discuss some of its properties and how it changes with competition.

Moreover, we use it to show that the empirical model in Grieco (2014) has a

unique equilibrium.

Example 4 (Symmetric linear model). Consider the linear model of Example 1(b)

in a symmetric environment. In this scenario, the post-entry profit of a given firm

i becomes

πi(ve) = η − δ
ne−1∑
k=1

rk−1 + vi.

Under symmetry, the model embeds Example 1(a) when r = 1. Sufficient condition

(4) holds if, for xi ∈ [v, v], the following inequality is satisfied (see Online Appendix

D for a step-by-step derivation)

f (xi)

F (xi)
<

1

δF (v) (r + F (v) (1− r))n−2 , (5)

where v = −η and v = δ(1−rn−1)/(1−r)−η. That is, the reversed hazard rate of

F needs be bounded above by the inverse of δF (v) (r + F (v)(1− r))n−2. We use

condition (5) to illustrate relevant properties:

(a) Log-concave distributions. When F is log-concave, its reversed hazard

rate f(xi)/F (xi) is decreasing in xi.
14 Consequently, the sufficient condition (5)

reduces to f(v)/F (v) <
(
δF (v) (r + F (v)(1− r))n−2)−1

. For instance, if types

distribute type-I extreme value (as in Seim, 2006)15 and r = 1, it can be readily

checked that the sufficient condition for uniqueness becomes η + ln(δ) < exp(η−
(n− 1)δ); a restriction to the parameters of the model. Figure 2a illustrates this

restriction for different number of potential entrants. The area outside the curves

represents the combination of parameters delivering a unique equilibrium. Inside

the curves, the game might have a unique or multiple equilibria.

14If G(x) = ln(F (x)) is concave, then G′′(x) = d(f(x)/F (x))/dx < 0. Examples of log-concave
distributions include normal, exponential, extreme value, logistic, and gamma.

15A type-I extreme value distribution with location parameter 0 and scale parameter λ is
given by F (v) = exp(− exp(−v/λ)). Then, its inverted hazard rate is given by f(v)/F (v) =
exp(−v/λ)/λ, which is decreasing in v. This distribution is called standard when λ = 1.
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[Figure 2 around here]

(b) Uniqueness and competition. Continuing with the previous example, we

now explore the effect of competition on sufficient condition (5). In the linear

model, competition manifests through two channels: the number of potential

competitors, n, and the decreasing marginal impact of entry, r. For the latter,

observe that an increase in r decreases the right hand side of (5)—making the

condition harder to satisfy—directly through r (entry has more impact) and indi-

rectly by increasing v (enlarging the set of possible deviations). Consistent with

the traditional logic of entry games, the prospects of facing multiple equilibria

increase with the gains from coordinating entry; i.e., when the profit losses from

competition become large. As a consequence, when comparing both panels of

Figure 2, we can see that an increase in the marginal impact of entry, r, shrinks

the set of parameters that deliver a unique equilibrium.

Increasing the number of competitors, n, also increases the set of possible devi-

ations v. In contrast, a larger n has the countervailing effect of increasing the

expected number of entrants, captured by (r+F (v)(1−r))n−2. When the marginal

effect of entry is decreasing (i.e., when r < 1), a larger number of entrants de-

creases the expected profit loss (3) that firm j inflicts on firm i. This makes firm

i less susceptible to entry, increasing the set of parameters for which uniqueness

occurs. The interaction between these effects makes the set of parameters sat-

isfying (5) to change non-monotonically with n (see Figure 2b). This stands in

contrast to the scenario with a constant marginal effect of entry (r = 1). There,

only the effect of increasing v remains, making the set of parameters satisfying

(5) shrink with the number of potential entrants n (see Figure 2a). In the limit,

as n becomes unboundedly large, the restriction for r = 1 becomes the tightest

and equal to η + ln(δ) < 0. In contrasts, when r < 1, the model always has a

unique equilibrium, as the right hand side of (5) goes to infinity.

(c) Equlibrium multiplicity and uniqueness under Normality. Suppose

types distribute N(0, σ), which is log-concave. Berry and Tamer (2006) observe

that, in a game with two entrants (n = 2) and under the assumption δ > η, the

entry game has multiple equilibria when it converges to a complete information

game (σ → 0) and has a unique equilibrium when the private information dom-

inates (σ → ∞). We can use sufficient condition (5), δF (v)f(v)/F (v) < 1, to

provide a tighter characterization. Suppose, for instance, that η = 0 and δ = 1
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(so that, v = 0 and v = 1). Then, because both f(0)/F (0) = 2/
√

2πσ2 and F (v)

are decreasing in σ, there is a threshold σ̂ = 0.7298 such that σ > σ̂ guarantees

equilibrium uniqueness.

For example, if σ = 1/4 the game has three equilibria. The herculean equilibrium,

which is symmetric and given by the cutoff strategy xi = 0.2055, and two asym-

metric equilibria, given by xi = 0.041 and x3−i = 0.435, for i ∈ {1, 2}. Similarly,

if σ = 1, the game has a unique equilibrium given by xi = 0.3596.

(d) A concrete application. When studying entry of supercenters into rural

grocery markets, Grieco (2014) estimates a symmetric incomplete information

model under the assumption that vi ∼ N(0, 1) and two potential entrants (n = 2).

In the smallest market, where coordination among entrants is more relevant, the

model estimates are given by η = −3.838 and δ = 0.851.16 Using the log-concavity

property of the normal distribution, in conjunction with the model estimates,

sufficient condition (5) becomes δF (v) f(v)/F (v) = 10−4 < 1. We can conclude

that the equilibrium is unique.

4.2 Two Groups of Firms

We now extend our results to games in which entrants can be divided into two

groups according to their public characteristics. Within each group, firms are ex-

ante symmetric. Across groups, however, firms can differ in their distribution of

types and profit functions. In applied work, models of two groups of entrants

have been used, for example, to study the timberwood industry (mills and log-

gers) by Athey et al. (2011) and Roberts and Sweeting (2013, 2016) as well as

to study in highway procurement auctions (favored and non-favored bidders) by

Krasnokutskaya and Seim (2011). The two-group structure may arise naturally in

applications where firms can be divided in incumbents and entrants, high and low

quality firms, local and international producers, discount and traditional retailers,

or legacy and low-cost airlines, among other examples.

Formally, let Gg be the set of firms belonging to group g ∈ {1, 2}. Group g

consists of ng ∈ N potential entrants (so that, n1 + n2 = n) described by the pair

(πg, Fg). Let g(i) be the group of firm i. We assume that profits are symmetric and

anonymous within a group. That is, firm i’s profit under market structure e is now

16See Table 7, page 329: η = µ0−µ4 = −1.222− 2.158 = −3.838. Condition (4) also holds for
every other specification in the paper.
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equal to πi(ve) = πg(i)(vi,vr,vk) where r and k are the number of entrants, other

than i, from group g(i) and −g(i), respectively. The vectors vr and vk represent

the draws of valuations of such entrants.

Because firms are within-group symmetric, firms in the same group have equal

strength. A herculean equilibrium, thus, consists of group-symmetric strategies in

which the strongest group plays the lowest cutoff. To formally characterize a group-

symmetric equilibrium, define ϕg(vr) =
∏r

j=1 fg(vj) to be the probability density

that r firms belonging to group g draw the vector vr. For a pair of cutoffs x̂ =

(x1, x2) describing group-symmetric strategies by the opponents, firm i’s expected

profit of entering the market with a draw of vi, when there are r and k entrants,

other than firm i, from group g(i) and −g(i), is given by

E[πi(vi, r, k)|x̂] =

∫ b

x1

(∫ b

x2
πg(i)(vi,vr,vk)ϕ−g(i)(vk)d

kvk

)
ϕg(i)(vr)d

rvr

where the integrals are over the r and k dimensions of vr and vk. Then, when

faced with group-symmetric strategies x̂ (i.e., xj = xg(j) for every firm j 6= i), firm

i’s expected profit of entering the market under valuation vi is

Πi(vi,x−i) =

nj∑
k=0

{(
nj
k

)
Fj(xj)

nj−k

[
ni−1∑
r=0

(
ni − 1

r

)
Fi(xi)

ni−1−rE[πi(vi, r, k)|x̂]

]}
,

where for ease in notation, we use i and j instead of g(i) and −g(i) as it leads to

no confusion. The previous expression corresponds to equation (1) in the context

of two groups of firms playing group-symmetric strategies. To understand the

previous expression, fix a market structure in which r and k firms of group i and

j participate in the market. Because there are nj firms in group j, there are ‘nj

choose k’ possibilities to obtain a market structure with k competitors from group

j. Each of these possibilities occur with probability Fj(xj)
nj−k; i.e., the probability

that nj − k firms obtain a low draw and stay out of the market. Similarly, there

are ‘ni − 1 choose r’ possibilities to observe r competitors from i’s group, each

occurring with probability Fi(xi)
ni−1−k. The expression above is, thus, obtained

by summing across every possible market structure.

A pair of strategies x̂ constitutes a group-symmetric equilibrium if and only if,

for each firm i, xi = xg(i) and the vector of strategies x satisfies Πi(x) = 0. Without

loss of generality, let group 1 be the strongest group. The following theorem is the

main result of this subsection.
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Theorem 1. A herculean equilibrium always exists. The herculean equilibrium x

satisfies x1 < s1 < s2 < x2, where sg and xg are the strength and the equilibrium

cutoff of group g. Moreover, the herculean equilibrium is the unique equilibrium

of the game if these four conditions

fi(xi)

Fi(xi)

∆i,j(x)

Π′i(x)
< 1 if j ∈ Gg(i), (6)

ng(j)
fi(xi)

Fi(xi)

∆i,j(x)

Π′i(x)
< 1 if j ∈ G−g(i), (7)

hold for any pair of firms i and j, and for every vector x such that each dimension

satisfies xk ∈ [vg(k), vg(k)].

Theorem 1 has two main results. First, as a herculean equilibrium always

exists, the theorem shows that strength is the right notion to characterize the

firms’ relative competitiveness. In many empirical applications, where multiplicity

of equilibria is a concern, the model estimation is based on assuming that firms play

an equilibrium that is ex-ante ‘intuitive’ given the fundamentals of the model (c.f.

Roberts and Sweeting, 2013). As we show in Example 5 below, although intuitive

orders are consistent with the proposed notion of strength, they are restrictive in

that many applications might not have an ex-ante ‘intuitive’ order. Strength, in

turn, provides an order in any entry game. Theorem 1 also provides bounds on

the herculean equilibrium cutoffs—x1 ∈ (v1, s1) and x2 ∈ (s2, v2)—which speeds

up numerical computation of herculean equilibria.

Second, Theorem 1 provides four conditions that need to be satisfied for equi-

librium uniqueness—two conditions per group. The within-group condition (6)

is analogous to the sufficient condition for uniqueness in symmetric entry games

(4).17 This condition bounds the change in profit due to deviations from firms

within the same group; i.e., it guarantees that no profitable deviation from a group-

symmetric strategy exists. Empirical applications usually restrict their analysis to

group-symmetric strategies. Condition (6), thus, guarantees that this restriction

is without loss. If an applied researcher determines that within-group asymmet-

ric strategies are not relevant for the application at hand, this condition can be

dispensed.

The cross-group condition (7), on the other hand, guarantees that the herculean

17 Proposition 1 is a particular case of Theorem 1 when one of the groups has no members.
We chose to split the results for clarity in the exposition and because the symmetric model has
value on its own.
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equilibrium is the unique group-symmetric equilibrium of the game. This condition

bounds the change in profit due to a group-symmetric deviation from the opposing

group. Observe that the left hand side of condition (7) is multiplied by the number

of firms in group j. In group-symmetric strategies, there are ng(j) firms deviating

simultaneously; thus, the condition needs to bound ng(j) deviations at the same

time. Comparing conditions (6) and (7), we can see that the former condition does

not directly depend on ng(j) (because j ∈ Gg(i), ng(j) is the number of competitors

in the same group as firm i). This is so, because we can exploit the within-group

symmetry among firms to obtain a ‘tighter’ bound. Below we show that condition

(7) might not necessarily be more restrictive than condition (6).

Example 5 (Linear model). Consider the linear model of Example 4(b). In par-

ticular, assume that the marginal impact of competition is constant, r = 1, and

that firm i’s type distributes type-I extreme value with scale parameter λi. Firm

i’s profit is given by

πi(ve) = ηi − (ne − 1)δi + vi

where δi > 0. In this context, the group g’s strength is obtained by picking any

firm i ∈ Gg and solving (2)

si = δi
∑
k 6=i

(1− Fk(si))− ηi.

Group g’s strength negatively depends on the expected number of entrants when

every firm plays the cutoff strategy si,
∑

k 6=i(1 − Fk(si)), weighted by the impact

that each entrant has on profits, δi. Strength positively depends on the public

characteristics of the firm. Because the relation between ηi and δi was studied in

Example 4, we simplify the analysis below by assuming ηi = 0 for both groups.

Consequently, the relevant range for i’s cutoffs is given by vi = 0 and vi = (n−1)δi.

Let δ̂i = δi/λi. Using the log-concave property of extreme value distributions,

conditions for uniqueness (6) and (7) become (see Online Appendix D for details)

Ci,j =

exp
(
−(n− 1)δ̂i

)
> ln

(
δ̂i

)
if j ∈ Gg(i)

exp
(
−(n− 1)δ̂j

)
> ln

(
nj δ̂i

)
if j ∈ G−g(i)

. (8)

As discussed in Example 4(b), an increase in the total number of potential entrants

(from either group) make both constrains more strict when r = 1. Finally, observe

that the Ci,i constraint simplifies to a threshold value for δ̂i.
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We use this example to illustrate how the notion of strength helps discerning

the (herculean) cutoff order before computing equilibrium. Then, we show how

the sufficient conditions for uniqueness restrict the set of parameters under various

number of potential entrants. Finally, we use our sufficient conditions to show that

Roberts and Sweeting (2013, 2016) have a unique equilibrium.

(a) Strength. Suppose that δ1 < δ2 and λ2 > λ1. In this scenario, a firm in

group 1 is less affected by competition than a firm in group 2. In addition, the

types of a firm in group 1 stochastically dominate those of a firm of group 2 (in

the relevant range for entry, vi ≥ v = 0). In this scenario, it is ‘intuitive’ to think

that group 1 is more competitive than group 2, thus we expect group 1 to enter

more often; i.e., to play a lower entry cutoff.

If, in turn, we have that δ1 < δ2 and λ2 < λ1, we cannot use an intuitive criterion

because each parameter drives competitiveness in a different direction. Although

group 1 is less affected by competition compared to group 2 (δ1 < δ2), group 2 is

more likely to draw higher types (λ1 > λ2). We can use our notion of strength to

discern ex-ante the cutoff order in a herculean equilibrium. This is useful because

a herculean equilibrium is guaranteed to exist, regardless of whether the game

has a unique or multiple equilibria.

[Figure 3 around here]

To illustrate the previous point, consider the case with two asymmetric firms (i.e.,

n1 = n2 = 1) characterized by δ1 = 1 and δ2 = λ2 = 5/4. The intuitive criterion

allows to rank firms, and discern a suitable equilibrium, only when λ1 ≥ λ2.

Figure 3 depicts the firms’ strength as a function of λ1. The strength of firm 1 is

a constant (s1 = 0.4909), as it does not depend on λ1. Firm 2 becomes weaker

(s2 increases) when firm 1 becomes more competitive by drawing higher types.

Consistent with the ‘intuitive’ criterion, firm 1 is stronger when λ1 > λ2; firm 1

is simultaneously less sensitive to entry and draws higher types. As λ1 decreases,

firm 1 remains stronger until it reaches λs ≡ 0.7058, the value of λ1 which makes

both firms equally strong. When λ1 < λs, firm 2 becomes the stronger firm in

the game. Figure 3 also shows the herculean equilibrium for each value of λ1.

Consistent with the previous analysis, firm 1 plays the lowest cutoff whenever it

is the stronger firm in the game. In summary, for values of λ1 > λs, firm 1 plays

a lower cutoff, despite λ1 < λ2
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(b) Uniqueness with two asymmetric firms. Continuing with the previous

example of an entry game with two asymmetric firms (n1 = n2 = 1), Figure

4a depicts the set of parameters that satisfy restrictions C1,2 and C2,1. Aligned

with the intuition that equilibrium multiplicity tends to occur when coordination

among firms is important—that is, when the market is likely to support only

one firm in equilibrium—multiplicity arises when the profit loss from entry by a

competitor, δi, is high; or when a firm is unlikely to obtain a high type (low λi).

[Figure 4 around here]

(c) Uniqueness with three asymmetric firms. To see how the sufficient

condition changes when we increase the number of potential entrants, suppose

instead that we have three firms: two belonging to group 1 and one belonging

to group 2. In this scenario, conditions for uniqueness (6) and (7) become three

restrictions on the model parameters. These restrictions are shown in Figure 4b.

The restriction C1,1, that entry by a firm in group 1 imposes in the other group

1 firm, becomes δ̂1 < 1.1138. As can be observed, in this example, the restriction

C1,2 is actually redundant. To have a unique equilibrium, a firm in group 1 is

more constrained by the behavior of firms in its own group, than the behavior

of the firm in the other group. The restriction that group 1 imposes in group 2,

C2,1, also tightens, as the curve shifts downwards. As mentioned above, because

this example assumes a constant marginal impact of competition (r = 1), the set

of parameters delivering uniqueness shrinks with the number of competitors. If

r < 1, on the other hand, the set may either shrink or expand.

Example 6 (Uniqueness in a second-price auction with selective entry.). Using a

second-price auction model with selective-entry, Roberts and Sweeting (2013, 2016)

study the USFS timber auctions. The auction consists of two groups of potential

entrants, millers and loggers (groups 1 and 2, respectively). Before entry, each firm

observes a signal vi = θiεi, where θi is firm i’s valuation for a tract and εi represents

the signal’s noise. For the representative (mean) auction they estimate ln θi ∼
N(µg(i), 0.3321) (with µ1 = 3.9607 and µ2 = 3.5824) and ln εi ∼ N(0, 0.8579). The

estimated entry costs is $2.0543/mfb (dollars per thousand board foot) and the

auction’s reserve price is $27.77/mfb.18 Searching numerically, they found a single

18See Tables 3 or 4 in Roberts and Sweeting (2013, 2016), respectively.
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equilibrium. We prove, for the representative auction, that the game has indeed a

unique equilibrium. In the scenario, with two asymmetric entrants n1 = n2 = 1, we

find that the left hand side of condition (7) for millers and loggers are 0.2104 and

0.0017 (both less than one); as a consequence, the game has a unique equilibrium.

Online Appendix E offers details on the computations, as well of a discussion of

strength and herculean equilibrium for this auction.

4.3 Quasi-symmetric games

In an entry game, there are two elements that determine payoffs: the distribution

of types Fi(vi) and the profit function πi(ve). A game is called quasi-symmetric

when firms differ only in one of these two elements. In this section we extend

our results to quasi-symmetric environments in which the n potential entrants

might be ex-ante asymmetric. Formally, an entry game is called quasi-symmetric

in distributions when firms have symmetric and anonymous profit functions, and

their distributions of types, Fi(vi), are ordered in terms of first order stochastic

dominance (FOSD). Without loss of generality, we order firms so they satisfy

Fi(v) ≤ Fi+1(v) for all v. Similarly, a game is quasi-symmetric in profit when firms

have symmetric distributions of types and anonymous profit functions that for any

realization ve, satisfy πi(v,vne−1) ≥ πi+1(v,vne−1), where vr is an r-dimensional

vector of realized types and ne is the number of entrants in e.19

Quasi-symmetry is a common assumption in empirical applications. In the

context of complete information entry games, quasi-symmetry has been used as an

equilibrium selection criteria when multiplicity of equilibria exists. For example,

Berry (1992) uses a quasi-symmetric in profit model, in which firms with lower

entry costs are assumed to enter first (see also Jia, 2008, which uses profitability as

a selection criterion). In the context of private information, Roberts and Sweeting

(2013, 2016) use a model in which firms are quasi-symmetric in distributions; and

Vitorino (2012) uses a linear model in which firms are quasi-symmetric in payoffs.20

Lemma 2. Suppose an entry game in which firms are quasi-symmetric (either in

profit or distribution). Then, firms are ordered by strength, with si < si+1; that is,

firm 1 is the strongest and firm n the weakest.

19Our results below also extend to environments in which firms are ranked consistently in both
dimensions; i.e., Fi(v) ≤ Fi+1(v) for all v and πi(v,vne−1) ≥ πi+1(v,vne−1) for all ve.

20In a context of entry into a second-price auction without selection, Tan and Yilankaya (2006)
and Cao and Tian (2013) study equilibrium uniqueness in quasi-symmetric environments under
the restriction that bidders belong to one of two possible groups.
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The previous lemma shows that the firms’ ranking provided by strength coin-

cides with the order given by quasi-symmetry. Reinforcing the idea that strength

is the right notion to measure the firms’ relative competitiveness. The following

theorem is the main result of this section.

Theorem 2. In quasi-symmetric entry games, there always exists a herculean

equilibrium. Moreover, a herculean equilibrium is the unique equilibrium of the

game if the following condition holds

(n− 1)
fi(xi)

Fi(xi)

∆i,j(x)

Π′i(x)
< 1 (9)

for every pair of firms i, j and every vector x such that each dimension satisfies

xk ∈ [vk, vk], and the game is: i) quasi-symmetric in profit or, ii) quasi-symmetric

in distribution and the profit loss does not depend on the type of competitors, i.e.,

δi,j(xi, xj, ve\i) = δi(xi, ne).

As in the previous two environments, a herculean equilibrium always exists.

Furthermore, the herculean equilibrium: i) coincides with the symmetric equilib-

rium when the game is symmetric; ii) coincides with intuitive cutoff orders in games

with more than two groups of players when such order exists, and; iii) in a two

group scenario, is defined when no intuitive order exists. Therefore, the herculean

equilibrium would be useful for empirical analysis.

Observe that Theorem 2 is not a particular case nor a generalization of Theo-

rem 1. While the former can handle more than two groups of asymmetric firms,

the latter allows for more degree of firm heterogeneity between the two groups.

There are also differences in the sufficient condition for uniqueness. The induction

method used in the proof of Theorem 2 needs to handle simultaneous deviations

by each of the n − 1 competitors in the game, independently of whether a sub-

set of firms are symmetric or not. Theorem 1, on the other hand, exploits the

within-group symmetry to provide a weaker sufficient condition.

Although Theorem 2 says that condition (9) needs to hold for every pair of

potential entrants, the quasi-symmetric structure usually translates in that the

condition needs to be checked only for a specific pair of firms. As illustrated in

the examples below, this is always true for the linear model in example 1; if the

condition holds for a particular pair of firms, it holds for every other pair. Which

these two firms are, depends on the type of quasi-symmetry.
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Example 7 (Linear model). Consider the following linear model (Example 1)

πi(ve) = ηi − (ne − 1)δi + vi.

where vi distributes N(µi, 1). We explore sufficient condition (9) under different

forms of quasi-symmetry. Start by observing that the profit loss is independent of

the type and number of competitors, as δi,j(xi, xj, ve\i) = δi. This holds regardless

of the game being quasi-symmetric in profit or in distribution; thus, for uniqueness,

we only need to verify condition (9). Using the log-concavity property of the normal

distribution, condition (9) holds if, for every pair of firms i and j, the following

inequality is satisfied

(n− 1)δiFj (vj)
fi(vi)

Fi(vi)
< 1, (10)

where vi = −ηi and vi = (n− 1)δi − ηi. We show that, in linear-quasi-symmetric

environments, if condition (9) holds for one (specific) pair of firms, it holds for

every pair of firms.

(a) Quasi-symmetric in distribution. Suppose δi = δ and ηi = η for ev-

ery firm i. That is, firms are quasi-symmetric in distribution, where firms are

ordered by the mean of their type distribution µi with the strongest firm hav-

ing the highest µi. In this scenario, sufficient condition (10) simplifies to (n −
1)δFj(v)fi(v)/Fi(v) < 1. Using that, for a given v, the inverted hazard rate in-

creases in µi and stochastic dominance (Fn(v) ≥ Fi(v) for all i), the condition

holds for every pair of firms, if it holds for i = 1 and j = n.

(b) Quasi-symmetric in profit I. Suppose instead that δi = δ and µi = µ

for every firm i. Firms are quasi-symmetric in profit, where the strongest firms

has the highest value of ηi. In this scenario, sufficient condition (10) becomes

(n− 1)δF (vj)f(vi)/F (vi) < 1. Because the inverted hazard rate is decreasing in

vi, the condition holds for every pair of firms, if it holds for i = 1 and j = n (as

v1 ≤ vi and vn ≥ vi for all i).

(c) Quasi-symmetric in profit II. Finally, suppose that ηi = η and µi = µ

for every firm i. Firms, then, are quasi-symmetric in profit, where the strongest

firm is the less sensitive to entry (has a lower δi). In this scenario vi = −η
for every i, and condition (10) becomes (n − 1)δiF (vj)f(−η)/F (−η) < 1. Be-

cause the two weakest firms are the ones with the highest δi and vj, pick κ =

max{δnF (vn−1), δn−1F (vn)} and the condition holds for every pair of firms, if

27



(n− 1)κf(−η)/F (−η) < 1.

5 Concluding Remarks

In this article, we developed a sufficient condition guaranteeing equilibrium unique-

ness in the context of entry games under private information. The proposed frame-

work embeds most of the existing entry models studied in the literature, accommo-

dating various forms of firm heterogeneity and selection. With the aid of strength

we are able to identify the herculean equilibrium; the type of equilibrium that

remains when the games has a unique equilibrium. Strength can reduce the com-

putational burden of calculating equilibria with heterogeneous firms, as it provides

bounds for the herculean equilibrium.

When further exploring the set of sufficient conditions provided, we put special

emphasis to models in which private information enters the payoffs linearly. The

linear model is the most common model used in the applied literature. There, the

proposed conditions reduce to a set of simple calculations. The conditions provide

clear intuitions on how competition among firms affects the possibility of having a

unique equilibrium. We used our sufficient conditions jointly with the estimates in

empirical articles to illustrate that their empirical model have a unique equilibrium,

demonstrating the usefulness of the results.

The focus of this article is on static entry games with private information. We

put special emphasis in developing a framework that embeds most of the applied

work on endogenous market formation. Beyond the results presented, we see these

new developments as the starting point to study equilibrium uniqueness in dynam-

ics games with entry. We hope the tools developed here enable further research in

dynamic environments.
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Π1(v, x2)

x2x1 s2s1
v

σ1(v)

Π2(x1, v)

σ2(v)

b1(s2) b2(b1(s2))

Figure 1: Construction of a herculean equilibrium from iterated best responses. Start-
ing from firm 2’s strength, s2, firm 1’s best response is lower than its own strength, s1.
Similarly, firm 2’s best response to firm 1’s best response is higher than s2. These iterated
best responses are monotonic and bounded, converging to a herculean equilibrium.
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Figure 2: Equilibrium uniqueness in a symmetric linear model with a standard type-
I extreme value distribution. Area outside curves represents the set of parameters δ
and η that deliver a unique equilibrium. In Panel (a), the set of parameters satisfying
uniqueness shrinks with the number of potential entrants, n. In Panel (b), the set reacts
non-monotonically. Restriction fades away when n becomes unboundedly large.
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Figure 3: Strength and Herculean equilibrium in a linear model with two asymmetric
firms and type-I extreme value distributions; λ1 varies and δ1 = 1 and δ2 = λ2 = 5/4.
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Figure 4: Equilibrium uniqueness (shaded area) – linear model with asymmetric firms
and type-I extreme value distributions.
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Appendix

A Omitted Proofs

Proof of Lemma 1. We show that si exists and that σi(s) single crosses zero.
Existence: Observe that assumptions A4 and A2 jointly imply σi(vi) < 0. Similarly,
assumption A4 and Lemma B.1 (see Appendix B) imply, σi(vi) ≥ Πi(vi, a−i) > 0. Then,
by the Intermediate value Theorem, there exist ŝ such that σi(ŝ) = 0.
Uniqueness: By Lemma B.1 and the chain rule, we have that σ′i(s) > 0. Thus, σi(s)
single crosses zero; i.e., there is a unique value si satisfying σi(si) = 0. �

Proof of Proposition 1. This proof makes use of Lemma A.1, presented below.

Lemma A.1. Under condition (4), two symmetric firms that best respond to each other
must play the same cutoff strategy.

Proof. Consider two symmetric firms, p and q, and fix any profile of cutoffs strategies
x−p,q for the rest of the firms. Define Πp,q(y, x) ≡ Πp(xp = x, xq = y,x−p,q) where
Πp(x) is the function defined in (1). Πp,q(x, y) represents p’s expected profit of entering
the market under valuation x when q plays the entry cutoff y and all other firms play
according to x−p,q. The equilibrium condition for firm p holds whenever there exists x
and y such that Πp,q(x, y) = 0. Define b(x) to be the value of y such that Πp,q(x, b(x)) = 0;
i.e., b(x) is q’s best response to x. By Lemma B.2 in Appendix B, b(x) exists and is
uniquely defined for each x. To prove the Lemma we need to prove three claims.

Claim 1. There exists a unique equilibrium such that x = y.

Proof. Start by assuming that symmetric firms play symmetric cutoffs; i.e., x = y = z.
Define σ̂(z) = Πp,q(z, z) and observe that, by symmetry among firms, σ̂(z) = Πq,p(z, z).
Thus, if the equilibrium condition is satisfied by firm p, it is also satisfied by firm q. A
p,q-symmetric equilibrium exists whenever σ̂(z) = 0. We show that there exists a unique
value ẑ such that σ̂(ẑ) = 0. Following analogous steps to those in Lemma 1, it is easy
to show σ̂(vp) < 0 and σ̂(vp) > 0; so that, there exists ẑ such that σ̂(ẑ) = 0. Using
Lemma B.1, we can show that σ̂′(z) > 0. Hence, the value ẑ is unique. �

Claim 2. Under condition (4):21 0 > b′(x) > − f(x)
F (x)

F (b(x))
f(b(x)) .

Proof. Let x = (x, b(x),x−p,q). Using implicit differentiation and equations (B.1) and
(B.2) from Lemma B.1, we obtain

b′(x) = − dΠq,p(b(x), x)

dx

/
dΠq,p(b(x), x)

dy
= − f(x)

F (x)

∆q,p(x)

Π′q(x)

which is negative as the denominator and numerator are positive. To obtain the lower
bound for b′(x) simply use condition (4). �
Claim 3. An increase in x, which q best responds by playing b(x), leads firm p to strictly
increase its profit; i.e., Πp,q(x, b(x)) is increasing in x.

Proof. Differentiating Πp,q(x, b(x)) with respect to x, using the chain rule, and equations

21For ease in notation we drop sub-indexes from F when referring to firms p and q.
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(B.1) and (B.2) we obtain

dΠp,q

dx
=
∂Πp,q

∂x
+
db(x)

dx

∂Πp,q

∂y

= Π′q(x) +
db(x)

dx

f(b(x))

F (b(x))
∆p,q(x) > Π′2(x)− f(x)

F (x)
∆p,q(x) > 0,

where x = (x, b(x),x−p,q). The first inequality follows from Claim 2, whereas the second
from condition (4); which proves the claim. �

We prove Lemma A.1 by contradiction. Recall that x−p,q is fixed throughout the
proof. Suppose, without loss of generality, that there exists y < x constituting an
equilibrium. By Claim 1 there exists a unique value ẑ such that σ̂(ẑ) = 0. Suppose first
y < ẑ < x. Because

σ̂(ẑ) = Πp,q(ẑ, ẑ) = Πp,q(ẑ, b(ẑ)) = 0,

Claim 3 implies that we must have Πp,q(x, b(x) = y) > 0 as x > ẑ, which contradicts
(x, y) being an equilibrium. Suppose now y < x < ẑ. Lemma B.1 and Claim 1 imply

0 = σ̂(ẑ) > σ̂(x) = Πp,q(x, x) > Πp,q(x, y)

which contradicts (x, y) being an equilibrium. Analogous argument can be constructed
for the case ẑ < y < x, proving the Lemma. �

To prove the proposition observe: (i) By Lemma 1, there exists a unique value of
strength and, therefore, a unique symmetric equilibrium, which also corresponds to the
unique herculean equilibrium. (ii) If firms are not playing a symmetric equilibrium, then
there must exists two symmetric firms best-responding to each other but playing different
cutoffs, contradicting Lemma A.1. �

Proof of Theorem 1. Proof preliminaries: If s1 = s2 the herculean equilibrium
corresponds to the strength of the firms. Assume, without loss of generality, that s1 < s2.
Let x̂ = (x1, x1, . . . , x1, x2, x2, . . . , x2) be a vector of group-symmetric cutoff strategies.
Pick any firm i ∈ G1 and let Π̂1(x1, x2) = Πi(x̂) represent a firm in group one’s expected
profit of entering under valuation x1 when firms play group-symmetric strategies x1 and
x2.Define b1(x) to be the function that solves Π̂1(b1(x), x) = 0. Thus, b1(x) corresponds
to group one’s symmetric best response to group two playing the group-symmetric cutoff
x. By Lemma B.2, the value b1(x) exists and is unique; i.e., b1(x) is well defined.

Claim 4. b1(s1) = s1 and, under sufficient condition (7), 0 > b′1(x) > − f2(x)
F2(x)

F1(b1(x))
f1(b1(x)) .

Proof. By definition of strength we know Π̂1(s1, s1) = 0, therefore b1(s1) = s1. Using im-
plicit differentiation, the chain rule, that groups member are symmetric, and Lemma B.1

b′1(x) = −
dΠ̂1(b1(x),x)

dx2

dΠ̂1(b1(x),x)
dx1

= −
n2

∂Π1(x̂)
∂xj∈G2

∂Π1(x̂)
∂x1

+ (n1 − 1) ∂Π1(x̂)
∂xj∈G1

= −
n2

f2(x2)
F2(x2)∆1,2(x̂)

Π′1(x̂) + (n1 − 1) f1(x1)
F1(x1)∆1,1(x̂)

where ∆i,j(x), defined in equation (3), represents the profit loss of firm i when a firm
in group j enters the market with type xj . Because numerator and denominator are
positive, the equation above proves b′1(x) < 0 for all x. For the lower bound of b1(x)
observe that ∆1,1 > 0. Take a lower bound for b′1(x) by making ∆1,1 zero. The lower

35



bound b′1(x) > − f2(x)
F2(x)

F1(b1(x))
f1(b1(x)) follows by using sufficient condition (7). �

Existence of a herculean equilibrium: Define the function h2 : [s1,∞)→ R by h2(x) =
Π̂2(b1(x), x). This function is continuous and corresponds to the expected profit of a
firm in group 2 when it enters the market under valuation x, group two plays the group-
symmetric cutoff x, and group one plays their group-symmetric best response b1(x).
Define x2 to be the value satisfying h2(x2) = 0 and let x1 = b1(x2). The next two claims
prove that an herculean equilibrium (x1 < x2) exists, x1 < s1, and x2 > s2.

Claim 5. x2 ∈ (s1,∞) is necessary and sufficient for x1 < x2.

Proof. Because b1(x) is decreasing in x and b1(s1) = s1, we have that x1 = b1(x2) <
s1 < x2 if and only if x2 > s1. �
Claim 6. h2(s2) < 0 and there exists x̂ > s2 such that h2(x̂) > 0. Thus, by the
intermediate value theorem, the herculean equilibrium cutoff x2 ∈ (s2, x̂) exists.

Proof. Because group two is weak, and b1(x) is decreasing in x, we know that b1(s2) <
b1(s1) = s1 < s2 (where Claim 4 was used in the equality). Lemma B.1 and the definition
of strength implies h2(s2) = Π̂2 (b1(s2), s2) < Π̂2 (s2, s2) = 0, proving h2(s2) < 0. For
the second part of the claim, observe that, by Lemma B.1, Π̂2(x1, x2) is increasing in x;
then, Π̂2(b1(x), x) ≥ Π̂2(a, x) for all x. Take x̂ = v2 and observe that, by assumption
A4, Π̂2(a, x̂) > 0, proving the result. �

Uniqueness of equilibrium: Start by observing that, under condition (6), Lemma A.1
applies. Therefore, it is without loss to restrict the analysis to group-symmetric strate-
gies. To prove uniqueness, then, we need to show that no other herculean equilibrium
exists and that we can not have an equilibrium where x2 < x1.

Claim 7. There exists a unique herculean equilibrium.

Proof. To prove uniqueness within the herculean class, we shown h′2(x) > 0 so that h2(x)
single crosses zero from below. Recall x̂ = (b1(x), . . . , b1(x), x, . . . , x). Differentiating
h2(x), using the chain rule, and that firms play group-symmetric strategies, we obtain

h′2(x) = Π′2(x̂) + (n2 − 1)
∂Π′2(x̂)

∂x2
+ b′(x)n1

∂Π′2(x̂)

∂x1

> Π′2(x̂) + (n2 − 1)
f2(x)

F2(x)
∆2,2(x̂)− n1

f2(x)

F2(x)
∆2,1(x̂) > (n2 − 1)

f2(x)

F2(x)
∆2,2(x̂) > 0,

where the first inequality follows from using Lemma B.1 and the bound in Claim 4. The
second inequality follows from sufficient condition (7). Proving that the derivative is
positive and uniqueness within the herculean class. �
Claim 8. There is no group-symmetric equilibrium in which the strong group plays a
higher cutoff than the weak group.

Proof. We show that no non-herculean equilibrium—i.e., x1 > x2 but s1 < s2—can
exist. Define b2(x) to be the function that satisfies Π̂2(x, b2(x)) = 0; b2(x) corresponds to
group two’s best response to the cutoff of group one when x1 = x. As before, Lemma B.2
implies that b2(x) is well defined. Similarly, following the steps of Claim 4, it can be
shown: b2(s2) = s2, b′2(x) < 0 , and, under condition (7), b′2(x) is bounded below by

−f1(x)F2(b2(x))
F1(x)f2(b2(x)) .

Define the continuous function h1(x) = Π̂1(x, b2(x)) which corresponds to the ex-
pected profit of a firm in group one when entering the market under valuation x and its
opponents play the pair of group-symmetric strategies (x, b2(x)). We show that there is
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no x satisfying x1 = x > b2(x) = x2 and h1(x) = 0; i.e., no non-herculean equilibrium
exists. Start by observing that x > b2(x) if and only if x ∈ (s2,∞). In Lemma 1 we
showed the function σ1(s) = Π̂1(s, s) is strictly increasing in s. Then, by the definition
of strength and by firm two being weak (s1 < s2),

σ1(s1) = Π̂1(s1, s1) = 0 < σ1(s2) = Π̂1(s2, s2) = Π̂1(s2, b2(s2)) = h1(s2),

showing that h1(s2) > 0. Following analogous steps to those in Claim 7, which requires
using lower bound for b′2(x) and sufficient condition (7), we can show that h′1(x) > 0.
Then, because h1(s2) > 0 and h′1(x) > 0 for all x, h1(x) never crosses zero when x > s2

and the result follows. � �

Proof of Lemma 2. We start by showing the order in the context of quasi-symmetry
in profit. Let si be the strength of firm i, using (2) we obtain

0 = σi(si) =
∑
e∈Ei


 ∏
j∈Oi(e)

F (si)

∫ b

(si)j∈Ii(e)

πi
(
si, ve\i

)
φ(ve\i)d

ne−1ve\i


>
∑
e∈Ei


 ∏
j∈Oi(e)

F (si)

∫ b

(si)j∈Ii(e)

πi+1

(
si, ve\i

)
φ(ve\i)d

ne−1ve\i

 = σi+1(si),

where in the inequality we used πi(v,vne−1) > πi+1(v,vne−1). In the last equality, after
chancing the profit identity, we used Ei = Ei+1. Then, by Lemma 1, σi+1(s) is increasing
in s and si+1 > si.

For quasi-symmetry in distribution, rewriting (2) we obtain

0 = σi(si) =
∑

e∈Ei∩Ei+1


 ∏
j∈Oi(e)

Fj(si)

∫ b

(si)j∈Ii(e)

π
(
si, ve\i

)
fi+1(vi+1)φ(ve\i,i+1)dne−1ve\i


+

∑
e∈Ei\Ei+1


Fi+1(si)

∏
j∈Oi(e)\i+1

Fj(si)

∫ b

(si)j∈Ii(e)

π
(
si, ve\i

)
φ(ve\i)d

ne−1ve\i


>

∑
e∈Ei∩Ei+1


 ∏
j∈Oi(e)

Fj(si)

∫ b

(si)j∈Ii(e)

π
(
si, ve\i

)
fi(vi)φ(ve\i,i+1)dne−1ve\i


+

∑
e∈Ei\Ei+1


Fi(si)∏

j∈Oi(e)\i

Fj(si)

∫ b

(si)j∈Ii(e)

π
(
si, ve\i

)
φ(ve\i)d

ne−1ve\i

 = σi+1(si),

where the inequality uses two properties of FOSD. In the second term we used Fi(v) <

Fi+1(v). In the first term, we used
∫ b
si
h(v)fi(v)dv ≤

∫ b
si
h(v)fj(v)dv for any non-

increasing function h(x). Then, by Lemma 1, σi+1(s) is increasing in s and si+1 > si. �

Proof of Theorem 2. We present the proof when firms are quasi-symmetric in
distributions. The proof when firms are quasi-symmetric in profit is, basically, identical
but we can drop the subindices from the distribution functions. Using Lemma 2 we order
firms using stochastic dominance, from stronger (firm 1) to weakest (firm n).
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Existence of an herculean equilibrium. We prove existence by construction. For any
vector of cutoff strategies x and k ∈ {2, . . . , n} let xk = (xk, xk+1, . . . , xn). Construct as
follows:
� Firm 1: Define b11(x2) to be firm’s 1 best response to x2; i.e., b11(x2) satisfies

Π1(b11(x2),x2) = 0.

where Π1(x) is defined in (1). By Lemma B.2 in the Auxiliary Result section, b11(x2)
exists and (the best response) is unique.

� Firm 2: Let Π̂2(x2) = Π2(b11(x2),x2); that is, Π̂2(x2) represents firm’s 2 profit after
incorporating that firm 1 is best responding to x2. Define b22(x3) to be a solution to
Π̂2(b22(x3),x3) = 0. By Lemma B.2, b22(x3) exists. This function represents firm’s 2
best response when firms 1 and 2 are mutually best responding to each other and to
x3. For ease in notation, denote firm’s 1 best response after incorporating firm’s 2
best response as b21(x3) = b11(b22(x3),x3).22

Claim 9. For any x3, b22(x3) > b21(x3).

Proof. Fix x3 and find the value x̂ that satisfies x̂ = b11(x̂,x3). The value x̂ exists
by continuity of b11(x2) and by b11(x2) being bounded below and above by v1 and v1

respectively (by assumption A4). Then by Lemma B.3 in the auxiliary results section
we have Π2(x̂, x̂,x3) < Π1(x̂, x̂,x3) = 0. Define a pair of sequences {ym, zm}m∈N
satisfying: (i) y1 = z1 = x̂; (ii) ym+1 is the unique (by Lemma B.2) value that solves
Π2(zm, ym+1,x

3) = 0 (i.e., ym+1 is firm’s 2 best response to the cutoffs (zm,x
3)) and;

(iii) zm+1 = b11(ym+1,x
3). By definition, zm+1 solves Π1(zm+1, ym+1,x

3) = 0 and, by
Lemma B.2, the value zm+1 is also unique. We show that {ym}m∈N is increasing and
{zm}m∈N decreasing. Because Π2(x̂, x̂,x3) < 0 and Π2(x) being strictly increasing
in the 2nd dimension, y2 > y1 = x̂. Similarly, because (by Lemma B.1) Π1(x) is
also increasing in the 2nd dimension, we have Π1(z1, y2,x

3) > 0, which implies z2 =
b11(y2,x

3) < z1 = b11(y1,x
3). This, in turn, implies (by Lemma B.3)

Π2(z2, y2,x
3) < Π1(z2, y2,x

3) = 0;

which implies y3 > y2. By induction, the argument generalizes to an arbitrary step
m and the sequences {ym, zm}m∈N are monotonically increasing and decreasing re-
spectively. By assumption A4, {ym}m∈N is bounded above by v2 and {zm}m∈N is
bounded below by v1. Thus, the sequences converge to y∞ and z∞, respectively. By
convergence, we have: (i) z∞ = b11(y∞,x

3) and; (ii) Π2(z∞, y∞,x
3) = Π̂2(y∞,x

3) = 0
(i.e., y∞ = b22(x3)). Thus, b11(y∞,x

3) = b21(x3) and, as z∞ < x̂ < y∞, we have
b22(x3) > b21(x3). �

� Firm k ≤ n: Suppose we have shown the existence of b``(x
`+1) for every ` ∈ {1, . . . , k−

1} and have recursively defined b`j(x
`+1) = b`−1

j (b``(x
`+1),x`+1) for j ∈ {1, . . . , `}. Let

Π̂k(x
k) = Πk(b

k−1
1 (xk), . . . , bk−1

k−1(xk),xk) represent firm’s k profit after incorporating
that every firm j ∈ {1, . . . , k − 1} is mutually best responding to each other and to
xk. Define bkk(x

k+1) (observe that xk+1 is empty—i.e., a number, not a function—if

22More generally, for j < k the notation bkj (xk) represents firm’s j best response to xk after
incorporating the best response of every firm up to k.
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k = n) to be a solution to Π̂k(b
k
k(x

k+1),xk+1) = 0. By Lemma B.2, bkk(x
k) exists. This

function represents firm’s k best response to xk+1 when every firm j ∈ {1, . . . , k − 1}
is mutually best responding to each other and to xk.

Claim 10. For any xk+1, if firm k−1 is stronger than k the solution bkk(x
k+1) satisfies

bkk(x
k+1) > bkk−1(xk+1).

Proof. Fix any xk+1 and let bkk(x
k+1) be one of the solutions found in the previous step.

Then define the vector of cutoffs x =
(
bk1(xk+1), . . . , bkk(x

k+1),xk+1
)
. Throughout

the proof, the vector of strategies for every firm except firm k and k − 1, x−k,k−1,
remains fixed (i.e., they are numbers not functions). Define x̂ to be a value satisfying
x̂ = bk−1

k−1(x̂,xk+1). The value x̂ exists by continuity of bk−1
k−1(xk) and by bk−1

k−1(xk) being
bounded below and above by vk−1 and vk−1 respectively (by assumption A4). By
definition of best response x̂ satisfies Πk−1(x̂, x̂,x−k,k−1) = 0. Then, by Lemma B.3,
we have

Πk(x̂, x̂,x−k,k−1) < Πk−1(x̂, x̂,x−k,k−1) = 0.

Define a pair of sequences {ym, zm}m∈N satisfying: (i) y1 = z1 = x̂; (ii) ym+1 is
the unique (by Lemma B.2) value that solves Πk(zm, ym+1,x−k,k−1) = 0 (i.e., ym+1 is
firm’s k best response to the cutoffs (zm,x−k,k−1)) and; (iii) zm+1 = bk−1

k−1(ym+1,x
k+1).

By definition, zm+1 solves Πk−1(zm+1, ym+1,x−k,k−1) = 0 and, Lemma B.2, the value
zm+1 is also unique. We show that {ym}m∈N is increasing and {zm}m∈N decreasing.
Because Πk(x̂, x̂,x−k,k−1) < 0 and Πk(x) being strictly increasing in the kth dimen-
sion, y2 > y1 = x̂. Similarly, because (by Lemma B.1) Πk−1(x) is also increasing in the
kth dimension, we have Πk−1(x̂, y2,x−k,k−1) > 0, which implies z2 = bk−1

k−1(y2,x
k+1) <

bk−1
k−1(y1,x

k+1) = z1. This, in turn, implies (by Lemma B.3)

Πk(z2, y2,x−k,k−1) < Πk−1(z2, y2,x−k,k−1) = 0,

which, in turns, implies y3 > y2. By induction, the argument generalizes to an arbi-
trary step m and the sequences {ym, zm}m∈N are monotonically increasing and decreas-
ing respectively. By assumption A4, {ym}m∈N is bounded above by vk and {zm}m∈N
is bounded below by vk−1. Thus, the sequences converge to y∞ and z∞, respectively.

By convergence, we have: (i) z∞ = bk−1
k−1(y∞,x

k+1) and; (ii) Πk(z∞, y∞,x−k,k−1) =

Π̂k(y∞,x−k,k−1) = 0 (i.e., y∞ = bkk(x
k+1)). Thus, bk−1

k−1(y∞,x
k+1) = bkk−1(xk+1) and,

as z∞ < x̂ < y∞, we have bkk(x
k+1) > bkk−1(xk+1). �

Thus, we have constructed an equilibrium vector x = (bn1 (xn), . . . , bnn−1(xn), xn) with the
property that xi < xi+1; i.e., a Herculean equilibrium.

Uniqueness within the herculean-equilibrium class: We show that at each step k of the
previous construction there is a unique best response xk = bkk(x

k+1) to xk+1.
� Firm 1: The uniqueness of b11(x2) follows from Lemma B.2. The next result is needed

for subsequent steps.

Claim 11. Under condition (9), for every j ∈ {2, . . . , n}, db11(x2)/dxj satisfies:

0 >
db11(x2)

dxj
= − fj(xj)

Fj(xj)

∆1,j(x)

Π′1(x)
> − fj(xj)

Fj(xj)

F1(x1)

f1(x1)

1

n− 1
. (A.1)

Fj(xj)

fj(xj)

db11(x2)

dxj
<
Fq(xq)

fq(xq)

db11(x2)

dxq

1

n− 1
for q ∈ {2, . . . , j − 1} (A.2)
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Proof. Let x = (b11(x2),x2); using implicit differentiation and Lemma B.1 we obtain

db11(x2)

dxj
= −∂Π1(x)/∂xj

∂Π1(x)/∂x1
= − fj(xj)

Fj(xj)

∆1,j(x)

Π′1(x)
, (A.3)

which is negative as, ∆1,j(x) > 0 and Π1,j(x) > 0 for every x. The lower bound
in equation (A.1) follows from applying condition (9) into equation (A.3). Property
(A.2) follows from observing

Fq(xq)

fq(xq)

db11(x2)

dxq

1

n− 1
− Fj(xj)

fj(xj)

db11(x2)

dxj
=

1

Π′1(x)

(
∆1,j(x)− ∆1,q(x)

n− 1

)
> 0,

where the equality follows from substituting in equation (A.3), and the inequality
follows from Lemma B.4 and the fact that q ∈ {2, . . . , j − 1}. �

� Firm 2: Fix x3 and let x = (b11(x2),x2), we need to show that the best response b22(x3)
is unique. We do this by showing that Π̂2(x2) = Π2(b11(x2),x2) is strictly increasing in
x2; so that, Π̂2(x2,x

3) single crosses zero and there is a unique value b22(x3) satisfying
Π̂2(b22(x3),x3) = 0. Using the chain rule and equation (B.2)

Π̂′2(x2) = Π′2(x) +
db11(x2)

dx2

dΠ2

dx1
= Π′2(x) +

db11(x2)

dx2

f1(b11(x2))

F1(b11(x2))
∆2,1(x)

> Π′2(x)− f2(x2)

F2(x2)

∆2,1(x)

n− 1
> 0, (A.4)

where in the first inequality follows from the lower bound in equation (A.1) and the
second inequality follows from sufficient condition (9). This proves uniqueness of the
best response. The next result is needed for the induction argument in the proof.

Claim 12. Let b21(x3) = b11(b22(x3),x3). Under condition (9), for every j ∈ {3, . . . , n}
and ` ∈ {1, 2}, db2` (x3)/dxj satisfies:

db22(x3)

dxj
= −

fj(xj)
Fj(xj)∆2,j(x) +

db11(x2)
dxj

f1(x1)
F1(x1)∆2,1(x)

Π′2(x) +
db11(x2)
dx2

f1(x1)
F1(x1)∆2,1(x)

(A.5)

0 >
db2` (x

3)

dxj
> − fj(xj)

Fj(xj)

F`(x`)

f`(x`)

1

n− 1
and, (A.6)

Fj(xj)

fj(xj)

db22(x3)

dxj
<
Fq(xq)

fq(xq)

db22(x3)

dxq

1

n− 1
for q ∈ {3, . . . , j − 1} (A.7)

Proof. To show equation (A.5) use implicit differentiation, the chain rule, and equation
(B.2) to obtain

db22(x3)

dxj
= −

dΠ̂2
dxj

dΠ̂2
dx2

= −
dΠ2
dxj

+
db11(x2)
dxj

dΠ2
dx1

Π′2(x) +
db11(x2)
dx2

dΠ2
dx1

= −
fj(xj)
Fj(xj)∆2,j(x) +

db11(x2)
dxj

f1(x1)
F1(x1)∆2,1(x)

Π′2(x) +
db11(x2)
dx2

f1(x1)
F1(x1)∆2,1(x)

.

Observe, by equation (A.4), that the denominator is positive. Using lower bound
(A.1) and Lemma B.4 we can see that the numerator is also positive, implying that
the derivative is negative; which proves the upper bound of (A.6) when ` = 2. For
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the lower bound of equation (A.6) when ` = 2, using equation (A.5), observe that
equation (A.6) holds if and only if the following expression is positive:

fj(xj)

Fj(xj)

[(
F2(x2)

f2(x2)

Π′2(x)

n− 1
−∆2,j(x)

)
+

f1(x1)

F1(x1)

(
F2(x2)

f2(x2)

db11(x2)

dx2

1

n− 1
− Fj(xj)

fj(xj)

db11(x2)

dxj

)
∆2,1(x)

]
.

The first round bracket is positive by sufficient condition (9). The second round
bracket is positive by property (A.2). Thus, the expression is indeed positive and the
lower bound in equation (A.6) holds.

We now prove the bounds of (A.6) when ` = 1. Using b21(x3) = b11(b22(x3),x3), observe

db21(x3)

dxj
=
db11(x2)

dxj
+
db11(x2)

dx2

db22(x3)

dxj
. (A.8)

Using (A.3) to substitute for db11(x2)/dx` with ` ∈ {2, j} and using the lower bound
in equation (A.6) when ` = 2, we obtain the following upper bound:

db21(x3)

dxj
<
fj(xj)

Fj(xj)

1

Π′1(x)

[
∆1,2(x)

n− 1
−∆1,j(x)

]
< 0,

the inequality follows from Lemma B.4; proving the upper bound. The lower bound
in equation (A.6) follows from using equation (A.8) and observing

db21(x3)

dxj
>
db11(x2)

dxj
> −fj(xj)

F (xj)

F1(x1)

f1(x1)

1

n− 1
,

where the inequalities follow from db22(x3)/dxj · db11(x2)/dx2 > 0 and equation (A.1),
respectively.

Finally, to prove property (A.7) use equation (A.5) to write

Fq(xq)

fq(xq)

db22(x3)

dxq

1

n− 1
− Fj(xj)

fj(xj)

db22(x3)

dxj
=

1

D2

[
∆2,j(x)− ∆2,q(x)

n− 1
+
f1(x1)

F1(x1)

(
Fj(xj)

fj(xj)

db11(x2)

dxj
− Fq(xq)

fq(xq)

db11(x2)

dxq

1

n− 1

)
∆2,1(x)

]
,

where D2 = Π′2(x) +
db11(x2)
dx2

f1(x1)
F1(x1)∆2,1(x) > 0. We show that a lower bound of this

expression is positive. Taking −db11(x2)/dxq > 0 to zero, we obtain

1

D2

[
∆2,j(x)− ∆2,q(x)

n− 1
+
f1(x1)

F1(x1)

Fj(xj)

fj(xj)

db11(x2)

dxj
∆2,1(x)

]
>

1

D2

[
∆2,j(x)− ∆2,q(x)

n− 1
− ∆2,1(x)

n− 1

]
>

1

D2

[
∆2,j(x)− 2∆2,q(x)

n− 1

]
> 0.

The first inequality follows from using lower bound (A.1). The other two inequalities
follow from Lemma B.4 and the fact that q ∈ {2, . . . , j − 1}. �
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� Firm k ∈ {3, . . . , n}: Suppose that, for every p ∈ {1, . . . , k−1} and j ∈ {p+1, . . . , n},
we have proven that: bpp(xp+1) is unique;

0 >
dbpp(xk)

dxj
= −

fj(xj)
Fj(xj)∆p,j(x) +

∑p−1
`=1

dbp−1
` (xp)

dxj

f`(x`)
F`(x`)

∆p,`(x)

Π′p(x) +
∑p−1

`=1
dbp−1

` (xp)

dxp

f`(x`)
F`(x`)

∆p,`(x)
; (A.9)

0 >
dbpq(xk)

dxj
> − fj(xj)

Fj(xj)

Fq(xq)

fq(xq)

1

n− 1
for q ∈ {1, . . . , p} and; (A.10)

Fj(xj)

fj(xj)

dbpp(xp+1)

dxj
<
Fq(xq)

fq(xq)

dbpp(xp+1)

dxq

1

n− 1
for q ∈ {p+ 1, . . . , j − 1}. (A.11)

Fix xk+1 and let x = (bk−1
1 (xk), . . . , bk−1

k−1(xk),xk). We show that the best response

bkk(x
k+1) is unique by showing that Π̂k(x

k) is strictly increasing in xk. Differentiating,

Π̂′k(x
k) = Π′k(x) +

k−1∑
`=1

dbk−1
` (xk)

dxk

f`(x`)

F`(x`)
∆k,`(x)

> Π′k(x)− fk(xk)

Fk(xk)

k−1∑
`=1

∆k,`(x)

n− 1
> Π′k(x)− fk(xk)

Fk(xk)

(k − 1)∆k,k−1(x)

n− 1
> 0,

where the inequalities follow from lower bound (A.10), Lemma B.4 and, sufficient
condition (9), respectively. This proves uniqueness of the best response. The next
result completes the induction argument.

Claim 13. Under condition (9), for every j ∈ {k + 1, . . . ,m} and p ∈ {1, . . . , k},
dbkp(x

k+1)/dxj satisfies

dbkk(x
k+1)

dxj
= −

fj(xj)
Fj(xj)∆k,j(x) +

∑k−1
`=1

dbk−1
` (xk)

dxj

f`(x`)
F`(x`)

∆k,`(x)

Π′k(x) +
∑k−1

`=1
dbk−1

` (xk)

dxk

f`(x`)
F`(x`)

∆k,`(x)
(A.12)

0 >
dbkp(x

k+1)

dxj
> − fj(xj)

Fj(xj)

Fp(xp)

fp(xp)

1

n− 1
and, (A.13)

Fj(xj)

fj(xj)

dbkk(x
k+1)

dxj
<
Fq(xq)

fq(xq)

dbkk(x
k+1)

dxq

1

n− 1
for q ∈ {k + 1, . . . , j − 1} (A.14)

Proof. To show equation (A.12) use the implicit differentiation, the chain rule, and
equation (B.2) to obtain

dbkk(x
k+1)

dxj
= −∂Π̂k(x)/∂xj

∂Π̂k(x)/∂xk
= −

dΠk(x)
dxj

+
∑k−1

`=1
dbk−1

` (xk)

dxj

dΠk(x)
dx`

Π′k(x) +
∑k−1

`=1
dbk−1

` (xk)

dxk

dΠk(x)
dx`

.

= −
fj(xj)
Fj(xj)∆k,j(x) +

∑k−1
`=1

dbk−1
` (xk)

dxj

f`(x`)
F`(x`)

∆k,`(x)

Π′k(x) +
∑k−1

`=1
dbk−1

` (xk)

dxk

f`(x`)
F`(x`)

∆k,`(x)
.

We already showed that the denominator is positive. We show that a lower bound
of the numerator is positive, which immediately implies the upper bound in equation
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(A.13) for the case when p = k. Using equation (A.10) a lower bound for the numerator
is

fj(xj)

Fj(xj)
∆k,j(x)− fj(xj)

Fj(xj)

k−1∑
`=1

∆k,`(x)

n− 1
>
fj(xj)

Fj(xj)

[
∆k,j(x)−

(k − 1)∆k,k−1(x)

n− 1

]
> 0,

where both inequalities follows from Lemma B.4. Thus, the numerator is positive.

For the lower bound in equation (A.13) in the case p = k, replace (A.12) into (A.13)
and observe that the inequality holds if and only if the following expression is positive

fj(xj)

Fj(xj)

[(
Fk(xk)

fk(xk)

Π′k(x)

n− 1
−∆k,j(x)

)
+

k−1∑
`=1

f`(x`)

F`(x`)

(
Fk(xk)

fk(xk)

dbk−1
` (xk)

dxk

1

n− 1
− Fj(xj)

fj(xj)

dbk−1
` (xk)

dxj

)
∆k,`(x)

]
. (A.15)

The first term in round brackets is positive due to sufficient condition (9). We now
work with the summation and show that it is also positive. Before doing this, observe
that, by definition, for every ` ∈ {1, . . . , k − 1}

bk` (x
k+1) = b``(b

k
`+1(xk+1), bk`+2(xk+1), . . . , bkk(x

k+1),xk+1).

Then, for any j ∈ {k + 1, . . . ,m}

dbk` (x
k+1)

dxj
=
db``(x

`+1)

dxj
+

k∑
q=`+1

db``(x
`+1)

dxq

dbkq (x
k+1)

dxj
. (A.16)

For a given ` in the summation in equation (A.15), we use equation (A.16) to write
the round bracket as(

Fk(xk)

fk(xk)

db``(x
`+1)

dxk

1

n− 1
− Fj(xj)

fj(xj)

db``(x
`+1)

dxj

)
+

k−1∑
q=`+1

db``(x
`+1)

dxq

(
Fk(xk)

fk(xk)

dbk−1
q (xk)

dxk

1

n− 1
− Fj(xj)

fj(xj)

dbk−1
q (xk)

dxj

)
. (A.17)

Substitute equation (A.17) when ` = 1 into the summation in equation (A.15) to
obtain

k−1∑
`=2

(
f`(x`)

F`(x`)
∆k,`(x) +

db11(x2)

dx2
a1

)(
Fk(xk)

fk(xk)

dbk−1
` (xk)

dxk

1

n− 1
− Fj(xj)

fj(xj)

dbk−1
` (xk)

dxj

)

+ a1

(
Fk(xk)

fk(xk)

db11(xk)

dxk

1

n− 1
− Fj(xj)

fj(xj)

db11(xk)

dxj

)
, (A.18)

where a1 = ∆k,1(x) f1(x1)
F1(x1) > 0. Then, substituting (in increasing order) into equation

(A.18) the expression (A.17) for ` = 2, ` = 3 until ` = k − 1, we obtain that the
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summation in equation (A.15) is equal to

k−1∑
`=1

a`

(
Fk(xk)

fk(xk)

db``(x
`+1)

dxk

1

n− 1
− Fj(xj)

fj(xj)

db``(x
`+1)

dxj

)
> 0, (A.19)

where

a` =
f`(x`)

F`(x`)
∆k,`(x) +

`−1∑
p=1

dbpp(xp+1)

dx`
ap (A.20)

is defined recursively. The parenthesis in equation (A.19) is positive by equation
(A.11). We show that each a` is positive, which proves the lower bound in equation
(A.13) when p = k. By induction, suppose that for every p ∈ {1, . . . , ` − 1} we
have shown that (fp(xp)/Fp(xp))∆k,p(x) ≤ ap > 0 (we already showed this for a1).
We need to show that the same inequalities hold for equation (A.20). First, because
dbpp(xp+1)/dx` < 0 and ap > 0 (by induction hypothesis) it is easy to see that a` <
(f`(x`)/F`(x`))∆k,`(x). Using the lower bound in equation (A.10) and the upper
bound for ap we obtain the following lower bound for equation (A.20)

al >
f`(x`)

F`(x`)

∆k,`(x)−
`−1∑
p=1

∆k,p(x)

n− 1

 > f`(x`)

F`(x`)

[
1− (`− 1)

n− 1

]
∆k,`(x) > 0,

where the second inequality follows from Lemma B.4; which proves the result.

To prove the upper bound in equation (A.13) for p ∈ {1, . . . , k − 1} we proceed by
induction downwards. Suppose that for every firm ` ∈ {p+ 1, . . . , k} we have proven

0 >
dbk` (x

k+1)

dxj
> − fj(xj)

Fj(xj)

F`(x`)

f`(x`)

1

n− 1
(A.21)

we prove that equation (A.13) holds for p. Observing that, in (A.16), dbpp(xp+1)/dx` <
0 we can construct an upper bound for dbkp(x

k+1)/dxj using the induction hypothesis
(A.21)

dbkp(x
k+1)

dxj
<
dbpp(xp+1)

dxj
−

k∑
`=p+1

dbpp(xp+1)

dx`

fj(xj)

Fj(xj)

F`(x`)

f`(x`)

1

n− 1

Using equation (A.9), the upper bound for dbkp(x
k+1)/dxj is equal to

1

Dp

fj(xj)

Fj(xj)

k∑
`=p+1

 f`(x`)

F`(x`)
∆p,`(x) +

p−1∑
q=1

dbp−1
q (xp)

dx`

fq(xq)

Fq(xq)
∆p,q(x)

 F`(x`)

f`(x`)

1

n− 1

− 1

Dp

fj(xj)

Fj(xj)

∆p,j(x) +
Fj(xj)

fj(xj)

p−1∑
q=1

dbp−1
q (xp)

dxj

Fq(xq)

fq(xq)
∆p,q(x)


where Dp = Π′p(x) +

∑p−1
q=1

dbp−1
q (xp)
dxp

fq(xq)
Fq(xq)∆p,q(x) > 0. Taking dbp−1

q (xp)/dx` < 0

equal to zero and dbp−1
q (xp)/dxj < 0 to the lower bound in equation (A.10), we build

the following upper bound for the previous expression (and omitting Dp, as it does
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not affect the sign)

fj(xj)

Fj(xj)

 k∑
`=p+1

∆p,`(x)

n− 1
+

p−1∑
q=1

∆p,q(x)

n− 1
−∆p,j(x)

 < fj(xj)

Fj(xj)

[
k − 1

n− 1
− 1

]
∆p,j(x) ≤ 0.

The inequality follows from equation Lemma B.4; proving dbkp(x
k+1)/dxj < 0.

The lower bound for dbkp(x
k+1)/dxj follows from equation (A.16) and observing

dbkp(x
k+1)

dxj
>
dbpp(xp+1)

dxj
> −fj(xj)

F (xj)

Fp(xp)

fp(xp)

1

n− 1

where the first inequality follows from (dbpp(xk+1)/dx`) · (dbk` (xk+1)/dxj) > 0 for every
`, and the second from the lower bound in equation (A.10).

Finally, we prove equation (A.14) using equation (A.12) to write

Fq(xq)

fq(xq)

dbkk(x
k+1)

dxq

1

n− 1
− Fj(xj)

fj(xj)

dbkk(x
k+1)

dxj
=

1

Dk

[
∆k,j(x)−

∆k,q(x)

n− 1
+

k−1∑
`=1

f`(x`)

F`(x`)

(
Fj(xj)

fj(xj)

dbk−1
` (xk)

dxj
− Fq(xq)

fq(xq)

dbk−1
` (xk)

dxq

1

n− 1

)
∆k,`(x)

]
,

where Dk = Π′k(x) +
∑k−1

`=1
dbk−1

` (xk)

dxk

f`(x`)
F`(x`)

∆k,`(x) > 0. We show that a lower bound of

this expression is positive. Taking −dbk−1
` (xk)/dxq > 0 to zero and dbk−1

` (xk)/dxj < 0
to the lower bound in equation (A.10), we obtain

1

Dk

[
∆k,j(x)−

∆k,q(x)

n− 1
−
k−1∑
`=1

∆k,`(x)

n− 1

]
>

1

D

[
∆k,j(x)−

k∆k,q(x)

n− 1

]
> 0.

The inequalities follow from Lemma B.4 and the fact that q ∈ {k, . . . , j − 1}. �
Because at each step, best responses are unique and at k = n the firm has only one best
response when every firm k < n is best responding to xn and to each other, there is a
unique Herculean equilibrium within the herculean class.

No non-herculean equilibria exists: By contradiction. Suppose x represents a non-
herculean equilibrium. Order firms from smallest cutoff x1 to largest, xn. Let p be
the first instance (smallest cutoff) that a strength reversal occurs. That is, xp < xp+1

but sp > sp+1. Because every firm k ∈ {1, . . . , p} is ordered by strength, they sat-
isfy conditions (A.12), (A.10), and (A.11). We show that xp+1 cannot lie above xp
(i.e, a contradiction). Fix x and let x̂ be the value that satisfies bp(x̂,x−p,p+1) = x̂,
where bp(x−p) is firm’s p best response to x−p. This best response exists (and is
unique) by Lemma B.2. The value x̂ exists because bp(x−p) is continuously decreas-
ing in xp+1. In addition, following analogous steps to those in Claim 11, we can show

that dbp(x−p)/dxp+1 > − fp+1(xp+1)
Fp+1(xp+1)

Fp(xp)
fp(xp)

1
n−1 . Then, by Lemma B.3, Πp(x̂, x̂,x−p,p+1) =

0 < Πp+1(x̂, x̂,x−p,p+1). Also, letting x̂ = (bp(x−p),x−p) observe that

dΠp+1(x̂)

dxp+1
= Π′p+1(x̂) +

dbp(x−p)

dxp+1

∂Πp+1(x̂)

∂xp
> Π′p+1(x̂)− fp+1(xp+1)

Fp+1(xp+1)

∆p+1,p(x̂)

n− 1
> 0
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Thus, Πp+1(x̂) is strictly increasing in xp+1 which implies that Πp+1(x̂) > 0 for every
xp+1 ≥ x̂, which implies that no xp+1 > bp(x−p) = xp exists. �

B Auxiliary Results

Lemma B.1. Πi(x) is strictly increasing in every dimension of x.

Proof of Lemma B.1. Start with the derivative of Πi with respect to i, then

dΠi

dxi
≡ Π′i(x) =

∑
e∈Ei


 ∏
j∈Oi(e)

Fj(xj)

∫ ∞
{xj}j∈Ii(e)

π′i
(
xi, ve\i

)
φ(ve\i)d

ne−1ve\i

 > 0, (B.1)

which is positive as, by assumption A4, there is a positive probability that firm i is the
sole entrant. For the derivative of Πi with respect to xj , pick a market structure e such
that j ∈ Oi(e). Conditional on e, the derivative of Πi with respect to xj is equal to

fj(xj)

 ∏
k∈Oi(e)\j

Fk(xk)

∫ ∞
{xk}k∈Ii(e)

πi
(
xi, ve\i

)
φ(ve\i)d

ne−1ve\i.

Now take market structure e from above and, using Leibnitz differentiation, compute
the derivative of Πi with respect to xj conditional on market structure e ∪ j; i.e., entry
decisions by every firm remain the same as in e except that of firm j, which now enters

−fj(xj)

 ∏
k∈Oi(e)\j

Fk(xk)

∫ ∞
{xk}k∈Ii(e)

πi
(
xi, xj , ve\i

)
φ(ve\i)d

ne−1ve\i,

where we used Oi(e)\j = Oi(e∪j) and Ii(e) = Ii(e∪j)\j. Observe that both expressions
from above only differ in sign and in the profit function that is integrated over. Summing
both equations delivers an expression where the integral is over δi,j(xi, xj , ve\i) ≥ 0, which
is defined in equation (3). Summing across every market structure we obtain

dΠi

dxj
=
fj(xj)

Fj(xj)

∑
e∈Ei\Ej


 ∏
k∈Oi(e)

Fk(xk)

∫ ∞
(xk)k∈Ii(e)

δi,j
(
xi, xj , ve\i

)
φ(ve\i)d

ne−1ve\i

 .

=
fj(xj)

Fj(xj)
∆i,j(x) > 0 (B.2)

Thus, the derivative is positive. �

Lemma B.2. Let Πi be defined by (1). Let A and B be disjoint sets of k and r firms, such
that i ∈ A. Define f : [a, b]k+r → [a, b]n−k−r to be any continuous function and let xB
be any vector of cutoff strategies for firm in B. Then, there exist a value x̂ such that the
symmetric k-dimensional vector x̂A = (x̂)i∈A satisfies Πi(x̂A, f(x̂A,xB),xB) = 0. When
the function f is constant—i.e., when x−A = (f(x̂A,xB),xB) is equal to an exogenously
given vector—the value of x̂ is unique.

Proof. Fix xB, because f is continuous, the function Πi (xA, f(xA,xB),xB) is con-
tinuous in the input value x of the symmetric vector xA. Let vA = (vi)i∈A and
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vA = (vi)i∈A. Observe that assumptions A4 A2 jointly imply Πi (vA, f(vA,xB),xB) ≤
πi(vi) < 0. Similarly, assumption A4 and Lemma B.1 imply, Πi (vA, f(vA,xB),xB) ≥
Πi (vi, a−i) > 0. Then, by the Intermediate Value Theorem, there exist x̂ ∈ (vi, v̄i) such
that Πi (x̂A, f(x̂A,xB),xB) = 0. For uniqueness when f is constant, by the chain rule,
dΠi/dxi =

∑
k∈A ∂Πi/∂xk > 0 where the inequality follows from Lemma B.1. Therefore

Πi (xA, f(xA,xB),xB), as a function of the value x for the symmetric vector xA, crosses
zero once. �

Lemma B.3. Suppose firms are quasi-symmetric. Order them by strength, then for any
firm i < j and vector of strategies for the other firms x−i,j, we have

Πi(y, y,x−i,j) > Πj(y, y,x−i,j).

Proof. If firms are quasi-symmetric in profit, the inequality follows from definition.
Recall φ(ve) =

∏
j∈I(e) fj(vj) and let φ−k(ve) =

∏
j∈I(e)\k fj(vj). For games quasi-

symmetric in distribution, observe

Πi(y, y,x−i,j) =
∑

e∈Ei\Ej


Fj(y)

∏
k∈Oi(e)\j

Fk(xk)

∫ b

(xk)k∈Ii(e)

πi
(
xi, ve\i

)
φ(ve\i)d

ne−1ve\i

+

∑
e∈Ei∩Ej


 ∏
k∈Oi(e)

Fk(xk)

∫ b

y

∫ b

(xk)k∈Ii(e)\j

πi
(
xi, ve\i

)
φ−k(ve\i)fj(v)dne−1ve\i


>

∑
e∈Ei\Ej


Fi(y)

∏
k∈Oi(e)\j

Fk(xk)

∫ b

(xk)k∈Ii(e)

πi
(
xi, ve\i

)
φ(ve\i)d

ne−1ve\i

+

∑
e∈Ei∩Ej


 ∏
k∈Oi(e)

Fk(xk)

∫ b

y

∫ b

(xk)k∈Ii(e)\j

πi
(
xi, ve\i

)
φ−k(ve\i)fi(v)dne−1ve\i


= Πj(y, y,x−i,j)

where the inequality uses two properties of FOSD. The first term uses that Fi(x) ≤ Fj(x)

for all x. The second term uses that
∫ b
y h(x)fi(x)dx ≤

∫ b
y h(x)fj(x)dx for any non-

increasing function h(x). �

Lemma B.4. Let firm k be stronger than firm k. Suppose the firms play cutoffs xk < xj;
then, for any firm i, ∆i,j(x) ≥ ∆i,k(x) if: (i) The firms are quasi-symmetric in profits or
(ii) The firms are quasi-symmetric in distribution and satisfy the profit loss only depends
on the number of entrants.

Proof. Start by observing that, in the expression for ∆i,j(x) (see equation (3)), the sum
over market structures can be divided into two disjoints sets: e ∈ Ei \ (Ej ∩ Ek) and
e ∈ (Ei ∩ Ek) \ Ej . Using these sets subtract ∆i,j(x)−∆i,k(x) to obtain

∑
e∈Ei\(Ej∩Ek)


 ∏
`∈Oi(e)

F`(x`)

∫ ∞
(x`)`∈Ii(e)

(
δi(xi, xj , ve\i)− δi(xi, xk, ve\i)

)
φ(ve\i)d

ne−1ve\i


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+
∑

e∈(Ei∩Ek)\Ej


Fj(xj)∏

`∈Oi(e)\j

F`(x`)

∫ ∞
xk

∫ ∞
(x`)`∈Ii(e)\k

δi(xi, xj , ve\i)φ−k(ve\i)fk(vk)d
ne−1ve\i


−
∑

e∈(Ei∩Ej)\Ek


Fk(xk)∏

`∈Oi(e)\k

F`(x`)

∫ ∞
xj

∫ ∞
(x`)`∈Ii(e)\j

δi(xi, xk, ve\i)φ−j(ve\i)fj(vj)d
ne−1ve\i


(B.3)

where, by profits being anonymous, we dropped the second sub index from δi(xi, xj , ve\i)
and φ−k(ve) =

∏
j∈I(e)\k fj(vj). Observe that the first term is non-negative as

δi(xi, xj , ve\i)− δi(xi, xk, ve\i) = πi(xi, xk, ve\i)− πi(xi, xj , ve\i) ≥ 0

where the last inequality follow from assumption A2 and xk < xj . We now show that
the subtraction of the second and third terms in equation (B.3) is non-negative. Observe
that for each market structure e ∈ (Ei ∩ Ek) \ Ej , firm k participates but firm j does
not. We construct a lower bound for the second term in equation (B.3) by reversing the
participation roles of k and j in e. We then show that the lower bound is equal to the
third term. Thus, the subtraction is non-negative.

When the game is quasi-symmetric in profit, we can drop the sub-index from the
distributions of type. Bounding the second term

∑
e∈(Ei∩Ek)\Ej


F (xj)

∏
`∈Oi(e)\j

F (x`)

∫ ∞
xk

∫ ∞
(x`)`∈Ii(e)\k

δi(xi, xj , ve\i)φ−k(ve\i)f(vk)d
ne−1ve\i


>

∑
e∈(Ei∩Ek)\Ej


F (xk)

∏
`∈Oi(e)\j

F (x`)

∫ ∞
xj

∫ ∞
(x`)`∈Ii(e)\k

δi(xi, xk, ve\i)φ−k(ve\i)f(vk)d
ne−1ve\i


=

∑
e∈(Ei∩Ej)\Ek


F (xk)

∏
`∈Oi(e)\k

F (x`)

∫ ∞
xj

∫ ∞
(x`)`∈Ii(e)\j

δi(xi, xk, ve\i)φ−k(ve\i)f(vk)d
ne−1ve\i


where in the inequality we used xj > xk in the probability of firm j being out of the
market and in the domain of the integration over k’s types, δi(xi, xj , ve\i) ≥ 0 (so that
integrating over a smaller domain decreases the value of the integral) and δi(xi, s, ve\i)
being increasing in s (by assumption A2). The equality follows by re-arranging indexes,
noticing that we simply inverted the roles of firm k and j; i.e., the lower bound above is
identical to the third term in equation (B.3), proving the result.

When the game is quasi-symmetric in distribution and the profit loss only depends
on the number of entrants, the second term becomes

∑
e∈(Ei∩Ek)\Ej


Fj(xj)∏

`∈Oi(e)\j

F`(x`)

(1− Fk(xk))
∏

`∈Ii(e)\k

(1− F`(x`))

 δi(xi, ne)


>

∑
e∈(Ei∩Ek)\Ej


Fk(xk)∏

`∈Oi(e)\j

F`(x`)

(1− Fj(xj))
∏

`∈Ii(e)\k

(1− F`(x`))

 δi(xi, ne)


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where the first inequality uses stochastic dominance and the fact that xk < xj (so that
Fj(xj) ≥ Fj(xk) ≥ Fk(xk)). The equality follows by re-arranging indexes, noticing that
the lower bound above is identical to the third term in equation (B.3), proving the
result. �

49


	Equilibrium Uniqueness in Entry Games with Private Information
	Recommended Citation




