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Abstract

A buyer and seller bargain over a good’s price in continuous time. The buyer
has a private value and positive outside option. Additionally, bargainers can be
either rational or committed to some fixed price. If the sets of buyer values and
commitment types are rich and the probability of commitment vanishes, outcomes
are partially consistent with the Coase conjecture: the seller chooses a price below
the maximum of the lowest outside option and half the lowest value; the buyer
immediately accepts or exits, taking her outside option. There is minimal delay,
but outcomes are inefficient when the buyer exits.
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1 Introduction

What effect do outside options have on bargaining with incomplete information? The
existing literature suggests a surprisingly dramatic impact. Most notably, consider an
infinite horizon game where in every period the seller proposes a price for a good to
a buyer with private information about her value v ∈ [v, v]. If there are no outside
options, then the Coase conjecture holds: when players are sufficiently patient (offers
are frequent) the seller proposes a price of v almost immediately if there is “gap”, v > 0,
or buyer strategies are stationary (Fudenberg and Tirole (1985), Gul et al. (1986)). The
reason is that if today’s offer p > v is rejected, the seller will update her beliefs and
cut her price tomorrow, but in which case even a high value buyer would not accept
today unless the price is already low p ≈ v. However, if the buyer can get a strictly
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positive outside option w ∈ [w,w] by exiting the market at the end of each period, then
Board and Pycia (2014) (henceforth BP) show the seller acts as if she had commitment:
she can choose any price in the first period, and the buyer either accepts it or exits
the market.1 The logic is that if bargaining continues into period 2, the seller will never
charge a price below the lowest possible net value of any buyer type that remains, giving
that type a continuation payoff below her outside option, and so she would prefer to exit
in period 1 instead to avoid discounting (net values are v − w).

BP’s result has a paradoxical implication. If the buyer knew her type, and could take her
outside option before the start of bargaining (period 0), the market would completely
unravel. No buyer would ever negotiate, as the lowest net value type who did would
get a discounted continuation payoff below her outside option.2,3 We might avoid that
paradoxical implication if the buyer could sometimes make counteroffers, allowing her
lowest net value type, to receive a continuation payoff larger than her outside option.4

However, offers by the informed party introduces signalling. Off-path buyer offers can
then be “punished with beliefs”, interpreted as coming from the highest net value buyer,
v − w, and so support a wide variety of on path play.5,6

One way to mitigate the power of belief punishments is to introduce a small probabil-
ity of commitment into the model, types which always propose some fixed price and
never back down. Abreu and Gul (2000) showed that such commitment types imply
an essentially unique equilibrium despite two sided incomplete information in a dollar
division bargaining problem, independent of the fine details of the bargaining protocol,
when offers are frequent.

In this paper, I introduce commitment types into a model where a seller and buyer se-
quentially announce prices, before playing a continuous time concession game. Players
are equally patient. A rational buyer has private information about her value and pos-
itive outside option. For each possible buyer value v there is some probability of the

1Chang (2021) shows that if outside options are dispersed and positively related to values, then the
seller’s optimal dynamic mechanism may feature declining prices over time.

2Similar unravelling can arise in auctions when there must be at least two bids and bids incur a sunk
participation cost; Lauermanny and Wolinsky (2021) investigate some of these issues.

3BP partially address this critique, by suggesting buyers only learn their values after bargaining starts.
4Certainly, if the buyer made all offers instead, she could get the good for free. An alternative as-

sumption to stop unravelling is that buyers don’t know their value for good until bargaining starts.
5For similar reasons there are multiple equilibria in BP if the buyer sometimes has no outside option.

In some the seller chooses any ultimatum and the buyer is believed to have a high outside option if she
remains in period 2. Others have a Coasean structure, with low and declining prices.

6Chatterjee et al. (2022) get clear predictions in stationary equilibria of a coalitional bargaining game
where a veto player has a privately known outside option and can sometimes make offers. The outside
option is sufficiently large that the veto player either accepts the first offer she receives, or exits. Again,
if she could exit before the start of bargaining, she always would.
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lowest outside option, w > 0.

Equilibria have a similar structure to existing reputational models. Rational players
always imitate commitment types’ prices, however, if the seller’s price is unacceptable
to a rational buyer, v − ps < w, she only imitates the lowest such price p > 0. After
demand announcements, concession and exit behavior ensure the rational seller and the
buyer with the highest remaining value are indifferent between conceding at one instant
or the next (the skimming property holds: lower value buyers concede later if at all).
Eventually both players reach a probability 1 reputation for commitment at the same
time T ∗ < ∞.

My main result shows that if the sets of buyer values and commitment types are rich
and the probability of commitment vanishes, then bargaining outcomes are partially
Coasean: they are approximately those which would arise if the seller could issue an
ultimatum at a price bounded above by p∗ = {v/2,w}. The buyer either immediately
accepts such a price, or exits. Loosely, the set of buyer values is rich if for any d ∈ [v, v]
there is a possible buyer value close to d, while the set of commitment types is rich if
for any d′ ∈ [0, v − w] there is some type which makes a demand close to d′.

The result suggests the original Coase conjecture predictions of low prices and high
efficiency are robust to the presence of outside options so long as v and w are small,
in contrast to BP. Bargaining delays are also minimal, consistent with both the original
Coase conjecture and BP.

However, the result also diverges from some features of the original Coase conjecture
in a similar direction to BP. Notably, prices can be high (if v or w are7). For instance, if
v = 1 is known, but w is approximately uniformly distributed on [0, 1], then net values
v − w are also uniform on [0, 1] and the seller will charge p∗ = 1/2 for a profit of 1/4.

Of course, p∗ is only an upper bound, and the seller may choose a lower price. A
particular case of interest when she does so is when she faces a single rational buyer
type (v,w). If w < v/2 then the seller charges ps ≈ p∗ = v/2, but if w > v/2 then she
charges ps ≈ v − w < p∗ = w. This price offers the buyer approximately his outside
option when he accepts, v−ps ≈ w as he would not accept higher prices. This prediction
matches Binmore et al. (1989)’s with outside options in an alternating offers game under
complete information (without commitment types).

What is the reasoning behind the main result? In particular, what’s special about p∗?

7For instance, a seller may know her product (e.g. bespoke software) provides high buyer value
v >> 0 (e.g. in cost savings) without knowing the outside option created by competitors offers. Or she
might know a competitor’s product (e.g. off-the-shelf software with a nationally set price) offers a high
outside option w >> 0, without knowing how the buyer values her own product.
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I say that the seller’s offer is more generous than the buyer’s if the buyer gets greater
utility from conceding, v − ps > pb. With a rich set of buyer values and commitment
types, a seller’s offer is more generous than any counteroffer of the lowest value buyer
who eventually concedes (a buyer with value v1,ps = min{v > ps + w}), if and only if
ps ≤ p∗. Recall that in any equilibrium, a player (she) concedes at a rate which makes
her opponent (he) indifferent between conceding at one instant or the next. That rate
is, therefore, proportional to the generosity of her offer (which determines his cost of
delaying his concession) and so determines how fast her reputation for commitment
grows over time. When the prior probability of commitment is arbitrarily small, so
are updated reputations when all high value buyers have conceded (v > v1,ps), after
which reputations must still grow a lot to reach probability 1. Hence, if the seller’s offer
is more generous than the remaining v1,ps buyer (e.g. if ps ≤ p∗), she always builds
reputation faster than the buyer, and in order for both players to reach a probability 1
reputation at the same time, the buyer must either concede or exit with probability close
to 1 at time 0. On the other hand, if the seller’s offer is less generous than the remaining
v1,ps buyer (e.g. ps > p∗ ≈ pb), she eventually builds reputation slower than the buyer,
and must therefore concede with probability close to 1 at time 0.

The limit outcome’s dependence only on the generosity of the seller compared to a value
v1,ps buyer highlights the model’s Coasean force. Eventually the seller realizes she faces
such a buyer and then what matters is which player has the greatest incentive to give in
(the less generous player). A greater willingness to eventually concede translates into
immediate concession.

In Section 5, I present additional implications and extensions of the model. In particular:
I show the same results hold in a discrete-time alternating offers game; I extend the
results to unequal buyer and seller patience, in particular showing that outcomes are
equivalent to BP if the seller is much more patient than the buyer; I show the seller’s
profits can increase in the buyer’s outside option or in a sunk cost the buyer must pay to
initiate bargaining (the market need not unravel, unlike in BP); and show the seller may
successfully charge higher prices (ps >> p∗) if buyer values are not rich.

The rest of this section highlights additional literature, then Section 2 outlines the
model, Section 3 characterizes equilibria, Section 4 presents the main result, and Sec-
tion 5 considers extensions. Proofs are in the Appendix, unless stated otherwise.

1.1 Additional Literature

Hwang and Li (2017) show that the Coase conjecture may hold if a buyer’s outside
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option arrives stochastically. The seller makes all offers, and the buyer’s outside option
arrives publicly at the end of each period with some probability (after the seller’s offer).
With frequent offers, the seller almost immediately offers a price that makes the lowest
value buyer indifferent to waiting for the outside option. The logic driving the result
is that buyers must immediately take an outside option when it arrives. Otherwise the
lowest buyer type which did not, would receive a continuation payoff equal to that
outside option in subsequent periods (as in BP) and so she would prefer to avoid delay.
If the stochastic arrival is not publicly observable multiple equilibria exist, some of
which are Coasean and some not.

Nava and Schiraldi (2019) highlight what they call a robust Coase conjecture, when the
seller can offer differentiated goods. The seller makes all offers and after purchasing
one variety, the consumer receives no value from buying a second variety. When offers
are frequent, the market clears instantaneously, with the buyer purchasing one of the
varieties offered, however, the seller retains some market power and the outcome is not
efficient. The seller offers a low price (possibly 0) for one variety, and a high price
for the other and allows consumers to select between them. The low price for the
first variety, effectively creates a consumer outside option, which (by BP) allows her to
charge a monopolistic price for the second variety. The authors suggest BP’s result is
similarly consistent with a properly understood Coase conjecture. However, seemingly
many prices can clear the market with outside options, and the low prices identified in
my analysis when v ≈ w ≈ 0 seem “more Coasean” than BP’s.

In addition to outside options, the existing literature has identified many reasons the
Coase conjecture may fail: a monopolist may rent rather than sell, or under-invest in
capacity (Bulow (1982)), or use best-price provisions (Butz (1990)), or buyers may
use non-stationary strategies if there is no “gap” between their values and the seller’s
(Ausubel and Deneckere (1989)). However, other factors that might be thought to inter-
fere with the Coasean logic, merely see it confirmed in different guises. For instance, if
a second buyer may arrive to compete with the first, the seller’s profit is driven down to
what she would get from waiting for that buyer’s arrival (Fuchs and Skrzypacz (2010)).

Abreu et al. (2015) introduced commitment types into a bargaining game where one of
the rational players had private information about her discount rate (high or low) and
there are no outside options. They showed that if the set of demands made by com-
mitment types is sufficiently rich, then outcomes must be Coasean as the probability of
commitment vanishes: there is immediate agreement on the same terms as would have
been agreed if the informed party were known to be her most patient type.8 Inderst

8They also show that if commitment types sometimes delay making their fixed demand, non-Coasean
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(2005) and Kim (2009) identify Coasean results when a seller has a vanishing prob-
ability of being a commitment type, and the buyer has private information about her
value but no outside option and is never a commitment type (the good is sold for v).
Peski (2021) also identifies a Coasean result when dividing two pies, one bargainer has
private information about her relative value of the pies, and there is a vanishingly small
probability that each bargainer is committed to some menu of divisions.

Compte and Jehiel (2002) suggests commitment types have little effect on rational play-
ers’ behavior when they have outside options. In an alternating offer protocol with a
fixed surplus, and commitment types that aggressively offer an opponent less than her
outside option, rational players never imitate commitment types. My model allows for
more generous commitment types, and I show rational agents do choose to imitate them.

In a contemporary paper, Pei and Vairo (2022) investigate a related model, where effec-
tively a seller and a buyer with a private value (but no outside option) simultaneously
announce prices before becoming committed to them with positive probability (Kambe
(1999)’s protocol). There is always a Coasean equilibrium (all players announce the
same price ps = pb which approaches v/2 as commitment vanishes). But if buyer val-
ues are sparse (not rich), there can also be non-Coasean equilibria (the seller charges
ps > v, as do buyers with v > ps, but buyers with v ≤ ps counterdemand pb = 0
and never concede). I highlight a similar (unique) equilibrium limit with sparse buyer
values and high seller prices (ps >> p∗) in Section 5.

Atakan and Ekmekci (2013) show that reputational bargaining with outside options
endogenously determined by a search market can lead to inefficiency. Endogenous
outside options are also central to Özyurt (2015), who shows that even vanishingly
small reputational concerns allow a wide range of prices in Bertrand-competition like
setting with two sellers and a single buyer.

2 The model

In this section I outline a simple baseline model; I extend it in several directions in
Section 5.

A buyer and seller bargain in a continuous time concession/exit game, where the seller
has a single indivisible good. Time 0 is subdivided into 4 times, 01 < 02 < 03 < 04,

limit outcomes are possible as patient players try to signal their type. Analyzing such types in the current
setting, or even types that vary their demands over time in history contingent ways (see Abreu and Pearce
(2007) and Fanning (2016)) has the potential to be very challenging and is left for future work.
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to allow for sequential decisions to be made with no discounting of payoffs between
them. At time 01 the seller proposes a price ps ∈ P where P ⊂ (0,∞) is some finite set.
At time 02, the buyer can observe the seller’s price ps and can: immediately concede
(accept her opponent’s price; action c), counterdemand pb ∈ (0, ps) ∩ P, or exit the
market (action e). If the game continues to time 03: the seller observes pb and chooses a
stopping time ts ∈ {03, 04} ∪ (0,∞] to concede, while the buyer chooses a stopping time
tb ∈ {03, 04} ∪ (0,∞] and an action a ∈ {c, e}, where (tb, c) denotes a decision to concede
at time tb, and (tb, e) denotes a decision to exit. If players choose the same stopping
time (ts = tb), each player’s chosen action occurs with probability 1/2 (concession or
possibly exit).

Both buyer and seller can either be rational or a commitment type. A rational seller has
no value for the good and no outside option.9 A rational buyer of type (v,w) has an
outside option w > 0 and a value v > w.10 If the good is traded at price p at time t ≥ 0
then a rational seller gets a payoff e−rt p, and a rational buyer gets a payoff e−rt(v − p),
where r is a common discount rate. If instead, the rational buyer exits the market at
time t she gets a payoff e−rtw, and a rational seller gets a payoff of 0.

The distribution of rational buyer types has finite support Θ with probability mass func-
tion g, so that

∑
(v,w)∈Θ g(v,w) = 1. Let V = {v : (v,w) ∈ Θ} and W = {w : (v,w) ∈ Θ}

so v = min V , v = max V and w = min W, and w = max W. I assume g(v,w) > 0
for all v ∈ V , so there is always a chance of the minimum outside option; this is im-
plicitly an assumption about the richness of types (without it, the main results require
a more complicated definition of a rich type set). I further assume that v − w , p and
(v− p)/(p− p′) , w′/(v′− p′−w′) and v− p , p′ for all (v,w), (v′,w′) ∈ Θ and p, p′ ∈ P

with p > p′; given the finiteness of Θ and P, equalities are non-generic.

The probability of player i being a commitment type is zi ∈ (0, 1). There is a finite set
Pi ⊂ P of commitment types for player i. Conditional of being committed, she is of type
pi ∈ Pi with probability πi(pi) ∈ (0, 1). Type pi demands the price pi in the bargaining
game, concedes only if offered a better price (i.e. if ps < pb for the buyer) and never
exits the market. To simplify the exposition, I assume max Pb ≤ max Ps, so the highest
seller commitment price is higher than the buyer’s. I also assume the lowest price is a
buyer commitment demand, p = min Pb = min P; this helps with several arguments,
but is not needed or assumed in the alternating offer game of Section 5 (which admits a
continuum of prices).

9Results extend if the seller has a known outside option: as commitment vanishes, outcomes are
equivalent to the seller making any ultimatum offer below the maximum of p∗ and her outside option.

10An buyer with v < w will never agree to any price for the good and would immediately exit at 02; I
explore endogenous participation in bargaining more generally in section 5.
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Let µs(ps) be the probability that a rational seller proposes a price ps ∈ P at 01, and
given ps let µps,v,w

b (a) be the probability that a rational seller of type (v,w) chooses
action a ∈ P ∪ {e, c} at 02. Hence, immediately after a seller’s demand ps ∈ Ps and
buyer’s counterdemand pb ∈ Pb, the bargainers’ reputations for commitment are:

z̄ps
s =

zsπs(ps)
zsπs(ps) + (1 − zs)µs(ps)

, z̄ps,pb
b =

zbπb(pb)
zbπb(pb) + (1 − zb)

∑
(v,w)∈Θ µ

ps,v,w
b (pb)

and z̄s(ps) = 0 if ps < Ps and z̄ps
b (pb) = 0 if pb < Pb.11 If µps,v′,w′

b (pb) > 0 for some
(v′,w′) then the probability that the buyer is of type (v,w) conditional on rationality is:

ḡps,pb(v,w) =
g(v,w)µps,v,w

b (pb)∑
(v′,w′)∈Θ, g(v′,w′)µps,v′,w′

b (pb)
.

Conditional on reaching a continuation game at 03 with demands ps, pb, let the probabil-
ity that player i concedes by time t ∈ {03, 04}∪ (0,∞] be F ps,pb

i (t), and let the probability
that buyer exits by time t in that continuation game be Eps,pb

b (t). We can later back
out the behavior of rational players from these objects. At time t, the seller’s updated
reputation for commitment is then z̄ps,pb

s (t) = z̄ps/(1 − F ps,pb
s (t)) while buyer’s updated

reputation is z̄ps,pb
b (t) = z̄ps,pb/(1 − Eps,pb

b (t) − F ps,pb
b (t)). A rational seller’s utility in the

continuation game at 03 when she concedes at time t is:

U ps,pb
s (t) =

∫ τ<t

pse−rτdF ps,pb
b (τ) + (1 − F ps,pb

b (t) − Eps,pb
b (t))pbe−rt

+
1
2

e−rt
(
(F ps,pb

b (t) − F ps,pb
b (t−))(ps + pb) + (Eps,pb

b (t) − Eps,pb
b (t−))pb

)
where G(t−) = supτ<t G(τ) with G(03

−) = 0 for G : {03, 04} ∪ (0,∞]→ [0, 1]. The utility
of a rational buyer with value v that concedes at time t is:

U ps,pb,v,c
b (t) =

∫ τ<t

(v − pb)e−rτdF ps,pb
s (τ) + (1 − F ps,pb

s (t))(v − ps)e−rt

+
1
2

e−rt ((F ps,pb
s (t) − F ps,pb

s (t−))(2v − ps − pb)
)

The utility of a rational buyer with type (v,w) that exits at time t is:

U ps,pb,v,w,e
b (t) =

∫ τ<t

(v − pb)e−rτdF ps,pb
s (τ) + (1 − F ps,pb

s (t))we−rt

+
1
2

e−rt ((F ps,pb
s (t) − F ps,pb

s (t−))(w + v − pb)
)
.

11This is without loss of generality even if µs(ps) = 0 or µps
s (pb) = 0; commitment types can’t deviate.
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I analyze weak perfect Bayesian equilibria of this game, where at each information
set (01, 02 and 03) players’ strategies must be optimal given their beliefs, beliefs are
consistent with Bayes’ rule when possible (even off the equilibrium path), and a player’s
actions do not affect her belief about her opponent. However, my main result, providing
tight bounds on equilibrium outcomes also holds for any Nash equilibrium.

3 Equilibrium

This section characterizes equilibria of the game for arbitrary parameters. I follow a
heuristic approach leaving many details for the appendix. I first characterize equilibria
in the continuation game at 03, and then consider players’ initial demand choices.

In any equilibrium, a rational seller must imitate a commitment demand ps ∈ Ps. This
is a standard result in the reputational bargaining literature: if not, she would reveal her
rationality, and so need to immediately concede to any possibly committed buyer, due
to the reputational Coase conjecture (Abreu and Gul (2000)).12 Henceforth, therefore,
assume ps ∈ Ps. It is also true that rational buyers must imitate commitment demands,
but to show that I need to characterize continuation equilibria in the continuation game
at 03 that might arise if they did not. I now proceed to characterize such equilibria.

3.1 Equilibria in the continuation game

I first describe equilibria in the continuation game at 03 assuming commitment demands
pi ∈ Pi before highlighting what happens when the buyer makes a non-commitment
demand (pb < Pb). Since ps and pb are fixed, I drop them in superscripts on variables.

If there is just one rational buyer type who prefers to concede rather than exit, v − ps >

w, there is a unique equilibrium in the continuation game, which resembles that in
Abreu and Gul (2000); since the buyer will never choose her outside option it becomes
irrelevant. The equilibrium is characterized by three properties: (i) at most one player
concedes at time 0; (ii) both players reach a probability 1 reputation at the same time
T ∗ < ∞; and (iii) players are indifferent between conceding at any time on (0,T ∗].

Property (iii) implies that the seller and buyer must concede at the constant rates λv
s and

12If such a seller (she) doesn’t immediately concede to such a buyer (he), she must expect he will soon
concede to her, and if he doesn’t, will eventually become convinced of his commitment and so concede.
If T > 0 is the last time she concedes, however, even a rational buyer won’t concede just before T , and
so the seller won’t wait that long, a contradiction. Given that, the seller can always do weakly better
demanding max Ps ≥ max Pb than ps < Ps.
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λb respectively on (0,T ∗), where:

λv
s :=

r(v − ps)
ps − pb

, λb :=
rpb

ps − pb
.

The numerator of player i’s concession rate is her opponent’s instantaneous cost of
delaying his concession, while denominator is the capital gain he receives when she
concedes instead of him (so the rate equalizes his costs and benefits of waiting). Let
Ti = −ln(z̄i)/λi be the time it would take that player i to reach a probability 1 reputation
given that she concedes at rate λi on (0,T ∗) but not at time 0. Then we must have
T ∗ = min{Ts,Tb} and time 0 concession satisfies Fi(04) = 1 −min{z̄iz̄

−λi/λ j

j , 1}.

Given indifference to concession on (0,T ∗), the seller’s continuation game payoff must
be Us = Fb(04)ps + (1 − Fb(04))pb and the buyer’s payoff must be Ub = Fs(04)(v −
pb) + (1 − Fs(04))(v − ps); these only exceed what an opponent offers if that opponent
concedes at time 0 with positive probability. A player who is more generous to her
opponent, offering him more utility when he concedes, concedes faster and so builds
reputation quicker, so he must concede more often at time 0 in order for both players
to reach probability 1 reputation at the same time. More precisely, the probability the
buyer (seller) concedes at time 0 increases (decreases) in the relative generosity of the
seller’s offer compared to the buyer’s, (v − ps)/pb = λv

s/λb.

Adding more buyer types who find the seller’s price acceptable, v − ps > w, doesn’t
greatly change the equilibrium structure highlighted above. The only difference is that
property (iii) must be modified to account for the skimming property: on (0,T ∗) the
seller and highest remaining buyer type are indifferent between conceding at one instant
and the next. The skimming property says high value buyers concede before low value
buyers, since they face greater (instantaneous) costs of delaying their concession, r(v −
ps). Enumerate these buyers’ values v1 < v2 < ... < vK and let tk be the first time that
all buyers with value vk have conceded, and tK+1 = 0. The buyer and seller, therefore,
concede at rates λb and λvk

s on the interval (tk+1, tk), where tk+1 ≤ tk and T ∗ = t1 by the
skimming property. This equilibrium is still unique.

There is a Coasean force already at work in this equilibrium. Namely, high value buyers
benefit from the presence of low value buyers. This is because the seller (he) concedes
at a slower rate to low value buyers, which means he concedes with greater probability
at time 0 to ensure both players reach a probability 1 reputation at the same time T ∗

than if all buyers had high value. More precisely, Fs(04) is increasing in ḡ(v1,w).

To make the above description more precise, let Θc = {(v,w) ∈ Θ : v − w > ps} be
the set of rational buyer types for whom the seller’s price is acceptable (such types
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eventually concede= c). Let Θe = {(v,w) ∈ Θ : v − w < ps} = Θ \ Θc be the set of
types for whom the seller’s price is not acceptable (such types eventually exit= e). Let
v1 = min{v ∈ V : v > w + ps} and vk+1 = min{v ∈ V : v > vk} until vK = v for some
K < ∞. and

tk = min
{
t ≥ 04 : Fb(t) ≥ (1 − z̄b)

∑
(v,w)∈Θc:v≥vk

g(v,w)
}
.

Adding some Θe buyer types who find the seller’s price unacceptable, w > v−ps, further
modifies the equilibrium structure. Let v1 < v2 < ... < vK and t1 ≥ t2 ≥ ... ≥ tK+1 be
defined as above with respect to Θc types that eventually concede. Additionally, define
λv,w as the concession rate that would make a buyer of type (v,w) indifferent between
immediately exiting and waiting an instant to do so:

λv,w :=
rw

v − pb − w
.

In equilibrium: buyer and seller must still concede at rates λb and λvk

s on the interval
(tk+1, tk), to keep the seller and highest remaining Θc value buyer indifferent between
conceding at one instant or the next. Given this, buyer type (v,w) ∈ Θe will choose
to exit at: time 0 = tK+1 if λv,w > λv

s; at time tk if λv,w ∈ (λvk−1

s , λvk

s ); and at T ∗ = t1

if λv,w > λv1

s . If the buyer exits at tk < T ∗ with positive probability, she must also
concede with positive probability; if she didn’t, the seller (he) would prefer to concede
just before tk rather than just after. On the other hand, if tk > 0 she can’t concede too
often or he would prefer to concede just after tk than before. More precisely, suppose
the buyer exits with (conditional) probability α at time tk. If tk < T ∗ then the buyer
must also concede with probability greater than αpb/(ps − pb). If tk > 0, she must not
concede with probability greater than αpb/(ps − pb). If tk ∈ (0,T ∗), therefore, she must
concede with probability αpb/(ps − pb) exactly.

The presence of Θe buyers that exit means that both players may concede with positive
probability at time 0, contrary to property (i) with only Θc buyers. This is because the
seller may concede at 03 when the buyer both concedes and exits at 04 with positive
probability. Without loss of generality, however, the buyer never concedes at 03 and the
seller never concedes at 04. The equilibrium may no longer be unique. This is because
the value of any buyers who concede at tk ∈ (0,T ∗) is not determined (which can shift
tk and T ∗), and total concession at T ∗ is not determined (which can shift T ∗).

How should the above equilibrium characterization be modified if the buyer makes a

11



04 t03

1

Eb(t)

Fb(t)

Fs(t)

T ∗ = t1t2

(1 − z̄s)

(1 − z̄s)
∑

(v,w)∈Θc ḡ(v2,w)
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Figure 1. An equilibrium. Left: concession/exit probabilities. Right: reputations.

non-commitment demand (pb < Pb)?13 To accommodate this situation, I generalize the
definition of T ∗. Let Tb = min{t ≥ 04 : Fb(t) = (1 − z̄b)x}, Ts = min{t ≥ 04 : Fs(t) =

1− z̄b} and T ∗ = min{Ts,Tb} where x =
∑

(v,w)∈Θc ḡ(v,w) is the probability that a buyer is
a Θc type, conditional on being rational. A rational buyer must have conceded or exited
with probability 1 by time T ∗ < ∞ (as when pb ∈ Pb). However, a rational seller may,
or may not, have conceded with probability 1 by T ∗. Prior to T ∗, the other properties
of equilibria (described above for pb ∈ Pb) must still hold. Those properties ultimately
allow me to show that the buyer only makes commitment demands (pb ∈ Pb); this is
discussed in the next subsection.

Figure 1 displays an equilibrium of this sort. I summarize the above equilibrium char-
acterization into the following lemma.

Lemma 1. Consider a continuation game at 03 after demands ps ∈ Ps and pb ∈ P.

Without loss of generality, the buyer never concedes or exits at 03 and the seller never

concedes at 04. The skimming property holds before T ∗ < ∞ and:

(1) the seller concedes at rate λvk

s and the buyer at rate λb on (tk+1, tk) ∩ (0,T ∗).

(2) buyer (v,w) ∈ Θe exits at time tk ∈ {t1, ..., tK+1} ∩ [0,T ∗] if λv,w ∈ (λvk−1

s , λvk

s ) where

λv0

s = 0 and λvK+1

s = ∞.

(3) if the buyer exits at time tk ∈ {t1, ..., tK+1} ∩ [0,T ∗] with probability α then she must

concede with probability greater than αpb/(ps − pb) whenever tk < T ∗ and with

probability less than αpb/(ps − pb) if tk ∈ (0,T ∗].

(4) Fb(T ∗) + Eb(T ∗) = 1 − z̄b and if pb ∈ Pb then Fs(T ∗) = 1 − z̄s.
13While maintaining that the seller makes a commitment demand (ps ∈ Ps).
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3.2 Equilibrium demand choices

I next consider the buyer’s demand choice at 02 after the seller has announced a com-
mitment demand. I show that Θe buyer types (who eventually exit) always imitate the
lowest commitment demand p (or exit immediately). Whereas, Θc buyer types (who
eventually concede) imitate some commitment type, and weakly (possibly strictly) pre-
fer lower price demands. This is an important result for establishing the paper’s main
findings because it means Θe buyers demands are always extremely ungenerous to the
seller when there is a rich set of commitment types, p ≈ 0, who consequently has little
incentive to concede to them. The lemma below provides a formal statement:

Lemma 2. Consider any equilibrium in the continuation game at 02 after a seller de-

mand ps ∈ Ps. Without loss of generality: Θc buyers never announce a non-commitment

price pb < Pb, and receive a weakly higher continuation payoff from pb ∈ Pb than from

p′b > pb. Θe buyers never announce a non-minimal price pb > p ∈ Pb.

First consider the behavior of the Θc buyers who eventually concede; this dictates the
behavior of the Θe buyers who exit. Suppose some Θc buyers announce price p′b ∈ P

with positive probability (allowing for p′b < Pb). Then some Θc buyers must also imitate
smaller commitment prices, pb < p′b where pb ∈ Pb. If this wasn’t true, a rational seller
would believe buyers who demand pb are either committed or will eventually exit, and
so would immediately concede. But in that case, demanding p′b > pb cannot be optimal
for any buyer (who would prefer the lower price).

Since a value v = vK buyer always concedes first (by the skimming property), she must
be indifferent between demanding p′b or pb and then conceding at any time t ∈ [04, tK,pb].
Suppose then that a value vk buyer is indifferent between the options: (i) demand pb

and concede at tk,pb and (ii) demand p′b and concede at tk,p′b . The proof of the lemma
establishes that a value vk−1 buyer is either indifferent between (i) and (ii) or strictly
prefers the lower price (i). Moreover, if she is indifferent between these options then so
are all buyers, and there is a greater time discounted probability that the seller has not
conceded after the lower price pb, that is: e−rtk,p

′
b (1 − F

p′b
s (tk,p′b)) ≤ e−rtk,pb (1 − F pb

s (tk,pb)),
strictly if F

p′b
s (tk,p′b) > 0.

The reason a value vk−1 buyer must (weakly) prefer the lower price, option (i) over
(ii), is that there is “more delay” after the lower price since the seller concedes more
slowly (λvk ,pb

s < λ
vk ,p′b
s ), and the value vk−1 buyer has a lower cost of delay than vk who is

indifferent between the options. For a more precise argument, consider the special case
of k = K, and suppose (by way of contradiction) a value vK−1 buyer strictly preferred
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option (i) over (ii). All buyers with value v < vK−1 must then similarly prefer (ii),
because the expected utility of (i) and (ii) are linear in the buyer’s value. Since no buyer
with value v ≤ vK−1 adopts (i) we would then have T ∗,pb = tK,pb and since the seller
concedes slower after the lower price (λvk ,pb

s < λ
vk ,p′b
s ) we would have tK,p′b < tK,pb = T ∗,pb .

Consider then a third option (iii), demand pb and then concede at tK,p′b ∈ (0, tK,pb). The
difference in utility for value vK between option (iii) and (ii) is 0. However, since the
seller concedes slower after the lower price (λvk ,pb

s < λ
vk ,p′b
s ), there is more delay in (iii)

than (i), and because delay is less costly for value vK−1 than for vK , the utility difference
between (iii) and (ii) must be strictly positive for vK−1. The value vK−1 buyer would then
strictly prefer (i) over (iii) over (ii). To make a value vK−1 buyer indifferent between (i)
and (ii) we need tK,pb < tK,p′b (and so tK,pb < T ∗,pb) unless tK,pb = tK,p′b = 04.

To see why e−rtk,p
′
b (1 − F

p′b
s (tk,p′b)) ≤ e−rtk,pb (1 − F pb

s (tk,pb)) when a value vk−1 buyer is
indifferent between (i) and (ii), consider the special case of tk,p′b = tk,pb = 04.14 For
the value vk−1 buyer to be indifferent between (i) and (ii), the seller must concede more
often after the higher price p′b. If the seller conceded with the same strictly positive
probability after each demand then the vk−1 buyer would strictly prefer the lower price
option (i). More precisely, we need F

p′b
s (03) = F pb

s (03)(ps − pb)/(ps − p′b) ≥ F pb
s (03).

I now turn to the claim that Θe buyers (who eventually exit) only ever make the min-
imal commitment demand p ∈ Pb or immediately exit. Suppose a value vk−1 buyer
is indifferent between option (i) demand pb before conceding at tk,pb and (ii) demand
p′b > pb before conceding at tk,p′b , then type (v′,w′) ∈ Θe is also indifferent. Con-
sider then options (i’) demand pb before exiting at tk,pb and (ii’) demand p′b before
exiting at tk,p′b . Buyer type (v′,w′) ∈ Θe receives a payoff gain switching from (i) to
(i’) that is proportional to the discounted probability that the seller has not conceded,
e−rtk,pb (1 − F pb

s (tk,pb))(w′ − (v′ − ps)). That gain is strictly larger than the gain switching
from (ii) to (ii’) if e−rtk,pb (1 − F pb

s (tk,pb)) > e−rtk,p
′
b (1 − F

p′b
s (tk,p′b)), and so (i’) is preferred

to (ii’). If F pb
s (tk,pb) = F

p′b
s (tk,p′b) = 0 and option (ii’) is ever an optimal strategy for type

(v′,w′) it is without loss of generality to assume she exits at time 02 instead. A similar
argument can be made when a value vk−1 buyer strictly prefers option (i) over (ii).

Given that a Θe buyer only demands p ∈ Pb, a Θc buyer cannot make a non-commitment
demand, pb < Pb. If she did, standard arguments imply she must immediately concede
to a possibly committed seller (the reputational Coase conjecture).

Finally, we can move back to the start of the game and the seller’s demand choice at 01.
I do not attempt a precise characterization here, but merely establish that an equilibrium

14This can occur if the buyer exits and concedes at 04.
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exists, Proposition 1. The proof is in the Online Appendix. It first identifies a particular
continuation equilibrium structure in the continuation game at 03 that is continuous in
players’ beliefs, z̄i and ḡ. Given that, existence incorporating demand choice follows by
a standard Kakutani fixed point argument.

Proposition 1. An equilibrium exists.

4 Vanishing commitment

This section presents the paper’s main result: when the set of buyer values and com-
mitment types are rich and commitment vanishes, bargaining outcomes are approxi-
mately equivalent to those when the seller can propose an ultimatum at a price below
p∗ = max{w, v/2}. To get there, I again first focus on the continuation game at 03 (as
players’ initial reputations vanish), before considering demand choices.

4.1 Vanishing commitment in the continuation game

First consider the simple case in which there is only a single rational buyer type who
eventually concedes v − ps > w. Recall, this setting is equivalent to Abreu and Gul
(2000); the outside option is irrelevant. If players’ initial reputations in the continuation
game vanish at same rate (z̄n

i → 0, z̄n
i /z̄

n
j ∈ [1/L, L] for some L ≥ 1) then the player who

is less generous than her opponent must concede with probability approaching 1 at time
0; the seller immediately concedes if pb > v− ps, and the buyer does if pb < v− ps. This
occurs because the generosity of player i’s offer is proportional to the cost of delay of her
opponent (him) and thus proportional to her concession rate, λi. Those concession rates
determine the exponential growth rate of a player’s reputation during the continuation
game, (dz̄i(t)/dt)/z̄i(t) = λi. When initial reputations are vanishingly small, reputations
must grow a lot to reach probability 1 (it takes infinitely long in the limit). Absent time
0 concession, therefore, the faster growth rate of the more generous player’s reputation
means she would reach a probability 1 reputation much faster than her opponent. To
ensure both players reach a probability 1 reputation at the same time, therefore, the less
generous player must concede immediately (with probability approaching 1).

By similar logic, in a continuation game with many buyer types and pb > p, where the
seller is always more generous than the buyer (v1 − ps > pb), the buyer must concede
at time 0 with probability approaching 1 if players’ initial reputations vanish at the
same rate. Since pb > p, the buyer never exits (by Lemma 2). The more generous
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seller concedes faster and so builds reputation faster. To ensure both players reach a
probability 1 reputation at the same time, the buyer concedes immediately in the limit.

More interestingly, in a continuation game where the lowest value buyer who concedes
is more generous than the seller (v1− ps < pb) the seller must concede immediately with
probability approaching 1 if players’ initial reputations vanish at the same rate and the
lowest value buyer’s probability doesn’t (limn

∑
(v1,w)∈Θc ḡn(v1,w) > 0). This prediction

highlights the key Coasean force which drives the main results: any possibility of a
generous low value buyer makes the seller immediately back down.

The reason for the result is: The buyer’s positive concession rate means that all high
value buyers (who may be less generous than the seller, e.g. v − ps > pb) must have
conceded in some bounded length of time. At that point, players’ updated reputations
must still be arbitrarily small, and so we are effectively back in the case of a single
rational buyer type: the additional time it takes for players to reach a probability 1
reputation is unbounded, and during that time the (more generous) low value buyer
concedes quicker than the seller and so her reputation grows quicker. To ensure both
players reach a probability 1 reputation at the same time, therefore, the seller must
concede immediately in the limit.

Figure 2 illustrates this logic in an example with two buyer values v2 = 6, v1 = 4
and outside option w < 1. The announced prices ps = 3 and pb = 2 imply that the
seller is more generous than the high value buyer, and so concedes at a faster rate
λv2

s = 3 > λb = 2 on the interval (0, t2). However, the seller is less generous than
the low value buyer, and so concedes slower thereafter λv1

s = 1 < λb = 2. Initial
reputations are small, z̄i = 1/100, and so remain small at t2 after all high value buyers
have conceded. Even though the buyer is much more likely to have a high rather than
low value, ḡ(v2,w)/ḡ(v1,w) = 3, it takes much less time for all high value types to
concede than all low value types, t2/T ∗ < 1/3 because of the concave shape of buyer’s
concession probability, Fb(t) = 1 − e−λbt (t2/T ∗ → 0 as z̄n

b → 0). This means most
reputation building occurs after t2 when the buyer has a reputation building advantage
(since λv1

s < λb). To ensure that both players reach a probability 1 reputation at the same
time therefore the seller must concede with high probability at time 0, Fs(03) = 0.61.

What happens in the continuation game as initial reputations vanish, when some types
exit (so pb = p)? If there is some type which waits until T ∗ to exit (λv,w < λv1

s for some
(v,w) ∈ Θe) then the seller must again concede with probability approaching 1 at time
0. The buyer’s positive concession rate means that the time at which only this exiting
type (or a commitment type) remains is bounded. For the seller’s reputation to reach
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Figure 2. Continuation equilibrium with parameters: v2 = 6, v1 = 4, w < 1, ps = 3, pb = 2,
ḡ(v1,w) = 1/4, z̄i = 1/100. Left: Concession. Right: Updated reputations.

probability 1 by that time, therefore, she must concede immediately in the limit.

On the other hand, if pb = p is sufficiently small and no buyers exit at T ∗ (λv,w > λv1

s

for all (v,w) ∈ Θe), then the buyer must immediately concede or exit with probability
approaching 1. When pb = p is very small (see Lemma 3 part (f) for a precise cutoff)
not only is the seller more generous than any buyer who concedes pb = p ≤ w < v1− ps

but the buyer is so ungenerous that the seller would wait to receive concession from
(v1,w) ∈ Θc buyers at time t2 even if all other buyer types exit at t2. This means that
players’ reputations must be vanishingly small at t2 and since the seller concedes faster
at that point, for both players to reach a probability 1 reputation at the same time, the
buyer must concede and exit immediately in the limit.

Finally, unsurprisingly, if the seller’s reputation vanishes but the buyer’s doesn’t (limn z̄n
b >

0) then the seller must immediately concede with probability approaching 1 or the buyer
would reach a probability 1 reputation before the seller. Similarly, if the buyer’s repu-
tation vanishes but the seller’s doesn’t (limn z̄n

s > 0), and no buyers exit (pb > p) then
the buyer immediately concedes with probability approaching 1. Lemma 3 formally
establishes all these results.

Lemma 3. Consider some fixed demands ps ∈ Ps and pb ∈ Pb and sequence of contin-

uation games at 03 with updated equilibrium beliefs (z̄n
i , ḡ

n).
Suppose z̄n

s → 0 and z̄n
b ≥ Lz̄n

s for some constant L > 0.

(a) If limn z̄n
b > 0, then limn Fn

s (0) = 1.

(b) If limn ḡn(v,w) > 0 for some (v,w) ∈ Θc with v − ps < pb, then limn Fn
s (0) = 1.

(c) If pb = p and λv,w < λv1

s for some (v,w) ∈ Θe, then limn Fn
s (0) = 1.
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Suppose instead z̄n
b → 0 and z̄n

s ≥ Lz̄n
b for some constant L > 0.

(d) If pb > p and limn z̄n
b > 0, then limn Fn

b(04) = 1.

(e) If pb > p and v1 − ps > pb, then limn Fn
b(04) = 1.

(f) If pb = p < v1 − ps and pb(1 − limn xn) < (ps − pb) limn
∑

(v1,w)∈Θc ḡn(v1,w) and

λv,w > λv1

s for all (v,w) ∈ Θe, then limn Fn
b(04) = 1 − limn En

b(04) = limn xn.

4.2 The main results

This subsection presents the paper’s main results. Proposition 2 identifies tight bounds
on the seller’s payoff as commitment vanishes when the set of buyer’s values and com-
mitment types are rich: it is approximately the same as what she could get by making
an ultimatum offer to the buyer at a price restricted to be below p∗ = max{v/2,w}. It
also shows that max{v − p∗,w} is an approximate lower bound on the buyer’s payoff.
Proposition 3 provides additional regularity conditions that identify the ultimatum price
the seller would charge, and so precisely predict limit equilibrium outcomes.

In order to formally present these results, I must first define what makes the sets of
buyer values and commitment types rich. I say that the set of buyer values is ε > 0 rich
if for any d ∈ [v, v], there exists some v ∈ V such that |v − d| < ε. This means that the
difference between two consecutive buyer values must be less than 2ε. Given a rational
buyer’s type distribution, I say that the sets of players’ commitment types are ε′ > 0
rich if for any d′ ∈ [0, v−w], there exists some pi ∈ Pi such that |pi−d′| < ε′ for i = 1, 2.
When I say that set of buyer values and commitment types are rich, I informally mean
that they are respectively ε > 0 and ε′ > 0 rich where ε ≈ ε′ ≈ 0. However, in fact, my
results first fix the ε richness of the buyer’s values, and then choose the ε′ richness of
commitment types. I also define H(p) =

∑
(v,w):v−w<p g(v,w) for any p ∈ [0,∞), as the

probability a rational buyer’s net value v − w is less than p; for instance, if net values
are approximately uniformly distributed on [0, 1] then H(p) ≈ p.

Proposition 2 presents precise upper and lower bounds on the seller’s equilibrium pay-
off, Vs and a lower bound on the buyer’s equilibrium payoff Vv,w

b . For any δ > 0, it fixes
an arbitrary ε > 0 rich rational buyer type distribution. It then identifies a sufficiently
small ε′ > 0 such that if the distribution of commitment types is ε′ rich, and players’
prior probabilities of commitment vanish at the same rate (zn

i → 0, zn
i /z

n
j ∈ [1/L, L] for

some L ≥ 1): The seller’s limit payoff is at most δ more than her payoff from making
an ultimatum with prices restricted to be below p∗ + 2ε (the upper bound). Her limit
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payoff can also not be less than 2ε below her payoff from making an ultimatum with
prices restricted to be below p∗ (the lower bound). This tightly pins down the seller’s
payoff for small ε. The buyer can likewise guarantee a payoff of at least {v− p∗−2ε,w}.

Proposition 2. For any δ > 0, and any ε > 0 rich distribution of rational buyer

types (g,Θ), there exists some ε′ > 0 such that for any sequence of bargaining games

(zn
i , πi, Pi, g,Θ, P)i∈s,b with a ε′ rich distribution of commitment types, zn

i → 0 and

zn
s/z

n
b ∈ [1/L, L] for some L ≥ 1, the seller’s payoffs satisfy:

max
p∈[0,p∗]

(1 − H(p))p − 2ε ≤ lim inf
n

Vn
s ≤ lim sup

n
Vn

s ≤ max
p∈[0,p∗+2ε]

(1 − H(p))p + δ.

and the buyer’s payoffs satisfy: lim infn Vv,w,n
b ≥ max{w, v − p∗ − 2ε}

To explain the logic for this result, I first highlight something special about p∗ =

max{v/2,w}. It is the highest price p∗ such that the seller can always guarantee her
offer is more generous than the counterdemand of any buyer who eventually concedes.

To see that a seller proposing ps ≤ p∗ is always more generous than the counterdemand
of any buyer who eventually concedes, notice that if ps ≤ v/2 then v/2 ≤ v − ps and so
pb < ps ≤ v/2 ≤ v − ps. Similarly, ps ≤ w implies pb < ps ≤ w < v1,ps − ps.

This feature of p∗ helps establish the lower bound on the seller’s payoff. Suppose price
p̂s maximizes the seller’s payoff when she can issue an ultimatum at a price below p∗.
In a reputational bargaining game with a rich set of buyer values and commitment types,
we can find a slightly small commitment demand ps ∈ Ps (so ps ≥ p̂s − 2ε when buyer
values are ε rich, and commitment types are ε′ ≈ 0 rich), which ensures the buyer either
immediately concedes or exit with probability approaching 1 as commitment vanishes,
and so provide a limit profit of approximately p̂s(1−H( p̂s)). Any counterdemand made
with positive probability in the limit would make the buyer’s updated reputation in the
continuation game vanish at a weakly faster rate than the seller’s. If that counterdemand
is not minimal, pb > p, it is only made by Θc,ps buyers who eventually concede, and be-
cause they are less generous than the seller (since ps ≤ p∗), they must then immediately
concede with probability approaching 1 (Lemma 3, part (d)). If that counterdemand is
minimal, however, then it is very ungenerous, pb = p ≈ 0, since the set of commitment
types is rich. The seller’s limit demand ps is chosen to ensure there is no Θe,ps buyer
type that would wait until T ∗ to exit.15 And so, in this continuation game the buyer
immediately concedes or exits with probability approaching 1 (Lemma 3, part (f)).

15If p̂s ≤ v − w then no Θe,ps will wait until T ∗ for any ps < p̂s. If p̂s > v − w then there is some

ps ≈ v1,ps − w which ensures no such waiting. Since λv,w,ps,p is decreasing in v and λv1,ps ,w,ps,p ≈ λ
v1,ps ,ps,p
s

given ps ≈ v1,ps − w we have λv,w,ps,p > λ
v,ps,p
s for v ≤ v1,ps . Furthermore λv,w,ps,p ≥ λv,w,ps,p for w ≥ w.
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On the other hand, when the seller proposes ps > p∗ and the set of buyer values and
commitment types is rich, there is a counterdemand pb ≈ p∗ for the lowest value buyer
who concedes, v1,ps that is more generous than the seller’s offer (more precisely if ps >

p∗ + 2ε then there is a more generous counterdemand pb < p∗ + 2ε for the buyer). To
see this, it is useful to distinguish between: case (i) ps < v − w, when some v buyers
eventually concede; and case (ii) ps ∈ (v−w, v−w) when all v buyers eventually exit. In
case (i) we must have ps > p∗ = v/2 and so ps > v − ps > v/2 and so a counterdemand
pb ≈ p∗ = v/2 by a value v = v1,ps buyer, is more generous than the seller’s offer; in
fact, this is also true for counterdemands as low as pb ≈ (v − ps) < v/2. In case (ii)
if there is a rich set of buyer values, then the lowest value buyer that ever concedes
v1,ps must be close to indifferent to taking the lowest outside option v1,ps − ps ≈ w.
Any counterdemand pb > v1,ps − ps for a value v1,ps buyer is more generous than the
seller’s offer. With a rich set of commitment types, there is such a (more generous)
counterdemand pb ≈ v1,ps − ps ≈ w ≤ p∗ < ps.

This second feature of p∗ establishes the upper bound on the seller’s payoff, and the
lower bound on the buyer’s payoff. Suppose the seller charged ps > p∗ with positive
limit probability as commitment vanished, then her updated reputation vanishes (at a
weakly faster rate than the buyer’s). As highlighted above, given a rich set of buyer
values and commitment types there are commitment counterdemands pb ∈ Pb which
would make the lowest value buyer who concedes more generous than seller, pb >

v1,ps−ps, with either pb < p∗ = v/2 (in case (i)) or pb ≈ w ≤ p∗ (in case (ii)). The lowest
value buyer, v1,ps , will make the lowest counterdemand pb that is more generous than
the seller’s offer with positive limit probability in equilibrium: if she didn’t some higher
value buyer must instead, and the fast seller concession rate to that buyer would cause
v1,ps to deviate to pb. Following that counterdemand, therefore, the seller immediately
concedes with probability approaching 1 (Lemma 3 part b). Other buyer types can also
imitate that counterdemand to guarantee a limit payoff of at least max{v − pb,w}.

From the seller’s perspective then, the game with a rich set of values and commitment
types is approximately equivalent to an ultimatum game with an upper bound on prices
of p∗, however, which ultimatum price she chooses has a large effect on the buyer’s
payoff. To get a tighter prediction Proposition 3 imposes conditions on the seller’s
ultimatum game payoff function. It effectively says that if there is a unique price p̂s that
maximizes the seller’s payoff in the ultimatum game when she can’t charge more than
p∗, then the seller charges approximately p̂s in equilibrium and the buyer either accepts
it or exits; in fact, the condition is slightly more involved to account for the richness of
the sets of agents’ types.
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Proposition 3. Fix any ε > 0 rich distribution of rational buyer types (g,Θ), and define

p̌(p) = min{p,max{v−w ≤ p : v ∈ V}}where max ∅ = ∞. If p̌( p̂s)(1−H( p̌( p̂s))) > p(1−
H(p)) for p̂s ≤ p∗ and all p ∈ [0, p̌(p̂s))∪( p̂s, p∗+2ε], then ε′ > 0 exists such that for any

sequence of bargaining games (zn
i , πi, Pi, g,Θ, P)i∈s,b with a ε′ rich distribution of com-

mitment types, zn
i → 0 and zn

s/z
n
b ∈ [1/L, L] for some L ≥ 1: limn

∑
ps∈[ p̂s−2ε, p̂s) µ

n
s(ps) =

1, and without loss of generality limn µ
ps,v,w,n
b ({c, e}) = 1 when limn µ

n
s(ps) > 0. So,

max{w, v − p̂s} ≤ lim infn Vv,w,n
b ≤ lim supn Vv,w,n

b ≤ max{w, v − p̂s − 2ε}.

5 Extensions and discussion

This section discusses additional implications of the model, and extensions of it.

5.1 Alternating offers

Below, I outline an alternating offers bargaining protocol where outcomes must con-
verge to those of the continuous time game as offers become frequent. The protocol is
a minimal modification of BP.

In period 1 the seller can propose any price p1
s ∈ [0,∞). The buyer observes this and

can then accept, reject, or exit (taking her outside option). If still bargaining in period
n ≥ 2, the buyer can propose any price pn

b ∈ [0,∞). The seller observes this and can
accept, or make any counterdemand pn

s ∈ [0,∞). If the seller makes a counterdemand
the buyer observes this and can accept, reject, or exit. If one of the players accepts, or
exits, the game ends. If the price p is agreed in period n, a rational seller gets δn−1 p and
a rational buyer δn−1(v − p) where δ = e−r∆ for some period length ∆ > 0. If the buyer
exits in period n, rational payoffs are 0 and δn−1w respectively. The description of types
is unchanged except now assume p = min Pb < min(v,w)∈Θ v − w.

In this model, the buyer never reveals rationality in equilibrium, before the game ends.
This is an immediate consequence of Lemma 1 from BP. If a buyer did reveal rationality,
a rational seller will never propose or accept a price strictly below that of the lowest net
value type she considers feasible. Given that, the lowest net value buyer’s continuation
payoff will be (weakly) less than her outside option w. Of course, if this buyer faces a
committed seller, her continuation payoff is also below max{v − ps,w}. However, the
buyer could have obtained the payoff max{v − ps,w} in the previous period, avoiding
discounting, and so would never wait.

On the other hand, if the seller reveals rationality, she must almost immediately concede

21



to a possibly committed buyer when offers are frequent, due to the reputational Coase
conjecture (see Abreu and Gul (2000)’s Lemma 1). For any ε > 0, there exists ∆ > 0
such that if ∆ < ∆ and the seller has revealed rationality but the buyer has not, then
the buyer’s continuation payoff is at least max{v − pb,w} − ε and the seller’s is at most
pb + ε. As offers become frequent ∆→ 0, therefore, equilibria converge to those of the
continuous time game (see Abreu and Gul (2000)’s Proposition 4 for a similar proof).

Equivalent results would also hold under BP’s protocol with only seller offers if the
buyer could send a cheap talk message at the start of bargaining, indicating which offers
she would accept (assuming commitment types indicate truthfully). Both the above
protocols would give BP’s results if there were no commitment types (the seller can
effectively make any ultimatum).

For a much larger set of discrete-time protocols, there will still be equilibria that con-
verge to the continuous time equilibria (as offers become frequent). The seller believes
her price must be acceptable to any buyer who reveals rationality, v− ps > w, and such a
buyer must then concede almost immediately due to the reputational Coase conjecture.
However, it might also be possible to construct other equilibria.

In some settings, the buyer may seem to not even have cheap talk opportunities to
indicate her willingness to pay. If so, but there is still a rich set of commitment types for
both buyer and seller (who won’t accept less than a target price), then a rational seller
can effectively choose any ultimatum price as commitment vanishes, consistent with
BP. The reason is that if the seller ever reveals rationality, she must almost immediately
drop her price to be acceptable to the lowest buyer commitment type p ≈ 0 when offers
are frequent (due to Abreu and Gul (2000)’s reputational Coase conjecture). Hence,
effectively, rational buyers can only announce p ≈ 0, which guarantees the seller is
more generous than the buyer. The buyer must, therefore, immediately concede or exit
as commitment vanishes (see Lemma 3). This highlights the benefit to the buyer of
being able to indicate generosity (showing she isn’t committed to p ≈ 0).16

5.2 Unequal discount rates

All the paper’s results generalize straightforwardly when seller and buyer have differ-
ent discount rates, rs and rb. In particular, as commitment vanishes with a rich set

16This conclusion depends on strictly positive buyer outside options. With no outside options, the seller
would propose a price below v as commitment vanished, to ensure no rational buyer waited forever. That
prediction is broadly consistent with Inderst (2005), who assumes the buyer is always rational and cannot
make offers (and so accepts v), while the seller might be a commitment type.
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of buyer values and commitment types, outcomes are approximately equivalent to the
seller choosing an ultimatum below the price p∗∗ = max{rbw/rs, rbv/(rs + rb)}.

If the seller is much more patient than the buyer, rb/rs > (v − w)/w, then p∗∗ > v − w

so there is effectively no constraint on the seller’s prices (she would never choose ps >

v − w); predictions are then equivalent to BP. On the other hand, if the buyer is much
more patient than the buyer we have p∗∗ ≈ 0 < min{v − w > 0 : (v,w) ∈ Θ}, implying
an efficient outcome.

The large effect of discount rates contrasts with their irrelevance in the original Coase
conjecture setting with frequent seller offers and no commitment types (the good is sold
almost immediately for v > 0). Discount rates are also irrelevant in BP.17

The logic for the result is identical to Proposition 2. By charging ps ≤ p∗∗ the seller
ensures that she always concedes at a faster rate than the buyer, λv

s > λb, so the buyer
must concede or exit at time 0. However, if ps > p∗∗ then after a counterdemand
pb ≈ p∗, the lowest value buyer that concedes v1,ps , would concede faster than the
seller, λv1,ps

s < λb, so the seller must concede at time 0. A player’s concession rate is
proportional to her opponent’s cost of delay, and so proportional to his discount rate:

λb :=
rs pb

ps − pb
, λv

s :=
rb(v − ps)

ps − pb

5.3 Seller benefit from buyer outside options

The seller’s payoff can increase in the buyer’s outside option, because this allows her
to charge higher prices. As an example, suppose v ∼ U[1, 5] approximately and w is
known, so v−w ∼ [1−w, 5−w]. For w ∈ [0.5, 1.25], the seller will charge ps ≈ p∗ = w

for a payoff of w(5 − 2w)/4, which is strictly increasing in w.18 By contrast, seller
payoffs always decrease in the buyer’s outside options in BP (so long as they are strictly
positive). This suggests sellers’ may benefit from (differentiated) competition.

5.4 Endogenous entry and sunk initiation costs

What happens if players must wait before bargaining, or incur some other sunk cost?
Buyer participation is then endogenous. Such costs can sometimes completely deter

17I focused on common discount rates in the main analysis in order to simplify an already complicated
environment and because that is assumed by BP.

18For w > 1, some buyers have w > v and so there are no gains from trade with the seller. I previously
assumed v > w for all (v,w) ∈ Θ to simplify the exposition, but this was unimportant for any results.
Whether or not w > 1, all buyers with v ≤ 2w will choose to immediately exit as commitment vanishes.
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efficient buyer participation due to the hold up problem. When buyers do participate,
however, outcomes appear fully Coasean (in particular efficient). The seller’s payoff

can increase in the buyer’s sunk cost by deterring low value buyer participation.

Suppose buyers can either immediately exit (take their outside option), or wait a length
of time T > 0 before bargaining, so subsequent payoffs are discounted by δ = e−rT < 1.
Continue to assume a rich set of commitment types that always wait.

For any strictly positive probability of seller commitment, zs > 0, if T → 0 (so δ→ 1),
then all positive net value rational buyer types wait (i.e. Θ). This is because all such
types will receive bargaining payoffs that strictly exceed their outside option, since a
committed seller type sometimes demands min Ps < min{v − w > 0 : (v,w) ∈ Θ}. This
contrasts with BP, where even negligible delay causes the market to unravel.

What happens if the delay before bargaining is non-negligible? In particular, fix δ < 1
and let commitment vanish (zn

i → 0). The benefit to low net value buyer types out-
lined above (occasional low prices min Ps from committed sellers) vanishes, and so no
longer justifies delay. If v < 2w/δ, the probability that buyers wait must vanish (the
market unravels).19 If v > 2w/δ the seller charges ps ≈ p† = max{v/2,w/δ}, which
is immediately accepted by all buyers who wait, where the lowest such value buyer is
v† = min{v ≥ 2w/δ : (v,w) ∈ Θ}, and so p† = v†/2 = max{v†/2,w}.

This characterization is due to the hold-up problem. The lowest value buyer who waits
effectively pays a sunk cost investment w to initiate bargaining and create value δv†

(only buyers who eventually purchase will wait). Bargaining allows the seller to ap-
propriate δv†/2 of this value (by charging p† = v†/2), so the benefit from investment is
δv†/2 − w, which is positive only if v† > 2w/δ.

With respect to buyers who do wait, outcomes then always appear Coasean: there is
immediate agreement at a price of half the buyer’s lowest value. This is same price as
would be agreed if the buyer was known to have type (v†,w). With respect to those
buyers who wait, it may also appear that buyers’ “small” outside options are irrelevant
to bargaining since v − w > v/2 ≥ p† (as in Binmore et al. (1989) under complete
information). However, both appearances are misleading. First, there can be substantial
inefficiency, as many types with δv > w will choose not to wait. Second, outside options
do determine prices by affecting who turns up to bargain, p† = w/δ if w/δ ≥ v/2.

Interestingly, outcomes can be discontinuous between the models without and with de-
lay as δ → 1 (first letting commitment vanish, zn

i → 0). The upper bound on the price

19If δv < w, then rational buyers never wait. If δv ∈ (w, 2w) then a rational buyer type (v,w) waits with
vanishing probability, and receives a continuation payoff of exactly w from doing so.
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the seller may charge is continuous in this limit, p† → p∗ = max{v/2,w}, however, in
the model without delay the seller may have actually chosen a lower price. For example
suppose v ∼ U[1, 2] and w = 1 so v − w ∼ U[0, 1]. If there is no delay the seller will
choose ps = 1/2 for a payoff of 1/4. However, whenever there is delay with δ < 1 we
have v = 2 < 2w/δ and so buyers never wait in the limit and the seller’s payoff is 0.

In the above example, the seller is hurt by delay. This is generally true when players
have equal discount rates, even though it can allow for higher prices. If the buyer
does wait, she subsequently accepts the price p† = max{v/2,w/δ}, giving the seller
a discounted payoff δp† = max{δv/2,w}, but all such buyers would have also have
accepted the price ps = max{δv/2,w} ≤ p∗ in the model without delay.

By contrast, if the seller is more patient than the buyer, then she can strictly benefit
from delay. With different discount rates, let δs = e−rsT and δb = e−rbT for length of
delay T . If v ≤ w(rb + rs)/(rsδb) then the probability a buyer waits vanishes. Otherwise
the seller charges ps ≈ p‡ = max{rbv/(rs + rb), rbw/(δbrs)} = v‡rb/(rs + rb), where
v‡ = min{v ≥ w(rb + rs)/(δbrs) : (v,w) ∈ Θ} is the lowest value buyer to wait. Clearly,
the market unravels with no buyers choosing to wait if the seller is much more patient
than the buyer, rs/rb ≈ 0, because the hold-up problem is too severe. On the other hand,
buyers wait efficiently (whenever δbv > w) if they are much more patient, rb/rs ≈ 0.

The seller can benefit from delay if she is slightly more patient than the buyer: assume
v ∼ U[3, 25] and w = 1 so v − w ∼ U[2, 24], with rs = 1 and rb = 2. Without
delay the seller charges p∗∗ = max{rbw/rs, rbv/(rs + rb)} = 2 for a payoff of 2. With
delay, the seller charges p‡ = rbw/(δbrs) = 2e2T which is accepted by buyers with
v ≥ v‡ = w(rb + rs)/(δbrs) = 3e2T for a profit π = δs p‡(25 − v‡)/22 = (25eT − 3e3T )/11,
which is maximized at π ≈ 2.52 by T = ln(25/9)/2 > 0. The high cost of delay for low
value buyers deters their participation, which allows the seller to charge much higher
prices that more than compensate for her own smaller cost of delay.

Analogous predictions hold when the buyer (alone) must pay an additive sunk cost c > 0
to initiate bargaining (perhaps for travel costs or legal/advisor fees); in particular, the
seller’s payoff can increase in c. With no delay, the lowest value buyer who initiates
bargaining is v† = min{v ≥ 2(c + w) : (v,w) ∈ Θ}, and there is again immediate
agreement at a price of p† = v†/2. If v ∼ U[0, 1] and w ≈ 0 then v−w ≈ U[0, 1], p† ≈ c

and the seller’s payoff is approximately c(1 − 2c) which is increasing in c ≤ 1/4.

The finding that the seller can benefit from buyer sunk costs to initiate bargaining (so
long as any sunk cost the seller has to pay isn’t similarly large) can help explain why
some sellers appear to make their goods intentionally hard to purchase, beyond just
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restricting supply (e.g. Birkin bags20).

5.5 Rich type space requirements

What can happen if the sets of players’ types are not rich, as commitment vanishes?

If the set of buyer values is not sufficiently rich, prices may be much higher than the
Coase conjecture would lead us to expect. For instance, consider the case of binary
values, v ∈ {v, v}, with min{v/2, 2w} > v. In this case, the seller can charge ps = v/2,
which can be much larger than p∗ = w (the buyer either immediately accepts this price
or exits as commitment vanishes). This is consistent with Proposition 2, which said
the seller couldn’t charge more than p∗ + 2ε in a ε rich type space because a binary
type space is only ε-rich if 2ε > v − v. This price ps = v/2 is unacceptable to the
low value buyer, but is more generous than any counterdemand of the high value seller,
v − ps > pb, so the seller concedes faster after time 0, and the buyer must immediately
concede or exit (in the limit).21,22

A rich set of buyer values is only needed because outside options are positive, w > 0.
If w = 0 my results easily extend to show the buyer would choose her best ultimatum
price ps ≤ p∗ = v/2 regardless of the richness of buyer values. In that case, if the
seller made a demand ps > v with positive limit probability, then buyers with type
(v, 0) would demand p > 0 and wait until at least T ∗ to exit, which would mean the
seller must immediately concede with probability approaching 1 (by the same logic as
Lemma 3, part (c)). If ps ∈ (v/2, v), however, then type (v, 0) will make a more generous
counterdemand pb ≈ v − ps < v/2, to which the seller must immediately concede.

The assumption of a positive probability of the lowest outside option w for any buyer
value, g(v,w) > 0, is also implicitly an assumption about the richness of buyer types.
Without a similar assumption, the seller may charge higher prices. For instance, sup-
pose that instead w = h(v) ≥ v/2 where h(v)/v is strictly decreasing (e.g. h(v) = 1 + v/2
with v > 2), then outcomes are approximately equal to those where the seller can choose
any ultimatum price. In this case, any seller price ps is more generous than the counter-
demand of any buyer who eventually concedes, and so buyers immediately concede or

20For example see https://baghunter.com/blogs/insights/how-to-get-birkin-bag-from-hermes on the ob-
stacles to acquiring such bags.

21Moreover, after the ungenerous counterdemand p ≈ 0, a low value buyer never waits as the seller

concedes at rate λ
v,p,ps

s = r(v − ps)/(ps − p) ≈ r since λv,w = rw/(v − p − w) < r.
22Introducing a third buyer value v′ that is slightly higher than v/2 + w rules out the price ps = v/2,

because this buyer could counterdemand slightly more than w and be more generous than the seller,
v′ − ps < pb. Hence, the seller would immediately concede in the limit.
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exit as commitment vanishes: v − ps > h(v) implies ps < v − h(v) ≤ h(v) and so for any
counterdemand pb < ps < h(v) < v − ps, and thus λv

s > λb.23

The main result also depends on a rich set of commitment types, in particular buyer
commitment types that make ungenerous offers p ≈ 0. Examples show that all types
of rational buyer could benefit if they were constrained to make more generous offers,
p >> 0. The reason is that the exit of buyers who demand p >> 0 is much more painful
for the seller, and so substantial buyer concession (simultaneous with that exit) can help
the buyer quickly reach a probability 1 reputation.24
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A Appendix: Proofs of results

I first prove the supporting lemma below, which helps establish Proposition 1.

Lemma 4. In any equilibrium in the continuation game at 03 after demands ps and pb

(a) It is without loss of generality to assume ḡ(v,w) = 0 if v − w < pb (henceforth, this is

assumed throughout).
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(b) If x = 0, as when Θc = ∅, then without loss of generality Fs(03) = 1 − z̄s, Eb(03) = 0,

Eb(04) = 1 − z̄b.

(c) If ps ∈ Ps then T ∗ < ∞.

(d) If ps < Ps, but pb ∈ Pb, then Fs(04) = 1 (and so clearly T ∗ < ∞).

(e) If ps ∈ Ps, pb < Pb and x = 1 then Fb(04) = 1.

(f) If ps ∈ Ps, then Fb(T ∗) = (1 − z̄b)x and Eb(T ∗) = (1 − z̄b)(1 − x). Similarly, if pb ∈ Pb then

Fs(T ∗) = (1 − z̄s).

(g) If Fs jumps at t ≥ 03 then Fb and Eb are constant on [t − ε, t] for some ε > 0.

(h) Fs is continuous at t > 04.

(i) If Fs is continuous at t then so is Uc,v,w
b and Ue,v,w

b . Likewise if Fb and Eb are continuous at

t then so is Us.

(j) Fs and Fb are strictly increasing on (0,T ∗].

(k) The skimming property holds: if a buyer with value v concedes at t then a buyer with value

v′ > v will not concede after max{t, 04}.

Proof. For (a), suppose that µps,v,w
b (pb) > 0 for some v − w < pb, then such a player would

certainly always exit before 04 as her best payoff in the continuation game is less than w, and

if the buyer ever conceded to her with positive probability she would have a strictly profitably

deviation of conceding at 02 instead.

For (b), notice that since buyer can never concede in equilibrium, without loss of generality,

Fb(t) = 0. Suppose that Fs(t) < 1 − z̄s for t > 0 then deviating to concede at 03 is always a

profitable deviation. This deviation would also be profitable for the seller if she conceded at

04 and Eb(04) > 0, while if Eb(04) = 0 then it is still weakly better for the seller to concede

at 03 than 04, hence in all cases we may assume Fs(03) = 1 − z̄s. If Fs(03) > 0, then clearly

Eb(03) = 0 (as exit at 04 would be a profitable deviation for the buyer given (a)). If z̄s < 1, then

we must, however, have Eb(04) = 1 − z̄b given w > 0.

The argument for (c) is standard (e.g. see the proof of Lemma 1 in Abreu and Gul (2000) for

more detail). If ps ∈ Ps, then if a rational buyer does not concede or exit, she must believe the

seller will concede shortly afterwards, and so her belief that the seller is committed increases if

there is no concession. Repeating this argument, the buyer must eventually become convinced

of the seller’s commitment by some time T ∗ < ∞ and will then concede or exit.

The reasoning for (d) is similar (again see the proof of Lemma 1 in Abreu and Gul (2000) for

more detail): given pb ∈ Pb if the seller does not immediately concede, she must eventually

become convinced of the buyer’s commitment by some T ∗ < ∞ and will then concede. Given
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that, however, no rational buyer will concede to her on [T ∗ − ε,T ∗] for sufficiently small ε > 0

(strictly preferring to wait for the seller’s concession), implying that she must have conceded by

T ∗ − ε, a contradiction. The argument for (e) is analogous.

For the first part of (f), notice that at time T ∗, the buyer knows that the seller is committed to her

demand and so will immediately either concede or exit. For the second part, the seller likewise

knows that the buyer will never concede after T ∗, and so will immediately concede herself.

For (g), we can assume that v − pb > w for all buyers by (a). Given pb < ps and the seller’s

positive concession at t, the buyer would strictly prefer to concede, or respectively exit, an

instant after time t than on [t − ε, t] for ε > 0 small. Given (g), if Fs jumped at t > 04 then

Fb is constant on [t − ε, t], and hence the seller would prefer to concede strictly before t, a

contradiction which implies (h). Part (i) is immediate from the definitions.

Suppose that (j) did not hold, so that Fi(t) = Fi(t′) for some 0 < t < t′ ≤ T ∗ and i. Let

t∗i = sup{τ : Fi(τ) = Fi(t)}. Clearly, player j will not concede at τ ∈ (t, t∗i ) as conceding

slightly beforehand would strictly improve her payoff, and hence t∗s = t∗b. Since Fs and Uc,v,w
b

are continuous at t > 04 by (h) and (i), conceding at or slightly after t∗b delivers a strictly lower

buyer payoff than conceding at τ ∈ (t, t∗b). Hence, t∗b cannot be the supremum, a contradiction.

For (k), given that conceding at t is optimal for type (v,w) we can assume t ≥ 04 and that Fs

is continuous at t (if the seller conceded with positive probability at 03 or 04 then the buyer

wouldn’t), and at t′ by (g) and (h). So let D(v) = Uv,c
b (t) − Uv,c

b (t′) for t′ > t:

D(v) = −

∫ τ∈(t,t′)
(v − pb)e−rτdFs(τ) + (v − ps)

(
(1 − Fs(t))e−rt − (1 − Fs(t′))e−rt′

)
≥ 0

Notice that

dD(v)/dv = −

∫ τ∈(t,t′)
e−rτdFs(τ) + (1 − Fs(t))e−rt − (1 − Fs(t′))e−rt′

≥

(
1 −

(v − ps)
(v − pb)

) (
(1 − Fs(t))e−rt − (1 − Fs(t′))e−rt′

)
> 0

where the first inequality uses D(v) ≥ 0, and the second uses (1 − Fs(t))e−rt > (1 − Fs(t′))e−rt′

and ps > pb. Hence, D(v′) > 0. �

Proof of Proposition 1. Part (f) of Lemma 4 establishes the part (4) of the Proposition. By part

(a) of Lemma 4 we can assume ḡ(v,w) = 0 if v − w < pb. Part (b) of Lemma 4 means we can

focus on continuation games where Θc , ∅, so v1 is well defined.

For such games, I next establish parts (1) and (2) of the Proposition. By Lemma 4 part (j), Fi

is strictly increasing on (0,T ∗). This implies that if T ∗ > 0, the set of times Oc
i at which it

is optimal for some type of player i to concede, must be dense in (0,T ∗) ∩ (tk+1, tk). By the

skimming property only types (vk,w) ∈ Θc concede on (tk+1, tk). By Lemma 4 parts (h) and (i),
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we also have that Fs and so Uc,v,w
b are continuous at t > 0. Combined with the density of Oc

b in

(tk+1, tk) therefore, we must have that Uc,vk ,w
b is differentiable on that interval, with a derivative

equal to zero, dUc,vk ,w
b (t)/dt = 0. This immediately implies that the seller must concede at rate

λvk

s on that interval.

A buyer of type (v,w) ∈ Θe, with λv,w > λvk

s prefers to exit earlier on (tk+1, tk) than later, as the

inequality implies dUe,v,w
b (t)/dt < 0 on that interval. Moreover, given the skimming property

and the continuity of Ue,v,w
b at t > 0 (parts (h) and (i) of Lemma 4), such a buyer would prefer to

concede at some point in (tk+1, tk) rather than at a later time t ≥ tk (as any seller concession after

tk is even slower). Likewise, if λv,w < λvk

s for (v,w) ∈ Θe, then such a buyer prefers to concede

later on (tk+1, tk) than earlier as dUe,v,w
b (t)/dt > 0. Given the skimming property, therefore, she

will not concede before tk (as any seller concession before tk+1 is even faster).

I next claim that Fb is continuous on (tk+1, tk). If Fb jumped at some t ∈ (tk+1, tk), then Fs would

necessarily be constant on [t− ε, t], for some small ε ∈ (0, t− tk+1], because we have established

that the buyer will not exit on (tk+1, tk), while the seller prefers that the buyer concedes to her,

rather than that she concedes. This, however, would contradict the required seller concession

rate of λvk

s on that interval.

Given the continuity of Fb and Eb on (tk+1, tk), U s is also continuous, by Lemma 4 part (i).

Combined with the fact that Oc
s is dense in (tk+1, tk), we must then have dUs(t)/dt = 0 and so

the buyer must concede at rate λb.

I next argue that (without loss) the buyer never concedes or exits at 03 and the seller never

concedes at 04. Suppose instead that a seller conceded with positive probability at time 04, then

certainly a rational buyer cannot concede or exit at 03 or 04 (or the buyer would strictly prefer to

concede or exit an instant after 04). Hence, outcomes are not affected by switching such seller

concessions to time 03. Likewise, if the buyer conceded or exited at 03, then certainly the seller

cannot concede at 03 or 04, or the buyer’s decision would not be optimal. Hence, outcomes are

not affected by moving any buyer concession or exit to time 04.

Next consider part (3) or the proposition, and suppose the buyer concedes with probability

strictly greater than αpb/(ps − pb) at tk. If tk ∈ (0,T ∗], since Fb has at most finitely many

jumps at times tK , ..., t1, there exists some ε > 0 such that the seller would prefer to concede an

instant after tk than on (tk−ε, tk]. However, this would contradict that Fs is strictly increasing on

(0,T ∗), Lemma 4 part (j). Hence, such large concession requires tk = 04 (recall, we can assume

no buyer concession or exit at 03). Clearly, in this case seller will not concede at 03 (or 04).

Now suppose the buyer concedes with probability strictly less than αpb/(ps − pb) at time tk. If

tk < T ∗, then the seller would prefer to concede at tk compared to conceding on (tk, tk + ε] for

sufficiently small ε > 0. However, this would contradict that Fs is strictly increasing on (0,T ∗),

Lemma 4 part (j). Hence, such small concession requires tk = T ∗. If tk = 04, a rational seller

would prefer to concede at 03 rather than at 04 or (0, ε), and hence without loss, any rational
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buyer must have always conceded by 04 = T ∗.

�

Proof of Lemma 2. First notice that if seller never concedes at 03 or 04, then any buyer exit and

concession by a rational buyer at 03 or 04 can instead be moved to 02 without affecting outcomes

or incentives. Henceforth, therefore, assume that if F pb
s (04) = 0 for all buyer demands pb ∈ P

made with positive probability, then for such demands Epb
b (04) = F pb

b (04) = 0.

Let ṽpb = max{v :
∑

(v,w)∈Θc µ
ps
s (pb) > 0}. By the skimming property (Lemma 4) the payoff

for (ṽpb ,w) ∈ Θc from demanding pb ∈ P is F pb
s (04)(ṽpb − pb) + (1 − F pb

s (04))(ṽpb − ps),

while her payoff from demanding p′b is at least F
p′b
s (04)(ṽpb − pb) + (1 − F

p′b
s (04))(ṽpb − ps). If

F
p′b
s (04)(ps − p′b) > F pb

s (04)(ps − pb) then type ṽpb will not imitate type pb (a contradiction).

On the other hand, if F
p′b
s (04)(ps − p′b) < F pb

s (04)(ps − pb) then type ṽp′b will not imitate type

p′b. Hence, if pb and p′b are both imitated with positive probability by some buyer in Θc then

F
p′b
s (04)(ps − p′b) = F pb

s (04)(ps − pb); if pb < p′b therefore F
p′b
s (04) ≥ F pb

s (04). If p′b > pb ∈ Pb,

and p′b is demanded with positive probability by some rational buyer, then some Θc buyer must

demand pb with positive probability: if not, (1− z̄pb
b )xpb = 0, so a rational seller will immediately

concede and F
p′b
s (04)(ps − p′b) < F pb

s (04)(ps − pb), a contradiction.

Let v̌pb be the maximum value buyer such that some (v̌pb ,w) ∈ Θc demands pb with positive

probability, but has not always conceded by time 04. Suppose that p′b > pb ∈ Pb is demanded

with positive probability by rational buyers but v̌p′b is not well defined because all those buyers

concede or exit by 04, F
p′b
b (04)+E

p′b
b (04) = 1− z̄b > 0. A rational seller must therefore concede at

03 after p′b with strictly positive probability (or we could move the buyer’s concession and exit to

02), and so F
p′b
s (04)(ps−p′b) = F pb

s (04)(ps−pb) > 0. The payoff of type (v,w) ∈ Θe who demands

p′b and exits at 04 is then w + F
p′b
s (04)(v − p′b − w). Her payoff to demanding pb and exiting at

04 is then strictly larger w + F pb
s (04)(v − pb − w) = w + F

p′b
s (04)(v − pb − w)(ps − p′b)/(ps − pb)

since (v − pb − w)/(ps − pb) is decreasing in pb < p′b when v − ps > w. This implies xp′b = 1,

and so since the buyer concedes at 04 after p′b with positive probability (F
p′b
b (04) = 1 − z̄b)

the seller strictly prefers to concede an instant after 04 than at 03, a contradiction. This shows

v̌p′b is well defined. We know that F
p′b
s (04)(ps − p′b) = F pb

s (04)(ps − pb) and so must have

F pb
s (04) < 1 − z̄b = F pb

s (T ∗,pb) for pb ∈ Pb with pb < p′b, and hence v̌pb is also well defined.

The argument above shows more generally that (without loss of generality) a buyer with value

(v,w) ∈ Θe will never demand p′b > pb ∈ Pb and then exit at time 0.

I next claim that v̌pb = v̌p′b . Suppose instead v̌pb < v̌p′b . The payoff to (v̌pb ,w) ∈ Θc from

demanding pb is F pb
s (04)(ps − pb) + (v̌pb − ps), which is also her payoff from demanding p′b

and then conceding an instant after 04 (we established F
p′b
s (04)(ps − p′b) = F pb

s (04)(ps − pb)

above). However, the payoff to type (v̌pb ,w) from demanding p′b and waiting to concede after

the positive interval on which she receives concession at rate λ
v̌p′b ,p′b
s > λ

v̌pb ,p′b
s , (by Lemma 1)

is strictly larger, a contradiction. Similarly, if v̌pb > v̌p′b then v̌p′b will profitably deviate by
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demanding pb. Hence, v̌p′b = v̌pb .

Recall that a player with value vm with m ≥ 1 is indifferent between conceding at any point
in the interval [tm+1,pb , tm,pb] after demanding pb. Now assume: (i) for any v, a rational buyer
with that value is indifferent between demanding pb before conceding at tm+1,pb or demanding
p′b > pb before conceding at tm+1,p′b ; and (ii) tm+1,p′b ≥ tm+1,pb and F

p′b
s (tm+1,p′b) ≥ F pb

s (tm+1,pb)

(both strictly if tm+1,p′b > 0). Clearly (ii) implies e−rtm+1,pb (1 − F pb
s (tm+1,pb)) ≥ e−rtm+1,p′b (1 −

F
p′b
s (tm+1,p′b)). Let the difference in payoffs for a buyer with value v between demanding pb ∈ Pb

before conceding at tm,pb or demanding p′b > pb before conceding at time tm,pb be Dm(v) =

Uc,pb,v(tm,pb) − Uc,p′b,v(tm,p′b). Given (i) we have Dm(v) = Dm(v) − Dm+1(v), and so:

Dm(v) =

∫ tm+1,pb<τ<tm,pb

e−rτ(v − pb)dF pb
s (τ) −

(
e−rtm+1,pb (1 − F pb

s (tm+1,pb )) − e−rtm,pb (1 − F pb
s (tm,pb ))

)
(v − ps)

−

∫ tm+1,p′b<τ<tm,p′b

e−rτ(v − p′b)dF p′b
s (τ) +

(
e−rtm+1,p′b (1 − F p′b

s (tm+1,p′b )) − e−rtm,p′b (1 − F pb
s (tm,p′b ))

)
(v − ps)

which implies,

dDm(v)
dv

=

∫ tm+1,pb<τ<tm,pb

e−rτdF pb
s (τ) −

(
e−rtm+1,pb (1 − F pb

s (tm+1,pb)) − e−rtm,pb (1 − F pb
s (tm,pb))

)
−

∫ tm+1,p′b<τ<tm,p
′
b

e−rτdF
p′b
s (τ) +

(
e−rtm+1,p′b (1 − F

p′b
s (tm+1,p′b)) − e−rtm,p

′
b (1 − F pb

s (tm,p′b))
)

= −
ps − pb

vm − pb
e−rtm+1,pb (1 − F pb

s (tm+1,pb))
(
1 − e−r(tm,pb−tm+1,pb ) 1 − F pb

s (tm,pb)
1 − F pb

s (tm+1,pb)

)
+

ps − p′b
vm − p′b

e−rtm+1,p′b (1 − F
p′b
s (tm+1,p′b))

(
1 − e−r(tm,p

′
b−tm+1,p′b ) 1 − F

p′b
s (tm,p′b)

1 − F
p′b
s (tm+1,p′b)

)
where the second line imposes that type vm is indifferent between conceding at tm+1,pb or tm,pb

for any demand pb (as required by Lemma 1), that is:

∫ tm+1,pb<τ<tm,pb

e−rτdF pb
s (τ) = (e−rtm+1,pb (1 − F pb

s (tm+1,pb)) − e−rtm,pb (1 − F pb
s (tm,pb))

vm − ps

vm − pb

and also (vm − ps)/(vm − pb) − 1 = −(ps − pb)/(vm − pb).

Other things equal it is clear that dDm(v)/dv is strictly decreasing in tm,pb and strictly increasing

in tm,p′b and equals 0 when both tm,p′b = tm+1,p′b and tm,pb = tm+1,pb .

Given some equilibrium tm,p′b , tm+1,p′b and tm+1,pb we must have T ∗,pb ≥ tm+1,pb + tm,p′b − tm+1,p′b .

Suppose not, then let tm,p′b − tm+1,p′b = q > T ∗,pb − tm+1,pb . Since λv,pb
s ≤ λ

vm,pb
s < λ

vm,p′b
s for all

v ≤ vm (since pb < p′b) we have (1 − F pb
s (T ∗,pb))/(1 − F pb

s (tm+1,pb)) > e−λ
vm ,pb
s q ≥ e−λ

vm ,p′b
s q =

(1 − F
p′b
s (tm,p′b))/(1 − F

p′b
s (tm+1,p′b)), and so given F

p′b
s (tm+1,p′b) ≥ F pb

s (tm+1,pb) by (ii) we would

then have (1 − F pb
s (T ∗,pb)) > 1 − F pb

s (tm,p′b)) ≥ z̄s, a contradiction since pb ∈ Pb. Suppose next

that q = tm,p′b − tm+1,p′b = tm,pb − tm+1,pb and in this case let D̂v(q) be dDm(v)/dv defined as a
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function of q. We then have:

dD̂v(q)
dq

= −re−rtm+1,pb (1 − F pb
s (tm+1,pb))e−(r+λ

vm ,pb
s )q + re−rtm+1,p′b (1 − F

p′b
s (tm+1,p′b))e−(r+λ

vm ,p′b
s )q

where I use the identity r + λ
vm,pb
s = r(vm − pb)/(ps − pb). Given that e(r+λ

vm ,p′b
s )qdD̂v(q)/dq is

strictly decreasing in q (since λ
vm,p′b
s > λ

vm,pb
s ) and e−rtm+1,pb (1 − F pb

s (tm+1,pb)) ≥ e−rtm+1,p′b (1 −

F
p′b
s (tm+1,p′b)) (because of (ii)) we have dD̂v(0)/dq ≤ 0, and dD̂v(q)/dq < 0 for all q > 0. Since

D̂v(0) = 0 we must have D̂v(q) < 0 for all q > 0. Since dDm(v)/dv is strictly decreasing in tm,pb ,

if tm,pb − tm+1,pb ≥ tm,p′b − tm+1,p′b then dDm(v)/dv ≤ 0 with dDm(v)/dv < 0 when tm,p′b > tm+1,p′b .

On the flip side, if dDm(v)/dv ≥ 0 then we must certainly have tm,pb − tm+1,pb ≤ tm,p′b − tm+1,p′b .

I next claim that we always have dDm(v)/dv ≤ 0. Suppose not, so that dDm(v)/dv > 0. Since

Dm(vm) = 0 we must have D(v) < 0 for all v < vm. Hence, all such buyers would strictly prefer

to demand p′b and concede at tm,p′b than demand pb and concede at tm,pb . This would then imply

that T ∗,pb = tm,pb . However, we observed above that T ∗,pb ≥ tm+1,pb + tm,p′b − tm+1,p′b and so

tm,pb − tm+1,pb ≥ tm,p′b − tm+1,p′b , but this implies dDm(v)/dv ≤ 0, a contradiction.

We have established that one of the following hold: (a) dDm(v)/dv < 0 and no player with

v < vm imitates p′b only to concede, or (b) dDm(v)/dv = 0. In case (b) we have tm,pb − tm+1,pb ≤

tm,p′b − tm+1,p′b and so given (ii), tm,p′b ≥ tm,pb and F
p′b
s (tm,p′b) ≥ F pb

s (tm,pb), strictly if tm,p′b >

0. Furthermore, in either case (a) or (b), given Dm+1(v) = 0 for all v by (i), there is some

t̂m,pb ∈ [tm+1,pb , tm,pb] such that all buyer types are indifferent between demanding p′b before

conceding at tm,p′b or demanding pb before conceding at t̂m,pb where t̂m,pb ≤ tm,p′b and F
p′b
s (tm,p′b) ≥

F pb
s (tm,pb), both strictly if tm,p′b > 0 (where t̂m,pb = tm,pb if dDm(v)/dv = 0). Since m is arbitrary,

induction establishes that all (v,w) ∈ Θc weakly prefer pb ∈ Pb over p′b > pb.

Next, consider the incentives of a player (v,w) ∈ Θe. I claim that such a buyer would never

demand p′b > pb ∈ Pb. We already saw that (without loss of generality) such a buyer would

never demand p′b only to exit at 04. Suppose then that it was optimal for such a player to demand

p′b before exiting at tm,p′b > 0. We can assume tm,p′b > tm+1,p′b , as otherwise it is optimal to exit

at tm+1,p′b , and hence Dm+1(v) = 0. Given tm,p′b > tm+1,p′b we established that all rational buyers

must be indifferent between demanding pb before conceding at time t̂m,pb and demanding p′b
before conceding at time tm,p′b > 0. However, in that case our Θe a buyer must strictly prefer

to demand pb before exiting at t̂m,pb to demanding p′b before exiting at tm,p′b . To see this, let

D̂m(v,w) = Ue,v,w,pb(t̂m,pb) − Ue,v,w,p′b(tm,p′b) be the increase in payoffs from this deviation:

D̂m(v,w) = (e−rt̂m,pb (1 − F pb
s (t̂m,pb)) − e−rtm,p

′
b (1 − F pb

s (tm,p′b)))(w − v + ps) > 0

where the first equality follows from Ue,v,w,pb(t) = Uc,v,pb(t) + e−rt(1 − F pb
s (t))(w − v + ps)

and Uc,v,pb(t̂m,pb) = Uc,v,p′b(tm,p′b), and the inequality from e−rt̂m,pb (1 − F pb
s (t̂m,pb)) > e−rtm,p

′
b (1 −

F pb
s (tm,p′b)) and w > v − ps. Hence, demanding p′b is never optimal for (v,w) ∈ Θe.
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Since Θe buyers only demand p, any Θc buyer cannot demand pb ∈ P \ Pb because otherwise

xpb = 1 so that the buyer (and not the seller) would immediately concede by Lemma 4 (part

e). �

Proof of Lemma 3. I first establish parts (a), (b), and (c). Suppose by way of contradiction that

limn Fn
s (04) < 1. Since z̄n

s = 1 − Fn
s (T ∗) ≥ (1 − Fn

s (04))e−λ
v
sT
∗,n

by Lemma 1, we must have

T ∗,n → ∞.

For (a), define t∗ = −ln(limn z̄n
b − ε)/λb < ∞ for some ε ∈ (0, limn z̄n

b). For all large enough n we

must have T ∗,n ≤ t∗ since limn z̄n
b − ε < z̄n

b = 1 − En
b(T ∗,n) − Fn

b(T ∗,n) ≤ e−λbT ∗,n by Lemma 1, a

contradiction. Given this, for claims (b), and (c) assume limn z̄n
s = 0

For (b), notice that 1 − En
b(t) − Fn

b(t) ≤ e−λbt by Lemma 1. Hence by the skimming property

(Lemma 4, part (k)), for any ε ∈ (0, limn ḡn(v,w)) for large n, at time t∗ = −ln(limn ḡn(v,w) −

ε)/λb < ∞ all remaining rational buyers with (v′,w′) ∈ Θc must have v′ ≤ v < pb + ps and

hence λb > λv
s ≥ λ

v′
s . But since z̄n

b = 1 − En
b(T ∗,n) − Fn

b(T ∗,n) ≤ e−λbT ∗,n and z̄n
s = 1 − Fn

s (T ∗,n) ≥

(1 − Fn
s (04))e−λ

v
st
∗−λv

s(T
∗,n−t∗) (by Lemma 1) we have

1 − Fn
s (04) ≤

z̄n
s

z̄n
b

e(λv
s−λb)(T ∗,n−t∗)+(λv

s−λb)t∗ ≤ Le(λv
s−λb)(T ∗,n−t∗)+(λv

s−λb)t∗

where the right hand side converges to 0 as T ∗,n → ∞ since λv
s−λb < 0. This clearly contradicts

limn Fn
s (0) , 1.

For (c), notice that type (v′,w′) ∈ Θe only demands p (given Lemma 2 and z̄n
s < 1) so that

limn ḡn(v′,w′) ≥ g(v′,w′) > 0, and will not exit until after any type (v1,w) ∈ Θc, by Lemma 1.

For any ε ∈ (0, limn ḡn(v′,w′)) let t∗ = −ln(limn ḡn(v,w) − ε)/λb < ∞. Since 1 − En
b(t) − Fn

b(t) ≤

e−λbt, for large n, by time t∗ all (v1,w) ∈ Θc must have conceded, and so t∗ ≥ T ∗,n, which

contradicts T ∗,n → ∞.

I now turn to the proof of parts (d) and (e) and (f). The logic for (d) and (e) is almost identical

to that for (a) and (b). Given pb > p we must have xn = 1 (given Lemma 2) so that z̄n
b =

1 − Fn
b(T ∗,n) = (1 − Fn

b(04))e−λbT ∗,n by Lemma 1. Hence, if limn Fn
b(04) < 1 then we must have

T ∗,n → ∞.

For (d) notice that z̄n
s = 1−Fn

s (T ∗,n) ≤ e−λ
v1
s T ∗,n by Lemma 1, which implies limn T ∗,n is bounded

above by −ln(limn z̄s)/λv1

s < ∞, a contradiction.

For (e), by assumption v1 − ps > pb and so λv1

s > λb. For both players to reach a probability 1

reputation at T ∗,n we need z̄n
s = 1 − Fn

s (T ∗,n) ≤ e−λ
v1
s T ∗,n and (1 − Fn

b(04)) ≤ z̄n
beλbT ∗,n , and so

(1 − Fn
b(04)) ≤

z̄n
b

z̄n
s
e(λb−λ

v1
s )T ∗,n ≤ Le(λb−λ

v1
s )T ∗,n

where the right-hand side clearly converges to 0 as T ∗,n → ∞, implying limn Fn
b(04) = 1, a
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contradiction.

For (f), suppose limn Fn
b(04)+En

b(04) < 1. By time t2,n only rational buyers with type (v1,w) ∈ Θc

remain; recall t2,n = min{t ≥ 04 : Fn
b(t) ≥

∑
(v,w)∈Θc:v≥v2 ḡn(v,w)}. We clearly have Fn

b(t2,n
− ) =

sups<t2,n Fn
b(s) ≤

∑
(v,w)∈Θc:v>v1 ḡn(v,w). First consider some subsequence for which t2,n > 0 for

all n. By Lemma 1 the probability of concession at t2,n > 0 must satisfy (Fn
b(t2,n)−Fn

b(t2,n
− ))(ps−

pb)/pb ≤ En
b(t2,n) − En

b(t2,n
− ) where the right hand side is certainly less than 1 − xn and so for

small enough ε > 0, for all sufficiently large n

Fn
b(t2,n) ≤ (1 − xn)pb/(ps − pb) +

∑
(v,w)∈Θc:v>v1

ḡn(v,w) < lim
n

∑
(v,w)∈Θc

ḡn(v,w) − ε.

And so, we have 1 − Fn
b(t2,n) − En

b(t2,n) ≥ ε for all sufficiently large n.

Similarly, suppose along some subsequence we always have t2,n = 04, then En
b(04) = (1− xn)(1−

z̄n). For this subsequence, since limn Fn
b(04) + En

b(04) < 1, we must have limn Fn
b(04) < limn xn

and so 1−Fn
b(t2,n)−En

b(t2,n) ≥ ε for some ε > 0. For any subsequence with t2,n = 04 or t2,n > 04,

therefore, we must have 1 − Fn
b(t2,n) − En

b(t2,n) ≥ ε for some ε > 0 for all large n. In that case,

we must have z̄n
b = 1 − Fn

b(T ∗,n) − En
b(T ∗,n) = (1 − Fn

b(t2,n) − En
b(t2,n))e−λb(T ∗,n−t2,n) and so clearly

(T ∗,n − t2,n)→ ∞. Combined with z̄s = 1 − Fn
s (T ∗,n) ≤ e−λ

v1
s T ∗,n we get

(1 − Fn
b(t2,n) − En

b(t2,n)) ≤
z̄b

z̄s
e(λb−λ

v1
s )(T ∗,n−t2,n)−λv1

s t2,n ≤ Le(λb−λ
v1
s )(T ∗,n−t2,n)

where the right hand side must converge to 0 given that λb < λv1

s and (T ∗,n − tn) → ∞. This

contradicts (1 − Fn
b(t2,n) − En

b(t2,n)) ≥ ε > 0 for large n. �

Proof of Proposition 2. In order to reduce notation, I will drop the superscript n from all vari-

ables (e.g. zn
s becomes zs) but will still take limits as n → ∞ (e.g. limn zs = 0). I first present

some preliminary observations.

Notice that by choosing ε′ > 0 sufficiently small, a ε′ rich commitment type space must have

p ≤ ε′ < min{v−w : (v,w) ∈ Θ}. Moreover, let p̃s = max{ps ∈ Ps : ps ≤ min{p∗, v−w : (v,w) ∈

Θ}}, then for small enough ε′ > 0, we have p̃s > p, and a rational seller will always demand

ps ≥ p̃s. To see this, notice that demanding p̃s guarantees that x p̃s = 1 and since p̃s ≤ p∗, any

counterdemand pb ∈ Pb will imply λv,pb,p̃s
s > λ

pb, p̃s
b given pb < p̃s ≤ min{p∗, v − w}. After any

counterdemand pb ∈ Pb the buyer makes with positive limit probability (for some subsequence)

we must have limn z̄pb,p̃s
b /z̄ p̃s

s ≤ L′ for some constant L′. Hence, by Lemma 3, the buyer must

concede with probability approaching 1 in the limit. This would guarantee the seller a payoff of

at least p̃s in the limit and so she certainly won’t demand less. This means a rational seller will

never demand ps > v − w for large n as she would then need to immediately concede against

any counterdemand (Lemma 4, part (a)), giving her a limit payoff of p.

Suppose the seller demands ps with positive limit probability, then limn z̄ps
s = 0 and for any
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counterdemand limn z̄ps
s /z̄

ps,p
b ≤ L′ for some constant L′. If ps > v − w we can define v0,ps =

max{v ∈ V : v < v1,ps}. Suppose that λv0,ps ,w,ps,p < λ
v1,ps ,ps,p
s , then Lemma 2, implies that

(v0,ps ,w) ∈ Θe,ps counterdemands p. Lemma 3 then implies the seller must concede with prob-

ability approaching 1 in the limit, giving her with a limit payoff of p (as all buyers will then

demand p). This is a contradiction, as we already established the seller can guarantee a payoff

of p̃s > p. Hence, a rational seller can’t make such a demand with positive limit probabil-

ity and we can effectively restrict attention to seller demands, ps ∈ P∗s = {ps ∈ Ps : ps <

v − w or λv0,ps ,w,ps,p > λ
v1,ps ,ps,p
s }. Also notice that for any sufficiently small ε′ > 0 we must also

have that (ps − p)g(v,w) > p(1− g(v,w)) for all ps ≥ p̃s and (v,w) ∈ Θ; henceforth assume this.

I next establish the upper bound on the buyer’s payoff in Proposition 2. Recall that if the seller

demands ps ∈ P∗s, with ps ≥ p̃s, then by Lemma 2 no buyer with (v,w) ∈ Θe,ps will counterde-

mand ps > p, where p ≤ ε′ ≤ δ in a small ε′ > 0 rich set of commitment types. Hence, the best

case for the seller who demands price ps is that all types (v,w) ∈ Θc,ps accept her demand and

all types (v,w) ∈ Θe,ps demand p, giving her a payoff of at most (1−H(ps))ps + δ. For the seller

to obtain a limit payoff larger than maxp∈[0,p∗+2ε](1 − H(p))p + δ, therefore, she must demand

ps > p∗ + 2ε with positive limit probability; assume this.

Define p̂ps
b = min{pb ∈ Pb : pb > v1,ps − ps}. I claim that p̂ps

b is well defined and p̂ps
b < p∗ + 2ε

given a small ε′ > 0 rich set of commitment types. There are two cases to consider, (a) ps < v−w

and (b) ps > v − w. First consider case (a) where v1,ps = v. Since v − w > ps > p∗ + 2ε

we must have w < v/2 < ps − 2ε, and so v − ps < ps − 4ε. When ε′ ≤ ε/2, there exists

pb ∈ [v − ps, v − ps + ε] ∩ Pb in any ε′ rich commitment type space, and so p̂ps
b is not only well

defined but p̂ps
b ≤ v − ps + ε ≤ v/2 − ε < p∗.

Next consider case (b). Let ε̂ = maxd∈[v,v] minv∈V |d − v|. Given that a rational buyer’s type

space is ε rich, we must have that ε̂ < ε. Since v1,ps , v we have v0,ps well-defined. Moreover,

since v1,ps − 2ε̂ ≤ v0,ps < ps + w, we must have v1,ps − ps < w + 2ε̂. Given ε′ ≤ ε − ε̂, there

must be some pb ∈ [w + 2ε̂,w + 2ε) ∩ Pb in a ε′ rich commitment type space, and hence p̂ps
b is

well-defined with p̂ps
b < w + 2ε < ps. Also notice that p̂ps

b > v1,ps − ps > w > p.

Without loss of generality, I will assume that types (v1,ps ,w) ∈ Θc never concede with positive

probability at time 02. They will certainly never do so if the seller concedes at time 03 for

some counterdemand, but if F ps,pb
s (04) = 0 for all pb < ps then it makes no difference having

(v1,ps ,w) ∈ Θc concede at 04 instead of at 02.

I next claim that limn F
ps, p̂

ps
b

s (04) = 1. Suppose not, so that limn F
ps, p̂

ps
b

s (04) < 1. This clearly

requires limn z̄
ps,p̂

ps
b

b = 0 and limn ḡps,p̂
ps
b (v1,ps ,w) = 0 for all (v1,ps ,w) ∈ Θc,ps by Lemma 3.

Our assumption limn F
ps, p̂

ps
b

s (04) < 1 implies the subclaim, limn t2,ps,p̂
ps
b = ∞. To see this, notice

that we need z̄ps
s eλ

v,ps ,p̂
ps
b

s t2,ps , p̂
ps
b +λ

v1,ps ,ps , p̂
ps
b

s (T ∗,ps ,p̂
ps
b −t2,ps , p̂

ps
b ) ≥ 1 − F

ps, p̂
ps
b

s (04) for the seller to reach

a probability 1 reputation at T ∗,ps, p̂
ps
b ; this immediately implies T ∗,ps,p̂

ps
b → ∞. For the buyer to
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do likewise we need z̄
ps, p̂

ps
b

s eλ
ps , p̂

ps
b

b T ∗,ps ,p̂
ps
b
≤ 1 and so:

1 − F
ps,p̂

ps
b

s (04) ≤
z̄ps

s

z̄
ps,p̂

ps
b

b

e(λ
v,ps , p̂

ps
b

s −λb)t2,ps , p̂
ps
b +(λ

v1,ps ,ps , p̂
ps
b

s −λ
ps , p̂

ps
b

b )(T ∗,ps , p̂
ps
b −t2,ps , p̂

ps
b ).

This inequality combined with limn T ∗,ps,p̂
ps
b = ∞ and limn F

ps,p̂
ps
b

s (04) < 1 and limn z̄ps
s /z̄

ps,p̂
ps
b

b ≤

L′ for some constant L′, implies the subclaim limn t2,ps,p̂
ps
b = ∞.

By demanding p̂ps
b type (v1,ps ,w) ∈ Θc,ps secures a payoff of at least

(v1,ps − p̂ps
b )

(
F

ps,p̂
ps
b

s (04) +

∫ 04<t<t2,ps , p̂
ps
b

e−rtdF
ps,p̂

ps
b

s (t)
)

(1)

≥(v1,ps − p̂ps
b )

(
F

ps,p̂
ps
b

s (04) +
v2,ps − ps

v2,ps − p̂ps
b

(1 − F
ps,p̂

ps
b

s (04) − e−rt2,ps , p̂
ps
b (1 − F

ps, p̂
ps
b

s (t2,ps,p̂
ps
b )))

)
where the second inequality follows from the fact that v2,ps would find it optimal to concede at

t2,ps,p̂
ps
b conditional on demanding p̂ps

b , that is:

∫ 04<t<t2,ps , p̂
ps
b

e−rtdF
ps,p̂

ps
b

s (t) ≥
v2,ps − ps

v2,ps − p̂ps
b

(1 − F
ps,p̂

ps
b

s (04) − e−rt2,ps ,p̂
ps
b (1 − F

ps,p̂
ps
b

s (t2,ps,p̂
ps
b ))).

Since t2,ps,p̂
ps
b → ∞, the right hand side of (1) converges to

(v1,ps − p̂ps
b )

(
lim

n
F

ps,p̂
ps
b

s (04) +
v2,ps − ps

v2,ps − p̂ps
b

(1 − lim
n

F
ps,p̂

ps
b

s (04))
)
. (2)

Now suppose some type (v1,ps ,w) ∈ Θc,ps optimally demands pb > p̂ps
b with positive limit

probability. Since v1,ps − ps < pb, Lemma 3 implies the seller must immediately in the limit,

limn F ps,pb
s (04) = 1, giving the value v1,ps buyer a payoff of v1,ps − pb. A type (v,w) buyer must

be indifferent between pb and p̂ps
b before conceding at 04 (see precise argument in the proof of

Lemma 2) and so F
ps, p̂

ps
b

s (04) = F ps,pb
s (04)(ps − p′b)/(ps − p̂ps

b ). This, however, means the lower

bound limit payoff (2) equals (v1,ps − p̂ps
b )(v2,ps − p′b)/(v2,ps − p̂ps

b ). But that strictly exceeds

v1,ps − p′b given that (v2,ps − p′b)/(v2,ps − p̂ps
b ) is strictly increasing in v2,ps , a contradiction.

Next suppose some type (v1,ps ,w) ∈ Θc,ps optimally demands pb ∈ (p, p̂ps
b ) ∩ Pb with positive

limit probability, then since pb < v1,ps− ps the buyer must concede with probability approaching

1 (by Lemma 3), to give the value v1,ps buyer a limit payoff of v1,ps− ps; and so limn F ps,pb
s (04) =

0. Clearly, this implies limn F
ps, p̂

ps
b

s (04) = 0, but even then, the lower bound limit payoff (2) is

(v1,ps− p̂ps
b )(v2,ps−ps)/(v2,ps− p̂ps

b ), which strictly exceeds v1,ps−ps since (v2,ps−ps)/(v2,ps− p̂ps
b )

is strictly increasing in v2,ps , a contradiction.

The final possibility is that all (v1,ps ,w) ∈ Θc,ps only demand p in the limit, limn µ
ps,v1,ps ,w
b (p) = 1.

38



Given ps ∈ P∗s we have λv′,w′,ps,p < λ
v1,ps ,ps,p
s for all (v′,w′) ∈ Θc,ps . Hence, since (ps −

p)g(v1,ps ,w) > p(1 − g(v1,ps ,w)), the buyer must either concede or exit immediately with prob-

ability approaching 1 in the limit by Lemma 3, giving the value v1,ps buyer a limit payoff of

v1,ps − ps, which is again strictly less than the lower bound limit payoff of (2) she could have

obtained by demanding p̂ps
b (even when limn F

ps,p̂
ps
b

s (04) = 0), a contradiction.

This establishes the claim limn F
ps, p̂

ps
b

s (04) = 1. Given that, no rational buyer will propose a

price pb > p̂ps
b . This implies the seller’s payoff is at most (1−H(ps)) p̂ps

b +δ ≤ maxp∈[0,p∗+2ε](1−

H(p))p + δ since p̂ps
b < p∗ + 2ε < ps. This also shows (whether or not the seller demands

ps > p∗ + 2ε with positive limit probability), that the buyer enjoys a limit payoff of at least

max{v − (p∗ + 2ε),w}.

I now turn to the lower bound on seller payoffs. Let p̂s ∈ arg maxp∈[0,p∗](1 − H(p)) and recall

that p̌(p) = min{p,max{v − w ≤ p : v ∈ V}} and ε̂ = maxd∈[v,v] minv∈V |d − v| < ε, so that

p̌(p) ∈ [p−2ε̂, p]. Let ps = max{ps ∈ Ps : ps < p̌( p̂s)}, where ps ≥ p̃s < min{v−w : (v,w) ∈ Θ}

and ps ∈ [ p̂s−2ε, p̌( p̂s))∩Ps in any ε′ ≤ ε− ε̂ rich commitment type space. I next claim ps ∈ P∗s
for a small ε′ > 0 rich set of commitment types.

If v = v then since p̂s ≤ v − w we have p̌( p̂s) = p ≤ v − w, otherwise let ε̌ = min{v − v′ : v ,

v′ ∈ V} ∈ (0, v) and assume that 2ε′ ≤ wε̌/(v − ε̌).

Suppose that p̌( p̂s) ≤ v − w (as when v = v). This implies v1,ps = v. For v − w < ps, we have

λ
v,ps,p
s ≤ λ

v,ps,p
s < λv,w,ps,p, where the first inequality holds because v ≥ v and the second because

λv,w,ps,p is increasing in w. This implies ps ∈ P∗s.

Next suppose that p̌( p̂s) > v − w and so v1,ps − w = p̌( p̂s) < ps + 2ε′ and v0,ps = max{v ∈ V :

v < v1,ps} ≤ v1,ps − ε̌. In this case we have,

(v1,ps − ps)(v
0,ps − w) − wps <(w + 2ε′)(v0,ps − w) − w(v1,ps − w − 2ε′)

≤ (w + 2ε′)(v1,ps − ε̌ − w) − w(v1,ps − w − 2ε′) ≤(w + 2ε′)(v − ε̌ − w) − w(v − w − 2ε′) ≤ 0

where the first inequality follows from ps > v1,ps − w − 2ε′, the second from v0,ps ≤ v1,ps − ε̌,

the third from v1,ps ≤ v and the fourth from 2ε′ ≤ wε̌/(v − ε̌). Furthermore, notice that

(v1,ps − ps)(v
0,ps − pb − w) − w(ps − pb) (3)

is decreasing in pb given v1,ps − ps > w and so must be negative for any pb ∈ (0, ps). I claim this

implies λ
ps,p,v

1,ps

s < λps,p,v,w for all (v,w) ∈ Θe,ps , so that ps ∈ P∗s. Clearly, the inequality holds

for (v0,ps ,w) by the negativity of (3). Since (3) is increasing in v0,ps , it must likewise hold for

any (v,w) with v < v0,ps . Since (3) is decreasing in w, the claim must also hold for all (v,w) ∈ Θ

with v ≤ v0,ps and w ≥ w. If v ≥ v1,ps and v−w < ps, we again have λ
v1,ps ,ps,p
s ≤ λ

v,ps,p
s < λv,w,ps,p

(since the latter is increasing in w). And so, ps ∈ P∗s.
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Hence, suppose the seller demands ps, then since ps ≤ p∗ for any counterdemand pb < ps

we must have v − ps > pb for all (v,w) ∈ Θc,ps . To see this, notice that if v/2 ≥ ps then

v − ps ≥ v/2 ≥ ps > pb whereas if w ≥ ps then v − ps > w ≥ w ≥ ps > pb for (v,w) ∈ Θc,ps .

Hence, if a buyer with (v,w) ∈ Θc,ps demands pb > p with positive probability in the limit, she

must subsequently immediately concede with probability 1 in the limit by Lemma 3 to give her

payoffs of (v − ps) for all large n (since Θe,ps buyers only demand p).

As argued previously, it is without loss of generality to assume that type (v1,ps ,w) always makes

some counterdemand pb ∈ Pb, and so without loss she counterdemands p with probability ap-

proaching 1 in this limit (or she will get exactly (v1,ps − ps)). However, by Lemma 3, therefore,

the buyer concedes with probability approaching limn xps,p and exits with probability approach-

ing 1− limn xps,p at time 04 since (ps − p)g(v1,ps ,w) > p(1− g(v1,ps ,w)). And so, the demand ps

secures the seller a limit payoff of at least (1 − H(ps))ps ≥ maxp∈[0,p∗](1 − H(p))p − 2ε where

the inequality follows from ps ∈ [ p̂s − 2ε, p̂s]. �

Proof of Proposition 3. By assumption, for some p̂s ≤ p∗ we have p̌( p̂s)(1−H( p̌( p̂s))) > p(1−

H(p)) for all p ∈ [0, p̌( p̂s)) ∪ ( p̂s, p∗ + 2ε]. As in the proof of Proposition 2, let ps = max{ps ∈

Ps : ps < p̌( p̂s)} where ps ∈ ( p̌( p̂s) − 2ε′, p∗] with a ε′ > 0 rich set of commitment types.

As argued in the proof of Proposition 2, for ε′ > 0 small enough ps ∈ P∗s. Moreover, for any

ps ∈ P∗s with ps ∈ [ p̃s, p∗], all buyers immediately concede or exit with probability approaching

1 in the limit so the seller’s limit payoff is exactly (1−H(ps))ps (Lemma 3). Hence, the seller’s

payoff from demanding ps is at least (p̌( p̂s))(1 − H(p̌( p̂s))) − 2ε′.

If ps > min{v − w : (v,w) ∈ Θ} then let p† = max{p < p̌( p̂s) : H(p) < H( p̌( p̂s))}; notice

that H is constant on the non-degenerate interval (p†, p̌( p̂s)) and (1 − H(ps))ps is increasing

in ps on this interval so that (1 − H(ps))ps < (1 − H(ps))ps for ps ∈ (p†, ps). Let 2ε′ <

p̌( p̂s)(1 − H( p̌( p̂s))) − maxp≤p† p(1 − H(p)), where the right hand side is strictly positive by

assumption. Given this, the seller’s limit payoff from demanding ps < ps is less than from

demanding ps and so she won’t make such a demand for large n.

On the other hand, suppose that the seller demands ps > p∗ + 2ε, then as shown in the proof

of Proposition 2, for small ε′ > 0 the buyer will counterdemand pb ≤ p∗ + 2ε, which the seller

will immediately concede to with strictly positive probability, giving her a payoff less than

(p∗ + 2ε)(1 − H(p∗ + 2ε)) + ε′. And so, the seller’s best possible limit payoff from demanding

ps > p̂s, is always less than maxp∈( p̂s,p∗+2ε] p(1−H(p))+ε′. This payoff is strictly then less than

her payoff from proposing ps whenever 3ε′ < p̌( p̂s)(1−H( p̌( p̂s)))−maxp∈( p̂s,p∗+2ε] p(1−H(p)),

where the right hand side is strictly positive by assumption. Hence, the seller will never demand

ps > p̂s with positive limit probability. Hence, the seller only demands ps ∈ [ p̂s − 2ε, p̂s] ∩ P∗s
with positive limit probability, and since p̂s ≤ p∗, buyers’ either immediately concede or exit in

the limit. The bound on the buyer’s payoff is then immediate. �
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For Online Publication

Proof of Proposition 1

In order to prove this result I first define what I call a “straightforward” equilibrium in the

continuation game at 03 given ps ∈ Ps and pb ∈ Pb and beliefs (z̄s, z̄b, ḡ) where z̄i > 0.

I first define some preliminary objects that will help to describe such an equilibrium. For y ∈

[0, (1 − z̄b)x] let

k(y) = max{k ≤ K + 1 :
∑

(vm,w)∈Θc:m≥k

ḡ(vm,w)(1 − z̄b) ≥ y},

Clearly, k(0) = K + 1, and k((1 − z̄)x) = 1 if ḡ(v1,w) > 0 for (v1,w) ∈ Θc. This is decreasing

and upper semi continuous in y. Loosely, if fraction y of buyers have conceded by time t then

t ∈ (tk(y)+1, tk(y)]. Also define k(y) = k(y) if y < (1 − z̄)x and k((1 − z̄)x) = 0.

For k ∈ {1, ...,K} let

Ḡe(k) =
∑

(v,w)∈Θe:λv,w>λvk
s

ḡ(v,w)

while Ḡe(K + 1) = 0 and Ḡe(0) = 1 − x. Notice that Ḡe(k(y)) is increasing and lower semi

continuous in y.

Next define

π(y, ŷ) = (ps − pb)(ŷ − y) − pb(1 − z̄b)(Ge(k(ŷ)) −Ge(k(y))).

Loosely, this the difference between the present value payoff of pb a seller gets by conceding an

instant before time t, and the payoff she would receive conceding an instant after t, if at time t a

fraction (ŷ − y) of buyers concede and (1 − z̄b)(Ge(k(ŷ)) −Ge(k(y))) exit. And then let:

ỹ(ŷ) = min{y ≥ 0 : π(y, ŷ) ≤ 0}.

Loosely, ŷ − ỹ(ŷ) is the maximum probability of concession at time t (consistent with optimal

exit at t) such that the buyer prefers to concede an instant before t than an instant after t, when

fraction ŷ of buyers have conceded by t.

It is useful to outline equilibrium strategies starting at time T ∗ = t1, which I relabel as “time”

τ1 = 0, and more generally will define equilibrium objects in terms of τ = T ∗ − t ∈ [0,∞).

Define F̂1
s (τ1) = (1 − z̄s), F̂1

b(τ1) = (1 − z̄b)x, Ê1
b(τ1) = (1 − z̄b)Ge(1), and then by induction for

k ∈ {1, ...,K} and τ ≥ τk, let 1−F̂k
s(τ) = (1−F̂k

s(τk))eλ
vk
s (τ−τ1), Êk

b(τ) = Êk
b(τk), 1−Êk

b(τk)−F̂k
b(τ) =

(1 − Êk
b(τk) − F̂k

s(τk))eλb(τ−τk). Effectively, F̂k
s (respectively F̂k

b) correspond to the concession

probability of the seller (buyer) assuming she concedes at rate λvk

s (λb) on (t, tk) = (T ∗−τ,T ∗−τk)
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if Fi(tk
−) = F̂k

i (τk) and Eb(tk
−) = Êk

b(τk). Then for k ≤ K (where recall that vK = v) define

τk+1 = min{τ ≥ τk : ỹ(F̂k
b(τ)) < F̂k

b(τ) or k(F̂k
b(τ)) > k}

with F̂k+1
s (τk+1) = F̂k

s(τk+1), F̂k+1
b (τk+1) = ỹ(F̂k

b(τ)) and Êk+1
b (τk+1) = (1 − z̄b)Ge(k + 1). Notice

that we can have τk+1 = τk. In fact, define `k = max{` : τ` ≤ τk} ≥ k so that τ`
k

= τk.

Next define F̂s(0) = (1 − z̄s), F̂b(0) = (1 − z̄b)x, Êb(0) = (1 − z̄b)(1 − x), and if τ ∈ (τk, τk+1]

then F̂s(τ) = F̂k
s(τ), F̂b(τ) = F̂k

b(τ), Êb(τ) = Êk
b(τ) = (1 − z̄b)Ge(k). Let F̂s(τ) = F̂K

s (τ) for

τ ≥ τK+1 and then define τs = min{τ : F̂s(τ) ≥ 0}, τb = τK+1 and τ∗ = T ∗ = min{τb, τs}.

Finally, let Fs(03) = F̂s(τ∗), Eb(03) = Fb(03) = 0, then for t ∈ [04,T ∗] let Fs(t) = F̂s(τ∗ − t),

Fb(t) = F̂b(τ∗ − t) and Eb(t) = Êb(τ∗ − t).

By construction, for k ∈ {1, ...,K}, we have tk = τ∗−τk if τk < τ∗ and tk = 04 otherwise. Rational

player concession and exit strategies can clearly be backed out from these functions by skim-

ming property and Lemma 1; all such equilibria are payoff equivalent. Up to that equivalence,

the equilibrium is unique by construction. Also by construction, no player has a profitable de-

viation (so such strategies form an equilibrium). In particular, concession on (tk+1, tk) is at rates

λb and λvk

s respectively to make a rational seller or buyer (vk,w) ∈ Θc indifferent between con-

ceding on that interval. If τ∗ = 0 then Fs(03) = (1 − z̄s). Otherwise, buyer concession at tk ≥ 04

is calibrated to always leave a rational seller indifferent between conceding an instant before or

after tk (given the probability of exit at tk). As the next lemma shows, such an equilibrium is

continuous in players’ beliefs.

Lemma 5. Consider the continuation game at 03 after demands ps ∈ Ps and pb ∈ Pb with fixed

Θ. A unique straightforward continuation equilibrium exists, for which players’ continuation

payoffs are continuous at the beliefs (z̄s, z̄b, ḡ) where z̄i ≥ ziπi(pi) > 0.

Proof. To prove the result it is first necessary to establish the following inductive Claim: Con-

sider an arbitrary sequence of distributions (z̄n
s , z̄

n
b, ḡ

n) → (z̄n
s , z̄

n
b, ḡ

n). If limn τ
k,n = τk as well as

limn F̂k,n
b (τk,n) = Fk

b(τk) and limn Êk,n
b (τk,n) = Ek

b(τk), then limn τ
`,n = τ` for all ` ∈ {k+1, ..., `k+1}

and limn F̂`k+1,n
b (τ`

k+1,n) = F`k+1

b (τ`
k+1

) and limn Ê`k+1,n
b (τ`

k+1,n) = E`k+1

b (τ`
k+1

).

Subclaim 1. For any τ > τk we must have τ > τk,n for large n, limn F̂k,n
b (τ) = Fk

b(τ) and

limn k
n
(F̂k,n

b (τ)) ≤ k(F̂k
b(τ)) taking subsequences if necessary (so limits are defined). To see this,

notice that 1 − F̂k,n
b (τ) = (1 − F̂k,n

b (τk,n))eλ
vk
s (τ−τk,n) → 1 − F̂k

b(τ) then limn k
n
(F̂k,n

b (τ)) ≤ k(F̂k
b(τ))

follows from the upper semi continuity of k. More precisely, if
∑

(vm,w)∈Θc:m≥k′ ḡn(v,w)(1− z̄n
b) ≥

F̂k,n
b (τ) for all n, then the inequality also holds in the limit.

Subclaim 2. If k(F̂k
b(τ)) = k′ > k for τ ≥ τk then limn k

n
(F̂k,n

b (τ + ε)) ≥ k′ for any ε > 0, and so

if k(F̂k
b(τk+1)) > k then limn τ

k+1,n ≤ τk+1. This follows from
∑

(vm,w)∈Θc:m≥k′ ḡn(v,w)(1 − z̄n
b) >

F̂k
b(τ + ε/2) ≥ F̂k,n

b (τ + ε) for all large n.

Subclaim 3. We must have limn τ
k+1,n ≥ τk+1. Suppose not, so that limn τ

k+1,n < τk+1. Since

42



limn k
n
(F̂k,n

b (τ)) ≤ k(F̂k
b(τ)) = k for τ < τk+1, we have yn = ỹn(F̂k,n

b (τk+1,n)) < F̂k,n
b (τk+1,n) and

πn(yn, F̂k,n
b (τk+1,n)) = (ps − pb)(F̂k,n

b (τk+1,n) − yn) − pb(1 − z̄)(Ge,n(k) −Ge,n(k
n
(yn))) ≤ 0

where the inequalities are preserved in the limit, π(limn yn, F̂k
b(limn τ

k+1,n)) ≤ 0. We must have

limn yn ≤ limn F̂k,n
b (τk+1) = F̂k

b(τk+1) otherwise yn > F̂k
b(τ) for some τ < τk+1 and all large

n so that k̄n(yn) ≤ k̄n(F̂k
b(τ)) = k, so πn(yn, F̂k,n

b (τk+1,n)) = (ps − pb)(F̂k,n
b (τk+1,n) − yn) > 0, a

contradiction. This in turn implies limn yn < F̂k
b(limn τ

k+1,n) so that π(limn yn, F̂k
b(limn τ

k+1,n)) ≤

0 contradicts the definition of τk+1 > limn τ
k+1,n, establishing the subclaim.

Subclaim 4. We must have limn τ
k+1,n = τk+1. Suppose not so that limn τ

k+1,n > τk+1 +ε for some

ε > 0 and k
n
(F̂k,n

b (τk+1 +ε) = k for large n. For small enough ε′ > 0, we must have π(y, F̂k
b(τk+1))

is continuous and strictly decreasing in y on some interval y ∈ [−ε′, 0] + ỹ(F̂k
b(τk+1)) and k(y) is

constant. Then define yδ = min{ỹ(F̂k
b(τk+1)) − δ, 0}, for small enough δ > 0, we have

lim
n

(ps − pb)(F̂k,n
b (τk+1 + ε) − yδ) − pb(1 − z̄)(Ge,n(k) −Ge,n(k

n
(yδ)))

=(ps − pb)(F̂k
b(τk+1 + ε) − yδ) − pb(1 − z̄)(Ge(k) −Ge(k(yδ))) < 0.

And so, for all sufficiently large n we must have πn(yδ, F̂k,n
b (τk+1 + ε)) < 0, which contradicts

limn τ
k+1,n > τk+1 + ε, establishing the subclaim.

Subclaim 5. We must have τ`
k+1

= τk+1 = limn τ
k+1,n = limn τ

`k+1,n and F`k+1,n
b (τ`

k+1,n) ≤

F`k+1

b (τ`
k+1

). This adapts the arguments for subclaim 4. If the first part of subclaim 5 didn’t hold,

then limn τ
`k+1,n > τk+1, and so limn τ

l,n = τk+1 for l ∈ {k + 1, ..., k′} but limn τ
k′+1,n > τk+1 + ε

for some ε > 0 and k′ ∈ {k + 1, ..., `k − 1}. Define y̌l,n = F̂n,l
b (τl,n), ŷl,n = F̂n,l

b (τl+1,n), αn(1) = k

and αn( j + 1) = k
n
(ỹn(ŷ j,n)). Again taking a subsequence if necessary, αn( j) is constant in n for

large n, and then let k′ = αn( j′). Given πn(y̌α
n( j+1),n, ŷα

n( j),n) = 0, we have

j′−1∑
j=1

πn(y̌α
n( j+1),n, ŷα

n( j),n) = (ps−pb)(ŷk,n−y̌k′,n+

j′−1∑
j=2

(ŷα
n( j),n−ŷα

n( j),n)−pb(1−z̄b)(Ge,n(k)−Ge,n(k′)) = 0

Similarly, letting, y̌l = F̂n,l
b (τl,n), ŷl = F̂n

b(τl+1) we know πn(y̌`
k+1
, ŷk) = 0. Let yδ = min{y̌`

k+1
−

δ, 0} be defined as before, then for small δ > 0 we get

πn(yδ, F̂n,k′
b (τk+1 + ε)) = πn(yδ, F̂n

b(τk+1 + ε)) +

j′−1∑
j=1

πn(y̌α
n( j+1),n, ŷα

n( j),n) − πn(y̌`
k+1
, ŷk)

=(ps − pb)((y̌`
k+1
− yδ) + (ŷk,n − ŷk) + (F̂n,k′

b (τk+1 + ε) − y̌k′,n)

+

j′−1∑
j=2

(ŷα
n( j),n − ŷα

n( j),n)) − pb(1 − z̄b)((Ge,n(k) −Ge(k)) + (Ge(`k+1) −Ge,n(`k+1)))

→(ps − pb)((y̌`
k+1
− yδ) + (lim

n
F̂n,k′

b (τk+1 + ε) − y̌k′,n) < 0
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where the limit follows from limn τ
l,n = τk+1 for l ∈ {k + 1, ..., k′} and the inequality from

limn F̂n,k′
b (τk+1 +ε)− y̌k′,n < 0 and with δ > 0 chosen sufficiently small. However, of course, this

implies a contradiction to limn τ
k′+1,n > τk+1 + ε.

Finally, suppose that limn y̌`
k+1,n > y̌`

k+1
then for δ = (y̌`

k+1
− limn y̌`

k+1,n)/2 < 0, we have

k
n
(yδ) = `k+1 for large n and so

πn(yδ, ŷk,n) = πn(yδ, ŷk,n) − πn(y̌`
k+1
, ŷk)

=(ps − pb)((y̌`
k+1
− yδ) + (ŷk,n − ŷk) − pb(1 − z̄b)((Ge,n(k) −Ge(k)) + (Ge(`k+1) −Ge,n(`k+1)))

which converges to (ps − pb)δ < 0, contradicting the definition of y̌`
k+1,n = ỹ(ŷk,n) > yδ for large

n.

Subclaim 6. We have limn F`k+1,n
b (τ`

k+1,n) = F`k+1

b (τ`
k+1

).

Let αn( j′) = `k+1 then

0 =

j′−1∑
j=1

πn(y̌α
n( j+1),n, ŷα

n( j),n)

= (ps − pb)(ŷk,n − y̌`
k+1,n +

j′−1∑
j=2

(ŷα
n( j),n − ŷα

n( j),n) − pb(1 − z̄b)(Ge,n(k) −Ge,n(`k+1))

→ (ps − pb)(ŷk − lim
n

y̌`
k+1,n) − pb(1 − z̄b)(Ge(k) −Ge(`k+1)) = π(lim

n
y̌`

k+1,n, ŷk)

where the limit follows from τk+1 = limn τ
k+1,n = limn τ

`k+1,n. Hence, limn y̌`
k+1,n ≥ y̌`

k+1
, by the

definition of ỹ, establishing the subclaim, and completing the proof of the Claim.

Given the Claim, it is clear that τk,n → τk, τn
b → τb, τn

s → τs, as well as Fn
s (03) → Fs(03). The

payoff of a rational buyer with value v who concedes at tk is

Uv,c
b (tk) = (v − pb)Fs(03) + (v − pb)

∫ t∈(0,tk)
e−rtdFs(t) + (v − ps)e−rtk (1 − Fs(tk))

Given that Fn
s

w
−→ Fs where Fs is continuous at tk, it is clear that Uv,n

b (tk,n) → Uv
b(tk). Similarly,

the payoff of a rational buyer who exits at time tk is Uv,w,e
b (tk) = Uv,c

b (tk) + (w − v + ps)e−rtk (1 −

Fs(tk)) so that Uv,w,e,n
b (tk,n)→ Uv,w,e

b (tk).

We now turn to the rational seller, who’s payoff can be expressed as Vs = max{pb,Us(T ∗+)}

where Us(T ∗+) =
∫ s≤T ∗

pse−rsdFb(s) + e−rT ∗(1 − z̄s)pb is the payoff from conceding an instant

after T ∗. Given that limn Fn
b(T ∗,n) = Fb(T ∗) = 1 − z̄b, limn T ∗,n = T ∗ and Fn

i
w
−→ Fi it is

immediate that Un
s (T ∗,n+ )→ Us(T ∗+) and so Vn

s → Vs. This completes the proof.

�

We are now ready to complete the proof of Proposition 1. Given the parameters of a bargaining
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game (zi, πi, g,Θ)i=s,b, let ∆s = ∆(Ps) be the set of seller demand choice distributions at 01. Let

∆
ps
s ⊂ ∆(Pb ∪ {e}) be the set of rational buyer demand choice distributions at 02 after seller

demand ps such that µv,w,ps
b (e) = 1v−w>p and µv,w,ps

b (pb) = 0 for pb ≥ ps. Then ∆b =
∏

ps∈Ps ∆
ps
b .

Let Uv,w,pb,ps
b (µs, µb) be the expected payoff of rational buyer (v,w) at 03 given demands pi ∈ Pi,

the demand choice distributions, µs ∈ ∆s(Ps) and µb ∈ ∆b combined with straightforward

equilibrium continuation play. Also let U ps
s (µs, µb) be the expected payoff of the seller at 02

given the demand ps ∈ Ps, the demand choice distributions µs ∈ ∆s(Ps) and µ
ps
b ∈ ∆b with

straightforward equilibrium continuation play at 03. We then define:

B(µs, µb) = {(µ̂s, µ̂b) ∈ ∆s × ∆b : µ̂s(ps) > 0⇒ U ps
s (µs, µb) ≥ U p′s

s (µs, µb),∀p′s ∈ Ps,

µ̂
ps
b (pb) > 0⇒ Uv,w,pb,ps

b (µb, µs) ≥ U
v,w,p′b
b (µs, µb),∀p′b ∈ Pb}.

It is clear that this self-correspondence is non-empty and convex-valued and has a closed graph

given that Uv,w,pb,ps
b (µs, µb) and U ps

s (µs, µb) are continuous in (µb, µs) by Lemma 5. Hence, by

Kakutani, it admits a (non-empty) fixed-point. This fixed point describes equilibrium demand

choices and beliefs after pi ∈ Pi. After the demand pb < Pb, the seller always believes the

rational buyer has a type (v,w). The buyer then immediately concedes if ps ≤ v − w and a

rational seller immediately concedes otherwise. �
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