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Abstract

We develop an auction model for digital advertising. A monopoly platform has

access to data on the value of the match between advertisers and consumers. The

platform support bidding with additional information and increase the feasible surplus

for on-platform matches. Advertisers jointly determine their pricing strategy both on

and off the platform, as well as their bidding for digital advertising on the platform.

We compare a data-augmented second-price auction and a managed campaign

mechanism. In the data-augmented auction, the bids by the advertisers are informed

by the data of the platform regarding the value of the match. This results in a socially

efficient allocation on the platform, but the advertisers increase their product prices off

the platform to be more competitive on the platform. In consequence, the allocation

off the platform is inefficient due to excessively high product prices.

The managed campaign mechanism allows advertisers to submit budgets that are

then transformed into matches and prices through an autobidding algorithm. Com-

pared to the data-augmented second-price auction, the optimal managed campaign

mechanism increases the revenue of the digital platform. The product prices off the

platform increase and the consumer surplus decreases.
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1 Introduction

1.1 Motivation and Results

Digital advertising facilitates the matching of consumers and advertisers online. Advertisers

join digital platforms to reach a wider audience for their products, but must balance several

competing objectives. Digital platforms allow advertisers to reach a broader spectrum of

potential shoppers beyond their loyal customers. As platforms mediate commerce for many

advertisers, products, and consumers, they gather data that can help improve the matches

formed on the platform. However, the service provided by the platforms is costly, so ad-

vertisers must balance interacting with their loyal customers off the platform with gaining

shoppers on the platform. As shoppers can take advantage of offers on and off the platform,

advertisers face a “showrooming” constraint: they must ensure their offer on the platform is

weakly better than the off-platform offer to complete the match on the platform.1

In this paper, we develop an auction model that takes into account these three funda-

mental aspects of digital advertising. First, advertisers can reach at least a fraction of their

customers outside of the platforms, either through an offline presence such as stores, or their

own online presence, or through other third parties that list their offers. Second, the plat-

form collects information from many similar items, viewers, and bidders, and therefore can

improve the efficiency of the matching on the platform. Third, the matching of viewers and

advertisers on the platform is governed by bidding mechanisms.

Commonly, digital platforms organize the competition for attention among the advertisers

through an auction-based allocation mechanism. As the market for digital advertising has

expanded and become more complex, digital platforms and other advertising intermediaries

often implement bidding for advertising opportunities on behalf of the advertisers. These

intermediaries then run managed campaigns for advertisers by choosing how to bid across

many opportunities to create matches. These managed campaigns are implemented through

auto-bidding algorithms that bid on behalf of the advertisers with certain objectives and

relevant constraints explicitly stated.2

1In the context of advertising platforms, where the matching fee is typically incurred before the trans-
action, either in the form of pay-per-impression or pay-per-click fees, the advertiser faces the showrooming
constraint directly. The advertiser wants to pay for the listing if and only if it generates the sale. The offline
transaction could have occurred without the advertising. In other platforms where the fee is transaction-
based, such as a referral fee on shopping services such as Amazon, the showroooming constraint is often
imposed by the platform in the form of most favored nation clause, i.e., the advertiser commits to offer the
most favorable price online.

2A recent literature has developed around autobidding algorithms when the bidders formulate their
objective outside of the class of quasilinear utility models in mechanism design. For example, the bidder
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We begin the analysis with a second-price auction for a single advertising slot. Here, the

platform augments the information of the bidder and solicits a bid for each estimated match

value between consumer and advertiser. We refer to this as data-augmented bidding. Each

advertiser can offer a bid for the slot and a price at which it offers the product associated

with the advertising slot. Simultaneously, each advertiser has to choose the price at which

it offers its product to the loyal customers off the platform customers. The available data

online improves the quality of matches online. The shoppers on the platform are not loyal

and choose to buy the product that offers them the highest net value. Off the platform,

the advertisers do not have access to the data of the platform and offer a uniform price to

the loyal customers. At this price, some customers will receive an information rent, namely

those with values above the product price. Customers with values below the product prices

will be priced out of the market.

With the additional data of the platform, the advertiser can offer prices that reflect the

willingness-to-pay of the customers. This form of third-degree price discrimination on the

platform serves to broaden the market and helps to create a more efficient allocation. Thus,

the advertiser is using the additional information to reach more shoppers and improve the

matches formed on the platform. Concurrently, the advertiser seeks to relax the showrooming

constraint from the off-platform market to compete more fiercely on the platform. We are

particularly interested in how data-augmented bidding impacts the welfare both on and off

the platform.

We derive the optimal bidding and pricing strategy of the advertisers (Theorem 1). On

the platform, the second-price auction implements an efficient allocation, and the additional

data allows the advertiser to sell successfully to consumers with lower values without the

need to price them out of the market (Proposition 1). Off the platform, the advertisers

raise their price to their loyal customers relative to the price they would have charged in

a stand-alone market (Proposition 2). By making their product only available at a higher

price, each advertiser can weaken the showrooming constraint and compete more vigorously

on the platform. The off-platform prices increase with the number of on-platform shoppers

(Proposition 3) and decrease with the number of bidders (Proposition 4). Finally, as bidders

are homogeneous ex ante, the platform can impose a participation fee that extracts all their

surplus without affecting the subsequent prices and bids (Proposition 5).

We then introduce the notion of an independent managed campaign. In this more cen-

tralized mechanism, the platform proposes to each advertiser an advertising budget, an

may seek to maximize return on investments and have budget or spending constraints.
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autobidding algorithm, and pricing function for the product on the platform. The autobid-

ding algorithm governs how the managed campaign for every advertiser bids for potential

matches as a function of the value of the match. Each advertiser simultaneously decides

whether to enter into the managed campaign or not, and how to price its product off the

platform.3 Here, we restrict the platform’s pricing policy only to price based on the con-

sumer’s value for the advertiser’s own product, and not on the consumer’s value for other

advertisers’ products.

The optimal independent managed campaign mechanism implements an efficient allo-

cation of advertising slots (Proposition 6), but relative to either a second-price auction or

even a revenue optimal auction design, it differs along a number of dimensions that have

substantial impact on the outcomes (Theorem 2). First, by charging the bidders up front

for expected matches, the digital platform can capture a larger share of the surplus yet do

so without hurting the efficiency of the allocation. Under a sufficient condition on the value

distribution, the off-platform posted prices are lower than the stand-alone monopoly prices

(Proposition 7). Thus, the equilibrium outcome with the managed campaign can lead to a

more efficient outcome both on- and off-platform.

We finally introduce the notion of a sophisticated managed campaign, where the pricing

policy offered by the platform can condition on the full vector of values of each consumer. In

this case, we show that the platform optimizes its revenue by offering best-value pricing; that

is, the platform implements the efficient allocation, but ensures that the efficient firm always

makes the offer with the best value to the consumer (Theorem 3). However, in doing so, the

platform weakens competition, and so the firms raise their posted prices off the platform in

order to extract more surplus from the online consumers. We show that under a relatively

mild condition, posted prices are lowest with an independent managed campaign, followed by

data-augmented bidding (Theorem 5). Posted prices are always highest with a sophisticated

managed campaign (Theorem 6).

The implications of managed campaigns for the platform revenue are more nuanced. The

sophisticated managed campaign allows the platform to reproduce the outcome of any in-

dependent managed campaign or auction, and therefore yields the most revenue (Theorem

4). The effect of independent managed campaigns, on the other hand, is ambiguous and

reflects the outcome of a three-way surplus distribution. Holding fixed the price charged

3The autobidding algorithm that allocates budgets can be interpreted as maximizing profit subject to a
return on investment constraint. Alternatively, we can decompose the advertising budget into a payment
per winning bid for each consumer value. In this case, one can show that the bidding algorithm boosts the
bids of the advertisers, but never beyond the value of the match. Thus, the autobidding mechanism satisfies
an ex-post participation constraint for every (winning and losing) bid.
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to consumers off platform, the managed campaign allows the platform to extract more of

the advertisers’ profit relative to the auction. At the same time, when the managed cam-

paign leads advertisers to lower their off platform prices, consumer surplus increases on both

channels, potentially lowering the platform’s net revenue (Proposition 8).

1.2 Related Literature

In our digital advertising model, each advertiser has a parallel sales channel available off the

platform and faces two values of consumers, shoppers on the platform and loyal customers

off the platform, as in Varian (1980). The design of the auction is therefore subject to

competition from a separate and distinct market. Earlier papers referred to mechanism

design subject to alternative markets as “partial mechanism design,” or “mechanism design

with a competitive fringe,” e.g., Philippon and Skreta (2012) Tirole (2012), Calzolari and

Denicolò (2015), and Fuchs and Skrzypacz (2015). In these papers, the platform is limited

in its ability to monopolize the market since the sellers have access to an outside option.

We focus on digital advertising through auctions rather than competition for the consumer

between on and off platform sellers.

Our paper also contributes to the literature on online ad auctions. A recent literature

studies learning in repeated auctions (Balseiro and Gur, 2019; Kanoria and Nazerzadeh,

2020; Nedelec et al., 2022), discriminatory effects (Celis et al., 2019; Ali et al., 2019; Nasr and

Tschantz, 2020), and collusion (Decarolis et al., 2020, 2022). Our paper is focused instead

on comparing the effects of an auction to other allocation mechanisms in the presence of

off-platform markets in a static setting and with a fixed information structure.

A key innovation in our model is that the platform actively manages the sellers’ ad-

vertising campaigns. Managed campaigns are emerging as the predominant mode of selling

advertisements in real-world digital markets: advertisers set a fixed budget, specify high-level

objectives for their campaigns, and leave the task of bidding to “autobidders” offered by the

platform. Aggarwal et al. (2019), Balseiro et al. (2021), and Deng et al. (2021) offer excellent

treatments of this problem in a rapidly growing research area. Several recent papers have

focuses on auction design in the presence of autobidders (Liaw et al. (2022); Mehta (2022);

Deng et al. (2022)) and return-on-investment constraints (Golrezaei et al. (2021)). Our set-

ting has an additional dimension related to display prices: advertisers submit both bids for

the sponsored link and tailored prices to offer the consumers. Li and Lei (2023) investigate

mechanisms that allow for these display prices, but we study the impact of activity off the

platform in allocations as well as pricing.
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The showrooming constraint also relates to a significant literature on digital platforms

with competing advertisers or multiple sales channels. Recent contributions on these topics

include de Cornière and de Nijs (2016), Bar-Isaac and Shelegia (2020), Miklós-Thal and

Shaffer (2021), and Wang and Wright (2020). Different from these papers, the advertisers

in our model are concerned about showrooming because selling on the platform can be more

profitable thanks to the added value of making data-augmented offers. In parallel work,

Bergemann and Bonatti (2022) study on- and off-platform competition with multi-product

sellers and associated nonlinear pricing. Relative to our paper, they focus on the implications

of managed campaigns for the equilibrium product quality.

2 Model

There are J firms indexed 1, 2, ...J , each selling unique indivisible products, and a single

digital platform. Each firm has zero cost of producing its product. There is a unit mass

of consumers, each demanding a single product. Willingness to pay for each firm’s product

is drawn independently across consumers and firms according to a distribution function F

with support on V = [0, 1]. We assume F admits a log-concave density f on its support 4.

The vector of consumer values is the consumer’s value

v = (v1, ...vJ) ∈ [0, 1]J .

The utility for consumer v of purchasing product j at price pj is

Uj(v) = vj − pj.

Initially, values are observed by the consumers and by the platform, but not by the firms.

Because the consumers and the platform share the same information, we are implicitly

assuming that the platform has already learned everything about the consumer preferences.

The symmetry in the information is helpful for the welfare comparison but is clearly a

stark assumption. The equilibrium implications are robust to a more general formulation in

which the platform is endowed with potentially endogenous information, which is interme-

diate between the complete information of the consumers and the prior information of the

advertisers.

4This is a technical assumption that ensures that first-order conditions for maximization problems we
consider later are well-defined.
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2.1 Platform

A measure λ ∈ [0, 1] of consumers uses the platform. The platform presents on-platform

consumers with a single “sponsored” result first, followed by organic search results, i.e.,

a list of non-sponsored products. The platform sells the sponsored position using either

a second-price auction or a managed campaign. Under either mechanism, the firm in the

sponsored slot can condition its price to the consumer’s value.

Let v denote the full J-dimensional consumer value. An on-platform consumer with

value v will see a sponsored offer, which offers some firm j’s product at some price. In the

remaining sections of the paper, we discuss mechanisms for the platform to determine which

firm’s offer gets shown to on-platform consumers, and at what price. Note the platform does

not ex-ante commit to steer consumers efficiently; that is, value v does not have to see a

sponsored offer from j such that j = argmaxi vi.

2.2 Firms and Showrooming

In addition to the on-platform prices pj(v) displayed in the sponsored slot, each firm j sets

a fixed posted price p̄j for its product off the platform. Further, we suppose the firms are

subject to a showrooming constraint: that is, for all v, pj(v) ≤ p̄j. One interpretation of the

showrooming constraint is that on-platform consumers can search for free at any off-platform

website or store. Alternatively, the platform may impose most-favored-nation clauses that

require sellers to offer their lowest prices on the platform. Note that we use the upper-bar

notation here since the showrooming constraint implies that the posted price p̄j is an upper

bound on the amount that any consumer will pay for j’s good.

2.3 On-platform Consumers

The on-platform consumers observe their willingness to pay v, the “sponsored” offer pj(v)

for the firm j that wins the sponsored slot auction, and the posted prices p̄k for all firms

k. Equivalently, we can interpret the model as allowing for free online search; that is, only

a “sponsored” firm can target a price offer to an online consumer, but the online consumer

can search and find the posted prices of all firms, including those that did not make the

sponsored offer.
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2.4 Off-platform Consumers

We assume that the remaining 1 − λ mass of consumers are loyal, and visit only a single

firm’s non-platform store (e.g., physical store, store website). Thus the off-platform consumer

population is divided into J segments of size (1−λ)/J , where the jth segment shops directly

from firm j. Firm j is the only firm in the consideration set of the jth segment of off-platform

consumers. The off-platform consumers view the off-platform price of the single firm in their

consideration set, and choose to buy if and only if the off-platform price is lower than their

willingness to pay.

3 Data-Augmented Bidding

In this section, we characterize the symmetric Bayesian Nash equilibrium of the bidding and

pricing game among the advertisers. Each firm j submits a bid function bj : V
J → R+ and

a sponsored price function pj : V
J → R+, in addition to (simultaneously) posting a price p̄j.

We refer to this as data-augmented bidding, because the platform’s proprietary data enables

the advertisers to condition bids and sponsored prices on the consumer’s full value vector v.

Let us first discuss some of the economic intuition for how the presence of the platform

impacts the prices posted by the firms before presenting the formal analysis. Recall that

the off-platform consumers are loyal, and so in the absence of a platform, all firms post

the monopoly price for their market segment. Adding the platform and the on-platform

consumers has two contrasting effects on the prices posted by the firms. The first effect is an

upward pressure due to the increased ability to price discriminate; that is, since the posted

price sets an upper bound on the prices that a firm can offer to on-platform consumers, the

potential to price discriminate more effectively on-platform pushes firms to raise their posted

prices. However, there is an opposite effect, where competition for the on-platform consumers

introduces an incentive to lower the posted prices—the ability to undercut its competitors

by advertising a lower off-platform price, in order to win more on-platform consumers.

3.1 Bidding Equilibrium

The following result helps characterize the equilibrium strategies of the firms for this setting.

Effectively, the proposition shows that regardless of the profile of posted prices set by the

firms, the bidding equilibrium on the platform results in a symmetric assignment, where

each on-platform consumer sees a sponsored offer from the firm they like best. This implies
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that the sponsored-slot allocation resulting from data-augmented bidding is efficient.

Proposition 1 (Bidding Efficiency)

Fix any vector of posted prices p. Consider an on-platform consumer, with value v. If

vj > vk, then in any bidding equilibrium, firm j bids at least as much as firm k for consumer

v.

Proof. Suppose vj > vk. Note that since the platform mechanism is a second-price auction,

it is weakly dominant for each firm to bid exactly what the online consumer is worth to that

firm. We proceed using casework. As a useful reference, denote by

u = max(max
i ̸=j,k

(vi − pi), 0),

the utility the consumer would get from all firms except j and k. u thus is a lower bound

on the utility that is conceded to any consumer that does purchase from j or k.

First, consider the cases where pk ≥ pj. Note that this implies vj − pj > vk − pk. There

are two subcases to consider: either vj > pj or vj ≤ pj. In the first subcase, the highest

price that firm j can charge is restricted by showrooming and the nonnegativity constraint,

so bj(v) = max(min(pj, vj − u), 0). If firm k were to win the auction, then firm k’s offer

must guarantee at least vj − pj utility to the consumer to dissuade the consumer from going

off-platform, and hence the most that firm k can offer is

bk(v) ≤ max(min(vk − (vj − pj), vk − u), 0)

= max(min(pj − (vj − vk), vk − u), 0)

< max(min(pj, vj − u), 0) = bj(v).

For the second subcase, since vj ≤ pj, the consumer is worth vj to firm j, so bj(v) =

max(vj − u, 0). Then vk < vj ≤ pj < pk, so the consumer is worth vk to firm k, and the bids

satisfy the following condition

bk(v) = max(vk − u, 0) ≤ max(vj − u, 0) = bj(v).

Now, consider the cases where pj > pk. We have four subcases here.

1. vk < pk and (a) vj < pj or (b) vj ≥ pj,

2. vk ≥ pk and (a) vj ≤ vk + pj − pk or (b) vj > vk + pj − pk.
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In subcase (1)(a), vj < pj and vk < pk, so the highest price j can charge is vj and the

highest price k can charge is vk. Then bk(v) = max(vk − u, 0) and bj(v) = max(vj − u, 0),

and so

bk(v) = max(vk − u, 0) ≤ max(vj − u, 0) = bj(v).

In subcase (1)(b), vj ≥ pj > pk > vk, so vj − u ≥ vk − u and pj ≥ vk − u. Hence

bk(v) = max(vk − u, 0) ≤ max(min(pj, vj − u), 0) = bj(v).

In subcase (2)(a), vk ≥ pk and vj ≤ vk+ pj − pk. Firm j must concede at least vk− pk utility

to the consumer (else the consumer would buy k’s product), and hence the bid

bk(v) = max(min(pk, vk − u), 0)

≤ max(min(pk + (vj − vk), vj − u), 0)

= max(min(vj − (vk − pk), vj − u), 0)

= bj(v).

Finally, in the last subcase, note that vj − pj ≥ vk − pk. The bids are

bk(v) = max(min(pk, vk − u), 0) ≤ max(min(pj, vk − u) ≤ bj(v).

In all cases, bk(v) ≤ bj(v).

To gain some intuition for this result, suppose a consumer arrives, and the consumer’s

favorite seller is firm 1. Consider a competitor, say firm 2. If firm 1 has set a higher posted

price than firm 2, then firm 1 has a larger ability to price discriminate than firm 2, and hence

the consumer is intuitively worth more to firm 1, thus allowing it to bid more. However, if

firm 1 has a lower posted price than firm 2, then firm 2 must concede rent to the consumer,

because even if 2 won the sponsored slot, the consumer could still search and find the posted

price for firm 1; hence, this disciplines firm 2’s bid, and we show that this actually constrains

2’s bid to be lower than 1’s.

Proposition 1 is useful because it allows us to separate the bidding stage from the posted

prices; that is, the matches (though not the bids) in the bidding game are invariant with

respect to the posted prices. As a consequence of this Proposition, the set of online consumers

who purchase from firm j is exactly those for whom j = argmaxi vi; that is, the consumers

with the highest value for firm j’s product.
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Since we are looking for symmetric equilibria, we suppose all the other firms post price

p′ and consider the best response problem of a single firm:

max
p

{
1− λ

J
p(1− F (p)) + λΩ(p; p′)

}
, (1)

where

Ω(p; p′) =

∫ ∫ v

(min(v −max(v′ − p′, 0), p)− (min(v′ −max(v − p, 0), p′))+) dF J−1(v′) dF (v).

This term denotes the expected profit from on-platform consumers that a firm would expect

to make by setting a posted price at p when all other firms set a posted price p′. The term

integrates over v′ = maxj ̸=i vj, which is the highest value the consumer has for any other firm

besides i. Since the firm must concede utility max(v′−p′, 0) to the threat of the on-platform

consumer going to the competitor, the firm setting price p will bid min(v−max(v′−p′, 0), p).

The highest competitor bids (min(v′−max(v−p, 0), p′))+, where (·)+ denotes the nonnegative

part. It turns out that with some casework, we can simplify this expression for the on-

platform sales further:

Lemma 1 (On-platform Bidding Profit)

The expected on-platform profit satisfy

Ω(p; p′) =

∫ ∫ v

min(v − v′, p) dF J−1(v′) dF (v).

Note that v′ is only integrated on values less than v. The proof is algebraic and left to

the Appendix. The result, however, is quite intuitive. In a standard second-price auction,

the expected surplus of a bidder is the expected gap between the bidder value v and the

value of the second highest bid v′; this form shows that with the showrooming constraints

and strategic bidding behavior in presence of the off-platform interaction, the firm profit is

v − v′, capped by the posted price.

To solve for the symmetric equilibria, we take a first-order condition, so we need to

compute the derivative of Ω with respect to p. Long but straightforward algebra yields the

following expression:
∂Ω(p; p′)

∂p
=

∫
p

F J−1(v − p) dF (v). (2)

11



Finally, we can write out the first-order condition for profit maximization using (2):

1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

F J−1(v − p)dF (v)

)
= 0.

Rearranging this condition, we summarize the equilibrium characterization as follows.

Theorem 1 (Bidding Equilibrium)

In the unique symmetric equilibrium, the posted prices of the firms satisfy

pB =
1− F (pB) +

λJ
1−λ

(∫
pB

F J−1(v − pB)dF (v)
)

f(pB)
. (3)

Firms bid their true value max(vj, pB) for each consumer on-platform. On-platform con-

sumers buy the sponsored offer, and off-platform consumers buy from the firm they are loyal

to if and only if the posted price is below their value.

We denote the symmetric equilibrium price for the product off the platform in the pres-

ence of the bidding mechanism on the platform by pB, where we use subscript B as this is

the bidding equilibrium.

3.2 Welfare and Comparative Statics

First, we discuss the efficiency implications of the outcome of data-augmented bidding.

Proposition 1 implies that the allocation on-platform is socially efficient; since the sponsored

offer is always made by the consumer’s most preferred firm, each on-platform consumer pur-

chases the product they like best. Off-platform consumers face two sources of inefficiency;

first, they might be unaware of the existence of a firm that they would prefer, and second,

since the firms only sell to off-platform consumers via posted prices, consumers with value

for their firm’s product below the posted price will not buy.

To characterize the efficiency implications for the off-platform consumers, we first define

the posted price a firm would set if it only had its loyal off-platform population:

pM =
1− F (pM)

f(pM)
. (4)

We term this pM , as this is analogous to the monopoly price.

Examining the price equations, one can see that since the expression on the right hand

side of (3) is a larger function of the price than in (4), the price pB is larger than pM . Note

12



here that higher posted prices entail greater welfare loss off-platform than if the platform

did not exist. Since higher prices means both fewer sales, lower consumer surplus, and

less efficiency, the presence of the on-platform consumers induces the firms to price out

some off-platform consumers in order to gain sales on-platform. Hence, between the two

effects discussed at the beginning of the section, it is the incentive to raise posted prices in

order to more effectively price discriminate that dominates any competitive effect of the firm

interaction on-platform.

Proposition 2 (Posted Prices)

The posted price with data-augmented bidding results in higher posted prices than would

occur without the platform, pB ≥ pM . The presence of the platform induces lower consumer

surplus, higher posted prices, and lower total welfare off the platform.

In fact, we can generalize the insight to show comparative statics with respect to the

share λ of consumers that are on the platform, fixing the total measure of consumers to 1.

We will first define several welfare objects of interest, as functions of the posted price p. The

expected consumer surplus of an off-platform consumer is:

CSoff(p) =

∫ 1

p

(v − p) dF (v).

The expected consumer surplus of an on-platform consumer is:

CSon(p) =

∫ 1

p

(v − p)dF J(v).

Total consumer surplus is then:

CS(p) = (1− λ)CSoff(p) + λCSon(p).

Since F J describes the distribution of the maximum value a consumer has for any prod-

uct, the expected welfare of an on-platform consumer is always larger than an off-platform

consumer.

The off-platform profit of a firm, per unit measure of loyal consumers, is given by

Πoff(p) = p(1− F (p)).

13



The on-platform firm profit per sponsored offer is given by

Πon(p) = JΩ(p; p) = J

∫ [∫ v

min(v − v′, p) dF J−1(v′)

]
dF (v),

by Lemma 1, where the J term comes from the fact that the firm only makes a sponsored

offer to a 1/J fraction of the on-platform consumers. Note that the total profit of all firms

are given by

Π(p) = (1− λ)Πoff(p) + λΠon(p).

Moving on to platform revenue, we note that the revenue generated by a sale to a consumer

on the platform by firm j is min(vj, p). The total platform revenue is given by the expected

value of this minus the value conceded to firms, or

R(p) = λ

(∫
min(v, p)dF J(v)− J

∫ [∫ v

min(v − v′, p) dF J−1(v′)

]
dF (v)

)

= λJ

(∫ [
min(v, p)F J−1(v)−

∫ v

min(v − v′, p) dF J−1(v′)

]
dF (v)

)
= λJ

(∫ p ∫ v

v′dF J−1(v′)dF (v) +

∫
p

∫ v

v−p

v′dF J−1(v′)dF (v)

)
.

Lastly, the total welfare per consumer off-platform is given by

Woff(p) =

∫ 1

p

v dF (v),

since only consumers with value larger than p buy. On-platform, the total welfare per

consumer is

Won =

∫
v dF J(v),

since there is allocative efficiency on-platform regardless of the posted prices. The total

welfare is

W (p) = (1− λ)Woff(p) + λWon.

We then have the following comparative statics in λ, the market share of the platform.
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Proposition 3 (Platform Size)

The following comparative statics hold:

1. The posted price with data-augmented bidding pB is increasing in λ.

2. The expected surplus of on-platform and off-platform consumers is decreasing in λ.

3. The expected off-platform firm profit per consumer Πoff is decreasing in λ, and the

expected on-platform firm profit per consumer Πon is increasing in λ.

4. Platform revenue is increasing in λ.

5. Off-platform welfare per consumer Woff is decreasing in λ.

We also have the following comparative statics with respect to the number of sellers J .

Proposition 4 (Number of Bidders)

If J > 1/(lnF (1− pM)), then the following hold:

1. The equilibrium posted price with data-augmented bidding pB is decreasing in J .

2. Expected consumer surplus both off- and on- platform are increasing in J , and so total

consumer surplus increases in J .

3. Welfare per consumer off- and on- platform are both increasing in J , and so total

welfare also increases in J .

The proofs are left to the appendix, but we will illustrate many of these comparative

statics with a simple example.

Example Consider the setting where the distribution F is uniform on [0, 1]. Note that

in this setting, since the distribution is uniform, the monopoly price is pM = 0.5. We plot

the equilibrium posted prices, total firm profit, and consumer surplus resulting from data-

augmented bidding for J = 3, 5, 7 in Figure 1. As shown in Proposition 3, for any J , the

prices are increasing in λ.

Figure 2a depicts the consumer surplus as a function of λ. We note that total consumer

surplus is increasing in λ. Initially the welfare gains from moving consumers from being

loyal to shopping over all firms dominates (moving consumers from welfare level CSoff to

CSon) but as the platform becomes too large, the increasing ability to price discriminate
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Figure 1: Posted prices as a function of λ. Results are plotted for J = 3, 5, 7.

(a) Total Consumer Surplus (b) Total Firm profit

(c) Platform Revenue (d) Total Welfare

Figure 2: Consumer surplus, firm profit, platform revenue, and welfare with data-augmented
bidding as a function of the share of consumers on the platform, λ. Results are plotted for J = 3, 5, 7.
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on the platform dominates and consumers lose welfare. Hence, total consumer surplus is

nonmonotone in λ.

Figure 2b depicts firm profit as a function of λ. Here, firm profit for J = 3 are nonmono-

tone. As mentioned in Proposition 3, the profit per consumer off-platform are decreasing in

λ and the profit per consumer on-platform are increasing in λ, and so the overall effect on

total profit depends on which force dominates.

Figure 2c depicts the platform revenues as a function of λ. As expected, platform revenues

are increasing in λ. However, the interesting feature of this example in platform revenue is

that for very large platforms, λ close to 1, the platform revenue can be nonmonotone in J ,

the number of firms. The two contrasting forces here are that with more firms, the expected

value of second-highest bids will be higher, which would suggest that platform revenue should

be increasing in J . However, with more firms, as shown in Figure 1, posted prices can be

pushed down, thus reducing the price-discriminating ability of the firms on-platform and

pushing down the platform revenues.

Figure 2d shows that total welfare is increasing in both λ and J , as would be expected.

3.3 Participation Fees

In the bidding model discussed so far, the platform received revenues only from the bids of

the advertiser. We now ask whether tools from optimal auction design such as participation

fee of reserve price may increase the revenue of the platform.5 In particular, as advertisers

have no prior information about the consumers ex ante, we investigate how a participation

fee for the second-price auction would affect the division of suplus between platform and

advertisers. Thus, we consider the following game:

1. The platform sets a participation fee T .

2. The firms choose whether to pay the participation fee and set their posted prices.

3. If all firms accept, the platform runs a second-price auction for the on-platform con-

sumers. If some firm rejects, the platform can assign the sponsored offers however it

would like.

The platform maximizes revenue, and we will assume a firm that is indifferent about ac-

cepting chooses to accept. As such, the platform extracts all the producer surplus, up to an

outside option the firm could obtain by refusing to participate.

5The importance of such tools in online ad auctions has been widely documented, e.g., by Ostrovsky and
Schwarz (2016) for the case of reserve prices.
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Proposition 5 (Equilibrium with Participation Fees)

In equilibrium all firms join, the off-platform posted prices of all firms are given by (3).

Firms bid their true value max(vj, pB). Firm profit are held to their outside option:

ΠO = max
p

{
1− λ

J
p(1− F (p)) + λ

∫
p

pF J−1(v − p) dF (v)

}
. (5)

The transfer charged by the platform holds firms to this outside option.

Intuitively, the pricing and bidding behavior follow as in Theorem 1 due to subgame

perfection. The transfer charged is as large as possible to make firms indifferent between

accepting and rejecting. The proof is left to the appendix.

To gain a bit of intuition for the outside option profit expression, the first part of the

expression is the profit from selling to the loyal consumers; the second integral expression

denotes the profit the firm makes due to the ability of on-platform consumers to search; upon

rejecting the platform’s service, the firm could still be found by consumers with a sufficiently

high value for its product, provided the consumer’s value v satisfies v − p > v′, where v′ is

the consumer’s value for the best competitor.

4 Managed Advertising Campaigns

In a managed advertising campaign, the platform determines which firm wins the sponsored

slot, and makes an offer to that consumer on behalf of that firm. The platform collects

an ex-ante fee for this service from each participating firm. Thus, it is the platform rather

then the advertising firms that selects the bidding functions and the product prices. The

key difference is therefore that the firms relinquish agency over the on-platform allocation

process to the platform, though they still collect the revenue from on-platform sales. The

firms giving up this agency is why we refer to this is as a managed campaign. However, the

firms still make decisions on participation and on posted prices. In the first subsection, we

examine a form of independent managed campaigns where the platform cannot condition

on-platform sponsored pricing based on the posted prices of the firms, and in the second

subsection we consider a sophisticated managed campaign where the platform does condition

the on-platform sponsored pricing on the posted prices of firms.

We will be explicit about the extensive form of the game in both the independent and the

sophisticated managed campaign subsection. In each setting, we consider subgame perfect

equilibrium.
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4.1 Independent Managed Campaigns

We first describe a model where the platform offers automated pricing on-platform, and the

firms pay a participation fee and set posted prices. Let aj ∈ {0, 1} denote firm j’s acceptance

decision of the mechanism offered by the platform. The game proceeds as follows:

1. The platform proposes to all firms a mechanism (s, p, T ), where s : V J × {0, 1}J → J

is a steering policy, p : V ×{0, 1}J → R+ is a pricing policy, and T ∈ RJ
+ is a profile of

lump-sum transfers.

2. The firms simultaneously decide whether to accept (aj = 1) or reject (aj = 0) the

platform’s offer and what off-platform price pj to post.

3. If a firm accepts the platform’s offer, that firm pays the transfer Tj; if a firm rejects,

the firm pays no transfer. Given the vector of participation decisions a = (ai)i=1,2,...J ,

the platform then makes sponsored offers to the on-platform consumers according to

the steering policy s with the corresponding price determined p. Specifically, consumer

v ∈ V J sees the offer of firm j = s(v, a) at price p(vj, a).

Intuitively, a steering policy maps consumer value and a profile of acceptances to a

choice of firm to steer the consumer towards. The pricing policy maps the consumer value

for the steered firm’s product and the acceptance profile into a price. The dependence on

the acceptance profile allows the platform to react to the firms’ participation decisions. In

particular, we use 1⃗ to denote the vector (1, 1, · · · , 1) of all firms participating.

In this mechanism, the platform collects an ex-ante fee for its on-platform consumers

and its data that allows for price discrimination. Thus, it bundles both access and price

discriminating ability and charges the fee for the bundle. Note that the bundling of these

two services implies that if firms set posted prices off the equilibrium path in the third stage,

the platform still makes price discriminating offers and some consumers could potentially be

poached by other firms via the search ability of online consumers. That is, the steering policy

guarantees the firms the opportunity to price discriminate on the segment of on-platform

consumers, but the firm could still lose consumers to search. However, in the equilibrium

characterization we show that this does not happen on-path.

An important part to emphasize is that the price policy can only condition on the value

the consumer has for the steered firm and the participation decisions. In particular, this

forces the platform to price independently of the posted price decisions and the consumer’s

value for alternatives, which curtails the ability of the platform to interfere with competition.
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As a note to break ties, if the platform can propose two revenue-equivalent mechanisms

but one mechanism results in more on-platform consumers purchasing their sponsored of-

fers, the platform prefers the mechanism where more on-platform consumers purchase their

sponsored offers.

Proposition 6 (Efficient Platform Steering)

An optimal strategy for the platform is to steer the consumer efficiently among the partici-

pating firms:

s(v, a) = argmax
j

vj s.t. aj = 1.

Note that firms are not perfectly excludable from the platform; that is, if a firm rejects,

on-platform consumers can still search to find the rejecting firm. Since the participation

decision of the firms depends on whether the transfer is worth the change in sales dictated

by the steering policy, an optimal strategy for the platform in the case of a firm rejection is

to offer products for free. More precisely, we have the following result:

Lemma 2 (Outside Option)

An optimal strategy for the platform sets p(·, a) = 0 if a ̸= 1⃗.

The proof is left to the appendix, but the key idea is that in order to punish non-

participation, the platform has to ensure that if any firm chooses not to participate, their

profit are held to the outside option, with profit characterized by (5).

Now consider the pricing policy of the platform. Because it is optimal for the platform

to steer efficiently, and firms are ex-ante symmetric, we look for symmetric equilibria in the

pricing subgame on the equilibrium path where all firms join the platform. First, suppose

the platform offered only first-degree price discrimination, and consider the best response

problem of a single firm. Suppose the other firms have set off-platform prices p′, and consider

the best-response problem of firm j. As we are interested in symmetric equilibria, we take

p → p′. We obtain the first order condition

0 =
1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

(
F J−1(v)− p dF J−1(v)

)
dF (v)

)
. (6)

Intuitively, the term multiplying λ in the first order-condition (6) can be decomposed

into two effects; the first term,
∫
p
F J−1(v)dF (v) denotes the marginal increase in price-

discriminating profit from raising the offline price (as the firm j earns an additional profit on

the measure of consumers whose value for good j is above p, and values their good more than

the other J−1 firms. The second term denotes the loss due to consumers being poached: by
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raising the offline prices, a marginal fraction
∫
p
dF J−1(v)dF (v) of consumers that the firm

was originally selling to (and making profit p) are lost to other firms, and so the profit loss

there is −p
∫
p
dF J−1(v)dF (v).

The pricing condition (6) will determine a candidate posted price equilibrium; however,

whether this is indeed an equilibrium depends on whether the price that satisfies this implicit

equation is higher or lower than the monopoly price. That is, since the platform offers policies

such that on-platform consumers purchase online, the platform will find it optimal to offer

pricing policies of a particular form:

Lemma 3 (Platform Pricing Policy)

It is weakly optimal for the platform to offer first degree price discrimination up to some cap;

that is, p(vj, 1⃗) = min(vj, p̂), where p̂ is the cap.

Again, the formal proof is left to the appendix; the key idea is that first-degree price

discrimination up to a cap minimizes the maximum price offered by the platform conditional

on each firm earning some fixed amount of sales; that is, for any level of firm sales on-

platform, there exists a price cap that generates the same level of sales with a weakly lower

maximum price charged to any consumer.

The platform introducing a price cap implies that the best-response profit of the firms

kink at p̂. If the price satisfying (6) above is above the monopoly price pM , then the platform

can offer pricing policies capped at the price satisfying (6) and firms have no incentive to

deviate by raising their off-platform prices; that is, p̂ would satisfy the first order condition

from (6) since the best-response problem of the firm kinks downward.

However, if the price implied by (6) is lower than the monopoly price, then the platform

sets the price at the solution to (6), the firms would respond by setting posted prices to the

monopoly price to retain off-platform profit. In this case, the platform chooses a price cap

at p̂ that is as large as possible such that firms still select posted prices at pM . That is, the

deviating profit of a single firm from setting some posted price to try to poach consumers

on-platform is given by

ΠU(p̂) = max
p≤p̂

[
1− λ

J
p(1− F (p))

+λ

(∫ p

vF J−1(v)dF (v) +

∫
p

pF J−1(min(v + p̂− p, 1)) dF (v)

)]
.

We subscript this profit expression with a U to indicate that this is the largest profit that

the firm could get by undercutting other firms. Intuitively, it maximizes over undercutting
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prices less than pM assuming that all other firms see the on-platform prices dictated by the

platform’s pricing policy capping prices at p̂. The first term is the sales from off-platform

consumers. The first integral term is the profit from sponsored offer sales, and the second

integral captures the profit from on-platform consumers that the firm would poach away

from other firms.

In order for the firms to prefer setting the monopoly price as the posted price, the value

of ΠU then must be less than the individual firm profit from following the equilibrium. We

can write out the profit a firm receives from setting pM when the price cap p̂ is below pM as

ΠM(p̂) =
1− λ

J
pM(1− F (pM)) + λ

(∫
min(v, p̂)F J−1(v)dF (v)

)
.

Intuitively, ΠM is the profit a firm receives from setting the monopoly price as the posted

price when the platform’s pricing policy caps prices at p̂.

Let pC be the candidate posted price equilibrium, the price satisfying the first order

condition (6); that is,

pC =
1− F (pC) +

λJ
1−λ

(∫
pC

(
F J−1(v)− pC dF J−1(v)

)
dF (v)

)
f(pC)

. (7)

As argued before, if pC < pM , the platform extracts the most revenue when offering pricing

policies capped at p∗ defined by

p∗ = max {p ∈ [pC , pM) | ΠU(p
∗) ≤ ΠM(p∗)} . (8)

Thus, p∗ is the largest price cap such that firms do not find it beneficial to deviate downward

to undercut prices when other firms are pricing at the monopoly price pM . That is, the price

cap in the pricing policy offered by the firms has to be low enough to dissuade undercutting,

and the platform offers the largest such cap. In the proof of the following theorem, we show

that p∗ exists.
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Theorem 2 (Independent Managed Campaign Equilibrium)

The symmetric managed campaign equilibrium has the platform offer efficient steering. The

nature of the equilibrium depends on pC relative to pM .

1. If pC ≥ pM , the platform’s pricing policy to firm j is pj(v) = min(vj, pC); that is, price

discriminating up to pC. Firms set posted prices at pC.

2. If pC < pM , the platform’s pricing policy to firm j is pj(v) = min(vj, p
∗); that is, price

discriminating up to p∗. Firms set posted prices at pM .

We relegate the formal proof to the appendix. It is important to note that the posted

prices set by firms satisfies:

pI = max(pC , pM). (9)

We use subscript I here since pI denotes the off-platform posted price of the firms for the

independent managed campaign; it is equal to the candidate pC identified by the first-order

condition (6) if it is larger than the monopoly price, but is the monopoly price otherwise.

In Proposition 2, we showed that in data-augmented bidding, the posted price is larger

than the monopoly price. This implies that the incentive to raise posted prices introduced by

the potential to price discriminate dominates the downward force on posted prices introduced

by competition for on-platform consumers. However, we present two examples that show that

this is not necessarily the case when the platform is running a managed campaign. We first

present an example of an environment where the price discrimination effect still dominates

and so pC > pM , and secondly present another environment where the competitive effect

dominates, and so the platform actually does not induce the firms to raise prices on off-

platform consumers.

Example (pC > pM) We first provide an example of an environment where the price

discrimination effect dominates. Take a uniform distribution of values (F (x) = x), and

suppose there is an equal share of on-platform and off-platform consumers (λ = 1/2), and

consider two firms. From the pricing equation (7), we get

pC = 1− pC + 2

∫
pC

(v − pC) dv,

pC ≈ 0.59 > 0.5 = pM .
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Thus, in this case, pC > pM , and in the presence of the platform, the two firms raise their

posted prices as the incentive to price discriminate dominates.

Example (pC < pM) Now we provide an example where the competitive effect dominates.

Consider almost the exact same environment as the previous example (uniform distribution

of values, equal share of consumers on- and off-platform) but now, we introduce a third firm.

From the pricing equation (7), we get

pC = 1− pC + 3

∫
pC

(v2 − pC(2v)) dv,

pC ≈ 0.43 < 0.5 = pM .

Here, by adding one firm to the previous example, the competitive effect becomes stronger,

and in the managed campaign, on-platform consumers actually see prices capped below the

monopoly price pM . That is, the platform must mitigate competition on-platform by capping

on-platform prices below pM to dissuade firms from undercutting each other and moving to

pricing at pC . We can numerically compute the cap for this example; the platform caps

online prices at

p∗ ≈ 0.4648 ∈ [pC , pM).

In fact, the insight regarding competition generalizes; that is, with enough firms and a

condition on the distribution, the competitive effect on the platform will mitigate the firm’s

market power off-platform.

Proposition 7 (Price Comparison)

Assume there exists B > 0 such that F (v)/f(v) < B for all v. Then for all sufficiently high

J , we have pC < pM .

4.2 Sophisticated Managed Campaign

In the independent managed campaign model, the platform offered the firms the pricing pol-

icy without being able to condition on the off-platform prices charged by the firms. However,

the platform could take a more active role in softening price competition. For example, it

could offer a “best value guarantee” to each firm on a segment of on-platform consumers,

which ensures that the price offered is acceptable to the consumer given the vector of posted

prices. More generally, we now allow the platform to condition its steering and pricing poli-

cies on the vector of posted prices p ∈ RJ
+ set by firms as well as on the consumer’s value
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v ∈ V J and all acceptance decisions a ∈ {0, 1}J . The game has the following extensive form:

1. The platform proposes to all firms a mechanism (s, p, T ), where s : V J×{0, 1}J×RJ
+ →

J is a steering policy, p : V J × {0, 1}J ×RJ
+ → R+ is a pricing policy, and T ∈ RJ

+ is a

profile of lump-sum transfers.

2. The firms simultaneously decide whether to accept (aj = 1) or reject (aj = 0) the

platform’s offer and what off-platform price pj to post.

3. If a firm accepts the offer, that firm pays the transfer T , and its product will be offered

to a subset of on-platform consumers according to policies s and p.

Here, the pricing policy conditions on the posted prices set by the firms, an important

distinction from the independent managed campaign. Specifically, the pricing policy now is

a function V J × {0, 1}J × RJ
+ → R+, rather than V × {0, 1}J → R+; in other words, the

platform can now condition its pricing policy on the posted prices set by the firms and the

full value vector of the consumer. We first focus on a specific instance of a sophisticated

managed campaign, and then show that this specific pricing policy is revenue-optimal for

the platform.

Formally, define best-value pricing as the pricing policy dictated by:

p(v, 1⃗, p̄) = min
k ̸=j

(vj, p̄j, vj − vk + p̄k) (10)

where j = s(v, 1⃗) is the firm the platform steers the consumer towards. Note that the

arguments in Proposition 6 still hold in this setting, and so the platform steers efficiently.

Intuitively, best-value pricing ensures that there will never be poaching even off the

equilibrium path, or equivalently that the sponsored offer always guarantees the best value

to the consumer. In this sense, the best-value pricing guarantee is stronger than a most-

favored nation clause that ensures each seller offers their good at a lower price on-platform

than off-platform. In addition to doing so, the guarantee in (10) makes sure no competing

seller offer a lower price than the sponsored seller.

We then obtain the following equilibrium characterization, where we subscript the off-

platform price by V to denote that this results from (best-) value pricing.
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Theorem 3 (Sophisticated Managed Campaign Equilibrium)

The symmetric managed campaign equilibrium with best-value pricing has the platform offer

efficient steering and the posted prices are characterized by the following implicit equation:

pV =
1− F (pV ) +

λJ
1−λ

(∫
pV

F J−1(v) dF (v)
)

f(pV )
. (11)

The proof is algebraic and involves writing out the profit expressions of the firms and

deriving the implicit price characterization in (11) from the first order condition, so it is left

to the appendix.

As it turns out, best-value pricing is revenue-optimal for the platform. That is, best-value

pricing attains the maximum revenue a platform can achieve in the sophisticated managed

campaign setting.

Theorem 4 (Optimal Sophisticated Managed Campaign)

The best-value pricing managed campaign is platform revenue-maximizing among all sophis-

ticated managed campaigns.

Proof. To show this, we consider the problem of a vertically integrated platform that jointly

maximizes profit of firms and the platform. The vertically integrated platform can jointly

coordinate on-platform and off-platform pricing, but still faces the showrooming constraint

due to consumer search capabilities. The vertically integrated firm’s problem is then to

maximize

max
p

{
(1− λ)p(1− F (p)) + λ

∫
min(v, p) dF J(v)

}
.

The first order condition of the planner problem is

(1− λ)(1− F (p)− pf(p)) + λ

∫
p

dF J(v) = 0.

Expanding dF J , and dividing through by J , we get

1− λ

J
(1− F (p)− pf(p)) + λ

∫
p

F J−1(v) dF (v) = 0.

But by definition, pS exactly satisfies this first order condition, and by the characterization

in Theorem 6, pS are exactly the off-platform prices in the sophisticated managed campaign.

Thus, this implies that the sophisticated managed campaign necessarily maximizes the joint

surplus of the platform and firms.
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Now, note that the firms are guaranteed their outside option value (defined in (5)) since

in any managed campaign, the firms could refuse to participate. Additionally, note that in

the sophisticated managed campaign described, the firms make exactly their outside option,

since the transfer the platform charges to each firm makes them exactly indifferent between

joining the platform and not. Since the sophisticated campaign maximizes the joint surplus

of platform and firm, and concedes the smallest possible surplus to the firms, it follows

that the platform earns the most revenue in the sophisticated managed campaign over any

managed campaign.

In fact, in the proof, we actually showed that the joint surplus obtained by the firms and

the platform is maximized for best-value pricing; that is,

Corollary 1 (Producer Surplus)

Producer surplus (sum of firm profit and platform revenue) is maximized for best-value pric-

ing, and equals the profit of a vertically integrated platform that owns the firms.

5 Comparing Advertising Mechanisms

We now compare the equilibrium posted prices and the welfare implications under these two

distinct mechanisms, the data-augmented second price auction and the managed campaign

mechanism. We start with the comparison of the prices off the platform.

5.1 Posted Prices

Recall the pricing equations (3) and (9), which characterize the offline prices of the firms

under bidding and the independent managed campaign.

Theorem 5 (Equilibrium Prices and Surplus Comparison)

Suppose that F J−1 is convex. Then

pB ≥ pI .

Total social surplus and total consumer surplus are decreasing in p and:

CS(pB) ≤ CS(pI), W (pB) ≤ W (pI).

Further, if F J−1 is concave, all the inequalities are reversed.
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Proof. The derivative of profit with respect to the posted price in the bidding model is:

1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

F J−1(v − p)dF (v)

)
.

The derivative of profit with respect to the posted price in the managed campaign model is:

1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

(
F J−1(v)− p dF J−1(v)

)
dF (v)

)
.

Under the assumption that F J−1 is convex, then we have that

F J−1(v − p) ≥ F J−1(v)− pdF J−1(v).

since the right-hand side is a first-order expansion of F J−1 around v. Thus, the derivative of

profit with respect to posted price is weakly larger in the bidding model, which implies that

pB ≥ pC . Since pB ≥ pM by Proposition 2, pB ≥ pI . As total welfare and total consumer

surplus are both decreasing in p, the welfare comparative statics follow.

Note that if F J−1 is concave, then

0 ≤ F J−1(v − p) ≤ F J−1(v)− pdF J−1(v),

since the right-hand side is a first-order expansion of F J−1 around v. As the derivative of

profit with respect to posted price is weakly smaller in the bidding model, pM ≤ pB ≤ pC ,

and the welfare comparative statics hold in the reverse inequality direction from the convex

case.

In words, posted prices are higher in the bidding equilibrium than the managed campaign

equilibrium. Since total welfare and total consumer surplus are both decreasing, total welfare

and consumer surplus are both higher under the managed campaign.

To interpret the condition that F J−1 is convex, note that F J−1 represents the cumulative

distribution function of the maximum of J − 1 values drawn from F . For large enough J ,

this cumulative distribution function is convex under relatively weak conditions. Indeed, if

the density f is such that f ′/f is bounded below, then there always exists a J large enough

such that F J−1 is convex.

Recall that the introduction of the platform introduces two contrasting effects on the

incentives of firms setting prices. The first is that the ability to price discriminate on-

platform creates an incentive to raise posted prices, since the posted prices limit the price
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discriminating ability of the firm. The second is the introduced competitive effect; since

on-platform consumers can search for all the firms, the inter-firm competition for consumers

pushes down posted prices.

Proposition 2 showed that in data-augmented bidding, the first effect dominates the

second, and firms always raise their posted prices above the standalone price. Theorem 5

shows that allowing the platform to run an independent managed campaign actually creates

a more competitive environment relative to data-augmented bidding; since firms cannot

control their pricing anymore, the threat of poaching is larger, and the competition for

on-platform consumers dominates.

Now, recall that in the sophisticated managed campaign discussed in Section 4.2, the

platform commits to guaranteeing that its pricing policy ensures that poaching cannot occur;

that is, the modified pricing policy of the platform here entirely removes any ability for firms

to poach consumers on-platform, so the dominant force on posted prices is the incentive to

raise posted prices to discriminate better on-platform.

Theorem 6 (Posted Price Comparison)

The posted prices in the managed campaign with best-value guarantee are higher than both

the posted prices in bidding and the independent managed campaign model

pV ≥ pI ,

pV ≥ pB ≥ pM .

Total consumer surplus and total welfare are lowest in this managed campaign variant than

under both the bidding equilibrium and the independent managed campaign model.

Proof. Consider the derivative of the best-response profit maximization problem with respect

to the posted price for each of the three models. In the bidding model is, we have

1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

F J−1(v − p)dF (v).

)
In the independent managed campaign model, the derivative of profit maximization charac-

terizing pC is

1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

(
F J−1(v)− p dF J−1(v)

)
dF (v)

)
,
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and in the sophisticated campaign, we have

1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

F J−1(v) dF (v)

)
.

Note that this third expression is larger than the first two, since F J−1(v) ≥ F J−1(v) −
p dF J−1(v) and F J−1(v) ≥ F J−1(v − p). Hence, we must have pV ≥ pC , pB. Note that

this also implies pS ≥ pB ≥ pM by Proposition 2; hence it follows then that pS ≥ pI since

pS ≥ pC , pM . Since welfare and total consumer surplus are both decreasing in posted price,

the welfare comparative statics follow.

Theorem 6 shows that the platform offering a best-value pricing policy eliminates the

threat of poaching and weakens competition between firms; this reduced competition thus

results in higher posted prices than both in bidding and in the original managed campaign.

5.2 Platform Revenue

In both managed campaigns and data-augmented bidding, the on-platform allocation is

efficient and so the total surplus on-platform is identical. Further, the on-platform consumer

surplus decreases with higher posted prices in any mechanism. Theorem 5 states that if

F J−1 is convex, on-platform consumer surplus is higher in the managed campaign than in

data-augmented bidding. As a result, the joint profit of the platform and firms increases

with higher posted prices. The platform’s ability to extract surplus decreases with lower

posted prices, which would decrease platform revenue.

A countervailing force is that the platform sets lump-sum transfers in the managed cam-

paign, so it no longer has to give rents to bidders. Instead, it holds firms to their outside

options, which consist of not using sponsored links and responding to competitors’ posted

and advertised prices. The platform’s best response is to ensure that a non-participating

firm makes as few sales on-platform as possible.

Indeed, the tradeoff between these two forces determines whether the platform would

generate more revenue by letting the firms bid versus running independent managed cam-

paigns themselves. In Figure 3, we plot the revenue generated by the platform in the bidding

model and the independent managed campaign as functions of λ when consumer values are

drawn from a uniform distribution. Figure 3a shows the revenue when there are J = 2 firms,

and Figure 3b plots the revenue for J = 3 firms.

Figure 3a shows the platform revenue with 2 firms. With J = 2 and a uniform distribution

of values, we in fact have that F J−1 is linear, and so the posted prices resulting from bidding
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(a) Platform revenue as a function of λ, J = 2 (b) Platform revenue as a function of λ, J = 3

Figure 3: Platform revenue with consumer values uniformly distributed on [0, 1]. In the first
figure, the platform revenue from bidding with participation fees and from the independent managed
campaign coincide.

and independent managed campaigns are equal. This implies that the first force (lower

on-platform surplus extraction due to lower posted prices) does not appear in this case.

Therefore, the platform revenues are higher with independent managed campaigns than

with data-augmented bidding.

From the figures, one can see that between the normal bidding equilibrium and the

independent managed campaign, it can be ambiguous whether the platform prefers the

bidding or independent managed campaign; Figure 3a demonstrates a scenario where the

independent managed campaign yields more revenue, and for some parameter regimes in

Figure 3b, the bidding model yields more revenue. However, if we allow the platform to

charge participation fees, it is clear the platform earns more revenue than in the standard

bidding model without a participation fee. It is also true that in a bidding model with

participation fees, the platform actually earns more than it would by running an independent

managed campaign:

Proposition 8 (Revenue Comparison)

If pB ≥ pI , platform revenue in a bidding model with participation fees is weakly higher than

in the independent managed campaign. Otherwise, the platform earns less in the bidding

model with participation fees relative to the independent managed campaign.

Proof. Note that in both models, the firms are held to their outside options. Hence, whether

the platform earns more depends exactly on the producer surplus extracted. By Theorem

4, the off-platform price pV induced by the sophisticated managed campaign maximizes

producer surplus. By Theorem 6, pV ≥ pB, pI . Since producer surplus is concave in the
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off-platform price, pV maximizes producer surplus, and pV ≥ pB, pI , the producer surplus is

larger in the bidding model if pB ≥ pI and larger in the independent managed campaign if

pI ≥ pB.

Finally, as one can see in Figure 3, it is clear that the sophisticated managed campaign

results in more platform revenue than in the independent managed campaign and bidding.

Intuitively, the platform deters competition through the best-value pricing, resulting higher

prices and hence more on-platform surplus extraction by the platform. In fact, since there

exist sophisticated mechanisms which implement both the bidding equilibrium and the in-

dependent managed campaign, a consequence of Theorem 4 is the following:

Corollary 2 (Platform Revenue Comparison)

Platform revenue in the sophisticated managed campaign is higher than in both the bidding

equilibrium and the independent managed campaign.

6 Conclusion

Many digital platforms such as Google, Meta, Amazon, and TikTok generate revenue through

advertising by placing ads or sponsored slots on their own and partner websites. These

platforms use a bidding and auction mechanism to determine advertisers’ willingness to pay

and a ranking and recommendation mechanism to select the most suitable ad to display

to the viewer. The platform’s knowledge about the match value between consumers and

products is critical to the success of both mechanisms. This knowledge helps generate the

most competitive bids from advertisers in the auction and supports more clicks and other

engagement in the ranking mechanism. We proposed an integrated model that considers

how auction and data jointly determine the match formation on digital platforms. We also

highlighted the value of information and data for the platform in the joint deployment of

these services on both sides of the market.
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A Appendix

Proof of Lemma 1

First consider the regime p < p′. Since the firm only wins the consumers for which v > v′,

it is always then the case that v − p > v′ − p′, so the firm never has to concede rents to the

threat of the consumer buying from the second-best firm. There are three distinct regions

to consider here: if v < p, the firm earns v and pays v′. If v ≥ p, then the firm earns p, but

how much the firm pays depends on the second highest bid, and so if v′ < v − p the firm

pays 0, else the firm pays v′ − (v − p). The Ω term in this region is thus given by:

Ω(p; p′) =

∫ p(∫ v

(v − v′) dF J−1(v′)

)
dF (v)

+

∫
p

(∫ v−p

p dF J−1(v′) +

∫ v

v−p

(p− (v′ − (v − p))) dF J−1(v′)

)
dF (v)

=

∫ p ∫ v

(v − v′) dF J−1(v′) dF (v)

+

∫
p

(∫ v−p

p dF J−1(v′) +

∫ v

v−p

(v − v′) dF J−1(v′)

)
dF (v)

=

∫ ∫ v

min(v − v′, p) dF J−1(v′) dF (v).

Now, suppose p ≥ p′. We again proceed with casework. If v < p′, then no constraints bind

and the firm earns v and pays the bid v′. If v ∈ [p′, p] and v′ < p′, the firm once again earns

v and pays v′. If v ∈ [p′, p] and v′ ∈ (p′, v], then the firm earns v − (v′ − p′) and pays p′.

If v > p, then there are 3 subcases for v′. If v′ < v − p, the firm earns p and pays 0. If

v′ ∈ [v − p, p′ + v − p], the firm earns p and pays v′ − (v − p). If v′ ≥ p′ + v − p, then the
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firm earns v − (v′ − p′) and pays p′.

Ω(p; p′) =

∫ p′ (∫ v

(v − v′) dF J−1(v′)

)
dF (v)

+

∫ p

p′

(∫ p′

(v − v′) dF J−1(v′) +

∫ v

p′
(v − (v′ − p′)− p′) dF J−1(v′)

)
dF (v)

+

∫
p

(∫ v−p

p dF J−1(v′) +

∫ p′+(v−p)

v−p

(p− (v′ − (v − p))) dF J−1(v′)

)
dF (v)

+

∫
p

(∫ v

p′+(v−p)

(v − (v′ − p′)− p′) dF J−1(v′)

)
dF (v)

)
=

∫ p′ (∫ v

(v − v′) dF J−1(v′)

)
dF (v)

+

∫ p

p′

(∫ p′

(v − v′) dF J−1(v′) +

∫ v

p′
(v − v′) dF J−1(v′)

)
dF (v)

+

∫
p

(∫ v−p

p dF J−1(v′) +

∫ v

v−p

(v − v′) dF J−1(v′)

)
dF (v)

=

∫ ∫ v

min(v − v′, p) dF J−1(v′) dF (v).

Finally, to make sure the first-order condition is valid, we take the second derivative to check

that the objective is concave:

∂2Ω(p)

∂p2
=

∫
p

(
−dF J−1(v − p)

)
dF (v) = −

∫
p

(J − 1)F J−2(v − p)f(v − p)f(v),

which is always negative; so the on-platform profit term is concave.

Proof of Proposition 2

This result is implied by Proposition 3.

Proof of Proposition 3

Let the right hand sides of the pricing equations (3) and (4) be

ΦB(x) =
1− F (x) + λJ

1−λ

(∫
x
F J−1(v − x)dF (v)

)
f(x)

. (12)
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and

Φ(x) =
1− F (x)

f(x)
.

respectively. Clearly ΦB(x) ≥ Φ(x), with inequality holding strictly if x < 1 and λ > 0.

Since, by regularity Φ(x) is decreasing, and pM is a fixed point of Φ and pB is a fixed point

of ΦB, we must have pB ≥ pM .

To see the first statement, note that λ/(1− λ) is increasing in λ, and so the right hand

side of the implicit price equation (12), is increasing in λ. It follows that pB is also increasing

in λ. Then the second statement follows from the first and the fact that CSoff and CSon are

both decreasing in p. Examining Πoff, note that

dΠoff

dp
= 1− F (p)− pf(p) = f(p)

(
1− F (p)

f(p)
− p

)
.

Since by Proposition 2, pB ≥ pM ,

1− F (pB)

f(pB)
− pB ≤ 1− F (pM)

f(pM)
− pM = 0.

So since pB is increasing in λ by the first statement, and Πoff is decreasing in p, it follows

that Πoff is decreasing in λ. For on-platform consumers, Πon is clearly increasing in p, so Πon

is also increasing in λ. For the platform revenue, recall that

R(p) = λJ

(∫ p ∫ v

v′dF J−1(v′)dF (v) +

∫
p

∫ v

v−p

v′dF J−1(v′)dF (v)

)
.

It suffices to show that the parenthesized part is increasing in p, since p is increasing in λ.

Taking the derivative of the parenthesized part, we get

f(p)

∫ p

v′dF J−1(v′)− f(p)

∫ p

v′dF J−1(v′) +

∫
p

(v − p)dF J−1(v − p)dF (v)

=

∫
p

(v − p)dF J−1(v − p)dF (v) > 0.

Hence, the platform revenue is increasing in λ. Finally, the total off-platform welfare per

consumer is clearly decreasing in p, and has no other λ dependence, so Woff is decreasing in

λ.
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Proof of Proposition 4

Recall the right hand side of the pricing equation (3) is

ΦB(x) =
1− F (x) + λJ

1−λ

(∫
x
F J−1(v − x)dF (v)

)
f(x)

.

The partial derivative of this expression with respect to J gives

∂ΦB

∂J
=

λ

(1− λ)f(x)

(∫
x

(
F J−1(v − x) + JF J−1(v − x) lnF (v − x)

)
dF (v)

)
=

λ

(1− λ)f(x)

(∫
x

(1 + J lnF (v − x))F J−1(v − x)dF (v)

)
.

Since by assumption J > 1/(lnF (1− pM)), 1 + J lnF (v − x) ≤ 1 + J lnF (1− pM) < 0 for

x ≥ pM . Hence this derivative is negative with respect to J . Since pB is the fixed point of

ΦB and from Proposition 2 pB ≥ pM , it thus follows that pB must be decreasing in J .

Since pB must be decreasing in J , it follows then CSoff(pB) and Woff(pB) are increasing

in J , since they are decreasing in p and has no other J dependence. Note that Won is

equivalently the expected value of the max of J i.i.d random variables distributed as F , and

hence is increasing in J . Con is the expected value of an increasing function of v max(0, v−p),

where v is distributed as a max of J i.i.d random variables. Hence the partial derivative of

Con with respect to J is positive. Since Con is also decreasing in p and pB decreases in J ,

it follows that Con(pB) must also be increasing in J . Since CS is a fixed (not J-dependent)

linear combination of CSoff and CSon and likewise for W , CS and W are both increasing in

J .

Proof of Proposition 5

By Lemma 1, the firm willing to pay the most for any consumer regardless of off-platform

prices is the firm which the consumer has the highest value for; hence, it is not revenue

optimal for the platform to exclude any firm from participating. Consider the subgame after

all firms have paid the participation fee. By Theorem 1, the pricing condition for off-platform

prices is given by (3), and firms bid their true value max(vj, pB). It is then straightforward

to see that the maximum participation fee must hold the firm’s profit to what they could

get from being excluded; hence, it is optimal for the platform to charge transfer fees that

make the firm indifferent between joining and not. Since the exclusion profit is given by (5),

we are done.
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Proof of Proposition 6

If the platform’s steering policy were inefficient (i.e., s(v, a) = j for a positive measure

of consumer values v whose highest value is not for firm j), the platform could instead

steer those consumers to their most preferred firms, and receive a higher transfer from

the consumer’s most preferred firm, since the consumer is worth weakly more to the most

preferred firm. Hence it is weakly dominant for the platform to offer each consumer her

favorite product.

Proof of Lemma 2

Since, by Proposition 6, the platform finds it weakly optimal to make sponsored offers

efficiently among participating firms, the platform makes the most revenue from such a

steering policy only when all firms accept, since the steering policy is most efficient only

when all firms accept (as otherwise, there is loss due to some on-platform consumers being

shown a sponsored offer for a firm that is not their favorite). Hence, it is optimal for the

platform to set transfers such that all firms are willing to accept. Therefore, the platform

must offer each firm the difference between rejecting and best-responding to the resulting

steering policy and accepting. So the optimal strategy of the platform must be to reduce

the firm’s value from rejection as much as possible. Consider the profit firm j could earn by

rejecting. Since Proposition 6 implies that the consumers who would have seen j’s product

in the sponsored slot now a sponsored offer from the next-best, and the rejecting firm j can

only sell via posted price now, the firm j’s profit from rejecting is at least ΠO, the outside

option defined in (5). Since offering p(·, a) = 0 for a ̸= 1⃗ exactly attains this lower bound

because firm j only can sell to consumers who value j’s product p more than any other firm,

this is an optimal strategy for the platform.

Proof of Lemma 3

Suppose the platform chooses a price policy, and the subgame posted price equilibrium

resulting from this policy results in posted prices at p. If the price policy offered prices larger

than p, then since the platform weakly prefers sales to occur on-platform, the platform would

instead prefer cap its prices at p. Hence, the platform anticipates the posted prices set by

the firms, and never offers a price larger than the subsequent posted price equilibrium.

Now suppose the platform offers some pricing policy p̃, and the largest price offered to any

value, p̂, is at most the resulting subgame posted price p. If the platform is not first-degree
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price discriminating up to p̂, then∫
p̃(v) dF J(v) <

∫
min(v, p̂) dF J(v).

Since setting a price cap of 0 earns no profit, the intermediate value theorem implies that

there exists a p̂′ < p̂ such that a first-degree price discriminating policy with cap at p̂′ is

revenue-equivalent to the original pricing policy. That is, p̂′ exists such that∫
p̃(v) dF J(v) =

∫
min(v, p̂′) dF J(v).

Since the cap of this alternative pricing policy is lower than p̂, and each firm gets at least

as much profit in sales on-platform under this alternative pricing policy if it set a posted

price p. If p > pM , then the firms would also lower off-platform posted prices and gain more

surplus, and so the platform could charge a weakly higher transfer for this policy. It could

not be the case that p < pM , since this would imply that since prices online were capped at

p̂ ≤ p, some firm would have had an incentive to raise its price to pM . So the last case to

consider is p = pM . In this case, to check that this policy is without loss, it suffices to check

that firms setting posted prices at pM is still a subgame equilibrium. Since the marginal

incentives for firms to raise or lower posted prices around p are unchanged by switching to

the price discriminating policy capped at p̂′, it remains to argue that there is no profitable

undercutting incentive introduced. But this follows since the first-degree price discriminating

policy minimizes the maximum price charged to an on-platform consumer fixing the value

of on-platform sales, and so it also minimizes the profit from undercutting deviations.

Proof of Theorem 2

We consider two subcases; when pC ≥ pM and when pC < pM .

First, suppose pC ≥ pM . Suppose firms k ̸= j set off-platform prices p′ and consider the

best-response problem of firm j, given the pricing policy offered by the platform is capped at

p̂. When p′ < p̂, the profit function takes two forms, depending on whether p ≥ p′ or p < p′.

If firm j deviates by raising its posted price to p ≥ p′, the firm gets consumers poached away

if vk − p′ > vj − p, or vk > vj + p′ − p. So the profit function is

1− λ

J
p(1−F (p))+λ

(∫ p′

vF J−1(v)dF (v) +

∫ p

p′
vF J−1(p′)dF (v) +

∫
p

pF J−1(v + p′ − p) dF (v)

)
.
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The derivative with respect to p in this regime is

1− λ

J
(1− F (p)− pf(p))+

λ

(
pF J−1(p′)f(p)− pF J−1(p′)f(p) +

∫
p

(
F J−1(v + p′ − p)− p dF J−1(v + p′ − p)

)
dF (v)

)

=
1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

(
F J−1(v + p′ − p)− p dF J−1(v + p′ − p)

)
dF (v)

)
.

In the other regime, firm j, by deviating to a price p < p′, can poach some consumers whose

maximum other value is for some other firm k’s product, but vk − p′ < vj − p. Note that

since firm j is undercutting firm k, j can potentially poach consumers whose value vk > vj.

So the profit of the firm from such a deviation is given by

1− λ

J
p(1− F (p)) + λ

(∫ p

vF J−1(v)dF (v) +

∫
p

pF J−1(min(v + p′ − p, 1)) dF (v)

)
.

The derivative with respect to p is

1− λ

J
(1− F (p)− pf(p)) + λ

(
pF J−1(p)f(p)− pF J−1(p′)f(p)

)
+λ

∫
p

(
F J−1(min(v + p′ − p, 1))− p dF J−1(min(v + p′ − p, 1))

)
dF (v).

As we are interested in symmetric equilibria, we take p → p′. A quick check confirms that

the profit of the firm is both continuous at p′ and the left- and right- derivatives match at

p = p′. Hence, we get the first order condition

0 =
1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

(
F J−1(v)− p dF J−1(v)

)
dF (v).

)
(13)

Then it is clear that if p̂ ≥ pM , and pC < p̂, the resulting posted price subgame equilibrium

has firms setting prices pC .

Now, if p′ ≥ p̂, the left derivative of the best-response profit function is the same as

before, but the right derivative changes; specifically, since the platform is already capping

the price offers at p̂, any price increase only affects the offline population: that is, the right

derivative at p → p′ is
1− λ

J
(1− F (p)− pf(p)) ,

which is nonpositive since p′ ≥ p̂ ≥ pM . Hence the best response value function of the firms
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kinks at p′, but the right-derivative is always negative at the kink. So if p′ ≥ pC , then the

optimal best response is pC , but if p
′ < pC , then p′ is the best-response. In particular, this

implies that for a particular set of subgames pM ≤ p̂ < pC (which turn out to be off-path),

there are multiple equilibria in the subgame. That is, any price p′ ∈ [p̂, pC ] is a subgame

equilibrium if pC ≥ p̂.

However, since the platform is profit maximizing and make a higher transfer profit for

more extractive pricing policies (higher p̂ ≥ pM), if pC ≥ pM , the platform’s subgame optimal

strategy then is to choose p̂ = pC , after which pC is the unique equilibrium in the posted

price subgame.

Now, we turn to the case where pC < pM . Again, suppose the platform pricing policies

cap prices at p̂. Suppose all other firms are pricing at p′. If p′ < p̂, then the derivative of

the best response function (which we analyzed taking p → p′ above) is

1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

(
F J−1(v)− p dF J−1(v)

)
dF (v)

)
.

Note that this is decreasing, and zero at pC . So pC is a locally optimal response. However,

if pM > p̂, then the best-response profit function has a right-derivative of

1− λ

J
(1− F (p)− pf(p)) ,

at p̂, which is positive since p̂ < pM . This expression also governs the derivative of the

best-response on [p̂, pM ]; so the best response has a kink at p̂. Hence, the only two potential

symmetric equilibria are either pC or the monopoly price, pM . Then clearly, if p̂ ≥ pM , the

pricing subgame equilibrium is pC , and if p̂ ≤ pC , the pricing subgame equilibrium is pM .

So it remains to characterize the subgame equilibria if p̂ ∈ (pC , pM). Recall that the

platform seeks to obtain the maximum transfer from the firms for its service; hence, the

platform sets pricing policies to maximize the joint surplus of the platform and firms given

the resulting pricing equilibrium. Since the resulting pricing equilibrium is either pC and p̂,

if the platform chooses a price p̂ > pC and the pricing equilibrium is pC , the joint surplus is

(1− λ)pC(1− F (pC)) +

∫
min(v, pC) dF

J(v).

However, if the platform sets some p̂ such that the resulting pricing equilibrium in the
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subgame is pM , the joint surplus is

(1− λ)pM(1− F (pM)) +

∫
min(v, p̂) dF J(v).

Note that by definition of pM , (1− λ)pC(1− F (pC)) < (1− λ)pM(1− F (pM)), and p̂ > pC ;

hence, it follows that the platform’s optimal strategy is to choose the largest possible p̂ such

that pM is a pricing subgame equilibrium. (That is, raising p̂ increases surplus extraction

from on-platform consumers, but the platform cannot raise prices so high that firms want

to undercut each other).

That is, suppose the platform capped prices at p̂. The best response profit from under-

cutting to price p are given by ΠU , and if the firm chooses price pM , its profit are given

by:

ΠM(p̂) =
1− λ

J
pM(1− F (pM)) + λ

(∫ p̂

vF J−1(v)dF (v) +

∫
p̂

p̂F J−1(v) dF (v)

)
.

Note that at ΠU(pC) < ΠM(pC) since the best response p at p̂ = pC is pC , but that ΠU(pM) >

ΠM(pM), since the derivative of the maximand of ΠU is negative at p = p̂ = pM . So there

exists a largest price p∗ ∈ [pC , pM ] such that ΠM(p∗) ≥ ΠU(p
∗), and it is optimal for the

platform to cap prices at p∗, and firms to price at pM in the subsequent subgame.

Proof of Proposition 7

The right hand side of the pricing condition characterizing pC is

ΦM(p) =
1− F (p) + λJ

1−λ

(∫
p

(
F J−1(v)− p dF J−1(v)

)
dF (v)

)
f(p)

.

Note that pC is the fixed point of ΦM , and ΦM(p) is decreasing in p. Thus, it suffices to

show that for some large enough J , ΦM(pM) < pM , as that implies the fixed point of ΦM is

less than pM .

Recall that pM satisfies the first order condition

1− F (pM)− pMf(pM) = 0.

41



So

ΦM(pM) = pM +
λ

(1− λ)f(pM)

(∫
pM

J
(
F J−1(v)− pM dF J−1(v)

)
dF (v)

)
= pM +

λ

(1− λ)f(pM)

(∫
pM

J

(
F (v)

f(v)
− pM(J − 1)

)
F J−2(v)f 2(v) dv

)
< pM +

λ

(1− λ)f(pM)

(∫
pM

J (B − (J − 1)pM)F J−2(v)f(v) dv

)
.

If J > 1 +B/pM , the term in parentheses is negative, so ΦM(pM) < pM , which implies that

pC < pM .

Proof of Theorem 3

Once again, we consider the best response problem of a firm given other firms setting price

p′.

First, consider firms setting price p < p′. Here, since the firm will not poach anyone, firm

collects p on all values above p, and the value from all values below p. The firm’s profit will

be
1− λ

J
p(1− F (p)) + λ

(∫ p

vF J−1(v) dF (v) +

∫
p

pF J−1(v) dF (v)

)
.

The derivative with respect to p is

1− λ

J
(1− F (p)− pf(p)) + λ

(
pF J−1(p)f(p)− pF J−1(p)f(p) +

∫
p

F J−1(v) dF (v)

)

=
1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

F J−1(v) dF (v)

)
. (14)

Now, consider firms setting price p > p′. The firm profit function is

1− λ

J
p(1− F (p)) + λ

(∫ p′

vF J−1(v) dF (v) +

∫ p

p′

∫ p′

v dF J−1(v′) dF (v)∫ p

p′

∫ v

p′
(v − (v′ − p′)) dF J−1(v′) dF (v) +

∫
p

∫ p′+(v−p)

p dF J−1(v′) dF (v)∫
p

∫ v

p′+(v−p)

(v − (v′ − p′)) dF J−1(v′) dF (v)

)
.
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The derivative is

1− λ

J
(1− F (p)− pf(p)) + λ

(∫ p′

p dF J−1(v′) dF (p) +

∫ p

p′
(p− (v′ − p′)) dF J−1(v′) dF (p)

−
∫ p′

p dF J−1(v′) dF (p)−
∫
p

p dF J−1(p′ + (v − p)) dF (v)

+

∫
p

∫ p′+(v−p)

dF J−1(v′) dF (v)−
∫ p

p′
(p− (v′ − p′)) dF J−1(v′) dF (p)

+

∫
p

p dF J−1(p′ + (v − p)) dF (v)

)
.

Everything cancels except the first term in the third line, so with a bit of simplification

=
1− λ

J
(1− F (p)− pf(p)) + λ

(∫
p

F J−1(p′ + v − p) dF (v)

)
. (15)

Comparing (14) and (15), the derivative matches from the left and right at p = p′, and

so the best-response function is smooth. One can also easily see that
∫
p
F J−1(v) dF (v) is

decreasing in p, so the objective is concave and we can take the first order condition:

0 =
1− λ

J
(1− F (p)− pf(p)) + λ

∫
p

F J−1(v) dF (v).

Rearranging, we get the implicit characterization of posted prices in (11).
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