
ORGANIZATIONAL STRUCTURE AND PRICING: 
EVIDENCE FROM A LARGE U.S. AIRLINE

By 

Ali Hortaçsu, Olivia R. Natan, Hayden Parsley, 

Timothy Schwieg and Kevin R. Williams 

January 2023 

COWLES FOUNDATION DISCUSSION PAPER NO. 2312R3

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 

YALE UNIVERSITY  

Box 208281  

New Haven, Connecticut 06520-8281  

http://cowles.yale.edu/ 

http://cowles.yale.edu/


Organizational Structure and Pricing:
Evidence from a Large U.S. Airline

Ali Hortaçsu, University of Chicago and NBER
Olivia R. Natan , University of California, Berkeley

Hayden Parsley, University of Texas, Austin
Timothy Schwieg, University of Chicago, Booth

Kevin R. Williams, Yale School of Management and NBER*

January 2023

Abstract

Firms facing complex objectives often decompose the problems they face,
delegating different parts of the decision to distinct subordinates. Using com-
prehensive data and internal models from a large U.S. airline, we establish that
airline pricing is inconsistent with canonical dynamic pricing models. However,
we show that observed prices can be rationalized as an equilibrium of a game
played by departments who each have decision rights for different inputs that
are supplied to the observed pricing heuristic. Incorrectly assuming that the firm
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1 Introduction

Firms facing complex decisions often need to simplify the problems they face. They

may rely on heuristics and delegate decision rights to individual departments that are

responsible for particular sub-decisions. This can be true for firms’ pricing decisions,

which frequently involve specialized teams and complex optimization systems. One

department might manage procurement and inventory, another department specializes

in demand predictions, and an additional department manages competitive response.

Moving beyond the simple model of the firm as a unitary decision-maker which solves

a standard economic model creates the potential for coordination failures across sub-

units, and the use of heuristics may cause pricing decisions to differ significantly from

those predicted by benchmark economic models.

Using granular data and internal models from a large U.S. airline, we empirically

demonstrate the importance of accounting for organizational structure, department de-

cisions, and the use of heuristics in modeling pricing decisions.1 We find that airline

pricing is subject to important pricing biases that impact all flight prices—most no-

tably, and for tractability reasons, prices are set by a heuristic that differs substantially

from traditional, dynamic profit maximization. We establish that observed prices are

inconsistent with standard profit maximization by the firm. However, prices can be ra-

tionalized as an equilibrium of a game played by departments who each have decision

rights for different inputs that are supplied to the observed pricing heuristic. Although

departments have the same profit-maximization objective as the firm, providing biased

inputs is a mutual best-response given the pricing heuristic utilized by the firm. In other

words, the firm ends up making decisions that are boundedly rational, even though

each department is acting rationally (Simon, 1955). This has important implications

for our understanding of welfare. Incorrectly assuming that the firm solves a standard

profit maximization problem as a single entity understates welfare actually achieved,

1The airline has elected to remain anonymous.
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but also results in significant differences in predictions of consumer surplus and rev-

enues. Interestingly, business travelers benefit and leisure travelers are made worse off

under observed practices compared to the benchmark dynamic pricing model.

We begin with an overview of airline pricing practices, describing the transition

from regulated prices to the use of pricing heuristics post-deregulation. In the spirit

of Simon (1962) and Radner (1993), the observed organizational structure features

decentralized decision-making by departments, each responsible for particular sub-

decisions.2 The “network planning department” decides where to fly and assigns initial

capacities. We do not model these decisions. Given the network, the “pricing depart-

ment” designs itineraries and chooses a menu of discrete prices that consumers may

face. Finally, the “revenue management (RM) department” is responsible for analyz-

ing demand, monitoring flight-level performance, and making adjustments to demand

predictions. The heuristic does not actually decide price, rather, it allocates inventory

to each discrete price level. That is, “pricing” involves prices, quantities, and capacities

set by separate departments.

Although the separation of pricing responsibilities across departments is known to

exist (e.g., Vinod, 2021), we establish just how prevalent the observed organizational

structure is. We collect job listings that show that all major airlines, ultra low-cost car-

riers, and recently founded airlines have the same organizational structure and depart-

ment responsibilities. Moreover, we show that cruises, hotels, and car rentals have also

adopted the same organizational structure and department responsibilities.3 Therefore,

we believe our insights likely hold broadly in industries where firms face the complex

problem of dynamically pricing perishable inventory.

2The organizational structure also possesses similarities to more recent theoretical work in organi-
zational economics (e.g., Alonso, Dessein, and Matouschek, 2008; Rantakari, 2008; Dessein, Galeotti,
and Santos, 2016).

3Examples of firms with the same organizational structure include: MSC Cruises, Carnival Corpo-
ration, InterContinental Hotels Group, Universal Orlando Resort, Hertz Corporation, and Avis Budget
Group. Archived copies of all job postings, network profiles, and patents available upon request.
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Our insights are derived from comprehensive data provided to us by a large U.S.

airline. In addition to observing daily prices and quantities, we also observe all de-

partment decisions. We observe the demand models used, internal demand estimates,

and the pricing heuristics’s exact design (code), which we use in counterfactuals. We

also observe all consumer interactions (clickstream data) on the airline’s website. Our

sample covers 300,000 flights and 470 domestic routes over a span of two years.

Using the data and internal models, we establish three facts. These facts show that

airline pricing differs significantly from standard, dynamic profit maximization and

highlight how department decisions can affect pricing. We use the facts to guide our

modeling choices.

First, the airline uses a pricing heuristic that does not solve or approximate canon-

ical dynamic pricing models for computational tractability. The heuristic abstracts

from key market features—including cross-price elasticities—and is therefore inher-

ently biased.4 The heuristic does not internalize substitution across cabins within a

flight, across own substitute flights (within a day and across days), and across all com-

petitor options. No competitor information enters the heuristic at all. Prices for each

flight are optimized independently.5 Although an expansive literature studies firms

through the lens of optimal dynamic decision making (Rust, 2019), the actual pricing

heuristic does not internalize that it will revisit its decisions at all—it is not dynami-

cally consistent. This is a striking fact given that airlines have been cited as using the

most sophisticated pricing systems of all firms (McAfee and Te Velde, 2006).

Second, we show that department input decisions are also biased and subject to

what we call department “miscoordination.” For example, the RM department uses

single-product demand models that also do not account for any form of substitution.

4This can affect what inferences can be made about market conditions. For related theoretical work,
see, e.g., Bohren (2016) and Heidhues, Kőszegi, and Strack (2018).

5We discuss why the heuristic used differs substantially from proposed models of algorithmic pricing
(e.g. Asker, Fershtman, and Pakes, 2021; Calvano, Calzolari, Denicolo, and Pastorello, 2020; Brown and
MacKay, 2021).
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We show that departments do not internalize all of the decisions made by other depart-

ments. Moreover, we show that department decisions are incompatible: many prices in

the pricing department’s fare menus are misaligned with the RM department’s demand

forecasts—they are on the inelastic side of internal demand analysis. We show and

discuss why this leads the heuristic to frequently offer consumers “inelastic” fares.

Third, we show that departments actively respond to organizational constraints

and the limitations of the pricing heuristic by manipulating their own inputs, in similar

spirit to manipulating information in the seminal behavioral theory of the firm of Cyert

and March (1963). More precisely, we show that the RM department addresses what

it views as prices that are suboptimally too low by distorting its own demand models,

as a sort of workaround or kludge (Ely, 2011).6 We find that RM department analysts

inflate internally estimated demand models to effectively raise prices that appear to

reduce the percentage of flights that are priced on the inelastic side of demand.7

Analysis of internal models and data establish that pricing of all routes, regard-

less of market structure, depart from standard profit maximization, e.g., all flights rely

on the same single-product heuristic. We then compare pricing biases across market

structure and show that biases are even more pronounced in routes with nonstop com-

petitors. Following the existing dynamic pricing literature, we focus on single-carrier

routes in our structural analysis.8

We calculate payoffs of a team-theoretic game where departments supply inputs to

the observed pricing heuristic. For a given set of inputs, we simulate counterfactual

6According to Ely (2011), “A kludge is a marginal adaptation that compensates for, but does not
eliminate, fundamental design inefficiencies.” See Wollmer (1992) and Cooper, Homem-de Mello, and
Kleywegt (2006) for analysis on why heuristics can lead to mis-pricing.

7For additional perspectives on miscalibrated firm expectations, see Massey and Thaler (2013);
Akepanidtaworn, Di Mascio, Imas, and Schmidt (2019); Ma, Ropele, Sraer, and Thesmar (2020).
Berman and Heller (2020) present a theory on why biases can persist, including underestimating price
elasticities, in a model of competition.

8With the exception of Hortaçsu, Öry, and Williams (2022), the literature on dynamic pricing in per-
ishable goods markets has abstracted from oligopolistic competition where stage game payoffs depend
on competitor scarcity.
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outcomes based on unbiased and flexible demand estimates. We use a recently pro-

posed demand methodology (Hortaçsu, Natan, Parsley, Schwieg, and Williams, 2022)

that considers “leisure” and “business” travelers arriving according to time-varying

Poisson distributions. Conditional on arrival, consumers solve a standard discrete

choice problem. We provide new descriptive evidence to motivate our demand as-

sumptions. We address the identification challenge of estimating preferences in mod-

els with aggregate demand uncertainty by leveraging arrivals and bookings data. We

discuss why our instrumental variables are valid in the presence of pricing biases.

With demand estimated, we then consider counterfactual deviations from current

department input decisions. In one counterfactual, we allow the pricing department to

“coordinate” its fare menus to the RM department’s demand models by removing fares

on the inelastic side of demand. In another counterfactual, we allow the RM depart-

ment to adjust how it manipulates its demand models, holding the pricing department’s

fare menus fixed. We show that these unilateral deviations are not profitable. There-

fore, although observed pricing practices differ significantly from standard profit max-

imization, realized prices can be rationalized as an equilibrium of a common interests

model where departments have delegated decision rights around the observed heuris-

tic. The internal data and models imply suboptimal pricing, perhaps due to mistakes

or behavioral frictions (e.g., Levitt, 2016; DellaVigna and Gentzkow, 2019; Dubé and

Misra, 2021). However, within observed constraints, we establish that observed prices

follow a model of bounded rationality.

We further use these counterfactuals to highlight the organizational theories of lim-

ited gains of unilateral change (Milgrom and Roberts, 1990, 1995). We show that the

impact of large changes in a department’s inputs can result in small revenue effects be-

cause of how the pricing heuristic works. Moreover, we discuss why the observed equi-

librium is not driven by a misalignment in incentives within the organization (Atkin,

Chaudhry, Chaudry, Khandelwal, and Verhoogen, 2017; Sacarny, 2018).
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While it is possible that many input combinations constitute mutual best responses,

formally analyzing the relevant team-theoretic game is difficult because computing all

potential department choices is computationally intractable. Instead, we compare ob-

served prices to those predicted under dynamically optimal profit maximization. Al-

though this counterfactual can only be implemented for some routes for computational

reasons, it allows us to contrast welfare under observed practices with those expected

under the optimal dynamic pricing solution. Implicitly, the counterfactual also pro-

vides a lower bound on the costs (re-organization, computational burden, etc.) and

environmental factors (Siggelkow, 2001) that constrain pricing decisions.

We find that observed prices differ, sometimes substantially, from those predicted

under the optimal dynamic pricing solution (“dynamic prices”). As a result, incor-

rectly assuming that the firm solves the canonical pricing model understates welfare

actually achieved by 6%. Dynamic pricing overstates revenues by 14%. Moreover,

the differences result in significant welfare effects for business and leisure travelers.

Leisure travelers would actually prefer if dynamic pricing were possible because cur-

rent pricing biases inflate early prices (8% higher surplus). However, dynamic prices

exacerbate scarcity effects and price targeting, driving up fares for late-arriving, less-

elastic business travelers. As a result, business travelers benefit from the observed

organizational structure and use of heuristics (23% higher surplus).

In a complementary exercise, we also show that imposing the common assumption

that firms are unboundedly rational when estimating demand—and therefore, abstract-

ing from organizational structure, department decisions, and the use of heuristics—

leads to incorrect inferences about consumer demand elasticities and thus welfare. We

compare our demand estimates to those obtained by additionally imposing profit max-

imization as advocated by, e.g., Berry, Levinsohn, and Pakes (1995), and commonly

used in dynamic pricing studies (e.g., Williams, 2022; Aryal, Murry, and Williams,
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2022; Pan and Wang, 2022; Cho, Lee, Rust, and Yu, 2018).9 We find significant differ-

ences in estimating demand curves that again understate welfare for the routes studied.

Finally, we discuss the broad economic importance of our findings. First, we re-

veal that advanced pricing systems rely on consequential simplifications, e.g., single-

product demand models and dynamically inconsistent optimization tools. Second, we

establish that observed pricing practices are not well approximated by a benchmark

model of dynamic pricing. We offer an empirical quantification on the differences

between actual firm pricing practices and what Rust (2019) describes as the question-

able, yet maintained, assumption that firms behave “as if’ they have solved the dynamic

problems they face. Third, we show that a model of bounded rationality (Simon, 1955)

involving delegated decision-making and use of heuristics explains firm pricing deci-

sions. Fourth, we show that there are significant welfare differences between observed

prices and the optimal dynamic pricing solution. Our results show that understanding

how firms structure the complex problems they face is crucial for the inferences we

draw from firms’ pricing decisions and how we model firm behavior.

The paper is organized as follows. In Section 2, we discuss industry pricing prac-

tices. We discuss the data in Section 3 and pricing biases in Section 4. We present the

demand model, estimation details, and parameter estimates in Section 5. We investi-

gate department decisions in Section 6. We consider dynamic pricing in Section 7.

2 Industry Setting and Organizational Structure

We study the US airline industry, an industry that directly supports over 2.2 million

jobs and contributes over $700 billion to the US economy.10 We briefly describe airline

pricing practices. McGill and Van Ryzin (1999) and Vinod (2021) provide detailed,

9D’Haultfœuille, Février, Wang, and Wilner (2022) consider a partial identification approach.
10See https://www.iata.org/en/iata-repository/publications/economic-reports/the-united-states–value-of-aviation/. Sep 28,

2022.
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historical accounts.

Prior to deregulation of the airline industry, the networks and fares of airlines were

federally controlled. In order to facilitate ticket purchases, airlines collectively started

ATPCO, a corporation that gathers and disseminates fares to Global Distribution Sys-

tems (GDSs), or travel reservation systems that merge and process fare and ticket avail-

ability for travel agents. “Pricing” meant filing new binders of fares. Post-deregulation,

competition intensified, which resulted in airlines lowering fares, particularly for con-

sumers who shopped early. These were the first advance purchase (AP) fares that are

now commonly observed in advance purchase markets.

In 1972, BOAC Airlines developed the first tractable inventory management sys-

tem that controlled how many discounted fares to offer based on expected demand.11

American Airlines developed a related optimization tool as computing power increased

(Vinod, 2021). The adoption of these optimization tools resulted in a bifurcation of

pricing responsibilities. One department continued to decide the set of itineraries

and fares to offer. The newly formed department—revenue management—worked

on algorithm development, created demand forecasts, and allocated inventory to the

pricing menu. Using job listings, we show that all major airlines, including legacy

carriers, low-cost carriers, and start-up airlines maintain separate pricing and RM de-

partments.12 In fact, we show that the same organizational structure and department

responsibilities is used in car rentals, hotels, cruises, trains, and buses.

Figure 1 depicts the organizational structure we study. First, the network plan-

ning department decides routes served, flight frequencies, and capacities. We do not

model these decisions. The core responsibility of the pricing department is to decide

a discrete menu of fares and fare restrictions for every itinerary. The most common

restriction is an advance purchase (AP) requirement, meaning that a fare needs to be

11The BOAC employee, Ken Littlewood, developed what is now referred to as Littlewood’s rule. The
central intuition of his model is that if future demand is expected to be strong, an airline should offer
fewer seats at lower prices today.

12See Footnote 3.
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purchased before a certain number of days before departure.13 The pricing depart-

ment does not simply choose fares, it designs the types of itineraries and tickets that

can be purchased.14 The department gathers and interprets competitor prices and ini-

tiates/responds to industry-level changes, e.g., implementing a fuel surcharge. The

RM department is responsible for demand analysis and monitoring flight-level perfor-

mance. The RM department estimates short-run demand models; the department does

not maintain long-run demand estimates. As demand is realized, RM analysts make

adjustments to their forecasts. The pricing heuristic combines all inputs—the demand

analysis (flight-level forecasts) made by the RM department, the fare menu decisions

of the pricing department, and the capacity constraint set by the network planning de-

partment. It allocates how many (remaining) seats can be sold at each price level.15

The key performance metrics used at the firm do not suggest that these departments

have misaligned incentives.

Figure 1: Division Responsibilities at all Airlines

Network Planning
Routes Served

Frequencies
Capacities

Pricing
Fare Menus

Fare Restrictions

RM
Demand Analysis /

Forecast

Pricing Heuristic

Note: Key departments, responsibilities, and decision-making process at all airlines. The dashed arrows show the flow of infor-
mation that can be leveraged by departments. The solid arrows show the flow of decisions, i.e., decisions are based to the pricing
heuristic.

13Advance purchase (AP) fares are common at 7, 14, and 21 days before departure.
14The pricing department decides fares that cover different classes of service, connecting options,

blackout dates, etc. Each fare has dozens of characteristics that can be adjusted. The coarsest level of
a fare is its fare class, e.g., discounted economy versus full-fare economy. We observe over 20 million
fares for economy-class fares in our sample.

15Note, for expositional purposes, we refer to the heuristic as determining price.
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Organizational inertia, coupled with significant computational constraints, are rea-

sons why the observed bifurcation of pricing responsibilities is the predominant way

firms have organized in industries selling perishable goods. Although the divisions

in pricing responsibilities developed as optimization techniques improved, there has

been little advancement in solving the general airline pricing problem at scale (the

code edits we observe show that the airline’s heuristic has not changed substantially for

decades). Accounting for substitution patterns in dynamic models in difficult and op-

timizing remaining inventory across the entire network is computationally intractable

given the size of the airline’s operations.16 To emphasize how difficult the airline pric-

ing problem is, take the organizational structure as given and abstract from all network

considerations. The smallest flights in our sample involve over 1.5 million inventory

allocations by the pricing heuristic. Combining inventory allocation with the simplest

pricing decision, i.e., deciding among two possibilities for each discrete fare class, re-

sults in an objective with more than 101000 potential choices. That is, the scope of the

joint pricing and inventory decision is intractable for even the smallest flights.

Similar to organizational structure, external compatibility is another factor that

constrains airline pricing. Airlines still rely on the same external systems for publish-

ing prices (e.g., ATPCO) and managing bookings across booking channels (direct, via

OTAs, etc.). These systems ensure access to the same fares across channels, but it

necessitates the use of discrete fares and handling inventory in a unified manner. Ho-

tels, car rentals, etc. also leverage these systems. These systems discipline department

decisions—for example, the number of fares in the pricing department’s menu choices

is limited because of external compatibility.

16In practice, the firm leverages a procedure built on top of the pricing heuristic that attempts to
correct for aspects of network demand. We do not study this aspect of pricing because it requires data
on the entire network and is very costly to compute. In general, we may understate the value of capacity
in our analysis; however, we attempt to minimize this aspect of demand through our route selection
criteria.

10



3 Data and Summary Analysis

3.1 Data Overview

We use comprehensive data provided to us by a large U.S. airline. To maintain anonymity,

we exclude some details. We combine several data sources, which we refer to as: (1)

bookings, (2) inventory, (3) search, (4) fares, and (5) forecasting data.

(1) Bookings data: We observe all tickets purchased, regardless of booking chan-

nel, e.g., the airline’s website, travel agency, etc. Key variables included are the fare

paid, the number of passengers, the particular flights included in the itinerary, the

booking channel, and the purchase date. We focus on nonstop, economy class tickets.

(2) Inventory data: The inventory data detail the number of seats the airline is

willing to sell at each fare level, at each point in time. We observe the pricing algorithm

code and algorithm output, including the opportunity cost of selling a seat. Prices are

reoptimized, given remaining inventory, daily.

(3) Search data: We observe all internet activity on the airline’s website for two

years. The search data contain hundreds of millions of data points. Tracked actions

include, but are not limited to, search queries, bookings, referrals from other websites,

and the sets of flights that appear on every page that the consumer visits.

(4) Fare data: The fare data contain the pricing department’s decisions. A fare

denotes a price and ticket restrictions, including any advance purchase requirements.

We focus on nonstop/non-connecting fares and observe all fare menu changes.

(5) Forecasting data: The RM department forecasts demand based on short-run

demand estimates. We use “demand model” to denote the observed, baseline demand

model and “demand forecasts” to denote the demand model’s predictions after analyst

adjustments. Adjustments allow for reacting to changing market conditions, includ-

ing the performance of recently departed flights. The demand forecasts are still de-

mand curves, i.e., quantity demanded for a given price. The RM department maintains
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separate models/forecasts for “business” and “leisure” travelers based on an observed

classification algorithm. We observe the demand model, parameter estimates, analyst

adjustments, and the forecasts themselves.

3.2 Summary Analysis

We do not study all routes served due to data size constraints. Instead, we select 470

routes. In Online Appendix B, we discuss route selection. On average, the routes

we study have a higher fraction of nonstop traffic, fewer flights per day, and smaller

total capacity compared to the airline’s overall domestic network. Nonetheless, our

analyses cover a diverse set of routes in terms of competition, seasonality, frequencies,

and traffic flows. The sample contains large “trunk routes” between major cities as

well as routes from metropolitan areas to small cities. We focus on domestic routes.

Table 1: Summary Statistics

Data Variable Mean Std. Dev. Median 5th pctile 95th pctile

Fares
One-Way Fare ($) 201.3 139.4 163.3 88.0 411.1
Num. Fare Changes 9.3 4.2 9.0 3.0 17.0
Fare Change | Inc. 50.4 73.0 31.2 2.2 164.5
Fare Change | Dec. -53.0 75.5 -32.2 -175.2 -4.3

Bookings
Booking Rate-OD 0.2 0.7 0.0 0.0 1.0
Booking Rate-All 0.6 1.4 0.0 0.0 3.0
Load Factor (%) 82.2 21.4 90.0 36.0 102.0

Searches
Search Rate 1.9 4.8 0.0 0.0 9.0

Summary statistics for the data sample. The booking rates are for non-award, direct travel on nonstop flights and for all traffic
on nonstop flights (including passengers who connect onward), respectively. The number of passengers denotes the number of
passengers per booking. Load factor includes all bookings, including award and connecting itineraries. The search rate is for
origin-destination queries at the daily level.

Table 1 provides a basic summary of the nearly 300,000 flights in our sample. We

focus on the last 120 days before departure due to the overwhelming sparsity of search

and sales observations earlier in the booking horizon.
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Average fares in our sample are $201, with large dispersion across routes and over

time. Typically, prices for a particular flight adjust nine times. Many fare adjustments

occur at specified times, such as after expiration of AP opportunities (see Figure 2-a).

Over 60% of all price adjustments occur outside these time windows. In Figure 2-(b),

we plot average fares over time. Fares increase by over 70% in 120 days. More than

25% of routes see fares more than double. For a few routes, fares triple in 120 days.

Figure 2: Fares Time Series
(a) Fraction of Fare Changes
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Note: Fraction of fare changes and average fares by day before departure. Also included is the IQR across fares.

The booking rate (sales per flight-day) is low; the percentage of zero sales is 80%.

Importantly, the highest booking rates occur when prices are the highest (within the

last 7 days before departure). The average load factor at departure is 82.2%. Although

5% of flights eventually oversell, we abstract from this possibility because we do not

observe denied boarding/no show information. We use the flight’s “authorized” capac-

ity, which is the capacity the heuristic uses when it allocates remaining inventory.

3.3 Motivating Evidence on Demand

We provide new descriptive evidence to motivate many of our modeling assumptions.

The bookings data suggest that unit demand is a reasonable assumption. The average

passengers per booking is 1.3, and the median is 1. We assume that consumers ob-

serve a single price per flight because 91% of consumers purchase the lowest available
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fare (because of how the pricing heuristic works, consumers can often purchase more

expensive tickets that may or may not share the same attributes, e.g., refundability).17

Special fares, such as corporate or government discounts, are rare in the routes studied.

We adopt a two-type consumer model, corresponding to “leisure” and “business”

travelers, because that is how the RM department models demand. The labels “leisure”

and “business” are mechanically linked to attributes of the ticket, e.g., the number of

days before departure it was booked and are not attached to traveler characteristics,

e.g., passenger status or travel purpose.

We find evidence that supports using a static discrete choice model to model de-

mand (the following assumptions are also made in the RM department’s demand mod-

els). We “daisychain” the clickstream data, linking searches across devices and cookies

for hundreds of millions of clicks. We assume that consumers consider a single depar-

ture date because 82% of customers search a single departure date (see Figure 13-a in

Online Appendix C.1). Among the remaining 18%, the average time lag between these

searches is 45 days, suggesting different trips. We do not model consumers strate-

gically waiting to purchase tickets because 90% of consumers complete their search

activity in a single day (including shoppers referred to the airline increases the percent-

age). Interestingly, among the remaining 10% that search over time (see Figure 13-b),

only 20% ever observe a lower fare for at least one flight in later searches (most search

spells end within five days). Our estimates suggest that only 2% of shoppers who

may be strategically waiting actually obtain a lower price. This estimate is lower than

the IQR (5.2% to 19.2%) found by Li, Granados, and Netessine (2014) who do not

have access to search data. We also do not model strategic timing of arrival because

otherwise the data suggests consumer mistakes may be very common. Over 62% of

consumers would have received a lower price if they purchased a week earlier. Only

17Consumers with the highest status are the most likely to pay more than the lowest price available.
This finding complements Orhun, Guo, and Hagemann (2022), who show that loyal consumers tend
to fly longer itineraries than necessary in order to obtain status at an airline whose loyalty program is
mileage based.
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8% would have benefited from delaying their purchasing decision.

4 Pricing Biases in Airline Markets

We provide several examples why airline pricing practices differs from dynamically

optimal profit maximization. We use the term “pricing biases.” We provide addi-

tional empirical evidence in Online Appendix C, including an example of “miscoor-

dination” in which departments do not necessarily internalize the decisions of other

departments when determining inputs and that airline pricing is subject to pricing fric-

tions (marginal cost changes that do not trigger price adjustments).

4.1 Heuristic Bias

Prices are determined by a heuristic for tractability reasons. We detail the heuristic

which our firm’s is based on in Online Appendix A. We do not identify the exact

heuristic for confidentiality reasons. However, we use the exact heuristic in our coun-

terfactuals. The edits to the heuristic’s code confirms that it has hardly changed over

the past 25 years.

There are several reasons why airline pricing differs significantly from dynami-

cally optimal profit maximization. Examining the heuristic’s code, one of the most

salient differences is that the heuristic is dynamically inconsistent—it does not solve

a standard dynamic program at all. Rather, the heuristic simplifies the world to two

periods, demand today and the sum of future expected demand (the “second period”).

By aggregating all of future demand into a single period, the heuristic avoids solving

a dynamic program. The heuristic does not internalize that it will revisit its allocation

decisions daily. Given remaining capacity (and all input decisions), it works to ensure

that enough seats are reserved to meet future demand—the second period.

The pricing heuristic is also inherently biased because it cannot account for cross-
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price elasticities of any kind, including across cabins within a flight, other flight op-

tions, and competitors. All flights, regardless of market structure, etc., are priced using

the same single-product heuristic. Competitor prices do not enter the algorithm at all.

In Online Appendix C.2, we show that the pricing heuristic does not even indirectly

react to demand realizations of substitute flights. This precludes direct responses to

competitors.18 We discuss how only the pricing department can partially internalize

competitor prices in the next subsection. Finally, the heuristic does not explicitly max-

imize revenues—rather, it focuses on the booking rate.

The biases we document affect all decisions the heuristic makes—pricing deci-

sions do not follow standard economic models, regardless of market structure. The

heuristic’s design will tend to cause it to understate opportunity costs.19 This is be-

cause accounting for (any) own-product substitution and internalizing that prices will

be optimized over time will tend to increase opportunity costs. Addressing that the

heuristic may yield suboptimally low prices is difficult because adjustments should be

specific to every flight’s state variables (time and capacity remaining). We examine

how RM analysts address perceived mispricing in Section 4.3.

4.1.1 How Department Decisions Interact with the Pricing Heuristic

Before continuing, we provide two illustrative examples on how department input de-

cisions may interact with the pricing heuristic. The examples emphasize that inputs

can be “offsetting” or “reinforcing”—that is, oppose one department’s desired affect

on pricing decisions or compound one department’s goal, given the heuristic’s design.

Suppose the pricing department wants to run a sale (or match a competitor) by

18Note that fares are not personalized, and loyalty metrics are not used in pricing and RM activities.
The heuristic does not consider ancillary revenue, including baggage fees, upgrade charges, etc., when
it makes its decisions. This is not uncommon in the industry. For example, Japan, Etihad, Philippine,
Flydubai, Korean, Jeju, Frontier, Malaysia, All Nippon, Hawaiian, and Lufthansa all use an RM opti-
mization solution offered by PROS that does not allow for joint ancillary fare revenue maximization.

19Cooper, Homem-de Mello, and Kleywegt (2006) shows that this can even happen in single-product
settings using a similar heuristic.
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offering a $50 fare. This fare decision is fed through the RM department’s demand

forecast within the pricing heuristic. If the heuristic decides that such a low fare would

not save seats for future demands based on the forecasts, it will not allocate any seats

to the sale fare. This means that the RM department’s input decision and the heuristic

will offset the pricing department’s intentions. As a result, the sale (or price match)

will not occur.

If the heuristic optimizes prices for every flight in isolation and does not consider

competitor information, how is it possible that multiple flights offered by the same

airline can have the same price? How is it possible that multiple airlines charge the

same price simultaneously? Observing identical prices is made possible by department

decisions, but it is not enforced by the heuristic. That is, if a competitor is offering

a $50 fare, the pricing department can “match” it by filing a $50 fare, but it is up

to the heuristic if that fare is selected given the other inputs. The same is true for

multiple flights offered by the same airline—this again is made possible by the pricing

department, because fare menus can vary by departure date but not at the flight-level.

The heuristic decides inventory allocations for each flight in isolation without any

information on substitute flights (own and competitor options).

As a second example, suppose the pricing department institutes a fuel surcharge,

raising all fares, and the RM department simultaneously adjusts its demand predictions

upward due predicting a strong travel season. Both actions independently would (tend

to) raise price, but when combined, the price increase would (tend to) be larger.20

4.2 Fares on the Inelastic Side of Demand Curves

Next, we show that pricing inputs are subject to department “miscoordination.” More

specifically, we observe that the pricing department often files fares that are too low

20We add the words “tend to” because the objective is nonstandard and both capacity and fare choices
are discrete. It could be that certain adjustments yield the opposite effect, e.g., increasing the price of
very high fares, leaving lower priced fares the same, which could cause the distribution of prices to fall.
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according to the RM department’s internal demand models. Although this would be in-

consequential if the pricing heuristic solved a standard profit maximization problem—

it would not allocate seats on the inelastic side of the demand curve—in practice, it

may not prevent “inelastic fares” from being offered to consumers. When capacity is

not sufficiently constrained, it will default to the lowest fare on the menu, regardless of

what it is. This is true even if the more expensive, profit maximizing fare is included

in pricing department’s menus.

To quantify this form of miscoordination, we use the RM department’s continuous

and differentiable demand models, Q (p ). We calculate the elasticity of demand, e (p ),

and plug in the lowest fare filed by the pricing department. We find that if the heuristic

allocated seats to these fares, consumer demand would be inelastic according to the

RM department’s demand models in 98% of the sample.21

4.3 Using Persistently Biased Forecasts

The RM department knows about the heuristic’s biases and that the presence of low

prices in the fare menus can cause consumers to be offered inelastic prices according to

its own analysis. It has introduced a workaround, or kludge, to counteract these forces.

In order to raise prices (via increasing opportunity costs) within its organizational de-

cision rights, we find that all RM analysts manipulate their own demand models. They

incorporate an upward bias that results in systematically overpredicting demand. This

is most commonly done by scaling up/down multiple routes’ demand models simulta-

neously. The demand models, after RM analyst adjustments, are supplied to the pricing

heuristic.

In Figure 3, we plot the average forecast bias by week before departure. We calcu-

21One might conjecture that low fares remain on the menus so they can be activated in case of a
sale. However, the lowest fares are not “sale” fares. Sale fares are observable to us. They have special
attributes and are only active for short periods of time.
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Figure 3: Forecast Bias by Day Before Departure
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Note: Forecast bias is calculated by comparing the sum of expected bookings for each flight (and price) to realized bookings, by
week before departure.

late the forecast bias for a particular week before departure as

Forecast Bias := 100 ·

Forecasted Demand︷ ︸︸ ︷∑
j ,d ,t

EQ j ,d ,t (pj ,d ,t )−
Realized Demand︷ ︸︸ ︷∑

j ,d ,t

Q j ,d ,t (pj ,d ,t )∑
j ,d ,t

Q j ,d ,t (pj ,d ,t )︸ ︷︷ ︸
Realized Demand

,

where forecasted and realized demand account for the current and expected future

prices offered, and we sum over all flights ( j ), departure dates (d ), and days before

departure (t ), for a given week. The average forecast bias is 15% higher than actual

realized demand. We find that the bias shrinks from nearly 25% of expected sales early

on to 8% close to the departure date.22 This pattern is observed across all routes, re-

gardless of route performance or market structure. 79% of flights have overforecasted

demand 120 days before departure. We find that routes with nonstop competitors fea-

22We may expect the optimal bias to decrease over time for two reasons. First, the heuristic tends to
deflate opportunity costs the most well in advance of the departure date. As time to departure decreases,
the effect of the heuristic bias decreases because there are fewer opportunities to reoptimize remaining
inventory. That is, the understatement of opportunity costs decreases. Second, as remaining capacity
decreases, each additional seat sold will tend to have a larger effect on opportunity costs, meaning
smaller bias is necessary to raise prices.
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ture slightly larger forecasting bias compared to single-carrier routes.

How effective are these manipulations to demand forecasts at addressing perceived

mis-pricing? We again calculate the elasticity of demand using RM departments de-

mand models, Q (p ), but instead plug in realized prices. We find that 38% of flights are

actually priced on the inelastic side of demand, rather than the 98% of flights we pre-

viously estimated if the heuristic defaulted to offering the lowest fares. Interestingly,

routes with existing nonstop competition feature more frequent inelastic demand based

on internal demand models (yet, also feature larger forecast biases) than single-carrier

routes. We study RM analyst decisions more formally in our counterfactual analyses.

5 Empirical Model of Air Travel Demand

While our descriptive evidence highlights actual airline pricing practices, it does not

allow us to quantify the differences between observed pricing practices and the canon-

ical single-firm dynamic pricing model. To do so, we need to estimate a model of

unbiased preferences. We cannot use the internally estimated demand models because

they are misspecified, e.g., they assume that demand is single-product. We utilize both

the demand model and estimation approach of Hortaçsu, Natan, Parsley, Schwieg, and

Williams (2022). This allows us to capture rich substitution patterns, including sea-

sonality effects, day-of-week effects, etc.

In the model, the definition of a market is an origin-destination (r ), departure date

(d ), and day before departure (t ) tuple. The booking horizon for each flight j leaving

on date d is t ∈ {0, ..., T }. The first period of sale is t = T , and the flight departs at

t = 0. In each market t , arriving consumers choose flights from the choice set J (r, t , d )

that maximize their individual utilities, or select the outside option, j = 0. Note that

our model covers all bookings, regardless of how the ticket was purchased.
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5.1 Utility Specification

Arriving consumers are one of two types, corresponding to leisure (L) travelers and

business (B ) travelers. An individual consumer is denoted by i and her consumer type

is denoted by ℓ ∈ {B , L}. The probability that an arriving consumer is a business trav-

eler is equal to γt ,r . We incorporate two assumptions to greatly simplify the demand

system. First, we assume that consumers do not choose flights based on remaining ca-

pacity, C j ,t ,d ,r . This allows us to avoid modeling infrequent events where a consumer

may otherwise choose a less preferred option because there is a higher probability of

securing a seat. Second, we incorporate random rationing if demand exceeds remain-

ing capacity.

We assume that indirect utilities are linear in product characteristics and given by

ui , j ,t ,d ,r =

 X j ,t ,d ,rβr −pj ,t ,d ,rαℓ(i ),r +ξ j ,t ,d ,r + ϵi , j ,t ,d ,r , j ∈ J (t , d , r )

ϵi ,0,t ,d ,r , j = 0
,

where X j ,t ,d ,r denote product characteristics other than price pj ,t ,d ,r , and preferences

are denoted by
�
βr ,αℓ,r
�
ℓ∈{B ,L}. The term ξ j ,t ,d ,r denotes an unobserved demand shock

that is potentially correlated with price, and ϵi , j ,t ,d ,r is a random component of utility

which is assumed to be distributed according to a type-1 extreme value distribution. All

consumers solve a straightforward utility maximization problem: consumer i chooses

flight j if and only if ui , j ,t ,d ,r ≥ ui , j ′,d ,t ,r , ∀ j ′ ∈ J ∪{0}.
The distributional assumption on the idiosyncratic error term leads to analytical

expressions for the individual choice probabilities (Berry, Carnall, and Spiller, 2006).

The probability that consumer i wants to purchase a ticket on flight j is equal to

s i
j ,t ,d ,r =

exp
�
X j ,t ,d ,rβr −pj ,t ,d ,rαℓ(i ),r +ξ j ,t ,d ,r

�
1+
∑

k∈J (t ,d ,r ) exp
�
Xk ,t ,d ,rβr −pk ,t ,d ,rαℓ(i ),r +ξk ,t ,d ,r

� .
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Since consumers are one of two types, we define s L
j ,t ,d ,r be the conditional choice

probability for a leisure consumer (and s B
j ,t ,d ,r for a business consumer). Integrating

over consumer types, we obtain market shares, s j ,t ,d ,r = γt ,r s B
j ,t ,d ,r + (1−γt ,r )s L

j ,t ,d ,r .

5.2 Arrival Processes and Integer-Valued Demand

Whereas the empirical literature commonly assumes a market size, we model con-

sumer arrives and estimate arrival rates based on search data. We assume that both

consumer types arrive according to a time-varying Poisson distribution. We assume:

(i) arrivals are distributed Poisson with rate λt ,d ,r , (ii) arrivals are independent of price

(see Online Appendix C.5 for supporting evidence) and ξ j ,t ,d ,r ; (iii) consumers have no

knowledge of remaining capacity; (iv) consumers solve the above utility maximization

problems. With these assumptions, conditional on prices and product characteristics,

demand for flight j is equal to

q̃ j ,t ,d ,r ∼ Poisson
�
λt ,d ,r · s j ,t ,d ,r

�
.

Realized demand is equal to q j ,t ,d ,r =min
¦

q̃ j ,t ,d ,r , C j ,t ,d ,r

©
.

5.3 Empirical Specification

We assume that consumer utility is given by

ui , j ,t ,d ,r =β0,r−αℓ(i ),r pj ,t ,d ,r+FEr (Time of Day j )+FEr (Week)+FEr (DoW)+ξ j ,t ,d ,r+ϵi , j ,t ,d ,r ,
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where "FE" denotes fixed effects for the variable in parentheses. We parameterize the

probability an arrival is of the business type as

γt ,r =
exp
�

fr (t )
�

1+exp
�

fr (t )
� ,

where fr (t ) is an orthogonal polynomial basis of degree five with respect to days from

departure. This specification allows for non-monotonicities while producing values

bounded between zero and one. We specify the arrival processes using a multiplica-

tive relationship between day before departure and departure date fixed effects, i.e.,

λt ,d ,r = exp(λt ,r +λd ,r ), because consumer arrivals are observed at the (t , d , r ) level

of granularity. This specification captures that searches tend to increase over time or

evolve discontinuously (λt ,r ), and we observe strong departure-date effects (λd ,r ).

Our method accounts for the fact that we do not observe all searches, but we do

observe all bookings (e.g., a booking through a travel agency). Essentially, our esti-

mation procedure scales up estimated search rates based on what fraction of bookings

our search data account for.23 Using properties of the Poisson distribution, we assign

AL
t ,d ,r ∼ Poisson(λt ,d ,r (1− γ̃t ,r )/ζL

t ,r ), and AB
t ,d ,r ∼ Poisson(λt ,d ,r γ̃t ,r /ζ

B
t ,r ), where γ̃t ,r

is derived from the RM department’s passenger assignment algorithm, and ζℓt ,r is the

fraction of bookings that occur through indirect channels.24 That is, we use the relative

fraction of L (and B ) sales and searches across channels to scale up L (and B ) arrivals.

This logic follows the simpler case with a single consumer type: if channels with ob-

served searches account for 20% of bookings, and unobserved searches involve the

same underlying demand distributions, we can scale up estimated arrival rates by 5×.

The reason for our more complex adjustment is that our search data under/over rep-

23Additional descriptive analyses in Online Appendix C.5 motivate adjusting arrival rates differently
over time.

24We use time intervals early on due to data sparsity. Closer to the departure date, the intervals
become length one. We smooth the calculated fractions using a fifth-order polynomial approximation.
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resent certain consumers, e.g., some business consumers tend to book through travel

agencies. Our method accommodates this data feature. We also conduct robustness

to this specification (see Online Appendix D.2) and obtain quantitatively and qualita-

tively similar demand estimates.

5.4 Estimation Procedure

We use a hybrid-Gibbs sampler to estimate route-specific parameters. Our model al-

lows us to rationalize the large number of zero-sale observations while maintaining a

Bayesian IV correlation structure between price and the aggregate demand shock ξ.

Our approach builds on the estimation procedure developed by Jiang, Manchanda, and

Rossi (2009) by incorporating arrival processes, Poisson demand, and censored de-

mand. Additional details can be found in Online Appendix D.1. A complete treatment

can be found in Hortaçsu, Natan, Parsley, Schwieg, and Williams (2022).

5.5 Identification and Instruments

Estimating models of aggregate demand uncertainty require separably identifying shocks

to arrivals from shocks to preferences. We address this complication by using ar-

rivals data. Conditional on market size, preference parameters are identified using the

same variation commonly cited in the literature on estimating demand for differen-

tiated products using market-level data. The flight-level characteristic parameters are

identified from the variation of flights offered across markets, and we identify the price

coefficient using instrumental variables.

We use the shadow price of capacity as reported by the pricing heuristic, advance

purchase indicators, and total number of inbound or outbound bookings from a route’s

hub airport as our demand instruments. The shadow price is the firm’s estimate of

“marginal cost”—we instrument for price based on the heuristic’s estimate of opportu-
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nity costs. The advance purchase indicators account for the fact that prices may adjust

even in situations where opportunity costs are not observed to change (see Figure 15

in Online Appendix C.4). The number of inbound/outbound bookings to a route’s hub

airport is a congestion instrument that captures the change in opportunity costs driven

by demand shocks in other markets.25.

Note that our identification argument does not rely on optimal pricing. The pricing

heuristic is fully determined by its calculated opportunity costs, which we use as instru-

ments in a flexible way (by also adding quadratic and cubic terms). Our instruments

are relevant and highly correlated with price because our pricing equations essentially

approximate the heuristic’s decisions. For example, suppose that the forecast for a

flight is persistently biased upward, but a flight’s demand shocks tend to be low. Our

approach rationalizes this scenario because large opportunity costs rationalize higher

prices. Our estimates recover low ξs which differ in a flexible way from the pricing

equation unobservables (see Online Appendix D). In fact, these correlations may even

be negative. We estimate pseudo first-stage R 2s average 0.72 across routes.26

5.6 Demand Estimates

We select a subset of routes for estimation where our air carrier is the only airline

providing nonstop service. Our estimation sample includes routes with varying flight

25For a route with origin O and destination D , where D is a hub, the total number of outbound
bookings from the route’s hub airport is defined as the following;

∑K
i=1 QD ,D ′ . Where QD ,D ′ is the the

total number of bookings in period t , across all flights, for all K routes where the origin is the original
route’s destination. If the route’s origin is the hub, we calculate the total number of inward bound
bookings, which equals

∑K
i=1 QO ′,O . Where QO ′,O is the total bookings from all K routes where the

original routes origin is the destination. For example, for a flight from A to B , where B potentially
provides service elsewhere and is a hub, we use all traffic from B onward to other destinations C or
D . We assume demand shocks are independent across markets, so shocks to B → C and B → D are
unrelated to demand for A → B . Thus, a positive shock to onward traffic, out of hub B , will raise the
opportunity cost of serving A→ B →C or A→ B →D . This propagates to price set on the A→ B leg.

26For additional flexibility, we also allow for the variance in the pricing equation unobservable to vary
over time. This allows us to account for the fact that the RM department manages flights differently over
time in an observable way.
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frequencies, importance of seasonality, and percentage of nonstop and non-connecting

traffic. Online Appendix B discusses the estimation sample in more detail. In total, we

estimate nearly 20,000 demand parameters across 39 routes.

Table 2: Demand Estimates Summary across Markets

Parameter Mean Std. Dev. Median 25th Pctile. 75th Pctile.

Day of Week Spread 32.53 19.61 28.19 17.55 39.81
Flight Time Spread 74.99 59.29 45.45 34.70 95.95
Week Spread 52.35 61.90 35.12 21.98 56.62

Intercept -1.095 1.274 -0.777 -1.405 -0.509
αB 0.286 0.167 0.277 0.165 0.376
αL 1.764 0.736 1.834 1.169 2.199
Note: Spread refers to the dollar amount a leisure consumer would pay to move from the least preferred time or day offered to the
most preferred time or day of week. Arrival parameters refer to the variation in search across flight departure day of week.

We summarize our demand results given the number of parameters estimated. We

find that our demand model accurately matches aggregated arrivals at both the day

before departure and departure date level. We accurately match average booking rates

even though 88% of observations have zero sales. However, we note a slight downward

bias in quantity demanded which is driven by very infrequent large group bookings

that are hard to predict. We obtain noisy estimates at very granular levels (predicting

demand for a flight at a specific point in time) due to both the discrete nature of the

data and the high number of zeros. For example, we estimate pseudo-R 2s of around

0.23 for predicting particular ( j , t , d , r ) demand.

We summarize parameter estimates in Table 2. The first panel describes the spread

in willingness to pay (in dollars) for a leisure consumer to switch between the most and

least-preferred option (day of the week, time of the day, week of the year). We estimate

this spread to be $75. This tends to be less than the spread in flight prices (within a

day) observed in the data. Time of day preferences tend to be stronger than day of

week preferences (a spread of $33). Consumers generally prefer morning and late

afternoon departure times. We estimate that some weeks have systematically higher
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demands than other weeks—for example, major holidays. However, this is not true for

all routes, and it does not always reflect seasonal variation in demand.

Figure 4: Aggregate Arrivals and Elasticities
(a) Arrivals
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(a) Estimated arrival rates aggregated over all 39 routes. (b) Estimated Own Price Elasticity of demand aggregated over all 39
routes.

In Figure 4-(a), we plot arrival rates for the average route as well as the interquar-

tile range across routes. Although levels of arrivals vary—the interquartile range spans

more than a doubling of arrivals—overall, search increases as the departure date ap-

proaches. This is important because it means that the observed increase in booking

rates is not entirely driven by late-arriving, price insensitive consumers. In panel (b),

we plot the average own-price elasticities for the mean, median, and interquartile range

over routes. We find that demand elasticities increase (toward zero) due to a significant

shift in demand towards business customers. The decline in elasticities close to the de-

parture date mostly reflect very significant price increases. We estimate the average

overall elasticity to be 1.05. We frequently find inelastic demand close to the departure

departure. This is also observed using the firm’s demand models (see Section 4).

We briefly note that these estimates are robust to alternative specifications. These

include alternative fixed effects (day before departure) in demand, alternative instru-

ments (fuel costs, remaining capacity), and different arrival scaling factors (see Online

Appendix D.2). All of these specifications provided similar elasticity patterns to the
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results reported here.

6 Analysis of Department Pricing Input Decisions

With demand estimated, we conduct counterfactual simulations where departments

supply input decisions to the pricing heuristic. Prices are set by the observed pric-

ing heuristic, and we simulate market outcomes using our demand estimates. We first

provide additional details on our counterfactual implementation. We then analyze de-

viations from current department input decisions.

6.1 Counterfactual Implementation

For each counterfactual, we simulate flights based on the empirical distribution of re-

maining capacity 120 days before departure. We simulate 10,000 flights for every

departure date. Like our demand model (and the RM department’s demand model),

we do not endogenize connecting (or flow) bookings. We handle connecting bookings

through exogenous decreases in remaining capacity based on Poisson rates estimated

using connecting bookings data. After the heuristic determines price based on de-

partment input decisions, consumers arrive (in discrete time) according to our model

estimates. Demand is then realized. If demand exceeds remaining capacity, consumers

are offered seats in the order they arrive.27

Our baseline counterfactual results use the observed department input decisions.

Recall that the pricing department’s inputs are discrete fare menus, and the RM de-

partment’s observed decisions are demand forecasts. The forecasts are the original

single-product demand models that include RM analyst adjustments. Using the de-

mand forecasts directly in our counterfactuals is difficult to two reasons. First, the

27Using the pricing heuristic, if the lowest-priced fare has a single seat and is sold immediately, the
next arriving consumer within a period is offered the next least-expensive fare. This occurs rarely.
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forecasting data is so large that the firm does not keep an entire record for every flight.

The data are not sparse as we observe hundreds of thousands of observations for each

route. However, the data do not provide a complete panel for every flight. Second, we

cannot model all seven analyst adjustments to the demand models in our counterfac-

tual analysis. However, because the most commonly applied adjustment is a uniform

scaling factor that affects several routes and departure dates simultaneously, we take

the lesser used adjustments (the other six) as given and endogenize the most commonly

used adjustment used in counterfactuals.

The forecasting data are inputted into the heuristic in our counterfactuals using

an auxiliary demand model. More precisely, we leverage the ideas of the empiri-

cal demand estimation literature by conducting demand estimation using (forecasted)

demand curves, rather than observed demand quantities. Using this procedure, we

“re-estimate” the same (20,000) parameters from the demand model presented in Sec-

tion 5 using the forecasting demand. This allows us to fill in any missing values in the

forecasts. We discuss differences between our demand estimates and the ones derived

from the forecasting data in the next section. For additional details of this procedure,

see Online Appendix E.

6.2 Establishing that Current Inputs are Mutual Best Responses

We compare market outcomes using current department input decisions to two sets

of department deviations. In the first set of counterfactuals, we consider the pric-

ing department solving the “coordination” problem. Recall, the pricing department

commonly files fares on the inelastic side of the RM department’s demand models.

In this deviation, the pricing department removes all fares inconsistent with standard

profit maximization according to the RM department’s demand models. We adjust the

menus so that no fares can be offered below the point where marginal revenue equals

zero. Fares below that are inconsistent with profit maximization when capacity costs
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are zero. We retain all fares higher than this threshold, which may be offered based on

both demand expectations and realized demand.

We consider this pricing department deviation for every route-departure date-day

before departure tuple and then aggregate over all simulations. We report counterfac-

tual market outcomes in Table 3, where we normalize outcomes under current inputs to

100 (leisure and business consumer surplus, quantity sold, revenues, and welfare). At

first, our results may seem counterintuitive: addressing the miscoordination problem

by removing fares on the inelastic side of the RM department’s demand models lowers

revenues by 5% and also reduces both leisure and business consumer surplus.

Coordinating the fare menus to the RM department’s input is not a profitable devi-

ation because it entails coordination to biased inputs. The demand model used in prac-

tice is misspecified, e.g., it assumes single-product demand; in addition, the heuristic

itself is inherently biased, e.g., it also considers every flight in isolation and is dynam-

ically inconsistent. As a result, we find it is optimal for the pricing department to set

choose fares that are inconsistent with basic economic theory (“inelastic fares”) be-

cause it improves revenues relative to removing those fares from the menus. Because

this deviation is not profitable, we conclude that the pricing department’s inputs are

best responses given its organizational decision rights.

Table 3: Counterfactual Estimates and a Comparison to Present Practices

Counterfactual C SL C SB Q R e v W

Observed Inputs 100.0 100.0 100.0 100.0 100.0

Pricing Department Deviation 59.8 98.7 76.5 95.1 95.1

Note: In counterfactual (1), we approximate current pricing practices. Counterfactual (2) examines the pricing department input
deviation.

In the second set of deviations, we empirically examine the manipulations the RM

department applies to its demand models, holding the pricing menus fixed. As previ-

ously stated, the RM department typically scales up or down demand for many routes
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simultaneously with a single scaling parameter. Therefore, we implement this coun-

terfactual in a similar way: the RM department scales demand by χ , and this input is

given to the pricing heuristic. We consider χ ∈ {0.25, 0.5, 0.75, ..., 5.0}. We select the

χ that results in the highest total expected revenues for the routes studied.

Figure 5: Optimal Forecast Bias, Holding Fare Menus Fixed
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Note: Counterfactual revenues under alternative RM department forecasts.

We summarize our analysis of RM department deviations in Figure 5, where we

plot revenues as a function of the forecast bias (χ). We normalize results to the current

forecast bias. These counterfactuals establish two important results. First, the current

bias is nearly optimal for the firm. On the one hand, reducing the bias results in

a decline in revenues, confirming that unilateral bias reduction is suboptimal. On the

other hand, we find that the bias would have to be increased over 50% in order to obtain

a less than 1% increase in expected revenues. Although we do observe such overstated

forecasts in the data (forecasts overstated by over 50%), analysts tend to quickly revise

these forecasts downward, suggesting that very biased inputs—including the optimal

forecast bias calculated here—is an impermissible input. Based on our discussions

with the firm, we postulate that large forecast biases are discouraged because forecast

bias is a key-performance indicator (KPI) in additional to revenue yield.

Second, RM department deviation counterfactuals also emphasize the classic theo-

ries in organizational economics of limited productivity gains under unilateral change
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when complementarities are important (Milgrom and Roberts, 1990, 1995). The re-

sults in Figure 5 can be viewed through another lens: significant adjustments to the

current demand models when the heuristic and fare menus are fixed yields fairly in-

cremental revenue changes. This occurs because department input decisions can be

reinforcing or offsetting, as we discussed in Section 4.1.1.

Our department deviation counterfactuals establish that providing biased inputs is a

mutual best-response given the pricing heuristic. Observed prices can be rationalized

as an equilibrium of a team-theoretic game where departments have decision rights

for different inputs that are supplied to the observed pricing heuristic. Departments

are making decisions that are boundedly rational, e.g., the pricing department does not

leverage demand models in its decision making; the RM department use single-product

demand models are all routes. Nonetheless, each department is acting rationally given

its decision rights and available information.

This naturally leads to several follow-up questions, including: are departments at

a “saddle point” in the team-theoretic game, or, what input decisions are in the set of

optimal equilibria? Unfortunately, answering these questions is exceedingly difficult.

For example, in order to examine the pricing department’s best response to a change

in the forecast bias, this would require optimizing over sets of menus (each contain-

ing hundreds of entries), where each fare chosen can affect revenues endogenously

through the opportunity cost of capacity. In fact, every adjustment by any department

can affect how the heuristic allocates capacity. This highlights the complexities of air-

line pricing. Because the complex objective the firm faces is an intractable problem,

it has decomposed the problem it faces through delegated decision-making. However,

department decisions are just as complex because pricing inputs are complementary—

prices depend on all input decisions. Optimizing over all combinations of pricing

inputs—menus and forecasts—is computationally infeasible and beyond the scope of

this paper. Therefore, we instead ask a complementary question: how far are observed
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outcomes from what is predicted by a model of unbounded rationality. We investi-

gate the canonical dynamic pricing model that internalizes across-flight substitution,

is dynamically consistent, and represents a single-entity determining price in the next

section.

7 Analysis under a Benchmark Dynamic Pricing Model

Our final counterfactual implements a benchmark model of dynamic pricing (DP) as-

suming that the firm is a centralized entity using unbiased inputs. We abstract from

observed department decisions, such as the use of single-product demand models and

RM analyst adjustments that are used to counteract pricing biases within organiza-

tional decision rights. In this counterfactual, we use our estimated demand system

to simulate consumer purchasing decisions and as the demand model from which dy-

namic prices are determined. The scenario mimics standard practices in the empirical

literature of flexibly estimating demand and assuming standard profit maximization.

Relative to observed pricing practices, DP internalizes that prices will be reoptimized

over time as well as non-zero cross-price elasticities based on our demand estimates.

The firm solves ( j , d , r subscripts suppressed)

V0(C0) = max{pt }T

t=0

E
T∑

t=0

pt ·min
¦

q̃t (pt ) , Ct

©
, (1)

such that Ct+1 =Ct −min
�

q̃t (pt ) , Ct

	
, unsold units are scrapped, and C0 ≥ 0 is given.

We make two additional modeling choices. First, although this model is well-

defined for an arbitrary number of flights, in practice, the model becomes intractable

quickly—routes with greater than two flights contain more than 15 million states and

a transition kernel size of one trillion. Therefore, we restrict this analysis to routes

with at most twice daily service. Second, we retain discrete prices for computational
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tractability, as the use of discrete prices allows for significantly faster computation

than the use of continuous prices. We construct fare menus based on the distribution

of observed fares. This implementation allows us to quantify how DP would adjust the

distribution of consumer-realized prices rather than select prices outside the typical set

faced by consumers.28

Table 4: Counterfactual Estimates under a Benchmark Dynamic Pricing Model

Counterfactual C SL C SB Q R e v W

Observed Inputs 100.0 100.0 100.0 100.0 100.0

Benchmark Dynamic Pricing Model 108.1 76.7 97.8 114.3 94.3

Note: Comparison of market outcomes under a benchmark dynamic pricing model to the current observed pricing practice. The
DP results use our demand estimates for optimization. Both results compute surplus using our demand estimates.

In Table 4, we report counterfactual results comparing the benchmark DP model to

observed practices, which we have normalized to 100 in an analogous way to Table 3.

Our key finding is that incorrectly assuming that the firm solves the canonical pricing

model with unbiased inputs understates welfare, overstates leisure consumer surplus,

and understates business consumer surplus. The magnitudes are significant.

DP suggests significant changes in capacity allocation over time compared to ob-

served practices. Current department input decisions result in overstating early de-

mand, not only relative to internally estimated demand models, but also relative to our

demand estimates. Therefore, DP results in lower prices early on because it suggests

that early opportunity costs are actually lower than those calculated using observed

pricing practices. As a result, leisure consumer surplus is overstated by 8% if we in-

correctly assume the firm uses DP to set prices based on our estimated demand model.

28We construct the fare menus as follows. We define the lowest price on the menu to be the fare such
that demand is unit elastic on the day before departure with the most price sensitive demand (typically
the earliest period). We use this fare because analysis of our estimated demand system and the observed
fare menus show that fares are often too high. We specify the highest fare on the menu to be the most
expensive economy-class fare observed in the data. Thus, the menus are truncated versions of observed
fare menus.
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We find the opposite welfare result for business consumers. DP overstates how

current practices segment markets. This is shown in Figure 6-(a), which plots the dis-

tribution of fares offered under current practices with those predicted under DP for an

example route. DP results is far greater dispersion in prices offered, with lower prices

initially offered and higher prices closer to departure. In Figure 6-(a), there is a mass

of DP prices between $300 and $400. Higher prices under DP close to the departure

date reflect an additional economic force. The lower fares offered early on under DP

exacerbate scarcity effects toward the departure date. DP overstates the magnitude of

price changes over time and understates business consumer surplus compared to actual

outcomes by 23%. Two additional findings are notable. First, DP overstates revenues

by 14%. Second, in total, we estimate that DP understates the efficiency of the airline

routes we study by 6%.

Fundamentally, this counterfactual emphasizes the importance of accounting for

organizational structure, department decisions, and the use of heuristics in rationaliz-

ing firms’ pricing decisions. Consider the RM department’s single-product demand

models after RM analysts adjustments (forecasts). While the previous counterfactual

establishes that these input decisions are rational given the department’s decision rights

and constraints of the heuristic, these inputs also distort demand predictions relative

to the truth. In Figure 6-(b), we plot average own-price elasticities at observed prices

using our estimated demand system and the implied elasticities from the forecasting

data. Both lines share some common patterns, such as aggregate price responsiveness

decreasing over time and elasticities decreasing (more negative, as expected) after sig-

nificant observed price increases. However, the elasticities also differ significantly in

levels and variability, where observed inputs decisions lead to understating consumer

heterogeneity due to misspecification (single-product demand) and functional form

(one set of parameter estimates is applied to roughly 450 routes; see also Figure 17

in Online Appendix E). In addition, demand is often inelastic close to the departure
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date based on our model estimates (also true for 38% of observations based on in-

ternal demand estimates; see Section 4). Critically, the observed heuristic does not

approximate DP, which requires that demand is at least unit elastic. Optimally pricing

under DP shifts the (orange) elasticity curve to at or below -1, raising some prices—

shifting the second grey peak in Figure 6-(a) to the right. Compared to the observed

persistently biased forecast, DP also lowers some prices, moving the first grey peak in

Figure 6-(a) to the left. We further emphasize that correctly modeling firms’ pricing

decisions has important welfare consequences in the next subsection.

Figure 6: Comparison of Observed Pricing Practices to DP
(a) Sim. Prices for an Example Route
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Note: (a) Simulated prices using current practices and DP for an example route. (b) Comparison of own-price elasticities over
time based on estimated demand model and the forecasting data.

7.1 Imposing Dynamically Optimal Profit Maximization in Demand

Estimation

Our results in the previous subsection show that incorrectly assuming that the firm

optimizes according to the benchmark dynamic pricing problem yields incorrect pre-

dictions of market outcomes. We elaborate on this insight through a complementary

exercise by quantifying how imposing a model of standard profit maximization in de-

mand estimation affects estimates of willingness to pay.

Supply-side optimality conditions offer useful restrictions when estimating empiri-
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cal models of demand (e.g., Berry, Levinsohn, and Pakes, 1995). In order to investigate

how imposing the assumption that the firm solves a DP affects demand estimates, we

follow the estimation strategy of Williams (2022) in the context of dynamic pricing.

Similar ideas are used in, e.g., Aryal, Murry, and Williams (2022), Pan and Wang

(2022), and Cho, Lee, Rust, and Yu (2018). We exploit restrictions imposed by Equa-

tion 1 in demand estimation, which is analogous to using the first-order condition of

a static Bertrand-Nash game in differentiated product markets with competition. We

estimate the Poisson-Random Coefficients model by incorporating conditional choice

probability (CCP) restrictions that rationalize observed prices as optimal based on dif-

ferences in choice-specific value functions (see, e.g., Williams, 2022).

We find that demand estimates imposing DP differ substantially from our estimated

demand system because DP is inconsistent with observed pricing practices. Our de-

mand estimates (and internal demand estimates) result in average elasticities that are

close to -1, we find that imposing optimality with DP results in average demand elastic-

ities close to -4. The large discrepancy is due to the difficulty in rationalizing observed

prices as solutions to the benchmark model of dynamic pricing. For example, our de-

scriptive evidence showed that when department input decisions are combined by the

pricing heuristic, resulting prices are often on the inelastic side of internally estimated

demand models. They are also on the inelastic side of our estimated demand system. In

order to rationalize these prices as “optimal” in DP, demand must be at least unit elas-

tic. Imposing optimality in demand estimation results in biasing the demand estimates

toward being too elastic, resulting in, on average, understating consumer willingness

to pay and thus consumer welfare. This analysis does not suggest that supply-side as-

sumptions are not useful in demand estimation. Rather, supply-side assumptions that

do not approximate how the firm actually structures the problem it faces can lead to

biased demand estimates, and, consequently, misleading estimates of welfare.
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8 Conclusion

This paper presents five main findings. First, we document the extent to which large

firms decompose the problem of pricing to distinct departments. Using job listings, we

show that all major airlines, cruises, car rentals, and hotels leverage an organizational

structure in which departments have distinct pricing-related decision rights. Second,

using data and internal models from a large U.S. airline, we demonstrate several ways

in which pricing practices diverge from dynamically optimal profit maximization. For

example, the firm relies on a the heuristic for tractability reasons that does not solve or

approximate a dynamic program. Flights are priced independently, even though flight

substitution, including available nonstop options, are measurably important drivers of

demand. Third, we show that although pricing is inconsistent with benchmark mod-

els of dynamic pricing, observed prices are consistent with a team-theoretic game in

which departments determine pricing inputs that are supplied to the observed pricing

heuristic. Fourth, accounting for organizational structure, department input decisions,

and the use of heuristics is critical for accurately modeling firm pricing behavior. Our

counterfactuals establish that we mismeasure welfare when we assume that the firm

has is unboundedly rational. We understate overall welfare, overstate revenues, and

mismeasure surplus across consumer types. Fifth, we highlight this result by showing

that estimates of willingness to pay and market power may be significantly biased if

we assume that observed prices are derived from the firm solving canonical models of

dynamic pricing.

Studying firms solving complex problems is inherently difficult; however, under-

standing how firms actually structure the problems they face offers important insights

into their decision-making processes and provides guidance on how to more accurately

measure market outcomes.
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A Details on the Pricing Heuristic

The pricing algorithm used at the firm is based on the well-known heuristic called

Expected Marginal Seat Revenue-b or EMSR-b (Belobaba, 1987). The heuristic relies

on a concept called Littlewood’s Rule (detailed below) and was developed in order to

avoid solving highly complex dynamic pricing problems. The heuristic simplifies the

firm’s decision in each period by aggregating all future sales into a single future period.

It requires a single-product demand model. We describe the heuristic below and show

how to incorporate Poisson demand in EMSR-b. The heuristic provides an allocation

over a given finite set of prices, instead of providing the optimal price itself given any

flight’s state. EMSR-b associates each price with a fare-class then chooses a maximal

number of sales to be offered for each fare-class. This means more than a single price

is offered in any given period, however, in practice, consumers almost always choose

the cheapest available option. When one class is closed, the next higher priced class

opens.

A.1 Littlewood’s Rule

EMSR-b is a generalization of Littlewood’s rule (Littlewood, 1972), which is a simple

case where a firm prices two time periods and uses two fare classes. A firm with a

fixed capacity of goods (seats) wants to maximize revenue across two periods, where

leisure (more elastic) consumers arrive in the first period and business (less elastic)

consumers arrive in the second period. The firm sets a cap on the number of seats b it

is willing to sell in the first period to leisure passengers. This rule returns a maximum

number of seats for leisure when the price to both leisure and business customers has

already been decided; it does not determine optimal pricing.

The solution equates the price of a seat sold in the first period (to leisure travelers)

to the opportunity cost of lowering capacity for sales in the second period (to business
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travelers). Given prices pL , pB , capacity C , and the arrival CDF of business travelers

FB , Littlewood’s rule equates the fare ratio to the probability that business class sells

out. The fare ratio is the marginal cost of selling the seat to leisure (the lower revenue

pL ) which is set equal to the marginal benefit—the probability that the seat would not

have sold if left for business customers only. Littlewood’s rule is given by

1− FB (C − b ) =
pL

pB
.

This equation can then be solved for b , the maximum number of seats to sell to

leisure customers in period one. This solution is exact if consumers arrive in two

separate groups and there are only two time periods and two consumer types.

A.2 EMSR-b Algorithm

The EMSR-b algorithm (Belobaba, 1987) extends Littlewood’s rule to multiple fare

levels or classes. For each fare class, all fare classes with higher fares are aggregated

into a single fare-class called the “super-bucket.” Once this bucket is formed, Lit-

tlewood’s rule applies, and can be done for each fare class iteratively. Rather than

just comparing leisure and business classes, the algorithm now weights the choice of

selling a lower fare-class ticket against an average of all higher fare classes.

We apply the algorithm for K sorted fare-classes such that p1 > p2 > ...> pK . Each

fare class has independent demand with a distribution Fk . Under our specification, the

demand for each fare class is distributed Poisson with mean µk that is given by future

arrivals times the share of the market exclusive to that bucket.

The super-bucket is a single-bucket placeholder for a weighted average of all higher

fare-class buckets. Independent Poisson demand simplifies this calculation, as the sum

of independent Poisson distributions is itself Poisson. The mean of the super-bucket

is the sum of the mean of each higher fare-class bucket. The price of the super-bucket
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is a weighted average of the price of each higher-fare class, using the means as the

weight.

For each fare class, Littlewood’s Rule is then applied with the fare-class taking the

place of leisure travel, and the super-bucket in place of business travel. It is assumed

that all future arrivals appear in a single day. The algorithm then describes a set of

fare-class limits bk that define the maximum number of sales for each class before

closing that fare class. We denote the remaining capacity of the plane at any time by

C . The algorithm uses the following pseudo-code:

for t > 2 do

for k ← K to 1 by −1 do
i) Compute un-allocated capacity Ck ,t =C −∑K

i=k bi ,

ii) Construct the super-bucket

µs b =
k−1∑
i=1

µi , ps b =
1

µs b

k−1∑
i=1

piµi , Fs b ∼ Poisson(µs b ),

iii) Apply Littlewood’s Rule using the super-bucket distribution as the demand for

business

Ck ,t − bk =min
§

Fs b
−1
�

1− pk

ps b

�
, Ck ,t

ª
.

end

end
In the case where t = 1, dynamics are no longer important, so there is no longer

a need to trade off based on the opportunity cost. As a result, we limit the fare of the

highest revenue class to all remaining capacity, and set limits of all other classes to

zero.
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A.2.1 Fare Class Demand

What remains is computing the mean µk for each fare class bucket. We detail the

process in this section. Demand in each market is an independent Poisson with arrival

rate exp(λt
t +λ

d
d )s j (p ). For readability, we suppress the subscript r —all parameters

are route-specific. Note that this p is a vector of the prices of all flights in the market.

We assume that the firm believes other flights will be priced at their historic average

over the departure date and day before departure. This allows us to construct a residual

demand function s j (pj ) that is a function of the price of the current flight only. We will

treat this as the demand for the flight at a given bucket’s price for the remainder of this

section.

Each fare class has a set price pk , at any time t , departure date d we will see

exp(λt
t +λ

d
d ) arrivals, of which s (pk ) are willing to purchase a fare for bucket k . How-

ever, s (pk−1) are willing to purchase a fare for bucket k − 1 as well, since they will

buy at the higher price pk−1. Only exp(λt
t + λ

d
d )
�
st (pk )− st (pk−1)

�
are added by the

existence of this fare class with price pk < pk−1. Note that this is a flow quantity—the

amount of purchases in time t , but EMSR-B requires stock quantities: How many will

purchase over the remaining lifetime of the sale?

What is the distribution of future purchases then? Each day t is an independent

Poisson process split by the share function. Independent split Poisson processes are

still Poisson, so we may compute the mean of purchases solely in a fare class by

summing arrivals over future time t , and taking the difference in shares between price

pk and pk−1. For time t and departure date d , the stock demand for fare-class k is

given by
t∑

i=1

exp(λt
i +λ

d
d )
�
st (pk )− st (pk−1)

�
,

where st (p0) = 0 for notational parsimony.

This demand distribution is only used to compute the super-bucket demand distri-
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bution. Note that we only include future stock demand in the super bucket, and thus

only sum arrivals until time t − 1. For fare-class k . The super bucket’s stock demand

is given by

µs b =

�
t−1∑
i=1

exp(λt
i +λ

d
d )si (pk−1)

�
ps b =

1

µ

k−1∑
j=1

pj

t−1∑
i=1

exp(λt
i +λ

d
d )
�
si (pj )− si (pj−1)
�

.

The updated pseudo-code for the EMSR-b algorithm is:

for t > 2 do

for k ← K to 1 by −1 do
i) Compute un-allocated capacity Ck ,t =C −∑K

i=k bi (t ),

ii) Construct the super-bucket

µs b =

�
t−1∑
i=1

exp(λt
i +λ

d
d )

�
si (pk−1),

ps b =
1

µs b

k−1∑
j=1

pj

t−1∑
i=1

exp(λt
i +λ

d
d )
�
s (pj )− s (pj−1)
�

,

Fs b ∼ Poisson(µs b ),

iii) Apply Littlewood’s Rule using the super-bucket distribution as the demand for

business.

Ck ,t − bk (t ) =min
§

Fs b
−1
�

1− pk

ps b

�
, Ck ,t

ª
.

end

end
For t = 1 we continue to allocate the highest revenue fare class to the entire re-

maining capacity. Note that for this allocation rule, bk (t , d ) is a function of time since
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the arrivals are changing over time. This policy can be computed for each time t and

remaining capacity c , for all departure dates d and arrival rates λ.

The algorithm determines the number of seats to assign to each bucket and in

particular, the lowest bucket to receive a positive allocation. This bucket is referred to

as the lowest available class (LAC). We plot the LAC for an example flight in Figure 7.

On the vertical axis, we note the discrete set of fares set by the pricing department,

with bucket one being the least expensive and bucket twelve being the most expensive.

Little variation in color over days from departure for a given bucket shows that the

bucket prices themselves are mostly fixed. However, in the bottom right of the graph,

the white space shows that the pricing department has restricted the availability of the

lowest fares close to the departure date. Given all pricing inputs, the white line marks

the LAC.

Figure 7: Fare Bucket Availability and Lowest Available Fare
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Note: Image plot of fare availability over time as well as the active lowest available fare. Bucket1 is the least expensive bucket;
Bucket12 is the most expensive bucket. The color depicts the magnitude of prices—blue are lower fares, red are more expensive.
White space denotes no fare availability. The white line depicts the lowest available fare.

B Route Selection

We use publicly available data to select markets to study. The DB1B data are provided

by the Bureau of Transportation Statistics and contain a 10% sample of tickets sold.
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The DB1B does not include the date purchased nor the date traveled and is reported

at the quarterly level. Because the DB1B data contain information solely for domestic

markets, we limit our analysis to domestic markets as well. Furthermore, we use the

air carrier’s definition of markets to combine airports within some geographies.

Figure 8: Nonstop, One-stop and Connecting Traffic
Destination

Origin One-stop

Connecting

Note: We use the term nonstop to denote the sold black line, or passengers solely traveling between
�
Origin, Destination

�
. Unless

otherwise noted, we will use directional traffic, labeled O →D . Non-directional traffic is specified as O ↔D . The blue, dashed
lines represent passengers flying on O ↔D , but traveling to or from a different origin or destination. Finally, one-stop traffic are
passengers flying on O ↔D , but through a connecting airport.

We consider two measures of traffic flows when selecting markets: traffic flying

nonstop and traffic that is non-connecting. Both of these metrics are informative for

measuring the substitutability of other flight options (one-stop, for example) as well as

the diversity of tickets sold for the flights studied (connecting traffic). Figure 8 pro-

vides a graphical depiction of traffic flows in airline networks that we use to construct

the statistics. We consider directional traffic flows from a potential origin and destina-

tion pair that is served nonstop by our air carrier. The first metric we calculate is the

fraction of traffic flying from O → D nonstop versus one or more stops. This com-

pares the solid black line to the dashed orange line. Second, we calculate the fraction

of traffic flying from O →D versus O →D → C . This compares the solid black line

to the dashed blue line.

Figure 9 presents summary distributions of the two metrics for the markets (ODs)

we select. In total, we select 407 ODs for departure dates between Q3:2018 and

Q3:2019. The top row measures the fraction of nonstop and connecting traffic for
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Figure 9: Route Selection Using Bureau of Transportation Statistics Data
(a) Within Airline Fraction Nonstop
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(b) Within Airline Fraction Non-Connecting
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(c) All Airlines Fraction Nonstop
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(d) All Airlines Fraction Non-Connecting
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Note: Density plots over the fraction of nonstop traffic and the fraction of non-connecting traffic for the selected routes using
DB1B data. "Within" means passengers flying on our air carrier. "Total" means all air carriers on a given origin-destination pair.
Within nonstop and total nonstop coincide if our carrier is the only carrier flying nonstop.

tickets sold by our our carrier. The left plot shows that, conditional on the air car-

rier operating nonstop flights between OD, an overwhelming fraction of consumers

purchase nonstop tickets instead of purchasing one-stop connecting flights. The right

panel shows that fraction of consumers who are not connecting to other cities either

before or after flying on segment OD. There is significant variation across markets,

with the average being close to 50%.

The bottom panel repeats the statistics but replaces the denominator of the fractions

with the sum of traffic flows across all air carriers in the DB1B. Both distributions shift

to the left because of existence of competitor connecting flights and sometimes direct

competitor flights. In nearly 75% of the markets we study, our air carrier is the only

firm providing nonstop service. Our structural analysis will only consider single carrier
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Figure 10: DB1B Comparison
(a) DB1B OD Traffic Comparison
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(b) DB1B OD Fare Comparison
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Note: (a) A scatter plot of the fraction nonstop and fraction non-connecting for all origin-destination pairs served by our air
carrier. The blue dots show selected markets; the orange dots show non-selected markets. (b) Kernel density plots of all fares in
the DB1B data for our air carrier; the blue line shows the density for our selected markets.

markets.

In Figure 10-(a), we show a scatter plot of the fraction of nonstop traffic and the

fraction of non-connecting traffic for all origin-destination pairs offers by our air car-

rier in the DB1B. The orange dots depict routes non-selected markets and the blue

dots show the selected markets. We see some dispersion in selected markets, however

this is primarily on non-connecting traffic. An overwhelming fraction of the selected

markets have high nonstop traffic, although this is true in the sample broadly. Essen-

tially, conditional on the air carrier providing nonstop service, most passengers choose

nonstop itineraries. In Figure 10-(b) we show the distribution of purchased fares in the

DB1B for our carrier along with our selected markets. The distribution of prices for the

selected sample are slightly shifted to the right, which makes sense since we primarily

select markets where the air carrier is the only airline providing nonstop service.

B.1 Estimation Sample Comparison

Our estimation sample contains 39 markets. Compared to the overall sample, these

routes tend to be smaller in terms of total number of passengers, larger in terms of

percentage of nonstop and non-connecting passengers, and nonstop service is provided
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only by our air carrier. We report percentage differences between our estimation routes

and the entire sample for key characteristics below in Table 5. Figure 11 shows a two-

way plot of the fraction of nonstop and non-connecting traffic for the routes selected

for estimation relative to the entire sample. Figure 12 recreates Figure 9, separating

the estimation sample from the entire sample.

Table 5: Estimation Sample Comparison

Characteristic Percentage Difference from Mean

Number of Nonstop Passengers -38.8%
Total Number of Passengers -33.4%
Number of Local Passengers -37.7%
Fraction of Traffic Nonstop 1.02%
Fraction of Traffic Non-Connecting 5.91%

Note: Statistics calculated using the DB1B data for the years 2018-2019.

Figure 11: Route Estimation Selection using DB1B Data
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Note: A scatter plot of the fraction nonstop and fraction non-connecting for all origin-destination pairs served by our air carrier.
The blue dots show markets used for estimation; the orange dots show non-selected markets.
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Figure 12: Estimation Route Comparison
(a) Within Airline Fraction Nonstop
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(b) Within Airline Fraction Non-Connecting
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(c) All Airlines Fraction Nonstop
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(d) All Airlines Fraction Non-Connecting
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Note: Density plots over the fraction of nonstop traffic and the fraction of non-connecting traffic for the selected routes using
DB1B data. "Within" means passengers flying on our air carrier. "Total" means all air carriers on a given origin-destination pair.
Within nonstop and total nonstop coincide if our carrier is the only carrier flying nonstop. Blue denotes the entire sample; orange
denotes the estimation sample.
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C Additional Descriptive Evidence

C.1 Search Patterns

In Figure 13 we plot CDFs on distributions of repeat shoppers. In panel (a) we consider

if consumers search multiple departure dates. The plot shows that 80% of consumers

search a single departure date. In panel (b) we consider if consumers shop for the same

itinerary across days from departure—waiting to purchase. The plot shows that 90%

of consumers single once. We do not consider consumers who were referred to the

airline’s website, e.g., from meta search engines.

Figure 13: Search and Booking Facts to Motivate Demand Model
(a) CDF of Similar Itin. Searches
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(b) CDF of Same Itin. Searches
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(a) CDF of the number of departure dates searched. (b) CDF of the number of days from departure searched for a given itinerary.

C.2 Heuristic Bias

We select observations that satisfy the following conditions: (i) the firm offers two

flights a day; (ii) we include periods where demand is not being reforecasted (the ob-

served spikes in Figure 15); (iii) the total daily booking rate is low (less than 0.5); and

(iv) one flight receives bookings and the other flight does not. By considering markets

where the total booking rate is low, we can apply theoretical results of continuous time

(as well as a discrete time approximation) pricing models. In Figure 14-(a), we plot
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the average change in shadow values (opportunity costs) for the flights that receive

bookings and for the flights that do not receive bookings (the substitute option) using

flexible regressions. In standard dynamic pricing models, every time a unit of capacity

is sold, prices jump. This is also true in environments with multiple products—any

sale causes all prices to increase. Figure 14-(a) confirms substitute shadow values are

unaffected by bookings. Panel (b) shows that there is no price response.

Figure 14: Shadow Value and Price Response to Bookings with Multiple Flights
(a) Shadow Value
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(b) Prices
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Note: (a) The orange line denotes the average change in shadow value for a flight with bookings. The blue line is the average
change to shadow value when a sale occurs for the substitute product. (b) This panel depicts the same as panel a, but instead of
changes in shadow value it depicts changes in price.

C.3 Allocating Inventory to Fares that do not Exist

We observe a form of miscoordination in which the RM department uses obsolete fare

menus, meaning that the set of active fares in the market differs from what is inputted

into the algorithm. Although this form of miscoordination can be seen as a “glitch,"

its presence and prevalence suggests difficulty in processing algorithm inputs across

completely separate IT systems.

Examining the menu of active fares and the resulting inventory allocations, we

observe inventory allocations to fares that do not exist. This affects 11.7% of ob-

servations. This is possible because fare validation—the process of ensuring a fare

is active—occurs when consumers search to obtain tickets. 32.6% of routes feature
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persistent “phantom allocations.” Although we do not isolate the effect of this mis-

coordination in our counterfactuals, we do quantify how alternative fares affect the

heuristic’s decisions in Section 6.

C.4 The Presence of Pricing Frictions

The pricing heuristic requires a discrete set of fares as an input. This naturally gives

rise to pricing frictions as fares change in discrete levels but the value of a seat can be

any positive value. Sometimes the pricing frictions can be large in magnitude.

In Figure 15-(a), we plot the fraction of flights that experience changes in price or

shadow value (as reported by the heuristic) over time. Opportunity costs change much

more frequently than do prices. In panel (b), we run a flexible regression of the change

in costs on an indicator function of a price adjustment occurring. As the figure shows,

changes in opportunity costs exceeding $100 lead to price adjustments with only a

20% probability.

Figure 15: Fare Adjustments in Response to Shadow Value Changes
(a) Fare vs. Shadow Price Changes
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(b) Probability of Fare Change
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Note: (a) The fraction of flights that experience changes in the fare or the shadow value of capacity over time. (b) The probability
of a fare change, conditional on the magnitude of the shadow value change.

Figure 15-(a) shows noticeable spikes that occur at seven day intervals. This arises

because the RM department has chosen to reforecast demand on a 7-day interval. Out-

side of these periods, remaining inventory is reoptimized without updating future de-
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mand expectations. The process of reforcasting demand leads to a larger fraction of

flights experiencing a change in the value of remaining capacity.

C.5 Booking Trends Across Booking Channels

Figure 16: Bookings Across Booking Channels
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Percentage of bookings, across days from departure, for each channel. Direct refers to bookings that occur on the air carrier’s
website, OTAs are bookings made on online travel agencies, and Agency are bookings made through travel agencies.

Figure 16 shows the the distribution of bookings within channel (direct, OTAs, and

agency) over days before departure. The distribution of bookings for tickets purchased

on OTAs, or online travel agencies, very closely follows the distribution of bookings

via the direct channel. However, they do not coincide. The agency curve—which in-

cludes corporate travel bookings—is more concentrated closer to departure. There are

small spikes in the booking rates across all channels when AP fares expire. Although

this may suggest some consumers strategically time market participation, we also find

support for the assumption that current time periods simply have higher demands. We

partition the data sample into two groups, one group includes routes that do not have

a 7-day AP requirement, and the other contains routes where the pricing department

files 7-day AP fares. We find that both search and bookings bunch at the 7-day AP

requirement, regardless of their existence. Booking rate returns to the pre-bunching

levels (or, even higher levels) within one to two days after AP opportunities expire.

In fact, the day with the highest booking rate corresponds to the day with the highest
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prices—right before departure.

D Additional Details on Demand Estimation

D.1 Demand Estimation Procedure

We provide an overview on the implementation details of each stage the MCMC rou-

tine for demand parameter estimation. For readability we suppress the subscript r —all

parameters are route-specific. Simultaneously drawing from the joint distribution of

our large parameter space is infeasible, therefore, we use a Hybrid Gibbs sampling al-

gorithm. The algorithm steps are shown below. At each step of the posterior sampler,

we sequentially draw from the marginal posterior distribution groups of parameters,

conditional on other parameter draws. Where conjugate prior distributions are un-

available, we use the Metropolis-Hastings algorithm, a rejection sampling method that

draws from an approximating candidate distribution and keeps draws which have suf-

ficiently high likelihood. Additional detail can be found in Hortaçsu, Natan, Parsley,

Schwieg, and Williams (2022).
1: for c = 1 to C do
2: Update arrivals λ (Metropolis-Hastings)
3: Update shares s (·) (Metropolis-Hastings)
4: Update price coefficients α (Metropolis-Hastings)
5: Update consumer distribution γ (Metropolis-Hastings)
6: Update linear parameters β (Gibbs)
7: Update pricing equation η (Gibbs)
8: Update price endogeneity parameters Σ (Gibbs)
9: end for

Algorithm 1: Hybrid Gibbs Sampler
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Sampling Arrival Parameters

We start the sampling procedure by drawing from the posterior distribution of arrival

parameters, λt ,d . The posterior is derived by defining the joint likelihood of arrivals

for each consumer type and quantities sold, conditional on product shares. Recall that

arriving consumers have likelihood based on their type:

AL
t ,d ∼ Poisson(λt ,d (1− γ̃t )ζ

L
t ),

AB
t ,d ∼ Poisson(λt ,d γ̃t ζ

B
t ),

where γ̃t is the probability a consumer is of the business type as derived from the

passenger assignment algorithm, and ζℓt is the fraction of bookings that do not occur

on the direct channel for each consumer type (leisure and business). The purchase

likelihood is a function of shares and arrivals and is equal to

q̃ j ,t ,d ∼ Poisson
�
λt ,d · s j ,t ,d

�
,

q j ,t ,d =min
¦

q̃ j ,t ,d , C j ,t ,d

©
.

This directly accounts for censored demand due to finite capacity. Since arrivals are

restricted to be non-negative, we restrict the set of fixed effects by transforming the

multiplicative fixed effects to be of the form λt ,d = exp
�
Wt ,dτ
�
. We select a log-

Gamma prior for τ. We sample from the posterior distribution by taking a Metropolis-

Hastings draw from a normal candidate distribution.

Sampling Shares and Utility Parameters

Updating shares. We treat product shares as unobserved, since the market size may

be very small and lead to irreducible measurement error. We use data augmentation to

treat shares as a latent parameter that we estimate. Conditional on all other parameters
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(λ,α,γ,β ,η,Σ), product shares are an invertible function of the demand shock, ξ. If

we conditioned additionally on ξ, shares would be a deterministic function of data

and other parameter draws. Instead, we leverage the stochastic nature of ξ, which we

explicitly parameterize. The distribution of unobserved ξ is the source of variation for

constructing a conditional likelihood for shares:

ξ j ,t ,d = f −1
�
s j ,t ,d |β ,α,γ, X
�

υ j ,t ,d = pj ,t ,d −Z ′j ,t ,dη

 ���κ= k ∼N iid(0,Σk )

such that Σk =

σ2
k ,11 ρk

ρk σ2
k ,22

 .
Here, κ is a mapping from days to departure t to an interval (block) of time. That is,

the pricing error and the demand shock have a block-specific joint normal distribution.

Conditional on the pricing shock υ, the distribution of ξ, fξ j ,t ,d
(·), is

ξ
���υ,κ= k ∼N
�
ρkυ

σ2
k ,11

,σ2
k ,22−

ρ2
k

σ2
k ,11

�
.

The density of shares is then given by the transformation fs j ,t ,d
(x ) = fξ j ,t ,d

�
f −1(x )
� ·��Jξ j ,t ,d→s j ,t ,d

��−1
, where Jξ j ,t ,d→s j ,t ,d

is the Jacobian matrix of model shares with respect

to ξ. To produce the full joint conditional likelihood of shares, we also include the

mass function for sales, which are a product of shares and arrivals:

∏
t

∏
d

J (t ,d )∏
j=1

ϕ
 f −1(s j ,t ,d )− ρkυ

σ2
k ,11s

σ2
k ,22− ρ2

k

σ2
k ,11

 (λt ,d s j ,t ,d )q j ,t ,d exp(−λt ,d s j ,t ,d )

q j ,t ,d !

 · ��Jξ→s

��−1
,

where ϕ(·) is the standard normal density function. We draw from the posterior based

on a uniform prior distribution and normal candidate Metropolis-Hastings draws.
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Updating price coefficients, αB ,αL . We construct the conditional likelihood (and

thus the conditional posterior distribution) for α = (αB ,αL ) in a similar manner to the

product shares. For any candidate value of price sensitivity, we recover a residual ξ,

invert the demand system, and recover a likelihood. Conditional on λ, shares, η, β ,

and Σ, we compute the distribution of ξ and determine the likelihood of a particular

draw of α, given by

∏
t

∏
d

J (t ,d )∏
j=1

ϕ
 f −1(s j ,t ,d )− ρkυ

σ2
k ,11s

σ2
k ,22− ρ2

k

σ2
k ,11


 · ��Jξ→s

��−1
,

where ϕ(·) is the standard Normal density function. We impose a log-Normal prior

on α, and impose αB < αL to avoid label-switching. To draw from the conditional

posterior, we take a Metropolis-Hasting step using a normal candidate distribution.

Updating the distribution of consumer types, γ. We allow for the mix of con-

sumer types to change over the booking horizon t . We define γ from a sieve estimator

of the booking horizon t , and we sample the sieve coefficients, ψ, according to

γt =Logit
�
G (t )′ψ
�

,

where G (t ) is a vector of Bernstein polynomials. The logistic functional form ensures

that the image of γ in the interval (0,1). The inversion procedure used to construct the

likelihood is similar to α and shares. It yields a likelihood for sieve coefficients ψ of

the form ∏
t

∏
d

J (t ,d )∏
j=1

ϕ
 f −1(s j ,t ,d )− ρkυ

σ2
k ,11s

σ2
k ,22− ρ2

k

σ2
k ,11


 · ��Jξ→s

��−1
.
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We use a uniform prior on ψ, and we sample from the posterior with a Metropolis-

Hastings step using a normal candidate draw.

Updating remaining preferences, β . To sample the remaining preferences that

are common across consumer types, we impose a normal prior on β , with mean β̄0

and variance V0. We adjust for price endogeneity to conduct a standard Bayesian

regression. Define δ j ,t ,d = X j ,t ,dβ +ξ j ,t ,d , which is evaluated at the ξ computed in the

prior step. We normalize each component of δ by subtracting the expected value of ξ

and dividing by its standard deviation. The normalized equations have unit variance

and are thus conjugate to the normal prior. Let σk ,2|1 =
s
σ2

k ,22− ρ2
k

σ2
k ,11

be the variance

of ξ conditional on υ and Σ. We center and scale δ:

δ j ,t ,d − ρκt

σ2
κt ,11
υ

σκt ,2|1
=

1

σκt ,2|1
X j ,t ,d β̄ +U β

j ,t ,d ,

where U β ∼N (0, 1). Then, the posterior distribution of β isN (βN , VN ), where

βN = (X̂
′X̂ +V0

−1)
−1 �

V0
−1β0+ X̂ ′δ̂
�

,

VN = (V0
−1+ X̂ ′X̂ )−1

,

X̂ j ,t ,d =
X j ,t ,d

σκt ,2|1
,

δ̂=
δ j ,t ,d − ρκt

σ2
κt ,11
υ

σκt ,2|1
.

Given this normalization, we can draw directly from the conditional posterior distribu-

tion of β using a Gibbs step.
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Sampling Price-Endogeneity Parameters

Updating pricing equation, η. We use a linear pricing equation of the form

pj ,t ,d = Z j ,t ,dη+υ j ,t ,d .

Conditional on shares, λ, γ, α, and β , ξ is known. Therefore, we use the con-

ditional distribution of υ given ξ to perform another Bayesian linear regression in

a similar manner to β . We impose a Normal prior and normalize prices. Define

σκt ,1|2 =
s
σ2
κt ,11− ρ2

κt

σ2
κt ,22

. It follows that

pj ,t ,d − ρκt
σκt ,22

ξ j ,t ,d

σκt ,1|2
=

1

σκt ,1|2
X j ,t ,d η̄+U η

j ,t ,d ,

where U η ∼N (0, 1). Just as we did for β , we can draw from the posterior of η from

a linear regression with unit variance. This step allows us to directly sample from the

posterior of η rather than using a Metropolis-Hastings step.

Updating the price endogeneity parameters, Σ. We flexibly model the joint distri-

bution of ξ and υ by allowing for a route-specific, time-varying correlation structure.

We divide the booking horizon into four equally sized 30-day periods, and each block

is indexed k . We restrict the price endogeneity parameters Σ, which determine the

joint distribution of ξ,υ, to be identical within these blocks. Within each block, the

pricing and demand residual follow the same joint distribution. We draw the variance

of this normal distribution with a typical Inverse-Wishart parameterization. Our prior

for Σk is I W (ν, V ) where k refers to the block. Define the vector Yk = (υ,ξ) to be the

collection of residual pairs conditional on block k , and Yk ∼N (0,Σk ). The posterior
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for the covariance matrix Σk is then

Σk ∼ I W (ν+nk , V + Y ′k Yk ).

Block k has nk observations. This Gibbs step is repeated for each block k , and we

sample directly from the conditional posteriors of Σ.

D.2 The Impact of the Scaling Factor on Demand Estimates

We consider alternative specifications on our scaling factor ζ in order to understand

how changes in imputed market size affect our demand estimates. Our biggest con-

cern is that our scaling factor may understate the presence of price-sensitive consumers

who primarily shop with online travel agencies. For each route, we adjust our leisure

scaling factor by multiplying the original scaling factor by 1.5, 2, 3, 5 and 10. We

find that between 1.5 to 3 times the original scaling factor, our demand estimates are

largely unchanged. For larger scaling factors—between 5 and 10—we find that de-

mand becomes less price sensitive far from departure and more price sensitive close to

departure. The parameters most affected by this scaling are the parameters governing

the probability of business, γ. As we scale up the leisure arrival process, our estimated

probability of business falls. The change in consumer types over time is reduced, how-

ever, we still estimate average elasticities to be similar to the baseline model.

E Model of Demand Forecasts in Counterfactuals

We use an auxiliary demand model to represent the RM department’s actual demand

forecasts in counterfactuals. We conduct demand estimation using the forecasting data.

We proceed in two steps.

First, we recalibrate our estimated compound Poisson distributions using the RM
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department’s passenger assignment algorithm, assuming the forecasts are generated

using the same model and total intensity of consumer arrivals. We recalibrate the

composition of arriving customers (γt ,r ) as

γforecast
t ,r =

∑
ArrivalsB

t ,r∑
ArrivalsB

t ,r +
∑

ArrivalsL
t ,r

,

where ArrivalsB
t ,r is the total number of arrivals classified as business for route r us-

ing the passenger classification algorithm (L is similarly defined). With these esti-

mates, the adjusted arrival processes are λt ,rλd ,rγ
forecast
t ,r for business passengers and

λt ,rλd ,r (1−γforecast
t ,r ) for leisure traffic. We label these Poisson rates λ̃B

t ,d ,r and λ̃L
t ,d ,r .

Second, we recover preferences consistent with the RM department’s forecasts.

Recall that the forecasts are predictions of sales quantities at the flight, departure date,

passenger type, day before departure, and price level—they are demand curves at dis-

crete prices. We impose the same demand specification as in our demand model.

Because the firm uses a single-product demand model, we abstract from cross-price

elasticities for this analysis and assume arrival rates are equal to λ̃ℓt ,d ,r for each flight

j ∈ Jd ,r . Instead, we could assume arrivals are λ̃ℓt ,d ,r /J , so that each flight receives

1/J of arrivals. However, we find that this increases product shares and results in

consumers estimated to be more price insensitive. Using the unconstrained forecast,

Q̃ ℓ
j ,t ,d ,r (k ), which is simply the prediction of unit sales at a price of k for consumer

type ℓ if capacity were not constrained, we match these curves to its corresponding

model counterpart,

Q̃ ℓ
j ,t ,d ,r (k ) = λ̃

ℓ
t ,d ,r s ℓj ,t ,d ,r (k ). (2)

Plugging in a different price, k ′, results in another matched equation for the same

forecast j , t , d , r . Taking logs of the Equation 2 and subtracting the log of the outside
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good share, we use the inversion of Berry (1994) to obtain

log

�
Q̃ ℓ

j ,t ,d ,r

λ̃t ,d ,r

�
− log(s ℓ0,t ,d ,r ) = log(s ℓj ,t ,d ,r )− log(s ℓ0,t ,d ,r ) = δ̃

ℓ
j ,t ,d ,r . (3)

This inversion is only possible because the forecasting data are at the consumer-type

level. Otherwise, we would have to use the contraction mapping in Berry, Levinsohn,

and Pakes (1995) and Berry, Carnall, and Spiller (2006).

This demand inversion allows us to use the same restrictions imposed in our de-

mand model, i.e., mean utility differs across consumer types is only on the price coef-

ficient. However, we must also confront a data limitation in that our forecasting data is

not necessarily at the t level, but rather, at a grouping of t s the firm uses for decision

making. The number of days in a grouping varies. We address this data feature in the

following way. Note that our demand model does not have t -specific parameters—

preferences do not vary by day before departure. Therefore, if Q̃ ℓ is the forecast for

consumer type i for multiple periods, the model analogue to this is

Q̃ ℓ
·,t ∗ =
∑
t ∈t ∗
λ̃ℓ·,t s ℓ·,t (·) =
�∑

t ∈t ∗
λ̃ℓ·,t

�
s i
· (·).

We can simply sum over the relevant time indices for arrival rates because the time-

index does not enter within-consumer type shares, and the forecasting data assumes a

constant price within a grouping of time. This is important because we can then define

consumer-type product shares as

Q̃ ℓ·,t ∗∑
t ∈t ∗ λ̃

ℓ·,t
= s ℓ(·).

Thus, we obtain the following inversion,

log

�
Q̃ ℓ·,t ∗∑
t ∈t ∗ λ̃

ℓ·,t

�
− log(s ℓ0 ) = log(s ℓ)− log(s ℓ0 ) = δ̃

ℓ. (4)
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Defining the left-hand side of Equation 3 above as δ̃, we obtain the linear estimating

equation (suppressing subscripts) δ̃ = X β̃ − α̃p + u , where β̃ , α̃B , α̃L are preferences

to be estimated. One caveat to this approach is that we estimate a "ξ" that also differs

across consumer types through u . We set these residuals equal to zero and include our

estimated ξ to be consistent with our demand model. We use the mean of the posterior

for that observation taken from our demand estimates. This adjustment does not greatly

impact our findings. In total, we recalibrate all 20,000 preference parameters estimated

in our original demand specification. We compare the demand systems in the figure

below.

Figure 17: Comparison of Demand Predictions
(a) Flight-Level Market Shares
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Note: (a) Comparison of product shares across consumer types, over time. (b) Estimates of γt versus those calculated using the
passenger assignment algorithm. Results are reported averaging over all observations in the data.
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