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Abstract

The paper analyzes information sharing in neutral mechanisms when an informed party will

face future interactions with an uninformed party. Neutral mechanisms are mechanisms that do

not rely on (1) the provision of evidence, (2) conducting experiments, (3) verifying the state,

or (4) changing the after-game (i.e., the available choices and payoffs of future interactions).

They include cheap talk, long cheap talk, noisy communication, mediation, money burning, and

transfer schemes, among other mechanisms. To address this question, the paper develops a

reduced-form approach that characterizes the agents’ payoffs in terms of belief-based utilities.

This effectively induces a psychological game, where the psychological preferences summarize

information-sharing incentives. The first main result states that if an expert’s reduced form

(i.e., belief-based utility) satisfies a weak supermodularity condition between the state and

hierarchies of beliefs, then there is a neutral mechanism that induces complete revelation of

the state. Moreover, it identifies a mechanism that is easy to implement. The second main

result states that if the expert’s reduced-form representation (i.e., set of belief-based utilities)

satisfies a strict submodularity condition between the state and the hierarchies of beliefs, neutral

mechanisms are futile for any (relevant) information sharing. This implies a limit in the ability

to use neutral mechanisms for information sharing. The paper goes on to show how the approach

is useful in applications related to political economy and industrial organization.
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1 Introduction

Throughout history, adverse outcomes have arisen from the concealment of information. An im-

portant example is firms that conceal information related to the health risks of their products. For

instance, the tobacco industry took steps to conceal the health consequences of cigarettes from the

public [Glantz, Slade, Bero, Hanauer, and Barnes, 1998]. Decades later, Purdue Pharma concealed

the addictive properties of opioid-based painkillers, planting the seeds for the so-called “opioid

epidemic” [Meier, 2018]. More recently, social networks have been accused of burying internal re-

search related to the negative mental health effects they generate in young users [Wells, Horwitz,

and Seetharaman, 2021]. These recurring negative outcomes raise important questions about the

introduction of new products. Can policymakers create mechanisms that induce firms to reveal the

harmful properties of their products? What kind of mechanisms can induce information sharing?

What kind of mechanisms are doomed to fail? This paper studies the extent to which a broad class

of mechanisms can or cannot induce an informed party to share its private information.

Understanding the possibility for or impossibility of information sharing is important beyond

the extent to which the public or regulators can learn the health risks of products. For instance,

the question also arises in antitrust regulation. There is reason to think that—even in the absence

of collusion—information sharing can be harmful [Vives, 1984]. This might suggest that regula-

tors should look for the presence of information sharing, whether or not collusion is present. To

the extent that there are markets that preclude firms or trade associations from sharing relevant

information, regulators need not worry about information sharing. (The results in Section 7.2 will

point to such markets.) Likewise, the question arises in the analysis of auctions. For instance, in

spectrum auctions, bidders typically know each other and may well have an incentive to share their

private information, even if they do not engage in stronger forms of collusion. Yet, the textbook

analysis of these auctions implicitly assumes that there is no information sharing (absent full col-

lusion). This raises the question of whether the private information assumption is reasonable or

whether bidders would share information.

To address these questions, the paper focuses on a model with two agents: an expert and a

layman. The expert knows a payoff-relevant state of the world and the layman does not. Absent

the means to share information, the agents play a game where payoffs depend on actions and the

state of the world. For instance, this game may involve a regulator deciding whether to ban or

approve a potentially addictive product of a firm. The firm knows if the product is safe or addictive,

but the regulator does not. A designer seeks to construct a mechanism where both agents interact

and share information prior to playing the game. For instance, a legislator may seek to design

legal institutions that incentivize the firm to share its information with the regulator. This paper

explores whether it is feasible or infeasible for the designer to construct a mechanism where the

expert reveals the state to the layman. In particular, it asks whether a broad class of neutral

mechanisms allows for information sharing.

Neutral mechanisms are extensive-forms where agents may exchange messages, privately receive

signals about the behavior of other agents, and exchange monetary transfers. Importantly, neutral
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mechanisms require four independence conditions. First, they must satisfy structural independence.

That is, action sets, information sets and action correspondences are independent of the state. This

implies that the expert has no actions that directly reveal her private information. It rules out

hard evidence and disclosure [Milgrom, 1981, Grossman, 1981]. Second, they must satisfy statistical

independence. That is, the likelihoods of chance moves do not directly depend on the state. The

only information that the layman gets about the state comes through the expert’s actions in the

mechanism. This rules out Blackwell [1953] experiments that are used in the information design

literature [Kamenica and Gentzkow, 2011, Rayo and Segal, 2010, Taneva, 2019, Bergemann and

Morris, 2019]. Third, they must satisfy outcome independence. That is, the outcome mapping (the

mapping from terminal nodes to outcomes) does not depend on the state. This rules out state-

contingent transfers, where the set of transfers available depends on the state. As a consequence,

Spence-style signaling [Spence, 1978] is ruled out. Fourth, they must satisfy game independence.

That is, the mechanism does not change the after-game, i.e., the game that agents play after the

mechanism concludes. The mechanism can only affect the behavior in the after-game insofar as

information transmission affects the agents’ posterior beliefs. So, while the agents can commit to

follow the rules of the mechanism, they cannot commit to change the rules of the after-game. This

rules out delegation [Dessein, 2002] and arbitration [Goltsman, Hörner, Pavlov, and Squintani,

2009]. Moreover, it rules out game-contingent transfers [Krishna and Morgan, 2008], where the

transfers depend on the actions chosen in the after-game.

Neutral mechanisms are “neutral” in that they do not depend on the state or the after-game.

There are many examples of neutral mechanisms. They include cheap talk [Crawford and Sobel,

1982], long cheap talk, [Aumann and Hart, 2003], noisy communication channels [Blume, Board,

and Kawamura, 2007], mediation [Goltsman, Hörner, Pavlov, and Squintani, 2009], money burning

[Ben-Porath and Dekel, 1992, Austen-Smith and Banks, 2000], and mechanism-contingent transfers

(transfers that depend on the outcome of the mechanism) [Myerson, 1982, Krishna and Morgan,

2008], among others. Their popularity arises from the fact that they do not require the strong as-

sumptions that other mechanisms do: In many environments, (1) the expert does not have verifiable

evidence; (2) the designer does not have access to Blackwell experiments; (3) the designer cannot

construct state-contingent transfers, because they cannot verify the state; (4a) the designer cannot

force the agents to change the after-game; and (4b) writing a contract on behavior in the after-game

may not be feasible.1 Given the interest in neutral mechanisms and the difficulty of implementing

non-neutral mechanisms, it is important to understand their limitations. When do such mechanisms

allow for information sharing? When are stronger tools—non-neutral mechanisms—needed?

Characterizing whether information sharing is possible in a neutral mechanism requires ana-

lyzing a class of dynamic games of asymmetric information. Each dynamic game is composed of

a neutral mechanism—where agents potentially share information—followed by the after-game. A

standard technique for solving dynamic games of finite length is backward induction: The analyst

1Game-contingent transfers require payments after actions are chosen and, thus, credibility of such transfers requires
a contract. However, behavior in the after-game may not be verifiable.

3



first characterizes behavior at the last move and proceeds backwards in the tree. However, in

this setting, the dynamic game need not have observable actions. In particular, the information

conveyed to the layman by the mechanism may not be commonly known, when the mechanism

concludes. So, each mechanism may lead to a non-trivial Bayesian game that requires its own

analysis. Hence, employing backward induction across this class of mechanisms is not trivial.

The paper takes an alternative approach. Understanding the value of a given mechanism re-

quires understanding the information it will convey and, so, the beliefs the players will have in

the after-game. The key insight is that, for the purpose of evaluating a given mechanism, it is

not important to understand the behavior in the after-game, but instead to understand the value

of the information it conveys. With this in mind, the paper takes a reduced-form approach: It

uses belief-based utilities as an instrument to summarize how information impacts the agents’ pay-

offs in the after-game. Then, it appends these belief-based utilities to the mechanism, formally

defining a dynamic psychological game [Geanakoplos, Pearce, and Stacchetti, 1989, Battigalli and

Dufwenberg, 2009]. In the psychological game, the agents interact in a neutral mechanism and

obtain belief-based payoffs, but, they do not engage in the after-game. The paper characterizes

the possibility or impossibility of information sharing, by linking equilibria of these psychological

games to equilibria of the original mechanism design problem.

There are subtleties in implementing the reduced-form approach. First, the belief-based utilities

will depend on the agents’ hierarchies of beliefs about the state. Note, they cannot only depend

on the agents’ first-order beliefs since, after the mechanism concludes, the information conveyed

to the layman may not be commonly known. Moreover, they cannot only rely on high but finite-

order beliefs, since behavior in games of incomplete information is sensitive to higher-order beliefs

[Rubinstein, 1989, Carlsson and Van Damme, 1993, Morris and Shin, 2001]. This is illustrated

in the application of Section 7.2, where the reduced form depends on all hierarchies of beliefs.

Second, if there are multiple equilibria, a single profile of belief-based utilities may not be sufficient

to characterize equilibrium payoffs in the after-game. For this reason, we will look at a set of

appropriate belief-based utility profiles, called a reduced-form representation.

The paper uses the reduced-form approach to provide two sharp results regarding information

sharing. It does so by defining conditions on reduced forms, which capture supermodularity and

submodularity properties between the state and the expert’s hierarchy of beliefs. The supermod-

ularity condition captures the idea that an expert that observes a high state has weakly higher

incentives to “be perceived” as having observed a high state. By contrast, the submodularity con-

dition captures the idea that an expert that observes a low state has strictly higher incentives to

“be perceived” as having observed high state. (To the best of my knowledge, this is the first paper

to introduce these conditions.) The first main theorem is a positive result. Loosely speaking, it

states that complete information sharing is possible as long as the expert’s reduced form satisfies

the supermodularity condition. Intuitively, if an expert with a high state has a higher willingness to

pay to be perceived high, then there is a transfer scheme that incentivizes the expert to truthfully

report the state to the layman. Moreover, the result identifies a simple neutral mechanism that
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achieves this. The second main theorem is a negative result. Loosely speaking, it states that any

relevant information sharing is infeasible if the expert’s reduced-form representation satisfies the

submodularity condition. Intuitively, if an expert with a low state has a strictly higher willingness

to pay to be perceived high, then no relevant information (not even partial) can be transmitted.

As a consequence, the agents behave as if they didn’t interact in the mechanism at all.

In applications, it is often simple to construct reduced forms and to verify whether they satisfy

the supermodularity and submodularity conditions. To illustrate this, the paper provides a char-

acterization of information sharing in two applications. Section 7.1 analyzes a parametrized class

of games where only the layman takes an action and Section 7.2 analyzes a class of games where

both agents take actions. Each application shows how the parameters of the original after-game

translate into the submodularity/supermodularity properties of the reduced forms. As a conse-

quence, the translation provides a complete taxonomy of the set of parameters that allow for or

preclude information sharing. Moreover, it provides economic insights about the extent to which

the parameters influence (or do not impact) the agents’ ability to engage in information sharing.

The first application involves a policymaker and a bureaucrat. The bureaucrat knows the state of

the world. The policy is chosen by an uninformed policymaker. Both agents have quadratic payoffs

that depend on the selected policy and the realized state. The application seeks to characterize the

types of disagreement that allow for or preclude information sharing. The key insight is that the

absolute level of disagreement is irrelevant for information sharing. What matters is how changes

in the state affects the “direction” of the agents’ preferred policies. Applying the main theorems,

full revelation of the state is possible if and only if the agents face “directional agreement” i.e.,

if both agents agree about the direction of how the policy should change in terms of the state.

(This is independent of how distant the agents’ preferred policies are.) If agents face “directional

disagreement,” i.e., if the agents’ preferred actions move in different directions as the state changes,

then the submodularity condition is satisfied and the negative result applies: The bureaucrat has

strong preferences to deceive the policymaker, and, as a consequence, no relevant information can

be transmitted.

The second application analyzes the interaction between two firms competing in a duopoly

market. This interaction is modeled as a symmetric quadratic game. For instance, the game can

represent a model of price competition (leading to strategic complements) or a model of quantity

competition (leading to strategic substitutes). One of the firms observes industry demand. (This

could be because the firm purchased a forecast from a third party [Rivera Mora, 2021a], or for other

reasons.) Should an antitrust agency worry that the oligopolies share information?2 Or does the

strategic interaction between firms prevent any information sharing from happening? Applying the

main theorems yields two results: First, full information sharing is possible if the agents’ actions

are strategic complements, i.e., if firms compete in prices. Second, information sharing is infeasible

2Think of the firms as committing to a mechanism by way of a trade association. That is, the trade association can
be seen as a designer.
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if the agents’ actions are strategic substitutes, i.e., if firms compete in quantities.3 When firms

compete in prices, a good-news firm (i.e., a firm with knowledge of a high-demand shock) has

higher incentives to induce higher joint prices than the bad-news firm. Hence, the good-news firm

has higher incentives to induce “optimistic beliefs” and the supermodularity condition is satisfied.

However, when firms compete in quantities, the effects are reversed: The good-news firm has

more incentives to corner the market by inducing the other firm to decrease its quantity produced.

That is, the good-news firm has more incentives to induce “pessimistic beliefs” and hence, the

submodularity condition is satisfied.

This paper follows a long tradition of studying information sharing. Typically, this is asked

in the context of specific mechanisms. See Crawford and Sobel [1982], Aumann and Hart [2003],

Blume, Board, and Kawamura [2007], Goltsman, Hörner, Pavlov, and Squintani [2009], Myerson

[1982], Krishna and Morgan [2008], Austen-Smith and Banks [2000], Ziv [1993] for examples of

neutral mechanisms and Milgrom [1981], Grossman [1981], Spence [1978], Dessein [2002], Kamenica

and Gentzkow [2011], Rayo and Segal [2010], Taneva [2019], Bergemann and Morris [2019], for

examples of non-neutral mechanisms.

Much of the literature focuses on a particular neutral mechanism and a particular after-game

and shows that only partial information sharing is feasible. (That is, full information sharing is

infeasible.) Notable exceptions are Ziv [1993], Ottaviani [2000], and Krishna and Morgan [2008] —

which use mechanism-contingent transfer schemes—and Austen-Smith and Banks [2000] and Kartik

[2007]—which use money burning—to induce full information sharing. Ottaviani [2000], Austen-

Smith and Banks [2000], Kartik [2007], and Krishna and Morgan [2008] focus on environments

where only the layman can choose an action and the agents’ payoffs are supermodular in the action

and state. (Their result is related to Application 7.1.) In Ziv [1993], the agents’ payoffs are not

supermodular in the action and state. (See the discussion in Footnote 3.) Notably, these papers do

not have a result on the impossibility of information sharing. The impossibility result is novel and

its proof is more subtle. In particular, it requires showing that, for each neutral mechanism and

each equilibrium, no relevant information can be shared. This result is proved by using a revelation

principle for psychological games [Rivera Mora, 2021b].

This paper fits into a small literature that uses belief-based utilities as an instrument to sum-

marize payoffs of future interactions. Dworczak [2020] uses belief-based utilities to summarize the

bidders’ payoffs in auctions with aftermarkets. There, the belief-based utilities are used as a primi-

tive that represents the aftermarket’s payoffs in terms of the beliefs of the aftermarket’s participants.

Since the outcome of the mechanism is assumed to be public, first-order beliefs uniquely determine

higher-order beliefs. Hence, in his setting, it suffices to assume that the belief-based utilities only

3 While the two conclusions are similar to results in Vives [1984], Gal-Or [1985], and Raith [1996], the mechanisms
studied in those papers are not neutral. In particular, they allow for verifiable signals (evidence). Moreover, they
rule out transfers. By contrast, Ziv [1993] uses neutral mechanisms to share information about production costs
(as opposed to demand). He shows that, when firms engage in quantity competition, firms can use mechanism-
contingent transfers to reveal information about production costs. This interesting result does not contradict the
impossibility of information sharing for quantity competition shown here, since the two papers focus on different
sources of uncertainty.
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depend on first-order beliefs. Morris [2001] and Ottaviani and Sørensen [2006] both use belief-

based utilities to summarize an advisor’s reputational payoff in future interactions. In Ottaviani

and Sørensen [2006], the belief-based utility is exogenous while, in Morris [2001], it is endogenous

(as here). Both papers study a class of (cheap talk) neutral mechanisms, in which the agents’

first-order beliefs uniquely determine higher-order beliefs. So, in their setting, it suffices to assume

that the belief-based utilities only depend on first-order beliefs. Unlike these previous papers, this

paper studies information sharing in a wide variety of neutral mechanisms, including mechanisms

where the outcome is not publicly observable (e.g. mediation). In these mechanisms, first-order

beliefs do not determine higher-order beliefs. Because higher-order beliefs may be important in the

after-game, the belief-based utilities depend on the full hierarchy of beliefs.

At the surface, the supermodularity condition might resemble the condition in Van Zandt

and Vives [2007]. However, the conditions are quite different. Their supermodularity is defined

between actions and a single parameter that captures both payoff and belief types. By contrast, here

supermodularity and submodularity are defined between states (i.e. payoff types) and hierarchies.

They provide an exogenous order on payoff-belief types, which in turn determines the order on

hierarchies. While the order on payoff types (or states) is often given by the application, it is

unclear how to interpret the order on belief types. By contrast, here, the order on hierarchies is

inherited from the order on states.

2 Illustrative Example

A firm has developed a new painkiller. The painkiller can be safe (state θ) or addictive (state θ),

where θ > θ. Ex ante, the likelihood of the painkiller being safe (θ) is µ(θ) < 1
2 . A regulator

is choosing whether to approve the painkiller for sale or ban the painkiller. Payoffs are common

knowledge and given as follows:

1, 1 c, 0

0, 0 0, 1ban

approve

θ θ

Figure 2.1. Payoffs of firm (first) and regulator (second)

So, the regulator wants to approve the painkiller if and only if it is safe, i.e., if the state is θ.

The firm’s profit is 0 if the regulator bans. Profit is normalized to 1, if the painkiller is approved

and safe. If the painkiller is approved and addictive, profit is c. Note, c can be greater than 1, if

the firm’s profit increases when the painkiller is addictive. But, c can be less than 1 if the firm

internalizes costs of providing an addictive substance to the population—e.g., the cost of future

fines, reputation, and lawsuits.

The firm has private information about the safety of the painkiller. In particular, the firm
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knows whether the state is θ or θ, but the regulator does not. Given the prior, the regulator would

ban the painkiller. Presumably a policymaker (the designer) would want the regulator to make an

informed decision. Can the policymaker construct a neutral mechanism that induces the firm to

share her information with the regulator?

An implication of the main results will be the following characterization.

Possibility/Impossibility of Information Sharing:

(1) If c ≤ 1, then complete information sharing is possible.

(2) If c > 1, then, independent of the neutral mechanism employed, the regulator

chooses the uninformed decision.

When c > 1, information may be shared, but it will not affect the regulator’s decision. In that

case, the designer would have to look beyond neutral mechanisms to help the regulator.

In this simple example, the possibility/impossibility of information sharing can be shown di-

rectly. Instead of doing so, we will make use of the reduced-form approach described in the main

text. (This will illustrate the main tools of the paper.) We will focus the discussion on a particular

simple class of neutral mechanism: One in which the firm chooses a costly message that is publicly

observed. Write m for such a message. The message comes at a cost y(m) ∈ R for the firm. (Note,

the cost may in fact be a benefit.) The main text will consider general neutral mechanisms.

After the agents interact in the mechanism—that is, after the firm chooses its message and it is

observed—the regulator updates his prior belief about the state. Write p(m) for the (endogenous)

probability that the regulator assigns to θ (safe) after observing the message m. Because the

message is publicly observed, the firm assigns probability one to the regulator assigning probability

p(m) to θ (safe). So, the parameter p(m) captures all the relevant information about hierarchies of

beliefs.

The regulator’s behavior is effectively determined by their first-order beliefs—i.e., beliefs about

the safety of the painkiller after a message (m) has been observed (p(m)). The reduced-form

approach directly references those beliefs. First, it characterizes the agents’ equilibrium payoffs

in terms of the beliefs the agents may have after they have updated. This reduces the original

analysis to a psychological game, in which agents interact in the mechanism and then obtain their

belief-based utilities.4 The key idea is that, for any given mechanism, the associated psychological

game can be used to characterize the distribution of beliefs that can arise in equilibrium. This will

allow us to address whether information sharing is possible.

With this in mind, we begin by characterizing the agents’ equilibrium payoffs in terms of beliefs.

Note, ban is optimal if and only if p(m) ∈ [0, 12 ] and approve is optimal if and only if p(m) ∈ [12 , 1].

This implies that the payoff the regulator can get as a function of p—i.e., the posterior that the

state is θ—is

ur(p) = max{1− p, p}.
4In the original analysis, the agents interact in the mechanism and then play a regulation after-game.
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The firm’s payoffs depends on the likelihood that the firm assigns to the the regulator choosing

approve. Because this depends on the regulator’s posterior, this likelihood can be summarized by

a mapping ap : [0, 1] → [0, 1] with

ap(p) = 1[p > 1
2 ] + x · 1[p = 1

2 ],

for some x ∈ [0, 1]. (If the firm believes that the regulator assigns probability p > 1
2 to θ, then

the firm believes the regulator approves; if the firm believes that the regulator assigns probability

p < 1
2 , then the firm believes the regulator bans.) So, the firm’s belief-based utility function is

uf (θ, p) =

ap(p) if θ = θ

c · ap(p) if θ = θ.

Any such pair of functions (uf , ur) defines a psychological game and is called a reduced form of the

regulation after-game. Notice there are many reduced forms corresponding to different values of

x ∈ [0, 1].

The main results speak to the possibility or impossibility of information sharing based on the

reduced form of the informed party. Loosely:

Main Theorem:

(1) If uf is weakly supermodular on {θ, θ}×{0, 1}, then complete information sharing

is possible.

(2) If uf satisfies a strict submodularity condition, then no (relevant) information

sharing is feasible.

A key step is defining super- and submodularity in terms of the agents’ hierarchies of beliefs. Doing

so requires imposing an order on the hierarchies that is determined by the order on states. In this

example, the order imposed by supermodularity (part (1)) corresponds to the standard notion, i.e.,

uf (θ, 1)− uf (θ, 0) ≥ uf (θ, 1)− uf (θ, 0).

That is, the firm’s benefit as being perceived as safe (p(m) = 1) over addictive (p(m) = 0) is higher

when the product is safe (θ). Submodularity (part (2)) is more subtle and requires ordering all of

the posterior beliefs, not just the posteriors where the firm is perceived as either safe (p(m) = 1)

over addictive (p(m) = 0). The idea will be introduced bellow.

To understand the result intuitively note that, under supermodularity, the firm with the safe

painkiller (θ) has (weakly) higher incentives to induce approval of the painkiller. So, the safe firm

has a higher willingness to pay to be perceived as safe rather than addictive. As a consequence,

complete information sharing is possible. On the other hand, under strict submodularity, the

addictive firm has (strictly) higher incentives to be perceived as safe. In a sense, the regulation after-

game induces strong incentives for the addictive firm to deceive the regulator. As a consequence,

in each mechanism and each equilibrium, the regulator always takes the uninformed action.

The remainder of the argument illustrates how the main result relates to the key parameter of the

model, c. Start with the positive result. Observe that uf is weakly supermodular on {θ, θ}×{0, 1}
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if and only if c ≤ 1. As a consequence, there is a mechanism that induces complete information

sharing. One such mechanism has the firm directly choosing one of two messages: a high message

m or a low message m. The cost of the high message, y(m), is in [c, 1] and the cost of the low

message, y(m), is 0. (Note, y(m) ∈ [c, 1] is only feasible when c ≤ 1.) Because y(m) ∈ [c, 1], there

is an equilibrium of the psychological game where the safe firm (θ) chooses m and the addictive

firm (θ) chooses m. (The fact that the incentive constraints can be satisfied follows from uf being

supermodular.) This induces posterior beliefs p(m) = 1 and p(m) = 0. That is, there is complete

information sharing.

The negative result is more subtle. To show it, fix a mechanism with a set messages M and a

cost function y :M → R. The negative result will follow from two equilibrium properties:

(i) The regulator is more weakly likely to approve after observing messages sent by the safe firm

θ vs. by the addictive firm θ.

(ii) If the state θ does not impact the likelihood of approval (via a message), then no information

is shared and the regulator always bans.

So, it suffices to show that there is no equilibrium where the regulator is strictly more likely to

approve after observing a message sent by the safe firm. That is, in any equilibrium where the safe

firm (θ) selects a message m with positive probability and the addictive firm (θ) selects a message

m with positive probability, it follows that ap(p(m)) ≥ ap(p(m)). If this is satisfied, the message

cannot impact the likelihood of approval (by (i)), and hence there is no relevant information sharing

(by (ii)).

To show this, assume, by contradiction, that ap(p(m)) > ap(p(m)). Since c > 1,

[uf (θ, p(m))− uf (θ, p(m))]− [y(m)− y(m)] = c · [ap(p(m))− ap(p(m))]− [y(m)− y(m)]

> [ap(p(m))− ap(p(m))]− [y(m)− y(m)]

= [uf (θ, p(m))− uf (θ, p(m))]− [y(m)− y(m)]

≥ 0, (1)

where the last equality follows from the fact that the safe firm (θ) chooses m in equilibrium.

The strict inequality contradicts that the addictive firm (θ) chooses m in equilibrium. Therefore,

ap(p(m)) ≥ ap(p(m)), as desired. Note, the strict inequality is a form of strict submodularity of

the reduced form uf (·, ·) requiring that

uf (θ, p(m))− uf (θ, p(m)) > uf (θ, p(m))− uf (θ, p(m)),

whenever ap(p(m)) > ap(p(m)). The addictive firm (θ) has a strictly higher marginal benefit of

approval, and hence a strictly higher incentive to induce a high posterior p(m).

The no information-sharing result does not rely on the specific class of neutral mechanisms

the discussion focused on: mechanisms that have publicly observed costly messages. The result

holds for all neutral mechanisms. In particular, it allows for mechanisms that garble the firm’s

behavior through noise and mechanisms that make use of mediation schemes. In those cases, the

firm will not directly select a signal that is publicly observed (such as a message). Instead, the
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regulator will observe signals provided by the mechanism. The firm will influence the distribution of

signals through its behavior. Notice, since uf (θ, p) is linear in ap(p), the argument above applies.

The addictive firm is the one who has a (strictly) higher willingness to pay for high-posterior

signals. Hence, it selects a signal distribution with a weakly higher expected value of ap(p) than

the distribution selected by the safe firm. However, under Bayesian updating, signals with a higher

value of ap(p) are more likely to come from the safe firm (by (i)). As a consequence, the state does

not impact likelihood of approval and no information can be shared (by (ii)).

Remarkably, the feasibility of information sharing is, in a sense, discontinuous in the parameter

c. Small changes in c lead to big changes in what information can be transmitted. It suggests that,

when c is close to 1, a designer may want to find ways to lower c; doing so would involve using

a non-neutral mechanism. This sharp discontinuity on the set of parameters also appears in the

applications of Section 7.

3 Model

There are two agents: an expert (e) and a layman (ℓ). Write i ∈ {e, ℓ} for an agent and −i for the
agent in {e, ℓ}\{i}. The agents’ payoffs depend on the state of the world. Let Θ ⊊ R be a finite set

of states. The state is drawn from a common prior µ ∈ ∆(Θ) with full support. The expert observes

the realization of the state and the layman does not. The agents then play a simultaneous move

game. In that game, the set of actions for agent i is a metric space Ai. Write A = Ae × Aℓ. The

payoff function for agent i is a continuous mapping πi : Θ×A→ R. Write G = ((Ai, πi) : i ∈ {e, ℓ})
for that game. The game G is fixed throughout the analysis.

3.1 Neutral Mechanisms

A (neutral) mechanism is an extensive form, which is played after the expert learns the state

but before the agents play the game of interest G. These mechanisms allow agents to exchange

information by interacting in the mechanism and exchanging transfers. Because the mechanisms

are neutral, they do not depend on the realized state and cannot change the game G. Thus, these

mechanisms can be defined independently of both the realized state and G. This is the approach

taken below.

Formally, a mechanism is described as follows: There is a finite set of nodes V with a precedence

relation ≿, such that (V,≿) forms a tree. Write ∅ ∈ V for the root of the tree and Z ⊊ V for the

set of terminal nodes. The terminal nodes in Z will correspond to the start of the game G.

In the extensive form, moves can be made by the expert, the layman, and chance (c). Each

i ∈ {e, ℓ, c} has an information partition on V , given by Ii ⊆ 2V . Note that Ii is a partition of both

non-terminal and terminal nodes in the extensive form. The information partition Ii satisfies two
conditions. First, it satisfies no absentmindedness, i.e., if {v, v′} ⊆ I and v ̸= v′, then is not the

case that v ≿ v′ or that v′ ≿ v. Second, the mechanism has an observable end, i.e., if Ii ∩ Z ̸= ∅,
then Ii ⊆ Z. Call an information set Ii ⊆ Z a terminal information set; write Ti for an arbitrary
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terminal information set. The set of terminal information sets for i is Ti ⊆ Ii.
Write X for the set of actions. Each i ∈ {e, ℓ, c} has an action correspondence Ai : Ii\Ti ⇒ X

that specifies the actions that are available at each non-terminal information set. The information

partition and the action correspondence Ai are such that agents have perfect recall. Chance’s

behavior is described (exogenously) by a behavioral strategy σc ∈
∏

Ic∈Ic\Tc ∆(Ac(Ic)). So σc

describes the distribution of chance’s actions at each Ic ∈ Ic\Tc. The set of transfers for i ∈ {e, ℓ}
is a finite set Yi ⊊ R. Write Y = Ye × Yℓ. The transfer function γi : Ti → Yi associates each

terminal information set of i with a transfer that i receives. Notice that this implicitly assumes

that i observes her transfer yi. (Observe, the transfer depends on the mechanism but not in the

state.)

The profile M = ((V,≿), X, (Ii,Ai : i ∈ {e, ℓ, c}), σc, (Yi, γi : i ∈ {e, ℓ})) describes a mecha-

nism. Note three features of the definition. First, because the mechanism is independent of the

state, the set of nodes V does not contain information about the realization of the state. Second,

the definition allows for explicit simultaneous moves. (This is captured by the fact that each node

is in some information set of each agent i.) Nevertheless, the definition does not require simul-

taneous moves since the set of actions at a given information set can be a singleton. Third, no

absentmindedness implies that each i ∈ {e, ℓ, c} knows the start of the game, i.e., {∅} ∈ Ii.
The definition of a mechanism captures the properties of a neutral mechanism. First, M is

structurally independent. The tree, information sets, action set, and action correspondences do not

depend on the realization of Θ. Second, M is statistically independent. The strategy of chance σc

does not depend on the realization of Θ. Third, M is outcome independent. The set of transfers Y

and the transfer functions do not depend on the realization of Θ. Fourth, M is game independent.

The mechanism does not make reference to G and so cannot change G itself.

A given mechanism induces a set of pure strategies for i, Ri =
∏

Ii∈Ii\Ti Ai(Ii). We think about

elements of Ri as “reports” that imakes throughout the mechanism. Write R = Re×Rℓ×Rc. Write

ψ : R⇒ V for the path correspondence. So, ψ(r) denotes the set of nodes of V that constitute

the path of play under r. Write ζ : R × V → Z for the end node mapping, where ζ(r, v) ∈ Z is

the end node that would be realized if the game started at v and actions are subsequently played

according to the strategy profile r. Say that r ∈ R allows I ⊆ V if ψ(r) ∩ I ̸= ∅ and say ri ∈ Ri

allows I ⊆ V if there is some (r−i, rc) so that (ri, r−i, rc) allows I.

3.2 The Supergame

The mechanism M and the game G together induce a supergame, denoted by (M, G). The timing

of the supergame is given as follows: Nature chooses state θ. The expert observes θ. The agents

play M. Each i ∈ {e, ℓ} observes a terminal information set Ti ∈ Ti. Finally, agents play G. The

payoffs of each agent i are quasilinear in the outcome of G and the transfer yi. So, the payoff for i

from (θ, a, yi) ∈ Θ×A× Yi is πi(θ, a) + yi.

To define the strategies in the supergame, it is useful to extend the action correspondence from

Ai : Ii\Ti ⇒ X to Ai : Ii ⇒ X ∪Ae ∪Aℓ so that (i) for each Ti ∈ Ti, Ai(Ti) = Ai, and (ii) for each
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Ii ∈ Ii\Ti, Ai(Ii) corresponds to what it was originally in M. A behavioral strategy for the

expert is a mapping σe : Θ →
∏

Ie∈Ie ∆(Ae(Ie)). A behavioral strategy for the layman is a

vector σℓ ∈
∏

Iℓ∈Iℓ ∆(Aℓ(Iℓ)).

Each pair (θ, σe) induces a probability distribution over reports Re given by

P(re | θ, σe) =
∏

Ie∈Ie\Te

σe(θ)(proj Iere).

Similarly, each σℓ induces a probability distribution over reports Rℓ given by

P(rℓ | σℓ) =
∏

Iℓ∈Iℓ\Tℓ

σℓ(proj Iℓrℓ).

Likewise, write P(rc | σc) for the probability distribution over Rc that σc induces.

3.3 Interim Belief Mappings

The interim belief mappings specify the beliefs that agents hold while interacting in the supergame.

At each node, the expert (resp. the layman) has beliefs about which node has been reached (resp.

which state was realized and which node has been reached).5 Ultimately, the belief mappings will

be endogenous.

Fix a mechanism M. An interim belief mapping for the expert is a function βe : Θ×Ie →
∆(V ) such that, for each (θ, Ie) ∈ Θ×Ie, βe(θ, Ie)(Ie) = 1. Likewise, an interim belief mapping

for the layman is a function βℓ : Iℓ → ∆(Θ× V ) such that, for each Iℓ ∈ Iℓ, βℓ(Iℓ)(Θ× Iℓ) = 1.

Notice that, for each (θ, Te, Tℓ) ∈ Θ × Te × Tℓ, βe(θ, Te)(Z) = 1 and βℓ(Tℓ)(Z) = 1. So, at each

terminal information set, both agents know that the mechanism has ended.

We will want the interim beliefs to be consistent with the strategy profile played. Toward that

end, fix a strategy profile (σe, σℓ) of the supergame (M, G). This strategy profile and the prior

µ ∈ ∆(Θ) induce a distribution on Θ× V . For a given pair (θ, v) ∈ Θ× V , the ex-ante probability

that θ occurs and the path goes through v, given that (re, σℓ) (resp. (σe, rℓ)) is played, is

P(θ, v | re, σℓ) =
∑

(rℓ,rc)∈Rℓ×Rc

µ(θ) · P(rℓ | σℓ) · P(rc | σc) · 1[v ∈ ψ(re, rℓ, rc)], and

P(θ, v | σe, rℓ) =
∑

(re,rc)∈Re×Rc

µ(θ) · P(re | θ, σe) · P(rc | σc) · 1[v ∈ ψ(re, rℓ, rc)].

Definition 3.1. The interim beliefs β = (βe, βℓ) are consistent with σ = (σe, σℓ) if the following

hold:

(i) For each re ∈ Re, (θ, Ie) ∈ Θ× Ie, and v ∈ Ie,

βe(θ, Ie)(v) · P({θ} × Ie|re, σℓ) = P(θ, v|re, σℓ).

(ii) For each rℓ ∈ Rℓ, Iℓ ∈ Iℓ, and (θ, v) ∈ Θ× Iℓ,

βℓ(Iℓ)(θ, v) · P(Θ× Iℓ|σe, rℓ) = P(θ, v|σe, rℓ).
5Recall that, since the mechanism satisfies structural independence, the realization of Θ is not part of the description
of nodes V .
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Consistency requires that, if Ie (resp. Iℓ) is reached with positive probability under (re, σℓ)

(resp. (σℓ, rℓ)), then e’s (resp. ℓ’s) beliefs about the elements of Ie (resp. Θ× Iℓ) are derived by the

rule of conditional probability. Consistency imposes the implicit requirement that interim beliefs

satisfy own-action independence: The probability that i assigns to each v (resp. each (θ, v)) at

information set Ii is independent of the reporting strategy ri that is used (provided that i uses an

ri that allows for Ii).
6 So, if β is consistent with (σi, σ−i) and i deviates from σi, i still believes

that −i is playing accordingly to σ−i.

3.4 Equilibrium

Fix (θ, Te, Tℓ) ∈ Θ× Te × Tℓ such that Te ∩ Tℓ ̸= ∅. The expected payoff from G given the strategy

profile σ = (σe, σℓ) and profile (θ, Te, Tℓ) is

Πi(σ | θ, Te, Tℓ) =
∫
Aℓ

∫
Ae

πi(θ, ae, aℓ) dσe(θ, Te) dσℓ(Tℓ).

So, the expert’s expected payoff of σ given (θ, Te) and βe is

Πe(σ | θ, Te, βe) =
∑
Tℓ∈Tℓ

Πe(σ | θ, Te, Tℓ) · βe(θ, Te)(Tℓ),

and the layman’s expected payoff of σ given Tℓ and βℓ is

Πℓ(σ | Tℓ, βℓ) =
∑

(θ,Te)∈Θ×Te

Πℓ(σ | θ, Te, Tℓ) · βℓ(Tℓ)({θ} × Te).

To talk about sequential rationality we need to compute the agent’s payoffs at each interim

information set. For this, note that the probability that agent i reaches Ti, given that Ii is reached

and σ is played, is given by

P(Te | θ, Ie, σ, βe) =
∑
v∈Ie

∑
r∈R

βe(θ, Ie)(v) · P(r | θ, σ) · 1[ζ(v, r) ∈ Te], and

P(Tℓ | Iℓ, σ, βℓ) =
∑

(θ,v)∈Θ×Iℓ

∑
r∈R

βℓ(Iℓ)(θ, v) · P(r | θ, σ) · 1[ζ(v, r) ∈ Tℓ].

So, the agents’ interim payoffs at information sets Ie and Iℓ are

Ue(σ | θ, Ie, βe) =
∑
Te∈Te

[Πe(σ | θ, Te, βe) + γe(Te)] · P(Te | σ, θ, Ie, βe), and

Uℓ(σ | Iℓ, βℓ) =
∑
Tℓ∈Tℓ

[Πℓ(σ | Tℓ, βℓ) + γℓ(Tℓ)] · P(Tℓ | σ, Iℓ, βℓ).

Note that the interim payoffs include the expected payoffs from G and the transfers from the

mechanism M.

Definition 3.2. An assessment (σe, σℓ, βe, βℓ) satisfies sequential rationality if the following

hold:

(i) For each (θ, Ie) ∈ Θ× Ie and σ′e, Ue(σe, σℓ | θ, Ie, βe) ≥ Ue(σ
′
e, σℓ | θ, Ie, βe).

(ii) For each Iℓ ∈ Iℓ and σ′ℓ, Uℓ(σe, σℓ | Iℓ, βℓ) ≥ Uℓ(σe, σ
′
ℓ | Iℓ, βℓ).

6This terminology follows [Battigalli, Catonini, and De Vito, 2022].
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If (σ, β) satisfies sequential rationality, then each agent is optimizing at each information set.

Notice that optimization is required both within the mechanism M (at each non-terminal informa-

tion set in M) and within G (at each terminal information set of M).

Definition 3.3. Call (σ, β) a perfect Bayesian equilibrium (PBE) if the assessment (σ, β)

satisfies sequential rationality and the belief mappings β are consistent with σ.

A PBE requires that agents are optimizing at each information set and that beliefs are com-

puted by the law of conditional probability whenever possible. We will focus on PBE that satisfy

individually rationality. Agents may refuse to play (M, G) and get an exogenous outside option.

The outside option of the expert is given by a state-dependent mapping πe : Θ → R ∪ {−∞}. The
outside option of the layman is given by πℓ ∈ R ∪ {−∞}.7

Definition 3.4. A perfect Bayesian equilibrium (σ, β) is individually rational if (1) for each

state θ ∈ Θ, Ue(σ|θ, {∅}, βe) ≥ πe(θ), and (2) Uℓ(σ|{∅}, βℓ) ≥ πℓ.

Individual rationality requires that, after the expert learns the sate but before the mechanism

is played, each agent’s expected payoffs from a Bayesian equilibrium (σ, β) is higher than their

outside option. (Recall that {∅} is the initial information set in the mechanism.)

4 A Reduced-Form Approach

This section introduces a novel technique to analyze mechanisms for information sharing. First,

it analyzes the equilibrium behavior in Bayesian games associated with G. The beliefs in these

Bayesian games correspond to the information the agents have after the expert has learned the

state and the mechanism has been played. Second, it studies how behavior across these Bayesian

games effectively induces preferences for information. Such preferences are modeled by utility

functions that depend on the agents’ hierarchies of beliefs—hence, defining a psychological game.

Third, it shows how the equilibria of supergames are “equivalent” to the equilibria of a class of

psychological games. Finally, it uses a version of the revelation principle for psychological games

[Rivera Mora, 2021b] to capture all equilibria that arise from the relevant class of psychological

games.

4.1 The Induced Bayesian Game

The first step is to understand how the information agents have after a mechanism M is played

affects the equilibrium payoffs in G. Formally, the terminal information sets associated with M
and behavior in M induce an information structure for the game G. These terminal information

sets and associated belief mappings will induce a Bayesian game.

To define the induced Bayesian game, it will be useful to have two pieces of notation. First, note,

from the perspective of the induced Bayesian game, the only important aspect of the mechanism

7Note, in practice, the layman’s outside option can also depend on the state; since the layman does not know the
state, πℓ can be taken as the expected value.

15



is the set of terminal information sets. (They will impact beliefs in the associated Bayesian game.)

With this in mind, it will be convenient to write M = (·, Te, Tℓ) for a mechanism where the sets

of terminal information sets are Te and Tℓ. Second, interim beliefs will only be important if they

can arise from the agents’ updating in the mechanism. With this in mind, it will be convenient to

write cons(M) for the set of interim belief mappings in M that are consistent (Definition 3.1) with

some strategy profile. Notice that β ∈ cons(M) implies that β is derived from a common prior.

Fix a supergame (M, G) with M = (·, Te, Tℓ) and interim belief mappings β ∈ cons(M). After

the agents finish playing M, each agent i learns information associated with a terminal information

set. Notice that the realized terminal information sets Te and Tℓ may not be singletons. So, the

expert knows (θ, Te) but may not know Tℓ and the layman knows Tℓ but may not know (θ, Te).

Thus, we can think of these information sets as reflecting types of the agents. Formally, the expert’s

set of types is Θ × Te and the layman’s set of types is Tℓ. Since M has an observable end, each

profile (θ, Te, Tℓ) ∈ Θ×Te×Tℓ satisfies βe(θ, Te)(Z) = βℓ(Tℓ)(Θ ×Z) = 1. Therefore, the probability

that an expert of type (θ, Te) assigns to Tℓ is βe(θ, Te)(Tℓ) and the probability that a layman of type

Tℓ assigns to (θ, Te) is βℓ(Tℓ)({θ} × Te).
8 Write BG(Te, Tℓ, β) for this induced Bayesian game.

Within this Bayesian game, the expert’s strategy is a mapping σ̂e : Θ×Te → ∆(Ae), and the

layman’s strategy is a mapping σ̂ℓ : Tℓ → ∆(Aℓ). The agents’ expected payoffs of the strategy

profile σ̂ given (θ, Te, βe) and (Tℓ, βℓ) respectively are Πe(σ̂ | θ, Te, βe) and Πℓ(σ̂ | Tℓ, βℓ).

Definition 4.1. Call the profile σ̂ = (σ̂e, σ̂ℓ) a Bayesian equilibrium of BG(Te, Tℓ, βe, βℓ) if the
following hold:

(i) For each (θ, Te) ∈ Θ× Te and σ̂′e, Πe(σ̂e, σ̂ℓ | θ, Te, βe) ≥ Πe(σ̂
′
e, σ̂ℓ | θ, Te, βe).

(ii) For each Tℓ ∈ Tℓ and σ̂′ℓ, Πℓ(σ̂e, σ̂ℓ | Tℓ, βℓ) ≥ Πℓ(σ̂e, σ̂
′
ℓ | Tℓ, βℓ).

4.2 Psychological Games

The reduced-form approach uses utility functions based on hierarchies of beliefs to summarize

the equilibrium payoffs obtained in any induced Bayesian game. So, instead of thinking about

payoffs from an equilibrium of (M, G), we suppress reference to G and set payoffs directly as a

utility function that depends on the agent’s hierarchies of beliefs. This effectively transforms the

supergame into a psychological game.

To describe the psychological game, we will need to introduce hierarchies of beliefs. Let D1
ℓ = Θ

and D1
e = {⋄}, where ⋄ is a trivial element. These represent the first-order domain of uncertainty

for the layman and the expert. (Notice that the expert has no uncertainty, and so, her first-order

domain of uncertainty is trivial.) The set of first-order beliefs of agent i is H1
i = ∆(D1

i ).

Inductively define the sets Dk
i and Hk

i as follows: Assume the sets Dk
i and Hk

i are defined for

k. Then Dk+1
i = Dk

i ×Hk
−i is the (k + 1)-order domain of uncertainty of agent i and

Hk+1
i =

{
(µ1i , ..., µ

k+1
i ) ∈ Hk

i ×∆(Dk+1
i ) : margDk

i
µk+1
i = µki

}
8Formally, in a Bayesian game the agents priors are mappings β̂e : Θ × Te → ∆(Tℓ) and β̂ℓ : Tℓ → ∆(Θ × Te). For
notational simplicity, we use the notation of (βe, βℓ) instead of the correct notation (β̂e, β̂ℓ).
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is the set of collectively coherent (k+1)-order beliefs of agent i. Note that, if (µ1i , ..., µ
k+1
i ) ∈ Hk+1

i ,

then (µ1i , ..., µ
n
i ) ∈ Hn

i for all n ≤ k; that is, each (µ1i , ..., µ
k+1
i ) ∈ Hk+1

i is coherent.

Write

Hi =

{
(µ1i , µ

2
i , ...) ∈

∞∏
k=1

∆(Dk
i ) : (µ

1
i , ...µ

k
i ) ∈ Hk

i for each k ∈ N

}
,

for the set of i’s collectively coherent hierarchies of beliefs. So, hi = (µ1i , µ
2
i , ...) ∈ Hi is

a particular hierarchy of beliefs for agent i. Notice that there are hierarchies of beliefs h̃e =

(µ̃1e, µ̃
2
e, ..) ∈ He and h̃ℓ = (µ̃1ℓ , µ̃

2
ℓ , ..) ∈ Hℓ which are induced by the common prior µ ∈ ∆(Θ). The

common prior hierarchies are such that each k-th order belief µ̃ki has finite support.

The belief structure is H = He × Hℓ. Each hierarchy hi ∈ Hi can be mapped to a belief

on D1
i × H−i, so that the marginals coincide with that specified by hi. In particular, there is a

canonical homeomorphism ηi : Hi → ∆(D1
i ×H−i) so that ηi(hi) is the canonical extension of

hi. (See [Mertens and Zamir, 1985] and [Brandenburger and Dekel, 1993].)

A belief-based utility for the expert (resp. the layman) is a bounded measurable function

ue : Θ×He → R (resp. uℓ : Hℓ → R).9 A mechanism M and belief-based utilities (ue, uℓ) induce

a psychological game (M, ue, uℓ). The timing of the psychological game is as follows: Nature

chooses the state θ, the expert observes θ, and the agents play M. Each agent i observes a terminal

information set Ti ∈ Ti.
As in the supergame, the agent’s interim belief mappings are βe : Θ×Ie → ∆(V ) and βℓ : Iℓ →

∆(Θ × V ). (Again, β = (βe, βℓ) will be endogenous.) For each (θ, Te) ∈ Θ × Tℓ (resp. Tℓ ∈ Tℓ),
β induces a hierarchy he ∈ He (resp. hℓ ∈ Hℓ). Write δe : Θ × Te → He and δℓ : Tℓ → Hℓ for

the induced hierarchy mappings. (See Appendix A.) Notice that δe and δℓ depend on β. For

notational convenience, the reference to β is suppressed.

The payoffs in the psychological game are quasilinear in the psychological payoff ui and the

transfer yi. So, if the state is θ, the expert observes Te, and has hierarchy mapping δe, then the

expert’s payoffs are ue(θ, δe(θ, Te)) + γe(Te). Likewise, if the layman observes Tℓ and has hierarchy

mapping δℓ, then the layman’s payoffs are uℓ(δℓ(Tℓ)) + γℓ(Tℓ).

Notice that a behavioral strategy in the psychological game (M, ue, uℓ) differs from a behavioral

strategy in the supergame (M, G) insofar as it does not need to specify how G is played. Hence,

a behavioral strategy for the expert is a mapping ρe : Θ →
∏

Ie∈Ie\Te ∆(Ae(Ie)) and a behavioral

strategy for the layman is a vector ρℓ ∈
∏

Iℓ∈Iℓ\Tℓ ∆(Aℓ(Iℓ)). So, ρi effectively mixes between

reporting strategies Ri in M.

As in the supergame, a strategy profile ρ = (ρe, ρℓ) and the prior µ induce a distribution on

Θ×V . Write P(θ, v|re, ρℓ) (resp. P(θ, v|ρe, rℓ)) for the ex-ante probability that θ occurs and the path

goes through v given that (re, ρℓ) (resp. (ρe, rℓ)) is played. Likewise, write P(Te | θ, Ie, ρ, βe) (resp.
P(Tℓ | Iℓ, ρ, βℓ)) for the probability of reaching Te (resp. Tℓ) given (θ, Ie, ρ, βe) (resp. (Iℓ, ρ, βℓ)).

9Notice, since the layman does not observe the state, his belief-based utility does not directly depend on Θ; instead
it depends on his first-order beliefs about Θ (associated with the hierarchy hℓ).
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Given β = (βe, βℓ), the agents’ interim expected payoffs at (θ, Ie) (resp. Iℓ) are

Ue(ρ | θ, Ie, β) =
∑
Te∈Te

[ue(θ, δe(θ, Te)) + γe(Te)] · P(Te | θ, Ie, ρ, βe), and

Uℓ(ρ | Iℓ, β) =
∑
Tℓ∈Tℓ

[uℓ(δℓ(Tℓ)) + γℓ(Tℓ)] · P(Tℓ | Iℓ, ρ, βℓ).

Recall that Ui represents i’s interim payoffs of the supergame (M, G), while Ui represents i’s interim

payoffs of the psychological game (M, ue, uℓ). Notice that while Ui depends only on βi, Ui depends

on both βi and β−i because both are inputs into i’s hierarchy of beliefs.

Call (ρ, β) a perfect Bayesian equilibrium (PBE) of the psychological game (M, ue, uℓ) if

the assessment (ρ, β) satisfies sequential rationality and the belief mappings β are consistent with

ρ. It requires:

Definition 4.2. The assessment ((ρe, ρℓ), β) satisfies sequential rationality in (M, ue, uℓ) if the

following hold:

(i) For each (θ, Ie) ∈ Θ× (Ie\Te) and ρ′e, Ue(ρe, ρℓ | θ, Ie, β) ≥ Ue(ρ
′
e, ρℓ | θ, Ie, β).

(ii) For each Iℓ ∈ (Iℓ\Tℓ) and ρ′ℓ, Uℓ(ρe, ρℓ | Iℓ, β) ≥ Uℓ(ρe, ρ
′
ℓ | Iℓ, β).

Definition 4.3. The interim beliefs β are consistent with ρ if the following fold:

(i) For each re ∈ Re, (θ, Ie) ∈ Θ× Ie, and v ∈ Ie,

βe(θ, Ie)(v) · P({θ} × Ie|re, ρℓ) = P(θ, v|re, ρℓ).

(ii) For each rℓ ∈ Rℓ, Iℓ ∈ Iℓ and v ∈ Iℓ,

βℓ(Iℓ)(θ, v) · P(Θ× Iℓ|ρe, rℓ) = P(θ, v|ρe, rℓ).

While the psychological game does not explicitly model actions in terminal information sets,

the belief-based payoffs still require updating at terminal information sets. So, in contrast to

the supergame, sequential rationality here does not require optimization at terminal information

sets. But, as in the supergame, consistency is required at all information sets, including terminal

information sets.

4.3 Reduced Forms

Reduced forms formalize the idea of using belief-based utility functions to capture the equilibrium

payoffs in the induced Bayesian games.

Definition 4.4. Call (ue, uℓ) a reduced form for G if, for each mechanism M = (·, Te, Tℓ)
and interim belief mappings β = (βe, βℓ) ∈ cons(M) (that induce (δe, δℓ)), there is a Bayesian

equilibrium σ̂ of BG(Te, Tℓ, βe, βℓ) such that the following hold:

(i) For each (θ, Te) ∈ Θ× Te, ue(θ, δe(θ, Te)) = Πe(σ̂|θ, Te, βe).

(ii) For each Tℓ ∈ Tℓ, uℓ(δℓ(Tℓ)) = Πℓ(σ̂|Tℓ, βℓ).
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A pair of belief-based utility functions (ue, uℓ) is a reduced form for G if it captures equilibrium

payoffs of each induced Bayesian game, by only making reference to the agents’ hierarchies of

beliefs. So, effectively, (ue, uℓ) captures preferences for information induced by G.

The goal of the reduced-form approach is to use equilibria of the induced psychological games to

characterize the equilibria of supergames. To do so, note that there are two essential components

of a PBE of a supergame (M, G): transfers exchanged in the mechanism and payoffs from the

induced Bayesian game. Definition 4.4 refers to the later but not the former. With this in mind,

fix an assessment (σ, β) and note that the expected transfers from (σ, β) are

EYe(θ|M, σ) =
∑
Te∈Te

γe(Te) · P(Te|σ, θ)

and

EYℓ(M, σ) =
∑
Tℓ∈Tℓ

γℓ(Tℓ) · P(Tℓ|σ).

Similarly, write EYe(θ|M, ρ) and EYℓ(M, ρ) for the agents expected transfers form the profile (ρ, β)

in psychological game (M, ue, uℓ).

Definition 4.5. A PBE (σ, β) of the supergame (M, G) and a PBE (ρ, β′) of the psychological

game (M′, ue, uℓ) are equivalent if the following hold:

(i) For each θ ∈ Θ, Ue(σ|θ, {∅}, βe) = Ue(σ|θ, {∅}, β′) and EYe(θ|M, σ) = EYe(θ|M′, ρ′).

(ii) Uℓ(σ|{∅}, βe) = Uℓ(σ|{∅}, β′) and EYℓ(M, σ) = EYe(M′, ρ).

Equivalence captures the idea that transfers and total payoffs are the same in the supergame

and psychological game. Importantly, the definition allows equivalence of equilibria across the

supergame and the psychological game, even if the mechanisms M and M′ are different. The

following lemma states that the psychological games induced by reduced-forms capture equivalent

equilibria of a supergame.

Lemma 4.1. Fix a psychological game (M, ue, uℓ) where (ue, uℓ) is a reduced form of G. For each

PBE (ρ, β) of (M, ue, uℓ), there is a strategy profile σ such that (σ, β) is a PBE of (M, G) that is

equivalent to (ρ, β).

Lemma 4.1 states that each equilibrium of an associated psychological game (M, ue, uℓ) induces

an equivalent equilibrium of the supergame associated with M. The lemma implies that, for a

given reduced form, the set of equilibria across all associated psychological games capture a subset

of equilibria across all supergames. The lemma is silent about whether a reduced form captures all

equilibria across all supergames. If each induced Bayesian game has a unique equilibrium, then a

reduced form (ue, uℓ) indeed captures all equilibria. (See Lemma B.13.) Applications 7.1 and 7.2

are examples of this case. If, however, some induced Bayesian games have multiple equilibria, then

a reduced form (ue, uℓ) need not capture all equilibria. The example in Section 2 illustrates this

case. At the posterior p = 1
2 , the regulator is indifferent between the two actions. Since only the

regulator is active in the after-game, at the posterior p = 1
2 , each probability of approval (x ∈ [0, 1])
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is associated with an equilibrium distribution of some induced Bayesian game. So, to capture all

the equilibrium payoffs, we must consider all reduced forms (uf , ur) associated with some such x.

Definition 4.6. Fix a set RF of reduced forms of G. Say RF is a reduced-form representation

of G if, for each mechanism M and each PBE (σ, β) of (M, G), there is a mechanism M′, a

reduced form (ue, uℓ) ∈ RF, and a PBE of (M′, (ue, uℓ)) that is equivalent to (σ, β).

A reduced-form representation RF ofG characterizes the equilibria of supergames as equilibria of

psychological games. The PBE of the class of supergames {(M, G) : M is a mechanism} are equiva-
lent to the PBE of the class of psychological games {(M, ue, uℓ) : M is a mechanism, (ue, uℓ) ∈ RF}.
Intuitively, different reduced forms in RF may capture differences in behaviour for fixed hierarchies

of beliefs. So, by considering all (ue, uℓ) ∈ RF, the class of psychological games effectively captures

all equilibria. Importantly, RF need not include all the reduced forms of G to be a reduced form

representation. Section 8.1 discusses the existence of reduced-form representation and provides

tools for finding them.

4.4 Extended Direct Mechanisms for Psychological Games

Following Rivera Mora [2021b], to analyze the PBE that emerge in psychological games, we need

only analyze a class of extended direct mechanisms. Extended direct mechanisms differ from the

textbook formulation of direct mechanisms, in that the designer selects both a transfer and a

“hierarchy-message” to send to each agent. In particular, under an extended direct mechanism,

the expert reports a state (only) to the designer. Given the report, the designer selects a transfer

and private message for each agent. Each agent i (only) observes their transfer and their message.

Importantly, the message that each agent receives is a suggestion of the hierarchies of beliefs that

the agent should have.

Fix finite sets Me ⊊ He and Mℓ ⊊ Hℓ. Anticipating that these sets will serve as sets of

messages the mechanism will send to the agents (about the hierarchies they should hold) we refer

to the elements of Me and Mℓ as hierarchy-messages. Say that Me ×Mℓ is belief closed if, for

each hi ∈ Mi, ηi(hi)(D
1
i × M−i) = 1. (Recall that ηi : Hi → ∆(D1

−i × H−i) is i’s canonical

homeomorphism.) That is, Me ×Mℓ is belief closed if each hierarchy-message in Mi only assigns

positive probability to hierarchy-messages in M−i.

An extended direct mechanism, Md = (Θ, (Yi,Mi : i ∈ {e, ℓ}),m), is defined as follows: The

set Yi ⊊ R is a finite set of transfers for agent i. The setMi ⊊ Hi is a finite set of private hierarchy-

messages for agent i, so that M =Me ×Mℓ is belief closed. The mapping m : Θ → ∆(Y ×M) is a

protocol that describes the likelihood of chance selecting transfers and hierarchy-messages, given

each report.

Notice Md is a neutral mechanism in the sense of Section 3.1: The expert reports a state θ ∈ Θ

and chance selects (y, h) ∈ Y ×M according to the distribution m(θ). Hence, the set of terminal

nodes is Z = Θ× Y ×M , where the set Θ represents the reported state.10 The expert’s terminal

10Notice that the reported state may be different than the real state.
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information sets are of the form Ie = {θ} × {ye} × Yℓ × {he} ×Mℓ and the layman’s information

sets are of the form Iℓ = Θ× Ye × {yℓ} ×Me × {hℓ}.
The set of reporting strategies for the expert is Re = Θ, and the set of reporting strategies

for the layman is Rℓ = {⋄}, where ⋄ is a trivial action. So, in the associated psychological game,

a strategy for the expert maps Θ to reporting strategies in Re = Θ. Write ρ∗e : Θ → ∆(Re) for

the expert’s honest strategy. i.e., for the strategy with ρ∗e(θ)(θ) = 1 for each θ ∈ Θ. Under the

honest strategy profile ρ∗ = (ρ∗e, ρ
∗
ℓ ), the expert truthfully reports the state. (Note that ρ∗ℓ is

trivial.) Write β∗ = (β∗e , β
∗
ℓ ) for honest interim belief mappings, i.e., belief mappings that are

consistent with the honest strategy profile.

An extended direct mechanism Md and the honest profile (ρ∗, β∗) induce an ex-ante prob-

ability measure ϕ ∈ ∆(Θ × Y ×M), defined by ϕ(θ, y, h) = µ(θ) ·m(θ)(y, h).11 This measure

is the ex-ante distribution of terminal nodes (i.e., reports, transfers, and hierarchy-messages) that

arise under truth-telling in Md.

Notice that different extended direct mechanisms may differ in what information is shared.

In particular, the layman may learn the state in some mechanism but not in others. Moreover,

in principle, the message that i receives may not coincide with the actual hierarchy that i has.

However, for a particular class of mechanisms, namely “credible mechanisms,” in equilibrium, the

actual hierarchies coincide with the hierarchy-messages the agents receive.

Definition 4.7. An extended direct mechanism Md is credible if, for each (θ, y, h) ∈ Θ×Y ×M ,

the following hold:

(i) ηℓ(hℓ)(θ, he) ·marg Yℓ×Mℓ
ϕ(yℓ, hℓ) = margΘ×Yℓ×Mϕ(θ, yℓ, he, hℓ).

(ii) ηe(he)(hℓ) ·margΘ×Ye×Me
ϕ(θ, ye, he) = margΘ×Ye×Mϕ(θ, ye, he, hℓ).

Recall that ηi(hi) is the canonical extension of hi. Notice that the layman updates his beliefs

about (θ, he) based on his hierarchy-message hℓ and the transfer yℓ he receives. Credibility requires

that the layman’s message hℓ is effectively derived by computing ϕ(θ, he, yℓ, hℓ) conditional on

(yℓ, hℓ). (Formally, the canonical extension of hℓ is derived in that way.) Notice, this requires that

this conditional is constant on yℓ (whenever (yℓ, hℓ) has positive probability). A consequence of

credibility is that the agents’ posterior beliefs coincide with the hierarchy-messages they receive

at all information sets that are reachable under the honest strategy profile. (See Lemma 4.1 in

Rivera Mora [2021b].) So, for any pair of transfers and hierarchy-messages that the protocol can

send, the updated belief only depends on the hierarchy-message, i.e., the transfer provides no further

information.

Proposition 4.1. Belief-based utilities (ue, uℓ) are a reduced-form of G if and only if, for each

credible direct mechanism Md = (·, Te, Tℓ) and honest beliefs β∗ = (β∗e , β
∗
ℓ ) thereof, there is a

strategy profile σ̂ of the induced Bayesian game BG(Te, Tℓ, β∗e , β∗ℓ ) that satisfies the following:

(i) For each (θ, Te) ∈ Θ× Te, ue(θ, δ∗e(θ, Te)) = Πe(σ̂|θ, Te, β∗e ).
11Recall that the space Θ× Y ×M is finite.
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(ii) For each Tℓ ∈ Tℓ, uℓ(δ∗ℓ (Tℓ)) = Πℓ(σ̂|Tℓ, β∗ℓ ).

Proposition 4.1 provides a necessary and sufficient condition for (ue, uℓ) to be a reduced form.

In particular, it allows the analyst to restrict attention to Bayesian games that are induced by

credible direct mechanisms and honest beliefs thereof. In fact, to verify that a set of reduced forms

is a reduced form representation, we need only look at a subset of these mechanisms: mechanisms

that also satisfy incentive compatibility and individual rationality conditions.

To formalize this, it will be useful to introduce some notation. Fix a reduced form (ue, uℓ) and

a credible extended direct mechanism Md. The expert’s expected value of participating in Md is

Ve(θ, θ
′|Md) :=

∑
(ye,he)∈Ye×Me

(ue(θ, he) + ye) ·marg Ye×Me
m(θ′)(ye, he),

when beliefs are honest, the state is θ, and the report is θ′. Likewise, the layman’s expected value

of participating in Md is

Vℓ(Md) :=
∑

(yℓ,hℓ)∈Yℓ×Mℓ

(uℓ(hℓ) + yℓ) ·marg Yℓ×Mℓ
ϕ(yℓ, hℓ),

when beliefs are honest.

Definition 4.8. A credible direct mechanism Md is Bayesian incentive compatible (BIC) if,

for each θ, θ′ ∈ Θ, Ve(θ, θ|Md) ≥ Ve(θ, θ
′|Md).

Definition 4.9. A credible direct mechanism Md is individually rational (IR) if Vℓ(Md) ≥ πℓ

and, for each θ ∈ Θ, Ve(θ, θ|Md) ≥ πe(θ).

A credible direct mechanism Md is BIC if the expert has incentives to report the state θ

truthfully under honest beliefs. A credible direct mechanism Md is IR if the agents’ get a higher

payoff by participating in Md than by taking their outside option. The revelation principle in

Rivera Mora [2021b] implies the following useful proposition.

Proposition 4.2. A set of reduced forms RF is a reduced-form representation of G if and only

if, for each mechanism M and each individually rational PBE (σ, β) of (M, G), there is a reduced

form (ue, uℓ) ∈ RF and a credible, BIC, IR direct mechanism Md so that each honest PBE of

(Md, ue, uℓ) is equivalent to (σ, β).

Proposition 4.1 states that to verify that (ue, uℓ) is a reduced form, one must analyze only ex-

tended credible direct mechanisms. Proposition 4.2 provides a similar simplifying tool for reduced-

form representations. Once the analyst knows that RF is a set of reduced forms, to verify RF

is a reduced-form representation of G, it suffices to verify that equilibria across all supergames

are captured by equilibria of only the psychological games associated with credible, BIC, and IR

extended direct mechanisms.12

12So, Proposition 4.2 only requires looking at a subclass of credible extended direct mechanisms, while Proposition
4.1 requires looking at all credible extended direct mechanisms. To understand why the two requirements differ,
note that the definition of a reduced form does not require that beliefs are generated by equilibrium behavior
in the mechanism; however, the definition of a reduced-form representation does require such behavior. As a
consequence, Proposition 4.2 can restrict attention to credible extended direct mechanisms satisfying BIC and IR,
while Proposition 4.1 cannot.
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5 Main Results

This section states the two main results. First, it provides a sufficient condition for a reduced

form of G to allow for complete information sharing. Second, it provides a sufficient condition on a

reduced-form representation of G to guarantee that no mechanism shares any relevant information.

5.1 Perfectly Revealing Games

The extent to which G is perfectly revealing—i.e., neutral mechanisms can induce the expert to

completely reveal the state to the layman—depends on how a particular set of hierarchies impacts

reduced forms of G. These are the hierarchies for which it is common belief that the layman is

certain—but perhaps incorrect—about the state.

Fix θ ∈ Θ. Notice that there is a unique hierarchy profile hθ = (hθe, h
θ
ℓ) so that ηe(h

θ
e)(h

θ
ℓ) =

1 and ηℓ(h
θ
ℓ)(θ, h

θ
e) = 1. At the profile hθ, there is common belief that “the layman believes that the

state is θ.” The set of common degenerate hierarchies of beliefs of i is CDBi := {hθi : θ ∈ Θ}.
Write hθi ≥ hθ

′
i if and only if θ ≥ θ′.

Say that a game G is perfectly revealing if there is a mechanism M and an individually

rational PBE (σ, β) of (M, G) so that, for each (Te, Tℓ) ∈ Te × Tℓ with Te ∩ Tℓ ̸= ∅, there is θ ∈ Θ

with δe(θ, Te) = hθe and δℓ(Tℓ) = hθℓ . That is, G is perfectly revealing if it is feasible to construct

a mechanism and an individually rational PBE thereof, where, at each terminal information set, it

is common knowledge that the layman learns the true state.

Definition 5.1. Say that ue is supermodular on common degenerate beliefs if, for each

θ, θ′ ∈ Θ with θ ≥ θ′ and each he, h
′
e ∈ CDBe with he ≥ h′e,

ue(θ, he)− ue(θ, h
′
e) ≥ ue(θ

′, he)− ue(θ
′, h′e).

So, ue is supermodular on CDBe if the expert has a weakly higher incentive to induce “higher”

common degenerate hierarchies when the state is high versus when it is low. Notice, in the example

of Section 2, uf satisfies increasing differences on {θ, θ} × {0, 1} when c ≤ 1. This implies that uf

is supermodular on common degenerate beliefs.

Theorem 5.1. Fix a reduced-form (ue, uℓ) of G. If ue is supermodular on common degenerate

beliefs, then G is perfectly revealing.

Theorem 5.1 implies that complete information sharing is possible if the expert has higher incen-

tives to induce higher hierarchies when the state is high versus when the state is low. Remarkably,

the result holds independent of the values that ue takes outside CDBe. This follows from the fact

that the designer is able to design mechanisms with no ambiguous reports; the layman observes

the report and each report is associated with a unique state. So, according to the equilibrium

beliefs, the layman has degenerate beliefs about the state, even if the expert deviates from truthful

reporting.

Notice, Theorem 5.1 establishes a sufficient condition for perfect revelation. Section 8.3 expands

on this result by establishing a necessary and sufficient condition for perfect revelation (provided
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that G has a reduced form representation). However, it is often easier to verify supermodularity

on common degenerate beliefs than to verify the alternate condition.

5.2 Concealing Games

Consider the benchmark where the expert and the layman do not interact before playing G. This is

associated with a Bayesian game, in which the expert observes the state and, subsequently, agents

select actions from Ae and Aℓ. (No transfers are sent or received and the layman does not observe

the state.) This silent Bayesian game provides a canonical benchmark to specify equilibrium

payoffs absent information-sharing.

In the silent Bayesian game, the expert’s strategy is σse : Θ → ∆(Ae) and the layman’s strategy is

σsℓ ∈ ∆(Aℓ). We assume that the silent Bayesian game has some Bayesian equilibrium σs = (σse, σ
s
ℓ ).

Call Πs
e : Θ → R and Πs

ℓ ∈ R silent payoffs if there is some Bayesian equilibrium σs with payoffs

given by Πs
e and Πs

ℓ .
13

Call the gameG concealing if, for each mechanismM and each individually rational PBE (σ, β)

of the supergame (M, G), there are silent payoffs (Πs
e,Π

s
ℓ) so that Ue(σ|θ, ∅, βe) = Πs

e(θ) + EYe(θ |
M, σ) and Uℓ(σ|{∅}, βℓ) = Πs

ℓ +EYℓ(M, σ). So, G is concealing if mechanisms can only change the

agents payoffs by changing the agents’ transfers.

Note, the definition is silent about whether, in a concealing game, the layman learns information

about Θ. In certain concealing games, the layman may learn inactionable information about Θ. To

see this, consider the example of Section 2. Suppose that the prior µ assigns probability 1
4 to the

safe state θ. Section 2 argued that the game is concealing if c > 1. Consider a neutral mechanism

where the firm chooses a cheap talk message in M = {m,m}. Consider a strategy of the firm σf

satisfying σf (θ)(m) = 3
4 and σf (θ)(m) = 5

12 . Under this strategy, the regulator’s posteriors (that

θ = 1) are p(m) = 3
8 and p(m) = 1

8 . So, the regulator optimally chooses ban, after observing both

m and m. That is, there is a Bayesian equilibrium (σf , σr), where σr(m) = σr(m) = ban. While

the regulator still bans, the regulator’s posteriors are not equal to his priors. So, there is some

information shared.

A higher-order statistic (or a statistic for short) is a measurable and bounded function

f : H → R. The reduced-from approach uses statistics to summarize the relevant dimensions of

hierarchies of beliefs into a one-dimensional object. The definition of submodularity depends on

how these statistics impact the reduced forms of G. So, it will be important to understand the

equilibrium distribution of these statistics.

To describe the distribution of statistics, fix a credible direct mechanism Md and let ϕ ∈
∆(Θ × Y ×M) be the ex-ante probability measure it induces. Write F for the discrete sigma-

algebra on Θ× Y ×M . Note that each mapping X : Θ× Y ×M → R is a random variable on the

probability space (Θ × Y ×M,F , ϕ).14 All random variables are denoted by bold capital letters.

13Notice that silent payoffs may be suitable outside options in some settings.
14Recall that Θ× Y ×M is finite. So, all mappings X : Θ× Y ×M → R are measurable and have finite moments.
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Write

Eϕ[X] =

∫
Θ×Y×M

X(θ, y, h) dϕ,

for the expectation of X. Similarly, write Varϕ[X] for the variance of X and Covϕ[X,X
′] for the

the covariance of X and X′. An important random variable will be Θ = projΘ : (Θ×Y ×M) → Θ,

i.e., the random variable induced by the projection onto the state.

Fix a statistic f : H → R. Call F : (Θ×Y ×M) → R the random variable associated with

f if F(θ, y, h) = f(h) for each (θ, y, h) ∈ Θ× Y ×M . So, F first restricts the statistic f to M ⊆ H

and then extends it to the space Θ× Y ×M .

Definition 5.2. Let f : H → R be a statistic with an associated random variable F. Say f is

acute if, for each credible direct mechanism Md and induced ex-ante probability measure ϕ,

(i) Covϕ[F,Θ] ≥ 0, and

(ii) Covϕ[F,Θ] = 0 implies F is ϕ-almost surely constant and equal to its prior value f(h̃).15

Intuitively, a statistic f is acute if high values of f signal high values of θ. Importantly, acute

statistics have a geometric interpretation. Write L2 for the (quotient) normed space associated with

(Θ× Y ×M,F , ϕ), where each two random variables X and Y are equivalent if X−Y = c almost

surely for some c ∈ R. In this space,
√
Varϕ[·] is a norm and Covϕ[·, ·] is an inner product. In

each credible direct mechanism, the random variable associated with an acute statistic satisfies one

of two properties: Either F is almost surely constant—and thus equivalent to the zero vector—or

the angle between Θ and F is “acute” in the sense it measures strictly less than 90 degrees. (See

Figure 5.1.)

Figure 5.1. Angle between Θ and F in the associated space L2

We now provide a prominent example of an acute statistic.

Example 5.1. Note that margΘηℓ(hℓ) is the layman’s first-order beliefs about Θ given a hierarchy

hℓ. Define E1
ℓθ : Hℓ → R by

E1
ℓθ(hℓ) =

∑
θ∈Θ

θ ·margΘηℓ(hℓ)(θ).

The mapping E1
ℓθ is the layman’s first-order expectation of the state given a hierarchy hℓ. Extend

E1
ℓθ : Hℓ → R to f1 : He×Hℓ → R by writing f1(he, hℓ) = E1

ℓθ(hℓ). Lemma B.5 shows the statistic

15Recall h̃ is the hierarchy profile induced by the prior.
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f1 is acute. So, in each honest equilibrium of each credible direct mechanism, either the layman’s

expectation of the state is constant (i.e. the mechanism does not provide relevant information for

the layman to update his conditional expectation) or positively correlated with the state (i.e. the

mechanism does provide information for the layman to update his conditional expectation).

To understand why f1 is acute, note that Covϕ[F
1,Θ] captures an ex ante relationship between

the random variable that generates the state and the random variable that generates the conditional

expectation. Intuitively, ex ante, a higher state should be associated with a higher conditional

expectation of the state.16

Lemmata B.5-B.8 show there are a plethora of acute statistics that are useful for applications.

(In particular, they are used in the applications of Section 7.) These acute statistics correspond to

increasing transformations of the layman’s first-order expectation, the agents’ higher-order expec-

tations of the state, and positive linear combinations of all of them.

Acute statistics are useful because they impose Bayesian restrictions on how information flows

from the expert to the layman: If agents Bayesian update, no credible direct mechanism can

“deceive,” in the sense of inducing lower values of the statistic for higher states. The next paragraph

shows how each acute statistic induces an order over ∆(Hi). This order will be the key to define

the submodularity condition.

Fix an acute statistic f . Given a hierarchy hi ∈ Hi, write

Eif(hi) =

∫
H−i

f(hi, h−i) dmargH−i
ηi(hi),

for i’s expectation of f under hi. Since f is bounded and measureable, Eif is well defined, bounded,

and measurable. Extend Eif to a function EiF : ∆(Hi) → R so that

EiF (ν) =

∫
Hi

Eif(hi) dν.

So, EiF (ν) is i’s expectation of f under a lottery of hierarchies ν ∈ ∆(Hi). We can use f to define

a complete order on ∆(He): Given ν, ν ′ ∈ ∆(He), write ν ≥f ν ′ (resp. ν >f ν ′) if EeF (ν) ≥
EeF (ν

′) (resp. EeF (ν) > EeF (ν
′)). So, ν ≥f ν

′ if the expert has a higher ex-ante expectation of

the statistic f under ν than under ν ′.17

Write

Eue(θ, ν) =
∫
He

ue(θ, he) dν,

for the expected value of ue : Θ×He → R given a state θ and a lottery of hierarchies ν ∈ ∆(He).

Definition 5.3. Fix an acute statistic f and ue : Θ×He → R. Say Eue is strictly submodular

with respect to f if, for each θ, θ′ ∈ Θ with θ > θ′ and each ν, ν ′ ∈ ∆(He) with ν >f ν
′,

Eue(θ, ν)− Eue(θ, ν ′) < Eue(θ′, ν)− Eue(θ′, ν ′).
16Mathematically, the result follows from the fact that F1—the associated random variable to f1—is a version of the
conditional expectation of Θ. Thus, F1 is a projection of Θ onto some subspace V of L2. (See Theorem 4.1.15 in
[Durrett, 2019].) Therefore, either F1 is a constant or the angle between Θ and F1 is acute.

17It is obvious that different statistics can define different orders. However, it is also the case that different acute
statistics can define different orders.
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Strict submodularity with respect to f describes an expert who has strictly higher incentives

to induce (in expectation) high values of f when the state θ is low. Since high values of f signal

high values of θ, in a certain sense, the expert has strong preferences to “deceive the layman.”

We now describe the final ingredient of the negative result. Fix a direct mechanism Md with

associated ex-ante probability measure ϕ. Say Md is not informative about the statistic f if

its associated random variable F = f(h̃) ϕ-almost surely. So, Md is informative if {(θ, y, h) :

F(θ, y, h) ̸= f(h̃)} contains a set of strictly positive ϕ-measure. Say f is essential for a reduced

form (ue, uℓ) if, for each credible direct mechanism Md that is not informative about f , there

are silent payoffs (Πs
e,Π

s
ℓ) so that Ue(ρ | θ, ∅, β) = Πs

e(θ) + EYe(θ | Md, σ) and Uℓ(ρ | {∅}, β) =

Πs
ℓ +EYℓ(Md, σ). That is, f is essential for (ue, uℓ) if for each credible direct mechanism Md either

(1) Md is informative about f or (2) agents get the their silent payoffs plus their expected transfers.

So, the only way to change the agent’s payoffs is by changing the value of an essential statistic f .

An essential statistic f captures the information that is essential for the agents’ payoffs.

Theorem 5.2. Fix a reduced-form representation RF of G. If, for each (ue, uℓ) ∈ RF, there is an

acute statistic f so that f is essential for (ue, uℓ) and Euℓ is strictly submodular with respect to f ,

then G is concealing.

Theorem 5.2 provides a sufficient condition to verify that G is concealing. If Eue is strictly

submodular with respect to an acute statistic f , then no credible direct mechanism is informative

about f . Hence, since f is essential for (ue, uℓ), the agents get their silent payoffs plus their expected

transfers from the mechanism.

Notice how the theorem applies to the example of Section 2. In that example, the mapping ap(·)
serves as a statistic that is essential for (uf , ur).

18 (If a direct mechanism Md is not informative

about ap(·), the regulator chooses ban and agents get their silent payoffs.) Moreover, by Lemma

B.6, the statistic associated with ap(·) is a acute. (This follows from the the two equilibrium

conditions stated in the example: (1) the action approve is weakly more likely when the state is

θ, and (2) if the state does not impact the likelihood of approve, then the uniformed action (ban)

is chosen.) In addition, if c > 1, then the expected reduced form Euf is strictly submodular with

respect to the statistic associated to ap(·). (This follows from Equation (1) and the fact that uf is

linear in ap(·).) Hence, Theorem 5.2 applies and G is concealing when c > 1.

6 Proofs of Main Results

6.1 Proof of Theorem 5.1

Fix a reduced form (ue, uℓ) so that ue is supermodular on common degenerate beliefs. It is sufficient

to construct a credible, BIC, and IR extended direct mechanism Md—with respect to the reduced

form (ue, uℓ)—where the layman learns the state at all terminal nodes.

18Note, formally, ap is extended, so that its domain is hierarchies.
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We begin by constructing the transfers used in the mechanism. First, set

yℓ := πℓ −
∑
θ∈Θ

uℓ(θ, h
θ
ℓ) · µ(θ),

for the transfer of the layman. To construct the expert’s transfers, it will be useful to introduce

notation. Write g : Θ2 → R for the function given by g(θ, θ′) = ue(θ, h
θ′
e ). Since ue is supermodular

on common degenerate beliefs, g has increasing differences. Thus, by Lemmata B.9 and B.10, there

exists a function z : Θ → R such that, for each θ, θ′ ∈ Θ,

g(θ, θ) + z(θ) ≥ g(θ, θ′) + z(θ′). (2)

Moreover, since Θ is finite, there is a sufficiently large c ∈ R such that, for each θ ∈ Θ,

c+ g(θ, θ) + z(θ)− πe(θ) ≥ 0. (3)

We use c and z to construct the expert’s transfers, by setting yθe := z(θ) + c for each θ ∈ Θ. The

set of transfers is Y = {yθe : θ ∈ Θ} × {yℓ}.
We now construct the direct mechanism. Set M = CDBe × CDBℓ and let m : Θ → ∆(Y ×M)

be a protocol such that, for each report θ ∈ Θ, m(θ)((yθe , yℓ), h
θ) = 1. Let Md = (Θ, (Yi,Mi : i ∈

{e, ℓ}),m) and notice that Md is credible by construction.

Fix θ, θ′ ∈ Θ and note that Equation (2) implies

g(θ, θ) + yθe ≥ g(θ, θ′) + yθ
′

e .

Since Ve(θ, θ
′ | Md) = g(θ, θ′) + yθ

′
e , it follows that Ve(θ, θ | Md) ≥ Ve(θ, θ

′ | Md). So, Md is BIC.

Equation (3) implies

g(θ, θ) + yθe ≥ πe(θ).

Hence, Ve(θ, θ | Md) ≥ πe(θ) for each θ ∈ Θ. So, Md is IR for the expert. Notice also that, by

definition of yℓ, Vℓ(Md) ≥ πℓ. So, Md is IR for the layman.

Thus, the honest profile (ρ∗, β∗) is an individually rational PBE of (Md, (ue, uℓ)). Moreover,

for each (Te, Tℓ) ∈ Te × Tℓ with Te ∩ Tℓ ̸= ∅, there is θ ∈ Θ so that δ∗e(θ, Te) = hθe and δ∗ℓ (Tℓ) = hθℓ .

So, the layman learns the state at all terminal information sets.

6.2 Proof of Theorem 5.2

Fix an individually rational PBE (σ, β) of a supergame (M, G). Since RF is a reduced-form

representation of G, there is a (ue, uℓ) ∈ RF, a credible, BIC, IR, extended direct mechanism

Md so that each honest assessment (ρ∗, β∗) of (Md, ue, uℓ) is a PBE equivalent to (σ, β). (See

Proposition 4.2.) Let f be an the acute statistic such that f is essential for (ue, uℓ) and Euℓ is

strictly submodular with respect to f . So, it suffices to show that Md is not informative about f .

If so, then the agents get their silent payoffs plus the mechanisms transfers and, as a consequence,

G is concealing.

Let (Θ× Y ×H,B, ϕ) be the probability space induced by Md and F be the random variable

associated with f . Let g : Θ → R be the function defined by g(θ) = Eϕ[F|Θ = θ]. It suffices to

show that g is weakly decreasing: If so, then Covϕ[F,Θ] ≤ 0. (See Lemma B.11.) Hence, given
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that f is acute, F = f(h̃) ϕ-almost surely. Thus, Md is not informative about f .

To show that g is weakly decreasing, define ν(θ′) = margMe
m(θ′) for each θ′ ∈ Θ. So, ν(θ′) is

the lottery of expert’s hierarchies of beliefs that the mechanism selects when the expert reports θ′.

Thus, for each θ, θ′ ∈ Θ,

Ve(θ, θ
′ | Md) = Eue(θ, ν(θ′)) +

∑
ye∈YE

ye marg Ye
m(θ′)(ye), (4)

where the equality follows from the fact that Md is credible, and, as a consequence, the expert’s

hierarchies coincide with her beliefs. (See Lemma 4.1 in Rivera Mora [2021b]).

Fix θ, θ′ ∈ Θ with θ > θ′. Notice that BIC implies

Ve(θ, θ | Md)− Ve(θ, θ
′ | Md) ≥ 0, and

Ve(θ
′, θ′ | Md)− Ve(θ

′, θ | Md) ≥ 0.

Thus,

Ve(θ, θ | Md)− Ve(θ, θ
′ | Md) + Ve(θ

′, θ′ | Md)− Ve(θ
′, θ | Md) ≥ 0. (5)

Substituting Equation (4) into Equation (5),

Eue(θ, ν(θ))− Eue(θ, ν(θ′)) + Eue(θ′, ν(θ′))− Eue(θ′, ν(θ)) ≥ 0.

Since θ > θ′ and Eue is strictly submodular, it follows that ν(θ′) ≥f ν(θ), or equivalently,

EeF (ν(θ
′)) ≥ EeF (ν(θ)). Since g(θ) = EeF (ν(θ)) and g(θ′) = EeF (ν(θ

′)) (See Lemma B.12.)

it follows that g(θ′) ≥ g(θ), so g is decreasing.

7 Applications

This section provides examples of economically relevant games and characterizes when the games

are perfectly revealing or concealing. In Applications 7.1 only the layman takes an action, and as a

consequence, only first and second-order beliefs are relevant. In Application 7.2, both players take

actions, and so, all hierarchies of beliefs are relevant.

7.1 Quadratic Payoffs with an Inactive Expert

The expert is a bureaucrat and the layman a politician. The bureaucrat has knowledge of the

state of the world Θ ⊊ R. The politician chooses a policy relevant to both agents. The bureaucrat

and the politician have different policy preferences given the state of the world. This application

characterizes when information sharing is feasible as a function of the type of disagreement in

preferences about the right policy.

In this game G = ((Ai, πi) : i ∈ {e, ℓ}), the expert is inactive and both agents have a quadratic

payoff structure.19 So, the set of pure strategies for the expert is Ae = {◁} (where ◁ is a trivial

19Notice, while the expert is inactive in G, she can be active in the supergame.
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action) and the set of pure strategies for the layman is Aℓ = R. The payoffs functions are given by

πℓ(θ, aℓ) = −(θ − aℓ)
2, and

πe(θ, aℓ) = −λ · (b1 + b2θ − aℓ)
2,

where λ ∈ R+. The parameters (b1, b2) ∈ R2 describe the bias of the expert.

If the state were known, the layman’s favorite action would be a∗ℓ (θ) = θ and the expert’s

favorite action would be a∗e(θ) = b1 + b2θ. So, a
∗
e(·) is an affine transformation of a∗ℓ (·). Moreover,

the agents would agree at all states if and only if (b1, b2) = (0, 1). Figure 7.1 compares the agents’

favorite actions under different forms of conflict. Panel (a) shows an example where the agents’ level

of conflict is constant in the state and Panel (b) an example where the level of conflict between the

agents is increasing in the size of the state. Notice that in both cases the agents face “directional

agreement.” That is, they agree about the direction of how the action should change as the state

changes. Panel (c) shows an example where the agents have “directional disagreement.” That is,

the agent’s favorite actions move in opposite directions as the state changes.

(a) b1 = 1, b2 = 0 (b) b1 = 0, b2 = 1
2

(c) b1 = 1
2
, b2 = − 1

5

Figure 7.1. Agents’ favorite action a∗i for different values of the bias (b1, b2). The solid blue line represents
the layman’s favorite action. The dashed red line represent the expert’s favorite action.

Proposition 7.1. The game G has a reduced-form representation RF = {(ue, uℓ)}, where

ue(θ, he) = −λ
∫

hℓ∈Hℓ

(
b1 + b2θ − Eθ1ℓ (hℓ)

)2
dηe(he), and (6)

uℓ(hℓ) = −
∑
θ∈Θ

(
θ − Eθ1ℓ (hℓ)

)2
margΘηℓ(hℓ)(θ). (7)

Moreover, the statistic f1 : H → R given by f1(he, hℓ) = Eθ1ℓ (hℓ) is acute and essential for (ue, uℓ).

Recall that margΘηℓ(·) ∈ ∆(Θ) is the layman’s first-order beliefs, Eθ1ℓ (·) is the layman’s first-

order expectation of the state, and ηe(·) ∈ ∆(Hℓ) is the expert’s beliefs about the layman’s hierar-

chies of beliefs. Since payoffs are quadratic, the layman’s unique equilibrium action corresponds to

Eθ1ℓ (·). So, the belief-based utility associated with reduced form, uℓ, is the negative of his residual

variance. Notice, the maximum value that uℓ can take is zero; that can only occur when the lay-

man’s first-order beliefs are degenerate. This reflects the layman’s desire to learn the state. The

expert cares about the action the layman will choose in G. Since the layman’s equilibrium action
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depends on his first-order beliefs, the expert cares about her second-order ex-post beliefs. Her

reduced-form utility is given by Equation (6); she would like the layman to believe that the state

is close to her favorite action a∗e(θ) = b1 + b2θ.

Proposition 7.2.

(i) If b2 ≥ 0 then the game G is perfectly revealing.

(ii) If b2 < 0 then the game G is concealing.

Proof. We first show (i). Assume b2 ≥ 0. Let θ, θ′ ∈ Θ and notice that ue(θ, h
θ′
e ) = −λ(b1+b2θ−θ′)2

has increasing differences with respect to θ and θ′. Thus, ue is supermodular on common degenerate

beliefs and the result follows from Theorem 5.1.

Now we show (ii). Notice that the statistic f1 given by the layman’s first-order expectation is

acute. (See Lemma B.5.) Moreover, f1 is essential for (ue, uℓ). (See Proposition 7.1.) Thus, by

Theorem 5.2, it suffices to show that Eue is submodular with respect to f1. First notice that

EeF
1(ν) =

∫
He

Eef
1(he) dν

=

∫
He

∫
Hℓ

f1(he, hℓ) dηe(he) dν

=

∫
He

∫
Hℓ

Eℓ(hℓ) dηe(he) dν. (8)

Thus, for each θ ∈ Θ and ν ∈ ∆(He),

Eue(θ, ν) = −λ
∫
He

∫
Hℓ

(b1 + b2θ − Eℓ(hℓ))
2dηe(he) dν

= −λ
∫
He

∫
Hℓ

(
(b1 + b2θ)

2 + Eℓ(hℓ)
2 − 2λ(b1 + b2θ)Eℓ(hℓ)

)
dηe(he) dν

= −λ(b1 + b2θ)
2 −

∫
He

∫
Hℓ

λEℓ(hℓ)
2 dηe(he) dν + 2λ(b1 + b2θ)EeF

1(ν),

where the last equality follows from Equation (8). Hence, if θ > θ′, EeF
1(ν) > EeF

1(ν ′), and

b2 < 0, it follows that

Eue(θ, ν)− Eue(θ′, ν)− Eue(θ′, ν ′) + Eue(θ, ν ′) = λb2(θ − θ′)(EeF
1(ν)− EeF

1(ν ′)) < 0.

So, Eue is submodular with respect to f1.

Proposition 7.2 provides a complete taxonomy of the parameters that allows for or preclude

information sharing. The extent to which information sharing is possible depends on the sign of

b2 and is independent of the parameter b1. That is, the feasibility of information sharing does not

depend on the absolute level of disagreement but rather on directional agreement.

Notice that Proposition 7.2 is silent about whether information sharing is desirable or not.

Naturally, information sharing is always desirable by the layman since he is better off by making

an informed decision. However, the expert may be worse off with information sharing depending

on the bias. To analyze the trade-off between the agents’ payoffs, consider the utilitarian welfare
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given by an exogenous information structure.20 There are two important information structures:

full information (i.e. the layman completely learns the state) and no information (i.e. the layman

observes a non-informative signal.) Say that full revelation (resp. no information) is welfare

maximizing it it maximizes the sum of the ex-ante agents’ utilities among all information structures.

Proposition 7.3.

(i) If b2 ≥ 1
2 , then full information maximizes the payoffs of both agents.

(ii) If b2 ≤ 1
2 , then no information maximizes the expert’s payoff, and full information maximizes

the layman’s payoffs.

(iii) If λ(1− 2b2) ≤ 1, then full revelation maximizes welfare.

(iv) If λ(1− 2b2) ≥ 1, then no information maximizes welfare.

Proposition 7.3 establishes the trade-off between the agent’s preferences. Remarkably, the

trade-off is irrelevant about the absolute level of disagreement (b1). Moreover, the trade-off is

characterized by the parameter b2 and the expert’s weight λ. In the region (b2 ≥ 1
2), the expert

agrees in how the layman reacts, (even though the expert may desire a different policy). So both

agents get better off by revealing the state. In the region (b2 <
1
2), revealing information hurts

the expert. This also holds when b2 ∈ [0, 12), even though the agents have directional agreement.

In this case the expert has more moderate preferences than the layman. Thus, from the expert’s

perspective, layman overreacts to any information, resulting in the expert being hurt.

Propositions 7.2 and 7.3 imply that there is a conflict between what is feasible and what is

optimal. The set of parameters is divided in four broad regions. (See Figure 7.2.) For positive b2

and low λ, full revelation is feasible and optimal. There is directional agreement and the information

helps the layman, the relatively important agent. For negative b2 and high λ, information sharing

is not feasible and not optimal. In this case information sharing hurts the expert, the relatively

important agent. For negative b2 and low λ, full information sharing is optimal but not feasible.

Directional disagreement impedes information transmission which would benefit the layman, the

relatively important agent. For positive but low b2 and high λ, full information sharing is optimal

but not feasible. In this case, the agents face directional agreement, but, from the expert’s point

of view, the layman overreacts to information. Hence a welfare-maximizer designer would prefer

avoid information sharing even if he could implement it.

20An information structure is set of public signals S and an exogenous mapping χ : Θ → ∆(S).
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Figure 7.2. Feasibility and optimality of information sharing

7.2 Quadratic Payoffs with Active Agents

Two firms compete in a duopoly market. One of the firms (the expert) observes the state θ which

captures the industry demand. (This could be because the firm purchased a forecast from a third

party or for other reasons.) The second firm (the layman) does not observe θ. The application

characterizes the extent to which the designer, (e.g. an industry association), can use neutral

mechanisms so that the two firms share information.

The firms interaction is parametrized by a quadratic game G where both firms are active. Each

firm chooses a real-valued action ai. The payoff function of agent i is given by

πi(θ, ai, a−i) = θai − 1
2a

2
i + αaia−i, (9)

where α ∈ (−1, 1) are commonly known parameters. The first term of (θai) represents i’s benefit

of the action ai in terms of the demand level θ. The second term (12a
2
i ) represents the cost of

increasing the action. The third term (αaia−i) represents the strategic interaction between the

agents’ actions.

Notice, when α < 0, the game G captures a model of quantity competition with linear demand

and constant marginal cost c. In that model, the action ai is the quantity supplied by firm i. Firm

i faces a linear inverse demand given by Pi = (θ − 1
2ai + αa−i) + c. The profits of firm i are

(Pi − c)ai = θai − 1
2a

2
i + αaia−i,

as described by the function πi. By contrast, when α > 0, the game G captures a model of price

competition with linear inverse demand and constant marginal cost c. In that model, the action

ai is firm i’s the markup price, i.e., ai = pi − c. (Choosing ai is equivalent of choosing pi.) Firm

i faces linear demand given by Qi = (θ − 1
2(pi − c) + α(p−i − c)) = (θ − 1

2ai + αa−i). Thus, the

profits of firm i are

(pi − c)Qi = θai − 1
2a

2
i + αaia−i,
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as described by πi.
21

Notice, if the state were known, i’s favorite action (as a function of θ and a−i) would be

a∗i (θ, a−i) = θ + αa−i. So, if α < 0 (quantity competition), then actions are strategic substitutes,

i.e., the higher the action of the co-player, the greater the incentive to decrease one’s own action.

If α > 0 (price competition), then actions are strategic complements, i.e., the higher the action of

the co-player, the greater the incentive to increase one’s own action.

In this game, both firms care both about the expectation of the state and the expectation of

other the other firm’s action. Hence, in contrast with the first application, firms care about their

expectation of the state, their competitor’s expectation of the state, their competitor’s expectation

of their expectation of the state, etc. So, to describe the associated psychological game, we need

to introduce hierarchies of expectation.

Inductively define mappings Ek
i θ : H−i → R to be interpreted as firm i’s kth-order expectation

(of the state). Specifically, assuming the mapping is defined for some k, define Ek
i θ : H−i → R so

that

Ek+1
−i θ(h−i) =

∫
Hi

Ek
i (hi) · dmargHi

η−i(h−i).

Note, these mappings will depend on the hierarchies and, so, on the induced Bayesian game.

The key insight is that, in each induced Bayesian game BG(Te, Tℓ, β), the agents’ behavior is

characterized by their hierarchies of expectations. Intuitively, this follows by iteratively substituting

the agents best response a∗i = Ei[θ + αa∗−i]. In particular, the agent’s payoffs can summarized in

terms of a statistic f : H → R given by

f(he, hℓ) = (1 + α)
∞∑
k=1

α2k−2E2k−1
ℓ θ(hℓ).

This statistic is a weighted average of how the state is “commonly perceived” from the layman’s

perspective.22 Lemma B.8 shows f is a convergent and a positive sum of acute statistics; as a

consequence, it is acute.

Proposition 7.4. The game G has a reduced-form representation RF = {(ue, uℓ)} given by

uℓ(hℓ) = 1
2

(
Eℓf(hℓ)

)2
and ue(θ, he) = 1

2

(
θ + αEef(he)

)2
. Moreover, the statistic f is essential

for (ue, uℓ).

Proposition 7.4 provides a simple way to characterize the firms’ value of information. The firms

only care about how information “moves” the statistic f . Intuitively, this follows from the fact that

i’s optimal action is a∗i = Ei[θ+αa
∗
−i]. So, in each induced Bayesian game BG(Te, Tℓ, β), the agents’

unique equilibrium strategy is obtained by iteratively substituting their expected best responses.

(Again, these expectations will be different, in different Bayesian games.) This iterated substitution

of best responses is captured by f . So, each induced Bayesian game BG(Te, Tℓ, β) has a unique

Bayesian equilibrium given by a (pure) strategy profile (σe, σℓ) with σe(θ, Te) = θ+αEef(δe(θ, Te))

and σℓ(Tℓ) = Eℓf(δℓ(Tℓ)). This leads to the reduced form of Proposition 7.4.

21Notice, the assumption α ∈ (−1, 1) states that the demand (resp. inverse inverse demand) for firm i is more sensible
on its own action than in the other firm’s action.

22Note, the statistic is a weighted sum of a first-, third-, fifth-. . . order belief of the layman.
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The following proposition uses the reduced-form representation to characterize when G is per-

fectly revealing or concealing.

Proposition 7.5.

(i) If α ∈ [0, 1) then the game G is perfectly revealing.

(ii) If α ∈ (−1, 0), then the game G is concealing.

Proof. First we show (i). Assume α ∈ [0, 1). Notice that if hθe ∈ CDBe then,

Eef(h
θ
e)) = (1 + α)

∞∑
k=1

α2k−2θ = 1
1−αθ,

So, for each θ, θ′ ∈ Θ, ue(θ, h
θ′
e ) =

1
2

(
θ + α

1−αθ
′
)2

satisfies weakly increasing differences with respect

to θ and θ′. Hence, the result follows from Theorem 5.1.

We now show (ii). Assume α ∈ (−1, 0). Notice that f is acute and essential for (ue, uℓ). So, by

Theorem 5.2, it suffices to show that Eue is submodular with respect to f . To show this, note that

Eue(θ, ν) = 1
2

∫
He

(
θ + αEef(he)

)2
dν

= 1
2

(
θ2 + 2αθ

∫
He

Eℓf(hℓ) dν + α2

∫
He

(Eef(he))
2 dν

)
= 1

2

(
θ2 + 2αθEℓF (ν) + α2

∫
He

(Eef(he))
2dν

)
.

Thus, if θ > θ′ and EeF (ν) > EeF (ν
′), then

Eue(θ, ν)− Eue(θ′, ν)− Eue(θ, ν ′) + Eue(θ′, ν ′) = α(θ − θ′)(EeF (ν)− EeF (ν
′)) < 0.

So, Eue is submodular with respect to f .

Proposition 7.5 provides a complete taxonomy of the parameters that allows for or preclude

information sharing. The feasibility of information sharing only depends on the sign of α, i.e., the

strategic interaction of the firms’ actions. So, the feasibility of information sharing only depends

on the type of duopoly market the firms face. Under price competition, a “good-news firm” has a

higher willingness to pay to induce optimistic beliefs (and to induce high market prices). Hence,

there is a mechanism-contingent transfer scheme that induces the expert to reveal the state. By

contrast, under quantity competition, the “good-news firm” has a higher willingness to pay to

induce pessimistic beliefs (and to corner the market by inducing low quantities of the other firm).

Thus, the submodularity condition is satisfied and information sharing is not possible.

Notice that Proposition 7.5 is silent about whether information sharing is desirable or not.

Proposition B.2 in the appendix addresses its effect on firm profit. The layman firm strictly prefers

full information revelation over no information being shared. But, information sharing can hurt

the expert firm. Full information revelation increases (resp. decreases) the profits of the expert

firm if α > 0 (resp. α < 0). Moreover, fully revealing the state increases (resp. decreases) total

industry profits if α > 1−
√
2 (resp. α < 1−

√
2.). So, fully revealing the state increases industry
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profit (over no information sharing) only if there is price competition (α > 0) or if there is quantity

competition and the products are weak substitutes (α ∈ (1−
√
2, 0)).

Remarkably, Propositions 7.5 and B.2 imply that there is a conflict between what is feasible

and what is optimal. In the case of quantity competition with weak substitutes (α ∈ (1 −
√
2, 0))

full revelation of the state increases the industry profits, but it is not feasible under any neutral

mechanism. This shows a limit on the use of neutral mechanisms. Increasing industry profit

requires the use of non-neutral mechanisms.

8 Discussion

8.1 Existence of a Reduced-Form Representation

The main theorems assume the existence of reduced forms and reduced-form representations. In

applications, it is easy to construct such belief-based utilities.

There are certain instances where a reduced form and a reduced-form representation are guar-

anteed. One is a case suggested in Section 4.1: if G is such that each associated Bayesian game

has a unique equilibrium. More precisely, consider a set of finite type structures S, (Se, Sℓ, be, bℓ),
where (i) each Si ⊆ R is finite and (ii) be : Θ×Se → ∆(Sℓ) and bℓ : Sℓ → ∆(Θ×Se) are belief maps.

If, for each type structure in S, the associated Bayesian game has a unique Bayesian equilibrium,

then there is a reduced form. Moreover, if (ue, uℓ) is a reduced form, then RF = {(ue, uℓ)} is a

reduced-form representation. (See Lemma B.13.) A second case is when G involves an inactive

expert (i.e., Ae is a singleton). Then the game has both a reduced form and a reduced-form rep-

resentation, but the reduced-form representation need not be a singleton. (See Lemma B.14.) In

each of the cases the respective lemmata show how to construct a reduced form representation.

However, there are games that have no reduced-form representation. The following example

illustrates this.

Example 8.1. Let Θ be a singleton, so there is no private information. The game G is Figure 4

in Aumann [1987]:

7, 2

6, 6 2, 7

0, 0ae

ae

aℓ aℓ

Figure 8.1. A game with no reduced form representation

There are three Nash equilibria, associated with payoff profiles (2, 7), (7, 2), and (42
3 , 4

2
3). There

is also a correlated equilibrium payoff profile of (5, 5); it lies outside of the convex hull of Nash

equilibria payoffs.
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Proposition B.3 shows that the game has no reduced-form representation. To see this, note

that Θ and H = He ×Hℓ are both singletons. So the set of reduced-forms can only capture Nash

equilibrium payoffs. However, the set of correlated equilibrium payoffs of G is outside of the convex

hull of the of Nash equilibrium payoffs. The key is that there is a neutral mechanism that can

generate the correlated equilibrium payoff vector (5, 5). This can be achieved by using a mechanisms

that privately suggests actions that the agents should take. Hence, there are payoff profiles that can

be generated by neutral mechanisms and cannot be captured by any reduced form.

In Example 8.1, G may not have a reduced-form representation, if the hierarchies of beliefs

are not sufficiently rich to capture all correlation that can be generated by external signals.23

One approach is to extend the state space: from Θ to Θ× Φ, where Φ represents payoff irrelevant

information. I conjecture that, for finite games G, an extended state space generates both a reduced

form and reduced-form representation.

8.2 Partial Information Sharing

Theorems 5.1 and 5.2 focus on the case where G is either super- or submodular. In the applications

of Section 7, for each parametrization of the model, the game is either super- or submodular. So,

for each parametrization, either the game is perfectly revealing or concealing.

There are games that are neither super- nor submodular. Thus, a game can be neither perfectly

revealing nor concealing. To see this, consider the following example:

Example 8.2. Let Θ = {1, 2, 3}, with µ(θ) = 1
3 for each θ. Consider a game where the expert is

inactive and Aℓ = R. Payoff functions are given by

πℓ(θ, aℓ) = −(θ − aℓ)
2

and

πe(θ, aℓ) = −(b(θ)− aℓ)
2,

where b(1) = 1, b(2) = 3 and b(3) = 2. Following Section 8.1, there is a reduced-form representa-

tion. But, Lemma B.16 shows that super- and submodularity do not hold.

First observe that there is no mechanism that is perfectly revealing. The key is that, in any

mechanism, an expert that observes the state θ = 2 (resp θ = 3) tries to mimic an expert that

observes the state θ = 3 (resp. θ = 2). However, there is a neutral mechanism that does reveal

some information. Specifically, there is a mechanism that involves cheap talk messages, where the

expert can credibly reveal if θ = 1 or θ ∈ {2, 3}. This information changes the layman’s action and

the payoffs of both agents. See Lemma B.16.

8.3 Characterization of Perfectly Revealing Games

Theorem 5.1 provides a sufficient condition for complete information sharing. This section comple-

ments that result by providing necessary and sufficient conditions for complete information sharing,

23The fact that the hierarchies may not be sufficiently rich is reminiscent of the literature on redundant hierarchies.
See Ely and Peski [2006] and Liu [2009].
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provided that G has a reduced-form representation RF.

Following Vohra [2011], use Θ to define a completely connected network. Vertices in the network

are given by Θ. Call a vector θ = (θ1, ..., θn+1) ∈ Θn+1 a path (of size n). A path θ = (θ1, ..., θn+1)

is a cycle if θn+1 = θ1. Call a cycle (θ1, ..., θn+1) ∈ Θn+1 simple if θi ̸= θj for each i < j with

i, j ∈ {1, ..., n}, i.e, if the cycle visits each vertex at most once. A mapping g : Θ×Θ → R defines

a flow cost of g(θi, θi)− g(θi, θj) for the directed edge connecting θi with θj . Write

L(g, (θ1, ..., θn+1)) =
n∑

k=1

[g(θk, θk)− g(θk, θk+1)],

for the length of the cycle (θ1, ...., θn+1) with respect of the function g. Say g satisfies cyclical

monotonicity if L(g,θ) ≥ 0 for each cycle θ of arbitrary size. One can verify that each cycle θ

can be “decomposed” into m simple cycles θ1, ...,θm with L(g,θ) =
∑m

k=1 L(g,θ
k). So, the cyclical

monotonicity condition can be verified by only analyzing the set of simple cycles.

Notice, cyclical monotonicity can be defined even if Θ is not an ordered set. If Θ ⊆ R and

g has weakly increasing differences then g satisfies cyclical monotonicity. (See Lemma B.9.) The

following example shows that the converse does not hold.

Example 8.3. Let Θ = {1, 2, 3}. Let g : Θ × Θ → R be such that (1) g(2, 1) = g(2, 2) = 1 and

(2) g(θ, θ′) = 0 for (θ, θ′) ∈ Θ2\{(2, 1), (2, 2)}. Note that C = {(1, 2, 1), (1, 3, 1), (2, 3, 2), (1, 2, 3, 1),
(1, 3, 2, 1)} is the set of all simply cycles for Θ (up to shifts). One can verify that L(g,θ) ≥ 0 for each

cycle θ ∈ C. Hence, g satisfies cyclical monotonicity. However, g(2, 3)− g(2, 1) < g(1, 3)− g(1, 1),

so g does not satisfies weakly increasing differences.

Fix a reduced form (ue, uℓ). Say ue satisfies cyclical monotonicity on degenerate beliefs if

the function g(θ, θ′) = ue(θ, h
θ′
e ) satisfies cyclical monotonicity. The following theorem characterizes

when complete information-sharing is possible, given that G has a reduced-form representation RF.

Theorem 8.1. Assume G has a reduced-form representation RF. The game G is perfectly revealing

if and only if there is (ue, uℓ) ∈ RF so that ue satisfies cyclical monotonicity on degenerate beliefs.

8.4 Psychological Motivations

The paper uses belief-based utility functions as an instrument to analyze information sharing in

environments, even when agents have no intrinsic psychological motivations. However, the notions

of supermodularity and submodularity can be used to characterize information sharing in situations

when the belief-based utility functions model psychological motivations.

For instance, suppose a researcher (ℓ) seeks to elicit private information about a subject’s (e)

traits or characteristics. These traits can represent the subject’s political ideology, religious beliefs,

substance abuse, level of income, etc. Write Θ = {0, 1} for the set of traits and think of θ = 1 as

the trait that is perceived as “good.”

The subject has image concerns—that is, he cares about whether the researcher perceives him

as good (θ = 1) or bad (θ = 0). Write p : Hℓ → R for the probability that a researcher with
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first-order belief h1ℓ = proj∆(D1
ℓ )
(hℓ) assigns to the good trait.24 The subject’s image concerns are

modeled by a belief-based utility

ue(θ, he) =

∫
Hℓ

g(θ, p(hℓ)) dηe(he),

where g : Θ × [0, 1] → R is such that each g(θ, ·) is strictly increasing. So, independent of the

subject’s actual trait, the subject strictly prefers that the researcher believes θ = 1. Importantly,

the subject’s image concerns may well depend on the subject’s actual trait θ. (So, g(0, ·) ̸= g(1, ·).)
In this setting, non-neutral mechanisms are often out of reach. The only non-neutral mechanisms

are mechanisms that depend on the subject’s trait—something that, arguably, the designer does

not know. So, it is natural to use neutral mechanisms to extract information about the subject’s

trait. Can neutral mechanisms induce the subject to reveal his private information?

Proposition 8.1.

(i) If g : Θ × [0, 1] → R satisfies weakly increasing differences on Θ × {0, 1}, then there is a

neutral mechanism where the researcher learns the true state θ.

(ii) If g : Θ× [0, 1] → R satisfies strictly decreasing differences on Θ× [0, 1], then in each neutral

mechanism the layman’s posterior is equal to the prior.

The proof uses the Revelation Principle in Rivera Mora [2021b] and Lemmata B.17 and B.18.

The extent to which the researcher can vs. cannot learn the subject’s private information depends

on whether g has increasing or decreasing differences. If the “good” subject (θ = 1) has (weakly)

higher incentives to be perceived as “good,” then there is a mechanism that results in complete

information sharing. If the “bad” subject (θ = 0) has strictly higher incentives to be perceived as

“good,” then no relevant information can be extracted.25
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Appendix A Hierarchy Mappings

Let W and X be two compact metric spaces endowed with their Borel sigma algebra and let

ρ : W → X be a measurable mapping. Write ρ : ∆(W ) → ∆(X) for the function that maps each

measure in ∆(W ) to the image measure under ρ : W → X. Notice that ρ is measurable. (See

Theorem 15.14 in Aliprantis and Border [2006].)

Fix a mechanism M and interim belief functions βe : Θ×Ie → ∆(V ) and βℓ : Iℓ → ∆(Θ× V ).

The belief mappings βe, βℓ induce β̂e : Θ× Te → ∆(Tℓ) and β̂ℓ : Tℓ → ∆(Θ× Te). (Recall that for

each (θ, Te, Tℓ) ∈ Θ× Te × Tℓ, βe(θ, Te)(Z) = 1 and βℓ(Tℓ)(Z) = 1.)

Define mappings ρ1e : Tℓ → D1
e and ρ1ℓ : Θ × Te → D1

ℓ , so that ρ1ℓ (θ, Te) = θ. (Recall D1
e = {∗}

so ρ1ℓ is trivial.) Note that ρ1i is measurable for each i ∈ {e, ℓ}. Assume that the measurable maps

ρke and ρkℓ are defined. Let ρk+1
e : Tℓ → Dk+1

e be defined so that ρk+1
e (Tℓ) = (ρke(Tℓ), ρ

k
ℓ
(β̂ℓ(Tℓ))),

42

https://www.wsj.com/articles/facebook-knows-instagram-is-toxic-for-teen-girls-company-documents-show-11631620739
https://www.wsj.com/articles/facebook-knows-instagram-is-toxic-for-teen-girls-company-documents-show-11631620739


Similarly, let ρk+1
ℓ : Θ×Te → Dk+1

ℓ be defined so that ρk+1
ℓ (Θ×Te) = (ρkℓ (Θ×Te), ρke(β̂e(Θ×Te))).

Note that ρk+1
i is the composition of measurable functions and so, it is measurable.

Set δki := ρk
i
◦ β̂i. Note, that for each Tℓ, projDk

e
ρk+1
e (Tℓ) = ρkℓ (Tℓ). Thus, for each (θ, Te),

margDk
e
δk+1
e (θ, Te) = δke (θ, Te). So, Write δe : Θ× Te → He for δe(θ, Te) = (δ1e(θ, Te), δ

2
e(θ, Te), ...).

Similarly, for each Tℓ, margDk
ℓ
δk+1
ℓ (Tℓ) = δkℓ (Tℓ). So, write δℓ : Tℓ → Hℓ for δℓ(Tℓ) = (δ1ℓ (Tℓ), δ

2
ℓ (Tℓ), ...).

Appendix B Omitted Proofs

B.1 Proofs from Section 4

Fix a supergame (M, G), interim belief mappings β and belief-base utility functions (ue, uℓ). A

strategy profile (σe, σℓ) of the supergame (M, G) induces the strategy profile (σ̂e, σ̂ℓ) of the Bayesian

game BG(Te, Tℓ, β) if σ̂e (resp. σ̂ℓ) is the restriction of σe (resp. σ̂ℓ) to to Θ×Te (resp. Tℓ). Similarly,

σ = (σe, σℓ) induces the strategy profile (ρe, ρℓ) of the psychological game (M, ue, uℓ) if ρe (resp.

ρℓ) is the restriction of σe (resp. σℓ) to Θ× (Ie\Te) (resp. Iℓ\Tℓ).
Likewise, a strategy profile (ρe, ρℓ) of the psychological game (M, ue, uℓ) and a strategy profile

(σ̂e, σ̂ℓ) of the Bayesian game BG(Te, Tℓ, β) induce the strategy profile (σe, σℓ) of the supergame

(M, G) if

σe(θ, Ie) =

σ̂e(θ, Ie) if Ie ∈ Te
ρe(θ, Ie) if Ie ∈ Ie\Te

and σℓ(Iℓ) =

σ̂ℓ(Iℓ) if Iℓ ∈ Tℓ
ρℓ(Iℓ) if Iℓ ∈ Iℓ\Tℓ.

Proof of Lemma 4.1. Fix a PBE (ρ, β) of the psychological game (M, ue, uℓ). Let δe : Θ×Ie →
He, δℓ : Iℓ → Hℓ be the hierarchy mappings associated with β = (βe, βℓ). Let σ̂ = (σ̂e, σ̂ℓ) be the

Bayesian Equilibrium associated to (ue, uℓ) for the Bayesian game BG(M, β).

Write σ for the strategy profile of the supergame induced by the strategy profiles ρ and σ̂. We

first show payoff equivalence. Notice that for each (θ, Ie) ∈ Θ× Ie,

Ue(σ | θ, Ie, β) =
∑
Te∈Te

[Πe(σ̂ | θ, Te, βe) + γe(Te)] · P(Te | ρ, θ, Ie, βe)

=
∑
Te∈Te

[ue(θ, δe(θ, Te)) + γe(Te)] · P(Te | ρ, θ, Ie, βe)

= Ue(ρ | θ, Ie, β),

where the second equality follows from the fact that σ̂ is the BE associated to (ue, uℓ). Moreover,

EYe(θ | M, σ, βe) = EYℓ(θ | M, ρ, βe). Using an analogous argument, for each Iℓ ∈ Iℓ, Uℓ(σ |
Iℓ, β) = Uℓ(ρ | Iℓ, β) and EYℓ(M, σ, βe) = EYℓ(M, ρ, βe). So, (σ, β) and (ρ, β) are payoff equivalent.

It suffices to show that (ρ, β) is a perfect Bayesian equilibrium of (M, ue, uℓ). Notice that β is

consistent with ρ, so β is also consistent with σ. Fix a strategy ρ′e for the expert in the supergame
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and let σ′e the supergame’s strategy induced by (ρ′e, σ̂e). Then,

Ue(ρ | θ, Ie, β) = Ue(σ | θ, Ie, β)

≥ Ue(σ
′
e, σℓ | θ, Ie, β),

=
∑
Te∈Te

[Πe(σ̂ | θ, Te, βe) + γe(Te)] · P(Te | (ρ′e, ρℓ), θ, Ie, βe)

=
∑
Te∈Te

[ue(θ, δe(θ, Te)) + γe(Te)] · P(Te | (ρ′e, ρℓ), θ, Ie, βe)

= Ue(ρ
′
e, ρℓ | θ, Ie, β),

where the inequality follows from the fact that (σ, β) is a PBE of (M, G). An analogous argument

establishes that for each strategy ρ′ℓ and each information set Iℓ ∈ Iℓ, Uℓ(σ | Iℓ, β) ≥ Uℓ(σe, σ
′
ℓ |

Iℓ, β). So, sequential rationality is satisfied and (ρ, β) is a PBE of the (M, ue, uℓ).

The proof of Proposition 4.1 requires an analysis in a particular class of direct mechanisms. Fix

a direct mechanism Md = ((Mi, Yi : i ∈ {e, ℓ}),m) with Ye = Yℓ = {0}. Write T d
i for i’s terminal

information sets of Md. Write T d
e [θ, he] = {θ}×{he}×Mℓ×Y for the expert’s terminal information

set associated with a report θ and hierarchy-message he. So, T d
e = {T d

e [θ, he] : (θ, he) ∈ Θ ×Me}.
Likewise, write T d

ℓ [hℓ] = Θ×Me×{hℓ}×Y for the layman’s terminal information set associated with

a hierarchy-message hℓ. So, T d
ℓ = {T d

ℓ [hℓ] : hℓ ∈ Me}. Call the belief mappings (β∗e , β
∗
ℓ ) straight

forward for Md if for each state θ ∈ Θ, report θ′ ∈ Θ, and hierarchy messages (he, hℓ) ∈Me ×Mℓ

the following is satisfied:

(i) β∗e (θ, T
d
e [θ

′, he])(T
d
ℓ [hℓ])) = ηe(he)(hℓ).

(ii) β∗ℓ (T
d
ℓ [hℓ])({θ} × T d

e [θ, he])) = ηℓ(hℓ)(θ, hℓ).

Lemma B.1. Fix a direct mechanism Md = ((Mi, Yi : i ∈ {e, ℓ}),m) with Ye = Yℓ = {0}, let

(β∗e , β
∗
ℓ ) be straight forward belief mappings for Md, and δ∗ the associated hierachies. Then, for

each (θ, θ′, he) ∈ Θ×Θ×Me, δ
∗
e(θ, T

d
e [θ

′, he]) = he and for each hℓ ∈Mℓ, δ
∗
ℓ (T

d
ℓ [hℓ]) = hℓ. Moreover,

if Md is credible, then β∗ ∈ cons(Md).

Proof. First we show that for each (θ, θ′, he) ∈ Θ × Θ ×Me, δe(θ, T
d
e [θ

′, he]) = he and for each

hℓ ∈ Mℓ, δℓ(θ, T
d
e [θ

′, he]) = he. We show this by induction. Write he = (µ1e, µ
2
e, ...) and hℓ =

(µ1ℓ , µ
2
ℓ ...) Notice by construction δ1e(θ, T

d
e [θ

′, he]) = µ1e and for each hℓ ∈Mℓ, δℓ(θ, T
d
e [θ

′, he]) = µ1ℓ .

Moreover, if δke (θ, T
d
e [θ

′, he]) = µke and for each hℓ ∈ Mℓ, δ
k
ℓ (θ, T

d
e [θ

′, he]) = µkℓ , it follows that

δk+1
e (θ, T d

e [θ
′, he]) = µk+1

e and for each hℓ ∈Mℓ, δ
k+1
ℓ (θ, T d

e [θ
′, he]) = µk+1

ℓ , as desired.

Now we show the second part. Assume that Md is credible. We now show that β∗ = (β∗e , β
∗
ℓ )

are interim honest beliefs consistent with the honest strategy profile ρ∗ in the mechanism Md. Fix

a state θ ∈ Θ, a report θ′ ∈ Θ, and hierarchy messages (he, hℓ) ∈ Me ×Mℓ. To show consistency

for the expert, it suffices to show that

β∗e (θ, T
d
e [θ

′, he])(T
d
ℓ [hℓ])) · P[{θ} × T d

e [θ
′, he])|θ′, ρ∗ℓ ] = P[θ, he, hℓ, y|θ′, ρ∗ℓ ]. (10)
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To show this, note that given that the state is θ and the expert reports θ′, the probability that the

mechanism selects hierarchy-message he is

P[{θ} × T d
e [θ

′, he])|θ′, ρ∗ℓ ] = margMe
m(θ′)(he).

So, multiplying both sides by µ(θ′) we get

µ(θ′) · P[{θ} × T d
e [θ

′, he])|θ′, ρ∗ℓ ] = margΘ×Me
ϕ(θ′, he).

Likewise, given that the state is θ and the expert reports θ′, the probability that the mechanism

selects hierarchy-messages are he and hℓ is

P[θ, he, hℓ, y|θ′, ρ∗ℓ ] = margMm(θ′)(he, hℓ).

(Recall that Y = {y} with y = (0, 0)). So, multiplying both sides by µ(θ′) we get

µ(θ′) · P[θ, he, hℓ, y|θ′, ρ∗ℓ ] = margΘ×Mϕ(θ
′, he, hℓ).

Hence, since β∗e (θ, T
d
e [θ

′, he])(T
d
ℓ [hℓ])) = ηe(he)(hℓ), Equation (10) holds if and only if

ηe(he)(hℓ) ·margΘ×Me
ϕ(θ′, he) = margΘ×Mℓ

ϕ(θ′, he, hℓ),

which is satisfied by credibility of Md.

Consistency for the layman follows from a similar argument. Fix a state θ ∈ Θ and hierarchy

messages (he, hℓ) ∈ Θ×Me ×Mℓ. It suffices to show

β∗ℓ (T
d
ℓ [hℓ])({θ} × T d

e [θ, he])) · P[Θ× T d
ℓ [hℓ])|ρ∗e] = P[θ, he, hℓ, y|ρ∗e].

Since β∗ℓ (T
d
ℓ [hℓ])({θ} × T d

e [θ, he])) = ηℓ(hℓ)(θ, he), this holds if and only if

ηℓ(hℓ)(θ, he) ·margMℓ
ϕ(hℓ) = margΘ×Mℓ

ϕ(θ, he, hℓ),

which is satisfied by credibility of Md.

The proof of Proposition 4.1 requires the construction of credible direct mechanisms that general

supergames induce. Fix a mechanism M = (·, Te, Tℓ), β ∈ conv(M), and let ρ be strategy profile in

M such that β is consistent with ρ. Following Rivera Mora [2021b] we construct a credible direct

mechanism Md that M and β induce. We first construct the transfers and hierarchy-messages.

Write Yi = γi(Ti) for each i ∈ {e, ℓ}. Let δ = (δe, δℓ) the hierarchy mappings associated to β and

set Me = δe(Θ× Te) and Mℓ = δℓ(Tℓ). Note that M =Me ×Mℓ is belief closed. We now construct

the protocol. Write Te[θ, he] = {Te ∈ Te : δe(θ, Te) = he} and Tℓ[hℓ] = {Tℓ ∈ Tℓ : δℓ(Tℓ) = hℓ}. So,

write

Z[θ, ye, yℓ, he, hℓ] = {z ∈ Z : γe(Te[z]) = ye, γℓ(Tℓ[z]) = yℓ, Te[z] ∈ Te[θ, he], and Tℓ[z] ∈ Tℓ[hℓ]} ,

for the terminal nodes that lead to transfers (ye, yℓ) and hierarchies of beliefs (he, hℓ) when the state

is θ. Define the protocol m : Θ → ∆(Y ×M) by m(θ)(y, h) = P[Z[θ, y, h]|θ, ρ]. That is, m(θ)(y, h)

is probability of selecting an end node associated with transfers y and hierarchies h conditional on

a state θ and strategy profile ρ.

Call Md = ((Mi, Yi : i ∈ {e, ℓ}),m) the extended direct mechanism induced by M and

β. Theorem 5.1 in Rivera Mora [2021b] shows that Md is credible. The proof of Proposition 4.1

follows directly from the following stronger result.
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Proposition B.1. Belief-based utilities (ue, uℓ) are a reduced-form of G if and only if, for each cred-

ible direct mechanism Md = ((Mi, Yi : i ∈ {e, ℓ}),m) with Ye = Yℓ = {0} and straightforward beliefs

β∗ = (β∗e , β
∗
ℓ ) thereof, there is a strategy profile σ̂ of the induced Bayesian game BG(T d

e , T d
ℓ , β

∗
e , β

∗
ℓ )

that satisfies the following:

(i) For each (θ, θ′, he) ∈ Θ×Θ×Me, Πe(σ̂
∗|θ, T d

e [θ
′, he], β

∗
e ) = ue(θ, he).

(ii) For each hℓ ∈Mℓ, Πℓ(σ̂|Tℓ[hℓ], β∗ℓ ) = uℓ(hℓ).

Proof. The only if part follows directly from the fact that each direct mechanism Md is itself a

mechanism and each straight-forward beliefs β∗ satisfies β∗ ∈ cons(M). (See Lemma B.1.)

We now show the converse. Fix a mechanism M = (Te, Tℓ, β) with β ∈ cons(M). To show that

(ue, uℓ) is a reduced form, it suffices to construct a Bayesian equilibrium σ̂ of BG(Te, Tℓ, β) that

satisfies

(iii) For each (θ, Te) ∈ Θ× Te, Πe(σ̂|θ, Te, βe) = ue(θ, δe(θ, Te)).

(iv) For each Tℓ ∈ Tℓ, Πℓ(σ̂|Tℓ, βℓ) = uℓ(δℓ(Tℓ)).

Notice, the set of Bayesian equilibria of BG(Te, Tℓ, β) depend on the terminal information sets

(Te, Tℓ) but not in the transfers of each terminal information set (i.e., the equilibria does not

depend the mappings γi or the sets Yi). So, it is without loss of generality assume assume Yi = {0}
for each i ∈ {e, ℓ}.

The construction of σ̂ involves two steps. The first constructs σ̂ and the second shows that σ̂

is a Bayesian equilibrium that satisfies (iii) and (iv).

Step 1. Let Md be the direct mechanism that M and β induce and let β∗ be the straight forward

interim beliefs of Md. By assumption, there is a Bayesian equilibrium σ̂∗ of BG(T d
e , T d

ℓ , β
∗) that

satisfies (i) and (ii). We use the σ̂∗ to construct σ̂. For each (θ, Te) ∈ Θ × Te set σ̂(θ, Te) =

σ̂∗(θ, T d
e [θ, he]) where he = δe(θ, Te). Likewise, for each Tℓ ∈ Tℓ set σ̂(Tℓ) = σ̂∗(T d

ℓ [hℓ]) where

hℓ = δℓ(Tℓ).

Step 2. To show that σ̂ is a Bayesian equilibrium that satisfies (iii) and (iv), we first show some

properties that (βe, βℓ) and (β∗e , β
∗
ℓ ) satisfy. If Te ∈ Te[θ, he], then for each hℓ ∈Mℓ,∑

Tℓ∈Tℓ[hℓ]

βe(θ, Te)(Tℓ) = ηe(he)(hℓ) = β∗e (θ, T
d
e [θ, he])(T

d
ℓ [hℓ]), (11)

where the first equality follows from Lemma B.3 in Rivera Mora [2021b] (and the fact that

δe(θ, Te) = he), and the second by definition of β∗e . Similarly, if Tℓ ∈ Tℓ[hℓ], then∑
Te∈Te[θ,he]

βℓ(Tℓ)(θ, Te) = ηℓ(hℓ)(θ, he) = β∗e (T
d
ℓ [hℓ])(θ, T

d
e [θ, he]). (12)

where the first equality follows from Lemma B.3 in Rivera Mora [2021b] (and the fact that δℓ(Tℓ) =

hℓ), and the second by definition of β∗ℓ .

We show that Equations (11) and (12) imply that the agents’ expected payoffs in BG(Te, Tℓ, β)
under σ̂ are equivalent to the expected payoffs in BG(T d

e , T d
ℓ , β

∗) under σ̂∗. We start with the
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expert. Fix (θ, Te) ∈ Θ× Te[θ, he] and a measurable Bℓ ⊆ Aℓ. Notice, given that ℓ plays according

to σ̂ℓ, the probability that an expert (θ, Te) assigns to ℓ choosing an action in Bℓ is∑
hℓ∈Mℓ

∑
Tℓ∈Tℓ[hℓ]

βe(θ, Te)(Tℓ) · σ̂ℓ(Tℓ)(Bℓ) =
∑

hℓ∈Mℓ

β∗e (θ, T
d
e [θ, he])(T

d
ℓ [hℓ]) · σ̂∗ℓ (T d

ℓ [hℓ])(Bℓ),

where the equality follows from Equation (11) and the definition of σ̂ℓ. Hence,

Π̂e(σ̂|θ, Te, βe) = Π̂e(σ̂
∗|θ, T d

e [θ, he], β
∗
e ) = ue(θ, he).

Moreover, since σ̂∗e(θ, T
d
ℓ [θ, he]) ∈ ∆(Ae) is optimal for (θ, T d

ℓ [θ, he]) in the game BG(T d
e , T d

ℓ , β
∗),

σ̂e(θ, Tℓ) is also optimal for (θ, Tℓ) in the original game BG(Te, Tℓ, β).
Now proceed with the layman. Fix Tℓ ∈ Tℓ[hℓ] and a measurable Bℓ ⊆ Aℓ. Notice, given that e

plays according to σ̂e, the probability that a layman Tℓ assigns to state θ and e choosing an action

in Be is∑
he∈Me

∑
Te∈Te[θ,he]

βℓ(Tℓ)(θ, Te) · σ̂e(Te)(Be) =
∑

he∈Me

β∗ℓ (Tℓ)(θ, T
d
e [θ, he]) · σ̂∗e(θ, T d

e [θ, he])(Be),

where the equality follows from Equation (12) and the definition of σ̂e. Hence,

Πℓ(σ̂|Tℓ, βℓ) = Πℓ(σ̂
∗|T d

ℓ [hℓ], β
∗
ℓ ) = uℓ(hℓ).

Moreover, since σ̂∗ℓ (T
d
ℓ [hℓ]) ∈ ∆(Aℓ) is optimal for T d

ℓ [hℓ]) in the game BG(T d
e , T d

ℓ , β
∗), σ̂ℓ(Tℓ) is

also optimal for Tℓ in original game BG(Te, Tℓ, β). Therefore, σ̂ is a Bayesian equilibrium that

satisfies conditions (iii) and (iv).

Proof of Proposition 4.2. The “only if” part is trivial. We will show the “if” part. Assume that

RF is a reduced form representation of G. Then, for each mechanism M and each individually

rational PBE (σ, β) of (M, G), there is a mechanism M′, a reduced form (ue, uℓ) ∈ RF, and a PBE

(ρ, β′) of (M′, (ue, uℓ)) that is equivalent to (σ, β). So, by the revelation principle in Rivera Mora

[2021b], there is a direct mechanismMd and a honest PBE (ρ∗, β∗) of (Md, ue, uℓ) that is equivalent

to the PBE (ρ, β′) of (Md, ue, uℓ). Hence the PBE (ρ∗, β∗) of BG(Md, ue, uℓ) is also equivalent to

the PBE (σ, β) of (M, G). (See Lemma 4.1.)

B.2 Proofs from Section 5

The lemmata in this section show there are a plethora of acute statistics that are useful for ap-

plications. In particular they are used in the applications of Section 7. These acute statistics

correspond to monotone transformations of the first-order expectation, higher-order expectations

of the state, and positive linear combinations of those. Before stating these lemmata we introduce

some notation.

Fix a credible direct mechanism Md and its induced probability space (Θ× Y ×M,F , ϕ). For
each odd k ≥ 1, write fk(he, hℓ) = Ek

ℓθ(hℓ) and for each even k ≥ 2 write fk(he, hℓ) = Ek
eθ(he).

Write F0 = Θ and for each k ∈ N let Fk the random variable induced by fk. Write Fe for the

sigma algebra generated by projΘ×Ye×Me
(which maps the expert’s observables) and Fℓ for the

sigma algebra generated by proj Yℓ×Mℓ
(which maps the laymans’s observables).
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Lemma B.2. Fix a direct mechanism Md and its induced probability space (Θ× Y ×M,B, ϕ). If

Md is credible then the following properties hold:

(i) For each odd k ≥ 1, Fk is a version of the conditional expectation of Fk−1 given Fℓ.

(ii) For each even k ≥ 2, Fk is a version of the conditional expectation of Fk−1 given Fe.

Proof. First we show (1). Fix an odd k ≥ 1 and note that Fk is Fℓ-measurable. Fix (yℓ, hℓ) ∈ Yℓ×Mℓ

and write A = Θ×Ye×{yℓ}×Me×{hℓ} and 1A : Θ×Y ×M → R the indicator random variable of the

set A. Since Fℓ is generated for sets of this form, it suffices to show that Eϕ[F
k1A] = Eϕ[F

k−11A].

If k = 1, then

Eϕ[F
11A] = E1

ℓθ(hℓ) ·marg ϕ(yℓ, hℓ)

=
∑
θ′∈Θ

θ′ ·margΘηℓ(hℓ)(θ
′) ·marg ϕ(yℓ, hℓ)

=
∑
θ′∈Θ

θ′ ·marg ϕ(θ′, yℓ, hℓ)

= Eϕ[Θ1A],

where the third equality follows from the credibility condition. If k ≥ 3, then

Eϕ[F
k1A] = Ek

ℓθ(hℓ) ·marg Yℓ×Mℓ
ϕ(yℓ, hℓ)

=
∑

he∈Me

Ek−1
e θ(he) ·margMe

ηℓ(hℓ)(he) ·marg Yℓ×Mℓ
ϕ(yℓ, hℓ)

=
∑

he∈Me

Ek−1
e θ(he) ·marg Yℓ×Me×Mℓ

ϕ(yℓ, he, hℓ)

= Eϕ[F
k−11A],

where the third equality follows from the credibility condition.

Now we show (2). Fix (θ, ye, he) ∈ Θ×Ye×Me and write A = {θ}×{ye}×Yℓ×{he}×Mℓ and

1A the indicator function of A. Then, for each k ≥ 2. Since Fℓ is generated for sets of this form,

it suffices to show that Eϕ[F
k1A] = Eϕ[F

k−11A].

Eϕ[F
k1A] = Ek

eθ(he) ·margΘ×Ye×Me
ϕ(θ, ye, he)

=
∑

he∈Me

Ek−1
ℓ θ(hℓ) · ηe(he)(hℓ) ·margΘ×Ye×Me

ϕ(θ, ye, he)

=
∑

he∈Me

Ek−1
ℓ θ(hℓ) ·margΘ×Yℓ×Me×Mℓ

ϕ(θ, ye, he, hℓ)

= Eϕ[F
k−11A],

where the third equality follows from the credibility condition.

Lemma B.3. Fix a probability space (Ω,F ,P) with X and Y two random variables with finite

second moments thereof. Let F ′ ⊆ F be a sigma algebra and E[·|F ′] a version of conditional

expectation with respect to F ′. If X is F ′-measurable, then

Cov[X,Y] = Cov[X,E[Y|F ′]].
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Proof. Notice that

Cov[X,Y] = E[XY]− E[X]E[Y]

= E[E[XY|F ′]]− E[X]E[E[Y|F ′]]

= E[XE[Y|F ′]]− E[X]E[E[Y|F ′]]

= Cov[X,E[Y|F ′]],

where the second equality follows from the law of iterated expectations and the third from the fact

that X is F ′-measurable. (See Theorem 4.1.14 in Durrett [2019].)

Lemma B.4. If k,m, n ≥ 0 are so that k +m ∈ {2n, 2n− 1}, then

Covϕ[F
m,Fk] = Cov[Fn,Fn]. (13)

Proof. Fix n ∈ N. Without loss of generality, we will show the result for k ≥ m. Notice that for

each d = 0, ..., 2n there is a unique pair (k,m) so that k ≥ m, k+m ∈ {2n, 2n−1}, and k−m = d.

We show the result holds for all of such pairs (k,m) by using induction over d.

If d = 0, then m = k = n so then Equation (13) holds trivially. Assume that the result

holds for the pair (k,m) associated to d < 2n. If m ̸= k mod 2, then there is i ∈ {e, ℓ} so that

Fm+1 = E[Fm|Fi] and Fk is Fi-measurable. Thus,

Covϕ[F
m+1,Fk] = Covϕ[F

m,Fk] = Covϕ[F
n,Fn],

where the first equality follows from Lemma B.3 and the second equality follows from the induction

hypothesis. If m = k mod 2, then there is i ∈ {e, ℓ} so that Fk = E[Fk−1|Fi] and Fm is Fi-

measurable.

Covϕ[F
m,Fk−1] = Covϕ[F

m,Fk] = Covϕ[F
n,Fn],

where the first equality follows from Lemma B.3 and the second equality follows from the induction

hypothesis. So, the result holds for d+ 1.

Lemma B.5. Fix k ∈ N. Let i = e if k is even, and i = ℓ if k is odd. If fk : H → R is given by

fk(h) = Eθki (hi) then fk is an acute statistic.

Proof. Let n = ⌊k+1
2 ⌋ and m = 0 then Covϕ[F

k,Θ] = Var[Fn] ≥ 0. (See Lemma B.4.) Moreover,

if Covϕ[F
k,Θ] = 0 this implies Varϕ[F

n] = 0. So Fk = Eϕ[Θ] = fk(h̃) almost surely.

Lemma B.6. Fix a probability space (Ω,F ,P) with a random variable X with finite second mo-

ments and expected value E[X] = c. If g : R → R is weakly increasing and g(X) has finite second

moments, then Cov[X, g(X)] ≥ 0. Moreover, Cov[X, g(X)] = 0 implies g(X) = g(c) almost surely.
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Proof. Write c = E[X] and notice that

Cov[X, g(X)] = E[Xg(X)]− cE[g(X)]

= E[(X− c)g(X)]

= E[(X− c)g(X)]− E[X− c]g(c)

= E[(X− c)(g(X)− g(c))].

We show E[(X− c)(g(X)− g(c))] ≥ 0. Fix ω ∈ Ω. Since g is weakly increasing, X(ω) ≥ c implies

g(X(ω)) ≥ g(c) and X(ω) ≤ c implies g(X(ω)) ≤ g(c). Thus, (X(ω) − c)(g(X(ω)) − g(c)) ≥ 0.

Moreover (X(ω)−c)(g(X(ω))−g(c)) = 0 implies g(X(ω))−g(c)) = 0. Thus E[(X−c)(g(X)−g(c))] ≥
0 and E[(X− c)(g(X)− g(c))] = 0 implies g(X) = g(c) almost surely.

Lemma B.7. Let f1 : H → R given by f1(h) = E1
ℓθ(hℓ) and g : R → R a weakly increasing

function. Then g ◦ f1 is an acute statistic.

Proof. Write F1(θ, y, h) = E1
ℓθ(hℓ) and notice that F1 and g(F1) are both Fℓ-measurable. By

Lemma B.2, F1 is a version of the conditional expectation of Θ. Hence,

Covϕ[g(F
1),Θ] = Covϕ[g(F

1),F1] ≥ 0,

where the first equality follows from Lemma B.3 and the second from Lemma B.6. Moreover, if

Covϕ[g(F
1),F1] = 0 then g(F1) = g(f(h̃)) almost surely.

Lemma B.8. If f(h) = (1 + α)
∑∞

k=1 α
2k−2 · E2k−1

ℓ θ(hℓ), then f is an acute statistic.

Proof. Let F the random variable associated with f . Write Xn = (1 + α)
∑n

k=1 α
2k−2F2k−1 for

each k ∈ N and notice that F = limn→∞Xn.

Write K = max{|θ| : θ ∈ Θ} and K = (1+α)
∑∞

k=1 α
2k−2K. We show that all random variables

in {Xn : n ∈ N} are bounded by K ∈ R. Fix n ∈ N and notice that |Fk| ≤ K for each k ∈ N. Thus,

|Xn| = |(1 + α)
∑n

k=1 α
2k−2F2k−1|

≤ (1 + α)
∑n

k=1 α
2k−2|F2k−1|

≤ (1 + α)
∑n

k=1 α
2k−2K

≤ K.

Since |Θ| is bounded by K, it follows that for each n ∈ N, |ΘXn| is bounded by KK. Thus,

by the dominated convergence theorem, E[FΘ] = E[limk→∞XkΘ] = limk→∞ E[XkΘ] and E[F] =
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E[limk→∞Xk] = limk→∞ E[Xk]. Hence,

Covϕ[F,Θ] = Eϕ[FΘ]− Eϕ[F]E[Θ]

= lim
n→∞

(Eϕ[X
nΘ]− Eϕ[X

n]E[Θ])

= limn→∞Covϕ[X
n,Θ]

= limn→∞(1 + α)
∑n

k=1 α
2k−2Covϕ[F

k,Θ]

≥ 0,

where the last equality from the fact that fk is acute for each k ∈ N. (See Lemma B.5.) Moreover,

if Covϕ[F,Θ] = 0, it follows that Covϕ[F
k,Θ] = 0. So for each k ∈ N, Fk = fk(h̃) a.s. which

implies F = f(h̃) a.s. Hence f is acute.

B.3 Proofs from Section 6

Recall that g : Θ×Θ → R is cyclically monotone if
∑n

k=1 g(θk, θk)− g(θk, θk+1) ≥ 0. for each cycle

(θ1, ..., θn). (See Section 8.3.)

Lemma B.9. If g : Θ×Θ → R is a function with weakly increasing differences, then it is cyclically

monotone.

Proof. The proof is by induction over the length n. For n = 1 the statement holds since in any

cycle (θ1, θ2), it follows that θ1 = θ2 so g(θ1, θ1) = g(θ1, θ2). We will show the statement holds for

n > 1 provided it holds for n − 1. Fix a cycle (θ1, ..., θn+1) with θn+1 = θ1. Without loss, assume

that θn = max{θ1, ..., θn+1}. (Otherwise shift the indexes of the cycle.) Now, consider the cycle

(θ1, ..., θn−1, θn+1) of length n− 1. By the induction hypothesis, we have that
n−2∑
k=1

(g(θk, θk)− g(θk, θk+1)) + g(θn−1, θn−1)− g(θn−1, θn+1) ≥ 0.

In addition, weakly increasing differences and θn ≥ max{θn−1, θn+1}, implies

g(θn, θn) + g(θn−1, θn+1)− g(θn, θn+1)− g(θn−1, θn) ≥ 0.

So, adding the two equalities we get
n∑

k=1

g(θk, θk)− g(θk, θk+1) ≥ 0.

So, the statement holds for n.

Lemma B.10. (Rochet) Fix finite set Θ ⊊ R and function g : Θ×Θ → R. The function g satisfies

cyclical monotonicity if and only if there exist a function z : Θ → R such that g(θ, θ) + z(θ) ≥
g(θ, θ′) + z(θ′) for each θ, θ′ ∈ Θ.

Proof. Let Id : Θ → Θ be the identity function. Then g satisfies cyclical monotonicity if and only

if the graph induced by (g, Id) has no finite cycles of negative length. The result follows from

Theorem 4.2.1 in Vohra [2011].
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Lemma B.11. Let X and Y be real random variables with finite second moments and let E[X | Y]

be a version of the conditional expectation of X given the sigma-algebra generated by Y. If the

function g(y) = E[X | Y = y] is decreasing, then Cov[X,Y] ≤ 0.

Proof. By the law of iterated expectations,

E[XY] = E[E[XY | Y]] = E[YE[X | Y]] = E[Yg(Y)],

and similarly E[X] = E[E[X | Y]] = E[g(Y)]. Thus,

Cov[X,Y] = E[XY]− E[X]E[Y]

= E[Yg(Y)]− E[g(Y)] E[Y]

= Cov[Y, g(Y)].

So is sufficient to show Cov[Y, g(Y)] ≤ 0. Now, let Z be an independent random variable identically

distributed as Y. Since g is non-increasing, for each y, z ∈ R, (y − z)(g(y) − g(z)) ≤ 0. So

E[(Y − Z)(g(Y)− g(Z))] ≤ 0. Then, by independence of Y and Z,

E[Yg(Y)] + E[Zg(Z)]− E[Y]E[g(Z)]− E[Z]E[g(Y)] ≤ 0.

Therefore, since Y is identically distributed as Z, 2E[Yg(Y)]− 2E[Y]E[g(Y)] ≤ 0. Therefore,

Cov[Y, g(Y)] = E[Yg(Y)]− E[Y]E[g(Y)] ≤ 0,

as desired.

Lemma B.12. Fix a statistic f : H → R and a direct mechanism Md with protocol m and

associated ex-ante probability measure ϕ. If ν : Θ → ∆(Hi) is given by ν(θ) = margHe
m(θ)(he)

then EFi(ν(θ)) = Eϕ[F|Θ = θ].

Proof. Write H : Θ× Y ×M → M for the projection of the probability space onto M . It suffices

to show that EFi(ν(θ)) = Eϕ[f(H) | Θ = θ]. Notice that for each (θ, h) ∈ Θ×M

margMm(θ)(h) =
margΘ×Mϕ(θ, h)

margΘϕ(θ)
= Pϕ[H = h | Θ = θ], (14)

where Pϕ[H = h | Θ = θ] denotes the conditional probability of H conditional on Θ = θ. Then,

EFi(ν(θ)) =

∫
Hi

EFi(hi) dν(θ)

=
∑

hi∈Mi

∑
h−i∈M−i

f(hi, h−i) ·margHm(θ)(hi, h−i)

=
∑

(y,h)∈Y×M

f(h) ·m(θ)(y, h)

=
∑
h∈M

f(h) · Pϕ[H = h | Θ = θ]

= Eϕ[f(H) | Θ = θ].

where the fourth equality follows from Equation (14).
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B.4 Proofs from Section 7

Proof of Proposition 7.1. The proof is divided in three steps. The first shows that (ue, uℓ) is a

reduced form of G. The second shows that RF = {(ue, uℓ)} is a reduced form representation for G.

The third shows that f1 is an essential statistic for (ue, uℓ).

Step 1. Fix a Bayesian game BG(Te, Tℓ, β). Fix a strategy profile σ̂. In this Bayesian, game, the

expected payoff of the layman from choosing action sℓ ∈ R is∑
θ∈Θ

−(θ − sℓ)
2 ·margΘβℓ(Tℓ)(θ).

Thus, σ̂ is a PBE if and only if σ̂e is pure strategy with

σ̂ℓ(Tℓ) =
∑
θ∈Θ

θ ·margΘβℓ(Tℓ)(θ) = E1
ℓθ(δℓ(Tℓ)). (15)

Hence, for each Tℓ ∈ Tℓ,

Πℓ(Tℓ|σ̂, β) =
∑
θ∈Θ

−(θ − σ̂ℓ(Tℓ))
2 ·margΘβℓ(Tℓ)(θ)

=
∑
θ∈Θ

−(θ − E1
ℓθ(δℓ(Tℓ)))

2 ·margΘηℓ(δℓ(Tℓ))(θ)

= uℓ(δℓ(Tℓ)).

Similarly, for each (θ, Te) ∈ Θ× Te,

Πe(θ, Te|σ̂, β) =
∑
Tℓ∈Tℓ

−w(θ − b1 − b2σℓ(Tℓ))
2βe(θ, Te)(Tℓ)

=

∫
Hℓ

−w(θ − b1 − b2E1
ℓθ(hℓ))

2 dηe(δe(θ, Te))

= ue(θ, δe(θ, Tℓ)),

where the second equality follows from the definition of ηe and δe. Therefore, (ue, uℓ) is a reduced-

form of G.

Step 2. By step 1, each induced game BG(Te, Tℓ, β) has a unique equilibrium given by the strategy

profile σ̂ that satisfies Equation (15). Hence, RF = {(ue, uℓ)} is a reduced-form representation.

(See Lemma B.13.)

Step 3. We show that f1 is essential for (ue, uℓ). Fix a credible direct mechanism Md, let (σ∗, β∗)

the honest profile and let ϕ the associated ex-ante probability measure it induces. If Md is not

informative about f , it follows that F1 = f1(h̃) almost surely. As a consequence

Ue(ρ
∗|, θ, {∅}, β∗) = Πs

e(θ) + EYe(θ|Md, σ), and

Uℓ(ρ
∗|{∅}, β∗) = Πs

ℓ + EYℓ(θ|Md, σ),

where Πs
e(θ) = −(θ − b1 − b2f

1(h̃))2 and Πs
ℓ = −

∑
θ∈Θ(θ − f1(h̃))2 are the agents silent payoffs.

Thus, the statistic f1 is essential for (ue, uℓ).
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Proof of Proposition 7.3. Fix an information structure. i.e. a set of public signals S and a

mapping χ : Θ → S. The prior µ and the information structure defines a probability space over

Θ×S. Write Θ : Θ×S → Θ for the realization of the state and F = E[Θ|Fℓ] for the layman’s first-

order expectation given the public signal. (Notice that Fℓ = {Θ × {s} : s ∈ S}.) Write c = E[Θ].

To show the result we first show some identities. Notice, by the law of iterated expectations,

E[F] = E[E[Θ|Fℓ]] = E[Θ] = c. (16)

Since F is Fℓ measurable,

E[FΘ] = E[E[FΘ|Fℓ]] = E[FE[Θ|Fℓ]] = E[F2], (17)

where the first equality follows from the law of iterated expectations and the second by Theorem

4.1.14 in Durrett [2019]. Finally, note that

c2 ≤ E[F2] ≤ E[Θ2]. (18)

where the fist inequality follows from Equation (16) and the second from the fact that

E[(Θ− F)2] = E[Θ2]− 2E[ΘF] + E[F2] = E[Θ2]− E[F2].

Note, given the agent’s payoffs πe and πℓ, the ex ante total welfare is given by

TW = E[−(Θ− F)2] + E[−λ(F− b1 − b2Θ)2]

= E[−Θ2 + 2ΘF− F2] + E[−λF2 + 2λb1 + 2λb2FΘ− λ(b1 + b2Θ)2]

= E[−Θ2 + 2F2 − F2 − λF2 + 2λb1 + 2λb2F
2 − λ(b1 + b2Θ)2]

= E[−Θ2 + 2λb1 − λ(b1 + b2Θ)2] + (1 + λ(2b2 − 1)) · E[F2].

where the third equality follows from Equations (16) and (17). Notice that the first the term

E[−Θ2 + 2λb1 − λ(b1 + b2Θ)2] does not depend on the information structure used. Hence, the

welfare maximizing information structure has to maximize (1 + λ(2b2 − 1))) · E[F2].

Notice, if (1 + λ(2b2 − 1)) ≤ 0, the information structure that maximizes welfare satisfies

E[F2] = c2. (See Equation (18).) Hence, no information maximizes welfare. By contrast, if

(1 + λ(2b2 − 1)) ≥ 0 the information structure that maximizes welfare satisfies E[F2] = E[Θ2].

Hence, full revelation of the state maximizes total welfare.

Proof of Proposition 7.4. The proof is divided in three steps. The first shows that (ue, uℓ) is a

reduced form for G. the second shows that RF = {(ue, uℓ)} is a reduced-form representation of G.

The third shows that f is essential for (ue, uℓ).

Step 1. Fix a induced Bayesian game BG(Te, Tℓ, β) and let (σ̂e, σ̂ℓ) be a Bayesian equilibrium

thereof. First note that the strict concavity of πi imply that each best response is single valued.

(See Zimper [2006].) So, there is no loss to analyze only pure strategy profiles. Moreover, (σ̂e, σ̂ℓ)
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is a Bayesian equilibrium must satisfy the following first-order conditions:

σ̂e(θ, Te) = θ + α
∑
T ′
ℓ∈Tℓ

σ̂ℓ(T
′
ℓ) · βe(θ, Te)(T ′

ℓ), and (19)

σ̂ℓ(Tℓ) =
∑

(θ′,T ′
ℓ)∈Θ×Tℓ

(
θ′ + ασ̂e(θ

′, T ′
ℓ)
)
· βℓ(Te)(θ′, T ′

e). (20)

We show that the strategy profile σ̂e and σ̂ℓ given by

σ̂e(θ, Te) = θ + (1 + α)

∞∑
k=1

α2k−1 · E2k
e θ(δe(θ, Te)), and (21)

σ̂ℓ(Tℓ) = (1 + α)

∞∑
k=1

α2k−2 · E2k−1
ℓ θ(δℓ(Tℓ)) (22)

satisfy Equations (19) and (20).

To show this, note that

σ̂e(θ, Te) = θ + (1 + α)
∞∑
k=1

α2k−1 · E2k
e θ(δe(θ, Te))

= θ + (1 + α)
∞∑
k=1

α2k−1
∑
T ′
ℓ∈Tℓ

E2k−1
ℓ θ(δℓ(T

′
ℓ)) · βe(θ, Te)(T ′

ℓ)

= θ + α
∑
T ′
ℓ∈Tℓ

(1 + α)

∞∑
k=1

α2k−2 · E2k−1
ℓ θ(δℓ(Tℓ)) · βe(θ, Te)(T ′

ℓ)

= θ + α
∑
T ′
ℓ∈Tℓ

σ̂ℓ(Tℓ) · βe(θ, Te)(T ′
ℓ),

where the second equality follows from the fact that E2k
e θ(·) is the expert’s expectation of E2k−1

ℓ θ(·)
and the last equality follows from the definition of σ̂ℓ. So, Equation (19) holds.

In addition,

σ̂ℓ(Tℓ) = (1 + α)

∞∑
k=1

α2k−2E2k−1
ℓ θ(δℓ(Tℓ))

= (1 + α)
∑

(θ′,T ′
e)∈Θ×Te

(
θ +

∞∑
k=1

α2kE2k
e θ(δe(θ

′, T ′
ℓ)

)
· βℓ(Tℓ)(θ′, T ′

e)

=
∑

(θ′,T ′
ℓ)∈Θ×Tℓ

(
θ′ + αθ′ + (1 + α)

∞∑
k=1

α2kE2k
e θ(δe(θ

′, T ′
ℓ)

)
· βℓ(Tℓ)(θ′, T ′

e)

=
∑

(θ′,T ′
ℓ)∈Θ×Tℓ

(
θ′ + αθ′ + α(1 + α)

∞∑
k=1

α2k−1E2k
e θ(δe(θ

′, T ′
ℓ)

)
· βℓ(Tℓ)(θ′, T ′

e)

=
∑

(θ′,T ′
ℓ)∈Θ×Tℓ

(θ′ + ασ̂e(θ
′, T ′

ℓ)) · βℓ(Te)(θ′, T ′
e).

where the second equality follows from the fact that E1
ℓθ(·) and E2k+1

ℓ θ(·) are the layman’s expec-

tation of θ and E2k
ℓ θ(·) respectively. Hence, Equation (20) also holds and (σ̂e, σ̂ℓ) is a Bayesian

equilibrium.
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Finally, notice that

Πe(θ, Te | σ̂, β) = σ̂e(θ, Te)
(
θ − 1

2 σ̂
2
e(θ, Te) + α

∑
Tℓ∈Te σ̂ℓ(Tℓ) · βe(θ, Te)(Tℓ)

)
= σ̂e(θ, Te)

(
1
2 σ̂

2
e(θ, Te)

)
= 1

2 σ̂e(θ, Te)
2

= ue(θ, δe(θ, Te)).

where the second equality follows from Equation (19).

Πℓ(Tℓ | σ̂, β) = σ̂ℓ(Tℓ)
(∑

(θ,Te)∈Θ×Te θ −
1
2 σ̂ℓ(Tℓ) + ασ̂e(Te) · βℓ(Tℓ)(θ, Te)

)
= σ̂e(Tℓ)

(
1
2 σ̂

2
e(Tℓ)

)
= 1

2 σ̂e(Tℓ)
2

= uℓ(δℓ(Tℓ)).

where the second equality follows from Equation (20). Thus, (ue, uℓ) is a reduced for for G.

Step 2. Fix an induced Bayesian game BG(Te, Tℓ, β). By Lemma B.13, it suffices to show that

BG(Te, Tℓ, β) has a unique BE. We show that the strategy profile σ̂ = (σ̂e, σ̂ℓ) given by Equations

(21) and (22) is the unique Bayesian equilibrium of (Te, Tℓ, β).
Fix a Bayesian equilibrium σ̃ of the induced Bayesian game. We will show that σ̃ = σ̂. Since

σ̃ = (σ̃e, σ̃ℓ) is a Bayesian equilibrium, then it satisfies the first order conditions

σ̃e(θ, Te) = θ + α
∑
T ′
ℓ∈Tℓ

σℓ(T
′
ℓ) · βe(θ, Te)(T ′

ℓ) and (23)

σ̃ℓ(Tℓ) =
∑

(θ′,T ′
ℓ)∈Θ×Tℓ

(θ + ασe(θ, Tℓ)) · βℓ(Tℓ)(θ′, T ′
e). (24)

Thus, by Equations (19) and (23),

sup
θ,Te

|σ̂e(θ, Te)− σ̃e(θ, Te)| =
∣∣∣α∑Tℓ∈Tℓ(σ̂ℓ(Tℓ)− σ̃ℓ(Tℓ)) · βe(θ, Te)(Tℓ)

∣∣∣
≤ |α| · sup

Tℓ∈Tℓ
|σ̂ℓ(Tℓ)− σ̃ℓ(Tℓ)|.

Similarly, by Equations (20) and (23),

sup
Tℓ

|σ̂ℓ(Tℓ)− σ̃e(Tℓ)| =
∣∣∣α∑(θ,Te)∈Θ×Te(σ̂ℓ(Tℓ)− σ̃ℓ(Tℓ)) · βℓ(Tℓ)(θ, Te)

∣∣∣
≤ |α| · sup

(θ,Te)∈Θ×Te
|σ̂e(θ, Tℓ)− σ̃e(θ, Tℓ)|.
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Since |α| < 1, the two inequalities above imply that

sup
(θ,Te)∈Θ×Te

|σ̂e(θ, Te)− σ̃e(θ, Te)| = sup
Tℓ∈Tℓ

|σ̂ℓ(Tℓ)− σ̃e(Tℓ)| = 0.

So (σ̃e, σ̃ℓ) = (σ̂e, σ̂ℓ), an the induced Bayesian game (Te, Tℓ, β) has a unique BE.

Step 3. Fix a credible direct mechanism Md and let ϕ the associated ex-ante probability measure

it induces. Write (ρ∗, β∗) for the honest profile. If Md is not informative about f , it follows that

F = f(h̃) ϕ-almost surely. Hence,

Ue(ρ
∗|, θ, {∅}, β∗) =Πs

e(θ) + EYe(θ|Md, σ∗), and

Uℓ(ρ
∗|{∅}, β∗) =Πs

ℓ + EYℓ(θ|Md, σ∗).

where, Πs
e(θ) =

1
2(θ + αf(ĥ))2 and Πs

ℓ =
1
2

∑
θ∈Θ(θ + αf(ĥ))2 are the agent’s silent payoffs. Thus,

the statistic f is essential for (ue, uℓ).

Proposition B.2. Consider the game G of Section 7.2. In comparison with no information shar-

ing, the layman is strictly better off with full revelation of the state. Moreover, fully revealing the

state increases utilitarian welfare if and only if α ∈ (1−
√
2, 1).

Proof. We use the reduced form (ue, uℓ) found in Proposition 7.5 to compute the agents’ ex ante

utility under full revelation of the state and no information sharing.

Write b = E[Θ] and d = (1 + α)
∑∞

k=1 α
2k = (1− α)−1. Note that 1 + αd = d. Notice also that

Eif(h
θ
i ) = dθ and Eif(h̃i) = db. Write FRi (resp. NIi) for the expected utility under full revelation

(resp. no information) for agent i.

The ex ante expert’s benefit from information sharing is

FRe −NIe = E[(Θ+ αdΘ)2]− E[(Θ+ αdb)2]

= Var[Θ+ αdΘ]−Var[Θ+ αdb]

= ((1 + αd)2 − 1)Var[Θ]

= (d2 − 1)Var[Θ],

where the second equality follows from the fact that (E[Θ + αdb])2 = (E[Θ + αdΘ])2, and the

last equality follows from the fact that 1 + αd = d. Notice that the expert gets better off with

information sharing only if d = (1− α)−1 ≥ 1, i.e., only if α ≥ 0.

The ex ante layman’s benefit from information sharing is

FRℓ −NIℓ = E[(dΘ)2]− E[(db)2]

= Var[(dΘ)2]−Var[(db)2]

= d2Var[Θ2],

where the second equality follows form the fact that (E[dΘ])2 = (E[db])2.
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Notice that this value is always positive. Hence, irrespectively of α, the layman gets positive

benefits from information sharing. Notice that information sharing increases the agents’ total

welfare if and only if 2d2 − 1 ≥ 0. Since d2 = (1− α)2 > 0 this is equivalent to α ∈ (1−
√
2, 1) as

desired.

B.5 Proofs from Section 8

Lemma B.13. Consider a set of finite type structures S, (Se, Sℓ, be, bℓ), where (i) each Si ⊆ R is

finite and (ii) be : Θ × Se → ∆(Sℓ) and bℓ : Sℓ → ∆(Θ × Se) are belief maps. If, for each type

structure in S, the associated Bayesian game (G,S) has a unique Bayesian equilibrium, then

(i) G has a reduced form (ue, uℓ), and

(ii) for each reduced form (ue, uℓ), RF = {(ue, uℓ)} is a reduced-form representation for G.

The proof of Lemma B.13 require some definitions. Say hi ∈ Hi is a feasible if there is a finite

hierarchy set Me ×Mℓ ⊊ He ×Hℓ such that hi ∈ Mi and Me ×Mℓ is belief closed. Write H i for

the set of feasible hierarchies of beliefs. Notice if Me ×Mℓ and M
′
e ×M ′

ℓ are both belief closed sets

and their interception is non empty, then (Me ∩Mℓ)
′ × (Me ∩Mℓ)

′ is also belief closed. Hence, for

each hi ∈ H i, there is a finite belief-closed set Me ×Mℓ with hi ∈ Mi, such that for each other

belief closed set M ′
e ×M ′

ℓ such that hi ∈ M ′
i , it follows that Me ×Mℓ ⊆ M ′

e ×M ′
ℓ. Call such set

Me ×Mℓ the hierarchy set generated by hi.

Proof of Lemma B.13.

Part (i). The proof first defines belief-based utility functions (ue, uℓ) and then it shows that (ue, uℓ)

is a reduced form for G.

Start with the definition of ue. Fix (θ, he) ∈ Θ×He. If he /∈ He, set ue(θ, he) = 0. If he ∈ He,

we will define ue(θ, he) as the expected payoff of a Bayesian equilibrium of an induced Bayesian

game we will construct. To do so, let Me×Mℓ ⊊ He×Hℓ be the hierarchy set generated by he and

let Md = ((Yi,Mi) : i ∈ {e, ℓ},m) with Ye = Yℓ = {0}. (The choice of m is irrelevant). Recall that

T d
e [θ, he] = {θ} × {he} ×Mℓ × Y is the expert’s terminal information set associated with report

θ and hierarchy-message he. Likewise, recall that T d
ℓ [hℓ] = Θ ×Me × {hℓ} × Y is the layman’s

terminal information set associated with hierarchy-message hℓ. Attach to the induced bayesian

game straight forward beliefs β∗. So, the associated hierarchy mappings satisfy δ∗e(θ, T
d
e [θ, he]) = he

and δ∗ℓ (Tℓ[hℓ]) = hℓ for each (θ, he, hℓ) ∈ Θ×Me ×Hℓ. (See Lemma B.1.) Notice BG(Md, β∗) has

finite sets of types. Hence, by assumption, the induced Bayesian game BG(Md, β∗) has a unique

Bayesian equilibrium σ̂. Set ue(θ, he) = Πe(σ̂|θ, T d
e [θ, he]).

We now define uℓ. Fix hℓ ∈ Hℓ. If hℓ /∈ Hℓ set uℓ(hℓ) = 0. If hℓ ∈ Hℓ, let Me × Mℓ ⊊
He × Hℓ the hierarchy generated by hℓ and construct the induced Bayesian game BG(Md, β∗)

in an analogous way as above. Let σ̂ the unique Bayesian equilibrium of BG(Md, β∗) and set

uℓ(hℓ) = Πℓ(σ̂|θ, T d
ℓ [hℓ]).
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We now show that (ue, uℓ) is a reduced form. Notice, by Proposition B.1 it suffices to show

that for each credible direct mechanism Md = ((Yi,Mi) : i ∈ {e, ℓ},m) with Ye = Yℓ = {0} and

each straight forward beliefs β∗, there is a Bayesian equilibrium σ̂ of BG(Md, β∗) such that

(1) For each (θ, θ′, he) ∈ Θ×Θ×Me, ue(θ, he) = Πe(σ̂|θ, T d
e [θ

′, he], β
∗
e ).

(2) For each hℓ ∈Mℓ, uℓ(hℓ) = Πℓ(σ̂|T d
ℓ [θ, hℓ], β

∗
ℓ ).

We show (1) by contradiction. (Showing (2) follows from an analogous argument). Assume (1)

is not satisfied. That is, that there are some (θ, θ′, he) ∈ Θ × Θ × Me such that ue(θ, he) ̸=
Πe(σ̂|θ, T d

e [θ
′, he], β

∗
e ). Let M e×M ′

ℓ be the hierarchy set induced by he and notice that M e×M ℓ ⊆
Me ×Mℓ. Hence, The set M e ×M ℓ induces a “smaller” direct mechanism Md = ((Yi,Mi) : i ∈
{e, ℓ},m) with Ye = Yℓ = {0}. (the protocol m is irrelevant). Write β∗ for the straight-forward

beliefs associated to Md and note that for each (θ, θ′, he, hℓ) ∈ Θ×Θ×M e ×M ℓ,

β∗e (θ, T
d
e [θ

′, he])(T
d
ℓ [hℓ]) = β∗

e
(θ, T d

e [θ
′, he])(T

d
ℓ [hℓ]), and (25)

β∗ℓ (T
d
ℓ [hℓ])(T

d
e [θ, he]) = β∗

ℓ
(T d

ℓ [hℓ])(T
d
e [θ, he]). (26)

Notice that the equilibrium σ̂ = (σ̂e, σ̂ℓ) induces a strategy profile (σ̂e, σ̂ℓ) of the “smaller”

Bayesian equilibrium BG(Md, β∗) defined by restricting σ̂e and σ̂ℓ to the information sets of

BG(Md, β∗). More specifically, for each (θ, θ′, he, hℓ) ∈ Θ×Θ×M e ×M ℓ,

σ∗e(θ, T
d
e [θ

′, he]) = σ∗e(θ, T
d
e [θ

′, he]), and

σ∗ℓ (T
d
ℓ [hℓ]) = σ∗ℓ (T

d
ℓ [hℓ]).

Note, since β
e
satisfies Equations (25) and (26) it follows that the agents get the same expected

payoffs under σ̂ in BG(Md, β) than under σ̂ in BG(Md, β). More specifically,

Πe(σ̂|θ, T d
e [θ

′, he], β
∗
e
) = Πe(σ̂|θ, T d

e [θ
′, he], β

∗
e ), and

Πℓ(σ̂|θ, T d
e [θ

′, he], β
∗
ℓ
) = Πe(σ̂|θ, T d

e [θ
′, he], β

∗
ℓ ).

Moreover, since σ̂ is an equilibrium inBG(Md, β∗) it follows that σ̂ is an equilibrium inBG(Md, β∗).

However, by uniqueness of equilibria of BG(Md, β∗) and by construction of ue, for each (θ, θ′, he) ∈
Θ×Θ×Me,

ue(θ, he) = Πe(σ̂|θ, T d
e [θ

′, he], β
∗
e ) = Πe(σ̂|θ, T d

e [θ
′, he], β

∗
e ),

which leads to a contradiction. Hence (ue, uℓ) is a reduced form of G.

Part (ii). Fix a mechanism M = (·, Te, Tℓ) and a PBE (σ, β) of a supergame (M, G). Let ρ be the

induced strategy in the psychological game (M, ue, uℓ). We show that (ρ, β) is a PBE of (M, ue, uℓ)

that is payoff equivalent to (σ, β).

Let σ̂ be the unique Bayesian equilibrium of the induced Bayesian game (Te, Tℓ, β). Since (σ, β)
is a PBE of (M, G) and BG(Te, Tℓ, β) has a unique Bayesian equilibrium, then σ must induce σ̂.

Otherwise, (σ, β) does not satisfies sequential rationality at the terminal information sets Te and

Tℓ. Write ρ for the strategy that σ induces in the psychological game (M, ue, uℓ).
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First we show payoff equivalence for the expert. Notice that for each θ ∈ Θ,

Ue(ρ | θ, ∅, β) =
∑
Te∈Te

[ue(θ, δe(θ, Te)) + γe(Te)] · P(Te | ρ, θ, ∅, βe)

=
∑
Te∈Te

[Πe(σ̂ | θ, Te, βe) + γe(Te)] · P(Te | ρ, θ, ∅, βe)

= Ue(σ | θ, ∅, β),

where the second equality follows from the fact that σ̂ is the BE associated to (ue, uℓ). Moreover,

EYe(θ | M, σ, βe) = EYe(θ | M, ρ, βe).

Using an analogous argument, for each Iℓ ∈ Iℓ, Uℓ(σ | Iℓ, β) = Uℓ(ρ | Iℓ, β) and EYℓ(M, σ, βe) =

EYℓ(M, ρ, βe). Hence, (σ, β) and (ρ, β) are payoff equivalent.

It suffices to show that (ρ, β) is a perfect Bayesian equilibrium of (M, ue, uℓ). Notice that β is

consistent with ρ, so β is also consistent with σ. Fix a strategy ρ′e for the expert in the supergame

and let σ′e the supergame’s strategy induced by (ρ′e, σ̂e). Then,

Ue(ρ | θ, Ie, β) = Ue(σ | θ, Ie, β)

≥ Ue(σ
′
e, σℓ | θ, Ie, β),

=
∑
Te∈Te

[Πe(σ̂ | θ, Te, βe) + γe(Te)] · P(Te | (ρ′e, ρℓ), θ, Ie, βe)

=
∑
Te∈Te

[ue(θ, δe(θ, Te)) + γe(Te)] · P(Te | (ρ′e, ρℓ), θ, Ie, βe)

= Ue(ρ
′
e, ρℓ | θ, Ie, β),

where the inequality follows from the fact that (σ, β) is a PBE of (M, G). An analogous argument

establishes that for each strategy ρ′ℓ and each information set Iℓ ∈ Iℓ, it follows that Uℓ(σ | Iℓ, β) ≥
Uℓ(σe, σ

′
ℓ | Iℓ, β). So, sequential rationality is satisfied and (ρ, β) is a PBE of the (M, ue, uℓ).

The second existence result requires the introduction of some notation. Say that the expert

is inactive in G = ((Ai, πi) : i ∈ {e, ℓ}) if Ae is a singleton. For notational simplicity, write

πi : Θ×Aℓ → R for the agents payoffs and write πℓ(µ
1
ℓ , aℓ) =

∑
θ∈Θ πℓ(θ, aℓ) ·µ1ℓ (θ) for the layman’s

expected payoff of a given action and a given first-order belief. In addition, write

Q(G) =

{
q : ∆(Θ) → ∆(Aℓ) : Supp (q(µ

1
ℓ )) ⊆ argmax

Aℓ

πℓ(µ
1
ℓ , aℓ) for each µ

1
ℓ ∈ ∆(Θ)

}
,

for the optimal layman’s plans contingent on his first-order beliefs. Finally, say that the belief-based

utilities (ue, uℓ) are induced by q ∈ Q(G) if

uℓ(µ
1
ℓ , µ

2
ℓ , ...) =

∫
Aℓ

πℓ(µ
1
ℓ , aℓ) dq(µ

1
ℓ ), and

ue(θ, µ
1
e, µ

2
e, ...) =

∫
∆(Θ)

∫
Aℓ

πe(θ, aℓ) dq(µ
1
ℓ ) dµ

2
e.

The following lemma provides an existence result for games where the expert is inactive.

Lemma B.14. Suppose that the expert is inactive in G and Q(G) ̸= ∅. Then, the following holds:

(i) If (ue, uℓ) is induced by q ∈ Q(G), then (ue, uℓ) is a reduced form for G.
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(ii) The set RF = {(ue, uℓ) : (ue, uℓ) is induced by some q ∈ Q(G)} is a reduced form representa-

tion for G.

The proof of B.14 requires the introduction of some notation and Lemma B.15 below. Fix a

credible direct mechanism Md = ((Yi,Mi, i ∈ {e, ℓ}),m). Write Mk
i = proj∆(Dk

i )
(Mi) for the set of

k-order beliefs of the setMi, and for each µki ∈Mk
i , writeM

k
i [µ

k
i ] = {hi ∈Mi : proj∆(Dk

i )
(hi) = µki }

for the set of hierarchy messages in Mk
i with k-order belief µki .

Lemma B.15. Let G be a game with an inactive expert. Fix a credible direct mechanism Md =

((Mi, Yi : i ∈ {e, ℓ})) and (ue, uℓ) belief-based utility functions induced by q ∈ Q(G). Then, under

(ue, uℓ) the agents value of Md is given by:

(i) Ve(θ, θ
′|Md) =

∑
µ1
ℓ∈M

1
ℓ

(∫
Aℓ

πℓ(θ, ae) q(µ
1
ℓ )

)
·margMℓ

m(θ′)(M1
ℓ [µ

1
ℓ ]) + EYe(θ′|Md, ρ∗).

(ii) Vℓ(Md) =
∑

µ1
ℓ∈M

1
ℓ

∑
θ∈Θ

(∫
Aℓ

πℓ(θ, ae) q(µ
1
ℓ )

)
·margΘ×Mℓ

ϕ({θ} ×M1
ℓ [µ

1
ℓ ]) + EYℓ(Md, ρ∗).

Proof. Fix q ∈ Q(G). We will compute the agents’ value of Md for psychological payoffs (ue, uℓ).

First, we compute the expert’s value of Md. By credibility, for each (θ, hℓ) ∈ Θ×Mℓ[µ
1
ℓ ],∑

he∈Me

∑
yℓ∈Yℓ

ηℓ(hℓ)(θ, he) ·marg Yℓ×Mℓ
ϕ(yℓ, hℓ) =

∑
he∈Me

∑
yℓ∈Yℓ

margΘ×Me×Yℓ×Mℓ
ϕ(θ, he, yℓ, hℓ),

which implies

µ1ℓ (θ) ·margMℓ
ϕ(hℓ) = margΘ×Mℓ

ϕ(θ, hℓ). (27)

So, the value of Md for the layman is given by

Vℓ(Md) =
∑

µ1
ℓ∈M1

ℓ

∑
hℓ∈Mℓ[µ1

ℓ ]

uℓ(hℓ) ·margMℓ
ϕ(hℓ) + EYℓ(Md, ρ∗)

=
∑

µ1
ℓ∈M1

ℓ

∑
hℓ∈Mℓ[µ1

ℓ ]

∑
θ∈Θ

(∫
Aℓ

πℓ(θ, ae) q(µ
1
ℓ)

)
· µ1

ℓ(θ) ·margMℓ
ϕ(hℓ) + EYℓ(Md, ρ∗)

=
∑

µ1
ℓ∈M1

ℓ

∑
θ∈Θ

(∫
Aℓ

πℓ(θ, ae) q(µ
1
ℓ)

) ∑
hℓ∈Mℓ[µ1

ℓ ]

margΘ×Mℓ
ϕ(θ, hℓ) + EYℓ(Md, ρ∗)

=
∑

µ1
ℓ∈M1

ℓ

∑
θ∈Θ

(∫
Aℓ

πℓ(θ, ae) q(µ
1
ℓ)

)
·margΘ×Mℓ

ϕ({θ} ×M1
ℓ [µ

1
ℓ ]) + EYℓ(Md, ρ∗),

where the second equality follows from definition of ue, and the third from Equation (27).

Now we compute the expert’s value of Md. By credibility, for each (θ, he) ∈ Θ×Me[µ
2
e],∑

hℓ∈Mℓ[µ
1
ℓ ]

∑
ye∈Ye

ηe(he)(hℓ) ·margΘ×Me×Ye
ϕ(θ, he, ye) =

∑
hℓ∈Mℓ[µ

1
ℓ ]

∑
ye∈Ye

margΘ×Me×Ye×Mℓ
ϕ(θ, he, ye, hℓ),

which implies

µ2e(µ
1
ℓ ) ·margΘ×Mℓ

ϕ(θ, he) = margΘ×Me×Mℓ
ϕ({(θ, he)} ×M1

ℓ [µ
1
ℓ ]).
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Then, since m(θ)(y, h) · µ(θ) = ϕ(θ, y, h) and µ(θ) ̸= 0,

µ2e(µ
1
ℓ ) ·margMℓ

m(θ)(he) = margMe×Mℓ
m(θ)({he} ×M1

ℓ [µ
1
ℓ ]). (28)

Hence, the expert’s value of reporting θ′ when state is θ in Md is

Ve(θ, θ
′|Md) =

∑
µ2
e∈M2

e

∑
he∈Me[µ2

e]

ue(θ, he) ·margHe
m(θ′)(he) + EYe(θ′|Md, ρ∗)

=
∑

µ2
e∈M2

e

∑
he∈Me[µ2

e]

∑
µ1
ℓ∈M1

ℓ

(∫
Aℓ

πe(θ, aℓ) dq(µ
1
ℓ)

)
· µ2

e(µ
1
ℓ) ·margHe

m(θ′)(he) + EYe(θ′|Md, ρ∗)

=
∑

µ1
ℓ∈M1

ℓ

(∫
Aℓ

πe(θ, aℓ) dq(µ
1
ℓ)

) ∑
µ2
e∈M2

e

∑
he∈Me[µ2

e]

·µ2
e(µ

1
ℓ) ·margHe

m(θ′)(he) + EYe(θ′|Md, ρ∗)

=
∑

µ1
ℓ∈M1

ℓ

(∫
Aℓ

πe(θ, aℓ) dq(µ
1
ℓ)

) ∑
µ2
e∈M2

e

∑
he∈Me[µ2

e]

margHe×Hℓ
m(θ′)({he} ×M1

ℓ [µ
1
ℓ ]) + EYe(θ′|Md, ρ∗)

=
∑

µ1
ℓ∈M1

ℓ

(∫
Aℓ

πℓ(θ, ae) q(µ
1
ℓ)

)
·margMℓ

m(θ′)(M1
ℓ [µ

1
ℓ ]) + EYe(θ′|Md, ρ∗),

where the second equality follows from definition of uℓ, and the third from Equation (28).

Proof of Lemma B.14. First We show (i). Fix a mechanism M = (·, Te, Tℓ) and some β ∈
Conv(M) that induces (δe, δℓ). Consider the induced Bayesian game BG(Te, Tℓ, β). Define the

strategy profile σ̂ of the induced Bayesian game by σ̂(Tℓ) = q(δ1ℓ (Tℓ)). (Note, the expert is inactive.)

Since q is optimal, it follows that σ̂ is a Bayesian equilibrium. Moreover, by construction, for

each Tℓ ∈ Tℓ, Πℓ(σ̂|Tℓ, βℓ) = uℓ(δℓ(Tℓ)). Similarly, for each (θ, Te) ∈ Θ × Te, Πe(σ̂|θ, Te, βe) =

ue(θ, δe(θ, Te)).

Now we show (ii). Fix an individually rational PBE (σ, β) of (M, G) and let Md be the extended

direct mechanism induced by (σ, β). We will show that there is an optimal contingent plan q ∈ Q

such that (σ, β) is equivalent to each honest strategy profile (ρ∗, β∗) of the psychological game

(Md, ue, uℓ).

First we select q. For each posterior µ1ℓ ∈ M1
ℓ write Z[µ1ℓ ] = {z ∈ Z : δ1ℓ (Tℓ[z]) = µ1ℓ ]}. Notice

that, since (σ, β) is a PBE, δ1ℓ (Tℓ) = µ1ℓ implies Supp (σℓ(Tℓ)) ⊆ argmaxAℓ
πℓ(µ

1
ℓ , aℓ). Thus, there

is some optimal contingent plan q ∈ Q(G) such that for each µ1ℓ ∈M1
ℓ ,

q(µ1ℓ ) · P(Z[µ1ℓ ]|σ) =
∑

z∈Z[µ1
ℓ ]

σℓ(Tℓ[z]) · P(z|σ). (29)

So, for each posterior µ1ℓ ∈ M1
ℓ , q(µ

1
ℓ ) is the expected layman’s strategy conditional on the set

Z[µ1ℓ ].

Fix θ, θ′ ∈ Θ. To show equivalence of (σ, β) and (ρ∗, β∗) it suffices to show that there is some
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expert’s strategy σ′e such that

Ve(θ, θ
′|Md) = Ue(σ

′
e, σℓ|θ, βe), (30)

Ve(θ, θ|Md) = Ue(σ|θ, βe), and (31)

Vℓ(Md) = Ue(σ|βℓ). (32)

To see this suffices, note that the fact that (σ, β) is an individually rational PBE and Equations

(30)-(32) imply that Md is BIC and IR. Since transfers are also equivalent, the result follows from

Proposition 4.2.

We now construct such strategy σ′e. Set σ′e(·)(Ie) = σe(θ
′)(Ie) for each Ie ∈ Θ × (Ie\Te) and

σ′e(·)(Te) = σe(·)(Te) for each Te ∈ Te. That is, σ′e is a strategy profile such that the expert mimics

an expert with state θ′ in the mechanism M but plays according to σ in G.

To show Equation (30), we first show some identities. Notice that for each θ ∈ Θ and each

Tℓ ∈ Tℓ[µ1ℓ ],
µ(θ) · P(Tℓ|θ, σ) = P(θ, Tℓ|σ) = µ1ℓ (θ) · P(Tℓ|σ), (33)

where the first equality follows from definition and the second from the fact that the layman has

posterior µ1ℓ (θ) of state θ at Tℓ. By adding over Tℓ ∈ Tℓ[µ1ℓ ], it follows that

µ(θ) · P(Z[µ1ℓ ]|θ, σ) = µ1ℓ (θ) · P(Z[µ1ℓ ]|σ). (34)

Thus, if P(Z[µ1ℓ ]|θ, σ) > 0, then µ1ℓ (θ) > 0 and P(Z[µ1ℓ ]|σ) > 0. Moreover,

∑
Tℓ∈Tℓ[µ1

ℓ ]

σℓ(Tℓ) ·
P(Tℓ|θ, σ)
P(Z[µ1

ℓ ]|θ, σ)
=

∑
Tℓ∈Tℓ[µ1

ℓ ]

σℓ(Tℓ) ·
µ(θ) · µ1

ℓ(θ) · P(Tℓ|σ)
µ(θ) · µ1

ℓ(θ) · P(Z[µ1
ℓ ]|σ)

=
∑

Tℓ∈Tℓ[µ1
ℓ ]

σℓ(Tℓ) ·
P(Tℓ|σ)
P(Z[µ1

ℓ ]|σ)

= q(µ1
e),

where the first equality follows form Equations (34) and (33) and the second from Equation (29).

So,
∑

Tℓ∈Tℓ[µ1
ℓ ]
σℓ(Tℓ) · P(Tℓ|θ, σ) = q(µ1e) · P(Z[µ1ℓ ]|σ). This implies

∑
Tℓ∈Tℓ[µ1

ℓ ]

(∫
Aℓ

πe(θ, aℓ) dσℓ(Tℓ)

)
· P(Tℓ|θ, σ) =

(∫
Aℓ

πe(θ, aℓ) dq(µ
1
ℓ )

)
· P(Z[µ1ℓ ]|θ, σ). (35)

Notice, by construction σ′ mimics θ in the mechanism. Hence, for each Tℓ ∈ Tℓ and each θ ∈ Θ,
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P(Tℓ|θ, (σ′e, σℓ)) = P(Tℓ|θ′, σ). Hence,

Ue(σ
′
e, σℓ|θ) =

∑
µ1
ℓ∈M

1
ℓ

∑
Tℓ∈Tℓ[µ1

ℓ ]

(∫
Aℓ

πe(θ, aℓ) dσℓ(Tℓ)

)
· P(Tℓ|θ′, σ) +

∑
Te∈Te

γe(Te) · P(Te|θ′, σ)

=
∑

µ1
ℓ∈M

1
ℓ

(∫
Aℓ

πe(θ, aℓ) dq(µ
1
ℓ )

)
· P(Z[µ1ℓ ]|θ′, σ) + EYe(θ′|M, σ)

=
∑

µ1
ℓ∈M

1
ℓ

(∫
Aℓ

πℓ(θ, ae) q(µ
1
ℓ )

)
·margMℓ

m(θ′)(M1
ℓ [µ

1
ℓ ]) + EYe(θ′|Md, ρ∗)

= V(θ, θ′|Md),

where the second equality follows from Equation (35), the third by construction of Md, and the

fourth from Lemma B.15. Hence, Equation (30) is satisfied and an analogous argument shows

Equation (31).

To show, (32), notice that

Uℓ(σ) =
∑
θ∈Θ

∑
µ1
ℓ∈M

1
ℓ

∑
Tℓ∈Tℓ[µ1

ℓ ]

(∫
Aℓ

πℓ(θ, aℓ) dσℓ(Tℓ)

)
· P({θ} × Tℓ|σ) +

∑
Tℓ∈Tℓ

γℓ(Tℓ) · P(Tℓ|σ)

=
∑
θ∈Θ

∑
µ1
ℓ∈M

1
ℓ

(∫
Aℓ

πℓ(θ, aℓ) dq(µ
1
ℓ )

)
· P({θ} × Z[µ1ℓ ]|σ) + EYℓ(M, σ)

=
∑
θ∈Θ

∑
µ1
ℓ∈M

1
ℓ

(∫
Aℓ

πℓ(θ, ae) q(µ
1
ℓ )

)
·margΘ×Mℓ

ϕ({θ} ×M1
ℓ [µ

1
ℓ ]) + EYℓ(Md, ρ∗)

= Vℓ(Md),

where the third equality follows from construction of Md, and the last from Lemma B.15.

Proposition B.3. The game G of the game from Example 8.1 has no reduced form representation.

Proof. First notice that there is a supergame (M, G) and a PBE thereof that provides expected pay-

offs of (5, 5). To see this, defineM as follows: Chance selects an element of {(ae, aℓ), (ae, aℓ), (ae, aℓ)}
with equal probability. Once chance selects (ae, aℓ) each agent i privately observes their component

ai. There are no transfers. Let (σ, β) be a consistent profile such that follow the mechanism’s rec-

ommendation. Notice that no agent has incentives to deviate and thus, (σ, β) is a PBE of (M, G)

and provides expected payoffs of 5 to each agent.

Since Θ = {θ} is a singleton, the belief structure He × Hℓ = {hθe} × {hθℓ} is also a singleton.

Thus, to show that G has not reduced form representation, it suffices to show that (ue, uℓ) with

(ue(θ, h
θ
e), uℓ(h

θ
ℓ)) = (5, 5) is not a reduced form. We show this by contradiction.

Assume that (ue, uℓ) is a reduced form with (ue(θ, h
θ
e), uℓ(h

θ
ℓ)) = (5, 5). Fix a mechanism

M = (·, Te, Tℓ) with Te = {Te} and Tℓ = {Tℓ} both singletons, and β ∈ Cons(M). Consider the
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Bayesian game BG(Te, Tℓ, β). Since (ue, uℓ) is a reduced form, there is a Bayesian equilibrium σ̃ of

BG(Te, Tℓ, β) such that:

(i) Πe(σ̃ | θ, Te, βe) = ue(θ, h
θ
e) = 5.

(ii) Πℓ(σ̃ | Tℓ, βℓ) = uℓ(h
θ
ℓ) = 5.

Since Te and Tℓ are both singletons, this implies that G has a Bayesian equilibrium with payoffs

(5, 5), leading to a contradiction.

Lemma B.16. The game G from Example 8.2 has a reduced form representation RM = {(ue, uℓ)}
such that ue is not supermodular in common degenerate beliefs and is not submodular with respect

to any acute and essential statistic f . Moreover, G is not perfectly revealing or concealing.

Proof. Analogously to Proposition 7.2, there is a reduced form representation RF = {(ue, uℓ)} such

that

ue(θ, he) = −
∫

hℓ∈Hℓ

(
b(θ)− Eθ1ℓ (hℓ)

)2
dηe(he), and

uℓ(hℓ) = −
∑
θ∈Θ

(
θ − Eθ1ℓ (hℓ)

)2
margΘηℓ(hℓ)(θ).

Since b(·) is decreasing in some parts, the function ue does not satisfies cyclical monotonicity

on degenerate beliefs (and hence is not supermodular on degenerate beliefs). To see this, write

g(θ, θ′) = ue(θ, h
θ′
e ) = −(b(θ)− θ′)2 and consider the cycle θ = (2, 3, 2). Then,

L(g, θ) = g(2, 2)− g(2, 3) + g(3, 3)− g(2, 3) = −1 + 0− 1 + 0 < 0.

Hence, ue does not satisfies cyclical monotonicity on degenerate beliefs. Moreover, this implies that

G is not perfectly revealing. (See Theorem 8.1.)

To show that ue does not satisfy the supermodularity condition, it suffices to show that G is not

concealing. (See Theorem 5.2.). Thus, it suffices to show that there are mechanisms and equilibria

that affect the action of the layman, and therefore, the agent’s payoffs. To see this, consider the

mechanism M where the expert selects on of two (public) cheap talk messages m and m. Consider

the strategy profile σ of the supergame (M, G) where the expert reveals if θ = 1 or θ ∈ {2, 3}
and the layman optimally reacts. That is, σ = (σe, σℓ) is the (pure) strategy profile such that

σe(1) = m, σe(2) = σe(3) = m, σℓ(m) = 1, and σℓ(m) = 2.5. Let β be beliefs with σ. Notice that

no agent has incentives to deviate and therefore (σ, β) is a PBE.

Proof of Theorem 8.1. If. Fix (ue, uℓ) ∈ RF so that g(θ, θ′) = ue(θ, h
θ′
e ) satisfies cyclical mono-

tonicity. Then there is z : Θ → R such that g(θ, θ) + z(θ) ≥ g(θ, θ′) + z(θ′). (See Theorem 4.2.1 in

Vohra [2011].) Thus, the construction of Md from Theorem 5.1 can be applied to this environment

and, as a consequence, G is perfectly revealing.

Only if. Assume G is perfectly revealing. Then, there is a mechanism M and a PBE (σ, β) of the

supergame (M, G) where the layman learns the state. Since RF is a reduced form representation
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of G, there is a reduced-form (ue, uℓ) ∈ RF and a credible, BIC direct mechanism Md for (ue, uℓ)

with a set of message profiles M = CDBe×CDBℓ. (See Proposition 4.2) write g(θ, θ′) = ue(θ, h
θ′
e ),

z(θ) =
∑

ye∈Ye
yemarg Ye

m(θ)(ye) and note that V (θ, θ′|Md) = g(θ, θ′) + z(θ′). Thus, since Md is

BIC, it follows that g(θ, θ) + z(θ) ≥ g(θ, θ′) + z(θ′). Hence, Theorem 4.2.1 in Vohra [2011] implies

that g satisfies cyclical monotonicity.

To show Proposition 8.1, we introduce some notation. Fix the set of states Θ = {0, 1} and

a direct mechanism Md. For each θ ∈ Θ write νθ ∈ ∆([0, 1]) for the distribution of researcher’s

posteriors beliefs that the subject is of type 1 contingent on a report θ. That is, for each measurable

B ⊆ [0, 1], νθ(B) = margMℓ
m(θ)(p−1(B)). Notice, since p is measurable, νθ is well defined.

Lemma B.17. Fix a credible direct mechanism Md with associated ex-ante measure ϕ. Then

(i) margΘ×Mℓ
ϕ(1, hℓ) = p(hℓ) ·margMℓ

ϕ(hℓ).

(ii) margΘ×Mℓ
ϕ(1, hℓ) = (1− p(hℓ)) ·margMℓ

ϕ(hℓ).

Proof. We show (i). (Showing (ii) follows from an analogous argument.)

margΘ×Mℓ
ϕ(θ, hℓ) =

∑
he∈Me

∑
yℓ∈Yℓ

margΘ×M×Yℓ
ϕ(θ, he, hℓ, yℓ)

=
∑

he∈Me

∑
yℓ∈Yℓ

margΘ×M×Yℓ
ϕ(θ, he, hℓ, yℓ)

=
∑

he∈Me

∑
yℓ∈Yℓ

p(hℓ) ·margΘ×M×Yℓ
ϕ(he, hℓ, yℓ)

= p(hℓ) ·margMℓ
ϕ(hℓ),

where the third equality follows from credibility.

Lemma B.18. Fix a credible direct mechanism Md. Then, the measure ν1 first-order stochastic

dominates ν0. That is, for each k ∈ [0, 1], ν1[0, k] ≤ ν0([0, k]).

Proof. Fix k ∈ [0, 1]. Assume k ≤ µ(1). (The case k > µ(1) is analogous.) Write Mℓ = {hℓ ∈ Mℓ :

p(hℓ) ∈ [0, k]}. Notice that∑
hℓ∈Mℓ

margΘ×Mℓ
ϕ(θ, hℓ) =

∑
hℓ∈Mℓ

µ(θ) ·margMℓ
m(θ)(hℓ) = µ(θ) · νθ([0, k]),

Thus, to show ν1([0, k]) ≤ ν0([0, k]), it suffices to show that

µ(0) ·
∑

hℓ∈Mℓ

margΘ×Mℓ
ϕ(1, hℓ) ≤ µ(1) ·

∑
hℓ∈Mℓ

margΘ×Mℓ
ϕ(0, hℓ). (36)

Notice, k ≤ µ(1) implies∑
hℓ∈Mℓ

p(hℓ) ·margMℓ
ϕ(hℓ) ≤

∑
hℓ∈Mℓ

µ(1) ·margMℓ
ϕ(hℓ).

Since µ(0) = 1− µ(1), this holds if and only if∑
hℓ∈Mℓ

µ(0) · p(hℓ) ·margMℓ
ϕ(hℓ) ≤

∑
hℓ∈Mℓ

µ(1) · (1− p(hℓ)) ·margMℓ
ϕ(hℓ).

66



Hence, by Lemma B.17,∑
hℓ∈Mℓ

µ(0) ·margΘ×Mℓ
ϕ(1, hℓ) ≤

∑
hℓ∈Mℓ

µ(1) ·margΘ×Mℓ
ϕ(0, hℓ).

So, Equation (36) holds.

Proof of Proposition 8.1. First we show (i). For simplicity we assume that the outside options

of the agents are both zero. Notice that Eue is weakly supermodular at common degenerate beliefs

if and only if g satisfies weakly increasing differences on Θ × {0, 1}. Hence, the construction of

Theorem 5.1 holds. There is a credible, BIC, IR direct mechanism where the layman learns the

state under the honest equilibrium.

Now we show (ii). By the revelation principle in Rivera Mora [2021b]. It suffices to analyze

only credible, BIC, and IR mechanisms. Fix a credible, BIC and IR direct mechanism Md and

let νθ ∈ ∆([0, 1]) be such that νθ([0, k]) = m(θ)({hℓ ∈ Hℓ : p(hℓ) ≤ k}). Notice that BIC implies

V(1, 1|Md)− V(1, 0|Md) ≥ 0 ≥ V(0, 1|Md)− V(0, 0|Md). Thus,∫ 1

0
(g(1, p)− g(0, p)) dν1 = V(1, 1|Md)− V(0, 1|Md)

≥ V(1, 0|Md)− V(0, 0|Md)

=

∫ 1

0
(g(1, p)− g(0, p)) dν0 (37)

Nos, suppose that ν0 ̸= ν1. By Lemma B.18, ν1 first-order stochastically dominates ν0. Moreover,

by strict decreasing differences, ĝ(p) := g(1, p) − g(0, p) is strictly decreasing in p. Thus ν0 < ν1

implies
∫ 1
0 ĝ(p) dν1 <

∫ 1
0 ĝ(p) dν0 (See Border [2001]). This contradicts Equation (37). Therefore,

ν0 = ν1. Write f : H → R given by f(he, hℓ) = p(hℓ). Notice that f is acute. (See Lemma B.5.)

Let F be the random variable associated to f . Since ν0 = ν1, the state θ does not impact the

layman’s posterior. So, Covϕ[F,Θ] = 0 and thus F is equal to the prior value p(h̃ℓ). So, layman’s

posterior is equal to the prior.
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