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Abstract. We propose two general equilibrium (GE) models—quota equilibrium

and tax equilibrium—that incorporate regulatory schemes to control total net

pollution emissions into GE models of the generality and rigor of the Arrow-Debreu

Model. In these models, the government first specifies quotas or taxes on emissions,

then refrains from further action. Equilibrium is defined by the equilibration of supply

and demand, in which consumers maximize preferences and firms maximize profit.

We show the existence of a quota equilibrium. Assume that the only externality

arises from the total net pollution emission, then the quota equilibrium consumption-

production plan is Pareto Optimal among all feasible consumption-production plans

with the same total net emissions. We show that every quota equilibrium can be

realized as a tax equilibrium and vice versa. However, given specified tax rates,

there may be no tax equilibrium consistent with those rates.

1. Introduction

The mitigation of climate change requires the reduction of greenhouse gas emissions.

In the absence of governmental regulation, market mechanisms have proven insufficient

in achieving the necessary reduction. Various regulatory schemes—notably carbon

taxes and cap-and-trade—have been proposed. However, these regulatory schemes

have yet to be incorporated into a general equilibrium model of the generality and

rigor of the Arrow-Debreu Model [AD54]. In this paper, we do so.

Free-disposal equilibrium and non-free-disposal equilibrium are two classical equi-

librium notions and they differ in the resource feasibility constraint. The demand

is allowed to be less than or equal to the supply for free-disposal equilibrium while

non-free-disposal equilibrium notion requires demand to be exactly equal to the supply

for each commodity.1 As pointed out in Hara [Har05], the free-disposal equilibrium

1While Arrow and Debreu [AD54] used free-disposal equilibrium as the equilibrium concept, McKenzie
[McK81] used the non-free-disposal equilibrium as the equilibrium concept. See also Bergstrom
[Ber76], Hart and Kuhn [HK75] and Polemarchakis and Siconolfi [PS93].
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notion allows bads to be freely disposed and hence trivializes the problem of the

efficient allocation of bads. Florenzano [Flo03] formulated the notion of a disposal

cone, which allows the exogenous specification of certain commodities that can be

freely disposed, and other goods that may not be disposed.

Florenzano’s work is a substantial improvement on the pre-existing literature, but it

has a significant limitation: while one can prohibit the emissions of a given pollutant,

the cone formulation does not allow for setting a positive cap on those emissions. In

Florenzano’s formulation, a “complementary slackness” condition holds: the value

of disposal at equilibrium of any good must be zero. Hence, it is not possible to

charge a positive tax per unit of pollution. The complementary slackness condition is

a consequence of budget balance in the Arrow-Debreu model. If a tax on pollution

generates positive revenues, these revenues would evaporate from the model, leaving

consumers without sufficient to buy the goods produced by the firms.

In this paper, we define a quota equilibrium in which a “government” sets global

limits on pollution emissions, and charges firms for pollution emissions that aggregate

up to those limits. The government also establishes a rebate scheme under which

its revenues from the sale of pollution rights are distributed to consumers. This

distribution ensures that the revenue stays in the model, so that the complementary

slackness condition need no longer hold at equilibrium: firms pay a positive price

to emit pollution. After having specified the pollution limits and the distribution

scheme, the government refrains from further intervention. Equilibrium is determined,

as in the Arrow-Debreu setting, by balancing supply and demand. The limits and the

distribution scheme are exogenous to the market-clearing process.

We show the existence of a quota equilibrium at which the total net pollution

emission is within the pre-specified quota, see Theorem 2.6. The existence is proven

by constructing a closely-related fictitious economy that satisfies the assumptions

of Florenzano’s theorem. Specifically, we introduce a government-sponsored firm,

equipped with a fictitious technology allowing it to costlessly dispose of pollution

up to the set limits. In effect, the government-sponsored firm’s technology allows

it to sell the right to emit pollution. The government also assigns shares of the

government-sponsored firm to the consumers, thus specifying how the revenues from
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the sale of pollution rights will be distributed. Florenzano’s theorem implies the

existence of an equilibrium for the fictitious economy, which is a quota equilibrium of

our real economy.

The desire to regulate pollution emission is driven by an important externality, that

a given amount of total emissions results in a corresponding increase in the average

global temperature. If there are no other externalities in the economy, then a version

of the First Welfare Theorem holds: taking the specified pollution limits as given,

then for any distribution scheme, the resulting equilibrium consumption-production

pair is Pareto optimal among the set of all feasible consumption-production pairs

with the same total net emission, see Theorem 2.12, Corollary 2.14 and ??. For a

fixed distribution scheme, changing the quota alters the welfare of consumers, and

it is possible that the equilibrium consumption-production pair for one quota may

Pareto dominate the equilibrium consumption-production plan for a different quota,

see Example 2.16. But once the government has established the quota, no further

government intervention is required to achieve constrained Pareto Optimality through

market forces. In particular, changing the distribution scheme alters the welfare of

consumers, but it cannot result in a Pareto improvement.

We also define a tax equilibrium, in which the government sets tax rates on the

net emissions of pollutants and a rebate scheme to distribute the tax revenues to

consumers. After having specified the tax rates and the distribution scheme, the

government refrains from further intervention. Equilibrium is determined, again, by

balancing supply and demand. As in the case of quota equilibrium, the tax rates and

the distribution scheme are exogenous to the market-clearing process.

We show that every quota equilibrium can be realized as a tax equilibrium with the

same distribution scheme, and vice versa, see Theorem 3.3 and Theorem 3.4. However,

if we start with a specified tax rate, there may be no tax equilibrium consistent with

that tax rate, see Example 3.5. The specified tax rate ties down the relative price of

pollution against other commodities, and there may not be enough degrees of freedom

remaining to balance supply and demand in the commodities market.

We now conclude the introduction by laying out the plan of the paper for reader’s

convenience. In Section 2, we define a general equilibrium model for finite production
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economies with quota. The existence of a quota equilibrium is presented in Section 2.1,

and we present a version of the First Welfare Theorem establishing the constrained

Pareto optimality of the quota equilibrium consumption-production pair in Section 2.2.

In Section 3, we define a general equilibrium model for finite production economies

with tax. We show that every quota equilibrium can be realized as a tax equilibrium,

and vice versa. However, we show with an example that there need not be a tax

equilibrium consistent with a specified tax rate. Finally, in Appendix A.1, we present

a technical result on the promotion of a quasi-equilibrium to an equilibrium.

2. Production Economy with Quota

In this section, we present a general equilibrium model that is compatible with the

presence of bads and incorporates quota regulatory schemes on total net pollution

emission, and introduce two equilibrium notions known as quota equilibrium and

revenue-maximizing quota equilibrium. In particular, we generalize the usual feasibility

constraints so that, at equilibrium, the total net pollution emission is under the pre-

specfied level. For revenue-maximizing quota equilibrium, we in addition require that

the government maximizes its revenue from quota selling given the equilibrium price.

We show that, given any quota on pollution, there exists a revenue-maximizing quota

equilibrium. Moreover, we establish a welfare theorem for our equilibrium concept:

Every quota equilibrium consumption-production pair is constrained Pareto optimal,

that is, it is Pareto optimal among all feasible consumption-production pairs with

the same total net pollution emission. Finally, as Example 2.16 indicates, while it

is impossible to achieve full optimality for quota equilibrium by setting the quota,

revenue-maximizing quota equilibrium can be full Pareto optimal if the government

sets the right quota.

We start this section by introducing the following characterization of agents’ prefer-

ences as presented in Hildenbrand [Hil74]:

Definition 2.1. The set P of preferences on an Euclidean space R` consists of elements

of the form (X,�), where

• The consumption set X ⊂ R`
≥0 is closed and convex;

• � is a continuous and irreflexive preference relation defined on X.
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For every (X,�) ∈ P and a, b ∈ X, a � b means a is strictly preferred to b.

Note that we require neither completeness nor transitivity of � in Definition 2.1.

A preference � on X is continuous if, for every x, y ∈ X with x � y, there exist

relatively open sets U 3 x and V 3 y such that a � b for all a ∈ U and b ∈ V . The

set P is equipped with the topology of closed convergence, which makes it a compact

metric space as indicated in Hildenbrand [Hil74]. For two elements y1, y2 ∈ R`, we

have (y1, y2) ∈ (X,�) if and only if y1, y2 ∈ X and y1 � y2. A preference P = (X,�)

is convex if {y ∈ X : y � x} is convex for every x ∈ X, and we use PH to denote the

set of convex preference from P. Let ∆ = {p ∈ R` : ‖p‖ =
∑l

k=1 |pk| = 1} be the set

of all prices. Note that we allow for negative prices which can be interpreted as fees

for disposal of bads. We now give the formal definition of a finite production economy

with quota.

Definition 2.2. A finite production economy with quota

E ≡ {(X,Rω, Pω, eω, θ)ω∈Ω, (Yj)j∈J ,Z(m), θ0}

is a list such that

(i) Ω is a finite set of agents and J is a finite set of producers,

(ii) For every agent ω ∈ Ω, its consumption set X(ω) is a non-empty, closed and

convex subset of R`
≥0. We sometimes write Xω for X(ω),

(iii) Yj ⊂ R` is a non-empty subset denoting the production set of producer j ∈ J
with Y =

∏
j∈J Yj,

(iv) the set of allocations is A =
∏

ω∈Ω Xω is equipped with the product topology,

(v) Let Mω = A× Y ×∆×Xω for every ω ∈ Ω. The social preference relation of

agent ω is �ω⊂Mω ×Mω. For m,m′ ∈Mω, we write m �ω m′ to mean that

the agent ω strictly prefers m over m′. The preference map of agent ω is a

map Pω : A× Y ×∆→P(Xω ×Xω) given by

Pω(x, y, p) = {(a, b) ∈ Xω ×Xω|(x, y, p, a) �ω (x, y, p, b)}.

For every ω ∈ Ω, Pω satisfies:

• The range of Pω is P. By Definition 2.1, Pω(x, y, p) can be written as

(Xω,�x,y,ω,p);
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• For x, x′ ∈ A with x(i) = x′(i) for all i 6= ω, Pω(x, y, p) = Pω(x′, y, p) for

all (y, p) ∈ Y ×∆;

• Pω is continuous in the norm topology on A× Y ×∆,

(vi) θ(ω)(j) is agent ω’s share of firm j such that
∑

ω∈Ω θ(ω)(j) = 1 for all ω ∈ Ω.

We sometimes write θωj for θ(ω)(j),

(vii) e ∈ (R`
≥0)Ω is the initial endowment for each agent such that each coordinate

of
∑

ω∈Ω e(ω) is positive,

(viii) let k ≤ ` be some natural number and m = (m1,m2, . . . ,mk) ∈ Rk
≤0. The

vector −m ∈ Rk
≥0 denotes the vector of quotas for the first k commodities.

The disposal region Z(m) =
∏

n≤`Z(m)n is a convex subset of R`
≤0, where

Z(m)n = [mn, 0] for all n ≤ k and Z(m)n is either {0} or R≤0 for k < n ≤ `,

(ix) θ0 ∈ RΩ
≥0 is the government’s rebate share of agents with

∑
ω∈Ω θ0(ω) = 1. The

government rebates the revenue of quota selling to agents according to θ0.

Remark 2.3. The two main features of our model are:

(1) Item (v) characterizes each agent’s preference through the social preference

relation �ω and the preference map Pω. The preference relation �ω repre-

sents the agent’s preference on all agents’ consumption, production, prices

and her own consumption. The agent, however, has no control over other

agent’s consumption, production and prices. Hence, given all other agent’s

choices, production and prices, the agent chooses her bundle according to

the preference map Pω. For the existence of equilibrium, one only need to

work with the preference map Pω. However, the preference relation �ω is

essential for studying welfare properties and potential Pareto improvement of

consumption-production pairs.

(2) Our model incorporates a quota regulatory scheme on total net pollution

emission by defining the disposal region Z(m), which reflects the society’s

choice on which commodities to dispose, and at what quantity. The society

wishes to limit the total net emission of the first k commodities by setting

quotas on them. The government distributes the revenue from selling the

quotas to agents according to the rebate distribution scheme θ0, which ensures

that the revenue stays within the model.
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The total net pollution emission depend on agents’ consumption and the aggregated

production. In particular, for any (x, y) ∈ A× Y (not necessarily feasible), C(x, y) =

πk
(∑

ω∈Ω e(ω) +
∑

j∈J y(j) −
∑

ω∈Ω x(ω)
)

is the total net emission of the first k

commodities, where πk is the projection map onto the first k coordinates. For

(x, y, p) ∈ A × Y × ∆, the government’s total revenue from selling the quota is

−(πk(p)) · C(x, y). For every ω ∈ Ω, p ∈ ∆ and (x, y) ∈ A× Y , the quota budget set

Bm
ω (x, y, p) is defined to be:{

z ∈ Xω : p · z ≤ p · e(ω) +
∑
j∈J

θωjp · y(j)− θ0(ω)πk(p) · C(x, y)

}
.

So an agent’s budget consists of the value of her endowment, her dividend of firms and

her rebate from the government’s revenue of quota selling. Given (x, y, p) ∈ A×Y ×∆,

the quota demand set Dm
ω (x, y, p) of agent ω consists of all elements in the quota budget

set Bm
ω (x, y, p) that maximize the agent’s preference given (x, y, p). In particular,

Dm
ω (x, y, p) is given by:

{z ∈ Bm
ω (x, y, p) : w �x,y,ω,p z =⇒ p · w > p · e(ω) +

∑
j∈J

θωjp · y(j)− θ0(ω)πk(p) · C(x, y)}.

For each j ∈ J , let Sj(p) = argmax
z∈Yj

p · z denote the (possibly empty) supply set at

p ∈ ∆. This implies that producers are profit maximizers and their profits depend

only on prices and their own production.2

Free-disposal equilibrium and non-free-disposal equilibrium are two classical general

equilibrium notions, and they differ only in the resource feasibility constraint. While

free-disposal equilibrium only requires demand to be no more than the supply, non-

free-disposal equilibrium requires demand to be exactly equal to the supply for each

commodity. Free-disposal equilibrium allows for the bad to be freely disposed of and

hence precludes any control on total net pollution emission. While non-free-disposal

equilibrium is widely used in GE models with bads,3 it does not allow one to limit

net pollution emission to a positive amount. While it might be desirable to eliminate

2We assume producers are profit maximizers. Makarov [Mak81] established a general equilibrium
existence theorem which allows for firm objectives other than profit maximization.
3McKenzie [McK59] used the non-free-disposal equilibrium with possible negative prices, which is
followed by Bergstrom [Ber76], Hart and Kuhn [HK75], Polemarchakis and Siconolfi [PS93], and
others.
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CO2 emissions at some future date, it is not practical to do so in the near term. Our

equilibrium notion generalizes these two classical equilibrium notions by allowing for

positive quotas on certain pollution emissions.

Definition 2.4. Let E = {(X,Rω, Pω, eω, θ)ω∈Ω, (Yj)j∈J ,Z(m), θ0} be a finite produc-

tion economy with quota. A Z(m)-disposal quota equilibrium is (x̄, ȳ, p̄) ∈ A×Y ×∆

such that the following conditions are satisfied:

(1) x̄(ω) ∈ Dm
ω (x̄, ȳ, p̄) for all ω ∈ Ω;

(2) ȳ(j) ∈ Sj(p̄) for all j ∈ J . So every firm is profit maximizing given the price p̄;

(3)
∑

ω∈Ω x̄(ω)−
∑

ω∈Ω e(ω)−
∑

j∈J ȳ(j) ∈ Z(m).

A Z(m)-disposal quota equilibrium (x̄, ȳ, p̄) is a Z(m)-disposal revenue-maximizing

quota equilibrium if, in addition, −πk(p̄) · C(x̄, ȳ) ∈ argmax
z∈M

πk(p̄) · z, where M =∏
n≤k Z(m)n. That is, given the equilibrium price p̄, the government maximizes its

revenue from selling the quota.

Our feasibility constraint
∑

ω∈Ω x̄(ω)−
∑

ω∈Ω e(ω)−
∑

j∈J ȳ(j) ∈ Z(m) implies, at

equilibrium, that total net emission of the first k commodities is within the pre-specified

quota. Thus, the disposal region allows the society to choose which commodities are

disposed, and in what quantities. Note that the government sets quota on the whole

economy instead of individual firms, and the allocation of the quota among firms is

determined endogeneously through market forces.

The astute reader may wonder about the motivation for introducing the notion

of revenue-maximizing quota equilibrium. To address this question, we first observe

that a quota equilibrium with respect to a smaller quota is also a quota equilibrium

with respect to any larger quota. In particular, the following result follows easily from

Definition 2.4:

Theorem 2.5. Let m ≤ m′ ∈ Rk
≤0. Let E = {(X,Rω, Pω, eω, θ)ω∈Ω, (Yj)j∈J ,Z(m), θ0}

and E ′ = {(X,Rω, Pω, eω, θ)ω∈Ω, (Yj)j∈J ,Z(m′), θ0}. Then every Z(m′)-disposal quota

equilibrium is a Z(m)-disposal quota equilibrium.

Proof. Let (x̄, ȳ, p̄) be a Z(m′)-disposal quota equilibrium. Note that Bm
ω (x̄, ȳ, p̄) =

Bm′
ω (x̄, ȳ, p̄). Hence, we have x̄(ω) ∈ Dm

ω (x̄, ȳ, p̄) for all ω ∈ Ω. Note that ȳ(j) ∈ Sj(p̄)
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for all j ∈ J . Finally, we have∑
ω∈Ω

x̄(ω)−
∑
ω∈Ω

e(ω)−
∑
j∈J

ȳ(j) ∈ Z(m′) ⊂ Z(m). (2.1)

Hence, (x̄, ȳ, p̄) is a Z(m)-disposal quota equilibrium. �

Theorem 2.5 implies that each quota is, in general, associated with multiple equilibria

with different total net pollution emission. Many of these equilibria are highly

undesirable in the short run (e.g., quota equilibria with 0 quota), but formal definition of

quota equilibrium does not rule them out. On the other hand, for revenue-maximizing

quota equilibria, the government revenue-maximizing condition −πk(p̄) · C(x̄, ȳ) ∈
argmax
z∈M

πk(p̄) · z is equivalent to the condition:

• For n ≤ k,
(
C(x̄, ȳ)

)
n

= 0 if p̄n > 0,
(
C(x̄, ȳ)

)
n

= −mn if p̄n < 0, and(
C(x̄, ȳ)

)
n
∈ [0,−mn] if p̄n = 0,

which implies that the quota is binding for pollutants with negative equilibrium price.

Hence, revenue-maximizing quota equilibrium reduces multiplicity of equilibria by

getting rid of many equilibria that are either inplausible or undesirable.4

2.1. Existence of Revenue-Maximizing Quota Equilibrium. In this section, for

any given quota, we establish the existence of a revenue-maximizing quota equilibrium

for production economies with quota as defined in Definition 2.2, hence also establishing

the existence of a quota equilibrium. Our result generalizes Proposition 3.2.3 in

Florenzano [Flo03], in which the disposal region is a cone. As we have discussed in

the introduction, while disposal cone allows the society to prohibit the emissions of a

given pollutant, it does not allow for setting a positive cap on net pollution emissions.

However, Proposition 3.2.3 in Florenzano [Flo03] plays a crucial role in establishing

our main existence theorem, and a version of Proposition 3.2.3 tailored for our setting

is proved in the Appendix A.3 (see Theorem A.3). The proof of the existence of

revenue-maximizing quota equilibrium consists of the following major steps:

4As we will see in Example 2.16, revenue-maximizing quota equilibrium, in general, has better social
welfare property than quota equilibrium.
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(1) We construct a derived production economy with quota E ′ by introducing a

fictitious firm which has the production technology of sequestering pollution

up to the level specified by the given quota. The disposal region of E ′ is a cone;

(2) We apply Theorem A.3 to show that E ′ has a quota equilibrium;

(3) Finally, we show every quota equilibrium of E ′ is a revenue-maximizing quota

equilibrium of E .

We now state and prove our main existence result.

Theorem 2.6. Let E = {(X,Rω, Pω, eω, θ)ω∈Ω, (Yj)j∈J ,Z(m), θ0} be a finite produc-

tion economy with quota as in Definition 2.2. Suppose E satisfies the following

conditions:

(i) for all ω ∈ Ω, we have 0 ∈ Xω, Pω takes value in PH and eω ∈ int(Xω −∑
j∈J θωjYj);

(ii) for all ω ∈ Ω, for each (x, y) ∈ O with xω ∈ Xω, there is u ∈ Xω such that

(u, xω) ∈
⋂
p∈∆∩(Z′)0 Pω(x, y, p), where Z ′ = {z ∈ Z(m) : (∀n ≤ k)(zn = 0)}

and (Z ′)0 = {p ∈ ∆ : (∀z ∈ Z ′)(p · z ≤ 0)} is the polar cone of Z ′;5

(iii) Ȳ is closed, convex, and Ȳ ∩ (−Ȳ ) = Ȳ ∩ R`
≥0 = {0}.

Then, there exists a Z(m)-disposal revenue-maximizing quota equilibrium.

Proof. Note that Theorem A.3 is not directly applicable since Z(m) is not a cone. To

overcome this difficulty, we introduce a fictitious firm 0 with the production set Y ′0 :

Y ′0 = [m1, 0]× [m2, 0]× . . .× [mk, 0]× {0} × . . .× {0} ⊂ R`
≤0. (2.2)

Let E ′ = {(X,R′ω, P ′ω, eω, θ′ω)ω∈Ω, (Y
′
j )j∈J ′ ,Z ′, θ0} be a finite production economy with

quota where:

(1) J ′ = {0, 1, 2, . . . , J} is the set of firms, which is the set of firms J of E plus the

fictitious firm 0;

(2) Y ′j = Yj for all j ∈ J and the production set Y ′0 for the fictitious firm 0 is

defined as above. Let Y ′ =
∏

j∈J ′ Y ′j ;

5This condition is a generalization of the classical non-satiation property on preferences. In fact,
this condition is equivalent to the non-satiation property on preferences if the preferences have no
externality. In the presence of externality, the choice of u depends on ω ∈ Ω and (x, y) ∈ O, but is
independent of prices in ∆ ∩ (Z ′)0.
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(3) The agent’s preference R′ω and the induced preference map P ′ω are independent

of the fictitious firm’s production plan, hence are the same as Rω and Pω
6;

(4) θ′(j) = θ(j) for all j ∈ J and agents share θ′(0) ∈ RΩ
≥0 of the fictitious firm 0

is the government’s rebate share θ0;

(5) Let Z ′ = {z ∈ Z(m) : (∀n ≤ k)(zn = 0)}.

To show that the derived economy E ′ has a Z ′-disposal equilibrium with quota, we

must verify that E ′ satisfies the assumptions of Theorem A.3. It is easy to see that:

(1) As P ′ω is independent of the production plan of the fictitious firm 0 for all

ω ∈ Ω, P ′ω takes value in PH for all ω ∈ Ω. As 0 ∈ Y ′0 , we have e(ω) ∈
int(Xω −

∑
j∈J ′ θ′ωjY

′
j ) for all ω ∈ Ω;

(2) It is clear that Z ′n = {0} for all n ≤ k.

Claim 2.7. For all ω ∈ Ω and all feasible consumption-production pairs (x, y) of E ′

with x(ω) ∈ Xω, there exists u ∈ Xω so that (u, x(ω)) ∈
⋂
p∈∆∩(Z′)0 P

′
ω(x, y, p).

Proof. Fix ω ∈ Ω. Let (x, y) be a feasible consumption-production pair of E ′ with

x(ω) ∈ Xω. Let yE = (y1, y2, . . . , yJ) be the production vector for firms in {1, 2, . . . , J}.
Then (x, yE) is a feasible consumption-production pair of E with x(ω) ∈ Xω. So

there exists u ∈ Xω such that (u, x(ω)) ∈
⋂
p∈∆∩(Z′)0 Pω(x, yE , p). As P ′ω(x, y, p) =

Pω(x, yE , p) for all p ∈ ∆, we have (u, x(ω)) ∈
⋂
p∈∆∩(Z′)0 P

′
ω(x, y, p). �

Claim 2.8. Let Ȳ ′ = {
∑

j∈J ′ y(j) : y ∈ Y ′}. Then, Ȳ ′ is closed and convex, Ȳ ′∩R`
≥0 =

{0} and the set Ŷ ′j of feasible production plans is relatively compact for all j ∈ J .

Proof. Note that Ȳ ′ = Y ′0 + Ȳ . As Y ′0 is compact and convex, Ȳ ′ is closed and convex.

As 0 ∈ Y ′0 , we have 0 ∈ Ȳ ′ ∩ R`
≥0. On the other hand, as a ≤ 0 for all a ∈ Y ′0 , we

conclude that Ȳ ′ ∩R`
≥0 = {0}. As Ȳ ∩ (−Ȳ ) = {0}, every feasible production set of E

is relatively compact. As Ŷj = Ŷ ′j for all j ≥ 1, Ŷ ′j is relatively compact for all j ≥ 1.

As Y ′0 is compact, Ŷ ′0 is relatively compact. �

By Theorem A.3 and Footnote 16, there is a Z ′-disposal quota equilibrium (x̄, ȳ, p̄)

for E ′. We first show that (x̄, ȳE , p̄) is a Z(m)-disposal quota equilibrium for E . It is

easy to see that:

6As we will see, the fictitious firm’s production plan at equilibrium is completely determined by
agents’ consumption and other firms’ production plan.
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(1) As each firm is profit maximizing in the economy E ′, each firm is profit

maximizing in E ;

(2) As
∑

ω∈Ω x̄(ω)−
∑

ω∈Ω e(ω)−
∑

j∈J ′ ȳ(j) ∈ Z ′, we have∑
ω∈Ω

x̄(ω)−
∑
ω∈Ω

e(ω)−
∑
j∈J

ȳE(j) (2.3)

=
∑
ω∈Ω

x̄(ω)−
∑
ω∈Ω

e(ω)−
∑
j∈J ′

ȳ(j) + ȳ(0) ∈ Z(m). (2.4)

Claim 2.9. x̄(ω) ∈ Dm
ω (x̄, ȳE , p̄) for all ω ∈ Ω.

Proof. Note that πk(ȳ(0)) = πk(
∑

ω∈Ω x̄(ω) −
∑

ω∈Ω e(ω) −
∑

j∈J ȳE(j)). Hence, we

have p̄ · ȳ(0) = −(πk(p̄)) · C(x̄, ȳE). Thus, for all ω ∈ Ω, the budget set under quota

B′ω(x̄, ȳ, p̄) for agent ω of the economy E ′ can be written as:{
z ∈ Xω : p̄ · z ≤ p̄ · e(ω) +

∑
j∈J

θωj p̄ · ȳE(j)− θ0(ω)πk(p̄) · C(x̄, ȳE)

}
, (2.5)

which is the same as the budget set under quota Bm
ω (x̄, ȳE , p̄) of the economy E . As

Pω = P ′ω, for all ω ∈ Ω, the demand set under quota D′ω(x̄, ȳ, p̄) for agent ω of the

economy E ′ is the same as the demand set under quota Dm
ω (x̄, ȳE , p̄) of the economy

E . Thus, we conclude that x̄(ω) ∈ Dm
ω (x̄, ȳE , p̄) for all ω ∈ Ω. �

By Claim 2.9, (x̄, ȳE , p̄) is a Z-disposal quota equilibrium. Note that the fictitious firm

is profit maximizing. Thus, for n ≤ k, the fictitious firm’s production for commodity n

is mn if p̄n < 0, is 0 if p̄n > 0, and can be anything in [mn, 0] if p̄n = 0, which implies

that −πk(p̄) · C(x̄, ȳ) ∈ argmax
z∈M

πk(p̄) · z, where M =
∏

n≤k Z(m)n. Hence, (x̄, ȳE , p̄)

is a Z-disposal revenue-maximizing quota equilibrium. �

Theorem 2.6 shows that the production economy with quota model, defined in Defi-

nition 2.2, has a revenue-maximizing quota equilibrium under moderate assumptions.

At any such equilibrium, the total net emission of the first k commodities is under the

pre-specified quota, and the government is maximizing its revenue from quota selling

given the equilibrium price, which implies that all quotas are binding for commodities

with a negative equilibrium price. As we will see in the next sub-section, binding

quotas at equilibrium yields more desirable welfare properties of the equilibrium.
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2.2. Welfare Theorem for Production Economies with Quota. To compare

a house in Miami with a house in Minneapolis, the net CO2 emission is an im-

portant factor to consider since net CO2 affects the temperature. In this section,

we focus on this specific type of externality and investigate the welfare property

of quota equilibrium and revenue-maximizing quota equilibrium. In particular, we

assume that the only externality arises from the total net emission of the first k

commodities and establish a version of the first welfare theorem, which shows that

every quota equilibrium consumption-production pair is Pareto optimal among all

feasible consumption-production pairs with the same total net emission of the first

k commodities. As it is possible for a quota equilibrium consumption-production

pair to Pareto dominates another quota equilibrium consumption-production pair

with a different total net emission of the first k commodities, a quota equilibrium

consumption-production pair is, in general, not full Pareto optimal among all feasible

consumption-production pairs. Moreover, as indicated by Theorem 2.5, a pre-specified

quota is usually associated with multiple quota equilibria with possibly different

total net emission of the first k commodities, so it is impossible to guarantee full

Pareto optimality among quota equilibria by setting a quota. On the other hand,

as revenue-maximizing quota equilibrium implies that the quota is binding if the

equilibrium price of a commodity is negative, one can achieve full Pareto optimality

among revenue-maximizing quota equilibria by if the government sets the right quota,

provided that the equilibrium price is negative for the first k commodities. The

welfare property comparison between quota equilibria and revenue-maximizing quota

equilibria is illustrated in Example 2.16.

Agents’ preference exhibit externality, which needs to be taken into account in

defining Pareto domination. Recall that C(f, y) denote the total net emission of the

first k commodities of the consumption-production pair (f, y) ∈ A× Y . As the only

externality arises from the total net pollution emission, an agent ω’s social preference

relation �ω is a preference defined on X × E, where E = πk
(∑

ω∈Ω e(ω) + Ȳ − X̄
)

7

denote the set of all possible total net emission of the first k commodities. We define

Pareto domination and full Pareto optimality as:

7X̄ =
∑

ω∈Ω Xω is the aggregated consumption set.
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Definition 2.10. For two feasible consumption-production pairs (f, y), (f ′, y′) ∈
A× Y , we say (f, y) Pareto dominates (f ′, y′) if:

• for all ω ∈ Ω, (f ′(ω), C(f ′, y′)) 6�ω (f(ω), C(f, y));

• there exists some ω0 ∈ Ω such that (f(ω0), C(f, y)) �ω0 (f ′(ω0), C(f ′, y′)).

A consumption-production pair (g, h) strongly Pareto dominates another consumption-

production pair (g′, h′) if (g(ω), C(g, h)) �ω (g′(ω), C(g′, h′)) for all ω ∈ Ω. A

consumption-production pair (f, y) is (weakly) Pareto optimal among F ⊂ A×Y if no

consumption-production pair in F (strongly) Pareto dominates (f, y). A consumption-

production (f, y) is (weakly) full Pareto optimal if it is (weakly) Pareto optimal among

all feasible consumption-production pairs.

It is too much to hope that quota equilibria are full Pareto optimal for any given

quota. After all, the quota equilibrium with 0 quota yields an immediate return to a

pre-industrial society. Therefore, we need to introduce a weakened notion of Pareto

optimality to better characterize the social welfare property of quota equilibria. For

two consumption-production pairs (f, y), (f ′, y′) ∈ A× Y , we say (f, y) is equivalent

in total net emission to (f ′, y′) and write (f, y) ∼total (f ′, y′) if C(f, y) = C(f ′, y′).

It is easy to verify that ∼total is an equivalent relation on A × Y . For v ∈ E, let

[v]total be the set of (f, y) ∈ A × Y with C(f, y) = v.8 As we assume that the only

externality arises from the total net emission of the first k commodities, for all v ∈ E,

all (f, y) ∈ [v]total and all ω ∈ Ω, we can write Pω(v) to denote Pω(f, y, p) for all

p ∈ ∆. Hence, for two consumption-production pairs (f, y), (f ′, y′) ∈ [v]total, the

consumption-production pair (f, y) Pareto dominates (f ′, y′) if:

• for all ω ∈ Ω,
(
f ′(ω), f(ω)

)
6∈ Pω(v);

• there exists some ω0 ∈ Ω such that
(
f(ω0), f ′(ω0)

)
∈ Pω0(v).

Similarly, (f, y) strongly Pareto dominates (f ′, y′) if
(
f(ω), f ′(ω)

)
∈ Pω(v) for all

ω ∈ Ω. We now formally present the weakened definition of Pareto optimality.

Definition 2.11. A feasible consumption-production pair (f, y) ∈ A× Y is (weakly)

constrained Pareto optimal if there is no feasible (g, h) ∈ [C(f, y)]total (strongly) Pareto

dominates (f, y).

8In other words, [v]total is the set of consumption-production pairs such that the total net emission
of the first k commodities is v.
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Our next result shows that any quota equilibrium consumption-production pair is

constrained Pareto optimal among.

Theorem 2.12. Let E = {(X,Rω, Pω, eω, θ)ω∈Ω, (Yj)j∈J ,Z(m), θ0} be a finite produc-

tion economy with quota, and the only externality arises from the total net emission

of the first k commodities. Let (f̄ , ȳ, p̄) be a Z(m)-disposal quota equilibrium. Then:

(1) (f̄ , ȳ) is weakly Pareto optimal among [C(f̄ , ȳ)]total, i.e., (f̄ , ȳ) is weakly Pareto

optimal among all feasible production-consumption pairs with the same total

net emission of the first k commodities;

(2) Suppose Pω(v) is negatively transitive and locally non-satiated for all ω ∈ Ω

and all v ∈ πk(
∑

ω∈Ω e(ω) + Ȳ − X̄). Then (f̄ , ȳ) is Pareto optimal among

[C(f̄ , ȳ)]total, i.e., (f̄ , ȳ) is Pareto optimal among all feasible production-

consumption pairs with the same total net emission of the first k commodities.

Proof. Suppose there exists some feasible (f̂ , ŷ) ∈ [C(f̄ , ȳ)]total that strongly Pareto

dominates (f̄ , ȳ). Then, we have
(
f̂(ω), f̄(ω)

)
∈ Pω

(
C(f̄ , ȳ)

)
for all ω ∈ Ω. As (f̄ , ȳ, p̄)

is a Z-disposal quota equilibrium, we have

p̄ · f̂(ω) > p̄ · e(ω) +
∑
j∈J

θωj p̄ · ȳ(j)− θ0(ω)πk(p̄) · C(f̄ , ȳ)

≥ p̄ · e(ω) +
∑
j∈J

θωj p̄ · ŷ(j)− θ0(ω)πk(p̄) · C(f̄ , ȳ)

for all ω ∈ Ω. Thus, we have

p̄
(∑
ω∈Ω

f̂(ω)−
∑
ω∈Ω

e(ω)−
∑
j∈J

ŷ(j)
)
> −πk(p̄) · C(f̄ , ȳ).

As (f̂ , ŷ) is feasible, we know that
∑

ω∈Ω f̂(ω)−
∑

ω∈Ω e(ω)−
∑

j∈J ŷ(j) ∈ Z(m). Note

that p̄n ≥ 0 for all n > k with Zn = R≤0. As (f̂ , ŷ) ∈ [C(f̄ , ȳ)]total, we have

p̄
(∑
ω∈Ω

f̂(ω)−
∑
ω∈Ω

e(ω)−
∑
j∈J

ŷ(j)
)
≤ −πk(p̄) · C(f̄ , ȳ),

which leads to a contradiction. Hence (f̄ , ȳ) is weakly Pareto optimal among [C(f̄ , ȳ)]total.

We now show that (f̄ , ȳ) is Pareto optimal among [C(f̄ , ȳ)]total if Pω(v) is negatively

transitive and locally non-satiated for all ω ∈ Ω and all v ∈ πk(
∑

ω∈Ω e(ω) + Ȳ − X̄).

Suppose there exists some feasible (f̂ , ŷ) ∈ [C(f̄ , ȳ)]total that Pareto dominates (f̄ , ȳ).
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Then there exists some ω0 ∈ Ω such that
(
f̂(ω0), f̄(ω0)

)
∈ Pω0

(
C(f̄ , ȳ)

)
. As (f̄ , ȳ, p̄)

is a Z(m)-disposal quota equilibrium, we have:

p̄ · f̂(ω0) > p̄ · e(ω0) +
∑
j∈J

θω0j p̄ · ŷ(j)− θ0(ω0)πk(p̄) · C(f̄ , ȳ).

To complete the proof, we need the following key result:

Claim 2.13. p̄ · f̂(ω) ≥ p̄ · e(ω) +
∑

j∈J θωj p̄ · ȳ(j)− θ0(ω)πk(p̄) ·C(f̄ , ȳ) for all ω ∈ Ω.

Proof. Suppose there exists some ω1 ∈ Ω such that

p̄ · f̂(ω1) < p̄ · e(ω1) +
∑
j∈J

θω1j p̄ · ȳ(j)− θ0(ω1)πk(p̄) · C(f̄ , ȳ).

As Pω1

(
C(f̄ , ȳ)

)
is locally non-satiated, then there exists some u ∈ Xω1 such that(

u, f̂(ω1)
)
∈ Pω1

(
C(f̄ , ȳ)

)
and p̄ ·u < p̄ ·e(ω1)+

∑
j∈J θω1j p̄ · ȳ(j)−θ0(ω1)πk(p̄) ·C(f̄ , ȳ).

As Pω1

(
C(f̄ , ȳ)

)
is negatively transitive, we have

(
u, f̄(ω1)

)
∈ Pω1

(
C(f̄ , ȳ)

)
. This

leads to a contradiction since (f̄ , ȳ, p̄) is a Z(m)-disposal quota equilibrium. �

By Claim 2.13, we have p̄ · f̂(ω) ≥ p̄ · e(ω) +
∑

j∈J θωj p̄ · ŷ(j)− θ0(ω)πk(p̄) · C(f̄ , ȳ)

for all ω ∈ Ω. So we have p̄
(∑

ω∈Ω f̂(ω)−
∑

ω∈Ω e(ω)−
∑

j∈J ŷ(j)
)
> −πk(p̄) ·C(f̄ , ȳ).

By the same argument as in the first paragraph, we conclude that (f̄ , ȳ) is Pareto

optimal among [C(f̄ , ȳ)]total. �

Theorem 2.12 shows that, after the quota is set, constrained Pareto optimality of the

equilibrium consumption-production pair is achieved without further intervention from

the government. As a revenue-maximizing quota equilibrium is a quota equilibrium,

Theorem 2.12 is valid for revenue-maximizing quota equilibria. If in addition, we

assume that agents can not consume any of the first k commodities,9 then, since

endowments are fixed, the total net emissions of the first k commodities depend only

on the production. The following result is similar to Theorem 2.12 except that the

total net emissions of the first k commodities are replaced by the total net production

of the first k commodities.

9In the classical general equilibrium model developed Arrow and Debreu [AD54], equilibrium assigns
ownership which conveys the right to consume the commodity, but does not entail the obligation
to dispose of it, which we believe is not the right interpretation for the consumption of bads. As
consumers may not have means to dispose certain type of pollutants such as CO2, it seems reasonable
to assume agents can not consume these commodities at all.(!) Bob will modify this footnote.
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Corollary 2.14. Let E = {(X,Rω, Pω, eω, θ)ω∈Ω, (Yj)j∈J ,Z(m), θ0} be a finite produc-

tion economy with quota, and the only externality arises from the total net emission

of the first k commodities. Suppose πk(Xω) = {0} for all ω ∈ Ω. Let (f̄ , ȳ, p̄) is a

Z(m)-disposal quota equilibrium. Then:

(1) (f̄ , ȳ) is weakly Pareto optimal among all feasible (f, y) with πk
(∑

j∈J y(j)
)

=

πk
(∑

j∈J ȳ(j)
)
, i.e., (f̄ , ȳ) is weakly Pareto optimal among all feasible production-

consumption pairs with the same total production of the first k commodities;

(2) Suppose Pω(v) is negatively transitive and locally non-satiated for all ω ∈ Ω

and all v ∈ πk
(∑

ω∈Ω e(ω) + Ȳ
)
. Then (f̄ , ȳ) is Pareto optimal among all

feasible (f, y) with πk
(∑

j∈J y(j)
)

= πk
(∑

j∈J ȳ(j)
)
, i.e., (f̄ , ȳ) is Pareto

optimal among all feasible production-consumption pairs with the same total

production of the first k commodities.

Corollary 2.14 is also valid for revenue-maximizing quota equilibrium. Since the

total net emission of the first k commodities is likely to affect agents’ preferences,

there may be a Pareto ranking among (revenue-maximizing) quota equilibrium with

different total net emission of the first k commodities.

2.2.1. Full Pareto Optimality. When the only externality arises from the total net emis-

sion of the first k commodities, an agent ω’s social preference relation �ω is a preference

defined on X ×E, where E = πk
(∑

ω∈Ω e(ω) + Ȳ − X̄
)
. Given (f, y), (f ′, y′) ∈ A×Y ,

we say (f, y) Pareto dominates (f ′, y′) if:

• for all ω ∈ Ω, (f ′(ω), C(f ′, y′)) 6�ω (f(ω), C(f, y));

• there exists some ω0 ∈ Ω such that (f(ω0), C(f, y)) �ω0 (f ′(ω0), C(f ′, y′)).

A consumption-production pair (g, h) strongly Pareto dominates another consumption-

production pair (g′, h′) if (g(ω), C(g, h)) �ω (g′(ω), C(g′, h′)) for all ω ∈ Ω. A

consumption-production pair (f, y) is (weakly) Pareto optimal among F ⊂ A×Y if no

consumption-production pair in F (strongly) Pareto dominates (f, y). A consumption-

production (f, y) is (weakly) full Pareto optimal if it is (weakly) Pareto optimal among

all feasible consumption-production pairs.

Theorem 2.15. Let E = {(X,Rω, Pω, eω, θ)ω∈Ω, (Yj)j∈J ,Z(m), θ0} be a finite produc-

tion economy with quota, and the only externality arises from the total net emission
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of the first k commodities. Suppose �ω is continuous and negatively transitive for all

ω ∈ Ω. Suppose there exists a non-empty Q ⊂ Rk
≤0 such that

(1) for any m ∈ Q, if p is the equilibrium price for a Z(m)-disposal revenue-

maximizing quota equilibrium, then every coordinate of πk(p) is negative;

(2) The set Q = {(g, z) ∈ A× Y : (g, z) is feasible and C(g, z) ∈ −Q} is compact;

(3) If (f, y) ∈ Q is Pareto optimal among Q, then (f, y) is full Pareto optimal.

We can then conclude that:

(1) There exists a (f̄ , ȳ) ∈ Q that is Pareto optimal among Q;

(2) For all m0 ∈ Q where there exists a (f, y) ∈ Q such that (f, y) is Pareto optimal

among Q and C(f, y) = −m0, every Z(m0)-disposal revenue-maximizing quota

equilibrium is full weakly Pareto optimal. If we assume, in addition, there

is a single consumer, then every Z(m0)-disposal revenue-maximizing quota

equilibrium is full Pareto optimal.

Proof. As Q is compact, by Lemma A.5, there exists a (f̄ , ȳ) ∈ Q that is Pareto

optimal among Q, hence is full Pareto optimal. Let m0 = −C(f̄ , ȳ) and (g, s) be a

Z(m0)-disposal revenue-maximizing quota equilibrium consumption-production pair.

As each of the first k coordinates of the equilibrium price associated with (g, s) is

negative, we have C(g, s) = −m0. By Theorem 2.12, (g, s) is Pareto optimal among

all feasible consumption-production pairs with total net pollution emission being −m0.

Hence, (g, s) is weakly full Pareto optimal. If Ω is a singleton, then the notion of full

Pareto optimality is the same as weakly full Pareto optimality, which implies that

(g, s) is full Pareto optimal. �

Theorem 2.15 shows that full weak Pareto optimality can be achieved through

market forces if the government sets the right quota. The motivations of these

conditions are:

(1) The set Q represents the collection of acceptable quotas for the government.

For all quotas in Q, the equilibrium prices of pollution determined by the

market are negative. Thus, the economic interpretation of the first condition

is: if the government sets a sufficiently low quota, the equilibrium prices of

pollution emissions are negative. Although this condition is endogeneous, it
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is satisfied, and easy to check, in many economic scenarios, as we will see in

Example 2.16, Example 3.5 and Example 3.9;

(2) The second condition is similar to assuming compactness of the set of feasible

allocations, as in Debreu [Deb59]. If each firm’s production set is closed, for

production economies satisfying the assumptions of Theorem 2.6, this condition

is satisfied;

(3) The purpose for pollution control is to improve the overall welfare of the

society. The third condition asserts that, if a consumption-production pair

is Pareto optimal among all consumption-production pairs under acceptable

quotas (quotas which are elements of Q), then it is full Pareto optimal. This

condition reflects that pollution control at least does not make the society’s

welfare worse off.

We conclude this section with the following example which demonstrates the applica-

bility of Theorem 2.15. The example also illustrates the difference of welfare properties

between the quota equilibrium and revenue-maximizing quota equilibrium. In particu-

lar, we show that revenue-maximizing quota equilibrium is full Pareto optimal for a

carefully chosen quota. However, one can not achieve full Pareto optimality for quota

equilibrium by setting the quota alone.

Example 2.16. Let E = {(X,Rω, Pω, eω, θω)ω∈Ω, (Yj)j∈J ,Z(m), θ0} be a finite pro-

duction economy with quota:

(1) The economy E has three commodities CO2, coal and electricity, which we

denote by c1, c2 and c3;

(2) There is a single agent with consumption set X = {0} × R2
≥0 and endowment

e = (0, 1, 0). Given the total net emission v of CO2, the utility function

uv(c1, c2, c3) = c3 − v2;

(3) There are two producers with production sets Y1 = {(r,−r, r) : r ∈ R≥0}
and Y2 = {(−2r, 0,−r) : r ∈ R≥0}. So the first producer has the production

technology to burn r units of coal to generate r units of electricity and r units

of CO2 as byproduct. The second producer has the production technology to

use r units of electricity to sequester 2r units of CO2;

(4) The disposal region Z(m) = [m, 0]× R2
≤0 for m ∈ [−1, 0];
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(5) Since there is only one agent, we have θω = θ0(ω) = 1.

It is clear that Ȳ = Y1 +Y2 is a convex and closed set. For every y ∈ Ȳ , we have y2 ≤ 0,

and if y2 = 0 then y1, y3 ≤ 0. Hence, we conclude that Ȳ ∩R3
≥0 = {0} = Ȳ ∩ (−Ȳ ). It

can be verified that e ∈ int(X − Ȳ ).10 So E satisfies the conditions of Theorem 2.6 for

all m ∈ [−1, 0], which implies that E has a Z(m)-disposal revenue-maximizing quota

equilibrium (x̃m, ỹm, p̃m) for all m ∈ [−1, 0]. The total net emission of CO2 is bounded

by −m for all Z(m)-disposal quota equilibrium. We now verify all the assumptions of

Theorem 2.15 for this example.

Claim 2.17. If p̄ is an equilibrium price for a Z(m)-disposal quota equilibrium with

m > −1, then p̄1 < 0.

Proof. Suppose p̄1 ≥ 0. By the form of the agent’s utility function, we know that

p̄3 > 0, which implies that the equilibrium production plan for the second firm is

(0, 0, 0). Note that p̄2 ≥ p̄3 since the first firm’s profit will be unbounded otherwise.

As the agent would sell all its coal for electricity, the equilibrium production plan for

the first firm is (1,−1, 1), which implies that the total net CO2 emission is 1. �

Let Q = [−0.9, 0]. By Claim 2.17, the first assumption of Theorem 2.15 is satisfied.

By Proposition 2.2.4 of Florenzano [Flo03] and the fact that Q is compact, the set

Q = {(g, z) ∈ X × Y : (g, z) is feasible and C(g, z) ∈ [0, 0.9]} is compact.11 So the

second assumption of Theorem 2.15 is satisfied. It remains to validate the third

assumption of Theorem 2.15. To do so, we first compute a (revenue-maximizing)

quota equilibrium for any total net emission of CO2 that is no greater than 1.

Claim 2.18. Let p̂ = (−1
4
, 1

4
, 1

2
). For every total net CO2 emission level 0 ≤ v ≤ 1,

let x̂v = (0, 0, 1+v
2

) and ŷv =
(
(1,−1, 1), (v − 1, 0, v−1

2
)
)
. Then (x̂v, ŷv, p̂) is a Z(−v)-

disposal revenue-maximizing quota equilibrium.

10In fact, we have X − Ȳ = {(a, b, c)||a| ≤ b} which implies that e ∈ int(X − Ȳ ).
11Proposition 2.2.4 of Florenzano [Flo03] states that every feasible production set for a single firm is
relatively compact. Since the production sets in this example are compact, the feasible production set
for both firms are compact, which further implies that the total feasible production set is compact.
Proposition 2.2.4 of Florenzano [Flo03] also states that the feasible consumption set is compact. The
set Q is a closed subset of the product of feasible consumption set and the total feasible production
set, hence is compact.
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Proof. Pick 0 ≤ v ≤ 1. Note that x̂v−e−
∑

j∈J ŷv(j) = (−v, 0, 0) ∈ Z(−v). Both firms

are profit maximizing. The quota budget set for the agent is {z ∈ X : p̂ · z ≤ 1
4
(1 +v)}.

Hence, x̂v is an element of the quota demand set D−v(x̂v, ŷv, p̂), which implies that

(x̂v, ŷv, p̂) is a Z(−v)-disposal quota equilibrium. As p̂1 = −1
4
< 0, (x̂v, ŷv, p̂) is a

Z(−v)-disposal revenue-maximizing quota equilibrium. �

The total net CO2 emission of (x̂v, ŷv, p̂) is v. Moreover, by Theorem 2.12, (x̂v, ŷv)

is constrained Pareto optimal, i.e., (x̂v, ŷv) is Pareto optimal among all feasible

production-consumption pairs such that the total net CO2 emission is v.

Let V = {(x̂v, ŷv) : v ∈ [0, 0.9]}. The agent’s utility among V, as a function of the

total net emission v of CO2, is 1+v
2
− v2. By taking the derivative, the total net CO2

emission that maximizes the agent’s utility is at v̂ = 1
4
, with the agent’s utility being

9
16

. Note that (x̂ 1
4
, ŷ 1

4
, p̂) is a Z(−1

4
)-disposal revenue-maximizing quota equilibrium,

and the equilibrium consumption-production pair (x̂ 1
4
, ŷ 1

4
) Pareto dominates (x̂v, ŷv)

for all v ∈ [0, 1] such that v 6= 1
4
. Let (f̄ , ȳ) ∈ X × Y be feasible and Pareto optimal

among Q. Then the agent’s utility at (f̄ , ȳ) must be no less than 9
16

since V ⊂ Q. On

the other hand, if (f, y) 6∈ Q is feasible, the agent’s utility at (f, y) is bounded up by

1−0.92 = 0.19, which is less than 9
16

. Hence, (f̄ , ȳ) is Pareto optimal among all feasible

consumption-production pairs. Hence, by Claim 2.17, the fact that there is only one

consumer and Theorem 2.15, there exists m0 ∈ Q such that every Z(m0)-disposal

revenue-maximizing quota equilibrium is full Pareto optimal.

We now explicitly compute the quota m0 on CO2 that would lead to full Pareto op-

timality of Z(m0)-disposal revenue-maximizing quota equilibrium. By Theorem 2.12,

(x̂v, ŷv) is constrained Pareto optimal for all v ∈ [0, 0.9]. Thus, (x̂ 1
4
, ŷ 1

4
) is weakly

Pareto optimal among Q. Since the agent space is a singleton, (x̂ 1
4
, ŷ 1

4
) is Pareto

optimal among Q, hence is full Pareto optimal. Thus, every Z(−1
4
)-disposal revenue-

maximizing quota equilibrium consumption-production pair is Pareto optimal among

all feasible consumption-production pairs. In addition, as (x̂ 1
4
, ŷ 1

4
) is the only Pareto

optimal consumption-production pair in V, 1
4

is the only quota such that the as-

sociated revenue-maximizing quota equilibrium is full Pareto optimal. As a result,
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after the government sets the quota to be 1
4
, full Pareto optimality of the equilib-

rium consumption-production pair is achieved without further intervention from the

government.

On the other hand, it is impossible to guarantee full Pareto optimality for quota

equilibrium. By Theorem 2.5, any quota m is associated with with multiple Z(m)-

disposal quota equilibrium with different total net CO2 emission, but at most one

of these quota equilibrium is Pareto optimal in this example. In particular, if the

government sets the quota m > −1
4
, the resulting Z(m)-disposal quota equilibrium

consumption-production pair is Pareto dominated by (x̂ 1
4
, ŷ 1

4
). If the government sets

the quota m ≤ −1
4
, any Z(m)-disposal quota equilibrium consumption-production

pair (f, y) such that C(f, y) 6= 1
4

is Pareto dominated by (x̂ 1
4
, ŷ 1

4
). Thus, one can not

achieve full Pareto optimality for quota equilibria by setting the quota alone.

3. Production Economy with Tax

An alternative to setting quotas is to set tax rates on pollution emissions. In this

section, we present a general equilibrium model that incorporates a tax regulatory

scheme on net pollution emissions, and focus on its connection with quota equilibrium.

While quota equilibrium always exists and is effective in limiting the total net pol-

lution emission under the quota, we demonstrate in Theorem 3.3, Theorem 3.4 and

Example 3.5 that:

(1) Every quota equilibrium is a tax equilibrium and vice versa;

(2) Given specific tax rates, there may be no tax equilibrium consistent with those

tax rates;

(3) Even if an emission tax equilibrium exists for a given tax rate, there may be

multiple equilibria and there is no guarantee that emissions will lie under a

pre-specified level of total net pollution emissions for every equilibrium.

On the other hand, while quota equilibrium is, in general, only constrained Pareto

optimal, Example 3.9 shows that it might be possible to achieve full Pareto optimality

through an emission tax.

In Section 3.1, we consider an alternative formulation of a general equilibrium model

with tax, which imposes add-on taxes on commodities that generate pollution as a
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byproduct in the production process. We demonstrate in Example 3.11 that add-on

tax equilibrium is Pareto dominated by the Pareto optimal emission tax equilibrium,

indicating that an emission tax may be more effective in achieving Pareto optimality.

We start by giving a rigorous description of a general equilibrium model that

incorporates tax on emission of pollution:

Definition 3.1. A finite production economy with emission tax

F ≡ {(X,Rω, Pω, eω, θ)ω∈Ω, (Yj)j∈J ,V , t, θ0}

is a list such that

(i) (X,Rω, Pω, eω, θ)ω∈Ω, (Yj)j∈J and θ0 are the same as in Definition 2.2;

(ii) The disposal region V takes the form of
∏

n≤` Vn where Vn = R≤0 for all n ≤ k

and Vn is either {0} or R≤0 for all n > k;

(iii) t ∈ πk(∆) is an emission tax rate on the net emission of the first k commodities.

Recall that C(x, y) = πk
(∑

ω∈Ω e(ω) +
∑

j∈J y(j) −
∑

ω∈Ω x(ω)
)

is the total net

emission of the first k commodities. For every ω ∈ Ω, p ∈ ∆ and (x, y) ∈ A× Y , the

emission tax budget set Bt
ω(x, y, p) is defined to be:

{z ∈ Xω : p · z ≤ p · e(ω) +
∑
j∈J

θωjp · y(j) + θ0(ω)t · C(x, y)}.

So an agent’s budget consists of the value of her endowment, her dividend of firms

and her rebate from the government’s emission tax revenue. For each ω ∈ Ω and

(x, y, p) ∈ A× Y ×∆, the emission tax demand set Dt
ω(x, y, p) consists of all elements

in the emission tax budget set Bt
ω(x, y, p) that maximize the agent’s preference given

(x, y, p). In particular, Dt
ω(x, y, p) is defined as:

{z ∈ Bt
ω(y, p) : w �x,y,ω,p z =⇒ p · w > p · e(ω) +

∑
j∈J

θωjp · y(j) + θ0(ω)t · C(x, y)}.

The equilibrium notion for finite production economies with emission tax is:

Definition 3.2. Let F = {(X,Rω, Pω, eω, θ)ω∈Ω, (Yj)j∈J ,V , t, θ0} be a finite pro-

duction economy with emission tax. A V-disposal emission tax equilibrium is

(x̄, ȳ, p̄) ∈ A× Y ×∆ such that the following conditions are satisfied:
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(1) πk(p̄) = −t;
(2) x̄(ω) ∈ Dt

ω(x̄, ȳ, p̄) for all ω ∈ Ω;

(3) ȳ(j) ∈ Sj(p̄) for all j ∈ J ;

(4)
∑

ω∈Ω x̄(ω)−
∑

ω∈Ω e(ω)−
∑

j∈J ȳ(j) ∈ V .

As Vn = R≤0 for all n ≤ k, we allow for arbitrary net emission for the first k

commodities. On the other hand, the government charges an emission tax t on the

first k commodities. Our next two results shed light on the connection between quota

equilibrium and emission tax equilibrium:

Theorem 3.3. Let E = {(X,Rω, Pω, eω, θ)ω∈Ω, (Yj)j∈J ,Z(m), θ0} be a finite produc-

tion economy with quota as in Definition 2.2 and (x̄, ȳ, p̄) be a Z(m)-disposal quota

equilibrium. Let F = {(X,Rω, Pω, eω, θ)ω∈Ω, (Yj)j∈J ,V , t, θ0} be a finite production

economy with emission tax such that

(1) Vn = R≤0 for all n < k and Vn = Z(m)n for all n ≥ k;

(2) t = −πk(p̄).

Then (x̄, ȳ, p̄) is a V-disposal emission tax equilibrium for F .

Proof. As profit maximization does not depend on the disposal region, we have

ȳ(j) ∈ Sj(p̄) for all j ∈ J . As V ⊃ Z, we have
∑

ω∈Ω x̄(ω)−
∑

ω∈Ω e(ω)−
∑

j∈J ȳ(j) ∈ V .

Note that Bm
ω (x̄, ȳ, p̄) = Bt

ω(x̄, ȳ, p̄) for all ω ∈ Ω. As x̄(ω) ∈ Dm
ω (x̄, ȳ, p̄) for all ω ∈ Ω,

we have x̄(ω) ∈ Dt
ω(x̄, ȳ, p̄) for all ω ∈ Ω. Hence, (x̄, ȳ, p̄) is a V-disposal emission tax

equilibrium for the economy F . �

On the other hand, every emission tax equilibrium is a quota equilibrium with the

quota being minus the total net emission of the first k commodities in the emission

tax equilibrium:

Theorem 3.4. Let F = {(X,Rω, Pω, eω, θ)ω∈Ω, (Yj)j∈J ,V , t, θ0} be a finite production

economy with emission tax and (x̄, ȳ, p̄) be a V-disposal emission tax equilibrium. Define

a finite production economy with quota E = {(X,Rω, Pω, eω, θ)ω∈Ω, (Yj)j∈J ,Z(m), θ0}
where m = −C(x̄, ȳ) and Z(m)n = Vn for all n ≥ k. Then (x̄, ȳ, p̄) is a Z(m)-disposal

quota equilibrium for E.
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Proof. As (x̄, ȳ, p̄) is a V-disposal emission tax equilibrium, we have m = −C(x̄, ȳ) ≤ 0.

Hence, we have
∑

ω∈Ω x̄(ω)−
∑

ω∈Ω e(ω)−
∑

j∈J ȳ(j) ∈ Z(m). As profit maximization

does not depend on the disposal region, we have ȳ(j) ∈ Sj(p̄) for all j ∈ J . As

t = −πk(p̄), we have Bm
ω (x̄, ȳ, p̄) = Bt

ω(x̄, ȳ, p̄) for all ω ∈ Ω. Hence, we have

x̄(ω) ∈ Dm
ω (x̄, ȳ, p̄) for all ω ∈ Ω. So (x̄, ȳ, p̄) is a Z(m)-disposal quota equilibrium. �

Theorem 3.3 and Theorem 3.4 show that a quota equilibrium can be realized as an

emission tax equilibrium and vice versa. In the next example, we study the existence

of emission tax equilibrium and whether an emission tax rate can be chosen to ensure

that emissions will lie under a pre-specified level of total net pollution emissions for

every emission tax equilibrium consistent with the chosen emission tax rate.

Example 3.5. Let F be a finite production economy with emission tax which is

defined exactly as the finite production economy with quota E in Example 2.16 except

that the disposal region V = R3
≤0 (i.e., we eliminate the quota on CO2 and replace it

by imposing an emission tax on CO2).

Existence of Emission Tax Equilibrium: We show that F has a V-disposal

emission tax equilibrium if and only if the tax rate t ≤ 1
4
. Hence, emission tax

equilibrium might not exist for specific emission tax rates.

Claim 3.6. There is a V-disposal emission tax equilibrium for emission tax rate t ≤ 1
4
.

Proof. Pick t0 ≤ 1
4

to be the tax rate on CO2. Let x̄ = (0, 0, 1), ȳ =
(
(1,−1, 1), (0, 0, 0)

)
and p̄ = (−t0, 1

2
− t0, 1

2
). We claim that (x̄, ȳ, p̄) is a V-disposal tax equilibrium with

tax rate t0 on CO2. At the equilibrium price p̄, both firms are profit maximizing,

which are both 0. The budget set for the agent is:

{z ∈ X : p̄ · z ≤ 1

2
− t0 + t0 =

1

2
}. (3.1)

Hence, x̄ is an element of the demand set Dt(x̄, ȳ, p̄). Note that x̄− e−
∑

j∈J ȳ(j) =

(−1, 0, 0) ∈ V . Hence, (x̄, ȳ, p̄) is a V-disposal tax equilibrium with tax rate t0, which

proves the desired result. �

We now show that there is no V-disposal emission tax equilibrium if the emission

tax rate is greater than 1
4
. Suppose t > 0 is an emission tax rate on CO2 under which

there is a V-disposal emission tax equilibrium (x̂, ŷ, p̂). By definition, we know that
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p̂1 = −t. The equilibrium price p̂3 must be no less than 2t since otherwise the second

firm’s profit is unbounded. For the same reason, we know that p̂2 ≥ p̂3− t > 0. As the

endowment e = (0, 1, 0), the agent’s budget at equilibrium is positive. The equilibrium

production for the first firm must not be (0, 0, 0) since the agent has a positive budget

which she will spend entirely on electricity. Hence, we conclude that p̂3 = t+ p̂2. As

p̄ ∈ ∆, we have 2t + 2p̂2 = 1, which implies that p̂3 = 1
2
. As p̂3 ≥ 2t, we know that

t ≤ 1
4
. By Claim 3.6, we conclude that F has a V-disposal emission tax equilibrium if

and only if the emission tax rate t ≤ 1
4
.

Limiting CO2 Emission via Emission Tax: We now investigate whether emission

tax rate can ensure the total net CO2 emission is under a pre-specified level.

Claim 3.7. The total net emission of CO2 at any V-disposal emission tax equilibrium

is 1 if the emission tax rate t < 1
4
.

Proof. Pick t0 <
1
4

to be the emission tax rate of CO2, under which there is a V-

disposal emission tax equilibrium (x̂, ŷ, p̂). By the same argument as in the previous

paragraph, we conclude that p̂3 = 1
2

and p̂2 = 1
2
− t0. As p̂3 > 2t0, the equilibrium

production for the second firm is (0, 0, 0). Suppose the equilibrium production for the

first firm is (r,−r, r) for some r < 1. Then the emission tax budget set is:

{z ∈ X : p̂ · z ≤ 1

2
− t0 + rt0}. (3.2)

As t0 <
1
4

and r < 1, we have 1
2
r < 1

2
− (1− r)t0, which implies that the consumption

(0, 0, r) is in the agent’s budget set. However, the agent has extra budget to consume

more electricity but the total production of the electricity is r units. So (0, 0, r) is not

in the demand set Dt(x̂, ŷ, p̂). Hence, the equilibrium production for the first firm is

(1,−1, 1). So the total net emission of CO2 is 1. �

By Claim 3.7, if the government sets the emission tax rate to be less than 1
4
, then

the total net CO2 emission is 1 unit. We now consider the case where the emission

tax rate is 1
4
. Note that, when the emission tax rate is 1

4
, the equilibrium price must

be (−1
4
, 1

4
, 1

2
).

Claim 3.8. Let the emission tax rate be 1
4

and 0 ≤ v ≤ 1. Then there exists a unique

V-disposal emission tax equilibrium such that the total net emission of CO2 is v.
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Proof. Pick some v0 ∈ [0, 1]. To achieve this pre-specified total net emission of CO2,

all possible equilibrium production plans take the following form:

• The first firm produces at (r1,−r1, r1) where 0 ≤ r1 ≤ 1. The second firm

produces at (−2r2, 0,−r2) where 0 ≤ r2 ≤ r1
2

. We also require r1 − 2r2 = v0.

Thus, the agent’s utility function is (r1 − r2) − v2
0. As r2 = r1−v0

2
, so the agent’s

utility maximizes by taking r1 = 1. By Theorem 3.4 and Theorem 2.12, the only

possible equilibrium production plan for the first firm is (1,−1, 1), which implies

that the only possible equilibrium consumption-production pair is x̂v0 = (0, 0, 1+v0
2

)

and ŷv0 =
(
(1,−1, 1), (v0 − 1, 0, v0−1

2
)
)
. It remains to show that (x̂v0 , ŷv0 , p̂) is a V-

disposal emission tax equilibrium. Note that x̂v0 − e−
∑

j∈J ŷv0(j) = (−v0, 0, 0) ∈ V .

Both firms are profit maximizing. The emission tax budget set for the agent is

{z ∈ X : p̂ · z ≤ 1
4
(1 + v0)}. Hence, x̂v0 is an element of the emission tax demand set

Dt(x̂v0 , ŷv0 , p̂), which implies that (x̂v0 , ŷv0 , p̂) is a V-disposal emission tax equilibrium

for the emission tax rate 1
4
. �

By Claim 3.8, there are multiple V-disposal emission tax equilibrium associated

with the emission tax rate 1
4
. In fact, for any pre-specified total net emission v < 1 of

CO2, there is a V-disposal emission tax equilibrium with emission tax rate 1
4

whose

total net emission of CO2 equals to v. Combining with Claim 3.7, we conclude that,

in this example, it is impossible to get under the pre-specified total net emission of

CO2 by setting an emission tax CO2.

The Welfare Property of Emission Tax Equilibrium and Comparison with

Revenue-Maximizing Quota Equilibrium: We now consider the welfare property

of V-disposal emission tax equilibria. As in Example 2.16, there is a Pareto ranking

among V-disposal emission tax equilibria arising from the externality. The total

net emission of CO2 that maximizes the agent’s utility is v̂ = 1
4
. As a result, the

V-disposal emission tax equilibrium consumption-production pair (x̂ 1
4
, ŷ 1

4
)12 with

emission tax rate 1
4

Pareto dominates all other V-disposal emission tax equilibrium

consumption-production pairs. Thus, if the government sets the emission tax rate to

be less than 1
4
, then the resulting V-disposal emission tax equilibrium consumption-

production pair is Pareto dominated. On the other hand, there are multiple V-disposal

12In particular, we have x̂ 1
4

= (0, 0, 5
8 ), ŷ 1

4
=
(
(1,−1, 1), (− 3

4 , 0,−
3
8 )
)

and p̂ = (− 1
4 ,

1
4 ,

1
2 ).
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emission tax equilibrium with the emission tax rate 1
4

but only one of these equilibrium

consumption-production pairs is Pareto optimal. So it is impossible to guarantee full

Pareto optimality by setting an emission tax rate on CO2.

To compare emission tax equilibrium with revenue-maximizing quota equilibrium,

we consider the finite production economy with quota E in Example 2.16. Recall

that E has a Z(m)-disposal revenue-maximizing quota equilibrium for all m ∈ [−1, 0].

By the definition of revenue-maximizing quota equilibrium, it is straightforward

to conclude that the total net emission of CO2 is bounded by −m for all Z(m)-

disposal revenue-maximizing quota equilibrium. Thus, unlike emission tax equilibrium,

revenue-maximizing quota equilibrium always exists, and quota can be chosen to

ensure that the total net CO2 emission of every quota equilibrium will be under a

pre-specified level. Moreover, by Theorem 2.12, every revenue-maximizing quota

equilibrium consumption-production pair is constrained Pareto optimal. That is, every

quota equilibrium consumption-production pair is Pareto optimal among all feasible

consumption-production pairs with the same total net CO2 emission. Finally, as

indicated in Example 2.16, (x̂ 1
4
, ŷ 1

4
, p̂) is the only Z(−1

4
)-disposal revenue-maximizing

quota equilibrium of E , and (x̂ 1
4
, ŷ 1

4
) is full Pareto optimal. Thus, once the government

sets the quota on CO2 emission to be 1
4
, full Pareto optimality of the equilibrium

consumption-production pair is achieved without further intervention from the gov-

ernment.

Example 3.5 shows that emission tax equilibrium may not exist for certain emission

tax rate and, when there does not exist a one-to-one correspondence between emission

tax rate and total net CO2 emission, setting an emission tax rate does not ensure that

the total net CO2 emission will be under a pre-specified level. However, as the next

example illustrates, if there exists a one-to-one correspondence between emission tax

rate and total net CO2 emission, one can not only limit the total net CO2 emission

under a pre-specified level but also guarantee full Pareto optimality via emission tax

rate, provided that the only externality arises from total net CO2 emission.



GENERAL EQUILIBRIUM THEORY FOR CLIMATE CHANGE 29

Example 3.9. Let F be a finite production economy with tax as in Example 3.5

except that the second firm’s production set is now given by

Y2 = {(−a, 0,−r2) : (r ∈ R≥0) ∧ (0 ≤ a ≤ 2r)}. (3.3)

The second firm has the production technology to sequester CO2 using electricity, and

the marginal cost of electricity to sequester an additional unit of CO2 increases as the

amount of CO2 that has been sequestered increases.

Existence and Properties of Emission Tax Equilibrium: We show that F has

a unique V-disposal emission tax equilibrium if and only if the emission tax rate t ≤ 1
4
.

Claim 3.10. There is a unique V-disposal emission tax equilibrium for all emission

tax rate t ≤ 1
4

Proof. Pick t0 ≤ 1
4
. Let x̄t0 = (0, 0, 1−4t20), ȳt0 =

(
(1,−1, 1), (−4t0, 0,−4t20)

)
and p̄t0 =

(−t0, 1
2
− t0, 1

2
). We claim that (x̄t0 , ȳt0 , p̄t0) is a V-disposal emission tax equilibrium

with emission tax rate t0 on CO2. It is clear that the first firm is profit maximizing

and x̄t0 − e−
∑

j∈J ȳt0(j) = (4t0 − 1, 0, 0) ∈ V. The second firm’s profit at p̄t0 , as a

function of production, is given by 2rt0 − 1
2
r2. Thus, the second firm maximize its

profit at (−4t0, 0,−4t20), and its profit is 2t20. The agent’s emission tax budget set is:

{z ∈ X : p̄ · z ≤ 1

2
− t0 + 2t20 + (1− 4t0)t0 =

1

2
− 2t20)}.

Hence, x̄t0 is an element of the emission tax demand set Dt0(x̄t0 , ȳt0 , p̄t0), which implies

that (x̄t0 , ȳt0 , p̄t0) is a V-disposal emission tax equilibrium with emission tax rate t0.

We now show that (x̄t0 , ȳt0 , p̄t0) is the only V-disposal emission tax equilibrium

with emission tax rate t0. Suppose (x̂, ŷ, p̂) is a V-disposal emission tax equilibrium

with emission tax rate t0. By the form of the agent’s utility function, we know that

p̂3 > 0. Note that the second firm’s profit at p̂, as a function of production, is given by

2rt0 − r2p̂3. So the second firm maximize its profit by producing at (−2t0
p̂3
, 0,−( t0

p̂3
)2).

As (x̂, ŷ, p̂) is a V-disposal emission tax equilibrium and the total emission of CO2

can not exceed 1 unit, so we have 2t0
p̂3
≤ 1, which implies that p̂3 ≥ 2t0. Note that

we must have t0 + p̂2 ≥ p̂3 since otherwise the first firm’s profit is unbounded. Thus,

we conclude that p̂2 ≥ t0 so the agent’s endowment is positive, which further implies

that the agent’s budget at equilibrium is positive. By the form of the agent’s utility
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function, the agent spends all its budget to consume electricity hence the equilibrium

production for the first firm must not be (0, 0, 0). Thus, we must have p̂3 = p̂2 + t0.

Since p̂ ∈ ∆, we have p̂ = (−t0, 1
2
− t0, 1

2
). So the second firm’s equilibrium production

is (−4t0, 0,−4t20). Suppose the first firm’s equilibrium production is (r,−r, r). Then

the agent’s emission tax budget set is:

{z ∈ X : p̂ · z ≤ 1

2
− t0 + 2t20 + (r − 4t0)t0 =

1

2
− (1− r)t0 − 2t20}. (3.4)

So the emission tax demand set Dt0(x̂, ŷ, p̂) is {(0, 0, 1 − 2(1 − r)t0 − 4t20)}. As

ŷ1 + ŷ2 = (r − 4t0,−r, r − 4t20), so there are r − 4t20 unit of electricity in the economy

available to the agent. If r < 1, then we have r − 4t20 < 1− 2(1− r)t0 − 4t20. So the

agent has enough budget to consume more electricity than what is available to her.

As a result, the first firm’s equilibrium production must be (1,−1, 1), which implies

that x̂ = (0, 0, 1− 4t20). Hence, (x̄t0 , ȳt0 , p̄t0) is the unique V-disposal tax equilibrium

with the emission tax rate t0. �

We now show that there is no V-disposal emission tax equilibrium if the emission

tax rate is greater than 1
4
. Suppose t > 0 is an emission tax rate on CO2 under which

there is a V-disposal emission tax equilibrium (x̄t, ȳt, p̄t). By the same argument as

in Claim 3.10, the second firm’s equilibrium production is (−4t0, 0,−4t20). As the

total emission of CO2 can not exceed 1 unit, this implies that t0 ≤ 1
4
. So there is no

V-disposal emission tax equilibrium if the tax rate is greater than 1
4
.

Although emission tax equilibrium does not exist for emission tax rate t > 1
4
, one

can achieve any pre-specified total net CO2 emission via emission tax rate alone, since

there is a one-to-one correspondence between the emission tax rate and the total net

CO2 emission. In particular, by Claim 3.10, given a tax rate t ≤ 1
4
, the total net CO2

emission is 1− 4t. Hence, the government can limit the total net CO2 emission under

any pre-specifed level v ≤ 1 by setting the emission tax rate to be no less than 1−v
4

.

The Welfare Property of Emission Tax Equilibrium and Comparison with

Revenue-Maximizing Quota Equilibrium: We now consider the welfare property

of V-disposal emission tax equilibrium. As in Example 3.5, there is a Pareto ranking

among V-disposal emission tax equilibrium consumption-production pairs arising

from the externality. By Claim 3.10, the agent’s utility at a V-disposal emission
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tax equilibrium, as a function of the tax rate, is given by (1 − 4t2) − (1 − 4t)2.

By taking the derivative, the agent’s utility maximizes uniquely at t = 1
5

and the

utility is 4
5
. Thus, the V-disposal emission tax equilibrium consumption-production

pair with emission tax rate 1
5

Pareto dominates all other V-disposal emission tax

equilibrium consumption-production pairs. By Claim 3.10, there exists a unique

V-disposal emission tax equilibrium with emission tax rate 1
5
. Hence, full Pareto

optimality can be achieved by setting the emission tax rate to be 1
5
.

We now consider the associated finite production economy with quota. In particular,

let F ′ be the finite production economy with quota which is defined exactly the same

as F except that the disposal region of F ′ is given by Z(m) = [m, 0]× R2
≤0 (i.e., we

eliminate the emission tax on CO2 and replace it by setting a quota on CO2 emission).

Note that Y2 is closed and convex. Hence, we know that Ȳ = Y1 + Y2 is convex and

closed. For every y ∈ Ȳ , we have y2 ≤ 0, and if y2 = 0 then y1, y3 ≤ 0. Hence, we

conclude that Ȳ ∩R3
≥0 = {0} = Ȳ ∩ (−Ȳ ). For the same reason as in Example 3.5, we

know that e ∈ int(X− Ȳ ). So F ′ satisfies the conditions of Theorem 2.6, which implies

that F ′ has a Z(m)-disposal revenue-maximizing quota equilibrium for all m ∈ [−1, 0].

Moreover, as there exists a one-to-one correspondence between tax rate and total net

CO2 emission, it follows from Theorem 3.3 that (x̄ 1
5
, ȳ 1

5
, p̄ 1

5
) is the only Z(−1

5
)-disposal

revenue-maximizing quota equilibrium. Thus, once the government sets the quota on

CO2 to be 1
5
, full Pareto optimality of the equilibrium consumption-production pair is

achieved without further intervention from the government.

Example 3.5 and Example 3.9 jointly provide a comprehensive comparison between

quota equilibrium and emission tax equilibrium, which lead us to the following

conclusions:

(1) Quota equilibrium always exists and the total net pollution emission at any

quota equilibrium is under the quota. Moreover, by Theorem 2.12, every quota

equilibrium is constrained Pareto optimal. On the other hand, by Theorem 2.5,

every quota equilibrium with respect to a smaller quota is a quota equilibrium

with respect to a larger quota, which implies that a quota is usually associated

with multiple quota equilibrium with different total net pollution emission.
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This further implies that a quota equilibrium is, in general, not Pareto optimal

among all quota equilibria;

(2) Emission tax equilibrium need not exist for certain emission tax rates. When

there does not exist a one-to-one correspondence between emission tax rate

and total net pollution emission, setting an emission tax rate can not ensure

the total net pollution emission of an emission tax equilibrium will be under a

pre-specified level, as illustrated in Example 3.5;

(3) When there is a one-to-one correspondence between emission tax rate and

total net pollution emission, the government can limit the total net pollution

emission at any pre-specified level by setting an emission tax. Moreover, if the

only externality arises from total net pollution emission, one can achieve full

Pareto optimality through an emission tax.

3.1. Emission Tax Versus Add-on Tax.

Example 3.11. In this example, we consider an alternative formation of the finite

production economies with tax. Let F ′ be the same finite production economy with

tax as in Example 3.9, except that the tax is imposed on the input of coal rather than

on the emission of CO2. We shall show that the analogue tax equilibrium arises from

F ′ is less efficient than the emission tax equilibrium as in Example 3.9.

Let t ≥ 0 be a tax rate on the input of the coal. Through normalization, for a price

vector p, we require that t +
∑`

k=1 |pk| = 1, that is, (t, p) ∈ ∆. Given a production

plan y ∈ Y , let Tcoal(y) denote the total input of coal in the production. For every

(t, p) ∈ ∆ and y ∈ Y , the carbon tax budget set Bc
ω(y, t, p) is defined to be:

{z ∈ X : p · z ≤ p · e+
∑
j∈J

p · y(j) + t · Tcoal(y)}. (3.5)

The carbon tax demand set is defined to be the collection of elements in Bc
ω(y, t, p)

that maximizes the agent’s utility function. A V-disposal carbon tax equilibrium

under the tax rate t is (x̄, ȳ, p̄) such that:

(1) (t, p̄) ∈ ∆;

(2) x̄ is in the carbon tax demand set and both firms are profit maximizing at

(t, p̄);
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(3) x̄−
∑

j∈J ȳ(j)− e ∈ V .

As shown in Claim 3.10, every tax rate t ≤ 1
4

is associated with the unique V-disposal

tax equilibrium (x̄t, ȳt, p̄t), where x̄t = (0, 0, 1− 4t2), ȳt =
(
(1,−1, 1), (−4t, 0,−4t2)

)
and p̄t = (−t, 1

2
− t, 1

2
). Recall that the agent’s utility, as a function of the tax rate, is

given by (1− 4t2)− (1− 4t)2 + 1. Note that the agent’s utility is no less than 1, and

the equality holds if and only if t = 0. We show that there exists a V-disposal carbon

tax equilibrium with the same tax rate, and it is Pareto dominated by the V-disposal

tax equilibrium. Let p̂t = (0, 1
2
− t, 1

2
), ŷt =

(
(1,−1, 1), (0, 0, 0)

)
and x̂t = (0, 0, 1). It

is easy to verify that (x̂t, ŷt, p̂t) is a V-disposal carbon tax equilibrium with tax rate t.

The agent’s utility at (x̂t, ŷt, p̂t) is 1, which is less than the agent’s utility at (x̄t, ȳt, p̄t)

unless t = 0. In fact, when t = 0, the V-disposal tax equilibrium is the same as the

V-disposal carbon tax equilibrium. Thus, for tax rate t ≤ 1
4
, the V-disposal carbon

tax equilibrium (x̂t, ŷt, p̂t) has a higher electricity consumption at the cost of a higher

total net CO2 emission, which together results in a lower utility for the agent.

We now analysis the generic V-disposal carbon tax equilibrium, and show that it is

Pareto dominated by the Pareto optimal V-disposal tax equilibrium in Example 3.9.

Let (x̂, ŷ, p̂) be a V-disposal carbon tax equilibrium under the tax rate t. By the form

of the agent’s utility function, we know that p̂3 > 0. We now break our analysis into

the following two cases:

• First Case: We first assume that p̂1 ≥ 0. As the second firm is profit maxi-

mizing, the second firm’s production is (0, 0, 0). If the first firm’s equilibrium

production plan is (r,−r, r) for r > 0, its profit must be 0 since otherwise its

profit is unbounded. Thus, the agent can at most consume r units of CO2

so the agent’s utility is bounded by r − r2 + 1. By taking the derivative,

the agent’s utility is bounded by 5
4
. Recall from Example 3.9 that the tax

rate and utility for the Pareto optimal V-disposal tax equilibrium are 1
5

and
9
5
,respectively. Hence, (x̂, ŷ, p̂) is Pareto dominated by the Pareto optimal

V-disposal tax equilibrium;

• Second Case: We now assume that p̂1 < 0. We shall show that there exists

a V-disposal tax equilibrium at which the agent consumes at least as much

electricity under the same total net CO2 emission, with strict inequality except
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at t0 = 1
4
. Note that the second firm’s profit at (t, p̂), as a function of production,

is given by −2rp̂1− r2p̂3, which implies that the second firm maximize it profit

by producing at (2 p̂1
p̂3
, 0,−( p̂1

p̂3
)2), and its profit is

p̂21
p̂3

. As (x̂, ŷ, p̂) is a V-disposal

carbon tax equilibrium and the total CO2 emission can not exceed 1 unit,

we conclude that p̂3 ≥ −2p̂1. Since the second firm’s equilibrium production

plan is not (0, 0, 0), the first firm’s equilibrium production plan must not

be (0, 0, 0). Hence, we must have p̂2 + t − p̂1 = p̂3 since otherwise the first

firm’s profit is unbounded. Suppose the first firm’s equilibrium production

plan is (r,−r, r) for some r > 0. Then the agent’s carbon tax budget set is

{z ∈ X : p̂ · z ≤ p̂2 + rt+
p̂21
p̂3
}. By the form of the agent’s utility function, the

agent’s carbon tax demand set is either empty or contains the single point

(0, 0, p̂2+rt
p̂3

+ ( p̂1
p̂3

)2). Note that p̂2+rt
p̂3

+ ( p̂1
p̂3

)2 = p̂3+p̂1−t+rt
p̂3

+ ( p̂1
p̂3

)2 ≤ p̂3+p̂1
p̂3

+ ( p̂1
p̂3

)2,

with equality if and only if r = 1.

Claim 3.12. Let the tax rate t0 = p̂1
−2p̂3

. Then (0, 0, p̂2+rt
p̂3

+ ( p̂1
p̂3

)2) is no greater

than the single point in agent’s demand set under tax t0, with the equality if

and only if r = 1 = 4t0.

Proof. Since p̂3 ≥ −2p̂1 and V-disposal tax equilibrium in Example 3.9 exists

if and only if the tax rate is no greater than 1
4
, so there exists a V-disposal tax

equilibrium with tax rate t0. Recall from Eq. (3.4) that the agent’s budget in

Example 3.9 is given by 1
2
− t0 + 2t20 + (r − 4t0)t0. Recall from Example 3.9

that the equilibrium price for electricity is 1
2
, so the agent can consume

up to
1
2
−t0+2t20+(r−4t0)t0

1
2

. As −2t0 = p̂1
p̂3

, we conclude that p̂3+p̂1
p̂3

+ ( p̂1
p̂3

)2 ≤
1
2
−t0+2t20+(r−4t0)t0

1
2

, and the equality holds if and only if r = 4t0 = 2 p̂1
p̂3

. From the

calculation before Claim 3.12, we know that p̂2+rt
p̂3

+ ( p̂1
p̂3

)2 = p̂3+p̂1
p̂3

+ ( p̂1
p̂3

)2 if

and only if r = 1. So we have the desired result. �

By Claim 3.12, If p̂1
p̂3
> −1

2
, by Claim 3.12, the agent can consume more

electricity with the same total net CO2 emission under the emission tax

t0 = p̂1
−2p̂3

. If p̂1
p̂3

= −1
2
, by Claim 3.12, the agent has the same utility as under

the emission tax t0 = p̂1
−2p̂3

= 1
4
. Note that, in Example 3.9, the Pareto optimal
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tax rate is 1
5

with the utility being 9
5
. So we conclude that (x̂, ŷ, p̂) is Pareto

dominated by the Pareto optimal V-disposal tax equilibrium with tax rate 1
5
.

In both Example 3.9 and this example, the ratio of the equilibrium prices of CO2 and

electricity determines the level of sequestration, that is, the second firm’s equilibrium

production plan. As the equilibrium price for electricity is always 1
2

in Example 3.9,

the emission tax on CO2 determines the second firm’s equilibrium production plan

hence the equilibrium. Given a V-disposal tax equilibrium, an associated V-disposal

carbon tax equilibrium is a one such that p̂1
p̂3

= −2t0. Note that a V-disposal tax

equilibrium may be associated with multiple V-disposal carbon tax equilibrium. By

Claim 3.12, we know that the agent consumes at least as much electricity with the

same total net CO2 emission under the emission tax, with strict inequality except at

t0 = p̂1
−2p̂3

= 1
4
.

A. Appendix

The goal of this appendix is to provide a complete proof of a special case of

Theorem 2.6 where the disposal region is a cone, which further completes our proof of

Theorem 2.6. To do so, we need to introduce the concept of quasi-equilibrium. Let

E = {(X,Rω, Pω, eω, θ)ω∈Ω, (Yj)j∈J ,Z(m), θ0} (A.1)

be a finite production economy with quota as in Definition 2.2. Given (x, y, p) ∈
A× Y ×∆, the quota quasi-demand set D̄m

ω (x, y, p) is defined to be:

{z ∈ Bm
ω (x, y, p) : w �x,y,ω,p z =⇒ p · w ≥ p · e(ω) +

∑
j∈J

θωjp · y(j)− θ0(ω)πk(p) · C(x, y)}.

A Z(m)-disposal quota quasi-equilibrium is (x̄, ȳ, p̄) ∈ A× Y ×∆ such that:

(1) x̄(ω) ∈ D̄m
ω (x̄, ȳ, p̄) for all ω ∈ Ω;

(2) ȳ(j) ∈ Sj(p̄) for all j ∈ J . So every firm is profit maximizing given the price p̄;

(3)
∑

ω∈Ω x̄(ω)−
∑

ω∈Ω e(ω)−
∑

j∈J ȳ(j) ∈ Z(m).

Note that quasi-equilibrium is not stable since agents could, in principle, do better

within their budget sets. Thus, the interest of the quasi-equilibrium concept is purely

mathematical. The rest of this appendix is broken into the following two parts:
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(1) To show that every quota quasi-equilibrium is a quota equilibrium under

suitable regularity conditions;

(2) Prove the special case of Theorem 2.6 by first establishing the existence of a

quota quasi-equilibrium, then applying the result mentioned in the previous

item to show that the quota quasi-equilibrium is a quota equilibrium.

A.1. Quasi-Equilibrium Versus Equilibrium. In this section, we show that, under

the classical survival assumption, every Z(m)-disposal quota quasi-equilibrium is a

Z(m)-disposal quota equilibrium.

Lemma A.1. Let E = {(X,Rω, Pω, eω, θω)ω∈Ω, (Yj)j∈J ,Z(m), θ0} be a finite produc-

tion economy under quota and (x̄, ȳ, p̄) be a Z(m)-disposal quota quasi-equilibrium.

Suppose eω ∈ int(Xω −
∑

j∈J θωjYj) for all ω ∈ Ω and −(πk(p̄)) · C(x̄, ȳ) ≥ 0. Then

(x̄, ȳ, p̄) is a Z(m)-disposal quota equilibrium.

Proof. Let (x̄, ȳ, p̄) be a Z(m)-disposal quota quasi-equilibrium. For each consumer

ω, define a correspondence δω : ∆ � Xω as

δω(p) = {xω ∈ Xω : p · xω < p · e(ω) +
∑
j∈J

θωj sup{p · y : y ∈ Yj} − θ0(ω)πk(p̄) · C(x̄, ȳ)}.

We first show that δω(p̄) 6= ∅ for all ω ∈ Ω. Note that p̄ 6= 0. By the hypothesis

of the lemma, for each agent ω ∈ Ω, pick u ∈ R` such that p̄ · u < 0 and that

(e(ω)+z) ∈ (Xω−
∑

j∈J θωjYj). As (x̄, ȳ, p̄) is a Z(m)-disposal quota quasi-equilibrium

and−(πk(p̄))·C(x̄, ȳ) ≥ 0, we have p̄·x̃ω < p̄·e(ω)+
∑

j∈J θωj p̄·ȳ(j)−θ0(ω)πk(p̄)·C(x̄, ȳ)

for some x̃ω ∈ Xω. So we have δω(p̄) 6= ∅.
For each ω ∈ Ω, pick zω ∈ δω(p̄) and x̂ω ∈ Xω such that (x̂ω, x̄(ω)) ∈ Pω(x̄, ȳ, p̄).

As (x̄, ȳ, p̄) is a Z(m)-disposal quota quasi-equilibrium, we have p̄ · x̂ω ≥ p̄ · e(ω) +∑
j∈J θωj p̄ · ȳ(j) − θ0(ω)πk(p̄) · C(x̄, ȳ). As Pω(x̄, ȳ, p̄) is continuous, there exists

λ ∈ (0, 1) such that

(λzω + (1− λ)x̂ω, x̄(ω)) ∈ Pω(x̄, ȳ, p̄).

Assume that p̄ · x̂ω = p̄ · e(ω) +
∑

j∈J θωj p̄ · ȳ(j)− θ0(ω)πk(p̄) · C(x̄, ȳ). Then we have

(λzω + (1− λ)x̂ω, x̄(ω)) ∈ Pω(x̄, ȳ, p̄) and λzω + (1− λ)x̂ω ∈ δω(p̄). This furnishes us

a contradiction since (x̄, ȳ, p̄) is a Z(m)-disposal quota quasi-equilibrium. Therefore,
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we have p̄ · x̂ω > p̄ · e(ω) +
∑

j∈J θωj p̄ · ȳ(j)− θ0(ω)πk(p̄) ·C(x̄, ȳ). Hence, (x̄, ȳ, p̄) is a

Z-disposal quota equilibrium. �

The survival assumption eω ∈ int(Xω −
∑

j∈J θωjYj) is an autarky assumption: it

implies that an agent can survive without participating in any exchanges using her

initial endowment and shares in production. From an empirical point of view, such an

assumption is obviously questionable. There, however, exist many works on relaxing

the survival assumption13. It is possible to obtain the same results in our setting under

these more general survival assumptions.

A.2. Existence of Quota Equilibrium with Disposal Cone. In this section, we

prove a special case of Theorem 2.6 when the disposal region is a cone. We start with

the definition of feasible consumption-production pairs:

Definition A.2. The set of feasible consumption-production pair of E is

O =

{
(x, y) ∈ A× Y :

∑
ω∈Ω

x(ω)−
∑
ω∈Ω

e(ω)−
∑
j∈J

y(j) ∈ Z(m)

}
. (A.2)

The set Ŷj of feasible production plans for the j-th producer is{
yj ∈ Yj : ∃(x, y′) ∈ A×

∏
i 6=j

Yi,
∑
ω∈Ω

x(ω)−
∑
ω∈Ω

e(ω)− yj −
∑
i 6=j

y′(i) ∈ Z(m)

}
.

(A.3)

The set X̂i of feasible consumption for the i-th agent is{
xi ∈ Xi : ∃(x′, y) ∈

∏
ω 6=i

Xω ×
∏
j∈J

Yj, xi +
∑
ω 6=i

x′(ω)−
∑
ω∈Ω

e(ω)−
∑
j∈J

y(i) ∈ Z(m)

}
.

(A.4)

We now state and prove the main result of this section, which is similar to the

Proposition 3.2.3 in Florenzano [Flo03].

Theorem A.3. Let E = {(X,Rω, Pω, eω, θω)ω∈Ω, (Yj)j∈J ,Z(m), θ0} be a finite pro-

duction economy with tax as in Definition 2.2. Let the polar cone of Z(m) be

13See McKenzie [McK81], Debreu [Deb62], Arrow and Hahn [AH71], Bergstrom [Ber76] and Florig
[Flo99]. Also see Florenzano [Flo03] for a detailed discussion.



GENERAL EQUILIBRIUM THEORY FOR CLIMATE CHANGE 38

Z0 = {p ∈ ∆ : (∀z ∈ Z(m))(p · z ≤ 0)}. Suppose E, in addition, satisfies the

following conditions:

(i) for all ω ∈ Ω, we have 0 ∈ Xω, Pω takes value in PH14 and eω ∈ int(Xω −∑
j∈J θωjYj);

(ii) for all ω ∈ Ω, for each (x, y) ∈ O with xω ∈ Xω, there exists u ∈ Xω such that

(u, xω) ∈
⋂
p∈∆∩Z0 Pω(x, y, p)15;

(iii) Ȳ is closed, convex, and Ȳ ∩(−Ȳ ) = Ȳ ∩R`
≥0 = {0}16, where Ȳ =

{∑
j∈J y(j) : y ∈ Y

}
is the aggregated production set;

(iv) the vector m of quotas is 0, so for all n ≤ k, we have Zn(m) = {0}.

Then, there exists (x̄, ȳ, p̄) ∈ A× Y ×∆ such that:

(1) (x̄, ȳ, p̄) is a Z(m)-disposal quota equilibrium;

(2) we have p̄ ∈ Z0 and p̄ ·
(∑

ω∈Ω x̄(ω)−
∑

ω∈Ω e(ω)−
∑

j∈J ȳ(j)
)

= 0.

Proof. As Z(m)n = {0} for all n ≤ k, we have C(x, y) = 0 for all feasible consumption-

production pair (x, y). So there is no government’s rebate to any agent under any

feasible consumption-production pair. Theorem A.3 is similar to Proposition 3.2.3 in

Florenzano [Flo03]. For ω ∈ Ω, define the correspondence P ′ω : A× Y ×∆ � Xω by

P ′ω(x, y, p) = {a ∈ Xω|(a, xω) ∈ Pω(x, y, p)}. (A.5)

Note that P ′ω is lower hemicontinuous since the preference map Pω is continuous. As

Pω takes value in PH , xω 6∈ conv(P ′ω(x, y, p)) for all (x, y, p) ∈ A × Y × ∆ and all

ω ∈ Ω. By Item (ii), we have
⋂
p∈∆∩Z0 P ′ω(x, y, p) 6= ∅ for all (x, y) ∈ O with xω ∈ Xω.

Claim A.4. X̂ω is compact for every ω ∈ Ω, Ŷj is relatively compact for every j ∈ J
and Ȳ + Z is closed.

Proof. For any set B ⊂ R`, let C(B) denote the recession cone of B. Note that

X̄ =
∑

ω∈Ω Xω is a subset of R`
≥0, hence C(X̄) ⊂ R`

≥0. Thus, we have C(X̄) ∩
14As noted in Florenzano [Flo03], this condition can be weakened to the following condition: for
each (x, y, p) ∈ O× (∆∩Z0) and all ω ∈ Ω, (x(ω), x(ω)) 6∈ conv(Pω(x, y, p)), where conv(Pω(x, y, p))
denotes the convex hull of Pω(x, y, p).
15If the preferences are price independent, then this condition is equivalent to assuming non-satiation
on the set of attainable allocations.
16As noted in Florenzano [Flo03], the condition Ȳ ∩ (−Ȳ ) = {0} can be weakened to requiring every
attainable production set being relatively compact.
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(−C(X̄)) = {0}. As (Ȳ + Z(m)) ∩ R`
≥0 = {0}, we have C(X̄) ∩ C(Ȳ + Z(m)) = {0}.

By Proposition 2.2.4 in Florenzano [Flo03], X̂ω is compact for every ω ∈ Ω.

Note that Ȳ ∩ (−Ȳ ) = {0} implies that C(Ȳ ) ∩ (−C(Ȳ )) = {0}. By Proposition

2.2.4 in Florenzano [Flo03] again, Ŷj is relatively compact for every j ∈ J . Finally,

as Z(m) ⊂ R`
≤0 and Ȳ ∩ R`

≥0 = {0}, we have C(Ȳ ) ∩ (−Z(m)) = {0}, which, by

Proposition 2.2.4 in Florenzano [Flo03], implies that Ȳ + Z(m) is closed. �

As Z(m) is a cone, by Proposition 3.2.3 in Florenzano [Flo03], we conclude that

E has a Z(m)-disposal quota quasi-equilibrium (x̄, ȳ, p̄) ∈ A× Y ×∆. Moreover, we

have p̄ ∈ Z0 and p̄ ·
(∑

ω∈Ω x̄(ω)−
∑

ω∈Ω e(ω)−
∑

j∈J ȳ(j)
)

= 0. As C(x̄, ȳ) = 0, by

Lemma A.1, (x̄, ȳ, p̄) is a Z(m)-disposal quota equilibrium. �

A.3. Existence of Pareto Optimal Consumption-Production Pair. In this

section, we present a technical result on the existence of Pareto optimal consumption-

production pair among a compact set of consumption-production pairs. This technical

result plays a crucial role in establishing Theorem 2.15.

Lemma A.5. Let E = {(X,Rω, Pω, eω, θ)ω∈Ω, (Yj)j∈J ,Z(m), θ0} be a finite production

economy with quota, and the only externality arises from the total net emission of the

first k commodities. Suppose �ω is continuous and negatively transitive for all ω ∈ Ω.

Then, for every compact F ⊂ A× Y , there exists a (f, y) ∈ F such that it is Pareto

optimal among F .

Proof. Let �P be the partial order on A×Y such that (f, y) �P (f ′, y′) if (f, y) Pareto

dominates (f ′, y′). Suppose there does not exist any consumption-production pair in

F that is Pareto optimal among F .

Claim A.6. �P is irreflexive and transitive.

Proof. As �ω is irreflexive for every ω ∈ Ω, �P is irreflexive. Let (f, y), (g, z), (h, s) ∈
A×Y be consumption-production pairs such that (f, y) �P (g, z) and (g, z) �P (h, s).

For every ω ∈ Ω, we have
(
g(ω), C(g, z)

)
6�ω
(
f(ω), C(f, y)

)
and

(
h(ω), C(h, s)

)
6�ω(

g(ω), C(g, z)
)
. As�ω is negatively transitive, we have

(
h(ω), C(h, s)

)
6�ω
(
f(ω), C(f, y)

)
.

There also exists some t ∈ Ω such that
(
g(t), C(g, z)

)
�t

(
h(t), C(h, s)

)
. Sup-

pose
(
f(t), C(f, y)

)
6�t

(
h(t), C(h, s)

)
, as

(
g(t), C(g, z)

)
6�t

(
f(t), C(f, y)

)
, then
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g(t), C(g, z)

)
6�t
(
h(t), C(h, s)

)
, which is a contradiction. Hence

(
f(t), C(f, y)

)
�t(

h(t), C(h, s)
)
, which implies that �P is transitive. �

We now apply transfinite recursion to construct a net of consumption-production

pairs so that larger elements in the net Pareto dominates smaller elements in the net.

Claim A.7. For every ordinal α, there exists a net
(
(fβ, yβ)

)
β<α

of elements in F

such that (fi, yi) �P (fj, yj) for all 0 ≤ j < i < α.

Proof. For an ordinal α, we shall construct such a sequence by transfinite recursion. We

start with an arbitrary element (f0, y0) ∈ F . For all ordinal β < α, pick (fβ+1, yβ+1) ∈
F such that (fβ+1, yβ+1) �P (fβ, yβ). Let λ < α be a limit ordinal. As F is compact,

the net
(
(fβ, yβ)

)
β<λ

has a convergent sub-net
(
(fβi , yβi)

)
i∈I with limit (f̄ , ȳ) ∈ F .

Let (fλ, yλ) = (f̄ , ȳ). We shall show that the net
(
(fβ, yβ)

)
β<α

is the desired sequence.

For every ordinal β < α, by construction, we have (fβ+1, yβ+1) �P (fβ, yβ). For a

limiting ordinal λ < α, there exists a sub-net
(
(fβi , yβi)

)
i∈I of the net

(
(fβ, yβ)

)
β<λ

that

converges to (fλ, yλ). We now show that (fλ, yλ) �P (fβi , yβi) for all i ∈ I. Pick i0 ∈ I.

Suppose there exists some t ∈ Ω such that
(
fβi0 (t), C(fβi0 , yβi0 )

)
�t
(
fλ(t), C(fλ, yλ)

)
.

By continuity of �k, there exists some βj > βi0 such that
(
fβi0 (t), C(fβi0 , yβi0 )

)
�t(

fβj(t), C(fβj , yβj)
)
. This leads to a contradiction, hence, for all ω ∈ Ω, we have(

fβi0 (ω), C(fβi0 , yβi0 )
)
6�ω

(
fλ(ω), C(fλ, yλ)

)
. Pick some βl > βi0 . Then there exists

s ∈ Ω such that
(
fβl(s), C(fβl , yβl)

)
�s
(
fβi0 (s), C(fβi0 , yβi0 )

)
. By negative transitivity,

we have
(
fλ(s), C(fλ, yλ)

)
�s
(
fβi0 (s), C(fβi0 , yβi0 )

)
. As the choice of i0 is arbitrary,

we conclude that (fλ, yλ) �P (fβi , yβi) for all i ∈ I. As {βi : i ∈ I} is a co-final subset

of {β : β < λ}, by transitivity of �P , we have (fλ, yλ) �P (fβ, yβ) for all β < λ,

completing the proof. �

By Claim A.6 and Claim A.7, as Claim A.7 holds for any ordinal α, we have a

contradiction. Thus, there exists a consumption-production pair in F such that it is

Pareto optimal among F . �
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