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Abstract

We consider a principal-agent model to examine the relationship between risk and incentives of firms
who invest in cost-reducing R&D and compete in the product market. We show that a change in
risk may trigger opposite responses of rivals in the same industry: lower risk may induce some firms
to strengthen, while other firms to weaken the incentives provided to their agents. This result holds
regardless of the mode of competition in the product market, Cournot or Bertrand, as long as the
rivals’ R&D decisions are strategic substitutes. Our model can generate new empirical implications
and can provide an explanation for the lack of strong empirical support in the literature for a negative
relationship between risk and incentives. It also has policy implications about the effect of risk on
the incentives to innovate and welfare.
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1 Introduction

We consider a principal-agent model with moral hazard to address the question of how changes in
risk affect the compensation contracts offered by firms who invest in cost-reducing R&D and compete in
the product market. Do all firms adjust their contracts qualitatively the same way when risk increases?
We argue that higher risk triggers asymmetric (and opposite) responses of product market rivals: if rivals’
R&D decisions are strategic substitutes, a negative and a positive relationship between risk and incentives
can coexist for firms active in the same industry.

The relationship between risk and incentives provided by pay-for-performance compensation con-
tracts has received significant attention in contract theory. The conventional wisdom in models with
moral hazard, originating from Holmström (1979) and Holmström & Milgrom (1987), is that the opti-
mal contract balances an increase in risk with weaker incentives for effort due to risk-sharing between the
owner of the firm (the principal) and the manager (the agent). For higher risk, an agent requires more in-
surance, implying that incentives optimally decrease. However, the empirical support for this prediction
is mixed (Prendergast (2002)). In particular, empirical analysis of existing contractual arrangements in
many uncertain environments - e.g., executive payments in knowledge based industries and in financial
sector, sales or franchise agreements - have, in many cases, unveiled a positive link between risk and
incentives.1 This paper shows that the latter result can also hold in a theoretical framework where rival
managers, who have different exposure to risk, compete in the product market.

We consider two risk-neutral firms that, prior to competition in the product market (Cournot or
Bertrand), hire risk-averse agents to conduct cost-reducing R&D. The R&D outcome of each firm de-
pends on its agent’s unobservable effort and the realization of a project-specific shock. The shocks that
hit the rivals’ R&D productions are correlated. Thus, the principal offers to her agent a risk-sharing
contract (Holmström & Milgrom (1987)) that specifies the payment as a function of both rivals’ actual
cost reductions.2 We allow for two kinds of asymmetries which are crucial for our results: either (i) firms
are exposed to the same amount of risk (measured by the variance of a common shock) while the agents
have different degrees of risk aversion, or (ii) agents with same degrees of risk aversion are appointed by
firms that are subject to different levels of risk (measured by the variance of idiosyncratic shocks).

If we shut down the strategic interactions between firms, by assuming that they operate in different
industries, higher risk implies weaker incentives, resulting in a smaller decrease of expected marginal
cost and lower sales. If firms are asymmetric with respect to the cost of incentivizing their agents, the
expected equilibrium reductions in marginal costs will also be asymmetric. We show that this negative
risk-incentives relationship may cease to hold when we allow firms to compete for consumers. The firm
with the lower cost of incentivizing its agent (either because its agent is less risk averse or its idiosyncratic
risk is lower) will experience a relatively smaller reduction in marginal cost and so it will benefit in terms
of market share. Higher market share introduces a new effect on incentives, named the business stealing
effect. If rivals’ R&D decisions are strategic substitutes, this effect is positive for the firm with the
lower cost of providing incentives and works against the standard (negative) insurance effect. When
the business stealing effect is strong enough, it can generate a positive relationship between risk and
incentives for the firm that gains market share. Hence, a change in risk may have opposite effects on the

1More recent theoretical works on moral hazard attempted to generate a positive relationship by considering, for instance,
the role of input monitoring or endogenous matching - they are discussed in the literature review later in this section. However,
the risk-incentives relationship is always negative in models based on Holmström (1979).

2Prendergast (1999) provides a review of the principal-agent literature.
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equilibrium R&D incentives of firms in the same industry.

Competition between firms and asymmetric responses to an increase in risk are necessary conditions
for this result. In addition, incentives must be strategic substitutes so as a higher risk that diminishes a
firm’s R&D effort and thus shrinks its business in the product market will induce the winning firm in
terms of market share to provide stronger incentives. In the linear demand case, incentives are strategic
substitutes in both Bertrand and Cournot settings: the nature of strategic interactions in the R&D stage
does not depend on the mode of competition in the product market. When demand is nonlinear, we
discuss the additional conditions about the curvature of the demand that need to hold.3

The negative effects of the moral hazard problem on the equilibrium incentives of product market
competitors have been analyzed by Hart (1983), Hermalin (1992), Schmidt (1997), Raith (2003) and
Piccolo et al. (2008), among others.4,5 In a similar framework as ours but with identical firms, Chalioti
(2015) argues that, due to product market competition, rivals exert such high levels of R&D that they
burn up their profits.6 In the presence of moral hazard, underprovision of R&D incentives due to risk-
sharing can generate considerable cost-savings, implying higher profits for both rivals. Thus, higher risk
can make firms better off, because it decreases agents’ equilibrium effort. However, this paper derives a
positive relationship between risk and profits (not incentives).

The existing literature that derives a positive relationship between risk and incentives considers dif-
ferent settings. Lafontaine & Slade (2002) argue that it is the stronger incentives that cause a higher
profit volatility. So, the positive relationship is the outcome of a reverse causation. Ackerberg & Bot-
ticini (2002), Serfes (2005) and Serfes (2008), among others, highlight the mechanism of endogenous
matching between principals and agents. The latter models consider that principals compete for ‘high
quality’ agents, but assume away any direct competition among contracts, once principals have matched
with agents. When the (stable) matching is negative assortative, low risk-averse agents match with high
risk projects (principals). Low risk aversion implies that the agent can tolerate stronger incentives, and
so in equilibrium, they can derive a positive correlation between risk and incentives. With endogenous
matching (but no direct competition among contracts), this positive correlation is observed only across
all principal-agent pairs (due to endogenous sorting). Prendergast (2002) departs from the standard risk-
sharing model and highlights the role of monitoring in contractual agreements. In risky environments,
monitoring of the agent’s actions is more difficult. As a result, the principal gives more discretion to the
agent and the contract entails high powered incentives. Raith (2003) considers an endogenous number of
symmetric firms that compete in prices along a Salop circle. When the degree of product substitutability
increases more firms will enter the market. This has two effects: (i) incentives decrease and (ii) the (en-
dogenous) variance of profits decrease. Thus, although exogenous risk and incentives are still negatively
related, there exists a positive correlation between the variance of profits and incentives.

3When incentives are strategic complements, the relationship between risk and incentives is always negative for all firms.
4Raith (2003) examines the effect of competition on incentives, when there are changes in the number of competitors, the

market size, the transportation cost or the cost of entry. Nickell (1996) and Vickers (1995) review the existing works on the
relationship between competition and incentives, while Vives (2008) provides a survey of the existing literature on the effect of
competition on innovation. Amir et al. (2000) examine firms’ R&D strategic interactions when Cournot competitors innovate
simultaneously or sequentially in the presence of R&D spillovers. Technology adoption incentives of market rivals are analyzed
in Milliou & Petrakis (2011).

5Aghion et al. (2005), among others, study empirically the effect of competition on incentives. Griffith (2001) and Baggs
& De Bettignies (2007) examine the relationship between competition and agency cost.

6Chiu et al. (2012) study the behavior of the relative and partial risk-aversion measures. Mirrlees & Raimondo (2013)
analyze strategies in a continuous-time principal-agent model.
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The underlying mechanism and the thrust of the results in existing works are very different from
ours. We focus on the risk faced by agents and highlight the role of competition among them in shap-
ing the contract characteristics. Risk is exogenous and affects asymmetrically the rivals’ equilibrium
incentives. We show that a positive relationship between risk and incentives can arise in a given firm
(principal-agent pair). This paper is also related with the literature on cost-reducing investments, where
the notion of strategic substitutability at the R&D stage (with possible counter effects from spillovers) is
typically the case, e.g., Bagwell & Staiger (1994), Leahy & Neary (1997), Athey & Schmutzler (2001)
and Schmutzler (2013). It is in line with the studies that have examined the question of whether static
strategic complementarities/substitutabilities translate into dynamic ones in multi-stage games (Vives
(2009)). Amir & Wooders (2000) analyze a two-stage game with cost-reducing R&D and product mar-
ket competition à la Cournot/Bertrand, but when there is no moral hazard.

There are interesting policy implications of this model. Public policies whose goal is to decrease
market risk in order to encourage all firms to innovate more may have the opposite result. As expected,
firms with highly risk-averse agents will respond heavily to a decrease in risk, providing stronger incen-
tives and investing more in R&D. However, firms with less risk-averse agents whose agency cost is small
will respond less strongly. In fact, as the former firms exert more effort and further decrease their pro-
duction cost, they will extend their business at the expense of their rivals who have hired less risk-averse
agents. The latter firms may invest less as risk decreases. Thus, we argue that policies aiming in risk
reduction may unexpectedly induce some firms in the industry to innovate less, defeating the purpose
of such practices. One can also verify that our results will continue to hold in environments that do not
necessarily encompass product market competition - for instance, in political campaigns - as long as
actions in the first stage of the game are strategic substitutes (perhaps for other reasons), and the parties
compete for “market” share.

Beyond the obvious importance of our analysis for the relationship between risk and power of in-
centives, it can also shed new light on other aspects of the firm’s internal organizational structure, such
as firm boundaries (Aghion et al. (2004), Alonso et al. (2008) and Hart & Holmström (2010), among
others). In particular, as risk increases, the moral hazard risk-sharing model predicts that the incentives
for vertical integration should also increase (Lafontaine & Slade (2007)). This is because high-powered
incentives that typically exist outside a firm become more ‘costly’ and thus each firm wishes to rely less
on the market. Based on our arguments, such a positive relationship between risk and vertical integration
need not hold. Firms that gain in market share as risk increases and their cost of providing insurance is
small enough, can operate under vertical separation. Therefore, we provide an alternative explanation
for a negative risk-integration relationship that has also found empirical support (Lafontaine & Slade
(2007)).

The paper is organized as follows. Section 2 presents the model. It discusses the R&D technology
and the compensation contracts. Section 3 solves the game and examines the relationship between risk
and R&D incentives when firms are involved in Cournot competition in the product market. It first
performs the analysis with general demand and cost-of-effort functions, and then it discusses the linear
demand case. In section 4, we focus on the R&D motives of Bertrand rivals and discuss whether the
mode of competition in the product or R&D stages influences the rivals’ R&D responses to an increase
in risk. Section 5 concludes and discusses empirical implications of this model.
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2 The model

The market consists of two firms 1 and 2, indexed by i and j where i 6= j. Each firm (it) is run by a
risk-neutral principal (she) who appoints a risk-averse agent (he) to run the R&D department of the firm.
We will be using the terms principal and firm interchangeably. The main goal of the R&D department
is to achieve a lower marginal cost of production for the firm. The parties participate in a three-stage
game. In stage 1, each principal offers a contract that stipulates a piece-rate pay based on (observable)
R&D outcomes in order to encourage her agent to exert cost-reducing effort. In stage 2, if the agent
accepts the offer, he chooses an effort level, which is unobservable to the principal. In stage 3, after the
R&D outcomes have become common knowledge, the agents receive their compensation and then the
principals (firms) compete in the product market, either in quantities or in prices.

2.1 R&D technology

The product market is populated by a continuum of identical consumers with mass equal to 1.
We assume that each firm’s initial marginal cost is c > 0. This cost decreases with a firm’s R&D output,
yi≡ ei+εi, where ei is its agent’s effort and εi is a project-specific shock. Thus, after the completion of the
R&D process, firm i’s marginal cost is ci = c− yi. The random term εi is drawn from a bivariate normal
distribution with zero mean and variance σ2

i . The shocks, εi and ε j, are correlated, where σi j = cov(εi,ε j)
is their covariance and ρ ≡ σi j

σiσ j
denotes the correlation coefficient, |ρ| ≤ 1.7,8 Firm i’s net profit for any

realization of the marginal cost ci is πi−wi, where πi is the Cournot or Bertrand profit, depending on the
mode of product market competition, and wi is the agent’s realized compensation.

2.2 Researchers’ objectives and incentive contracts

To conduct R&D, agent i incurs disutility g(ei). This function is twice continuously differentiable
and convex, implying that there are diminishing returns to scale in the R&D production process. We also
assume that g(0) = 0, g′(0) = 0 and limei→∞ g′(ei) = ∞. Agent i receives the reward wi and has constant
absolute risk-averse (CARA) preferences. He derives utility

Vi (wi) =−e−ri[wi−g(ei)], (1)

where ri is the Arrow-Pratt measure of risk aversion. Throughout this analysis, we assume r j ≥ ri > 0,
implying that firm j hires a more risk-averse agent than firm i.

Holmström & Milgrom (1987) establish that in a model much like ours, the optimal contracts are
linear. In particular, agent i’s compensation depends linearly on both agents’ R&D-outputs due to the
correlation of the market shocks. Relative performance evaluation schemes exploit all available informa-
tion and allow each principal to better perceive her agent’s effort by comparing both researchers’ R&D

7As is usual in models that employ the normal distribution for the error term, e.g. Raith (2003), we assume that the
intercept of the inverse demand and c are such that, relative to the standard deviation of the error term, so that the probabilities
of a negative or very high marginal costs are practically zero. We discuss it further when we analyze the linear Cournot model.

8The type of correlation (positive or negative) may depend on whether the agents use similar or different R&D technologies.
For instance, firms that produce hard disks may hire researchers that use either magnetic or holographic technologies. In this
case, a market shock may affect the output of the projects that are based on these two technologies in a different way.
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outcomes. Agent i’s contract takes the form

wi = αi +βiyi + γiy j, (2)

where αi denotes the fixed salary component and βi, γi are the pay-for-own and pay-for-rival performance
parameters, respectively. If the agent rejects the offer, he picks the outside option which yields zero
utility.

3 Managerial contracts and Cournot competition

We recursively solve the game where Cournot rivals make their decisions in each stage simulta-
neously and independently. We begin the analysis by considering a market with general demand and
cost-of-effort functions. Then, we consider linear demands and quadratic cost functions.

3.1 R&D incentives with general market demand

We show that higher risk can increase incentives as long as rivals’ R&D decisions are strategic
substitutes. Let us assume that σ2

i = σ2
j = σ2. Increases in σ2 will influence both firms’ R&D best

responses. A general utility function U (qi,q j) will generate the inverse demand system pi = di (qi,q j),
where qi is firm i’s output and pi denotes its price. This function is downward sloping, ∂di

∂qi
< 0, and the

cross derivatives are negative, ∂di
∂q j

< 0, implying that goods are substitutes. An increase in firm i’s output

has also a stronger impact on its own market price than on its rival’s:
∣∣∣ ∂di

∂qi

∣∣∣ > ∣∣∣ ∂d j
∂qi

∣∣∣. Thus, for a given
realization of the marginal cost, firm i’s Cournot profit is πc

i = (di−ci)qi. The superscript c indicates the
values in a setting with general demand functions and Cournot competition in the downstream market.
The following assumptions on the profit functions also hold.

(C.1) Each firm’s profit function is strictly quasi-concave in its own output.

(C.2) ∂ 2πc
i

∂q2
i
+
∣∣∣ ∂ 2πc

i
∂qi∂q j

∣∣∣< 0 for any i, j.

(C.3) ∂ 2πc
i

∂qi∂q j
< 0 for any i, j.

Assumption (C.2) guarantees that firms’ reaction functions in the product market are well-behaved
and their slopes are less than one. In turn, it ensures that in the production stage, there exists a unique
interior Nash equilibrium in quantities. Assumption (C.3) guarantees that rivals’ quantity decisions are
strategic substitutes.

Definition 1 (Degree of substitutability of products under Cournot competition) Firms’ products ex-
hibit decreasing (increasing) substitutability, if an increase in a rival’s production diminishes a firm’s
profit at a decreasing (increasing) rate: ∂ 2πc

i
∂q2

j
> (<)0.

According to Definition 1, for decreasing substitutability, the demand for firm i’s product needs to
be a convex function of q j: ∂ 2di

∂q2
j
> 0. As q j increases, the two products become weaker substitutes; i.e.,
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the negative effect of q j on di (the price of good i) becomes smaller. For increasing substitutability, the
demand function of firm i in its rival’s output is required to be concave: ∂ 2di

∂q2
j
< 0.

In the last stage, firms observe the realization of the marginal costs and compete for consumers. The
equilibrium quantities are qc

i (βi,β j) and qc
j(βi,β j). In the first two stages, all decisions are taken un-

certainty. Each principal is the residual claimant on firm’s net profits, which are equal to the expected
Cournot profits net of her agent’s compensation, Πc

i = E {πc
i −wi}, where the operator E signifies in-

tegration over the bivariate normal distribution of the two shocks. To conduct R&D, given the beliefs
about firm j’s effort (denoted by ê j) as a response to firm i’s level of incentives, each principal i offers
a contract that maximizes her net expected profits, preserving agent i’s participation and incentives to
perform. Thus, each principal i solves the following problem:

max
{αi,βi,γi,ei}

Πi(αi,βi,γi,ei; ê j) = E {πi−wi}

subject to e∗i = argmax
ei

CEi (ICi)

CEi ≥ 0 (IRi)

The incentive compatibility constraint (ICi) demonstrates that agent i will choose the R&D effort
level that maximizes the certainty equivalence of his utility,

CEi = αi +βiei + γiê j−
riσ

2

2
(
β

2
i + γ

2
i +2βiγiρ

)
−g(ei) .

Thus, the optimal effort must satisfy the first order condition,

g′ (ei) = βi. (3)

The individual rationality constraint (IRi) serves to guarantee that agent i will stay in the firm and conduct
R&D only if by doing so, his expected utility exceeds his reservation utility of zero.

Equation (3) indicates that the optimal pay-for-own performance parameter, β ∗i , will be positive.
An agent’s higher R&D output will be rewarded with a higher payment. Following Itoh (1991), the
assumptions of agents’ CARA preferences and the normality of the random terms as well as the concavity
of Vi in ei allow us to use the first-order approach.9 Hence, equation (3) can replace the ICi constraint
in principal i’s problem. The IRi constraint binds at the optimum, implying that the base payment, αi,
guarantees agent i’s participation. Principal i has complete bargaining power and appropriates all the
surplus.10 Using equation (3), we solve CEi = 0 with respect to αi.

For any value of βi, the optimal pay-for-rival performance parameter is

γ
∗
i =−ρβi. (4)

9Itoh (1991) states that in a multi-agent model, the first-order approach requires further assumptions in addition to the
monotone likelihood ratio property and the convexity of the distribution function condition (CDFC). In particular, we need
to use a generalized CDFC for the joint probability distribution of shocks, the wage schemes must be nondecreasing and the
coefficient of absolute risk-aversion must not decline too quickly. In our model with agents’ CARA preferences, normally
distributed random terms, linear contracts and R&D production functions, the above requirements are satisfied.

10We assume away competition among the principals for the less risk averse agent. Given that principals are ex-ante
identical, if principals were competing for the ‘more efficient’ agent that would increase the rent that agent receives via a higher
base salary. All the other results would not change.
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If the R&D output shocks are positively correlated, ρ > 0, the optimal γi is negative. The principal
perceives that the researchers perform in a ‘favorable’ environment and by setting γ∗i negative, she is
able to filter out the common shock from her agent’s payment. In fact, the principal penalizes her agent
when the rival researcher does better. If ρ < 0, by setting γ∗i > 0, the principal allows her agent to suffer
less from a bad outcome and encourages him to perform. The optimal γi is chosen so that agent i’s
payment is no longer sensitive to agent j’s R&D output. Using equations (3) and (4), we now need to
obtain the optimal pay-for-own performance parameters in both agents’ contracts. Lemma 1 highlights
the effects of the R&D incentives, βi and β j, on firm i’s equilibrium outputs.

Lemma 1 (Effects of R&D on optimal outputs under Cournot Competition) Firm i’s equilibrium out-
put is increasing in its own agent’s R&D incentives and decreasing in its rival’s incentives: ∂qc

i
∂βi

> 0 and
∂qc

i
∂β j

< 0. Moreover, qc
i and qc

j are linear functions and additively separable in βi and β j,
∂ 2qc

i
∂βi∂β j

= 0.

Proof In appendix A.1. �

We simultaneously solve both principals’ problems and derive the optimal values of βi and β j. In
equilibrium, the level of R&D conducted by the firms depends on the strategic properties of agents’ R&D
incentives. Thus, we need to specify the conditions under which incentives are strategic substitutes or
complements.

3.2 Relationship between risk and R&D incentives

We begin by examining firm i’s first order condition with respect to βi. Using the envelope theorem,
βi affects expected profits through q j, the marginal cost ci and the agent’s compensation:

∂Πc
i

∂βi
= E

[
∂πc

i
∂q j

∂qc
j

∂βi
+

∂πc
i

∂ci

∂ci

∂βi
− dwi

dβi

]
= 0. (5)

The first term is the strategic (indirect) effect of βi, while the second and third terms capture the
direct effects on firm i’s profits that arises even in the absence of product market competition (Fudenberg
& Tirole (1984)). The strategic effect is positive because higher βi (and hence higher qi) makes the
innovator tougher: given that rivals’ outputs are strategic substitutes, an increase in firm i’s incentive and
production forces firm j to produce less, increasing the profits of the innovative firm i. The second term
is also positive because more R&D lower the expected marginal cost which benefits the innovator. The
third term is negative because stronger incentives are provided through a higher expected wage paid by
the principal.

In the innovation-contracting stage, agent i’s R&D incentive βi responds to a change in β j as fol-
lows11

11We also assume that
∣∣∣ dβi

dβ j

∣∣∣< 1 to obtain a unique equilibrium
(

β c
i ,β

c
j

)
.
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dβi

dβ j
=− E[Hi]

E[Θc
i ]

, where Hi ≡
∂ 2πc

i

∂q2
j︸ ︷︷ ︸

> (<)0
Decr. (incr.)

substitutability

∂qc
j

∂β j

∂qc
j

∂βi︸ ︷︷ ︸
< 0

Lemma 1

+
∂ 2πc

i
∂q j∂qi︸ ︷︷ ︸
< 0

∂qc
i

∂β j

∂qc
j

∂βi︸ ︷︷ ︸
> 0

Lemma 1

+
∂ 2πc

i
∂ci∂qi︸ ︷︷ ︸
< 0

∂qc
i

∂β j

∂ci

∂βi︸ ︷︷ ︸
> 0

, (6)

where E[Θc
i ]< 0 follows from the second-order condition.12 There are three (possibly) opposing effects

that are present and determine the nature of rivals’ strategic interactions in R&D.

The first term in (6) depends on the second derivative of q j on the price of good i. Under decreasing
substitutability, the benefit of a higher βi for firm i, which is generated from the positive indirect effect
in (5), is smaller the higher the β j (and hence the higher the q j). Firm i is more reluctant to raise its βi

when it expects β j to increase. This is a source of strategic substitutability. On the other hand, increasing
substitutability is a source of strategic complementarity. This term is zero when demand is linear and
additively separable.

The other two terms also arise in the linear demand case and are sources of strategic substitutability.
A higher β j (and thus a higher q j) induces firm i to lower its own βi for two reasons: (i) qi decreases
and so does the benefit from a cost reduction and (ii) the best-response of firm i in the product market
when q j increases is to become less aggressive by lowering its own qi (given that quantities are strategic
substitutes). Thus, weaker incentives from firm i is the profit-maximizing response to an increasing β j.
However, the presence of the first effect can change the nature of rivals’ strategic interactions. Lemma 2
specifies the conditions under which incentives are strategic substitutes.13

Lemma 2 (Strategic Interactions in R&D under Cournot Competition) Researchers’ R&D incentives,
βi and β j, are strategic substitutes if demand functions exhibit decreasing or weakly increasing substi-
tutability: dβi

dβ j
< 0 if and only if

∂ 2πc
i

∂q j
2 >− ∂qi

∂β j

(
∂q j

∂β j

∂q j

∂βi

)−1(
∂ 2πc

i
∂q j∂qi

∂q j

∂βi
+

∂ 2πc
i

∂ci∂qi

∂ci

∂βi

)
.

Proof In appendix A.2. �

We can now establish that, in equilibrium, as σ2 increases, the negative relationship between in-
centives and risk can be reversed for the firm with the less risk-averse agent, provided that firms’ R&D
decisions are strategic substitutes.14 We need to analyze the underlying effects of σ2 on rivals’ optimal
incentives. We differentiate both rivals’ first-order conditions at the incentives-setting stage (equation

12The form of Θc
i is given in Section (A.2).

13The result in Lemma 2 is reminiscent of Vives (2009). In Section 3.1.2 of his paper, he presents a deterministic model
of capacity investments in a Cournot duopoly. One of the sufficient conditions for cost-reducing investments to be strategic
substitutes is what we call in our paper ‘decreasing substitutability’. The function of the optimal output q∗i (βi,β j) needs also to
be submodular in (βi,β j), which is also true in our model (Lemma 1 states that the cross partial derivative is zero).

14There is one-to-one relationship between incentives, β ∗i , and optimal effort, e∗i , as well as the relative performance param-
eter, γ∗i , that is used to filter out the common uncertainty from researchers’ R&D performances. Thus, indirectly, our discussion
sheds also insights on the changes of the optimal efforts.
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(5)), with respect to σ2 using equations (3) and (4). In particular, we take d(∂Πc
i /∂βi)

dσ2 = 0, that implies
∂ (∂Πc

i /∂βi)

∂σ2 +
∂ 2Πc

i
∂β 2

i

dβ ∗i
dσ2 = 0. The decomposition of the effects of σ2 on both firms’ optimal R&D incentives

gives

E[H j]
dβ ∗j
dσ2︸ ︷︷ ︸

business stealing effect

− ri
(
1−ρ

2)
β
∗
i g′′ (ei (β

∗
i ))︸ ︷︷ ︸

insurance effect

+ E[Θc
i ]︸ ︷︷ ︸

<0 by the SOC

dβ ∗i
dσ2 = 0, (7)

E[Hi]
dβ ∗i
dσ2︸ ︷︷ ︸

business stealing effect

− r j
(
1−ρ

2)
β
∗
j g′′
(
e j
(
β
∗
j
))︸ ︷︷ ︸

insurance effect

+ E[Θc
j]︸ ︷︷ ︸

<0 by the SOC

dβ ∗j
dσ2 = 0. (8)

Equation (7) shows the effects of σ2 on firm i’s optimal incentives, while equation (8) decomposes
the effect on β ∗j .

Let us first suppose that the business stealing effect is absent because each firm is a monopoly.
A higher σ2 affects both β ∗i and β ∗j negatively. Then, allow for strategic interactions with respect to
incentives under the assumption that rivals’ R&D decisions are strategic substitutes - Hi < 0 and H j < 0.
Upon inspection of (7) and (8), we infer that only one of the following two possibilities can arise: (i)
either risk affects incentives negatively in both firms, or (ii) positively in one firm and negatively in the
other. When the asymmetry across firms with respect to the degrees of risk aversion of their agents is
significant - i.e., r j is high enough relative to ri - the insurance effect is small in firm i and large in firm
j. Let us assume that firm i’s insurance effect is arbitrarily close to zero. In equation (7), the derivatives
dβ ∗i
dσ2 and

dβ ∗j
dσ2 cannot have the same sign. If the insurance effect in firm j is strong enough, from equation

(8), we have
dβ ∗j
dσ2 < 0, which implies that dβ ∗i

dσ2 > 0.

In the regime where R&D decisions are strategic complements, Hi > 0 and H j > 0, risk always

decreases the incentives for both rivals, as is standard in the literature. Given that
dβ ∗j
dσ2 < 0, the business

stealing effect in equation (7) is always negative. Both effects move to the same directions leading firm i
also to underprovide R&D incentives as σ2 increases, dβ ∗i

dσ2 < 0. Equation (8) is also satisfied only when
higher σ2 decreases both β ∗i and β ∗j . Proposition 1 establishes that risk and incentives can be positively
related for the firm that is less exposed to risk, as long as rivals’ R&D decisions are strategic substitutes
and business stealing incentives are strong.15

Proposition 1 (Opposing effects of risk on optimal R&D incentives) Suppose that ri < r j. If rivals’
R&D decisions are strategic substitutes, a higher σ2 weakens the optimal R&D incentives of firm j,
whose agent is more risk-averse,

dβ ∗j
dσ2 < 0, while it strengthens the optimal R&D incentives of firm i,

whose agent is less risk-averse, dβ ∗i
dσ2 > 0, as long as firm i’s cost of incentivizing its agent is much lower

than that of firm j.

Proof In appendix A.3. �

15A positive relationship between effort provision and insurance holds when product market competition is stiff. Thus, this
relationship is weakened as we are considering firms whose products are less differentiated. In the polar case of monopolies,
risk always decreases effort in equilibrium.
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0
β j

βi

A
B

Figure 1: Risk σ increases and both best responses shift in. The initial equilibrium is at A and the new
equilibrium at B. The best response of firm j shift more than that of firm i. As a result firm i offers
stronger incentives, while firm j offers weaker incentives.

The intuition of Proposition 1 is best captured by Figure 1. Assume that incentives between the two
firms are strategic substitutes (and the best-response curves are linear). Higher risk shifts both reaction
curves inwards, implying that when we hold the incentives of the rival fixed, the firm in question opti-
mally weakens incentives (insurance effect). But risk shifts the reaction curves in different magnitudes
across the two firms. The firm with the more risk-averse agent, firm j, experiences the bigger shift,
thereby lowering its incentives significantly. This is a commitment to decrease output in the next stage,
which presents an opportunity for firm i, whose cost of incentivizing its own agent is relatively low, to
strengthen its incentives in order to gain market share (business stealing effect).

This model establishes that managerial incentives respond to a change in the corporate environment
common to all firms in the industry - e.g., systemic risk - in a fashion that dispels traditional agency
theory. This can also happen as managerial incentives respond to a change in a firm’s specific corporate
environment - e.g., idiosyncratic risk. When only the risk to which one firm is exposed changes (say
σ2

i ), the effect on incentives must be asymmetric across the two firms: the equilibrium incentives move
in opposite directions. This is because only firm i’s best-response curve shifts inwards. As σ2

i increases,
firm j will always provide higher-power incentives to its agent, for any ri, r j, ρ and σ2

j . Thus, if market
changes affect only one firm (or the change in the other firm is significantly weaker), the standard result
in the literature never holds. This is true even when ri = r j = r - i.e., the agents are homogeneous - as
long as there exists asymmetry in the variance of the idiosyncratic risks, σ2

i and σ2
j .

Changes in |ρ| can also manifest changes in the level of risk. Suppose that ri < r j and σ2
i = σ2

i ,
while |ρ| increases. For higher |ρ|, the variance of wages decreases and so does the risk to which agents
are exposed. Thus, less insurance is required, decreasing the cost of exerting effort. Equations (7) and
(8) show that for higher |ρ|, the business stealing effect is strengthened, and is more likely to dominate
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the insurance effect for the firm with the less risk averse agent.

This analysis boils down to the following: in industries where competition is intense and thus busi-
ness stealing incentives are strong – such as in microelectronics-based industries, pharmaceuticals, or
even in the financial sector – as firms are exposed to higher risk, they may not adjust their pay-for-
performance R&D incentives in the same direction. Asymmetries on the part of agents’ preferences
towards risk or on the variance of R&D production shocks play a key role. What drives the result is the
strategic benefit of the firms compared to the cost of providing insurance to their agents.

3.3 Equilibrium with linear market demand

Following Singh & Vives (1984), the representative consumer’s utility is

U(qi,q j) = a(qi +q j)−
[

1
2
(
q2

i +q2
j
)
+bqiq j

]
+m,

implying that firms i’s inverse demand is pi = a− qi− bq j, where a stands for the maximum willing-
ness to pay, a > c, b ∈ [0,1] measures the degree of product substitutability and m is the numeraire
good. For simplicity, we set b = 1.16 In the downstream market, after the realization of the marginal
costs, firms compete in quantities and maximize πi = [a−qi−q j− ci]qi. The equilibrium output is
q∗i =

1
3 (a−2ci + c j) and the Cournot profit is π∗i = (q∗i )

2.17

We also assume that the cost-of-effort functions are quadratic of the form g(ei) =
k
2 e2

i , where higher
k indicates lower efficiency of R&D technology. In the contracting stage, using equations (3), (4) and
that the IRi constraint is binding, principal i’s constrained maximization problem reduces in maximizing

Π
c
i =

1
9

[
a− c+2

βi

k
−

β j

k

]2

+
5−4ρ

9
σ

2− νi

2k
β

2
i , (9)

where νi ≡ 1+ kriσ
2
(
1−ρ2

)
. It can be easily verified that incentives are strategic substitutes; i.e., they

inherit the properties of the variables in the product market. Solving for the equilibrium incentives, we
derive

β
∗
i =

4(a− c) [3kν j−4]k
16+3k [9kνiν j−8(νi +ν j)]

. (10)

We make the assumption νi >
4
3k to guarantee that β ∗i > 0. If the agents have the same degree of risk

aversion, implying that νi = ν j = ν , the equilibrium piece-rate pay reduces to

β
∗
i = β

∗
j =

4(a− c)k
9kν−4

.

Clearly, higher risk, measured by an increase in σ2 (or a decrease in the degree of correlation |ρ|), will
induce both principals to provide weaker incentives in equilibrium. If agents have heterogeneous degrees

16We will allow for b < 1 in some of our numerical exercises where we examine the roles of: (i) product substitutability and
(ii) the mode of competition.

17Agent i’s compensation wi can be a function of the profit realizations instead of the cost realizations, without affecting the
results, given that there is a one-to-one relationship from (ci,c j) to (πi,π j). See also Raith (2003) for a similar argument.
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of risk aversion, implying that νi < ν j, the relationship between risk and incentives for firm i becomes
positive if

ri <
4r j (3k−4)

32−12k (6v j−1)+27k2v2
j
.

For example, when ri = 0.2, r j = 1, k = 1.35, a = 100, c = 45 and ρ = 0.1, the incentives in firm
i are increasing in σ ∈ [0,0.3]. Moreover, the highest value of the equilibrium effort is about 40. This
suggests that the probability of a negative realized marginal cost (or a marginal cost higher than a) is
practically zero, given that σ is, say, less than one.

One can argue that a policy maker who cares about aggregate welfare may adopt the wrong policy
by assuming that incentives are always increasing when risk decreases. Risk, measured by σ , has two
effects on expected welfare, which is the sum of expected consumer, producer and agents’ surpluses: (i)
a direct effect since expected welfare is a function of σ and (ii) an indirect effect through the change
of incentives and effort. A social planner may attempt to lower the risk (or more broadly the cost of
incentivizing the agents) that surrounds the R&D process in order to boost incentives and effort and
consequently welfare. For example, consider policies that encourage R&D cooperation among firms
(e.g., Leahy & Neary (1997)). These policies can increase the correlation coefficient |ρ|, because firms’
R&D approaches and inputs become more similar. In our model, this is equivalent to a reduction in the
common standard deviation, since the cost of incentivizing an agent depends on σ2

(
1−ρ2

)
.

We compute expected aggregate welfare and examine how it changes with respect to ρ > 0, using the
equilibrium incentives. We consider the following numerical analysis using the linear Cournot model.
When firms are symmetric (e.g., ri = r j = 0.6 and σ = 0.4), the relationship between ρ and incentives
is positive. In this case, expected welfare increases with a higher ρ , which indicates lower risk. Hence,
a policy that encourages R&D cooperation, and assuming that this results in a higher correlation, has a
positive effect on expected welfare. Holding all other parameter values constant, let us now assume that
firms are asymmetric - by considering a mean-preserving spread in r’s (ri = 0.2 and r j = 1) which insures
that the relationship between risk and incentives in the most efficient firm is positive. For high degrees
of correlation - i.e., higher than (approximately) 0.75 - expected welfare now decreases as ρ increases.18

4 Managerial contracts and Bertrand competition

We now analyze the rivals’ strategic decisions and the role of insurance provision when firms com-
pete à la Bertrand in the product market. We show that a positive risk-incentives relationship can also be
obtained under Bertrand competition. The representative consumer’s maximization problem gives rise to
a general demand system qi = Di (pi, p j). The direct demand functions are downward sloping, ∂Di

∂ pi
< 0,

and the cross-derivatives are positive, ∂Di
∂ p j

> 0. The own-price effect,
∣∣∣ ∂Di

∂ pi

∣∣∣, is also larger than the cross-

price effect, ∂Di
∂ p j

. Firm i’s realized profit is given by πb
i −wi, where πb

i ≡ (pi− ci)Di. The superscript

18In our model, firms begin with the same marginal cost and use the same R&D process, while they appoint asymmetric
agents in terms of their degree of risk aversion. Instead, one could consider firms with identical agents but different initial
marginal costs; i.e., ci < c j and ri = r j. In this case, firms will always innovate less in equilibrium as risk increases, ∂β ∗i

∂σ 2 < 0

and
∂β ∗j
∂σ 2 < 0.
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b denotes the choices of Bertrand rivals. The following assumptions on the profit functions are also in
order.

(B.1) The profit function is quasi-concave in own price.

(B.2) ∂ 2πb
i

∂ p2
i
+
∣∣∣ ∂ 2πb

i
∂ pi∂ p j

∣∣∣< 0 for any i, j.

(B.3) ∂ 2πb
i

∂ pi∂ p j
> 0 for any i, j.

Similarly to the Cournot case, assumptions (B.2) and (B.3) guarantee the interiority and uniqueness
of the equilibrium in prices.

Definition 2 (Degree of substitutability of products under Bertrand competition) Firms’ products ex-
hibit increasing (decreasing) substitutability, if an increase in a rival’s price raises a firm’s profit at an
increasing (decreasing) rate: ∂ 2πb

i
∂ p2

j
> (<)0 for any i, j.

For increasing substitutability, the demand for firm i’s product needs to be convex in its rival’s price,
∂ 2Di
∂ p2

j
> 0, while a concave demand function in p j is required for decreasing substitutability between

firms’ products, ∂ 2Di
∂ p2

j
< 0.

We derive the equilibrium prices pb
i (βi,β j) and pb

j (βi,β j). In the R&D and contract stages, firm i
chooses the R&D incentives that maximize its expected Bertrand profit net its agent’s expected compen-
sation. Using the envelope theorem, βi affects expected profits through p j, the marginal cost ci and the
agent’s expected compensation:

∂Πb
i

∂βi
= E

[
∂πb

i
∂ p j

∂ pb
j

∂βi
+

∂πb
i

∂ci

∂ci

∂βi
− dwi

dβi

]
= 0. (11)

The first term of (11) is the strategic effect and, unlike the Cournot model, is negative. This is because
cost-reducing R&D allows the innovator to set a lower price, which triggers its rival to cut its own price
as well, resulting in lower profits for the innovator. Thus, competition among Bertrand rivals gives rise
only to detrimental effects on their profits. The other two terms are similar to those in the Cournot model.
Lemma 3 establishes the effect of agent i’s R&D incentives on its own firm’s and its rival’s equilibrium
prices as well as the cross effects.

Lemma 3 (Incentives and optimal prices under Bertrand Competition) Firm i’s equilibrium price is
decreasing in both (own and rival) agents’ R&D incentives: ∂ pb

i
∂βi

< 0 and ∂ pb
i

∂β j
< 0 for any i and j. More-

over, the cross-effect is non-zero,
∂ 2 pb

j
∂βi∂β j

6= 0.

Proof In appendix A.4. �

The modularity of pb
i (βi,β j) depends on the curvature of the demand function: the cross-partial

derivative of the demand with respect to prices. Using equation (11), we examine the strategic nature of
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incentives by considering dβi
dβ j

=− E[Mi]

E[Θb
i ]

, where

Mi ≡
∂πb

i
∂ p j

∂ 2 pb
j

∂βi∂β j︸ ︷︷ ︸
< (>) 0

Submodular
(supermodular)

equil. price

+
∂ 2πb

i

∂ p2
j︸ ︷︷ ︸

> (<) 0
Incr. (decr.)

substitutability

∂ pb
j

∂β j

∂ pb
j

∂βi︸ ︷︷ ︸
> 0

Lemma 3

+
∂ 2πb

i
∂ p j∂ pi︸ ︷︷ ︸
> 0

∂ pb
i

∂β j

∂ pb
j

∂βi︸ ︷︷ ︸
> 0

Lemma 3

+
∂ 2πb

i
∂ci∂qi

∂qb
i

∂β j

∂ci

∂βi︸ ︷︷ ︸
< 0

. (12)

From the second order condition, we have E[Θb
i ]< 0.19 The last three terms in (12) are analogous to

the terms in equation (6) in the Cournot model and the intuition is similar. Thus, the first term in equation
(12) arises only in the Bertrand setting.20 A higher βi triggers a lower p j which hurts the innovator. When
the equilibrium price is submodular, this negative strategic effect on firm i’s profit becomes even more
negative as p j decreases. Thus, as firm j innovates more to lower its price, firm i should lower the
level of βi to counteract the negative impact on its profits of a lower p j. This is a source of strategic
substitutability. The reverse is true when the equilibrium price is supermodular. Note also that the first
and second terms in (12) only arise when the demand is non-linear.

Lemma 4 (Strategic interactions in R&D under Bertrand competition) Researchers’ R&D incentives
are strategic substitutes, dβi

dβ j
< 0, if and only if

∂ 2 pb
j

∂βi∂β j
<−

(
∂πb

i
∂ p j

)−1
[(

∂ 2πb
i

∂ p2
j

∂ pb
j

∂β j
+

∂ 2πb
i

∂ p j∂ pi

∂ pb
i

∂β j

)
∂ pb

j

∂βi
+

∂ 2πb
i

∂ci∂qi

∂qb
i

∂β j

∂ci

∂βi

]
.

Proof In appendix A.5. �

We argue that if the condition stated in Lemma 4 is satisfied so that rivals’ R&D decisions are
strategic substitutes, as risk increases, the relationship between incentives and risk can be positive for the
firm with a less risk-averse agent. A result similar to the one stated in Proposition 1 holds. The proof and
intuition are the same as in the Cournot case and hence they are omitted.

In a Bertrand model with a linear demand, only the last two effects in equation (12) arise.21 In
addition, the third effect always dominates the forth effect, implying that rivals’ R&D decisions are
strategic substitutes. Thus, firms’ decisions in the R&D stage do not inherit the properties of the strategic
variables (prices) being utilized in the product market.

In numerical exercises, we have also investigated the role of the intensity of product market com-
petition (and hence the strength of the business stealing effect) on the relationship between risk and
incentives. First, we allowed the product differentiation parameter b to take any value in [0,1] and ex-
amined its role, both in the Cournot and in the Bertrand linear models. Second, we analyzed the impact

19See Section A.5 for the form of Θb
i .

20The additional term in (12) arizes because in the Cournot model the marginal cost is ci, while in the Bertrand model, it is
ci

∂qi
∂ pi

. Thus, how ∂qi
∂ pi

depends on pi matters when demand is non-linear.
21The linear demand has the form qi =

a
1+b −

1
1−b2 pi +

b
1−b2 p j.
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of a change in the mode of competition from Cournot to Bertrand for a given b. For low values of b, the
relationship is negative for both firms. If b exceeds a threshold, the firm with the less risk averse agent
can experience a positive risk-incentives relationship. The threshold in the Cournot model is also higher
than in the Bertrand model, which is consistent with the fact that the business stealing effect in Bertrand
is stronger.

5 Concluding remarks

This paper introduces asymmetry between two risk-averse agents, who are appointed by product
market rivals, in a standard moral hazard principal-agent model. Agents conduct cost-reducing inno-
vation prior to competition in quantities or prices. The asymmetry in this model is stemming from the
different degrees of agents’ risk aversion or from different idiosyncratic risks. Each firm offers to its
agent a contract that entails a fixed salary and a variable pay (incentives) that depends on the realized
R&D outcomes of both firms. Thus, we allow for relative performance evaluations. In this setting, we ex-
amine the strategic properties of pay-for-performance compensation as well as the relationship between
risk and the power of incentives. When demand is linear, firms’ R&D decisions are always strategic
substitutes irrespective of the mode of product market competition. We also state the conditions under
which rival’s R&D decisions are strategic substitutes even if demand is non-linear. Next, we show that
the standard negative relationship between risk and incentives may not hold. In particular, the response
of the firms can be asymmetric and opposite to changes in risk. The firm that has hired the less risk-
averse manager, or is exposed to lower idiosyncratic risk, may even strengthen its agent’s incentives as
risk increases.

Our analysis and results have interesting public policy implications, when considering policies and
regulations that attempt to reduce the uncertainty (broadly defined) surrounding innovative activities in an
industry. Given that the conventional wisdom is that uncertainty impedes innovation, such policies aim at
boosting the R&D level. We show that lower risk can create opposing reactions across firms in the same
industry, in terms of how strongly the principals incentivize their agents to conduct innovation. The firms
whose R&D incentives are weakened will invest less in innovation. Hence, such policy interventions can
have unintended adverse consequences.

Our model suggests new avenues for future empirical research. One can examine the relationship
between managerial compensation schemes and the corporate environment faced by asymmetric firms.
The model predicts that, if firms are heterogeneous and managerial incentives are strategic substitutes,
an increase in risk may strengthen the incentives offered by one set of firms and weaken the incentives
offered by another set. It is important to emphasize that this result can hold true across firms in the
same industry. Many empirical studies have failed to find strong support for the negative relationship
between risk and incentives for firms in the same market and this model may explain why. It suggests
that this relationship will be negative when firms operate in different markets, or when the intensity of
strategic interactions among firms in the same market is weak. However, when strategic interactions
are strong and business stealing is an important issue, higher risk may strengthen the equilibrium R&D
incentives of a group of firms active in the same industry. Therefore, future empirical work, in testing
the risk/pay-for-performance relationship, should group the firms (observations) according to the cost of
incentivizing the agents, i.e., in a ‘low cost’ group and in a ‘high cost’ group. The estimate of the risk
coefficient for the low cost group can be positive. Our analysis can also offer an alternative explanation
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about why a positive estimate for the risk-incentives relationship can be obtained even when all firms are
grouped together and it has to do with the problem of sample selection. It may very well be the case that
the sample of observations, from the population of firms, comes disproportionately from the low cost
group. This is because the firms in this group are bigger and hence more likely to be selected.

We also derive the conditions under which firms’ R&D decisions are strategic substitutes or com-
plements to highlight the importance of the strategic nature of firms’ reactions to changes in risk in an
industry. The strategic nature of managerial incentives and thus of compensation schemes is itself em-
pirically testable. Provided that firms typically sell products in many industries with different degrees of
competition and attempt to strengthen their strategic position by investing in cost-reducing technologies,
observed changes in compensation schemes reflect the agglomeration of the business stealing effects. In
some industries, the business stealing effects may be negative, depending on rivals’ response to increases
in risk, while in some others, these effects may be positive.
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A APPENDIX

A.1 Proof of Lemma 1

We take the first-order conditions in the product market, ∂πi
∂qi

= (di−ci)+
∂di
∂qi

qi = 0 and ∂π j
∂q j

= (d j−c j)+
∂d j
∂q j

q j = 0, and differentiate them with respect to βi (which affects ci which in turn affects equilibrium
prices). We get, respectively,

∂ 2πi

∂q2
i

∂qi

∂βi
+

∂ 2πi

∂qi∂q j

∂q j

∂βi
=−1 and

∂ 2π j

∂q j∂qi

∂qi

∂βi
+

∂ 2π j

∂q2
j

∂q j

∂βi
= 0.

We solve them and obtain the derivatives

∂qi

∂βi
= − 1

Λc

∂ 2π j

∂q2
j
=− 1

Λc

(
∂ 2d j

∂q2
j

q j +2
∂d j

∂q j

)
> 0

∂q j

∂βi
=

1
Λc

∂ 2π j

∂q j∂qi
=

1
Λc

(
∂ 2d j

∂q j∂qi
q j +

∂d j

∂qi

)
< 0,

where Λc ≡ ∂ 2πi
∂q2

i

∂ 2π j

∂q2
j
− ∂ 2π j

∂q j∂qi

∂ 2πi
∂qi∂q j

> 0 is implied from the stability condition. The signs of the above

derivatives follow from the assumptions (C.1)–(C.3). Finally, ∂qi
∂βi

is not a function of c j and hence is not

affected by β j, implying ∂ 2qi
∂βi∂β j

= 0.
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A.2 Proof of Lemma 2

To derive the slope of firm i’s R&D best-response curve when firms compete in quantities, we totally
differentiate equation (5) and obtain:{

∂ 2πc
i

∂q2
j

(
∂q j

∂βi

)2

+
∂ 2πc

i
∂q j∂qi

∂qi

∂βi

∂q j

∂βi
+

∂πc
i

∂q j

∂ 2q j

∂β 2
i
+

∂ 2πc
i

∂ci∂qi

∂qi

∂βi

∂ci

∂βi
− ∂w′ (βi)

∂βi

}
dβi+{

∂ 2πc
i

∂q j
2

∂q j

∂β j

∂q j

∂βi
+

∂ 2πc
i

∂q j∂qi

∂qi

∂β j

∂q j

∂βi
+

∂πc
i

∂q j

∂ 2q j

∂βi∂β j
+

∂ 2πc
i

∂ci∂qi

∂qi

∂β j

∂ci

∂βi

}
dβ j = 0.

Given that ∂ 2q j

∂β 2
i
= 0 and ∂ 2q j

∂βi∂β j
= 0, the above expression reduces to equation (6). The coefficient of dβi,

denoted by Θc
i , is negative from the second order condition. Therefore, dβi

dβ j
< 0 if and only if

∂ 2πc
i

∂q2
j

∂q j

∂β j

∂q j

∂βi
>− ∂qi

∂β j

(
∂ 2πc

i
∂q j∂qi

∂q j

∂βi
+

∂ 2πc
i

∂ci∂qi

∂ci

∂βi

)
,

implying the condition in Lemma 2.

A.3 Proof of Proposition 1

Solving equations (7) and (8), we get (to reduce the length of the expressions, we have omitted the E
operators in front of the H’s and Θ’s)

dβ ∗j
dσ2 =

2Θc
i β ∗j r j

(
1−ρ2

)
g′′
(

e j

(
β ∗j

))
−Hiβ

∗
i ri
(
1−ρ2

)
g′′ (ei (β

∗
i ))

4Θc
i Θ j−HiH j

,

dβ ∗i
dσ2 =

2Θc
jβ
∗
i ri
(
1−ρ2

)
g′′ (ei (β

∗
i ))−H jβ

∗
j r j
(
1−ρ2

)
g′′
(

e j

(
β ∗j

))
4Θc

i Θc
j−HiH j

,

where 4Θc
i Θc

j−HiH j > 0. Recall that the signs of Hi and H j - given by equation (6) - determine the slope
of firms’ R&D best-response curves. If firms’ R&D decisions are strategic substitutes, both Hi and H j

are negative. In this regime, let higher σ2 decrease β j,
dβ ∗j
dσ2 < 0, implying

R≡
β ∗i ri

(
1−ρ2

)
g′′ (ei (β

∗
i ))

β ∗j r j (1−ρ2)g′′
(

e j

(
β ∗j

)) <
2Θc

i
Hi

.

Thus, higher σ2 will increase firm i’s optimal R&D incentives, dβ ∗i
dσ2 > 0, only if

R <
H j

2Θc
j
.

Notice that H j
2Θc

j
<

2Θc
i

Hi
, since 4Θc

i Θc
j−HiH j > 0. Thus, if R <

H j
2Θc

j
, we have dβi

dσ2 > 0 and dβ j
dσ2 < 0, as

specified in Proposition 1. If H j
2Θc

j
< R <

2Θc
i

Hi
, we have dβ ∗i

dσ2 < 0 and
dβ ∗j
dσ2 < 0. Notice that R cannot exceed
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2Θc
i

Hi
, because in this case, both dβ ∗i

dσ2 and
dβ ∗j
dσ2 would be positive. This is not possible since an increase

in σ2 shifts both firms’ R&D best-response curves inwards. Additionally, we cannot have
dβ ∗j
dσ2 > 0 and

dβ ∗i
dσ2 < 0 under the assumption that r j > ri. It requires higher σ2 to decrease the optimal R&D incentives
of the firm with the lower risk-averse agent (firm i) to a greater extend, which cannot hold.

A.4 Proof of Lemma 3

To examine the effect of agent i’s R&D incentives on both firms’ optimal prices, we take the first-

order conditions in the product market, ∂πb
i

∂ pi
= Di +(pi− ci)

∂Di
∂ pi

= 0 and
∂πb

j
∂ p j

= D j +(p j− c j)
∂D j
∂ p j

= 0.
Differentiating them with respect to βi gives, respectively,

∂ 2πb
i

∂ p2
i

∂ pi

∂βi
+

∂ 2πb
i

∂ pi∂ p j

∂ p j

∂βi
=−∂Di

∂ pi
and

∂ 2πb
j

∂ p j∂ pi

∂ pi

∂βi
+

∂ 2πb
j

∂ p2
j

∂ p j

∂βi
= 0.

We solve them and obtain

∂ pi

∂βi
=− 1

Λb

∂ 2πb
j

∂ p2
j

∂Di

∂ pi
< 0 and

∂ p j

∂βi
=

1
Λb

∂ 2πb
j

∂ p j∂ pi

∂Di

∂ pi
< 0,

where Λb ≡
∂ 2πb

i
∂ p2

i

∂ 2πb
j

∂ p2
j
− ∂ 2πb

j
∂ p j∂ pi

∂ 2πb
i

∂ pi∂ p j
> 0. The signs of the above derivatives follow from the assumptions

(B.1)–(B.3); i.e., prices are strategic complements and a firm’s demand is downward sloping in its own

price. Finally, the effect of β j on ∂ pi
∂βi

comes through c j which appears both in Λb and in
∂ 2πb

j

∂ p2
j

. With

general demand functions, we have ∂ 2 pi
∂β j∂β j

6= 0.

A.5 Proof of Lemma 4

We totally differentiate (11) with respect to βi and β j to obtain{
∂ 2πb

i

∂ p2
j

(
∂ p j

∂βi

)2

+
∂ 2πb

i
∂ p j∂ pi

∂ pb
j

∂βi

∂ pb
i

∂βi
+

∂πb
i

∂ p j

∂ 2 p j

∂β 2
i
+

(
∂ 2πb

i
∂ci∂ pi

∂ pb
i

∂βi
+

∂ 2πb
i

∂ci∂ p j

∂ pb
j

∂βi

)
∂ci

∂βi
− ∂w′ (βi)

∂βi

}
dβ

b
i +{

∂ 2πb
i

∂ p2
j

∂ pb
j

∂β j

∂ pb
j

∂βi
+

∂ 2πb
i

∂ p j∂ pi

∂ pb
i

∂β j

∂ pb
j

∂βi
+

∂πb
i

∂ p j

∂ 2 pb
j

∂βi∂β j
+

(
∂ 2πb

i
∂ci∂ pi

∂ pb
i

∂β j
+

∂ 2πb
i

∂ci∂ p j

∂ pb
j

∂β j

)
∂ci

∂βi

}
dβ

b
j = 0.

Given that ∂ 2πb
i

∂ci∂ pi

∂ pb
i

∂βi
+

∂ 2πb
i

∂ci∂ p j

∂ pb
j

∂βi
=

∂ 2πb
i

∂ci∂qi

∂qb
i

∂βi
and ∂ 2πb

i
∂ci∂ pi

∂ pb
i

∂β j
+

∂ 2πb
i

∂ci∂ p j

∂ pb
j

∂β j
=

∂ 2πb
i

∂ci∂qi

∂qb
i

∂β j
, the above expression

reduces to equation (12), where the coefficient of dβ b
i , denoted by Θb

i , is negative from the second order

condition. Thus, we have dβ b
i

dβ b
j
< 0 if and only if

∂πb
i

∂ p j

∂ 2 pb
j

∂βi∂β j
<−

[(
∂ 2πb

i

∂ p2
j

∂ pb
j

∂β j
+

∂ 2πb
i

∂ p j∂ pi

∂ pb
i

∂β j

)
∂ pb

j

∂βi
+

∂ 2πb
i

∂ci∂qi

∂qb
i

∂β j

∂ci

∂βi

]
,

implying the condition in Lemma 4.
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