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a b s t r a c t

Limit distribution theory in the econometric literature for functional coefficient coin-
tegrating regression is incorrect in important ways, influencing rates of convergence,
distributional properties, and practical work. The correct limit theory reveals that com-
ponents from both bias and variance terms contribute to variability in the asymptotics.
The errors in the literature arise because random variability in the bias term has been
neglected in earlier research. In stationary regression this random variability is of smaller
order and can be ignored in asymptotic analysis but not without consequences for
finite sample performance. Implications of the findings for rate efficient estimation are
discussed. Simulations in the Online Supplement provide further evidence supporting
the new limit theory in nonstationary functional coefficient regressions.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinearities and parameter instabilities are commonly encountered phenomena in empirical research with both cross
ection and time series data. Modeling strategies in both cases have accordingly moved towards accommodating these
eatures. A convenient mechanism for accomplishing such extensions is the use of functional coefficient (FC) regressions,
hich allow responses to explanatory variables to change in a systematic fashion according to movements in other
elevant variables.

FC regression has provided a particularly useful tool for modeling comovement among nonstationary time series that
ay depart from strict parametric cointegration while retaining the essential property of stationary departures from long

un linkages that characterize the data. Such functional coefficient cointegration (FCC) models were introduced in Xiao
2009). They embody notions of equilibrium that allow for responsive adjustment in the relationship to changes that occur
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ver time in relevant covariates. For instance, investment portfolios may realign in response to movements in interest
ates or certain financial indices; or asset prices may relate to market fundamentals in a flexible manner that allows for
he impact of relevant covariates, such as the profitability of alternative investments. In the last decade, models of this
ype have attracted much attention in the econometric literature, providing a flexible generalization of the cointegration
oncept and enabling econometric tests of strict fixed coefficient cointegration specifications in empirical work.
The prototypical FC model has the following form

yt = x′

tβ(zt ) + ut (1.1)

here the regressor xt is a d×1 possibly nonstationary time series, the covariate zt is a q×1 stationary time series and the
rror term ut is a scalar stationary error process. This model has been extensively studied in the literature. An early paper
y Cai et al. (2000) examined the stationary xt case, Juhl (2005) examined the unit root autoregressive case, Xiao (2009)

studied the model (1.1) with full rank I(1) xt , and Cai et al. (2009) allowed both I(0) and I(1) variables in xt . Subsequent
papers have developed specification tests for constant coefficients or strict cointegration (Sun et al., 2016), models with
non-cointegrated structure (Sun et al., 2011), and applications where time varying volatility is relevant (Tu and Wang,
2019).

In all of this work, kernel weighted local least squares regression is employed to estimate the functional coefficient β(·).
The derivation of the limit theory for these estimates follows standard lines for kernel regression asymptotics that were
developed in the stationary case, while allowing for possible nonstationarity in the regressor xt or certain components of
xt . In the prototypical case the limit theory is given as mixed normal and the results have been extensively used in the
literature to develop test procedures for constant coefficients, confidence intervals for the functional coefficients, optimal
bandwidth selection, and specification testing.

The present work shows that the limit theory given in this literature is incorrect in all cases where nonstationary
regressors of integrated or near-integrated form are present in xt . The errors originate from a missing term in the true
limit theory that is associated with the random variability of the kernel regression bias. In stationary regression this term
can be neglected as of smaller order than the usual variance expression. But in nonstationary regression, variability in the
bias has larger order due to the nonstationary regressor. Its omission leads to failure in the reported asymptotic theory
and the true limit distribution of the kernel regression estimator involves component elements from both the bias and the
variance. The authors are not aware of other cases where such failures occur in nonparametric estimation, which helps
to explain why the omission of potential bias effects on variance in nonparametric estimation has not been noticed in
previous work.

In the present context of nonstationary regression, only in scalar FCC regression and only when the bandwidth is very
small, viz., o(1/

√
n), are present results in the literature correct. That bandwidth restriction when zt is scalar actually

excludes optimal convergence, which occurs at the n3/4 rate and requires the bandwidth setting O(1/
√
n) in estimation

f β(·). Instead, optimal convergence leads to a limit distribution whose variance combines random elements from both
he bias and variance terms in the regression. In short, we show that terms normally taken as ‘bias’ actually contribute
o ‘variance’ and affect estimation and inference in material ways that have been neglected in earlier work.

The problem that arises in the existing limit theory can be explained simply in the model (1.1) when xt is a scalar
exogenous regressor, zt is an independent univariate stationary process with smooth density f (z), and ut is a scalar
stationary error process with zero mean and variance σ 2

u . The local level least squares estimate of β(z) is β̂(z) =(∑n
t=1 xtytKtz

)
/
∑n

t=1 x
2
t Ktz for some suitable kernel function Ktz = K ((zt − z)/h) with bandwidth h in the weighted

egression. The estimate β̂(z) satisfies the usual decomposition into ‘bias’ and ‘variance’ terms, which in signal-normalized
orm is(

n∑
t=1

x2t Ktz

)(
β̂(z) − β(z)

)
=

n∑
t=1

x2t [β(zt ) − β(z)]Ktz +

n∑
t=1

xtutKtz . (1.2)

Limit theory is developed by analyzing each term on the right side of this equation in turn, as well as the behavior of the
kernel weighted signal function

∑n
t=1 x

2
t Ktz . To do so in a rigorous way requires the further decomposition of the right

side as follows
n∑

t=1

x2t Eξβt +

n∑
t=1

x2t ηt +

n∑
t=1

xtutKtz (1.3)

where ξβt = [β(zt ) − β(z)]Ktz and ηt = ξβt − Eξβt . In (1.3), the first term in the decomposition leads in the conventional
way to the ‘deterministic’ bias term1 in the limit theory. The second term leads to a random element in the limit that is
induced by the bias. It is neglect of this random element

∑n
t=1 x

2
t ηt that leads to the error in the literature. The relative

magnitudes of the terms in (1.3) change for stationary and nonstationary regressors, as is now explained. But, as we will
show in simulations, both terms are important in finite samples and affect inferential accuracy.

1 The designation ‘deterministic’ is used because the bias term is actually deterministic in the limit only in the stationary case. In nonstationary
regressor cases, the bias term has random elements that are induced by the asymptotic behavior of sample moments of the regressor xt , which can
nfluence the limit theory.
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(i) Stationary xt
In this case, the random element

∑n
t=1 x

2
t ηt in the bias is of smaller order than the variance component in the third

erm
∑n

t=1 xtutKtz of (1.3). In particular, under standard regularity conditions, the three components of (1.3) and the signal
unction have the following asymptotic behavior (c.f., Li and Racine (2007), theorem 9.3) as n → ∞ and h → 0 with the
effective sample size nh → ∞

1
nh

n∑
t=1

x2t Eξβt = h2σ 2
x µ2(K )C(z) + op(h2), (1.4)

n∑
t=1

x2t ηt = Op(
√

nh3), (1.5)

1
√
nh

n∑
t=1

xtutKtz ⇝ N
(
0, ν0(K )σ 2

u σ 2
x f (z)

)
, (1.6)

1
nh

n∑
t=1

x2t Ktz →p σ 2
x f (z), (1.7)

here µ2(K ) =
∫
s2K (s)ds, ν0(K ) =

∫
K (s)2ds,

∫
K (s)ds = 1, Ex2t = σ 2

x , Eu
2
t = σ 2

u , C(z) =
1
2β

(2)(z)f (z) + β (1)(z)f (1)(z)
with g (j) signifying the jth derivative of g , and where (1.5) is due to the fact that 1

√

nh3

∑
⌊n·⌋
t=1 ηt ⇝ Bη(·), as is shown in

emma B.1(b) in Appendix B. Here and throughout the paper we use ⇝ to signify weak convergence on the relevant
robability space and →p for convergence in probability. In view of (1.2) through (1.7), we can write

β̂(z) − β(z) =

∑n
t=1 x

2
t Eξβt +

∑n
t=1 x

2
t ηt +

∑n
t=1 xtutKtz∑n

t=1 x
2
t Ktz

(1.8)

= Op

(
nh3

+
√
nh3 +

√
nh

nh

)
= Op(h2) + Op(1/

√
nh)

ecause
√
nh3 = o(

√
nh). The standard FC regression limit theory follows, viz.,

√
nh
(
β̂(z) − β(z) − h2B(z) + op(h2)

)
=

1
√
nh

∑n
t=1 xtutKtz

1
nh

∑n
t=1 x

2
t Ktz

+ op(1) ⇝ N
(
0,

ν0(K )σ 2
u

σ 2
x f (z)

)
, (1.9)

giving the usual
√
nh convergence rate for the suitably centered FC estimator β̂(z), the deterministic recentering bias

unction h2B(z) = h2µ2(K )C(z)/f (z), and a limiting normal distribution with variance ν0(K )
σ2
u

σ2
x f (z)

. Notice that the second

omponent of the bias,
∑n

t=1 x
2
t ηt = Op(

√
nh3), is op(nh3) provided nh3

→ ∞, which holds for the usual optimal
andwidth choice h = O(n−

1
5 ) in stationary FC regression. Moreover, as evident in (1.5), the second component is op(

√
nh)

whenever h → 0, thereby ensuring that it is dominated by the variance term. In this stationary case, therefore, the random
component of the bias function does not affect either the bias or the variance in the limit distribution of β̂(z).

(ii) Nonstationary xt
In the nonstationary case with integrated or near-integrated regressor xt the orders of magnitude of the components

(1.4)–(1.7) change in critical ways that affect the balance in these components, thereby impacting the asymptotic behavior
of β̂(z). First, nonstationarity in the regressor xt changes signal strength. When xt is a scalar unit root process and nh → ∞

we have, from Lemma B.1(c)(i) in Appendix B,

1
n2h

n∑
t=1

x2t Ktz =
1
nh

n∑
t=1

(
xt
√
n

)2

Ktz ⇝

∫
B2
x × f (z) (1.10)

n place of (1.7), where 1
√
nx⌊n·⌋ ⇝ Bx(·), Brownian motion with variance ω2

x , and
∫

denotes
∫ 1
0 . In view of the

standardization in (1.10), the FCC regression signal
∑n

t=1 x
2
t Ktz has stochastic order Op(n2h) rather than Op(nh) and the

equirement for consistency might therefore be thought to be n
√
h → ∞ rather than nh → ∞; or, upon appropriate

tandardization of xt , the adjusted regression signal is
∑n

t=1

(
xt√
n

)2
Ktz = Op(nh), suggesting that the usual effective

ample size condition nh → ∞ is needed for consistency. However, the situation is considerably more subtle, as will
e discussed in the paper: in fact, consistency continues to hold even when nh → ∞ fails, as will be demonstrated in the
aper in Theorem 2.2 and the following Remarks. Importantly, this is not the case when xt is stationary as discussed in
emark 2.9.
471
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Second, as shown in Lemma B.1(d) in Appendix B, the random element in the bias component now converges to a
tochastic integral at the rate Op(

√
n3h3). Specifically, when xt is a scalar unit root process and nh → ∞, we have

1
√
n3h3

n∑
t=1

x2t ηt =

n∑
t=1

(
xt
√
n

)2
ηt

√
nh3

⇝

∫
B2
xdBη, (1.11)

here Bη(·) is the Brownian motion limit of the partial sum process 1
√

nh3

∑
⌊n·⌋
t=1 ηt , as shown in Lemma B.1(b). The

eterministic component of the bias is Op(n2h3) and satisfies

1
n2h3

n∑
t=1

x2t Eξβt =
1

nh3

n∑
t=1

(
xt
√
n

)2

Eξβt ⇝

(∫
B2
x

)
µ2(K )C(z),

nalogous to the stationary case but with
∫
B2
x replacing σ 2

x . Vital for the correct limit theory, the variance component
n
t=1 xtutKtz = Op(n

√
h) turns out to be dominated by the random component of the bias because n

√
h = o(

√
n3h3)

henever nh2
→ ∞, i.e. whenever h → 0 slower than 1/

√
n. Importantly, this result and (1.10) hold whenever nh → ∞.

imilar results apply with suitable changes in the limit formulae when xt is near integrated.
It follows that the random bias (second) component of the decomposition (1.3) dominates the variance (third) term

nd therefore determines the form of the limit distribution of β̂(z) whenever h → 0 slower than 1/
√
n, which is the

sual case in kernel regression. When h → 0 at precisely the 1/
√
n rate both the random bias and variance terms

ontribute to the asymptotics. This balance in the components of (1.3) is explored rigorously in what follows and the
symptotic consequences are given in Theorem 2.1 for the scalar zt case. In Section 2 of the Online Supplement that
ccompanies the paper, we report simulations that show the relevance of these analytic findings on the relative magnitude
f the components in (1.3) in finite samples. These computations highlight the differences between the stationary and
onstationary cases for practical work and the dominating role the random bias component plays when h → 0 slower
han 1/

√
n. For multivariate FC regression with vector zt , the limit theory is given in Theorem 2.3. This case involves

further complications and is not a straightforward extension of the scalar covariate case, as might be inferred from the
present literature. We therefore deal with the multivariate zt case separately in the following development. The optimal
bandwidth order and asymptotics of rate efficient estimation are also discussed.

To keep the exposition brief and focus on correcting limit theory in the literature, we confine analysis to local level
estimation and work with the prototypical model (1.1). This model might be considered too simple to be empirically
relevant; but it embodies the central characteristics of FC regression and enables us to focus on the key issue, which is
to demonstrate the impact that kernel regression bias can have on variance even in the limit theory. Primary attention
is given to the nonstationary case where xt is a full rank integrated process independent of zt and ut but attention is
lso given to the stationary regressor case. More general cases with serially dependent errors, potentially cointegrated
egressors, and endogeneity do not change the basic thrust of the present findings and full extensions to such cases
re left for future work. The new limit theory is derived in Section 2, with attention given separately to univariate and
ultivariate zt cases, and further attention to the implications of the asymptotics for rate efficient estimation. Section 3
oncludes. Proofs of the asymptotic results for univariate zt are given in Appendix A and a key technical lemma is given
in Appendix B. Proofs of the asymptotic results for multivariate zt and further simulations are provided in the Online
Supplement that accompanies the paper – see Appendix C for details.

Throughout the paper we use the notation µj(K ) =
∫
K ujK (u)du, and νj(K ) =

∫
K ujK 2(u)du for kernel moment functions,

here K is the support of the kernel function K . The affix ‘q’ when it appears in µ
q
j and ν

q
j is used to indicate the dimension

f zt in the multivariate case. For any random variables ξn and ηn, ξn ∼a ηn means ξn and ηn are asymptotically equivalent,
amely ξn = ηn{1+op(1)} as n → ∞. We use ≡d to signify equivalence in distribution and, as above and unless otherwise
ndicated,

∫
denotes

∫ 1
0 . According to the context, we use := and =: to signify definitional equality.

. FC limit theory in cointegrated systems

We consider a cointegrating equation model with full rank I(1) regressors and functional coefficients dependent on
stationary covariate. The model matches that of Xiao (2009) and is a prototype of more complex systems, including
odels with endogenous cointegrated regressors, models with both I(0) and I(1) or near integrated regressors, and models
ith functionally cointegrated regressors, as well as serially dependent errors. The analysis here is representative of the
omplexities that are involved in all these more complex triangular systems of cointegrated equations. The purpose of
he present paper is to derive the correct limit theory for the prototype model as a foundation for subsequent analyses
f more complex systems.

.1. Univariate zt

We first derive limit theory for the FC kernel estimator β̂(z) =
(∑

t xtx
′
tKtz

)−1 (∑
t xtytKtz

)
in model (1.1) with

nivariate zt . To avoid unnecessary complications in the asymptotics, it is convenient to use the following simplifying
ssumptions. Extensions to more general cases are discussed below but these are not needed for the purposes of the
resent contribution.
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(i) {xt} is a full rank unit root process, with innovations uxt = ∆xt and initialization x0 = op(
√
n), satisfying the

functional law 1
√
nx⌊n·⌋ ⇝ Bx(·), where Bx is vector Brownian motion with variance matrix Ωxx > 0; {ut} is a

martingale difference sequence (mds) with respect to the filtration Ft = σ {{xs, zs}∞s=1; ut , ut−1, . . .}, E(u2
t |Ft−1) =

σ 2
u a.s. and E(u6

t ) < ∞; and {zt , uxt} are strictly stationary α-mixing processes with mixing numbers α(j) that satisfy∑
j≥1 j

c
[α(j)]1−2/δ < ∞ for some δ > 2 and c > 1 − 2/δ with finite moments of order p > 2δ > 4.

(ii) The density f (z) of zt and joint density f0,j(s0, sj) of
(
zt , zt+j

)
are bounded above and away from zero over their

supports with uniformly bounded and continuous derivatives to the second order.
(iii) {xt} and {zt} are mutually independent.
(iv) The kernel function K (·) is a bounded probability density function symmetric about zero with support K that is

either [−1, 1] or R = (−∞, ∞).
(v) β(z) is a smooth function with uniformly bounded continuous derivatives to the second order and E∥β(zt )∥2

+

E∥β (1)(zt )∥2
+ E∥β (2)(zt )∥2 < ∞.

(vi) n → ∞ and h → 0.

The functional law in Assumption (i) is made for convenience and is assured by many primitive conditions (e.g., Phillips
and Solo (1992)). The mds condition in (i) and the independence condition in (iii) are also convenient for the limit theory
in the nonstationary case. They may be relaxed at the cost of technical complications but these would distract from the
central purpose of the paper and are not pursued here. The α-mixing condition for {zt , uxt} is a standard weak dependence
condition that is useful in kernel regression and functional limit theory. Condition (iv) is standard, although relaxation
of the symmetry condition leads to some changes in the results. In some cases where the bandwidths employed are
very small it is convenient to use kernels whose support K is the entire real line R, and this will be mentioned as
required. The moment conditions (v) on β(zt ) and the first two derivatives, {β (1)(zt ), β (2)(zt )} are needed for the limit
theory developed below. Condition (vi) places minimal requirements on (n, h) and the following development uses various
additional conditions. For instance, as discussed earlier in the context of the asymptotic behavior of the kernel weighted
regression signal in (1.10) and that of the random component of the bias in (1.11), the effective sample size rate condition
nh → ∞ is needed for explicit limit results, just as it is in stationary nonparametric and functional coefficient regression.
The effects on the various kernel weighted sample moments of relaxing this particular condition are explored in the
technical derivations and are discussed in the paper. Other rate conditions are employed as needed.

Our first result gives limit theory for the FCC regression estimator β̂(z) in model (1.1) under specific conditions on the
bandwidth in relation to the sample size.

Theorem 2.1. Under Assumption 1, when nh → ∞, the following hold:

(a) if nh2
→ 0,

n
√
h
[
β̂(z) − β(z) − h2B(z)

]
⇝MN (0, Ωu(z)), (2.1)

where B(z) = µ2(K )C(z)/f (z) and C(z) =
1
2β

(2)(z)f (z) + β (1)(z)f (1)(z);
(b) if nh2

→ ∞ and β (1)(z) ̸= 0,√
n
h

[
β̂(z) − β(z) − h2B(z)

]
⇝

(
f (z)

∫
BxB′

x

)−1 (∫
BxB′

xdBη

)
≡d MN (0, Ωβ (z)), (2.2)

where Bη(·) is Brownian motion with variance matrix Vηη = ν2(K )f (z)β (1)(z)β (1)(z)′;
(c) if nh2

→ c for some constant c ∈ (0, ∞) and β (1)(z) ̸= 0,

n3/4
[
β̂(z) − β(z) − h2B(z)

]
⇝MN

(
0, c

1
2 Ωβ (z) +

1

c
1
2
Ωu(z)

)
. (2.3)

he (conditional) variance matrices in (2.1) and (2.2) are as follows:

Ωu(z) = ν0(K )σ 2
u f

−1(z)
(∫

BxB′

x

)−1

, (2.4)

Ωβ (z) =
ν2(K )
f (z)

(∫
BxB′

x

)−1 (∫
BxB′

x

(
B′

xβ
(1)(z)

)2)(∫
BxB′

x

)−1

. (2.5)

emark 2.1 (Case (a)). (i) Case (a) is the result given in Xiao (2009) but without the condition nh2
→ 0 that is made

explicit here. As the proof of Theorem 2.1 makes clear, the limit theory (2.1) holds only when nh2
→ 0, which requires a

small bandwidth that goes to zero faster than 1/
√
n. The proof of the theorem depends on the additional rate condition

nh → ∞, which is needed to establish central limit theory and functional laws that are given in all items labeled (i)
473
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(
i
a
1

f Lemma B.1 for kernel weighted partial sums of various time series. This condition is the usual effective sample size
ssumption made in kernel regression for stationary time series.
(ii) Nonstationarity of xt raises the signal strength of the regression signal in (1.10), which leads to the O(n

√
h)

onvergence rate for β̂(z) given in (2.1). Consistency and some limit theory for β̂(z) may be expected to hold even
hen h = o(1/n) and the usual effective sample size requirement nh → ∞ fails. More extreme situations of such small
andwidths are considered below in Theorem 2.2.
(iii) When nh2

→ 0 as in case (a), the bias term in the centering of β̂(z) in (2.1) is negligible and can be ignored in
the limit theory since n

√
h× h2

= o(nh2) → 0. Further, when h = o(1/
√
n) the convergence rate of β̂(z) is n

√
h = o(n

3
4 ),

and thereby always less than the optimal rate, which is shown to be O(n
3
4 ) in Case (c) under the additional condition

β (1)(z) ̸= 0 on the derivative of the functional coefficient.

Remark 2.2 (Case (b)). Cases (b)–(c) are new. Case (b) covers bandwidths for which h → 0 slower than 1/
√
n. The

onvergence rate of β̂(z) has the unusual form
√ n

h , which is o(n
3
4 ) and is again less than the optimal rate O(n

3
4 ).

Inspection of (2.2) suggests that undersmoothing to eliminate the bias term h2B(z) could be achieved in Case (b) by
setting the bandwidth h so that nh3

→ 0, as then
√ n

h × h2
=

√
nh3 → 0. When nh → ∞ Lemma B.1(b)(i) shows that

1
√

nh3

∑
⌊n·⌋
t=1 ηt ⇝ Bη(·) holds, where ηt = ξβt − Eξβt , ξβt = [β(zt ) − β(z)]Ktz . This functional law plays a key role in the

weak convergence of the standardized sum 1
√

n3h3

∑n
t=1 xtx

′
tηt to the stochastic integral

∫
BxB′

xdBη that appears in (2.2).
he proof of Theorem 2.1 shows that when nh2

→ ∞, the limit theory is wholly determined by the random element
n the bias function rather than the usual variance term, as mentioned in earlier remarks following (1.11). Because of its
eliance on the bias function, the limit distribution in (2.2) depends on the functional coefficient derivative β (1)(z) and
he result, including the rate of convergence

√ n
h , in turn relies on the non-zero derivative condition β (1)(z) ̸= 0.

Remark 2.3 (Case (c)). Case (c) yields the optimal convergence rate O(n
3
4 ) which holds when nh2

→ c for some constant
c ∈ (0, ∞) and β (1)(z) ̸= 0. The bandwidth that achieves this optimal rate is h = O( 1

√
n ) and the bias term in (2.3) can

be ignored without any undersmoothing because n
3
4 × h2

= n−
1
4 → 0. More importantly, the asymptotics involve a

composite form of two components, which are made explicit in the proof — see (A.19). Those two terms correspond to
Cases (b) and (a), respectively, and are, in fact, boundary versions in which h = O( 1

√
n ). This boundary at h = O( 1

√
n ) delivers

the optimal convergence rate O(n
3
4 ) for β̂(z). By mutual independence of {ut} and {zt}, the two contributing components

re uncorrelated, giving the mixed normal distribution of (2.3). The constant c adjusts the relative contributions to the
symptotic variance that come from the bias and the usual variance term.

emark 2.4 (Degeneracy). When the derivative β (1)(z) = 0 it is clear from Ωβ (z) that the limit distribution in (2.2) is
egenerate and the convergence rate rises. The simplest example occurs when β(z) ≡ β is constant and the functional
oefficient model is parametric. So ξβt = [β(zt ) − β(z)]Ktz = 0 and ηt = 0 for all t , and there is no approximation error
ias in the limit theory. The limit distribution of β̂(z) is then determined completely by the variance component and the
esult in (2.1) holds with B(z) = 0. This degenerate case is discussed in Phillips and Wang (2020) where a test statistic
s proposed to check the constancy of the functional coefficient. A general asymptotic treatment of locally flat functional
oefficient regression is provided in Phillips and Wang (2021).

emark 2.5 (Implications for Robustness). In case (a) where nh2
→ 0 the limit result may be interpreted as the

onstationary analogue in terms of both bias and variance of the stationary case, albeit up to rates of convergence and
he limiting form of the regression sample moment matrix. But this match between the stationary and nonstationary
ases holds only when nh2

→ 0. Depending on the bandwidth employed in estimation, the true limit theory has three
learly different mixed normal limits, only one of which delivers rate efficient estimation and this occurs at the precise
andwidth rate h = O(n−1/2) which is excluded in case (a). The three limit distributional forms reveal major differences
etween stationary and nonstationary FCC limit theory and seem to suggest that bandwidth specific formulations may
e needed for inference. Notwithstanding these complications, construction of a robust self-normalized test statistic for
nference about β(z) is possible and applies to stationary and nonstationary cases, as shown in the original version of this
aper (Phillips and Wang, 2020). This robust approach to inference will be analyzed in subsequent work.

Theorem 2.1 allows for bandwidths that satisfy h → 0 slower than 1/n, thereby ensuring that nh → ∞. As mentioned
n Remark 2.1, this is a stationary time series effective sample size requirement that enables the use of kernel limit theory
or kernel weighted stationary time series. As in the following theorem, it is possible to relax this requirement due to the
tronger signal of a nonstationary regressor and the resulting amplification of the regression signal weakens restrictions on
he bandwidth. But when nh ̸→ ∞ the conditions that assure central limit theory break down and no invariance principle
IP) applies even though FCC regression may still be consistent. While nonstationarity may allow for small bandwidths
n the asymptotic development, practical issues in kernel smoothing do affect computability and finite sample behavior,
lmost always requiring use of a kernel K (·) with support K = R, as discussed earlier in connection with Assumption
(iv).
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heorem 2.2. Under Assumption 1, if nh → c for some c ∈ [0, ∞), then β̂ (z) →p β (z) and
√
n
(
β̂ (z) − β (z)

)
= Op (1)

but no invariance principle applies.

The condition nh → c ∈ [0, ∞) means that h tends to zero as fast or faster than O(n−1), so that nh2
→ 0 thereby

atching the condition of case (a) of Theorem 2.1 but removing the effective sample size condition nh → ∞ and
llowing even smaller bandwidths. Theorem 2.1(a) allows for bandwidths in the region O(n−1) < h < O(n−1/2) whereas
heorem 2.2 allows for bandwidths h ≤ O(n−1). Such smaller bandwidth rates are only included subject to computability
f β̂(z), which in turn relies on positivity of the finite sample weighted regression signal

(∑
t xtx

′
tKtz

)
. More detailed

omments on this matter and other aspects of Theorem 2.2 follow.

emark 2.6 (The Intermediate Case nh → c ∈ (0, ∞)). From Theorem 2.2 when nh → c ∈ (0, ∞), the convergence rate of
ˆ (z) is

√
n. The rate of convergence of β̂ (z) from Theorem 2.1(a) is n

√
h =

√
n
√
nh, which exceeds

√
n since nh → ∞

n Theorem 2.1(a). Thus, when the stationary process effective sample size nh diverges, h → 0 slower than 1
n and the

onvergence rate of β̂ (z) rises from
√
n to n

√
h. The bandwidth then plays a role in determining the convergence rate.

But when h → 0 as fast or faster than 1
n the convergence rate of β̂ (z) is

√
n and unaffected by bandwidth.

Remark 2.7 (nh → 0 and n3h → ∞). We may well wonder why there is no reduction in the convergence rate below
√
n

or even a failure of consistency if h → 0 faster than 1/n. In this case, it turns out that in the decomposition of β̂(z)−β(z)
see (A.20) in the Appendix or (1.8) in the scalar xt case) the terms involving the approximation error β(zt ) − β(z) are
mall enough to be neglected and dominated by

(∑n
t=1 xtx

′
tKtz

)−1∑n
t=1 xtutKtz . Suppose, for instance, that n3h → ∞, in

hich case
n∑

t=1

xtx′

tKtz =

n∑
t=1

xtx′

tEKtz +

n∑
t=1

xtx′

tζtK = Op(
√

n3h) → ∞, (2.6)

hich means that persistent excitation still holds. The justification of (2.6) is as follows. Recall that EKtz = hf (z) + o(h)
nd
∑n

t=1 xtx
′
t = Op(n2) as n → ∞, so that

∑n
t=1 xtx

′
tEKtz = Op(n2h). The term

∑n
t=1 xtx

′
tζtK has zero mean and variance

using the scalar regressor case for convenience of exposition)

E

(
n∑

t=1

x2t ζtK

)2

=

n∑
t=1

Ex4t Eζ 2
tK = 3

n∑
t=1

t2ω4
x × {hν0(K )f (z) + o (h)}

= 3n3h ×
1
n

n∑
t=1

(
t
n

)2

× ω4
xν0(K )f (z) = O(n3h) (2.7)

in the iid zt case. Hence,
∑n

t=1 xtx
′
tζtK = Op(

√
n3h). Consequently,

∑n
t=1 xtx

′
tKtz = Op(n2h)+Op

(√
n3h

)
= Op

(√
n3h

)
when

h → 0. We might then expect the
√
n convergence rate (corresponding to the intermediate case nh → c ∈ (0, ∞)) to

be reduced in line with the diminished signal. However, calculation shows the variance matrix of the critical covariance
term

∑n
t=1 xtutKtz to be

E

(
n∑

t=1

xtutKtz

)(
n∑

t=1

xtutKtz

)′

=

n∑
t=1

E
(
xtx′

t

)
E
(
u2
t

)
E
(
K 2
tz

)
= h

n∑
t=1

t × Ωxxσ
2
u {f (z) ν0 (K ) + o(1)}

= n2h

(
1
n2

n∑
t=1

t

)
× Ωxxσ

2
u {f (z) ν0 (K ) + o(1)} , (2.8)

here Ωxx is the long run variance matrix of ∆xt . Since E
(∑n

t=1 xtutKtz
)

= 0 and Var
(∑n

t=1 xtutKtz
)

= Op
(
n2h

)
, it

ollows that
∑n

t=1 xtutKtz = Op

(√
n2h

)
. In this case, we deduce that

β̂ (z) − β (z) =

(
1

√
n3h

n∑
t=1

xtx′

tKtz

)−1
1

√
n3h

n∑
t=1

xtutKtz + op
(
1/

√
n
)

= Op
(
1/

√
n
)
. (2.9)

he estimator β̂ (z) is then
√
n consistent because the first member on the right side of (2.9) is the dominant Op

(
1/

√
n
)

term in the asymptotics and the op
(
1/

√
n
)
term in (2.9) comes from the term involving the approximation error

β(zt ) − β(z). More detailed justification regarding the op(1/
√
n) term can be found in the proof of Theorem 2.2.
475



P.C.B. Phillips and Y. Wang Journal of Econometrics 232 (2023) 469–489

R
n
t
n

a
b
r

2

p

emark 2.8 (n3h → 0). Remark 2.7 establishes consistency when n3h → ∞. We may well have expected inconsistency if
3h → 0 or h = o

(
1/n3

)
because in that event the kernel weighted signal does not deliver persistent excitation. Indeed, in

his event (2.7) continues to hold and
∑n

t=1 xtx
′
tKtz = Op(

√
n3h) for nh → 0 as before, yet now

∑n
t=1 xtx

′
tKtz = op(1) when

3h → 0 and the signal matrix fails the persistent excitation condition. Nonetheless, conditioning on Fx,z = σ {xt , zt}∞1
and using the scalar regressor case for convenience of exposition, we see that

Var

(∑n
t=1 xtutKtz∑n
t=1 x

2
t Ktz

⏐⏐⏐⏐
Fx,z

)
=

∑n
t=1 x

2
t K

2
tzσ

2
u(∑n

t=1 x
2
t Ktz

)2 =

n2h
(

1
n

∑n
t=1

(
xt√
n

)2 EK2
tz

h σ 2
u

)
n3h

(
1
n

∑n
t=1

(
xt√
n

)4 EK2
tz

h

) = Op

(
1
n

)
→ 0, (2.10)

which holds even when n3h → 0. In view of (2.10) consistency appears to hold irrespectively of whether the rate h → 0
so fast that the persistent excitation condition fails. Of course, if h → 0 too fast and the kernel support is compact then for
finite n the signal is zero with positive probability, viz., P

(∑n
t=1 x

2
t Ktz = 0

)
> 0 and kernel estimation of the functional

coefficient will fail. Even for Gaussian and other kernels with infinite support the signal
∑n

t=1 x
2
t Ktz may be so small

as to prevent or inhibit calculation in such cases. Nonetheless, the result indicates that nonstationarity in the regressor
continues to have a powerful influence on the asymptotic properties of functional coefficient regression estimator β̂ (z)
even when kernel weighted signal strength is no longer asymptotically infinite.

Remark 2.9 (Stationary Case). For comparison, consider the stationary scalar xt and iid zt case where, when nh → c ∈

[0, ∞), we have

1
√
nh

n∑
t=1

x2t Ktz =
√
nh

1
n

n∑
t=1

x2t
EKtz

h
+

1
√
nh

n∑
t=1

x2t ζtK = Op(1), (2.11)

1
nh3

n∑
t=1

x2t Eξβt =
1
n

n∑
t=1

x2t
Eξβt

h3 = Op(1), (2.12)

1
√
nh3

n∑
t=1

x2t ηt =
1

√
n

n∑
t=1

x2t
ηt

√
h3

= Op(1), (2.13)

1
√
nh

n∑
t=1

xtutKtz =
1

√
n

n∑
t=1

xtut
Ktz
√
h

= Op(1). (2.14)

Then

β̂ (z) − β (z) =

(
n∑

t=1

x2t Ktz

)−1 ( n∑
t=1

x2t Eξβt +

n∑
t=1

x2t ηt +

n∑
t=1

xtutKtz

)

=

(
1

√
nh

n∑
t=1

x2t Ktz

)−1 (
√

nh5 1
nh3

n∑
t=1

x2t Eξβt + h
1

√
nh3

n∑
t=1

x2t ηt +
1

√
nh

n∑
t=1

xtutKtz

)

=

(
1

√
nh

n∑
t=1

x2t Ktz

)−1 (
op(1) +

1
√
nh

n∑
t=1

xtutKtz

)
= Op(1). (2.15)

The bias terms are evidently negligible in the above calculations because nh5
→ 0 and h → 0. In addition, conditional on

Fx,z = σ {xt , zt}∞1 the conditional error variance is

Var
(

β̂(z) − β(z)
⏐⏐⏐
Fx,z

)
= Var

(∑n
t=1 xtutKtz∑n
t=1 x

2
t Ktz

⏐⏐⏐⏐
Fx,z

)
=

∑n
t=1 x

2
t K

2
tzσ

2
u(∑n

t=1 x
2
t Ktz

)2 ̸= 0, (2.16)

nd β̂ (z) is evidently inconsistent in the stationary case. Unlike the nonstationary case, there is no asymptotic divergence
etween the stochastic order of the regressor xt appearing in the sample covariance

∑n
t=1 xtutKtz and that of the squared

egressor x2t that appears in the signal
∑n

t=1 x
2
t Ktz . It is these differences in the stochastic order implications of the

regressor that lead to major differences regarding consistency between the stationary and nonstationary cases under
rapid bandwidth shrinkage when nh → c ∈ [0, ∞).

.2. Multivariate zt

In the general case where zt is multivariate of dimension q, let z = (z1, . . . , zq)′ and zt = (z1t , . . . , zqt )′. We use the
roduct kernel K := K (z ) := k × · · · × k where k = k((z − z )/h ), j = 1, . . . , q, k(·) is a symmetric second
tzq q t tz1 tzq tzj jt j j
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rder kernel, and the hj, j = 1, . . . , q, are individual bandwidths that are assumed to be the same up to a constant. The
unctional coefficient estimator now has the form β̂(z) =

(∑n
t=1 xtx

′
tKtzq

)−1∑n
t=1 xtytKtzq. For notational simplicity, we

se h to denote the common bandwidth. Let µj(k) =
∫
ujk(u)du and νj(k) =

∫
ujk2(u)du.

heorem 2.3. Under Assumption 1 and β (1)(z) ̸= 0, the following hold:

(a) If nhq
→ ∞, we have

(1) when q = 1, see Theorem 2.1;
(2) when q ≥ 2,

√

nhq−2
(
β̂(z) − β(z) − h2µ

q
2(k)D(z)f

−1(z)
)
⇝

(
f (z)

∫
BxB′

x

)−1 (∫
BxB′

xdBηq

)
(2.17)

≡d MN

⎛⎝0,
ν
q
2(k)
f (z)

(∫
BxB′

x

)−1 ∫
BxB′

x

q∑
j=1

(
B′

xβ
(1)
j (z)

)2 (∫
BxB′

x

)−1
⎞⎠ , (2.18)

where D(z) =
∑q

j=1

[
β

(1)
j (z)f (1)j (z) +

1
2β

(2)
jj (z)f (z)

]
, β

(1)
j (z) = ∂β(z)/∂zj β

(2)
jj (z) = ∂2β(z)/∂z2j , and Bηq(·) is

d-vector Brownian motion with variance matrix
Vηηq = ν

q
2(k)f (z)

∑q
j=1 β

(1)
j (z)β (1)

j (z)′.

(b) If nhq
→ 0, then

(1) when q = 1, see Theorem 2.2;
(2) when q = 2, we have

√
n
(
β̂(z) − β(z)

)
∼a

(
1

√
n3hq

n∑
t=1

xtx′

tKtzq

)−1
1

n
√
hq

n∑
t=1

xtutKtzq = Op(1); (2.19)

(3) when q > 2, we have
(i) if nh2

→ 0, then (2.19) continues to hold;
(ii) if nh2

→ c ∈ (0, ∞), then we have

√
n
(
β̂(z) − β(z)

)
∼a

(
1

√
n3hq

n∑
t=1

xtx′

tKtzq

)−1 (
c1/2

√
n3hq+2

n∑
t=1

xtx′

tηtq +
1

n
√
hq

n∑
t=1

xtutKtzq

)
= Op(1); (2.20)

(iii) if nh2
→ ∞, then

1
h

(
β̂(z) − β(z)

)
∼a

(
1

√
n3hq

n∑
t=1

xtx′

tKtzq

)−1
1

√
n3hq+2

n∑
t=1

xtx′

tηtq = Op(1). (2.21)

(c) If nhq
→ c ∈ (0, ∞), then

(1) when q = 1, see Theorem 2.2;
(2) when q = 2, then (2.20) continues to hold;
(3) when q > 2, (2.21) continues to hold.

Theorem 2.3 is the multivariate extension of Theorems 2.1 and 2.2. From case (a), observe that when the condition
nhq

→ ∞ holds and q = 2, the convergence rate is
√
n, irrespective of h. The bias can be ignored in this case when

he undersmoothing condition nhq+2
= nh4

→ 0 holds. When q > 2, the convergence rate is
√
nhq−2 and declines

as q increases, just as it does in the multidimensional zt case for stationary time series (Li and Racine, 2007). Further,
when q ≥ 2, β̂(z) has the limit distribution in (2.18) with a sandwich form variance matrix that relies on the first
derivatives {β

(1)
j (z) = ∂β(z)/∂zj}

q
j=1, analogous to case (b) of Theorem 2.1 where q = 1 and the convergence rate is

√
n/h. If these derivatives are zero at the point of estimation z, then β̂(z) has faster convergence rate than

√
nhq−2 and

its limit distribution depends on higher derivatives of the functional coefficient β(z). This flat derivative case involves
further complexities and is studied elsewhere.

Cases (b) and (c) of Theorem 2.3 show that β̂(z) is consistent even when nhq
→ ∞ fails. In this event, there is

no invariance principle and the result matches Theorem 2.2 when q = 1. Notably, when q > 2 and nhq
→ 0 with

nh2
→ c ∈ (0, ∞) in case (b)(3)(ii) or when q = 2 and nhq

→ c ∈ (0, ∞) in case (c)(2), the limit behavior is described by
(2.20), for which no invariance principle applies but where, like Theorem 2.1(c), both bias and variance terms contribute
to large sample behavior.
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Fig. 1. Plots of the function gq(γ ). The solid (blue) line depicts the region where an invariance principle holds in the limit theory and the dashed
(blue) line depicts the region where no invariance principle applies.

Analogous to the condition nh → ∞ in the case of q = 1, the condition nhq
→ ∞ is needed to establish functional

aws for normalized partial sums of stationary elements involving the kernel weights that enter the asymptotics, such as
tK = Ktz −EKtz and ζtKq = Ktzq−EKtzq. Weak convergence of such quantities fails when nhq

̸→ ∞. The result is consistent
stimation but without accompanying limit distribution theory.

.3. Optimal bandwidth order and rate efficient estimation

This section explores the implications of the new limit theory on bandwidth selection and the convergence rate of
he local level estimator β̂(z). Suppose h = O(nγ ) with γ < 0 and the estimation error β̂(z) − β(z) = Op(ngq(γ )),
where gq(γ ) is a function of γ and the subindex q indicates dependence on the dimension of zt . The optimal bandwidth
order, denoted γ ∗

q , is the order for which gq(γ ) achieves its minimum value and delivers the optimal convergence rate
β̂(z) − β(z) = Op(ngq(γ ∗

q )). To facilitate comparisons that are meaningful for inference it is convenient to require that the
rate ngq(γ ) is such that an invariance principle (IP) holds when γ = γ ∗

q .
We first look at the case where q = 1. According to Theorem 2.1(a), we have −1 < γ < −1/2 and g1(γ ) = −(1+γ /2).

When γ = −1/2, we have nh2
= O(1) and g1(γ ) = −3/4 based on Theorem 2.1(c). Theorem 2.1(b) deals with the case

here −1/2 < γ < 0 and then g1(γ ) = max{2γ , −
1−γ

2 }. It follows that g1(γ ) = −
1−γ

2 when −1/2 < γ < −1/3 and
g1(γ ) = 2γ when −1/3 ≤ γ < 0. In view of Theorem 2.2, we have g1(γ ) = −1/2 for γ ≤ −1. Collectively, we obtain

g1(γ ) =

⎧⎪⎪⎨⎪⎪⎩
−1/2 γ ≤ −1 No IP

−(1 + γ /2) −1 < γ ≤ −1/2 IP
−

1−γ

2 −1/2 < γ < −1/3 IP
2γ −1/3 ≤ γ < 0 IP

. (2.22)

he function g1(γ ) is plotted in Fig. 1(a), in which the dashed part of the function depicts regions where no IP holds,
ncluding the boundary point where the solid line commences. Evidently when γ = −1/2, the function g1(γ ) achieves
ts minimum −3/4, the optimal bandwidth order is O(n−1/2), β̂(z) achieves its fastest rate of convergence n−3/4, and
the mixed normal limit theory of Theorem 2.1(c) applies. In this case, the bias in (2.3) can be neglected because
n3/4

× h2
= n−1/4

→ 0, and the optimal limit theory when q = 1 is given by

n3/4
[
β̂(z) − β(z)

]
⇝MN

(
0, c

1
2 Ωβ (z) +

1

c
1
2
Ωu(z)

)
,

which is attained with h = O(n−1/2) and where the constant c > 0 is given by the limit nh2
→ c .

When zt is of dimension q, similar analyses can be conducted based on Theorem 2.3. When q = 2, we have

g2(γ ) =

⎧⎨⎩
−1/2 γ ≤ −1/2 No IP
−1/2 −1/2 < γ < −1/4 IP
2γ −1/4 ≤ γ < 0 IP

. (2.23)

ig. 1(b) plots the function g2(γ ) for q = 2. The optimal choice of γ in this case is evidently γ ∗

2 ∈ (−1/2, −1/4]. Within
his range for γ we have

√
n consistency and asymptotic mixed normality, as given in (2.18). The bias term can again be

ignored when γ ∗
∈ (−1/2, −1/4) because

√
nhq−2 × h2

= n1/2+2γ
→ 0 when γ < −1/4.
2
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For higher dimensions with q ≥ 3, following Theorem 2.3 we deduce that

gq(γ ) =

⎧⎪⎪⎨⎪⎪⎩
−1/2 γ ≤ −1/2 No IP

γ −1/2 < γ ≤ −1/q No IP
−

1+γ (q−2)
2 −1/q < γ ≤ −1/(q + 2) IP

2γ −1/(q + 2) < γ < 0 IP

, (2.24)

here the final two (IP) convergence rates come from Theorem 2.3(a)(2), the last involving the order of the bias term. The
lot of gq(γ ) for q ≥ 3 is shown in Fig. 1(c). Under the premise that an invariance principle holds in the limit, the optimal
andwidth order that balances bias and variance is obtained with parameter setting γ ∗

q = −1/(q + 2), for which the
convergence rate is n2/(q+2). As is evident in Fig. 1(c), some smaller bandwidths with γ ≤ −1/q may lead to a faster rate
of convergence in estimation than is achieved at γ = −1/(q+2), but such rates sacrifice invariance principle asymptotics
in the limit. For convenience in practical work, the optimal bandwidth order parameter setting γ ∗

q = −1/(q + 2) is
therefore suggested in this case. The corresponding optimal limit distribution theory is given by (2.18) and here the bias

cannot be neglected because
√
nhq−2 × h2

= n
1
2 +

γ ∗
q (q−2)

2 +2γ ∗
q = n0

= O(1).

. Conclusion

Since the earliest work on spectral density estimation for stationary time series it has been traditional in nonparametric
ork to separate bias and variation in the analysis of nonparametric estimation and inference, emphasizing trade-offs
etween them that need to be balanced in applications. In contrast to such separation, the present paper shows how
seful the random elements of the bias component that are normally ignored can be in sharpening accuracy in estimation.
he analysis of nonstationary functional coefficient models reveals that these elements figure even in the limit theory
ariance and they are essential to rate efficient estimation. The next step in this research is to enhance inference via robust
tandard error estimation and test statistic construction in a way that utilizes the new limit theory, embodying all the
andom contributions to variance in a suitable normalization. The original version of this paper (Phillips and Wang, 2020)
utlined a new approach to inference using a self-normalized test statistic that is robust with respect to bandwidth order
nd persistence in the regressor. The limit theory in the present paper should prove useful in developing this adaptive
pproach to inference and may prove useful in other areas of nonparametric estimation and inference.
The analysis given here confines attention to local level estimation and the functional coefficient cointegrating

egression model (1.1) where xt is a full rank integrated process. Corrections to the existing literature that are shown
o apply in this prototypical model are also relevant in other functional coefficient models. Many extensions of the
resent development are possible. These include models with stationary and nonstationary regressors, near integrated
r cointegrated regressors, endogeneity, and error processes more general than martingale differences. In all these cases
imilar influences to those demonstrated here arise from the presence of random variability in the bias term. In particular,
odels such as (1.1) where the regressors xt have both I(1) and I(0) components (Cai et al., 2009) suffer the same
ifficulties as those presented here for the full rank I(1) case; and models with multiple covariates zt encounter similar
omplexities in the development of the correct limit theory to those analyzed in Theorem 2.3.
Primary among the effects that govern the correct limit theory are: (i) more complex trade-offs involving the bias and

ariance components in the limit theory; (ii) new optimal rates of convergence; (iii) multiple limit theory results that
epend intimately on bandwidth choice; (iv) much greater complexity in models with functional coefficients involving
igh dimensional covariates; and (v) cases of consistent estimation where the usual effective sample size condition fails
ut no invariance principle limit theory holds. Similar considerations to those raised here apply to other nonparametric
stimators such as local polynomial estimators. Extensions of the results to encompass these various complexities are left
or future work.

ppendix A. Proofs of theorems

roof of Theorem 2.1. We analyze the components in the following normalized decomposition of the estimation error(
n∑

t=1

xtx′

tKtz

)(
β̂ (z) − β (z)

)
=

n∑
t=1

xtx′

t [β(zt ) − β(z)]Ktz +

n∑
t=1

xtutKtz

=

n∑
t=1

xtx′

tEξβt +

n∑
t=1

xtx′

tηt +

n∑
t=1

xtutKtz, (A.1)

s in the scalar regressor case (1.3), with ξβt = [β(zt ) − β(z)]Ktz and ηt = ξβt − Eξβt . Starting with the kernel weighted
ignal matrix, we have

1
n2h

n∑
xtx′

tKtz =
1
nh

n∑ xt
√
n

x′
t

√
n
E (Ktz) +

1
nh

n∑ xt
√
n

x′
t

√
n
ζtK , (A.2)
t=1 t=1 t=1
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here ζtK = Ktz − E (Ktz) and EKtz = h
∫
K (r) f (z + rh) dr = hf (z) + O(h3). Since EK 2

tz = h
∫
K 2 (r) f (z + rh) dr =

f (z)
∫
K 2(r)dr + o(h) = hf (z)ν0(K ) + o(h), where νj(K ) =

∫
ujK 2(u)du, it follows that V ar(ζtK ) = EK 2

tz − (EKtz)2 = O(h)
nd so ζtK = Op(

√
h). We deduce that when nh → ∞

1
n2h

n∑
t=1

xtx′

tKtz =
1
n

n∑
t=1

xt
√
n

x′
t

√
n

{
f (z) + O(h2)

}
+

1
√
nh

n∑
t=1

xt
√
n

x′
t

√
n

ζtK
√
nh

=
1
n

n∑
t=1

xt
√
n

x′
t

√
n

{
f (z) + O(h2)

}
+ Op(

1
√
nh

) ⇝
(∫

BxB′

x

)
f (z) , (A.3)

hich follows because (i) n−1/2x⌊n·⌋ ⇝ Bx (·) by assumption, (ii) (nh)−1/2 ∑⌊n·⌋
t=1 ζtK ⇝ BζK (·) from Lemma B.1(a) in

ppendix B, and (iii) weak convergence to the matrix stochastic integral

n∑
t=1

xt
√
n

x′
t

√
n

ζtK
√
nh
⇝

∫
BxB′

xdBζK , (A.4)

holds, as shown in Lemma B.1(d).
When nh → c for some c ∈ [0, ∞) we have in place of (A.3)

√
nh

n2h

n∑
t=1

xtx′

tKtz =

√
nh
n

n∑
t=1

xt
√
n

x′
t

√
n

{
f (z) + O(h2)

}
+

n∑
t=1

xt
√
n

x′
t

√
n

ζtK
√
nh

= Op(
√
nh) +

1
√
n

n∑
t=1

xt
√
n

x′
t

√
n

ζtK
√
h

= Op(1), (A.5)

nd no invariance principle applies. The failure occurs because although 1
√
nh

∑n
t=1 ζtK = Op(1) it does not satisfy a

central limit theorem and, correspondingly, the functional law given in Lemma B.1(a)(i) fails, as explained in the proof of
Lemma B.1(a)(ii). As a result of (A.5), the kernel weighted signal matrix

∑n
t=1 xtx

′
tKtz = Op(

√
n3h) when nh → c ∈ [0, ∞).

s discussed later in the proof of Theorem 2.2, it turns out that in this case where nh ̸→ ∞ the estimator β̂(z) is still
consistent but does not satisfy an invariance principle as n → ∞. In what follows in the present proof, we proceed under
the condition that nh → ∞.

Next, from the proof of Lemma B.1(b), we have Eξβt = h3µ2(K )C(z) + o(h3) and so the first term in (A.1) is, upon
ormalization and use of standard weak convergence methods,

1
nh3

n∑
t=1

xt
√
n

x′
t

√
n
E
(
ξβt
)
⇝ µ2(K )

(∫
BxB′

x

)
C(z), (A.6)

ith C(z) =
1
2β

(2)(z)f (z) + β (1)(z)f (1)(z). The second term of (A.1) is, upon normalization and using Lemma B.1(d),

1
√
n3h3

n∑
t=1

xtx′

tηt =

n∑
t=1

xt
√
n

x′
t

√
n

ηt
√
nh3

⇝

∫
BxB′

xdBη,

where Bη is vector Brownian motion with variance matrix Var(Bη) = ν2(K )f (z)[β (1)(z)β (1)(z)′]. The final term of (A.1) is,
pon normalization and using Lemma B.1(a),

1

n
√
h

n∑
t=1

xtutKtz =

n∑
t=1

xt
√
n
utKtz
√
nh
⇝

∫
BxdBuK , (A.7)

here BuK (r) is the limit Brownian motion of 1
√
nh

∑
⌊n·⌋
t=1 utKtz with variance σ 2

u f (z)ν0(K ). Standardizing by the weighted
ignal matrix and recentering (A.1) we have the estimation error decomposition

β̂(z) − β(z) −

(
n∑

t=1

xtx′

tKtz

)−1 n∑
t=1

xtx′

tEξβt

=

(
n∑

xtx′

tKtz

)−1 n∑
xtx′

tηt +

(
n∑

xtx′

tKtz

)−1 n∑
xtutKtz, (A.8)
t=1 t=1 t=1 t=1
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hich we write in standardized form as

β̂(z) − β(z) − h2

(
1

n2h

n∑
t=1

xtx′

tKtz

)−1
1

n2h3

n∑
t=1

xtx′

tEξβt

=

√
h
n

(
1

n2h

n∑
t=1

xtx′

tKtz

)−1
1

√
n3h3

n∑
t=1

xtx′

tηt +
1

n
√
h

(
1

n2h

n∑
t=1

xtx′

tKtz

)−1
1

n
√
h

n∑
t=1

xtutKtz . (A.9)

e now consider various cases depending on the bandwidth contraction rates in relation to the sample size.
Part (a)
In this case where nh2

→ 0 the bandwidth h = o(1/
√
n). Upon rescaling (A.9) by n

√
h and using results (A.3)–(A.7)

we then have

n
√
h

⎛⎝β̂(z) − β(z) − h2

(
1

n2h

n∑
t=1

xtx′

tKtz

)−1
1

n2h3

n∑
t=1

xtx′

tEξβt

⎞⎠
=

√

nh2

(
1

n2h

n∑
t=1

xtx′

tKtz

)−1
1

√
n3h3

n∑
t=1

xtx′

tηt +

(
1

n2h

n∑
t=1

xtx′

tKtz

)−1
1

n
√
h

n∑
t=1

xtutKtz,

= op(1) +

(
1

n2h

n∑
t=1

xtx′

tKtz

)−1
1

n
√
h

n∑
t=1

xtutKtz (A.10)

⇝

(
f (z)

∫
BxB′

x

)−1 (∫
BxdBuK

)
≡d MN

(
0,

ν0(K )σ 2
u

f (z)

(∫
BxB′

x

)−1
)

, (A.11)

he mixed normality following from the independence of Bx and BuK . Joint weak convergence of the numerator and
enominator components of the matrix quotient in the second term of (A.10) follows from Lemma B.1(f). In view of
A.3) and (A.6)(

1
n2h

n∑
t=1

xtx′

tKtz

)−1
1

n2h3

n∑
t=1

xtx′

tEξβt ⇝
µ2(K )C(z)

f (z)
, (A.12)

iving the bias function and leading to the stated result (2.1) for case (a).
Part (b)
When nh2

→ ∞ the bandwidth goes to zero slower than O(1/
√
n). We now rescale (A.9) by

√
n/h, giving√

n
h

⎛⎝β̂(z) − β(z) − h2

(
1

n2h

n∑
t=1

xtx′

tKtz

)−1
1

n2h3

n∑
t=1

xtx′

tEξβt

⎞⎠
=

(
1

n2h

n∑
t=1

xtx′

tKtz

)−1
1

√
n3h3

n∑
t=1

xtx′

tηt +
1

√
nh2

(
1

n2h

n∑
t=1

xtx′

tKtz

)−1
1

n
√
h

n∑
t=1

xtutKtz (A.13)

=

(
1

n2h

n∑
t=1

xtx′

tKtz

)−1
1

√
n3h3

n∑
t=1

xtx′

tηt + op(1)

⇝

(
f (z)

∫
BxB′

x

)−1 (∫
BxB′

xdBη

)
(A.14)

≡d MN

(
0,

ν2(K )
f (z)

(∫
BxB′

x

)−1 ∫
BxB′

x

(
B′

xβ
(1)(z)

)2 (∫
BxB′

x

)−1
)

, (A.15)

sing Lemma B.1(c) and (A.3) and where Bη(·) is Brownian motion with variance matrix Vηη = ν2(K )f (z)β (1)(z)β (1)(z)′.
he weak convergence 1

√

n3h3

∑n
t=1 xtx

′
tηt ⇝

(∫
BxB′

xdBη

)
in (A.14) depends on the functional law 1

√

nh3

∑
⌊n·⌋
t=1 ηt ⇝ Bη(·),

s shown in the proof of Lemma B.1(b). Joint weak convergence of the respective components in (A.14) follows from
emma B.1(f).
Further, since Bη(r) is singular Brownian motion whenever d > 1 we may write the inner product Bx(r)′Bη(r) in the

quivalent form B (r)′B (r) =
(
B (r)′β (1)(z)

)
B (r), where B is scalar Brownian motion with variance ν (K )f (z). Then, in
x η x f f 2
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iew of the independence of Bx and Bη , we have∫
BxB′

xdBη ≡d MN
(
0, ν2(K )f (z)

∫
BxB′

x

(
B′

xβ
(1)(z)

)2)
, (A.16)

hich leads to the mixed normal limit distribution given in (A.15) and the stated result (b).
Part (c)
If nh2

→ c for some constant c ∈ (0, ∞), then h ∼a
√
c/n and

√
n/h = O(n

3
4 ) = n

√
h. So the convergence rates in

ases (a) and (b) of the Theorem are then the same O(n
3
4 ) rate. Correspondingly, the first and second terms on the right

side of (A.9) appear to have the same order and both appear to contribute to the asymptotics. In this event, upon rescaling
(A.9) by n

3
4 we find that

n
3
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(
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xtutKtz,
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(

1
n2h
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)−1
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√
n3h3
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(
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n2h
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)−1
1
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xtutKtz . (A.17)

he asymptotics are jointly determined by the two terms of (A.17). Conditional on Fx, these terms are uncorrelated as
heir conditional covariance matrix is

E

(
1

√
n3h3

n∑
t=1

xtx′

tηt

)(
1

n
√
h

n∑
t=1

xtutKtz

)′

=
1

n2
√
nh2

n∑
t,s=1

E
(
xtx′

s(x
′

tηtusKsz)
)

= 0. (A.18)

Using Lemma B.1(d)(ii) and (e), we find that since nh → ∞ and nh2
→ c > 0

n
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(A.19)

⇝

(
f (z)

∫
BxB′

x

)−1 (
c

1
4

∫
BxB′

xdBη +
1

c
1
4

∫
BxdBuK

)
≡d MN

(
0, c

1
2 Ωβ (z)

)
+ MN

(
0,

1

c
1
2
Ωu(z)

)
= MN

(
0, c

1
2 Ωβ (z) +

1

c
1
2
Ωu(z)

)
,

here Ωβ (z) =
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(∫
BxB′

x

)−1
(∫

BxB′
x

(
B′
xβ

(1)(z)
)2) (∫ BxB′
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)−1, and Ωu(z) = ν0(K )σ 2
u f
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x

)−1. Joint weak

onvergence of the three matrix components in (A.19) holds in view of Lemma B.1(f). It follows that β̂(z) is O(n
3
4 )

convergent. ■

Proof of Theorem 2.2. Using the same notation as earlier, we analyze the decomposed estimation error(
β̂ (z) − β (z)

)
=

(
n∑

t=1

xtx′

tKtz

)−1 n∑
t=1

xtx′
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tηt
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xtutKtz . (A.20)

The kernel weighted signal matrix under
√
n3h normalization has the following form
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√ . (A.21)
t=1 t=1 h
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hen nh → c ∈ [0, ∞) the ‘usual’ effective sample size nh is asymptotically deficient. In this case, the first term of (A.21)
satisfies
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⇝
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x and is therefore Op (1) if c > 0 and op(1) if c = 0. To analyze
the second term we proceed as follows. Since xt is full rank I (1) it is sufficient to consider the scalar case, which we

write as 1
√
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∑n
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(
xt√
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)2
ζtK√
h
. Since EKtz = h

∫
K (r) f (z + rh) dr = hf (z) + O(h3) and EK 2
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∫
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y stationarity of zt and Markov’s inequality P (|ζtKh| > M) ≤ Eζ 2
tKh/M

2
= M−2 {f (z)ν0(K ) + O(h)}, so that for every ϵ > 0

here exists a constant Mϵ such that suph→0 P (|ζtKh| > Mϵ) < ϵ and ζtKh = Op (1) uniformly in t as h → 0. It is shown in
emma B.1(a)(ii) that while the normalized sum 1
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= Op(1) it does not satisfy a central limit theorem because
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j=1

E

{(
xt
√
n

)2 (xt+j
√
n

)2
}

h2f0,j (z, z) + o
(
h2
)

h

∼a
2nh
n2

n∑
t=1

n−t∑
j=1

E

{(
xt
√
n

)2 (xt+j
√
n

)2
}
f0,j (z, z)

≤2nh × sup
j≥1

f0,j (z, z) × E
{∫ 1

0
Bx (r)2

∫ 1

r
B2
x (s) dsdr

}
→2c sup

j≥1
f0,j (z, z) × E

{∫ 1

0
Bx (r)2

∫ 1

r
B2
x (s) dsdr

}
,

where we use the fact that EKtzKt+jz =
∫∫

K
( s0−z

h

)
K
(

sj−z
h

)
f0,j
(
s0, sj

)
ds0dsj =

∫∫
K (p0) K

(
pj
)

×f0,j
(
z + p0h, z + pjh

)
p0dpjh2

= h2f0,j (z, z) + o
(
h2
)
and so γζ (j) = EKtzKt+jz − EKtzEKt+jz = h2f0,j (z, z) + o

(
h2
)
. From these calculations of

he mean and variance, it follows that the second term of (A.21)

1
√
n

n∑
t=1

(
xt
√
n

)2
ζtK
√
h

= Op (1) (A.22)

nd then the kernel weighted signal
∑n

t=1 x
2
t Ktz = Op

(√
n3h

)
.

To prove consistency of β̂ (z) we consider each term on the right side of (A.20) in turn.
(i) Using ξβt = [β(zt ) − β(z)]Ktz we have, as shown in Lemma B.1(b)(i), Eξβt = h3µ2(K )C(z) + o(h3) and then(

1
√
n3h

n∑
t=1

xtx′

tKtz

)−1
1

√
n3h

n∑
t=1

xtx′

tEξβt

=

(
1

√
n3h

n∑
t=1

xtx′

tKtz

)−1
1

√
n

n∑
t=1

xt
√
n

x′
t

√
n
h3µ2(K )C(z) + o(h3)

√
h

=

(
1

√
3

n∑
xtx′

tKtz

)−1
h5/2

√
n

n∑ xt
√
n

x′
t

√
n

{µ2(K )C(z) + o(1)}

n h t=1 t=1
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L

t
t

O

N
t
c

s

=

(
1

√
n3h

n∑
t=1

xtx′

tKtz

)−1
h2

√
nh

n

n∑
t=1

xt
√
n

x′
t

√
n

{µ2(K )C(z) + o(1)}

=Op

(
h2

√
nh
)

. (A.23)

(ii) Next, using ηt = ξβt − Eξβt we may show that ηt√

h3
= Op (1) uniformly in t as h → 0 using the results of

emma B.1(b) and by arguments similar to those used above in proving that ζtK√
h

= Op (1) uniformly in t as h → 0. As in

he proof of (A.22) and Lemma B.1(b)(ii) we find that
∑n

t=1

(
xt√
n

)2
ηt√

nh3
= Op (1), so that

∑n
t=1 xtx

′
tηt = Op

(√
n3h3

)
and

hen (
1

√
n3h

n∑
t=1

xtx′

tKtz

)−1
1

√
n3h

n∑
t=1

xtx′

tηt =

(
1

√
n3h

n∑
t=1

xtx′

tKtz

)−1

× Op

(√
n3h3

√
n3h

)
= Op (h) .

It follows that
(∑n

t=1 xtx
′
tKtz

)−1∑n
t=1 xtx

′
tηt = Op (h).

(iii) We have E
∑n

t=1 xtutKtz = 0 and Var
(∑n

t=1 xtutKtz
)

= σ 2
u
∑n

t=1 E
(
x2t
)
E
(
K 2
tz

)
= O

(
n2h

)
, so that

∑n
t=1 xtutKtz =

p

(
n
√
h
)
and(

1
√
n3h

n∑
t=1

xtx′

tKtz

)−1
1

√
n3h

n∑
t=1

xtutKtz

=

(
1

√
n3h

n∑
t=1

xtx′

tKtz

)−1

× Op

(
n
√
h

√
n3h

)
= Op

(
1

√
n

)
. (A.24)

ote that in the present case where nh → c ∈ [0, ∞), the normalized sum
∑n

t=1
utKtz√

nh
does not satisfy a central limit

heorem because nh ̸→ ∞, as explained in Lemma B.1(a)(ii), and correspondingly
∑n

t=1
xt√
n
utKtz√

nh
= Op(1), but does not

onverge weakly to a stochastic integral.
Combining (i), (ii) and (iii) with (A.20) and scaling the estimation error by

√
n yields the following when nh → c ∈

[0, ∞)

√
n
(
β̂ (z) − β (z)

)
=

(
1

√
n3h

n∑
t=1

xtx′

tKtz

)−1 √
n

√
n3h

n∑
t=1

xtx′

tEξβt

+

(
1

√
n3h

n∑
t=1

xtx′

tKtz

)−1 √
n

√
n3h

n∑
t=1

xtx′

tηt +

(
1

√
n3h

n∑
t=1

xtx′

tKtz

)−1 √
n

√
n3h

n∑
t=1

xtutKtz

= Op

(√
n × h2

√
nh
)

+ Op
(√

n × h
)
+

(
1

√
n3h

n∑
t=1

xtx′

tKtz

)−1 √
n

√
n3h

n∑
t=1

xtutKtz

= op (1) +

(
1

√
n3h

n∑
t=1

xtx′

tKtz

)−1
1

√
n2h

n∑
t=1

xtutKtz = Op (1) , (A.25)

o that β̂ (z) is
√
n convergent but without an invariance principle. ■

Appendix B. A key lemma

Lemma B.1. Under Assumption 1, the following hold as n → ∞:

(a) (i) If nh → ∞, { 1
√
nh

∑
⌊n·⌋
t=1 ζtK , 1

√
nh

∑
⌊n·⌋
t=1 utKtz} ⇝ {BζK (·), BuK (·)}, where {BζK , BuK } are independent Brownian motions

with respective variances ν0(K )f (z), and ν0(K )σ 2
u f (z), with ζtK = Ktz − EKtz and Ktz = K ( zt−z

h );
(ii) If nh → c ∈ [0, ∞), then {

1
√
nh

∑
⌊n·⌋
t=1 ζtK , 1

√
nh

∑
⌊n·⌋
t=1 utKtz} = Op(1) but no invariance principle holds.

(b) (i) If nh → ∞ and β (1)(z) ̸= 0, 1
√

nh3

∑
⌊n·⌋
t=1 ηt ⇝ Bη(·), Brownian motion with variance matrix Vηη = ν2(K )f (z)β (1)(z)

β (1)(z)′, where ηt = ξβt − Eξβt , ξβt = [β(zt ) − β(z)]Ktz ;
(ii) If nh → c ∈ [0, ∞), 1

√

nh3

∑
⌊n·⌋
t=1 ηt = Op(1), but no invariance principle holds.

(c) (i) If nh → ∞, 1
n2h

∑n
t=1 xtx

′
tKtz ⇝

(∫
BxB′

x

)
f (z);

(ii) If nh → c ∈ [0, ∞), 1
√

∑n x x′K = O (1) but no invariance principle holds.

n3h t=1 t t tz p
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(d) (i) If nh → ∞, 1
√

n3h

∑n
t=1 xtx

′
tζtK ⇝

∫
BxB′

xdBζK , and 1
√

n3h3

∑n
t=1 xtx

′
tηt ⇝

∫
BxB′

xdBη ≡d

MN
(
0,
∫
Bx(r)Bx(r)′

(
Bx(r)′β (1)(z)

)2);
(ii) If nh → c ∈ [0, ∞), 1

√

n3h

∑n
t=1 xtx

′
tζtK = Op(1) but no invariance principle holds, and 1

√

n3h3

∑n
t=1 xtx

′
tηt = Op(1)

but no invariance principle holds;
(e) (i) If nh → ∞, 1

n
√
h

∑n
t=1 xtutKtz ⇝

∫
BxdBuK ;

(ii) If nh → c ∈ [0, ∞), 1
n
√
h

∑n
t=1 xtutKtz = Op(1) but no invariance principle holds;

(f) If nh → ∞, Xu,n =
1

√
nh

∑
⌊n·⌋
t=1 utKtz , Xζ ,n =

1
√
nh

∑
⌊n·⌋
t=1 ζtK , and Xη,n =

1
√

nh3

∑
⌊n·⌋
t=1 ηt , then the following joint

convergence holds{
Xu,n, Xζ ,n, Xη,n,

1
n2h

n∑
t=1

xtx′

tKtz,
1

n
√
h

n∑
t=1

xtutKtz,
1

√
n3h

n∑
t=1

xtx′

tζtK ,
1

√
n3h3

n∑
t=1

xtx′

tηt

}

⇝ {BuK (·), BζK (·), Bη(·),
(∫

BxB′

x

)
f (z) ,

∫
BxdBuK ,

∫
BxB′

xdBζK ,

∫
BxB′

xdBη}.

roof of Lemma B.1.
Part (a) (i) The joint limit result stated for {

1
√
nh

∑
⌊n·⌋
t=1 ζtK , 1

√
nh

∑
⌊n·⌋
t=1 utKtz} is standard for partial sums involving kernel

unctions of strictly stationary weakly dependent time series (Xiao, 2009; Sun et al., 2011). Straightforward calculations
n the present case show that EKtz = hf (z) + o(h), and EK 2

tz = hf (z)ν0(K ) + o(h), so that Var(ζtK ) = hf (z)ν0(K ) + o(h)
nd ζtK = Ktz − E (Ktz) = Op(

√
h). Further, Var(utKtz) = hν0(K )σ 2

u f (z) + o(h) and E(utKtzKsz) = 0 for all t and s. So the
tandardized partial sums processes {

1
√
nh

∑
⌊n·⌋
t=1 ζtK , 1

√
nh

∑
⌊n·⌋
t=1 utKtz} are uncorrelated, uniformly tight, and the stated joint

unctional law follows by standard weak convergence methods for triangular arrays (e.g., Davidson (1994, Theorem 27.17
or martingale difference arrays, and chapter 29.3 for dependent arrays)). The resulting limit processes

(
BζK (r), BuK (r)

)
re independent with respective variances ν0(K )f (z) and ν0(K )σ 2

u f (z). The effective sample size condition nh → ∞ is
equired for this result.

Part (a) (ii) If nh → c ∈ [0, ∞) then the effective sample size condition nh → ∞ fails. In this case,
1

√
nh

∑
⌊n·⌋
t=1 ζtK , 1

√
nh

∑
⌊n·⌋
t=1 utKtz

)
= Op(1) but no invariance principle applies because of failure in the Lindeberg condition.

To demonstrate, it is sufficient to consider the case of 1
√
nh

∑
⌊n·⌋
t=1 ζtK and iid {zt}. In this case the stability condition(

1
√
n

∑n
t=1

ζtK√
h

)2
=

1
n

∑n
t=1 E

(
ζtK√
h

)2
= f (z)ν0(K ) + O(h) is satisfied but the Lindeberg condition fails. To see this, note

that ζtK = K ( zt−z
h ) − EK ( zt−z

h ) = K ( zt−z
h ) + O(h). Given ϵ > 0, we have

1
n

n∑
t=1

E

{(
ζtK
√
h

)2

1[|ζtK |>ϵ
√
nh]

}
=

∫
[K ( zt−z

h ) + O(h)]2

h
1[⏐⏐⏐K ( zt−z

h )+O(h)
⏐⏐⏐>ϵ

√
nh
]f (zt )dzt

=

∫
(K (p) + O(h))2 1[|K (p)+O(h)|>ϵ

√
nh]f (z + ph)dp

→

{
f (z)ν0(K ) > 0 if nh → 0∫

K 2(p)1[|K (p)|>ϵ
√
c]dpf (z) > 0 if nh → c ∈ (0, ∞) .

A similar proof applies in the case of 1
√
nh

∑
⌊n·⌋
t=1 utKtz .

Part (b) (i) We compute the first and second moments of ηt = ξβt − Eξβt and show that ηt = Op(h3/2). First

Eξβt = E[β(zt ) − β(z)]Ktz =

∫ 1

−1
[β(s) − β(z)]K ((s − z)/h)f (s)ds

= h
∫ 1

−1
[β(z + hp) − β(z)]K (p)f (z + hp)dp

= h3
[
1
2
β (2)(z)f (z) + β (1)(z)f (1)(z)]

∫ 1

−1
p2K (p)dp + o(h3)

= h3C(z)µ2(K ) + o(h3), (B.1)

with C(z) =
1
2β

(2)(z)f (z) + β (1)(z)f (1)(z). Next

Eξβtξ
′

βt = E[(β(zt ) − β(z))(β(zt ) − β(z))′K 2(
zt − z

h
)]

= h
∫ 1

(β(z + hs) − β(z))(β(z + hs) − β(z))′K 2(s)f (z + hs)ds

−1
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I
(

= h3
[β (1)(z)β (1)(z)′]f (z)

∫ 1

−1
s2K 2(s)ds + o(h3)

= h3
[β (1)(z)β (1)(z)′]f (z)ν2(K ) + o(h3). (B.2)

It follows that

Var(ηt ) = Eξβtξ
′

βt − (Eξβt )(Eξβt )′ = h3ν2(K )f (z)[β (1)(z)β (1)(z)′] + o(h3), (B.3)

and ηt = Op(h3/2). Next, in view of (B.1) the serial covariances satisfy

Cov(ξβt , ξβt+j) = Eξβtξ
′

βt+j −
(
Eξβt

) (
Eξβt+j

)′
= Eξβtξ

′

βt+j + O(h6),

and by virtue of the strong mixing of zt , measurability of β(·), and Davydov’s lemma the covariances satisfy the bound

|Cov(ξβt , ξβt+j)| ≤ 12
(
E
⏐⏐ξβt

⏐⏐δ)2/δ |α(j)|1−2/δ
= Aβh2+2/δ

|α(j)|1−2/δ
+ o(h2+2/δ), (B.4)

where Aβ = 12(
∫

|β (1)(z̃p)|
δ
|p|δK (p)δdpf (z))2/δ , since E

⏐⏐ξβt
⏐⏐δ = h1+δ

∫
|β (1)(z̃p)|

δ
|p|δK (p)δdpf (z)+ o(h1+δ) in a similar way

to (B.1), and where z̃p is on the line segment connecting z and z + hp. Further, for j ̸= 0 and using the joint density
f0,j(s0, sj) of

(
zt , zt+j

)
we have

Eξβtξ
′

βt+j = E[(β(zt ) − β(z))
(
β(zt+j) − β(z)

)′ KtzKt+j,z]

=

∫∫
(β(s0) − β(z))

(
β(sj) − β(z)

)′ K ( s0 − z
h

)
K
(
sj − z

h

)
f0,j(s0, sj)ds0dsj

= h2
∫∫

(β(z + hp0) − β(z))(β(z + hpj) − β(z))′K (p0)K (pj)f0,j(z + hp0, z + hpj)dp0dpj

= h6
{
1
4
[β (2)(z)][β (2)(z)]′f0,j(z, z) + [β (1)(z)][β (1)(z)]′

∂2f0,j
∂s0∂sj

(z, z) +
1
2
[β (1)(z)][β (2)(z)]′

∂ f0,j
∂s0

(z, z)

+
1
2
[β (2)(z)][β (1)(z)]′

∂ f0,j
∂sj

(z, z)
}

[µ2(K )]2 + o(h6). (B.5)

We now deduce that the long run variance matrix of ηt is

VLR(ηt ) = E

[
1

√
nh3

n∑
t=1

ηt

][
1

√
nh3

n∑
t=1

ηt

]′

=
1

nh3

n∑
t=1

Eηtη
′

t +
1

nh3

∑
t ̸=s

Eηtη
′

s

=
1
h3Eηtη

′

t + o(1) → ν2(K )f (z)[β (1)(z)β (1)(z)′] =: Vηη, (B.6)

which follows from (B.3) and standard arguments concerning the o(1) magnitude of the sum of the autocovariances of
kernel weighted stationary processes. In particular, from the α mixing property of zt and using a sum splitting argument
and results (B.1), (B.4) and (B.5) above, we have

1
nh3

∑
t ̸=s

Eηtη
′

s =
1
h3

n−1∑
j=−n+1,j̸=0

[
1 −

|j|
n

]
[Eξβtξ

′

βt+j −
(
Eξβt

) (
Eξβt+j

)′
]

=
1
h3

M∑
j=−M,j̸=0

[
1 −

|j|
n

]
[Eξβtξ

′

βt+j −
(
Eξβt

) (
Eξβt

)′
] +

1
h3

∑
M<|j|<n

(
1 −

|j|
n

)
[Eξβtξ

′

βt+j −
(
Eξβt

) (
Eξβt

)′
]

= O
(
Mh6

h3

)
+ O

⎛⎝ 1
h3

(
E
⏐⏐ξβt

⏐⏐δ)2/δ ∑
M<|j|<n

α
1−2/δ
j

⎞⎠ = O
(
Mh3)

+ O

⎛⎝h2 1+δ
δ

h3Ma

∑
M<|j|<∞

jaα1−2/δ
j

⎞⎠
= O

(
Mh3)

+ O

⎛⎝ h
2
δ

hMa

∑
M<|j|<∞

jaα1−2/δ
j

⎞⎠ = O
(
Mh3)

+ O

⎛⎝ 1
h1−2/δMa

∑
M<|j|<∞

jaα1−2/δ
j

⎞⎠
= O

(
Mh3)

+ o
(

1
(Mh)1−2/δ

)
= o (1) ,

for a suitable choice of M → ∞ such that Mh → ∞ Mh3
→ 0 and M

n → 0 and with a > 1 − 2/δ and δ > 2.
t then follows by arguments similar to the central limit theory for weakly dependent kernel regression in Robinson
1983), Masry and Fan (1997), and Fan and Yao (2003, theorem 6.5) that the standardized partial sum process of η
t
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atisfies a triangular array functional law giving 1
√

nh3

∑
⌊n·⌋
t=1 ηt ⇝ Bη(·), where Bη is vector Brownian motion with variance

atrix Vηη = ν2(K )f (z)β (1)(z)β (1)(z)′. The effective sample size condition nh → ∞ is required for this result.
Part (b) (ii) When nh → c ∈ [0, ∞) we prove that

1
√
nh3

⌊n·⌋∑
t=1

ηt = Op(1), (B.7)

ut with no invariance principle applying. This result mirrors the finding in Part (a)(ii) for {
1

√
nh

∑
⌊n·⌋
t=1 ζtK , 1

√
nh

∑
⌊n·⌋
t=1 utKtz}.

n the present case and without loss of generality, let xt be scalar and {zt} be iid, so that ηt = ξβt − Eξβt = ξβt + O(h3),
ince Eξβt = h3C(z)µ2(K ) + o(h3) from (B.1). The martingale stability condition

E

(
1

√
n

n∑
t=1

ηt
√
h3

)2

=
1
n

n∑
t=1

E
(

ηt
√
h3

)2

= ν2(K )f (z)
(
β (1)(z)

)2
+ O(h),

s satisfied so that 1
√

nh3

∑n
t=1 ηt = Op(1), giving (B.7). But the Lindeberg condition fails and no invariance principle holds.

The proof is similar to that of Part (a)(ii) but has additional complications due to the form of the sequence ηt . First note
hat ηt = [β(zt ) − β(z)]Ktz + O(h3). Then, given ϵ > 0, nh ̸→ ∞ and β (1)(z) ̸= 0, we find that

1
n

n∑
t=1

E

{(
ηt

√
h3

)2

1[
|ηt |>ϵ

√

nh3
]
}

=

∫
[[β(zt ) − β(z)]Ktz + O(h3)]2

h3 1[
|[β(zt )−β(z)]Ktz+O(h3)|>ϵ

√

nh3
]f (zt )dzt

=

∫
[β (1)(z)hpK (p) + O(h2)]2

h2 1[
|β(1)(z)hpK (p)+O(h2)|>ϵ

√

nh3
]f (z + ph)dp

=
(
β (1)(z)

)2
f (z)

∫
p2K 2(p)1[|β(1)(z)pK (p)|>ϵ

√
nh]dp + O(h)

→

{
f (z)

(
β (1)(z)

)2
ν2(K ) > 0 if nh → 0

f (z)
(
β (1)(z)

)2 ∫ p2K 2(p)1[|pK (p)β(1)(z)|>ϵ
√
c]dp > 0 if nh → c ∈ (0, ∞)

,

and the Lindeberg condition fails in both cases since β (1)(z) ̸= 0.
Part (c) (i) This result (i) is established using standard methods in (A.3) in the proof of Theorem 2.1.
Part (c) (ii) As in (A.5) in the proof of Theorem 2.1, when nh → c ∈ [0, ∞) we have the following decomposition

√
nh

n2h

n∑
t=1

xtx′

tKtz =

√
nh
n

n∑
t=1

xt
√
n

x′
t

√
n

{
f (z) + O(h2)

}
+

n∑
t=1

xt
√
n

x′
t

√
n

ζtK
√
nh

∼a cf (z)
∫

BxB′

x +
1

√
n

n∑
t=1

xt
√
n

x′
t

√
n

ζtK
√
h

+ op(1) = Op(1). (B.8)

he second term of (B.8) is Op(1) but with no invariance principle. To see this, we proceed in a similar fashion to Part (b) (ii).

or convenience and without loss of generality, let xt be scalar and zt be iid. We then have E
(

1
√
n

∑n
t=1

(
xt√
n

)2
ζtK√
h

)
= 0

nd

E

(
1

√
n

n∑
t=1

(
xt
√
n

)2
ζtK
√
h

)2

= E

(
1
n

n∑
t=1

(
xt
√
n

)4
)

× E
(

ζtK
√
h

)2

= E
(∫

B4
x

)
× {f (z)ν0(K ) + O(h)} = O(1),

o that 1
√
n

∑n
t=1

(
xt√
n

)2
ζtK√
h

= Op(1), as required. No invariance principle holds in this case because 1
√
nh

∑
⌊n·⌋
t=1 ζtK = Op(1)

without an invariance principle when nh → c ∈ [0, ∞) by virtue of Part (a)(ii).
Part (d) (i) By Assumption 1, Lemma B.1(a) and (b) and when nh → ∞ we have the joint convergence(

1
√
nx⌊n·⌋,

1
√
nh

∑
⌊n·⌋
t=1 ζtK , 1

√

nh3

∑
⌊n·⌋
t=1 ηt

)
⇝
(
Bx(·), BζK (·), Bη(·)

)
, (B.9)

here the Brownian motions {Bx, BζK , Bη} are independent by virtue of (i) the exogeneity of xt and (ii) the independence
of {BζK , Bη}. The latter follows from the fact that the contemporaneous covariance EζtKηt = h3ν2(K )[ 12β

(2)(z)f (z) +

β (1)(z)f (1)(z)] +O(h4) = O(h3) and the cross serial covariance Eζ η = O(h4) for j ̸= 0, so that combined with the weak
tK t+j
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=

t
i

a

a

a

d
t

w
i
i

o
t

f

ependence of zt and an argument along the same lines as that leading to (B.6) we have E
(

1
√
nh

∑
⌊n·⌋
t=1 ζtK ×

1
√

nh3

∑
⌊n·⌋
t=1 ηt

)
1
h2
E (ζtKηt) + o(1) = o(1). Convergence to the stochastic integral limits,
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n∑
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(
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√
n

x′
t

√
n

)
ζtK

√
nh
⇝

∫
BxB′

xdBζK , (B.10)

1
√
n3h3

n∑
t=1

xtx′

tηt =

n∑
t=1

(
xt
√
n

x′
t

√
n

)
ηt

√
nh3

⇝

∫
BxB′

xdBη (B.11)

hen follows by a triangular array extension of Ibragimov and Phillips (2008, theorem 4.3) when nh → ∞. Both stochastic
ntegrals have mixed normal distributions, viz.,∫

Bx ⊗ BxdBζK ≡d MN
(
0, ν0(K )f (z)

∫
BxB′

x ⊗ BxB′

x

)
, (B.12)∫

BxB′

xdBη ≡d MN
(
0, ν2(K )f (z)

∫
BxB′

x

(
Bx(r)′β (1)(z)

)2)
, (B.13)

nd the stated result (i) of Part (d) holds.
Part (d) (ii) When the rate condition nh → ∞ fails and, instead nh → c ∈ [0, ∞) applies, it follows from Part (a)(ii)

nd Part (b)(ii) that 1
√
nh

∑n
t=1 ζtK = Op(1) and 1

√

nh3

∑n
t=1 ηt = Op(1), respectively, but with no invariance principles

holding. Correspondingly, in place of (B.10) and (B.11), we have in the same manner as before in the proof of Part (c)(ii)

1
√
n3h

n∑
t=1

xtx′

tζtK =
1

√
n

n∑
t=1

(
xt
√
n

x′
t

√
n

)
ζtK
√
h

= Op(1), (B.14)

1
√
n3h3

n∑
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xtx′

tηt =
1

√
n

n∑
t=1

(
xt
√
n

x′
t

√
n

)
ηt

√
h3

= Op(1), (B.15)

gain without invariance principles.
Part (e) (i) Write 1

n
√
h

∑n
t=1 xtutKtz =

∑n
t=1

(
xt√
n

)(
utKtz√

nh

)
⇝
∫
BxdBuK , and the result follows by standard limit theory

irectly from Part (a), the mutual independence of xt , ut and zt , and an array extension of Ibragimov and Phillips (2008,
heorem 4.3).

Part (e) (ii) If nh → c ∈ [0, ∞), it follows from Part (a) (ii) that 1
√
nh

∑n
t=1 utKtz = Op(1) but no invariance principle

holds. In a similar fashion and as in Parts (c)(ii) and (d)(ii), we deduce that 1
√

n2h

∑n
t=1 xtutKtz =

∑n
t=1

(
xt√
n
utKtz√

nh

)
= Op(1)

with no invariance principle holding.
Part (f) By Assumption 1 and Lemma B.1(a), (b), (d) when n → ∞ and nh → ∞ we have the joint weak convergence(

1
√
nx⌊n·⌋,

1
√
nh

∑
⌊n·⌋
t=1 utKzt ,

1
√
nh

∑
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nh3

∑
⌊n·⌋
t=1 ηt

)
⇝
(
Bx(·), BuK (·), BζK (·), Bη(·)

)
,

here the Brownian motions {Bx, BuK , BζK , Bη} are independent by virtue of the exogeneity of xt and zt and the
ndependence of {Bx, BζK , Bη}. It then follows by a triangular array extension of joint weak convergence to stochastic
ntegrals for α-mixing time series (Liang et al., 2016, theorem 3.1) that{

1
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n∑
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xtx′
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1
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h
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}
.

The conditions of Liang et al. (2016, theorem 3.1) require sixth moments of the component innovations and α mixing
numbers that decay according to a power law α(j) =

1
jγ with γ > 6. This condition is satisfied by the mixing conditions

f Assumption 1 when δ = 3 > 2 and c =
1
2 > 1 −

2
δ

=
1
3 and α(j) =

1
jγ with γ = 6(1 + ϵ) > 6 for some ϵ > 0. For in

hat case, the summability condition
∑

j≥1 j
c
[α(j)]1−2/δ

=
∑

j≥1
1

j
γ
3 −

1
2

=
∑

j≥1
1

j
3
2 +2ϵ

< ∞ holds and the innovations have

inite moments of order p > 2δ = 6. ■

Appendix C. Online supplement

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2021.09.007.
This material includes additional proofs and simulations.
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