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Abstract

Considerable evidence in past research shows size distortion in standard tests for zero
autocorrelation or cross-correlation when time series are not independent identically dis-
tributed random variables, pointing to the need for more robust procedures. Recent
tests for serial correlation and cross-correlation in Dalla, Giraitis, and Phillips (2022)
provide a more robust approach, allowing for heteroskedasticity and dependence in un-
correlated data under restrictions that require a smooth, slowly-evolving deterministic
heteroskedasticity process. The present work removes those restrictions and validates the
robust testing methodology for a wider class of heteroskedastic time series models and
innovations. The updated analysis given here enables more extensive use of the method-
ology in practical applications. Monte Carlo experiments confirm excellent finite sample
performance of the robust test procedures even for extremely complex white noise pro-
cesses. The empirical examples show that use of robust testing methods can materially
reduce spurious evidence of correlations found by standard testing procedures.
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1 Introduction

Correlation analysis of linear relationships between random variables of a univariate time

series or linkages between variables of multiple time series is an initial step in many empirical

analysis of economic and financial data. The widely used test for correlation at an individual

lag is the standard t-test developed by Gosset (Student (1908)). Ljung and Box (1978)

introduced a cumulative version of the test for non-zero correlation at multiple lags which

subsumes test results at individual lags within a broader maintained hypothesis. Haugh and

Box (1977) extended the methodology to test zero cross-correlation at individual and multiple

lags.

It is well known that the size of these tests can be significantly distorted by the presence

of heteroskedasticity and data dependence, more specifically when the data is not a sequence

of independent identically distributed (i.i.d.) random variables. Dalla, Giraitis, and Phillips

(2022) (subsequently, DGP (2022)) demonstrated that violation of the i.i.d. property can lead

to spurious detection of correlation. Instead, they provided a robust test for the absence of

correlation in heteroskedastic and possibly dependent time series, allowing for heteroskedas-

ticity (volatility) that takes the form of an evolving deterministic process. While the robust

testing methodology of DGP (2022) is attractive in its simplicity, the requirement of smooth

deterministic evolution in heteroskedastic behavior is restrictive and can be unrealistic in

some empirical settings where volatility is random and/or subject to structural breaks. The

present paper removes this requirement and shows that the robust testing methodology is

valid for a broad class of models with non-smooth deterministic and stochastic heteroskedas-

ticity. The assumptions of DGP (2022) are relaxed to the such degree that verification of the

validity of the limit theory requires significant new theoretical developments in the proofs.

Simulations confirm good finite sample performance of the robust test procedures for

complex forms of univariate and bivariate innovations that substantially extend earlier find-

ings. Additional experimental evidence is available on request, corroborating the limit theory

that outliers and missing data do not affect the good performance of the test procedures.

The paper is organized as follows. Sections 2 and 3 outline the framework and assumptions

for testing absence of serial correlation and cross-correlation, giving the asymptotic properties

of the robust test statistics. Section 4 reports simulation findings corroborating the limit

theory and supporting general finite sample implementations. and outlines the robust testing

procedure for Pearson correlation. Section 5 presents several empirical applications. Section 6

concludes. Proofs of all results, auxiliary lemmas, further simulation findings and analyses of

cases with heavy tailed data and missing observations are provided in the Online Supplement

in Sections 7–8. For further background information and a more detailed literature review

on testing for correlation, readers are referred to DGP (2022).
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2 Tests for zero autocorrelation

The autocorrelogram {ρk = corr(xt, xt−k)}∞k=1 contains key information about temporal

dependence in a time series xt. The empirical version of ρk calculated from observations

{xt : t = 1, · · · , n} is the sample autocorrelation

ρ̂k =

∑n
t=k+1(xt − x̄)(xt−k − x̄)∑n

t=1(xt − x̄)2
, x̄ =

1

n

n∑
t=1

xt, (1)

providing consistent estimation of ρk under general conditions. Traditional time series mod-

eling makes extensive use of the empirical correlogram {ρ̂k}, an important element of which

is confirmation of lack of correlation {ρk = 0} in either the observed time series or regression

residuals. Testing the hypotheses H0 : ρk = 0 for multiple values of k is a different problem

from estimation of the ρk and does not rest solely on the fitted sample autocorrelations ρ̂k.

In fact, robust testing procedures for zero correlation discussed in DGP (2022) show the ad-

vantages of an approach that is based on tests constructed from t-type statistics rather than

the commonly used tests based on the sample autocorrelations ρ̂k alone. These advantages

are particularly important when the observed series xt is no longer a simple i.i.d. sequence.

In practical work with economic and financial data the i.i.d. condition is strong and typically

unrealistic, even though it has the attractive asymptotic property

√
nρ̂k →D N (0, 1), for all k ≥ 1, (2)

which led to the commonly used tests of H0 : ρk = 0 at individual lag k, starting with Yule

(1926).

Numerous authors have pointed out that the property (2) fails when the component

variables xt are uncorrelated but not i.i.d. In response to this concern DGP (2022) developed

a robust testing methodology within a wider setting for testing H0 : ρk = 0 based on a robust

self-normalized statistic suggested by Taylor (1984)

t̃k =

∑n
t=k+1 etk

(
∑n

t=k+1 e
2
tk)

1/2
, etk = (xt − x̄)(xt−k − x̄). (3)

Under very general conditions the adjusted ρ̂k statistic

t̃k = ρ̂k ĉk →D N (0, 1), ĉk =
t̃k
ρ̂k

(4)

produces a valid confidence band for zero correlation at lag k. DGP (2022) explored the

advantages of the self-normalized statistic t̃k proving its asymptotic normality in settings

where uncorrelated random variables xt can be both dependent and nonstationary. Their

proofs of validity made use of strong smoothness restrictions on the scale (or unconditional

volatility) factor implicit in xt, although they conjectured that those restrictions might be
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relaxed without affecting the limit theory and robustness of the testing methodology. The

goal of the present paper is to establish this broad robustness.

To fix ideas assume that serially uncorrelated heteroskedastic time series xt has the same

general structure as in DGP (2022):

xt = µ+ htεt, (5)

where {εt} is stationary uncorrelated noise and {ht} and {εt} are mutually independent.

Differing from DGP (2022), the scale factor ht in (5) may be stochastic, non-smooth and

have some zero values to allow for missing observations. As is shown below, in this general

setting testing for correlation in xt reduces to testing for correlation in εt and does not

exclude instances when corr(xt, xt−k) is not defined. In that event the limit theory may not

be Gaussian unless ht satisfies Assumption 2.2. For instance, if ht is very heavy tailed then

the limit theory might be bimodal – see Section 9 in the Online Supplement.

Next we outline assumptions on the noise εt and the scale factor ht which provide a

framework for testing absence of correlation in a wide class of time series xt. As in DGP

(2022) we use the following restrictions on the noise process.

Assumption 2.1. {εt} is a stationary martingale difference (m.d.) sequence with respect to

some σ-field filtration Ft:

E[εt|Ft−1] = 0, Eε4
t <∞, Eε2

t = 1.

The primary example of Ft is the natural filtration comprising the information set generated

by the past history Ft = σ(εs, s ≤ t). A typical example if εt in practical work is the

ARCH/GARCH class, so that (5) allows for conditional heteroskedasticity in xt.

The main novelty of the present paper is to widen the class of scale factors ht in the

analysis to include cases where the correlation corr(xt, xt−k) of the observed time series

itself may not exist. Since the factor ht is not observed directly and typically requires strong

assumptions to facilitate estimation, test procedures that permit generality in ht are desirable

in applications. Our approach to testing zero autocorrelation in the noise εt process of xt in

(5) is to allow for both deterministic and stochastic scale factors ht that enable considerable

generality. Note particularly that

corr(xt, xt−k) =
E[htht−k](

var(ht)var(ht−k)
)1/2 corr(εt, εt−k),

so that corr(εt, εt−k) = 0 implies corr(xt, xt−k) = 0 when corr(xt, xt−k) is defined. However,

our test procedure does not exclude instances where var(xt) = 0 (ht = 0), thereby allowing

for missing observations, or var(xt) =∞ (var(ht) =∞), allowing for observations with heavy

tails.
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DGP (2022) introduced robust tests for zero correlation when ht is deterministic with the

following properties

max
1≤t≤n

h4
t = o(

n∑
t=1

h4
t ),

n∑
t=2

(ht − ht−1)4 = o(
n∑
t=1

h4
t ). (6)

These conditions facilitated the development of tests with a convenient asymptotic theory for

practical implementation. But while the first bound condition is weak, the second condition

is restrictive, requiring ht to have some degree of smoothness, such as a constant function, a

step function, or a smoothly varying functuion ht = g(t/n), where g is a continuous, bounded

function with bounded derivatives. Although the smoothness condition on the increments of

ht in (6) may not seem restrictive for much applied work, it does exclude certain cases such

as alternating sequences of the form {ht = 1,−1, 1,−1, · · · } or volatility processes ht where

the scale factor has frequent jumps as in some financial data.

The main contribution of the present work is to relax Assumption 2.1 and validate the

asymptotic theory without imposing smoothness on ht. The new condition involves a modified

version of the first bound condition of (6).

Assumption 2.2. {ht, t = 1, · · · , n} is a deterministic or stochastic sequence which for lag

k satisfies

max
1≤t≤n

h4
t = op

( n∑
t=k+1

h2
th

2
t−k

)
. (7)

Condition (7) clearly holds for deterministic sequences ht that change abruptly and fre-

quently, such as ht = 1,−2, 1,−2, 1,−2, · · · . Different from (6), (7) takes account of the

specific lag k. Thus, if ht = 1, 0, 1, 0, 1, 0, · · · then (7) is satisfied for lags k = 2, 4, 6, · · · but

is not satisfied for lags k = 1, 3, 5, .... Importantly, condition (7) allows ht to take on zero

values at some t, and it does not impose moment restrictions on ht only a maximal bound

condition. An example of a stochastic scale factor satisfying Assumption 2.2 is a unit root

process ht =
∑t

j=1 ηj where ηj is an i.i.d.N (0, 1) noise.

Formally, Assumption 2.2 does not require existence of finite moments of ht when the

sequence is stochastic. But the validity of (7) is affected by heavy-tailed distributions of ht.

In particular, for heavy tailed distributions it is well known that self normalized statistics

often have bimodal distributions and these typically lead to conservative tests when standard

normal limit theory is mistakenly used for inference. This phenomenon arises because large

outlier observations dominate the self normalized ratio leading to some concentration around

modes, especially at ±1, thereby moving mass from the tails of the distribution towards

these modes. Simulations reported below in Section 4 include an example of an i.i.d. random

sequence ht distributed as Student’s t2 where this phenomenon occurs and (7) does not hold.

Our additional analytic and simulation findings given in the Online Supplement (see Section

9) show bimodality of the limit distribution of the test statistic t̃k in such cases. For examples
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of related sources of bimodality and some past analyses in the literature, see Logan, Mallows,

Rice and Shepp (1972), Fiorio, Hajivassiliou and Phillips (2010), and Wang and Phillips

(2022).

In addition to Assumption 2.2, testing at lag k requires the following assumption on εt.

Assumption 2.3. Sequence zt = zk,t = ε2
t ε

2
t−k is covariance stationary, and

cov(zh, z0)→ 0, h→∞. (8)

Our main result gives the limit theory of the test statistic t̃k.

Theorem 2.1. Let {xt} be an uncorrelated noise given in (5). Suppose k ≥ 1, and Assump-

tions 2.1, 2.2 and 2.3 hold. Then, corr(εt, εt−k) = 0, and

t̃k →D N (0, 1). (9)

Notice that in model (5), corr(εt, εt−k) = 0 for all lags k ≥ 1, which implies overall that

{xt} is serially uncorrelated if corr(xt, xt−k) is defined. Theorem 2.1 can be obtained from

the bivariate case in Theorem 3.1 below by replacing yt by xt and noting that such bivariate

series {xt, yt} satisfies the assumptions of Theorem 3.1. All proofs are given in the Online

Supplement (see Section 7).

Cumulative test. The standard cumulative Ljung and Box (1978) test is based on the

statistic

LBm = (n+ 2)n

m∑
k=1

ρ̂ 2
k

n− k
(10)

and widely used for testing the joint null hypothesis H0 : ρ1 = ... = ρm = 0. Under H0,

it is asymptotically χ2
m distributed when {xt} is an i.i.d series but it may suffer severe size

distortions when {xt} is not i.i.d. To overcome this limitation, DGP (2022) introduced the

robust cumulative test statistic Qm and its version Q̃m with thresholding defined as:

Qm = t̃ ′ R̂−1 t̃, Q̃m = t̃ ′ R̂∗−1 t̃. (11)

Here, t̃ = (t̃1, ..., t̃m)′, and R̂ = (r̂jk) is an m × m matrix where r̂jk are a sample cross-

correlation of the variables {etj} and {etk}:

r̂jk =

∑n
t=max(j,k)+1 etjetk

(
∑n

t=max(j,k)+1 e
2
tj)

1/2(
∑n

t=max(j,k)+1 e
2
tk)

1/2
, j, k = 1, ...,m. (12)

To improve the finite sample performance of the Qm test, DGP (2022) suggested to use a

thresholded version R̂∗ = (r̂ ∗jk) of R̂ where

r̂ ∗jk = r̂jkI(|τjk| > λ), (13)
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λ > 0 is a thresholding parameter, and τjk is a t-type statistic

τjk =

∑n
t=max(j,k)+1 etjetk

(
∑n

t=max(j,k)+1 e
2
tje

2
tk)

1/2
. (14)

DGP (2022) assumed ht to be smooth and deterministic, which adds simplicity and trans-

parency to analysis of the cumulative robust testing procedure. In the next theorem we show

that the cumulative testing procedure at lag m is valid when scale factors are non-smooth

and stochastic. We use the following additional assumption.

Assumption 2.4. For any j, k = 1, ...,m,

(i) sequence zt = zt,jk = (εtεt−j)(εtεt−k), t = 1, 2, ... is covariance stationary, and

Ez2
t <∞, cov(z0, zh)→ 0, h→∞. (15)

(ii) xt satisfies Assumptions 2.1 and 2.2.

The following theorem establishes the asymptotic behavior of the robust test statistics Qm

and Q̃m used to test the cumulative hypotheses of absence of correlation at lags k = 1, ...,m.

Theorem 2.2. Let {xt} be as in (5), m ≥ 1, and Assumption 2.4 hold. Then, as n → ∞,

for any threshold λ > 0,

Qm →D χ2
m, Q̃m →D χ2

m. (16)

Our empirical applications and Monte Carlo study use the thresholds λ = 1.96 and λ = 2.56

suggested in DGP (2022) which lead to well-sized testing procedures in finite samples.

Consistency. It remains to show that under the alternative the robust test t̃k is able detect

presence of correlation corr(εk, ε0) 6= 0 at the individual lag k. Recall that the latter implies

corr(xt, xt−k) 6= 0 if corr(xt, xt−k) is defined. Under the alternative {εt} is not assumed to

be serially uncorrelated, which is reflected in an additional assumption given in (17) below.

The first two conditions in (17) indicate that {εt} and {zt} are weakly dependent (short

memory) time series, and the second condition is satisfied by a wide class of deterministic

and stochastic ht’s.

Theorem 2.3. Let xt = µx+htεt, where {εt} is a covariance stationary sequence. Let k ≥ 0

be such that cov(εk, ε0) 6= 0. Assume that {zt = εtεt−k} is a covariance stationary sequence

and the h′ts are such that

∞∑
j=−∞

|cov(εj , ε0)| <∞,
∞∑

j=−∞
|cov(zj , z0)| <∞, (17)
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(

n∑
t=k+1

htht−k)/(

n∑
t=k+1

h2
th

2
t−k)

1/2 →p ∞.

Suppose that Assumptions 2.2 and 2.3 are satisfied. Then, as n→∞,

t̃k →p ∞. (18)

3 Testing for zero cross-correlation

We next discuss testing for cross-correlation between two time series {xt} and {yt}. Similar

to the univariate case, the sample cross-correlations ρ̂xy,k at lags k = 0, 1, 2, .... based on

observed data x1, ..., xn and y1, ..., yn are given by

ρ̂xy,k =

∑n
t=k+1(xt − x̄)(yt−k − ȳ)√∑n
t=1(xt − x̄)2

∑n
t=1(yt − ȳ)2

, x̄ =
1

n

n∑
t=1

xt, ȳ =
1

n

n∑
t=1

yt, (19)

allowing estimation of ρxy,k = corr(xt, yt−k). Again, the standard test for absence of cross-

correlation is built on the asymptotic property

√
nρ̂xy,k →D N (0, 1), (20)

which is commonly used for testing H0 : ρxy,k = 0 at an individual lag k. However, such tests

suffer size distortion when the two series {xt} and {yt} are either not i.i.d. or not mutually

independent. DGP (2022) developed a robust testing methodology based on

t̃xy,k =

∑n
t=k+1 exy,tk

(
∑n

t=k+1 e
2
xy,tk)

1/2
, with exy,tk = (xt − x̄)(yt−k − ȳ). (21)

They showed that the statistic ρ̂xy,k should be corrected for its variance as in

t̃xy,k = ρ̂xy,k ĉxy,k →D N (0, 1), with ĉxy,k =
t̃xy,k
ρ̂xy,k

, (22)

which leads to correct size and confidence bands for zero cross-correlation at lag k.

In developing this test DGP (2022) assumed the scale factors ht, gt to be deterministic

and smooth. Here, we relinquish the smoothness assumption and allow the scale factors ht, gt

to be stochastic. Our model setup is as follows. Two time series are observed in which

xt = µx + htεt, yt = µy + gtηt, (23)

where ht, gt are (deterministic or stochastic) scale factors, {εt}, {ηt} are stationary time series

with Eεt = 0, Eε2
t = 1 and Eηt = 0, Eη2

t = 1, and µx, µy are real numbers. We assume that

{ht, gt} are mutual independent of {εt, ηt}. The absence of cross-correlation between xt and
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yt−k is now determined by the absence cross-correlation between εt and ηt−k. Indeed,

cov(xt, yt−k) = E[htgt−k]cov(εt, ηt−k) = 0 if cov(εt, ηt−k) = 0. (24)

As in the univariate case, testing for cross-correlation in the setting (23) reduces to testing

for cov(εt, ηt−k) = 0, which implies cov(xt, yt−k) = 0 if cross-covariance exists.

Next we describe conditions on the noise processes {εt, ηt} and scale factors {ht, gt} that

enable testing for absence of cross-correlation between series {xt} and {yt} at an individual

lag k ≥ 0. They are stated below for the lag at which testing is conducted.

Assumption 3.1. {zt := εtηt−k} is a stationary m.d. sequence with respect to a filtration

Ft for which

E[zt|Ft−1] = 0, Ez2
t <∞, (25)

and
∞∑

j=−∞
|cov(εj , ε0)| <∞,

∞∑
j=−∞

|cov(ηj , η0)| <∞. (26)

This condition implies corr(εt, ηt−k) = 0 and overall corr(xt, yt−k) = 0 for all t. The key

requirement is (25). The m.d. property is imposed only on the cross-product zt = εtηt−k of

the noises. In testing for the absence of correlation between xt and yt−k this assumption will

be satisfied if the noise {εt} of the lead sequence xt is an m.d. sequence, i.e. E[εt|Ft−1] = 0,

whereas ηt−k is Ft−1 measurable. Then zt is an m.d. sequence and (25) holds. Clearly,

serially uncorrelated noises {εt} and {ηt} satisfy (26).

Next we provide an example of a noise zt satisfying Assumption 3.1.

Example 3.1. Suppose that {εt} is a stationary m.d. sequence with respect to some σ-field

Ft, and ηt = v(εt−1, εt−2, ...) where v is a measurable function. Assume that Eε4
t < ∞ and

Eη4
t <∞. Then, for any k ≥ 0,

E[zt|Ft−1] = E[εtηt−k|Ft−1] = E[εtv(εt−1−k, εt−2−k, ...)|Ft−1]

= v(εt−1−k, εt−2−k, ...)E[εt|Ft−1] = 0,

and Ez2
t ≤ (E[ε4

t ]E[η4
t−k])

1/2 <∞.

The following assumption on the scale factors ht, gt is unrestrictive and stated for the lag

k ≥ 0 at which testing is conducted. It allows for deterministic and stochastic scale factors,

and does not impose smoothness restrictions used in DGP (2022).

Assumption 3.2. {ht, gt} have property

max
1≤t≤n

h4
t = op

( n∑
t=k+1

h2
t g

2
t−k

)
, max

1≤t≤n
g4
t = op

( n∑
t=k+1

h2
t g

2
t−k

)
. (27)
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This assumption does not require existence of finite moments of ht, gt.

Assumption 3.3. Sequence {vt = ε2
t η

2
t−k} is covariance stationary and

cov(vh, v0)→ 0, h→∞. (28)

Theorem 3.1. Let {xt, yt} be as in (23). Suppose that k ≥ 0, and Assumptions 3.1, 3.2 and

3.3 are satisfied. Then, corr(εt, ηt−k) = 0 and, as n→∞,

t̃xy,k →D N (0, 1). (29)

Under Assumption 3.1, corr(εt, ηt−k) = 0 which implies corr(xt, yt−k) = 0 for all t such that

corr(xt, yt−k) is defined.

Cumulative test. Next, we proceed to consider testing the cumulative hypotheses

H0 : corr(xt, yt−k) = 0 for m0 ≤ k ≤ m and all t, (30)

where 0 ≤ m0 < m. As pointed out in DGP (2022), the cumulative Haugh and Box (1977)

test for cross-correlation that is based on

HBxy,m = n2
m∑

k=m0

ρ̂ 2
xy,k

n− k
(31)

assumes mutual independence of the time series {xt} and {yt} which is too restrictive for

applications. instead, DGP (2022) introduced the following robust cumulative test statistics

Qxy,m = t̃ ′xy R̂
−1
xy t̃xy, Q̃xy,m = t̃ ′xy R̂

∗−1
xy t̃xy, (32)

where t̃xy = (t̃xy,m0 , ..., t̃xy,m)′ and R̂xy = (r̂xy,jk)j,k=m0,...,m is a matrix with elements

r̂xy,jk =

∑n
t=max(j,k)+1 exy,tjexy,tk

(
∑n

t=max(j,k)+1 e
2
xy,tj)

1/2(
∑n

t=max(j,k)+1 e
2
xy,tk)

1/2
. (33)

In applications, DGP (2022) suggested to use Q̃xy,m with the thresholded version R̂∗xy =

(r̂ ∗xy,jk)j,k=m0,...,m of R̂xy, given by

r̂ ∗xy,jk = r̂xy,jkI(|τxy,jk| > λ) with (34)

τxy,jk =

∑n
t=max(j,k)+1 exy,tjexy,tk

(
∑n

t=max(j,k)+1 e
2
xy,tje

2
xy,tk)

1/2
,

where λ > 0 is the thresholding parameter, and τxy,jk is a t-statistic, see DGP (2022) for

more details. The asymptotic theory holds for any threshold values λ > 0.

For testing the cumulative hypothesis H0 : corr(εt, ηt−k) = 0 for k ∈ [m0,m], we assume

10



that the variables εt, ηt and ht, gt satisfy the following conditions for all lags k ∈ [m0,m].

Assumption 3.4. For any j, k = m0, ...,m,

(i) sequence ζt = (εtηt−j)(εtηt−k) is covariance stationary, Eζ2
t <∞, and

cov(ζh, ζ0)→ 0, h→∞; (35)

(ii) {εt, ηt} satisfy Assumption 3.1;

(iii) {ht, gt} satisfy Assumption 3.2.

Theorem 3.2. Let {xt} and {yt} be as in (23). Suppose that corr(εt, ηt−k) = 0, k ∈ [m0,m]

and Assumption 3.4 is satisfied. Then, as n→∞, for any λ > 0,

Qxy,m →D χ2
m−m0+1, Q̃xy,m →D χ2

m−m0+1. (36)

Recall, that under Assumption 3.4, corr(εt, ηt−k) = 0 for k ∈ [m0,m] which implies

corr(xt, yt−k) = 0 for corresponding t, k if corr(xt, yt−k) is defined. Monte Carlo simulations

confirm good finite sample properties of the robust test statistic Q̃xy,m. For applications in

finite samples we recommend using Q̃xy,m with λ = 1.96 or 2.576.

Consistency. Finally, we show that the robust test t̃xy,k at individual lag k is consistent if

corr(εt, ηt−k) 6= 0. The latter implies corr(xt, yt−k) 6= 0 if corr(xt, yt−k) is defined. In such

cases, E[εtηt−k] 6= 0, and, different from the null hypotheses of the absence of correlation, it

is not assumed that zt = εtηt−k is an m.d. sequence.

The first condition in (37) is a standard property of weak dependence in {zt}, and the

second condition is satisfied by a wide class of deterministic and stochastic trends.

Theorem 3.3. Let {xt, yt} be as in (23) and let k ≥ 0 be such that corr(εt, ηt−k) 6= 0.

Assume that {zt = εtηt−k} is a covariance stationary sequence, and

∞∑
j=−∞

|cov(zj , z0)| <∞, (

n∑
t=k+1

htgt−k)/(

n∑
t=k+1

h2
t g

2
t−k)

1/2 →p ∞. (37)

Suppose that Assumptions 3.2 and 3.3 are satisfied and (26) holds. Then, as n→∞,

t̃xy,k →p ∞. (38)

4 Monte Carlo study

This section reports the findings from Monte Carlo simulations exploring finite-sample size

and power performance of our robust univariate and bivariate tests for absence of correlation

11



in time series. We focus on models where the volatility scale factor is either non-smooth,

stochastic, or both, and thereby not covered by the findings of DGP (2022).

4.1 Testing for zero serial correlation

We use the robust and standard test statistics t̃k and tk to study empirical size of our testing

procedures for absence of autocorrelation at individual lag k, and the robust cumulative test

statistic Q̃m and the standard Ljung-Box test statistic LBm for testing at cumulative lag

m. The rejection frequency of the null hypothesis is compared with the nominal significance

level 5%. We conduct 5000 replications and report testing results for the sample size n =

300. Results for n = 100, 500, 2000 are available upon request. We perform testing at lags

k,m = 1, ...., 30, and Q̃m is computed using the threshold λ = 1.96.

To examine the properties of our testing procedures, we generate samples from

xt = 0.2 + htεt, t = 1, ..., n (39)

using two types of scale factors ht (non-smooth deterministic, stochastic) and two types of

an uncorrelated noise {εt}:

εt = et i.i.d. model, (40)

εt = σtet, σ
2
t = 1 + 0.2ε2

t−1 + 0.7σ2
t−1, GARCH(1,1) model,

where {et} is an i.i.d. N (0, 1) noise. The GARCH(1,1) noises {εt} are uncorrelated but not

independent. We use two models for {xt}.

Model 4.1. xt as in (39). We set ht = b t
10
c, and {εt} follows (40).

This model generates a time series {xt} with a deterministic non-smooth scale factor ht.

Panels (a) and (b) of Figure 1 depict single-shot plots of {xt} for two different types of the

noise {εt}. Time series {xt} is serially uncorrelated.
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(a) Plot of xt when εt ∼ i.i.d. (b) Plot of xt when εt ∼ GARCH(1,1)

Figure 1: Plots xt = 0.2 + htεt. Model 4.1, n = 300.

Figure 2 reports the empirical 5% size of the robust tests t̃k and Q̃m denoted by the solid

red line and the empirical 5% size of standard tests tk and LBm denoted by the solid blue

line. The nominal significance level α = 5% is denoted by a gray dashed line. The plots

reveal a striking difference in performance between the standard and robust tests arising due

to heteroskedasticity (with the time-varying scale factor ht). The rejection frequency of the

robust tests t̃k and Q̃m is close to the nominal 5% size: they allow relatively accurate testing

for absence of correlation in {xt}. In contrast, the standard tests tk and LBm are significantly

oversized.

The ratio

Γk =
max1≤t≤n h

2
t

(
∑n

t=k+1 h
2
th

2
t−k)

1/2
(41)

for k = 1, · · · , 30 is around 0.13. Hence, Assumption 2.2 on ht in Model 4.1 is satisfied.
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(a) Size of t̃k, tk, εt ∼ i.i.d. (b) Size of Q̃m, LBm, εt ∼ i.i.d.

(c) Size of t̃k, tk, εt ∼ GARCH(1,1) (d) Size of Q̃m, LBm, εt ∼ GARCH(1,1)

Figure 2: Empirical size (in %) of the robust tests t̃k and Q̃m (red line) and the standard
tests tk and LBm (blue line) at lags k,m = 1, ..., 30. Nominal size α = 5%. Model 4.1.
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(a) Correlogram: xt with εt ∼ i.i.d. (b) Cumulative tests: xt with εt ∼ i.i.d.

(c) Correlogram: xt with εt ∼ GARCH(1,1) (d) Cumulative tests: xt with εt ∼ GARCH(1,1)

Figure 3: Left panel: sample autocorrelation ρ̂k, standard 5% and 1% (gray) and robust
(red) CB’s for non-significant correlation at lags k = 1, ..., 30. Right panel: standard (blue)
and robust (red) cumulative tests LBm, Q̃m and their 5% (dashed) and 1% (dotted) critical
values at lags m = 1, ..., 30. Single simulation. Model 4.1.

Figure 3 reports testing results for a single sample of the white noise Model 4.1. The

panels on the left contain the correlogram. The robust 95% and 99% confidence bands

(CB) for zero correlation denoted by dashed and dotted red lines are overall wider than the

standard confidence bands denoted by dashed and dotted gray lines. The robust CB’s do not

confirm presence of correlation at the lags k = 1, ..., 30, detected by the standard CB’s. (The

robust CB’s are based on the property (4) while the standard CB’s on the property (2).)

The panels on the right report the values of the cumulative robust test Q̃m (red solid line)

and the standard Ljung-Box test LBm (blue solid line) at the lags m = 1, ..., 30. Both tests

have the same 5% and 1% critical values (denoted by the dashed and dotted gray lines). The

robust test statistic Q̃m lays below the 5% critical value line and does not detect presence of

correlation at cumulative lags m = 1, ..., 30. In contrast, the standard Ljung-Box test detects

spurious correlation in both samples of xt generated by the white noise Model 4.1.

Model 4.2. xt as in (39). We set ht =
∑t

j=1 ηj, and {εt} follows (40). ηt is an i.i.d.
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N (0, 1) noise independent of {εt}.

In this model ht is a non-stationary stochastic unit root process. Clearly, variables xt gener-

ated by Model 4.2 are uncorrelated. Figure 4 shows typical sample plots of ht and xt. The

paths of ht are non-smooth and do not follow any definite pattern; and the behaviour of plots

of xt is similar to that of a non-stationary time series. This kind of data is commonly seen in

empirical research, and robust testing for the absence of correlation requires the investigator

to be agnostic about its structure.

(a) Plot of ht (b) Plot of xt when εt ∼ i.i.d.

(c) Plot of ht (d) Plot of xt when εt ∼ GARCH(1,1)

Figure 4: Plots of ht and xt = 0.2 + htεt. Model 4.2.

In Figure 5, we report empirical sizes of the tests t̃k, tk and the cumulative tests Q̃m

and LBm for absence of correlations for Model 4.2 based on 5000 replications. The rejection

frequency of the robust tests t̃k (at individual lag) and Q̃m (at cumulative lag) fluctuates

around the gray dashed line of the nominal size α = 5% for all lags which confirms our

theoretical results. The size of the standard tests tk and LBm is significantly distorted by ht

(heteroskedasticity) or dependence in {εt} in xt. The cumulative test LBm is overwhelmingly

oversized and its rejection frequency is increasing with the lagm. Hence, with high probability

this test will falsely detect correlation in the series xt of uncorrelated random variables. The

Monte Carlo average values of Γk in (41) based on 5000 replications are around 0.2 for all k,
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which suggests that ht satisfies Assumption 2.2.

(a) Size of t̃k, tk, εt ∼ i.i.d. (b) Size of Q̃m, LBm, εt ∼ i.i.d.

(c) Size of t̃k, tk, εt ∼ GARCH(1,1) (d) Size of Q̃m, LBm, εt ∼ GARCH(1,1)

Figure 5: Empirical sizes (in %) of the tests t̃k, tk (left panel) and Q̃m, LBm (right panel).
Nominal size α = 5%. Model 4.2

Figure 6 reports testing results for a single sample. The standard test tk detects the auto-

correlation at many lags. For example, serial correlation is significant at lags k = 2, 4, 6, 9, 11

(significance level α = 5%), and at lags k = 2, 4, 9, 11 (significance level α = 1%), see panel

(a). The cumulative test statistic LBm displayed in panel (b) also confirms the existence of

autocorrelation in {xt}, which contradicts the fact that {xt} is a white noise. The robust

confidence bands for zero correlation in the left panel are wider than those of the standard

test, and all correlation coefficients are not significant at level α = 5%, i.e. there is not enough

evidence to reject absence of serial correlation in {xt}. The values of the robust cumulative

test statistics Q̃m on the right panel lay below the line of 5% critical level values, and confirm

absence of correlation. We can draw similar conclusions from the plots shown in (c) and (d)

.
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(a) xt with εt ∼ i.i.d. (b) xt with εt ∼ i.i.d.

(c) xt with εt ∼ GARCH(1,1) (d) xt with εt ∼ GARCH(1,1)

Figure 6: Correlogram (left panel) and standard and robust cumulative test statistics (right
panel) at lags m = 1, ..., 30 for a single simulation. Model 4.2.

These simulations experiments confirm that the robust tests achieve good size perfor-

mance in testing for absence of correlation in the white noise settings studied in the present

paper. The results show that time variation and randomness in the scale factor ht as well

as latent dependence in the error term εt are clear sources of size distortion in the standard

tests.

Next we explore the impact of the violation of Assumption 2.2 on size of the robust tests.

We consider the model

xt = 0.2 + htεt, εt ∼ i.i.d.N (0, 1), (42)

where the scale process ht is stochastic and independent of {εt}:

(i) ht = ηt, (ii) ht = ht−1 + ηt. (43)

We assume that ηt are i.i.d. random variables following a Student’s t2 distribution with two

degrees of freedom. In both (i) and (ii) ht has a heavy tailed distribution. We employ the
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ratio Γk in (41) to verify the crucial Assumption 2.2 on ht.

The Monte Carlo averages of 5000 replications of Γk is around 12 for ht = ηt and around

0.2 for ht = ht−1 + ηt. Thus, ht in model (i) does not satisfy Assumption 2.2. Figure 7 shows

that robust tests become undersized, i.e. the asymptotic properties of the robust tests are

no longer valid. In contrast, ht in model (ii) does satisfy Assumption 2.2 and the empirical

size of the robust tests is close to nominal, see Figure 8.

(a) Size of t̃k, tk (b) Size of Q̃m, LBm

Figure 7: Empirical size (in %) of tests tk, t̃k (left panel) and LBm, Q̃m (right panel). Nominal
size α = 5%. Model (42)-(43)(i).

(a) Size of t̃k, tk (b) Size of Q̃m, LBm

Figure 8: Empirical size (in %) of tests tk, t̃k (left panel) and LBm, Q̃m (right panel). Nominal
size α = 5%. Model (42)-(43)(ii).

4.2 Testing for zero cross-correlation

The problem of testing for zero cross-correlation between two time series {xt} and {yt} is

more complex than testing for autocorrelation. In this section Monte Carlo experiments are

performed to corroborate the validity of the asymptotic theory of the robust tests t̃xy,k and

Q̃xy,m in Section 3, and to compare their finite sample size properties with the standard tests
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txy,k and HBxy,m. Samples of {xt, yt, t = 1, ..., n} are generated using the model

xt = 0.2 + htεt, yt = 0.2 + gtηt, (44)

ht = (−1)t · (1 + (t/n)), gt = n−1/2
t∑

j=1

ζj ,

where εt = etet−1 and {et}, {ηt} and {ζt} are mutually independent i.i.d. N (0, 1) noises.

This model includes a non-smooth deterministic scale factor ht and a stochastic scale factor

gt. Such models were not covered in DGP (2022). Arrays {xt, yt, t = 1, ..., n} are series of

uncorrelated random variables and they are not cross-correlated.

We use sample size n = 300, set the significance level to α = 5%, conduct 5000 repli-

cations, and employ the threshold λ = 1.96 in Q̃xy,m. The Monte Carlo average values

of

Γhg,k =
max1≤t≤n h

4
t∑n

t=k+1 h
2
t g

2
t−k

, Γgh,k =
max1≤t≤n g

4
t∑n

t=k+1 g
2
t h

2
t−k

are around 0.15 and 0.002, which confirms that ht, gt satisfy Assumption 3.2.

Figure 9 shows that the robust tests t̃xy,k and Q̃xy,m achieve accurate size (red line),

whereas the rejection frequencies of the standard tests txy,k and HBxy,m (blue line) deviate

significantly from the 5% level. Notably, the size performance of the cumulative Haugh and

Box’s test HBxy,m deteriorates as the lag increases.

(a) Size of t̃xy,k, txy,k (b) Size of Q̃xy,m, HBxy,m

Figure 9: Empirical sizes (in %) of tests txy,k, t̃xy,k (left panel) and HBxy,m, Q̃xy,m (right
panel). Nominal size α = 5%. Model (44).
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(a) Correlogram (b) Cumulative test

Figure 10: Testing results for a single simulation. Model (44).

Figure 10 illustrates test outcomes for a single-shot simulation. Panel (a) reports the

sample cross-correlation ρ̂xy,k together with the 95% and 99% robust confidence bands (red

line) and standard confidence bands (gray line) for zero cross-correlation. The robust confi-

dence bands (red line) indicate zero cross-correlation at lags k = 1, ..., 30, which is confirmed

by the robust cumulative test in panel (b). The standard CB’s detect correlation between

{xt} and {yt} at lag k = 18, 20 at significance level α = 1%, and at lag k = 2, 3, 12, 18, 20

at α = 5%. The standard cumulative test HBxy,m (the right panel) also detects significant

cross-correlation at significance level 1%.

The poor performance of the standard tests in these examples warns against application

of standard testing methods for uncorrelated random variables that are not i.i.d. Additional

Monte Carlo results for {xt, yt} with various scale factors and sample sizes are available upon

request. They all confirm the good finite-sample performance of the robust tests and their

ability to detect absence of cross-correlation between general white noise series such as those

in model (44).

4.3 Testing for Pearson correlation

This section introduces a robust testing procedure for zero Pearson correlation between two

random variables ε and η, which allows for heteroskedasticity. We assume that the component

variables ε and η are not observed directly and testing is based on independent pairs of

observations {xi, yi}, i = 1, ..., n, for which

xi = µx + hiεi, yi = µy + giηi,

where εi and ηi and i.i.d. copies of ε and η, Eεi = Eηi = 0, Eε4
i < ∞, Eη4

i < ∞, the scale

factors hi and gi are either deterministic or independent random variables, satisfy Assumption

3.2 and are mutually independent of {εi, ηi}.
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Observe, that xi, yi satisfy assumptions of Theorem 3.1. Thus, to test the hypothesis

H0 : corr(ε, η) = 0, we can use the robust test statistic for cross-correlation at lag k = 0:

t̃xy,0 =

∑n
i=1 exy,i0

(
∑n

i=1 e
2
xy,i0)1/2

, exy,i0 = (xi − x̄)(yi − ȳ). (45)

By Theorem 3.1, under H0, t̃xy,0 →D N (0, 1).

To compare the size and power performance of the robust Pearson test t̃xy,0 with the

standard Pearson test, txy,0 =
√
nρ̂xy,0, we consider four simple data generating models

X1−X4 for paired data {xi, yi}, i = 1, ..., 300,

Model X1: xi = ε2
i Model X3: xi = hiεi, hi = (−1)i + 2

Model X2: xi = |εi| Model X4: xi = hiεi, hi = |ηi|+ 1
2

where {εi} and {ηi} are mutually independent i.i.d. N (0, 1) noises. Observations {xi, yi} are

independent but not i.i.d. Among these models, X1 is correlated with X2; X3 is correlated

with X4, but X1, X2 and X3, X4 are mutually uncorrelated. In the latter case, t̃xy,0 →D

N (0, 1).

Figure 11 displays testing results for pairs of models Xj, Xk based on one sample.

(a) Robust test (b) Standard test

Figure 11: Pearson correlation and p-value

The first row of each block reports the sample correlation coefficient and the second row

reports the corresponding p-value (in parentheses). According to the p-value, we fill the grid

with different shades of colour showing the significance levels of the test. The darker the

colour, the smaller the p-value, and the more significant the Pearson correlation is. Since

we already know whether there exists a Pearson correlation between pairs of models or not,
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comparing Figures 11(a) and 11(b), we can see that the standard Pearson testing procedure

causes many false detections of spurious correlations. In contrast, the robust tests for Pearson

correlation produce good finite sample performance.

5 Empirical application

In empirical work the composite structure of the time series data under consideration is

typically unknown. Considering the complexity in the generation of real-world data, similar

to that in a synthetic Monte Carlo study, we may expect failure of standard tests to detect

absence of correlation. Below we consider examples of empirical time series that are expected

to have positive or no cross-correlation.

5.1 Example 1: Petroleum stock prices

The share prices of petroleum companies are closely related to the fluctuation of the interna-

tional oil market. When there are common factors, such as weak demand or a sudden rise in

prices, companies competing in the market will be affected similarly by the market shocks.

Hence, the stock prices of different petroleum companies may be positively correlated during

the same period. In this empirical experiment, XOM denotes the log return of the daily

closing prices of the stock of Exxon Mobil Corporation, and RDSB is the log return of Royal

Dutch Shell PLC. The sample range is from 24/05/2017 to 20/05/2021, and it contains 1005

observations. We test for cross-correlation in {XOM,RDSB} and {RDSB,XOM} using

both standard and robust testing procedures.

The left panel in Figure 12(a) reports standard and robust confidence bands for cross-

correlation between XOM and RDSB. Standard bands indicate presence of cross-correlation

at lag k = 0, 2, 3, 6, 7, 8, 11, 13, 15, 18, 24, 29 at significance level α = 5%. According to the

robust confidence bands, there is no evidence of significant correlation except for lag k = 0

at both α = 5% and 1% level. It is natural to expect series XOM and RDSB to be

cross-correlated positively at lag k = 0. In the right panel, the robust cumulative test

HBXOM,RDSB,m allows us to conclude that XOM is uncorrelated with RDSB at lags k ≥ 1.

The standard cumulative test HBXOM,RDSB,m still reveals presence of cross-correlation.

Figure 12(b) reports testing results for cross-correlation between series RDSB and XOM .

We observe similar findings in these data as for those in panel (a).

Significant correlations detected by standard tests at lags k 6= 0 for both these series

seem to be spurious when evaluated against the results from robust test procedures. On the

basis of this empirical analysis, we therefore conclude that XOM and RDSB have positive

contemporaneous cross-correlation at lag k = 0 and are not cross-correlated at lag k 6= 0.
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(a) Testing for cross-correlation between {XOM,RDSB}

(b) Testing for cross-correlation between {RDSB,XOM}

Figure 12: Testing for cross-correlation in bivariate time series XOM and RDSB

5.2 Example 2: Log volume and returns in the S&P 500

Next we use the robust and standard approaches to test for cross-correlations between the

daily log return rt and the log volume Vt of S&P 500 index from 02/01/2018 to 31/12/2019,

sample size n = 501. We fit to Vt a causal stationary AR(2) model

Vt = 19.9593 + 0.4142Vt−1 + 0.1328Vt−2 + ζt

which can be written as Vt = a0 +
∑∞

j=0 ajζt−j with
∑∞

j=0 a
2
j <∞.

Figure 13 displays plots of rt and Vt. These suggest that the mean EVt might be time

varying. Figure 14 reports the correlogram of Vt and the residuals ζt. Some minor correlation

in residuals ζt is evident at lag 5 and 11, and strong correlation (long memory property) in

Vt which might be spurious due to changes in the mean EVt.
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(a) Log return rt (b) Log volume Vt

Figure 13: Plots of log return rt and log volume Vt

(a) Correlogram of Log volume Vt (b) Correlogram of residuals ζt

Figure 14: Testing for autocorrelation in Vt and residuals ζt
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(a) Testing for cross-correlation between {rt, ζt}

(b) Testing for cross-correlation between {ζt, rt}

Figure 15: Testing for cross-correlation between log returns and residuals

Figure 15(a) reports testing results for zero cross-correlation at lag k ≥ 0 between the log

return {rt} and the residuals {ζt}. The robust confidence bands (left panel) and the robust

cumulative test Q̃rζ,m (right panel) detect some minor cross-correlations at the significance

level α = 5%, and no significant cross-correlation at α = 1%. On the contrary, the standard

confidence bands detect presence of significant cross-correlation at lags k = 0, 1, 14, 20, 26

with α = 5%, and the finding is confirmed by the standard cumulative test statistic HBrζ,m

(right panel). Figure 15(b) reports test outcomes for zero cross-correlation between {ζt} and

{rt} which are similar to those between {rt} and {ζt}.

To sum up, different from the findings based on standard correlation tests, robust testing

procedures do not show evidence to support a conclusion that log returns rt and residuals

ζt are cross-correlated. This outcome together with the causal representation of Vt = a0 +∑∞
j=0 ajζt−j suggests that log return rt and log volume Vt are not cross-correlated over this

time period.
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6 Conclusion

In applied work, economic and financial data do not always meet the requirements that

are used in statistical modeling and inferential methodology. Dalla, Giraitis, and Phillips

(2022) demonstrated that the standard testing procedures for absence of correlation and

cross-correlation have limited applicability under heteroskedasticity or dependence that is

often present in real data. This paper shows that the robust testing procedures introduced

in DGP (2022) are applicable in a far wider class of heteroskedastic white noises than those

with the smoothly changing deterministic scale factors that were studied in DGP (2022).

The simulation findings here reported confirm that the robust tests achieve accurate size

in models with very complex heteroskedastic structures, thereby extending their empirical

reach. In addition, outliers and missing data are not found to compromise the good sampling

performance of these robust testing procedures. A robust test for Pearson correlation is also

introduced and, as expected, this enables more accurate detection of zero Pearson correlation

than the standard test. The two empirical examples studied show that the robust testing

procedures for zero cross-correlation produce meaningful findings that assist in revealing

potentially spurious correlations in financial time series detected by standard testing methods

that ignore the effects of heterogeneity and dependence.
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7 Appendix. Proofs

7.1 Proof of theorems

Theorems 2.1 2.2 and 2.3 in Section 2 contain results on testing for the absence of serial

autocorrelation in a univariate sequence {xt = µx+htεt}. These test statistics form a special

case of the bivariate tests for the absence of cross-correlation between two series {xt} and

{yt} with {yt = xt}, presented in Section 3. We show first how the results of Section 3 imply

those of Section 2.

Proof of Theorem 2.1. It suffices to verify that under Assumptions 2.1, 2.2 and 2.3 of

Theorem 2.1, the bivariate series {xt, yt} with yt = xt satisfies Assumptions 3.1, 3.2 and 3.3

of Theorem 3.1. Indeed, in the case gt = ht and ηt = εt, Assumptions 3.2 and 3.3 are the

same as Assumptions 2.2 and 2.3. In addition, Assumption 3.1 is also satisfied, since under

Assumption 2.1, for k ≥ 1, zt = εtεt−k is a stationary m.d. sequence of uncorrelated random

variables such that Ez2
t <∞ and

∑∞
j=−∞ |cov(εj , ε0)| = var(ε0) <∞. Thus (29) of Theorem

3.1 implies (9) of Theorem 2.1. �

Proof of Theorem 2.2. Under Assumption 2.4 of Theorem 2.2 bivariate series {xt, yt}
with yt = xt satisfy Assumption 3.4 of Theorem 3.2. Indeed, as seen above, in such a case

Assumptions 2.1 and 2.2 imply Assumptions 3.1 and 3.2 and Assumptions 2.4(i) coincides

with Assumption 3.4(i). Thus (36) of Theorem 3.2 implies (16) of Theorem 2.2. �
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Proof of Theorem 2.3. We need to verify that bivariate series {xt, yt} with yt = xt satisfy

the assumptions of Theorem 3.3. As seen above, Assumptions 2.1, 2.2 and (17) imply the

validity of Assumptions 3.1 and 3.2 and (26), while (17) also implies (37). Hence, (38) of

Theorem 3.3 implies (18) of Theorem 2.3. �

Next we proceed to the proof of the main results of Section 3 for bivariate tests for the

absence of cross-correlation.

Proof of Theorem 3.1. We need to prove the convergence

t̃xy,k →D N (0, 1). (A.1)

Denote

∆nk = r2
nkAk, rnk = (

n∑
t=k+1

h2
t g

2
t−k)

1/4, Ak = (E[ε2
1η

2
1−k])

1/2. (A.2)

Write

t̃xy,k =

∑n
t=k+1 exy,tk(∑n

t=k+1 e
2
xy,tk

)1/2 =
nk

v
1/2
k

, nk =

n∑
t=k+1

exy,tk
∆nk

, vk =

n∑
t=k+1

e2
xy,tk

∆2
nk

. (A.3)

Denote

ñk =

n∑
t=k+1

ζtk
∆nk

, ṽk =

n∑
t=k+1

ζ2
tk

∆2
nk

, ζtk = (xt − µx)(yt−k − µy). (A.4)

We will show that

vk = 1 + op(1), (A.5)

t̃xy,k = ñk + op(1), (A.6)

ñk →D N (0, 1). (A.7)

Notice that (A.6) and (A.7) imply (A.1).

Proof of (A.5). Lemma A3 established that vk = ṽk + op(1). Therefore, to prove (A.5), it

suffices to show that

ṽk →p 1. (A.8)

Notice that ζtk = (htεt)(gt−kηt−k). Write

ṽk =

n∑
t=k+1

βtzt, βt = r−4
nk h

2
t g

2
t−k, zt = A−2

k (ε2
t η

2
t−k).

2



By assumption the sequences {βt} and {zt} are mutually independent. Observe that

n∑
t=k+1

βt = 1, δn = max
t=k+1,...,n

βt = op(1). (A.9)

The first claim is obvious, while under Assumption 3.2, as n→∞,

δn =
maxt=k+1,...,n h

2
t g

2
t−k∑n

t=k+1 h
2
t g

2
t−k

≤ maxt=1,...,n h
4
t + maxt=1,...,n g

4
t∑n

t=k+1 h
2
t g

2
t−k

= op(1), (A.10)

which proves the second claim. Moreover, for any γ > 0,

E[δγn] = o(1), n→∞. (A.11)

The claim (A.11) follows from convergence by majorization using the properties δn ≤ 1 and

δn = op(1) of the random variable δn.

Recall that by Assumption 3.3 {zt} is a covariance stationary sequence with Ezt = 1 such

that

cov(zk, z0)→ 0 as k →∞.

Hence, the terms βt and zt in the sum ṽk satisfy the assumptions of Lemma A1, which implies

ṽk = (
n∑

t=k+1

βt)E[zt] + op(1) = 1 + op(1),

proving (A.8) and completing the proof of (A.5).

Proof of (A.6). Lemma A3 shows that nk = ñk+op(1) = Op(1). Since by (A.5), vk = 1+op(1),

this implies (A.6), viz.,

t̃xy,k =
nk

v
1/2
k

=
ñk + op(1)

(1 + op(1))1/2
= ñk + op(1). (A.12)

Proof of (A.7). Write

ñk =

n∑
t=k+1

htgt−kεtηt−k
∆nk

=

n∑
t=k+1

ζ∗tk, (A.13)

ζ∗tk = btkωtk, btk = r−2
nk htgt−k, ωtk = A−1

k εtηt−k.

By Assumption 3.1, {ωtk} is an m.d. sequence with respect to the σ-field Ft : E[ωtk|Ft−1] = 0.

Denote by F∗hg the σ-field generated by hs, gs, 1 ≤ s ≤ n. Then ζ∗tk = btkωtk is an m.d.

sequence with respect to the σ-field Ft ∪ F∗hg. Indeed,

E[ζ∗xy,tk|Ft−1 ∪ F∗hg] = E[btkωtk|Ft−1 ∪ F∗hg] = btkE[ωtk|Ft−1] = 0.

3



Hence, ñk is the sum of m.d. variables ζ∗tk. Therefore, by Theorem 3.2 of Hall and Heyde

(1980), to prove (A.7), it suffices to show

(a)
n∑

t=k+1

ζ∗ 2
tk →p 1, (b) max

t=k+1,...,n
|ζ∗tk| →p 0, (A.14)

(c) E[ max
t=k+1,...,n

ζ∗ 2
tk ] = O(1).

Instead of (c), we will prove a slightly stronger claim

(c′) E[ max
t=k+1,...,n

ζ∗ 2
tk ] = o(1).

The claim (a) is shown in (A.8). The claim (b) follows from (c′). Indeed, by (c′) for any

ε > 0,

P
(

max
t=k+1,...,n

|ζ∗tk| ≥ ε
)
≤ ε−2E[ max

t=k+1,...,n
ζ∗ 2
tk ] = o(1).

Next we prove (c′). Denote rn = maxt=k+1,...,n ζ
∗ 2
tk . We will show that for any ε > 0,

E
[
rnI(rn ≥ ε)

]
→ 0, n→∞.

Then Ern ≤ ε+E
[
rnI(rn ≥ ε)

]
= ε+ o(1) for any arbitrarily small ε, which proves (c′). We

can bound

E
[
rnI(rn ≥ ε)

]
≤ ε−1Er2

n ≤ ε−1E
[

max
t=k+1,...,n

|ζ∗tk|4
]

≤ ε−1E
[ n∑
t=k+1

b4tkω
4
tk

]
≤ ε−1

n∑
t=k+1

E[b4tk]E[ω4
tk].

By Assumption 3.3 of theorem, E[ω4
tk] = E[ω4

1k] < ∞. We can bound b4tk ≤ δnb
2
tk. Noting

that
∑n

t=k+1 b
2
tk = 1, we obtain

E
[
rnI(rn ≥ ε)

]
≤ ε−1E[ω4

1k]E
[
δn

n∑
t=k+1

b2tk

]
= ε−1E[ω4

1k]E[δn] = o(1)

by (A.11), which completes the proof of (c′) and (A.7). This concludes the proof of the

Theorem 3.1. �

Proof of Theorem 3.2. First we show that

Qxy,m →D χ2
m−m0+1. (A.15)

Recall that

Qxy,m = t̃′xyR̂
−1
xy t̃xy = (R̂−1/2

xy t̃xy)
′(R̂−1/2

xy t̃xy),
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where t̃xy = (t̃xy,m0 , ..., t̃xy,m)′, and R̂xy = (r̂xy,jk)j,k=m0,...,m is a matrix with elements as in

(12). Hence, to prove (A.15), it suffices to show that, as n→∞,

R̂−1/2
xy t̃xy →D N (0, I), (A.16)

where I is (m−m0 + 1)× (m−m0 + 1) identity matrix.

Denote ñxy = (ñm0 , ..., ñm)′ where ñk =
∑n

t=k+1 btkωtk are defined as in (A.13). For simplicity

of notation, set

gt = 0 for t ≤ 0. (A.17)

Then btjbtk = (htgt−j)(htgt−k) = 0 for t ≤ max(j, k). Denote by W = (wjk)j,k=m0,...,m a

matrix with entries

wjk =

n∑
t=1

btjbtkσjk =

n∑
t=max(j,k)+1

btjbtkσjk, (A.18)

σjk = E[ωtjωtk] = corr(ε1η1−j , ε1η1−k).

We show that

R̂−1/2
xy t̃xy = W−1/2ñxy + op(1), (A.19)

W−1/2ñxy →D N (0, I), (A.20)

which implies (A.16).

Proof of (A.19). By (A.6) and (A.7), we have

t̃xy = ñxy + op(1), ñxy = Op(1). (A.21)

We will show that

R̂−1/2
xy = W−1/2 + op(1), W−1/2 = Op(1). (A.22)

This implies (A.19):

R̂−1/2
xy t̃xy = (W−1/2 + op(1))t̃xy = W−1/2t̃xy + op(1)

= W−1/2(ñxy + op(1)) + op(1) = W−1/2ñxy + op(1).

To prove (A.22), notice that by (A.60) of Lemma A5, R̂xy = W +op(1). Matrices R̂xy and W

are symmetric and, thus, have real eigenvalues. By (A.62), the eigenvalues of W are positive

and the smallest eigenvalue λW,min of W satisfies λW,min ≥ b fro some b > 0. Therefore,

the smallest eigenvalue λmin of the matrix W 1/2 has the property λmin = λ
1/2
W,min ≥ b1/2,

so that W−1/2 is positive definite. In turn, the largest eigenvalue λW,max of W−1 satisfies

λW,max = λ−1
W,min ≤ 1/b. This implies that W−1 = Op(1). Similarly, the largest eigenvalue

5



λmax of W−1/2 satisfies λmax = λ−1
min ≤ 1/b1/2. This implies that W−1/2 = Op(1). Hence,

the inverse matrices W−1 and W−1/2 exist and

R̂−1/2
xy =

(
W + op(1)

)−1/2
= W−1/2

(
1 +W−1op(1)

)−1/2
= W−1/2

(
1 + op(1)

)−1/2

= W−1/2(1 + op(1)) = W−1/2 + op(1).

Proof of (A.20). By the Cramér–Wold device, it suffices to show that for any vector a =

(am0 , .., am)′ of real numbers the following holds

sn := a′W−1/2ñxy →D N (0, ||a||2), ||a||2 = a2
m0

+ ...+ a2
m. (A.23)

Denote d ≡ a′W−1/2 = (dm0 , ..., dm). As seen above, the largest eigenvalue of W 1/2 has the

property λmax ≤ 1/b1/2. It is known that the absolute values of the elements of the matrix

W−1/2 do not exceed λmax (or the spectral norm of W−1/2 ). Therefore,

|dj | ≤ (|am0 |+ ...+ |am|)λmax ≤ c0 = (|am0 |+ ...+ |am|)(1/b1/2). (A.24)

Write, using (A.13),

sn :=
m∑

k=m0

dkñk =
m∑

k=m0

dk

n∑
t=k+1

ζ∗tk

=

n∑
t=m0+1

ξt, ξt =

m∑
k=m0

dkζ
∗
tkI(t ≥ k + 1). (A.25)

Proof of the convergence (A.23) is similar to the proof of (A.7) of Theorem 3.1. Recall that

ζ∗tk is an m.d. sequence with respect to the σ-field Ft∪F∗hg and dk is F∗hg measurable. Hence,

{ξt} is a martingale difference sequence with respect to Ft ∪ F∗hg. Therefore, by the same

argument as in the proof of (A.7), to verify (A.23) it suffices to show that

(a)

n∑
t=m0+1

ξ2
t →p ||a||2, (b) max

t=m0+1,...,n
|ξt| →p 0, (A.26)

(c) E[ max
t=m0+1,...,n

ξ2
t ] = o(1).

To verify (a), write

n∑
t=m0+1

ξ2
t =

m∑
k,j=m0

dkdjñjk, ñjk =

n∑
t=max(j,k)+1

ζ∗tjζ
∗
tk =

n∑
t=1

btjbtkωtjωtk, (A.27)

where the last equality holds because of (A.17). By (A.64) shown below,

ñjk = wjk + op(1).
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Together with (A.24) and definition of dj , this implies

n∑
t=m0+1

ξ2
t =

m∑
j,k=m0

djdk

(
wjk + op(1)

)
=

m∑
j,k=m0

djwjkdk + op(1)

= a′W−1/2WW−1/2a+ op(1) = ||a||+ op(1),

which proves (a). Next, notice that (b) follows from (c). To show (c), bound

E[ max
t=m0+1,...,n

ξ2
t ] = E[ max

t=m0+1,...,n
{

m∑
k=m0

dkζ
∗
tkI(t ≥ k + 1)}2]

≤ mE[ max
t=m0+1,...,n

{
m∑

k=m0

d2
kζ
∗ 2
tk I(t ≥ k + 1)}] ≤ c2

0m
m∑

k=m0

E[ max
t=k+1,...,n

ζ∗ 2
tk ] = o(1)

by (A.24) and (c) of (A.14). This completes the proof of (A.15).

Next we show that

Q̃xy,m →D χ2
m−m0+1 (A.28)

where Q̃xy,m = t̃′xyR̂
∗−1
xy t̃xy and R̂∗xy = (r̂∗xy,jk)j,k=m0,...,m is a matrix with elements r̂ ∗xy,jk =

r̂xy,jkI(|τxy,jk| > λ) as in (34). In Lemma A5 below we prove that for any λ > 0,

R̂∗xy = W + op(1), R̂xy = W + op(1). (A.29)

Together with (A.15), this implies (A.28):

Q̃xy,m = t̃′xy

(
W + op(1)

)−1
t̃xy = t̃′xyR̂

−1
xy t̃xy + op(1)

= Qxy,m + op(1)→D χ2
m−m0+1,

completing the proof of the theorem. �

Proof of Theorem 3.3. In (A.6) we showed that under Assumptions 3.2, 3.3 and (26),

t̃xy,k = ñk + op(1), (A.30)

where

ñk =

n∑
t=k+1

ζtk
∆nk

=
n∑

t=k+1

btkωtk, with btk =
htgt−k
r2
nk

and ωtk =
εtηt−k
Ak

,

is as in (A.4). By assumption, the sequences {btk} and {ωtk} are mutually independent, and

{ωtk} is a covariance stationary sequence such that
∑∞

j=−∞ |cov(ωjk, ω0k)| < ∞. Moreover,∑n
t=k+1 b

2
tk = 1. Hence, by Lemma A2,

ñk =
n∑
t=1

btkωtk =
( n∑
t=1

btk

)
Eω1k +Op

(
(
n∑
t=1

b2tk)
1/2
)

= (
n∑
t=1

btk)Eω1k +Op(1)→p ∞,
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because Eω1k 6= 0 and
∑n

t=1 btk →p ∞ by (37). Together with (A.30), this implies t̃xy,k →p ∞
which proves (38) and completes the proof of the theorem. �

7.2 Auxiliary lemmas

The auxiliary lemmas given here are used in proving the main results of subsection 7.1. We

start with Lemmas A1 and A2 which provide useful bounds for sums of weighted random

variables.

Lemma A1. Let Sn =
∑n

t=1 βtzt. Suppose that a triangular array of random variables

βt = βn,t have property

n∑
t=1

|βt| ≤ 1, E[ max
t=1,..,n

|βt|] = o(1) (A.31)

and {zt} is a covariance stationary sequence such that γk = cov(zk, z0) → 0 as k → ∞.

Assume that sequences {βt} and {zt} are mutually independent. Then,

n∑
t=1

βtzt =
( n∑
t=1

βt

)
Ez1 + op(1). (A.32)

Proof of Lemma A1. Write

Sn =
n∑
t=1

βtEzt +
n∑
t=1

βt(zt − Ezt) = (
n∑
t=1

βt)Ez1 + qn. (A.33)

We show that

qn =
n∑
t=1

βt(zt − Ezt) = op(1), (A.34)

which proves (A.32). Since {βt} and {zt} are mutually independent and |βt| ≤ 1, we have

Eq2
n = E

( n∑
t=1

βt(zt − Ezt)
)2

= E
[ n∑
t,s=1

βtβsE[(zt − Ezt)(zs − Ezs)]
]

≤ E
[ n∑
t,s=1

|βtβs| |γt−s|
]
. (A.35)

Let L > 0. Set GL = maxk≥L |γk|, and recall that |γk| ≤ γ0. Using these bounds, we obtain,

Eq2
n ≤ E

[ n∑
t,s=1:|t−s|≥L

|βtβs|GL
]

+ E
[ n∑
t,s=1:|t−s|<L

|βtβs| γ0

]
≤ GLE

[ n∑
t,s=1

|βtβs|
]

+ γ0E
[
( max
s=1,...,n

|βs|)
n∑

t,s=1:|t−s|<L

|βt|
]
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≤ GLE
[
(

n∑
t=1

|βt|)2
]

+ γ0(2L+ 1)E
[
( max
s=1,...,n

|βs|)
n∑
t=1

βt
]
.

Hence, by assumption (A.31), for any fixed L, as n→∞, it holds that

Eq2
n ≤ GL + γ0E[ max

s=1,...,n
|βs|](2L+ 1) = GL + o(1),

where GL → 0 as L → ∞ by assumption. Since L can be selected arbitrarily large this

implies Eq2
n = o(1), which proves (A.34). �

Lemma A2. Let Sn =
∑n

t=1 βtzt. Assume that sequences {βt} and {zt} are mutually inde-

pendent, and {zt} is a covariance stationary sequence such that

∞∑
k=−∞

|cov(zk, z0)| <∞. (A.36)

Then

n∑
t=1

βtzt =
( n∑
t=1

βt

)
Ez1 +Op

(
(
n∑
t=1

β2
t )1/2

)
. (A.37)

In particular, if Ez1 = 0, and maxt=1,...,n |βt| = op(1), then

n∑
t=1

βtzt = op(n
1/2). (A.38)

Proof of Lemma A2. Denote rn = (
∑n

t=1 β
2
t )1/2. In view of (A.33), to prove (A.37) it

suffices to show that

r−1
n qn = Op(1). (A.39)

Then, qn = rn(qn/rn) = Op(rn). Together with (A.33) this implies (A.37). To show (A.39),

notice that by (A.35),

E(qn/rn)2 ≤ E
[ n∑
t,s=1

|(βt/rn)(βs/rn)| |γt−s|
]
≤ 2E

[ n∑
t,s=1

(βt/rn)2 |γt−s|
]

≤ 2E
[ n∑
t=1

(βt/rn)2
∞∑

s=−∞
|γs|
]

= 2

∞∑
s=−∞

|γs| <∞,

noting that
∑n

t=1(βt/rn)2 = 1, and using (A.36). This proves (A.39). Clearly, (A.37) implies

(A.38). �

The following lemmas contain various bounds and approximations used in the proofs of

Subsection 7.1.
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Lemma A3. Under the assumptions of Theorem 3.1,

nk = ñk + op(1), vk = ṽk + op(1), (A.40)

ñk = Op(1) (A.41)

with nk, vk as in (A.3) and ñk, ṽk as in (A.4).

Proof of Lemma A3. Proof of (A.40). Recall the notation ∆nk = r2
nkAk in (A.2). Denote

i1,n = Ak(nk − ñk) = r−2
nk

n∑
t=k+1

(exy,tk − ζtk),

i2,n = Ak(vk − ṽk) = r−4
nk

n∑
t=k+1

(e2
xy,tk − ζ2

tk).

To prove (A.40), it suffices to show that

i1,n = op(1), i2,n = op(1). (A.42)

Proof of i1,n = op(1). Recall that

exy,tk − ζtk = (xt − x̄)(yt−k − ȳ)− (xt − µx)(yt−k − µy). (A.43)

Suppose for simplicity of notation that µx = 0, µy = 0. Then, xt = htεt and yt = gtηt. Set

ξt := r−1
nk xt = β1,tεt, β1,t = r−1

nk ht,

νt := r−1
nk yt = β2,tηt, β2,t = r−1

nk gt.

Then we can write

r−2
nk (exy,tk − ζtk) = r−2

nk {(xt − x̄)(yt−k − ȳ)− xtyt−k}

= (ξt − ξ̄)(νt−k − ν̄)− ξtνt−k (A.44)

= −ξtν̄ − νt−kξ̄ + ξ̄ν̄.

Hence,

i1,n =

n∑
t=k+1

(
(ξt − ξ̄)(νt−k − ν̄)− ξtνt−k

)
= (n− k)ξ̄ν̄ −

n∑
t=k+1

(ν̄ξt + ξ̄νt−k),

where

n∑
t=k+1

ξt = nξ̄ −
k∑
t=1

ξt,

n∑
t=k+1

νt−k = nν̄ −
n∑

t=n−k+1

νt.
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So, we obtain

i1,n = (n− k)ξ̄ν̄ − 2nξ̄ν̄ + ν̄
k∑
t=1

ξt + ξ̄
n∑

t=n−k+1

νt,

|i1,n| ≤ 2n|ξ̄ν̄|+ |ν̄| |
k∑
t=1

ξt|+ |ξ̄| |
n∑

t=n−k+1

νt|. (A.45)

We will show that

ξ̄ = op(n
−1/2), ν̄ = op(n

−1/2), (A.46)∑k
t=1 ξt = op(1),

∑n
t=n−k+1 νt = op(1). (A.47)

This together with (A.45) implies i1,n = op(1).

Proof of (A.46). We prove the claim for ξ̄ (the proof for ν̄ is similar). Recall that ξ̄ =

n−1
∑n

t=1 ξt = n−1(
∑n

t=1 β1,tεt). By Assumption 3.2 of theorem, we have

max
t=1,...,n

|β1,t| =
max1≤t≤n |ht|

rnk
=

max1≤t≤n |ht|
(
∑n

t=k+1 h
2
t g

2
t−k)

1/4
(A.48)

=
( max1≤t≤n h

4
t∑n

t=k+1 h
2
t g

2
t−k

)1/4
= op(1).

By Assumption 3.1 of theorem, {εt} is a covariance stationary sequence with Eεt = 0 and

such that
∑∞

k=−∞ |cov(εk, ε0)| <∞. Hence, using (A.38) of Lemma A2 we obtain

n∑
t=1

β1,tεt = op(n
1/2),

which implies ξ̄ = op(n
−1/2) and proves (A.46).

Proof of (A.47). We will prove the claim for sum of ξt (the proof for the sum of νt is similar).

We have,

|
k∑
t=1

ξt| = |
k∑
t=1

β1,tεt| ≤ ( max
t=1,...,n

|β1,t|)
k∑
t=1

|εt| = op(1)

k∑
t=1

|εt| = op(1),

by (A.48), noting that E[
∑k

t=1 |εt|] = kE|ε1| implies
∑k

t=1 |εt| = Op(1). This completes the

proof of (A.47).

Proof of i2,n = op(1). Using the equality

(e2
xy,tk − ζ2

tk) = (exy,tk − ζtk)2 + (exy,tk − ζtk)2ζtk,
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we obtain

i2,n = r−4
nk

n∑
t=k+1

(e2
xy,tk − ζ2

tk)

= r−4
nk

n∑
t=k+1

(exy,tk − ζtk)2 + 2r−4
nk

n∑
t=k+1

(exy,tk − ζtk)ζtk.

Using Cauchy inequality, we can bound

|
n∑

t=k+1

(exy,tk − ζtk)ζtk| ≤
( n∑
t=k+1

(exy,tk − ζtk)2
)1/2( n∑

t=k+1

ζ2
tk

)1/2
.

Hence,

|i2,n| ≤ Dnk + 2D
1/2
nk s

1/2
nk , (A.49)

Dnk =
n∑

t=k+1

{r−2
nk (exy,tk − ζtk)}2, snk =

n∑
t=k+1

r−4
nk ζ

2
tk.

We will show that

Dnk = op(1), (A.50)

snk = Op(1), (A.51)

which implies

|i2,n| ≤ op(1) + op(1)Op(1) = op(1).

Proof of (A.50). From the equality (A.44), using (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we obtain

{r−2
nk (exy,tk − ζtk)}2 = (ξ̄ν̄ − ν̄ξt − ξ̄νt−k)2 ≤ 3

(
ξ̄2ν̄2 + ν̄2ξ2

t + ξ̄2ν2
t−k
)
.

Hence,

Dnk ≤ 3

n∑
t=k+1

(
ξ̄2ν̄2 + ν̄2ξ2

t + ξ̄2ν2
t−k
)

= 3(n− k)ξ̄2ν̄2 + 3ν̄2
n∑

t=k+1

ξ2
t + 3ξ̄2

n∑
t=k+1

ν2
t−k.

By (A.46), ξ̄2 = op(n
−1), ν̄2 = op(n

−1). It follows that

Dnk = op(n
−1) + op(n

−1)
( n∑
t=1

ξ2
t +

n∑
t=1

ν2
t ). (A.52)

12



We now show that

n∑
t=1

ξ2
t = op(n),

n∑
t=1

ν2
t = op(n). (A.53)

We have
n∑
t=1

ξ2
t =

n∑
t=1

β2
1,tε

2
t ≤ ( max

1≤t≤n
β2

1,t)(

n∑
t=1

ε2
t ) = op(1)(

n∑
t=1

ε2
t ) = op(n),

by (A.48), noting that E[
∑n

t=1 ε
2
t ] = nE[ε2

1] implies
∑n

t=1 ε
2
t = Op(n). The proof of the second

claim in (A.53) is similar.

Using (A.52) and (A.53), we obtain Dnk = op(1) which proves (A.50).

To verify (A.51), write

snk =

n∑
t=k+1

r−4
nk ζ

2
tk =

n∑
t=k+1

βtzt, βt = r−4
nk h

2
t g

2
t−k, zt = ε2

t η
2
t−k.

Notice that
n∑

t=k+1

βt = r−4
nk

n∑
t=k+1

h2
t g

2
t−k = 1.

Moreover, by (A.10) and (A.11),

max
t=k+1,...,n

|βt| = δn = op(1), E[δn] = o(1),

and by Assumption 3.3 of theorem, {zt} is covariance stationary sequence such that cov(zk, z0)→
0 as k →∞. Hence, by (A.32) of Lemma A1,

snk =
( n∑
t=k+1

βt

)
Ez1 + op(1) = Ez1 + op(1), (A.54)

which proves (A.51). This completes the proof of the first part of the lemma.

Proof of (A.41). By (A.13), ñk =
∑n

t=k+1 btkωtk where {btk} and {ωtk} are mutually in-

dependent, |btk| ≤ 1,
∑n

t=k+1 b
2
tk = 1 and E[ω2

tk] = 1. Moreover, under Assumption 2.1,

E[ωtkωsk] = 0 for t 6= s. Hence,

Eñ2
k = E[

n∑
t,s=k+1

btkbtsE[ωtkωts]] = E[

n∑
t=k+1

b2tkE[ω2
tk]] = 1.

This implies ñk = Op(1) which completes the proof of (A.41) and hence the lemma. �
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To state the next lemma, rewrite the element r̂xy,jk of R̂xy given in (33) as

r̂xy,jk =
njk

(vjkvkj)1/2
, njk =

n∑
t=max(j,k)+1

exy,tjexy,tk
∆nj∆nk

, vjk =
n∑

t=max(j,k)+1

e2
xy,tj

∆2
nj

, (A.55)

where ∆nj is defined in (A.2). Set again µx = µy = 0. Recall the notation (A.27):

ñjk =

n∑
t=max(j,k)+1

ζtjζtk
∆nj∆nk

. (A.56)

Lemma A4. Under the assumptions of Theorem 3.2,

njk = ñjk + op(1), vjk = 1 + op(1), (A.57)

with njk, vjk as in (A.55) and ñjk as in (A.56).

Proof of Lemma A4. We start with the proof of the first claim in (A.57). We have

njk − ñjk =

n∑
t=max(j,k)+1

(exy,tjexy,tk − ζtjζtk)
∆nj∆nk

. (A.58)

Using the equality

(exy,tjexy,tk − ζtjζtk) = (exy,tj − ζtj)(exy,tk − ζtk) + (exy,tj − ζtj)ζtk + (exy,tk − ζtk)ζtj ,

we obtain

n∑
t=max(j,k)+1

(exy,tjexy,tk − ζtjζtk) =
n∑

t=max(j,k)+1

(exy,tj − ζtj)(exy,tk − ζtk)

+

n∑
t=max(j,k)+1

(exy,tj − ζtj)ζtk +
n∑

t=max(j,k)+1

(exy,tk − ζtk)ζtj .

Applying the Cauchy inequality, we can bound

|
n∑

t=max(j,k)+1

(exy,tj − ζtj)(exy,tk − ζtk)| ≤ (
n∑

t=j+1

(exy,tj − ζtj)2)1/2(
n∑

t=k+1

(exy,tk − ζtk)2)1/2,

|
n∑

t=max(j,k)+1

(exy,tj − ζtj)ζtk| ≤ (

n∑
t=j+1

(exy,tj − ζtj)2)1/2(
n∑

t=k+1

ζ2
tk)

1/2.

Recall the notation Dnk and snk, used in (A.49). Then,

j1,n := AjAk|njk − ñjk|

14



= r−2
nj r
−2
nk

∣∣∣ n∑
t=max(j,k)+1

(exy,tjexy,tk − ζtjζtk)
∣∣ ≤ D1/2

nj D
1/2
nk +D

1/2
nj s

1/2
nk +D

1/2
nk s

1/2
nj .

Together with (A.50) and (A.51), this implies

j1,n = op(1)op(1) + op(1)Op(1) + op(1)Op(1) = op(1),

which proves the first claim in (A.57).

To prove the second claim, vjk = 1 + op(1), write

vjk = ∆−2
nj

n∑
t=max(j,k)+1

e2
xy,tj = vj + qnj ,

vj = ∆−2
nj

n∑
t=j+1

e2
xy,tj , qnj = ∆−2

nj

( n∑
t=max(j,k)+1

−
n∑

t=j+1

)
e2
xy,tj .

The sum vj is the same as in (A.3), and we showed in (A.5) that vj = 1 + op(1). It remains

to show that qnj = op(1). If j ≥ k, then qnj = 0. Let j < k. Then,

qnj = −∆−2
nj

k∑
t=j+1

e2
xy,tj = −A−2

j

k∑
t=j+1

(
xt
rnj
− x̄

rnj
)2(

yt−k
rnj
− ȳ

rnj
)2.

With no loss of generality we can assume that µx = µy = 0. To prove qnj = op(1), it suffices

to notice that for each fixed t,

xt
rnj

= op(1),
yt
rnj

= op(1),
x̄

rnj
= op(1),

ȳ

rnj
= op(1). (A.59)

We have xt = htεt, yt = gtηt. Assumption 3.2 implies that ht/rnj = op(1), gt/rnj = op(1)

while Eε2
t < ∞, Eη2

t < ∞ implies εt = Op(1), ηt = Op(1). This proves the first two claims

in (A.59). The remaining two claims are shown in (A.46). �

In the following lemma, ñjk and wjk are defined as in (A.56) and (A.18), respectively; and

the matrices Rxy and R∗xy are as in (33) and (34).

Lemma A5. Suppose that assumptions of Theorem 3.2 are satisfied. Then,

R̂xy = W + op(1), (A.60)

R̂∗xy = W + op(1) for any λ > 0. (A.61)

Moreover, there exists b > 0, such that for any a = (am0 , ..., am)′ and n ≥ 1,

a′Wa ≥ b||a||2. (A.62)
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Proof of Lemma A5. Proof of (A.60). It suffices to show that

r̂xy,jk = wjk + op(1) for j, k ∈ [m0, ...,m]. (A.63)

By (A.55) and Lemma A4,

r̂xy,jk =
njk

(vjkvkj)1/2
=

ñjk + op(1)

(1 + op(1))2
.

Below we verify that

ñjk = wjk + op(1), wjk = Op(1). (A.64)

This implies

r̂xy,jk =
wjk + op(1)

(1 + op(1))1/2
= wjk + op(1),

which proves (A.63).

Proof of (A.64). Let bkt and ωtk be defined as in (A.13). Taking into account notation (A.17),

we can write

ñjk =
n∑

t=max(j,k)+1

btjbtkωtjωtk =
n∑
t=1

btjbtkωtjωtk. (A.65)

Then,

ñjk = wjk + w̃jk, where (A.66)

wjk =

n∑
t=1

btjbtkσjk, σjk = E[ωtjωtk] = corr(ε1η1−j , ε1η1−k),

w̃jk =
n∑
t=1

btzj , bt = btjbtk, zj = ωtjωtk − E[ωtjωtk].

Start with the first claim, ñjk = wjk + op(1), of (A.64). By (A.66), it suffices to show that

w̃jk = op(1). (A.67)

To evaluate the sum w̃jk =
∑n

t=1 btzj , we use Lemma A1. By Assumption 3.4(i) of the

theorem, {zt} is a covariance stationary sequence with Ezt = 0 and such that cov(zk, z0)→ 0

as k →∞. On the other hand,

n∑
t=1

|bt| ≤ (
n∑
t=1

b2tj)
1/2(

n∑
t=1

b2tk)
1/2 = 1,

because
∑n

t=1 b
2
tj =

∑n
t=j+1 b

2
tj = 1, and under Assumption 3.4(iii) of theorem, (A.11) implies

E[ max
t=1,...,n

|bt|] ≤ (E[ max
t=1,...,n

b2tk])
1/2(E[ max

t=1,...,n
b2tj ])

1/2 = o(1). (A.68)
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Hence, by (A.32) of Lemma A1, w̃jk = op(1) which proves (A.67).

Finally,

|wjk| ≤ |σjk|
n∑
t=1

|bt| ≤ |σjk|,

which implies wjk = Op(1) and completes the proof of (A.64).

Proof of (A.61). Recall the element r̂∗xy,jk = r̂xy,jkI(|r̂xy,jk| ≥ λ) of the matrix R̂∗xy given in

(34). To prove (A.61), we need to show that for any λ > 0,

r̂∗xy,jk = wjk + op(1) for j, k ∈ [m0, ...,m]. (A.69)

Noting that by (A.60), r̂xy,jk = wjk + op(1), to verify (A.69) it suffices to show that

r̂xy,jk − r̂∗xy,jk = op(1). (A.70)

Observe that

r̂xy,jk − r̂∗xy,jk = r̂xy,jk − r̂xy,jkI(|τxy,jk| > λ) = r̂xy,jkI(|τxy,jk| ≤ λ).

Let ε > 0. Then, |r̂xy,jk| ≤ ε+ |r̂xy,jk|I(|r̂xy,jk| > ε). Hence,

|r̂xy,jk − r̂∗xy,jk| ≤ ε+ |r̂xy,jk|I(|τxy,jk| ≤ λ, |r̂xy,jk| > ε).

By (A.63) and (A.64), |r̂xy,jk| = wjk +op(1) = Op(1). We will show that for any λ > 0, ε > 0,

it holds

I(|τxy,jk| ≤ λ, |r̂xy,jk| > ε) = op(1). (A.71)

This implies

|r̂xy,jk − r̂∗xy,jk| ≤ ε+Op(1)op(1) = ε+ op(1),

for any arbitrarily small ε, which proves (A.70). Use the bound

I
(
|τxy,jk| ≤ λ, |r̂xy,jk| > ε

)
= I

(
|τxy,jk| ≤ λ, |τxy,jk|

|r̂xy,jk|
|τxy,jk|

> ε
)

≤ I
(
λ
|r̂xy,jk|
|τxy,jk|

> ε
)

= I
( |r̂xy,jk|
|τxy,jk|

≥ ε/λ
)
, (A.72)

and we will show that

|r̂xy,jk|
|τxy,jk|

= op(1), (A.73)
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which together with (A.72) implies (A.71). Write

τxy,jk =

∑n
t=max(j,k)+1

exy,tjexy,tk
∆nj∆nk

(
∑n

t=max(j,k)+1

e2xy,tje
2
xy,tk

∆2
nj∆2

nk
)1/2

=:
njk

V
1/2
njk

. (A.74)

Using the notation (A.55) we have

|r̂xy,jk|
|τxy,jk|

= {
|njk|

(vjkvkj)1/2
}{
|njk|
V

1/2
njk

}−1 =
( Vnjk
vjkvkj

)1/2
=

V
1/2
njk

1 + op(1)
,

since vjk = 1 + op(1) by (A.57). To prove (A.73), it remains to show that

Vnjk = op(1). (A.75)

By definition, exy,tj = (xt − x̄)(yt−k − ȳ). With no restriction of generality assume that

µx = 0, µy = 0. Then xt = htεt and yt = gtηt. Using the bound

e2
xy,tj = [(xt − x̄)(yt−j − ȳ)]2 = [xtyt−j − xtȳ − yt−j x̄+ x̄ȳ]2

≤ 4(x2
t y

2
t−j + x2

t ȳ
2 + y2

t−j x̄
2 + x̄2ȳ2),

we obtain

Vnjk =
n∑

t=max(j,k)+1

e2
xy,tj

∆2
nj

e2
xy,tk

∆2
nk

≤ 4in,1 + 4in,2,

in,1 =
n∑

t=max(j,k)+1

x2
t y

2
t−j

∆2
nj

e2
xy,tk

∆2
nk

, in,2 =
n∑

t=max(j,k)+1

(x2
t ȳ

2 + y2
t−j x̄

2 + x̄2ȳ2)

∆2
nj

e2
xy,tk

∆2
nk

.

Hence, to prove (A.75), it suffices to show that

in,1 = op(1), in,2 = op(1). (A.76)

First we evaluate in,1. Let K > 0 be a large number. Recall that x2
t y

2
t−j = h2

t g
2
t−jzt where

zt = ε2
t η

2
t−j . Denote z+

t = ztI(zt ≥ K). Then

zt = zt{I(zt < K) + I(zt ≥ K)} ≤ K + z+
t .

Hence, we can bound

in,1 ≤
n∑

t=max(j,k)+1

h2
t g

2
t−jK

∆2
nj

e2
xy,tk

∆2
nk

+
n∑

t=max(j,k)+1

h2
t g

2
t−jz

+
t

∆2
nj

e2
xy,tk

∆2
nk

≤ K∆−2
nj ( max

t=1,...,n
h2
t g

2
t−j)vkj +

( n∑
t=max(j,k)+1

h2
t g

2
t−jz

+
t

∆2
nj

)
vkj , vkj =

n∑
t=max(j,k)+1

e2
xy,tk

∆2
nk

.
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By (A.10), ∆−2
nj (maxt=1,...,n h

2
t g

2
t−j) = op(1), and by (A.57), vkj = 1 + op(1). Moreover,

E[z+
t ] ≤ K−1Ez2

t = K−1Ez2
1 because by assumption, {z2

t } is a covariance stationary se-

quence. Since the sequences {zt} and {h2
t g

2
t−j} are mutually independent, we obtain

E
[ n∑
t=max(j,k)+1

h2
t g

2
t−jz

+
t

∆2
nj

]
= E

[ n∑
t=max(j,k)+1

h2
t g

2
t−jE[z+

t ]

∆2
nj

]

≤ K−1E[z2
1 ]E[∆−2

nj

n∑
t=j+1

h2
t g

2
t−j ] = K−1E[z2

1 ]A−2
j .

Hence, for any fixed K > 0, as n→∞,

in,1 = op(1)Op(1) +Op(K
−1)Op(1).

Since K can be selected arbitrarily large, this implies in,1 = op(1).

To evaluate in,2, bound

in,2 ≤ dnvkj , dn =

n∑
t=max(j,k)+1

(x2
t ȳ

2 + y2
t−j x̄

2 + x̄2ȳ2)

∆2
nj

, vkj =

n∑
t=max(j,k)+1

e2
xy,tk

∆2
nk

.

By (A.57), vkj = 1 + op(1). Hence, to prove in,2 = op(1), it remains to show

dn = op(1). (A.77)

We have

dn ≤ (∆−1
nj ȳ

2)(∆−1
nj

n∑
t=1

x2
t ) + (∆−1

nj x̄
2)(∆−1

nj

n∑
t=1

y2
t ) + ∆−2

nj x̄
2ȳ2n.

By (A.46), ∆−1
nj x̄

2 = op(n
−1), ∆−1

nj ȳ
2 = op(n

−1). We show below, that

∆−1
nj

n∑
t=1

x2
t = op(n), ∆−1

nj

n∑
t=1

y2
t = op(n). (A.78)

This implies

dn = op(n
−1)Op(n) + op(n

−1)Op(n) + op(n
−2)n = op(1).

To prove the first claim in (A.78), notice that

∆−1
nj

n∑
t=1

x2
t = ∆−1

nj

n∑
t=1

h2
t ε

2
t ≤ ∆−1

nj ( max
t=1,...,n

h2
t )

n∑
t=1

ε2
t = op(1)Op(n) = op(n),

because

∆−1
nj ( max

t=1,...,n
h2
t ) = A−1

j

maxt=1,...,n h
2
t

(
∑n

t=k+1 h
2
t g

2
t−j)

1/2
= op(1)
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by Assumption 3.2, and E[
∑n

t=1 ε
2
t ] = nEε2

1 implies
∑n

t=1 ε
2
t = Op(n). The proof of the

second claim in (A.78) follows by a similar argument. This completes the proof of (A.61).

Proof of (A.62). Notice, that the matrix Σ = (σjk)j,k=m0,...,m is positive definite. Indeed, by

Assumption 3.4(i), the stationary sequence zj = ε1η1−j has properties Ezi = 0, Ez2
j < ∞,

and
∑

k |cov(ηk, η0)| < ∞, so that the sequence {ηt} has a spectral density. In Lemma 3.1

in DGP (2022), it is shown that under these assumptions, the matrix Σ is positive definite

for m0 = 1. The proof of that lemma shows that Σ remains positive definite also for m0 > 1.

Hence, there exists b > 0, such that for any real numbers am0 , ..., am,

m∑
j,k=m0

ajσjkak ≥ b ||a||2, ||a||2 = a2
m0

+ ...+ a2
m.

Therefore, by the definition of W = (wjk), see (A.66), for a = (am0 , ..., am)′,

a′Wa =

m∑
j,k=m0

ajwjkak =

m∑
j,k=m0

aj{
n∑
t=1

btjbtkσjk}ak

=
n∑
t=1

[ m∑
j,k=m0

(ajbtj)σjk(akbtk)
]
≥ b

n∑
t=1

[ m∑
j=m0

(ajbtj)
2
]

= b
m∑

j=m0

a2
j (

n∑
t=1

b2tj) = b
m∑

j=m0

a2
j = b||a||2. (A.79)

Hence, (A.62) holds and W is positive definite. �

8 Supplementary simulation results

This section includes additional simulation findings on the performance of both the robust

and standard tests for absence of serial correlation for time series with outliers and missing

data.

8.1 Performance of the tests in the presence of outliers

We first explore the finite sample size performance of tests for zero correlation based on 5000

replications of n = 300 uncorrelated observations from the following model

xt =0.2 + htεt, εt ∼ i.i.d. N (0, 1), (A.80)

ht =

3, t ∈ [151, 160]

1, otherwise
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where outliers in xt are generated by a block of high values of the scale factor ht. The length

of the block is 10. Figure 16 gives illustrative plots of ht and xt from the above model.

(a) Plot of ht with 10 outliers (b) Plot of xt

Figure 16: Plots of ht and xt

Table 1 below reports size of the robust and standard tests at nominal significance level 5%.

The presence of outliers clearly leads to over-rejection by the standard tests tk and LBm,

whereas the robust tests t̃k and Q̃m continue to control size close to nominal .

k t̃k tk Q̃m LBm k t̃k tk Q̃m LBm
1 4.52 15.72 4.52 15.88 16 5.04 4.20 4.60 20.60
2 3.90 14.76 3.46 19.90 17 4.56 3.80 4.74 20.22
3 4.16 13.72 3.70 22.92 18 4.68 3.52 4.94 19.76
4 4.40 11.92 3.86 24.58 19 4.90 3.80 5.06 19.36
5 4.46 11.20 4.02 26.14 20 5.58 4.46 5.08 19.04
6 3.84 8.80 4.24 26.42 21 5.22 4.26 5.08 19.02
7 4.50 8.50 4.20 27.10 22 5.08 4.00 5.04 18.68
8 5.14 7.36 4.32 26.90 23 4.24 3.48 5.14 18.48
9 4.50 5.06 4.56 26.16 24 5.66 4.66 5.20 18.10
10 4.98 4.46 4.48 25.20 25 5.00 3.92 4.94 17.96
11 4.64 4.16 4.62 24.14 26 5.08 3.94 5.10 17.68
12 4.52 4.04 4.56 23.60 27 4.66 3.44 5.10 17.16
13 4.76 4.18 4.58 22.92 28 4.92 3.76 5.04 17.18
14 4.82 3.98 4.68 21.92 29 4.76 3.76 4.94 16.96
15 4.38 3.76 4.74 21.24 30 4.72 3.82 4.84 16.68

Table 1: Size performance in tests for zero serial correlation in the presence of outliers with
data generated by model (A.80) and sample size n = 300.

8.2 Performance of the tests in the presence of missing data

Missing data is another feature of real-world data that can lead to poor performance in

standard tests for correlation. For example, in the model for xt below, we may set ht = 0

21



for some values of t and treat the corresponding observation xt as missing. To explore the

finite sample properties of the correlation tests in such missing data cases we generate 5000

replications of samples of 300 uncorrelated observations. In each sample 50 observations are

missing (and set to the average value of the time series). We use the following model:

xt = 0.2 + htεt, (A.81)

εt = σtet, σ
2
t = 1 + 0.2ε2

t−1 + 0.7σ2
t−1, et ∼ i.i.d.N (0, 1),

ht =


1√
t

t∑
j=1

ηj , ηj ∼ i.i.d.N (0, 1)

0, t chosen randomly.

Figure 17 gives illustrative plots of observations of ht and xt generated by the above model.

(a) Plot of ht (b) Plot of xt

Figure 17: Plots of ht and xt. Model (A.81).

Simulation results are reported in Table 2. The standard test tk seriously over-rejects except

for very large k and the cumulative test LBm seriously over-reject for all m. By contrast

the robust tests are well sized for all k and m and provide reliable control for testing with

missing data at individual and cumulative lags.
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k t̃k tk Q̃m LBm k t̃k tk Q̃m LBm
1 4.70 23.38 4.70 23.56 16 5.00 9.56 5.22 51.88
2 4.78 21.00 4.44 30.80 17 4.12 8.12 5.20 51.96
3 4.82 19.44 4.04 36.12 18 4.82 8.66 5.22 51.66
4 4.70 18.84 4.64 39.68 19 4.86 8.24 5.40 52.24
5 4.46 17.36 4.48 42.10 20 4.48 7.78 5.20 52.12
6 4.90 16.44 4.60 44.54 21 4.44 6.70 5.58 51.70
7 4.64 15.24 4.32 45.72 22 4.28 6.48 5.34 51.54
8 4.86 15.06 4.52 48.08 23 4.58 7.48 5.42 51.40
9 4.72 14.08 4.92 48.84 24 4.20 6.30 5.72 51.40
10 4.14 11.98 5.06 49.90 25 4.64 6.06 6.04 51.24
11 4.80 11.58 5.02 50.24 26 4.44 6.26 5.88 51.06
12 4.48 11.36 4.94 50.90 27 4.22 5.34 5.90 50.20
13 4.74 10.54 4.86 50.92 28 4.90 5.82 5.94 50.10
14 4.40 9.74 4.98 51.32 29 4.62 5.40 6.04 49.58
15 4.58 9.36 5.22 51.70 30 4.96 6.06 6.20 49.66

Table 2: Testing for zero serial correlation in presence of missing data. Model (A.81).

9 Further comments on testing assumptions

The analytic and simulation findings of the paper and this supplement show that the robust

test statistic t̃k has good asymptotic and finite sample properties in detecting absence of

correlation at lag k in time series of uncorrelated variables generated by the model

xt = µ+ htεt, (A.82)

satisfying Assumptions 2.1 and 2.2, so that {εt} is a stationary martingale difference sequence

with Eε4
t <∞, and the scale factor ht is a sequence of deterministic or random variables with

the property

max
1≤t≤n

h4
t = op

( n∑
t=k+1

h2
th

2
t−k

)
, (A.83)

Below we provide examples of scale factors ht with Eh2
t = ∞ that satisfy condition (A.83)

and therefore allow testing for absence of autocorrelation in {εt}, even though series xt has

infinite variance var(xt) =∞. We also provide examples which show that failure of condition

(A.83) may lead to failure of the test t̃k.

Assume that {εt} in (A.82) is a sequence of i.i.d. N (0, 1) random variables and consider the

following two settings for ht:

(a) ht = ηt, (b) ht =
1√
n

t∑
j=1

ηj , t = 1, ..., n, (A.84)

where {ηt} is an i.i.d. sequence of random variables. We consider three cases when ηt has (i)
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standard normal, (ii) Cauchy C(0, 1) or (iii) Student t2 distribution.

Example 9.1. Suppose that ht = ηt where ηt are i.i.d C(0, 1) random variables. Then Eh2
t

is undefined and (A.83) does not hold.

Indeed, Cauchy C(0, 1) random variables ht have probability density p(x) = π−1(1 + x2)−1.

It is well-known that

n−1 max
t=1,...,n

|ht| →D M,

where M has inverse exponential distribution probability distribution function e−1/πx. Then

n−4 max
t=1,...,n

h4
t →D M4.

In addition, we will show that

n−4
n∑

t=k+1

h2
th

2
t−k = op(1), (A.85)

which implies that (A.83) does not hold. Denote by in the left hand side of (A.85). It suffices

to show that for any ε > 0, as n→∞,

P (|in| > ε)→ 0.

Bound

P (|in| > ε) = P (
n∑
t=1

h2
th

2
t−k > εn4) ≤

n∑
t=1

P
(
h2
th

2
t−k ≥ n3ε

)
= nP

(
|h2
th

2
t−k| ≥ n3ε

)
= nP

(
|htht−k| ≥ n3/2ε1/2

)
.

It is known, that for k ≥ 1, the variable zt = htht−k has probability density

pz(z) =
log z2

π2(z2 − 1)
.

The density of zt is symmetric, has an asymptote at the origin, and has tail behavior of the

form pz(z) ∼ log(z2)
π2z2

as |z| → ∞, giving the density heavier tails than the Cauchy distribution

by virtue of the slowly varying factor log(|z|). The density of zt is shown against the standard

Cauchy density in Figure 18 below.
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Figure 18: Density of zt = htht−k (black) and density of the standard Cauchy (green).

Therefore, as n→∞,

nP
(
|htht−k| ≥ n3/2ε1/2

)
= 2n

∫ ∞
n3/2ε1/2

pz(z)dz ≤ 2n

∫ ∞
n3/2ε1/2

log z2

z2
dz

≤ 2

∫ ∞
n3/2ε1/2

z2/3 log z2

z2
dz = o(1),

using the bound n ≤ z2/3 in the penultimate integral.

So, for ht = ηt ∼ i.i.d. C(0, 1) both (A.83) and Assumption 2.2 fail. The Gaussian limit

theory for the self normalized statistic t̃k also fails and instead the limit theory is bimodal

with modes around ±1. Figure 21(a) shows the estimated probability density for sample

size n = 100 based on 50, 000 replications. The results are nearly identical for sample size

n = 1000 as seen in Figure 22(a). Moreover, the ratio

Γk =
max1≤t≤n h

2
t

(
∑n

t=k+1 h
2
th

2
t−k)

1/2

is reported in Table 3 for several k based on 50, 000 replications. The results show values

of Γk that are much larger than unity for all k and grow as the sample size n increases,

confirming that (A.83) is not satisfied. Similar results hold for ht = ηt with t2 distributed

noise (iii), although the divergence rate of Γk as n increases is not as dramatic as in the

Cauchy case. Evidently, the findings in Table 3 and Figures 23(a), 24(a) confirm the failure

of Assumption 2.2 and the Gaussian limit for t̃k.

In contrast to these findings for heavy tailed noise, persistent unit root scale factors ht =

n−1/2
∑t

j=1 ηj produce small Γk < 1 ratios that evidently decline towards zero as the sample

size n increases. And in this case with unit root scale factors, the estimated probability

densities shown in Figures 21(b)-22 (b) and 23(b)-24(b) confirm that the statistic t̃k is well-

approximated by the standard normal even with Cauchy noise (ii) and t2 noise (iii) innova-

tions. These results corroborate the asymptotic theory of the robust statistic t̃k with data

involving these persistent scale factors in spite of the fact that for the Cauchy noise case Eh2
t

25



is undefined.

(a) ht = ηt (b) ht =
1√
n

∑n
j=1 ηj

Figure 19: Probability densities of t̃k with ηt ∼ N (0, 1), n = 100.

(a) ht = ηt (b) ht =
1√
n

∑n
j=1 ηj

Figure 20: Probability densities of t̃k with ηt ∼ N (0, 1), n = 1000.
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(a) ht = ηt (b) ht =
1√
n

∑n
j=1 ηj

Figure 21: Probability densities of t̃k with ηt ∼ C(0, 1), n = 100.

(a) ht = ηt (b) ht =
1√
n

∑n
j=1 ηj

Figure 22: Probability densities of t̃k with ηt ∼ C(0, 1), n = 1000.
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(a) ht = ηt (b) ht =
1√
n

∑n
j=1 ηj

Figure 23: Probability densities of t̃k with ηt ∼ t2, n = 100.

(a) ht = ηt (b) ht =
1√
n

∑n
j=1 ηj

Figure 24: Probability densities of t̃k with ηt ∼ t2, n = 1000.
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Sample size n Γ1 Γ2 Γ10

ηt ∼ i.i.d. N (0, 1)

ht = ηt
100 0.795 0.798 0.835
1000 0.378 0.378 0.380

ht = 1√
n

∑t
j=1 ηj

100 0.297 0.308 0.400
1000 0.099 0.100 0.103

ηt ∼ i.i.d. C(0, 1)

ht = ηt
100 437.737 373.144 485.402
1000 4752.813 7053.280 5845.943

ht = 1√
n

∑t
j=1 ηj

100 0.339 0.377 0.813
1000 0.208 0.214 0.238

ηt ∼ i.i.d. t2

ht = ηt
100 8.213 8.229 9.338
1000 20.136 20.172 20.172

ht = 1√
n

∑t
j=1 ηj

100 0.281 0.294 0.401
1000 0.093 0.093 0.098

Table 3: Values of Γk for different innovations ηt and two scale factors ht.
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