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Hay 17. ioas
Remrks on a Rational Selection of & Decision Function

A% th'is point it seems advisabla to axiometize the concépt of the rationsl
selection of & decision function. There seem to be various methods of phrasing
the actual problem in an axiomatic framework. We shall consider one such frame~
work and a set of axioms which seem to be reasonable requirements.

Whether or not a criterion satisfies the axioms is closely relsted to the
éet of problems {domain) over which the criterion is supposed to exist. For
exemple it is conceivable thet & suitabie oritorion mey be framed for the class
of all problems with one or two stetes c¢f nature (columms) hut thet nore may
exist for the class of &ll problems with three or less states of nature. Anocther
consideration in this direction arises frax the question as to whether it makes—
sense to insist that a criterion apply %o the selection from eny set of strategies.
One mey feel that it ia not proper to inaist on applice.bility to probleme where
not all mixed strategies are .ﬁVﬁi_la‘Uleo

In the following the solution of = problem will represent & set of the avail-
able siretegios so thet no ono of thess stretegles is "worse” than my aveilable
astreteziesn and. so Lthat there ssems no indication to prefor one strategy of the
solution to any others of the solution. This nonpraf;zrence is not necsssarily
indifference.

In what followe consziderables space is devoted to framing rslatively simple
concepts such ss the inverianca of the so'.l.utiox; of a problem if several columma
are interchenged. The'complicﬁﬁion arize in part out of an attempt to give the
notation enough generality to be applicable to problems where ‘an infinity of

states of nature snd of strategles ere present. This notation is needed because
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it is impossible to avold the infinite cases even in simple problems ag the
existence of mixed strategies malkes evident, Another source of complicetious
is the need to compare two problems where one is the same as the other
exceplt for the interchange of several rows.

At this point a change in notaticn will be mede. Instezd of & risk matrix,
we shell use the pay;off matrix, the elements of which are the payoffs in utility.l

DEFINITION i: A problem Q is e real walued function (with + wo and =« o= as
possible values) dofined on the Cartesian product of two non-null Spaces D and 5.
The value of the fimetion is called the pa:yoff ueu(d, e); 42D, s£S, D=
the set of stratesgiesa, S = the sgt of states of nature. We may write @ = (u, D, 8).

DEFINITION 22 A genmersl Problem G is e class of problems Q.

DEFINITION 3¢ In e problem Q, to an element d of D, thers corresponds the
funetion on §, uy = u(d, s); s £ S. This function is the "d-row” of the problem,
Q. TWe may write "d-row of Q" =dg = (ug, 8) = (u, {d}5 ).

DEFINITION 4: Similarly the "s-column of Q" = 89 = (u8, D) =« {u, D, {B})
where u® = u(d, s), 4t D,

It is evident the problem Q is. uniquely detemined,by its d-rows or by its
s-columns.

DEFINITIOH b3 é’D is a probability defined on D and iz csalled a mixed
straﬁegy;‘fm Dy will epresent a set of mixed strategies of 0. Vhen there is

no ambiguity D may be anitted from 5}3«2

1, From s historical point of view rick was originally phrased ss the negative
of the payoff, but itwas actually usecd and thought of as s regret. Thus the
two temms risk and regret ere ambiguous and will be dropped.

2, We may lcok upon a mixed strategy on D, as a mixed strebsgy on D since their
interpretations make them identical,
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DEFINITION 6: 7S is a probability defined on S end is called & mixed
state of S, S* will ropresent a set of mixed states of- S, Then thers is no
embiguity S may be aitbed frem 75,

DEFINITION 7: Corresponding o Q = (u, D, 8), D, and S7 (u, D,, §*) is the
problem where the new u 1s an oxtensien of the old ons.

uw =ul £p. 75) = B{u(d, a)} with rospect to the probability &L OF o (DEs).
This is éhe extension’of Q with respect to S*, and Ds. (E = Expectatiom)

It should be noted that E{u(a, 8)jmay be undefined depending on the original
u, éD! and 75, In perieral we shall have D, and 3* such that u( &p. 28} is defined
(and possibly +o0 or ~od),

DEFINITION 8: Tf D, is the set of all mixed strategies é-D of D so that
u(&D, 8) is deﬁned,‘ (u , D,, S) 4s the mixzed problem of { u, D, 8).

DEFINITION 93 Q;(‘_B, Qg (read Qq is stratogieally comtainsd in Qy) if
D;C Dy, 8y = Sy and I.‘or,dé.n-;_:, u]_(d, g) = uz(d. 8).

DEFINITION 103 Gbhdr r]ig,g (raad Q is derived by deleting repetitious rows of
Qp) if Q@ Q, end for 4, in D,, there is a dy in Dy so that wy(dy, s) = uy(dy, s).

DEFINITION 11: Qyd bdr ¢ Qp (rsad Q) is derived by deleting repetitio{;s

S| = sqz and for

columns of Q,) if 5;C Sy, Dy = Dy and for 5 € Sq avd Sy, &
8, in S, buk not in Sy, thore 1s an &) in §; so that 8,21 = 8,32,

DEFINITION 12¢ Q, z Qo (road Q is D équivnlent to Qz} if thore is s one to
one trancformation f of ﬁl onto Dy go that u;(dy, 8) = uy(£{d;), ).

DEFINITION 13: Q; i Qo (read Q; is S equivaléiit to Qz) if there is & one to
ons transformation g of Sy oate Sy so that uy(d, 'sl) = us(d, gls4)).

DEFINITION 14: Q, is isomorphic %e Q, if there is & ons to one transfor-

mation f of D, onto D, end a one to one transformation g of S; omlo 3, so that

ul(dl, &) = ua(f‘(dl), 5(51))°
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DEFINITION Y52 If Q) = (uy, Dy, S), Q@ = (uy, D, S), and uy(d, 8) = uy(d, a) =

u(d, o), fif d€ D3 /Dy then Q3 ° Qp = (@ Dy Dy, §), note that Q°Q@ Q.

DEFINITION 18: If Qp = (uy, Dy, 8), Q; = (uy, Dp, 8), end u3(d, ) = up(4, s) -
u(d, s) if d&€Dy N D, then Qy + Q5 = (u, Dy U Dy, 8) where u{d, s) = uy(d, s) if
€ D;E\d-’ lfa)(d. 8) if d € D,. Note thet Q@ @ + Q. Purther if ;@ Qp, there
is a Q3 50 that Q) + Q; = Qs

DEFINITION 17: Q(D)Q, is & problem = (r, D, S)
where D = {(dl' da) ' dy € Dy e dy € Da}, S e {(31’ 52) / $;€ Sys 55 € 82},
and u((dy, Q. (51, 5,)) = w4, &) + uy(d,, 8,) |

Tho above notation mean that D is the set of orderad pairs such that the
first element is in Dy and the secord in Dy, Essentially, Q1®Q2 is the problem
ef playing Qy and then .Qz;

DEFINITION 18: A solution C of & problem Q is a subset of D.

DEFINITION 19: A solution of g goneral problem G is a function €(Q)
defined on G so '!:hﬁb for each Q in G, C(Q) is a solution of Q,

LEFINITION 20: In a problem @, the dl-row d.lq ig uniformly better than the

dz-rm; d, if u(dr z) 2 u(da, g) for g1l s€ S and “(dl' 8} > u(dz, g) for some

2g9
s€ 3. dlq is uniformly equal to daq u(dl, 8) = u(dz, 8) for 2ll s € S,

Using those relations wo may dofine a partial eordering on the set of 4 - rows of
a problen Q, weo write d]_q P a5 (prelorcnee) if dy is uniformly betier than dgy

d1q T g (indi;‘feranw} if d; is uniformly equal to dy

q

éd,. R qu if d4Pd, or dy1d,

13

i 3 ' B .
dlq N dzq {non eomparability) if uneither d]g‘-'teizqnor dzadlg

Thus dy,Mdpq if thore are 8y and 55 € S so that u(dy, sy) > u(dy, s;) and

u(d,, s,) ¢ u{d,, s5)s It should be noted that the partisl ordering may be
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undefined if some rislns are +C2 or ~oe or are undefined, In peneral we shall avoid
this case although it may sometimes be treated. In place of the above notation

we shall use djPdg, etc., Whorever there is no ambiguity, always remembering that
the partial ordering is always with referemce to e particular problem,

Now that a number of formal definitions have been made to facilitate.
future diseussion we are faced with defining e rational solutim of a general
problem. Such a definition will involve satisfying exieams of rationslity. To
frame such axioms we mu;t esk what is intultively meant by a solution. and what
role doss G play.

’s

First of all a solution in the following should be consideredaa set of
strategios which remain after throwing away "bad"” strategies and eliminating
somo which while mot necessarily bad, still fail to meke the grade. 4
rational statistician must then make e cholce of one of strategles in the solution.
If we were to comslder any one of these to be as "good" as any other, then it
would make no difference which he chose. However it is the author's intentionm
to assume that they ars not uecessarily as good as one anothsr, that one element
of the golution may be replucod hy s uniformly better strategy without evieting
the other element fram the soluticm. It sesns reasonable thot if two strategies
are in the solution, any mixed strategy of the two should alsc bs im the solution,
This will be incorporated iutc the sxioms but it is felt that the comssquences
of anitting this exiom will rrove useful in later work, These consequences will
be considered.

Sinece a solution is phrasod with respect to o class G, the question arises
of what to dn if Q& G,» Q€G,, and c{Q) with respect to Gy has no stretegies in
oamon with C(Q) with respeet to Gyo That the use of general problems is mot
altogether moaningless follows from the faot that for every Q& G, D should

contein its mixed strategies. It must be admitted that another reasom for the
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use of G stems frem the authorts feeling that if G inéluded all problems where

D conteins all of its mixed strategies no solution would be found. Then it weuld
be niece if o Jjustification cculd be made for the existence of a meaningful set of
G's which are disjunct, The only such justificetion that the author can attemp:
(though with same mispivings) is the following, In any problem that is to be
faced there is a certein specific set of states of nature, Thus the set of £il
Q's may be put into G's where Q ana Q, are in a G if and only if there ic a
ona to one correspondence between S, and 5,. (Each G corresponds to a distinet
ecardinal mumber,)

Another jJustificetion for the use of G's which however fails to guard
agalnst a Q being in two G's, is a cleim that is often made that in cortal: classes
of problems, each row iz unimodszl. That i3, there is a'cdmplete ordarin, of S,
so that for each row there is en sq , so that u(d, s) is nenctone inerresing for
8 ¢ 83 and monotone decreasing for s > 83

DEFINITION 21: A general problem G is rationally solvable by .(Q) if the
following axioms are satisfied,.

This definition is'quit@ pretentious in thet it is conuozivesle that
C(Q) may satisfy the following exioms but fail to satisfy a relovant axiom which
has been forgotten but which chould te satisfied for ome to :iaim the solution to
be rational. |

AXYOM 1: C(Q)‘is non-null for every Q in G.

AXION 2: If dy1d,, dy €C(Q), Q€ G, then dy€ C(Q).

AXIOM 3: 1f d1€¢(Q), QE G, then there 1s mo d,€ D sc that d,Pd;.,

AXIOM 42 If q3&b.@ » r On, Q), Qo€ G, then C(Qg)= I;NC(Qy). This means
that all sirategles of the soii:ion which are awailsble alter deletiom gre in the

solution and none others.
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axzon 5: If Q@ Qs Q. Q€G, C(Qp)c C(Q) U(Dy-D;). This axiom says
that if the available strategies of Q; are increased, then each element of the
solution of the new problem is an element of the solution of the old problem or
one of the now strategies, This exicm is equivaleﬁt to c(Qz)nDICC(QI).

AXIOM 6: If Q = Qp + Qz, Q, Q€ G, where for every dgé Dy there is a
4, €D, so that d)Pdy then C(Q) = €(Q;).

It is not too unremsoneble to consider extending Axiom 6 to Axiom 6a.
However it would be wise to avold making use of the extension.

AXIOMN Ga: KT, Q= Q + Q. Q Q. Qg€ G, whera C(Q) contains no elements
of Dy then C(Q;) = C(Q).

. This may be interpreted to mesn that if fram a problem Q sirategles not in

the solution are deleted, the solution remains unchanged.

AZION 7: If Q = Q) + Qp. Q, Qq. Qp&C, then C(Q)Nc(Q)Ce(Qr + Q).
AXIOM B: IfQp dbdrec. Qe Q, Q2 G, then ¢(qy) = ¢(Q2). In other
words if two colums representing states s and sy are the seme, the solution is

415 tho samo as that of the problem where the states 815 Sp aro replaced by the
state s, or 85,
AXIGE 92 If Q, Qu€ 6. Q) 2y, then 0(Qy) = tle())]. This says that the
golution does not depend on the nemes of the stratogies but om the payoff's.
AXTON 10s If @y, Qu€0, @ 2 Qp, them C(gp) = C(gy).

Ris and there is a Q €Gsothat

Consequoncs 1. If Q1, Q:€6, Q 1scmorphic to Qz,,\tben C(Qz) = *‘&J(Ql)]

fttn

Thig is immediate from axioms 9 and 10.
AXION 11z If Q) = (u3, D, 5), Qg = (up, D, §), Q, QE&G,
us(d, s) = puy(d, s) + (1 -~ p) uols) ocp <1, and ugfs) is ettainable then

C(Qp) = c(Qy).

1. It is conceivable that there is no future for which the utility exceeds a
cortain nurber K. Then to imsert uy{s} = K + 1 would be mosningless in view
of the justification of Aximm 13. The set of attainebls uiilities is evidently
an interwal.
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This axiom which ems just comveyed to me by Herman Rubin, is justified
as follows. If one were-told that he would be given a problem Q; if a coin fell
heads and e strategy would be foreced on him if the coin fell tails, then his
strategy if the coin fell heads would be C(Ql). The game including the coin
has vayoff uz(d, g8) = pul(d, s) + {1 - p) ug(s) whare p is the probability
of falling heads (and is not zero) and uo(s) is the payoff under the strategy
forced on him if the coin fell teils, The rationale of this exiom ecan be
conzidered a3 a consequonce of the unsteted sxiom of rational behaviors that
a rational person will react in the same fashion to the same situation facing
him irrespective of what ceme before. This sxiom is rather powerful and has some
important conssquences,

Bofore stating thess censequences let us define cortain mixed strategies.,

DEFINITION 22: (d1, Gp, eess 43 D)s Pg «ooy Py) is the mixed strategy
congisting of selecting d; with probability p;, i =1, 2, «uey where
Pj * Pg* «eo * Py = L. | |

Censequonce 2. Jf Q&&, and Q 4 taﬁ Q implies QI,'Qze G, then

E_,-u (dl' do; po 1 - PI€ €{Q) for o< p<¢1l implies d, and d € c{(q@). (This is n
convorse of convexity)
Proofs Llet Q, = (uy, D, S)where uy(d, s) = pu{d, 8) + {1 - p) u{dy, s)
Qqp = {u, Dy, S) where Dy = {(d... dys ps (1 - 0}/ déD}

Then it is svidemt that for p>0, Q, 2 Qup D Q
Thus Qp, Qgp€ 6. By exion 5, & c(Qp,) by axiom 9, 4;€ c(ap)
Then by axiom 11 applied to Q,p and G, where uy(s) = u(dg, s) we have 4 £ C(Q).
Simiterly d, € c{Q5.

This consequence is not only a converse of convexity but it just abouk

states that mized strategies have no special claim to fame. This is not too



surprising in view of the faet tHat the gamo theory interpretation of the reole
of mixad strategles was that they served to prsvent the opponent from guessing
at ona's own stirategy. WNature could hardly be expected to be attempting to
outguess the statisticien.

For fubture discussions it will be convenient to assume that u = 0 is
an attainable value and that the interval of attalnable u's contains u = 0 as
interior point, That we may make these assunptions is evident fram the fact
that if u is e wbility indicator derived from the sxioms of wom Neumamn end
Morgenstern so is au + b, a) 0. Furthermore if the set of attalnable states
were indifferert (only one utility) then our problems would disappeer.

Consequoncs 3. If QI' QZQ G, Ql " (ul, D, 8), Q2 = (uz, D, §) where
‘ua(d, g) = aul(d, 8) a)0, then C(Qz) = C(Ql).
We may sssume o & 1 for otherwise we can reverse Q) and Qy. If a = 1, the
congsequence is triviel, If 0<a<l, we lat ug(s) = 0 (zhvieh ie attainable) and
apply exicm 1l.

Consequence 4, If Yo O Q3PE ¢, Q = (\-\In D, ), Q, = (v,, D, 5),
Q3p= (“:sp’ D, §), 0< p¢l, where uz(dg g) = ul(d, 8) + uy(s), ua)(d, g8) = puz(d, s),
then ¢{Q,) = €(Q,). .

Proof': u&‘d’ g) = Pul(d’ &) + (1 - p)l_-P_" uo(ﬁ):}'
- P

For p small enough uo{s) is en attainable utility since

l-p
fugle)l S luz(a, e)] + Jui(d, 8)]. Then c(es) = ¢(q) by axiom 11. But by
consequence 3, C(Qz) = C(Qp).
Finally we have tho convexity axiom.
AXTOM 12: If QEG, and " is a mixed strategy of the elements of C(Q)
[2ee. & 15 a probability m D such that the probability of ¢(Q) is one] then
£ en implies é_é C(Q). '
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As was mentione{d !;efore wo shall avoid using the implicetions o;.\twelve
wntil we have exhausted the other exioms. It may be noted that for any G,
the solution C{Q) equal the set of all admissibls strategies of Q i[thosa for
which there are no uniformly better onasj constitutes a solution satisfying
axions two to eloven but not twelve and not one. By restricting G so that
every Q% G conteins admissible strategies, exiom one will be satisfied. That
this sxiom system is consistent follows fror considering ¢ +the set cof
Q's with cne column and attainable payoffs and the least upper bfubBeobothd
payoff of each problem attained in that problem. Of eourse exiom 8 is trivielly
satisfied in thls case.

Let us now oconsidsr the class G of all problems Q containing two columms
and such that Q is the mixed problem of a problem with e finite number of rows
[evary payoff must of course be attainable:!. Thus every mixed strategy of D
is in Do We denote tho imterval of ettainable utilities by (1, B)., This
interval mey be open, half open, closedf:?e;::inﬂnite or infinite.,

A problom Q in G is S equivslent to a problem in which one of the states
of nature iz I and ths other II. [These are the labels put on the states of
natureJ Thus it may be geametrically represented by a set of peints in the
(x1., x3) plane where xy = u(d, 1), xp = M(d, II).

Since D contains all mixed strateglies wo have for each x, y, p,

x, ¥ in the set, 05 p & 1, the point px + (1 ~ p) y in the set, The original
pure strategies correspond to a finits number of points and heonee the mixed
problem consists of the smallest convex set ocontaining theue points,
olosed _
This sat iz of course aApolygon and every vertex corresponds to a pure strategy.
Two &ifferent strategies may correspond to the seme point (if they ars indifferent).

This convex sat assoeciated with the problem Q is ealled a geocotrical representation

of Q. The questions arise as to how many representations may a given problem
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have and of what problems is a piven set the geometrical representatiom.
First of all e given problem may have (et the most) two repruesentatioms, for
once the states are labsled, the problem determines the representati.ona There
are two possible labelings and thus ot most two representations. To answer the
other question we first construct a problem which is uniguely determined by a
geometrioal representation, Q= {1y, D, E') where S = { . -II}, D= {(xl, xz)l
(%35 x5) 18 in the convex set of the rapresentation} T( (x10 X5)s I) = x4,
Wby, %5), II) = 2,0 There is no ambiguity iu identifying this problam T with
the set of points described above and calling 'both.a geometrical representation
of Q for there is a onc to one correspondence between the sets and the '-Q':
[It may be noted that 'is.rhile T 4= not a mixed problem ‘Ez"eé'ab-fsi rr from a mixed
- problam for this G} 7 it is evident that there is a tv.ro column problem @y with
attainable peyoffs so that @ 4 L 4 rr  snd { is isomorphic to Q). Also if
there is a two coluwm problem Q3 with attainable payoffs so that Qy d b @ rr Q
and ?{is isanorpiﬁc to Q3 then?f is a geomotrical representation of Q.

Under what conditions do two problems Qq and Q2 in G have the seme
goomctrical representetion. This may occur if and only 1f there ars two problems
Qs and Qy 1n G 80 that @y d b d rr Qz, Qp d b d rr Q, {5 is isamorphic to Q.
Furthermore Qg end Q4 have the same reprosentations as Q; ard Qy end a row of
Qs curresponds to the same peint [i o@e oW Of a']aa does the corresponding row
of Gy in the isanorp}ifs:ﬁf S;aﬁm&rg i};ﬁg@ ﬁg %%bg;l?g in ¢(Qz), every uniformly
equal strategr,él:l ¢(Qz) and thue everj- row of Qg corresponding to a point in
¥ which corresponds -to a 3tratégy of ¢{Q3) is in ¢(Qg). Thus C(Q3) uniqﬁely
determines & subset of Q which in turn uniquely determmines C(Qz). By consequence
1, c(Qy) = £{c(Qs). The nature of this isomorphism is that a strategy of Qp -

corresponds to a strategy of Qg only if they both correspond to the same point,
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Thus C(Qg) and C(Qy) determine the same subset of Q. But by exiom 4 this subset
is exactly the subset determined by C(Q;) snd C(Qy). Thus this subset corres-
ponds to all problems which have the representation §. Let us then call this
subset C(as even though § is technicelily not in G. It is well to note here
that consequence 1 implies that if a’is roflectad about the line Xy = Xg,

¢(Q) is similarly reflected. We may also note the pertiel ordering is
maintained in éoing from two rows in Q to the corresponding ones in'§ and

vice versa.

Thus far we have been less speeifge :ilan we ma;r have been in the hope
of extending these concepts. However it well to note that for the particular G
we are discusging "5,‘ is a closed comvex piiygon with a finite number of vertlecs
{each reprasenting at least one pure strategy) and this polygon lies in the
rectangle where (x3, x3) are both in the imterval (a, B). Conversely for
every such § there are problems of G which have this § as o geometrical
represontation,

New wo may consider what the axioms imply with respect to C{Q). We have
alrexdy discusged an implication of consequence l. Comsequences 3 and 4 imply
that c@ is invariartwith respect to s transletion and an expansion or
eontraction about the origin waich males the transformad set & Q. The
transformed s ¢t ia obviously a closod cobwex set, Heowever oiac must be sure that
%1, ¥2 8till lie in the interval of abteinable payuffs.

The problem where T has only ons point has by sxion ¥ that point for a
gsoluticn, Counsider the problem QT of tha line connaeting (0, 0O} te {a, b).

[We denote a line connecting two points x and ¥y by {x to y]]a If the lins ie
in the closed first quadrant (a, b} P (at, bt), 0 £t ¢ 1 and thus by axioms

1l and 3, {(a, b)} = 0(q). Similerly if the line 1s the closed third quadrant
{(o, o)} = ¢(Q).



Weo associate.with the line x to y an angle @ whieh the vector from x to N
mekes with the vector fram (0, 0) to (1, +1). Thus we have yet to consider the
lines where «45 ¢ 98 £ 45, and 135:\22‘5, The cases where 135 ¢ @ ¢ 225 can be
reduced to those where -45 ¢ @ ( 45 by translating so that (a, b) goes into
(0, 0) after eontracting if nocessﬁry to koep within the bounds of attainability,
The cases where «45°¢ @ £ 0 can be reduced to the sase of 0 & @ ¢ 45° by
translating so that (a, b) goes inte (0, 0) and relfecting with respect to the
line xy = xp after carrying through the necessary contractions.

Suppose that an interior point of the line is in ¢(Q). By consequence 2,

‘ Buppose_both ond points of the lfzo sare in c(o.
the whole line is in €(Q), 4Then by contractionltat)is in €(Q;) where §1
is the line (0, 0) tc(té,.t%)?ig; ':I‘:-ranslating (td,td) to the origin (1;:&,1:5) is
1n ¢(Qz) where Gp is the lino (ta,%b] to (s, b). Axiem 7 implies that(+ta, tb)
is ir ¢(Q) since Q = ?z; + '51'2,, Henee, 0(53 consists of one end point or of the
whole line. Imndeed the above typs of argument can be used to show that if
8 = 0, ¢(Q) consists of the whole line.

Supl.)ose that 0¢ @ ¢ 45°, Consider the problem '51 consisting of the
triangle whose vertices snre (0, 0), (a, b), (a ¢+ b, 0). Let ?2'2 be the
problam of the line (a + b, 0) to (a, b) and Ty
of the triangle except for the line ’(32. '51 = '52 + ?2'5

and for every dg of 3’5 there is a dp of Qy such that

- — T
dy Pdz. Thus exiom 6 implies that €(G;) = (:tqz).
By translation within the bounds of atisinability

G(ﬁa) congists of the whole line '5:.2 and (a, b) € c(a‘i).

Hence (a, b)e C€(Q) by exiom 5.
Suppose that"é'l and 'Q'a ers two lines from (0, 0) to (al, by)s (32, 'bz)
respectively and 0¢ 8y € @ € 45% and furthermore that the entire line §] les
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in C(a'i). Contraet or expend 3'2 so that bp goes

into by. Let this new line be Qg . [This operation > aph)
2

keeps the line within the bounds of attainability.] (az.ba)

- ' o~
By axiom 6, if Q is the triengle bounded Ly Q1, Qg,

and the horizomtal line comnecting them, c(@) = c(d)
which contains all strategies of ?fi. Thus (0, 0) is in c('d') and by axiom 5 in
¢(3,). Since both end points of Ty are then in C(3z), the whole line is.1. Thus
we heve

THEOREM 1. Corresponding to a solution C{Q) defined on G the set of two
colum problems which are mixed problems of problems with a finite number of
pure strategies with attainsble payoffs, there is an angle 9,, 0 S 8, < 45
and g case (inelusive or exclusive) so that if T ths line fram x to y has an

angle €, then C(Q) is

1) The whole/;.;ne -6 ¢ 8 < 9, exclusive case
-e,-20 Lo, inclusive case
2) y it 6o £ 6 £180° - o, exclusive case
6o ¢ © ¢ 180% - 9, inclusive cese

1line

¢
1)

3) The whole/if 180° o < © < 180%+ @, exclusive case

L]

180° « 9, £ 6 € 180% + @, inclusive case

8) x 1£180° + 6, S o & 360° -~ @, exclusive case
| o o

180° + @, < © & 360°

6o inciusive case
Algo, if @g= O, the case is the inclusive caso and if @y = 450it is the
exclugsive case,.

Now consider any closed convex polygon G with a finite rumber of vertices

which lies in the region of attainable payoffs.



- 15 -

let by = sup{::ll ("‘1: x5)€ E}

b, = sup {xz | (by, x3)€Q}

az = sup {xp [(x), xp)eq}

a) = sup le [ (x,, aa)e?i}
Traversing the boundary of ‘ﬁfin a clockwise direction from a to b one pesses
the vertices o, = a, Cls O2s vee, &y _3, O = b, lot a’i be the line from
¢ .1 to cj and 83. The corresponding angle of the line transleted to the origin
45> 01>82> +o0 > Og> - 45° . Furthemiore the angle of the line comecting any
two points between o1 and cj is between G5 and 85 (if the orientation is taken
in the correct direétion)e Suppose Gj has an angle @3 so that

~ Bg< @i¢-9o in the exclusive case or

- 0% 815 gg in the inclusive case.

- at point b*
Then extend Q; until its x; eoordinate be;m:fes by sand its x3 coordinate becames

8] at a¥ Replace the boundary @3, Qg

a a*
by the line §3* = (a, 6*) (1t may be % oo 3
4 *
only a point)., The line @ = (e*, v*) Q) b
b

and the line (b, b). Thus Q hss been

~ g e . n
incrsased to a new problem Qo ; Qo is \\/,
°

the representation of a problem in G.

'50* =Q* “6"‘* where Q** is the new
problem except for Q*. To overy point d** of Q** thero is a 2* of G* so that
a*pa*, Thus ((Q*) = C(T*) by exiam &. By Theorsa 1, c(Q*) contains G,
which contains Qge Thus by axiom 5‘31 is in o(@).

If there ia noﬂq-;i satisfying the above requirements, a similar proof can
be used to show that c{'Q“i conteins the poiﬁt (x4, x3) for which x3 + xz atteins

its maximum,
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Canversely 1t can be shown that in this case C(Q) = {(v1, x2)} and in the
case where there armiaa'a satisfying the above restrictions only the points on
tha‘E; are in the solution, Thus we haws a camplete charactorization of the
solusion. To state it in an alternative fashion, we first ecnsider the following.
For vvery @ in (-89, Oo) (this interval is closed in the inclusive ease and open
in the exclusive csse) there is a p so that 0 £ p £ 1 and T'g"i)' = tan (© + 45),
Corresponding to the interval (-8y, @p) there is an interval (ps, 1 - po)s

THEOREM 2., If ?}'is the set of represemtations of G, and G is the class
of all problems with attaimable payoffs which are the mixed problems of problems

a peint a is in C(Q)
with a finite number of rows, then if G is rationally solvable by C(Q)ALf and
only if a is in Q and for same pin (po, 1 = pg), pry + {1 ~ plag % px; + (1 - p)%2
for all x in Q.

Thig theorem is equivalgnt to stating that every problem of Q of G may be
roplaced by Q* = (u, D, S*) where S* iz the set of mixed strategies of § where
one state has probability p ard the other 1 « p, p in (pg, 1 = po)o Then C(Q)
is the set of admissible strategies of Q*. |

THEEOREM 3., If G of Theorem 2 is rationally solvable by C(Q), &.= O,

(and the case is inclusive). This follews immediately from axiam 12.

The golution of the two celumn problems can be imberproted in a slightly
different fashion. C{Q) is tho set of strategies which minimize the maximum
regret in comparisons at a time. If a3 ¢ mp 2 Xy + Xy, then oy - x; 2 3, - 8y
or ay - x 2 ay ~ x;, and one of these statements is equivalent to the fact thet
in camparing (a1, ag) with (x1, xz}, e1, sp minimizes the maximm regret.

Theorem 2 can be extended to the case whers G is the class of all problems
where the representations are closed bounded convex sebs within the region of
attainable payoffs. This in turn is extendable to the case where the represen-

a nunenuil subset of
tations are convex in the region of atteinable paycffs end, the solution of the
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closure of the convex set is in the originel get.

Theorems 1, 2, 3 and conseguencss 1, 2, 3, 4 mad e’ nse of all the axioms
axcept 8 which evidently doesn't apply unless we included the one column case
in G. It is eesy to prove thet the solution for any (p,, 1 - p,) would satisfy
all axioms except 12, and the solution for p, = } (inclusive case) satisfies
axiom 12. Thus we have

THEOREM 4: G of Theorems 2 and 3 is rationally solvable by C(Q) where
¢{Q) 4s the set of strategies for which the sum of the payoffs attain the
maximm. There is no other "rational" solution of G.

The arguments used here secm to boe easily extendable to the "general" n
column cese. However if axiom 12 were abolizhed, they would still indicate a
method which would apply to the class of problems with no more than n eolumas.

At this point a eriticism of at least the use of certain G*s should be

made, A consiruetive critleism would be.espeeially appraciated.



