COVLis5 COLSIISSION DESCUSSION PAPER: STATISTIGS: NO. 3104
_ Supplemgnt.to'wstatistical Jiethods of Hbaauring
Economie Relationships,” based on lectures given
at the University of Chicago, Autumn 1948, by
Tjélling C. Koopmans
Notes taken and elaborated by -

Stephen G. Allen
(Occasional substitute: George il. Dorts,)

Tﬁese supplementary notes embody a‘nuMher of minor improvenents
and one substantial ﬁodification éf previous class notes -(Discussion Paper
' 310). This nodification 1s the explicit derivation of the likelihood
function corresponﬁing to a linear systenm of structgral equations, and its
successive maximiﬁation with respect to suitably choseﬁ subsets of its
parameters. In this way we have derived the limited information method
of estimating the parameters of a subset of one or more out of a complete
systen of equations, originally developed in a somewhat different manner
by Anderson and Rubin,
Exrrata to these.supplementany notes have been pgiven effect to
and can be disregarded. Errats to the original notes are given on pages

3; 6, and LY. The latter errata have not been given effect to.
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Economics 313, Oectober 8, 1948
Lecture 3, Supplement

PAGE 19;: X
Insert at the coneclusion of the proof of Theorem (52) the

Corollary: If the matrix B has a right inverse D {i.e.
a soluticn of BD=I), then D is also a left inverse {i.e. a
solution of DB=1); and convarseLy.

Proof: Multiplying

(5~1) - BD=1
through on the left by D, we havs
(3=-2) DBED=D . ‘ -1
Theorem (52) impliqﬁua?aﬁlb has a right inverse, say p~7.
l o=
ultiplying (S-2) /~ he right by b 19 we have

(5-3) DBDD™'= p0~Y, or pper,
which completes the proof of the first part of the ¢theovem.
The proof of the converse is similar.

FAGE 17:
Thecrem
(664) If B is non=singuiar in the system By’ = O,
then y* can only be the {0) vector.
PAGE 18:

froof of Theorem (71): We write
(5-4) S{A)= g |
and assume for the sake of argument that
(3<5) A u')>p

then there exists a non-singular square sub-matrix of {A u*}

of order #7% | which by permutation of rows and columns we
can make to be

311 o [ [i] 31* ufg

(-6} By + o« Ay ug} = (A" u'), say.

f541,1° o 8o qglv/

This sub-matrix necessarily contains the u—column; because

if it contained §+1 columns from Al -4%/ pgt be true.
Furthermore ~eould -

(3-7) §(£°) = 3

because otherwise the development of the determinant value of

(6~6)according to the elements of the last column would show that

(%-5) - is not satisfied.



.

1% follows that we can use the existence of solutions

x{j} to ths equations {87) and {89} cccuring in the proof
of Theorem (85), wh%ih we rewrite as

r
(S“BE .a X;j§§ rm‘!guoo,m

jm‘?‘*‘? gcangll
where m is the number of rcws of A,and n the number of

columns. Writing out the equaticns {70) as
b ,

2 oy
rj §=

I R I
(5-9} . % arjx:j = é_;,tj: arsxs + ji_?-i.l arjx..j = ur' rz‘i,coegm

for
We substitute the right hand members from (5-8)/ThHe arjg
J=Ff+1y-..,n in the second member of {(5~) to obtain

(s-10) ;f; ars§s » W Y=l one,m
where
y X B ) - ;
(S"i]} 58 = xs = z:.;-!« jtq' ng s=1pnnog'j
4 J=y+1 )
(2=730) : {3-8) :

gt

Now/™ implies that the matrix/ ostmultiplied by the
- transpose of the non=venishing vector

F1 - - %, -1

becomes zero, which, because of Theorem {(62), contradicts {3-3)
It follows that (5-5) cannot bs true, j

Since the rank of a matrix can obviously not be decreased
by the addition oY a column, Theorem (71) follows.

Geometrically Theorem {7i) means that if we consider the
hyperplane of lowest dimension (=r} containing all vectors
of A %represented by columns), evidently u', a linear combin-
ation of the vectors of A, is also contained in this hyperplane.
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5th line
from bottom

line %

4th & 5th
lines from
bottom

equation (30)

equation (33)
equation {34)
equation (35)

line 1
line 8
line 14

line 22

equation (91)

replace "structure (5) of our® with
"structure {5) within our".

delete all line 1, beginning "u .. ."
and repiace with

mpl A A 1 . (' " '}_nl"-g'
'El u v{,_ Tﬁ:Eéﬂu+ﬁv)gJ = T;xE}V J A0

unless =0Q"

delete "each mvltiplied by an appro-.
priate depreciation coefficient 7
strike out "di" and v,

add "+u" ss the last term of the
left hand member

add "+v"” as the last term of the
left hand member

add "+w" as the last term of tte

- left hand member

charge "rows" to"columns®

change "equation" to "equations”

should read "...it is of order £ 4+1,
which 1s larger than-$, the,,."

‘should read "...of the equations

-qu =0 iSaﬂo"

should rezad "X={I$J),.OO,X(3), 0 RE
0oy 03“1, 1‘1’ O.i+1g.ono, On)"
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Lecture 6, Supplement

PAGE 32:

Let us assume that the order conditions are satisfied,
and that we are uncertain as tc the rank condition because
our restrlctions on the other equations of the gystem are
compatible with rank G=1 28 well as with a lower rank of
the criterion matrix in {(437).

We may make the gereral statement that whenever the
ldentifiability of any egquaticn or any parameter depends
on the values of unkunown parameters, such identifiabiiity
is in principle subject to staiistical test. The conclu-
siveness of the test is of ccurse l.mited by the number of
observations availsable. ‘

A general argument which uay be advanced %t show that
identifiability is subject to test - s as folliows:s

In defining ldentifiability we took as given the dig-
tribution of observations. There are then two cases, '

) a) The distributicen of cbservatione will be such that
ail structures which couid have gensrated 1% are alike in
the parameters of the equation under investigation,
e f(ylz) is such that 531, S%Mafg

with S5 and Sﬁéinside our model, andé

b

3 P
{ oo g RACLY e NS o
( §32 cvc 3y 1\1{’; B .f\,]ifﬁg coo o ,D{\H{>

The first equation ig then identiriable,

b} The distribution of onservations is such that sid
the siructures are not alilkes -in the parameters of this
aquation,

ifea f{ylz) is such that there exists a pair in the
medel S and S *sueh that &2, Sﬁ;%f, wheresas %
N T - ¥
) . (OL,“, el W) S {0, e ’&ﬂk)”
Then the first equation is not Ldentifisble,
We see from this that whether or not 4he equation is

.

identifiable is g preperty of <he distribution of the observ-

ations. We therefore have a divhotomy of all distributicn
functions £ {y(z) =~ 1.6, of a3l such functions generated
by structures in the model-- ard we may set up the maii
hypothesis that f is in ocne c¢lass tc he tested against the
alternative that £ is in the other class,

The same conclusion can be arrived at by & iesas genaral
argunent, as fallows: ' '

Let us add a row of zeres to the matrix whose rank
is in question,




; 0 Q o o o 0 '\
L = 5 @ i

[

A {\/x.c:rk.ﬂi . ., mGkr }

We will refer to this matrix as the sriterion matrix
;}ﬁ?) of the first equation.

We know that whenever S and S *are equivalent, there
exists | such that £>5§C1£X9 that is, the cnly changes

in the coefficient matrix that preserve the function ¢ are
those obtained by non-singular linear transfermutions.

In forming the ¥ coluun of {20% only the 3% columm
enters from the(Xmatrix. '

Therefore (% T OX implies C)ST)%; }T(ﬁﬁﬁjg for

thie columns of {:%(13*fara reizted wo the columns of (3\
in the manner just specified. ®e know that the rank of
f}ﬁﬁﬁ is not changed by the addition of a row of zeros,
and we state without prosi that the rank cf =& matrix is
not changed when it is Pre~multiplied by a nonmsiﬁguiar
natrix,
and since the structurs Sﬁfrepresanted by CXjkis required
to be in the model, then the ¢lements of the first row

> \.: 1’ %I‘_f 3 *,
of ﬂﬂﬁ ) will also be percz.

‘ % \ o
teee PO w113,

We may therefore.conciude that between equivalent :
stractures the rank of the criterion matrix for the ident-
1fiability of a given egquation is always the same.

This rank, we conglude, depends only on the distri-
bution of the observationc: we tay therefore repard the
renk of the criterion matyix to bhe itself an identifisblea
parameter., It is therefove g matter of statistical tast
whether f(yiz) is such that the venk of the criterion
matrix is % G-9. :

Conclusion: Though ws may be in doubt abou: the
identifiability of a given parzmeter oy equation because
of the smaliness of the sample, it remains true tha¢ a sufficlensly
large sample does convey scme statistical informatien regard-~
ing the identifiability of that parameter or eguation




ERRATA:

page
rage
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18
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31

29

theorem {71}
line 6

line followin§
equation {138

Brd line
from bpttom

gtrike out "honwvanishing"

should read "...column tacked
onto @ ), then according to .
Theorém 85 there®

should regd "but where

f!ik,#.CX;; for at least one
value ¢f k"

change "should" to "may"
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General Qbservations on the Identificstion Problem..

In factor analysis in mcdern psy By, limltations
on experimentation give rise to a problem of identifi-
cation also: Theory suggests that the sc¢ore of an in-
dividual on acgiven test depends on the extent to which
that individual posseses certain abilities or mental
factors required in the performance -of that test. A
model is then: ﬁeatulated in which the 'score of an indi=
vidual on a test {i.e. the dependent 1able) is
approximately aqual to a iinear comb Vuian of the
individual‘s lities {(regarded as s
mental factor ‘which are reguired for
of that test and of a random influenc
vidual®’s score on the test (1.2. the rand
The model thua gpecifies the systems = -

Sip = Z C’\ k1 +oug (kﬂ,ao osK; mmi, ... N}
1=1 : : o
or in matrix notation,

Agq o0 Ay, AETTEERIR (TN W LS PREEE “m\

: 2 R 2 + 8- ;
dKT cooa ()(KL 8L1'0’10 YLN uxrﬁ oo U.KN}
where Syn ia tha score ¢f the kth indi £dua1 on the n th
h

individnai, )' 1n 15 a weignt repruaanting the "im-

portance" of the lth ability in the paxfbrmanee of the
nth

test, and “kn is a random influenea‘in the score of

the kth’ indiv:l.ﬁaal on the n*® test, .

- The Slm aa'e observable; the O‘kl“" k’}_n. and u, . are
not. The O{ kl* XIn are unknown stme’ﬁuml - parameters.
Knowledge of tha structure




a.

would permit prediction of thz scores, ‘The problems of
identifying the structure arise Zrom the difficulty of
devising tests requiring as Tew abil: 8 48 possible
acd of making @ifferent test: depend ifferent sets
of abilities, i.e. of arranging for table sprink-
ling cof zeros in the matrix .” to render 1%ts elements
identifiable, It 'i8 thus th> familie oblem of find-
ing the unique structure that generate 1eé observed
distritution of dependent variables, namely

(For a discussion of the identif
in factor analysis, see the unpublis}
Reiersdl, Cowles Commission Discussion ¥

7: Lectuze 8, Suppléméﬁ%?

The Situation n of Changed Structure. o
(Reading mssignment: Tinbergen, Tha St
Testing 6f Business Cycle Theoxies,; Vi

Sections 6.8 and 6.9 f

In Section 6,9, Tinbergen cites
chenges of structure: 1) Situations i
of policy replaces an entire equation
that the variable previcusly "explainey
is henceforth:a constant, e.g. governs
investiment by vary
2) Situations in which the valiue o
changed, e.g. & oh rd
consume as & result of social secur 18l
The problem reguiring ach cases is
whether or not ‘dgny other equations ar simultaneously
affected by sueh & policy. R
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Lectures 9 and 410, Supplement

Validity of the Least Squares Method: Case 1, Contimed.

Suppose, instead of choosing to estimate parameters
of the reduced form (191,-(192), we pick q as the "depend-
ent® variable and p, { as the "independent® variables in
the attempt to estimate siructural parameters of the
demand squation (189), say, by least squares, Clearly
least-squares estimates in this case will be suspect, for
the consistency of thece estimates, in the well-=known
theory of least-squares regressien, is based on the condi-~
tion that the variables chosen as the "independent® ones
can be assumed Yo retain a fixed value in repeated samples.
But in {192) p is a linear Tonction of v,, which is &
iinear function of v, and u,. This estaglishes a stochastic
relationship between the “ifidependent® variable P, and the
random disturbance uy, contrary to the assumptions under=-
lying least squares ¢heory.

Basically, least squares zstimation assumes stochastic
independence between the random variable and the "independ-
ent" {in the meaning of the praceding paragraph) variables,
i.e. exogenous variables. It can be proved explicitly that,
except for special values of ©lor ¥, least=squares es¢i-
mation of any of the structural equations {189)~(190), for
any arbitrary choice of “Dependent™ variable, leads to
estimates which are even asymptotically subject to a Ffinite
bias. We shall not prove this statement in general, or
with respect to_the model (189)=(190), but.with respect
to 2 s5til) simpler model discussed by Haavelmo.

Haavelmo's First Exsmple,

We shall cihow more explicitly the derivation of the
Plim in (H2.19):

m m
(s-12) &= —SL w1 -2  from (H2.1)

By Tyy
{85~13) y =5 = 'Téﬁf(z -7 + “T;??(“ - u) from (H2.7)

) Sw -
Multiglying)‘Jo%r (z = Z); and summing over %, and dividing
by N, we have

. _
(5-14) Doy = “T=?T{mzz + oy, )

Squaring each side ot}exggnd summing, we have

(s-15% myy = “1¥ [ﬁzz + 2muz + mu%J

Substituting (3-3) and (5-4) 1n {(3-1) we obtain

(-e)mgy + my,) Ky, + (v, + my,
Mgz + 2Myg * Oyy Mgy + Omyy | W,
which is (H2.18).

(S-16) a = 1 =




(3=~17)

(5-18)

(8-19}

(S=-20}

{S-21)

Plim m,, = Plim {,._L,._ 3:[2(?;) = ?ai] u(t)}

0.

Consider the expression

N N
n w o (20 - 5]ute) = 25 A ac),

i.e.

gA(t) e 2(t) -7
' T
with expected value zero and variance

a{[é.; Als) u(t)]’?} B {Zt«' % ACE)A(E) ult) u(t“)}

#

u

a2 ‘«?,S': A2(¢)

- G—2 “mzz
S
Since HET:: m,, = H,, by assumpticn,

mr
lim g2 22, . o,
N o N :

Therefore,

0

H

N-»ew N o N'

And finally

_ _.CFQ
% 2 u
Plima - X2zt Tu | O S o
- e 2 )
N=» e Byp +0 y 1+ G"t?i
=
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Econonmics 313, November 9, 1948
lecture 11, Supplement

We have recognized that {208) is a necessary and
sufficient condition for the identifiability of the
equation {198) we are concerned with. This in itself
is. proof of the equivalence of {208) with the earlier
rank conditions for identifizbility (137), in terms of
co=efficients of the structural equations, as appiied to
equation {198). A direct proof is as follows.

The rank of a matrix A equals the number of columns
less the number of linearly independent solutions x' of

{5=22) AXx'" =0

(This follows from the proof of theorem {85)). since
solutions of (s-22) are solutions of

(5=23) YA x' =0

and conversely provided XL is non=singular, the rank of a
rmatrix is not affected by pre-rultiplication by 'a ncrn=
singular matrix, A sipilar argument applies to poste
maltiplication by a non-Singular matrix.,

(a4
Let X be a metrix consisting of those columms of

(o
A for which {(198) prescribes zeros.,. Then X is obtained
from the rank criterioen matrix by adding a row of ZRYGS,
which does not affect renk. '

Ve supplement (199) with the remaining equstions of
the reduced form, denoting by y* the vector of dependent
variables occuring in (192), and by y#% the vector of the
remaining dependent varizbles, as follows,

»* ' . X A, N
yo + 0 c:"-'"r’?' Z"* -A'!f.’fz' ¥ - v “{198}

(5=24) 0 + ynAa_ﬁ&Tr kR 'Ad_gr*%l**l = gtd O

From the definition of the reduced form

(5-25) (1-TT) = (:‘5'157\

and, selecting the colurnz from excluded from {3987,
b8, ﬂﬁTT%ﬁ -

(5-26) | Bo 4l R 'T' i"."}f‘}ﬂ %“_1 O(

here the superseripts 1o ih2 zmorg snd unit matrices, gseyrve
© dndicate the number of rows and columns. T '

P

i

Al
LEY
t




i

costraltiplication with the noresinfular matrix

(Aa 104 ijT *H )

(w27 . 3 .
\ 1 ,&:ﬁlfqm ‘?ﬂ%
turns tha lefthard member of ($=26) into

b ot H@TT**%
Aﬁlagﬁmoﬁﬁ

{ Gmi2)

1t follows that

o
w29 ) (5=-28) hes the sams rank as O( "
the order of 2%1%4 15 ¢-ii,> Ve shsll prove

(5-30)  PLATT™) w$ (B0} ~ (goB).

Suppose first that in (L-30) a §'sign applies.
Then we could select from 4771¥% 4 non=singular submatrix

T of order ‘f(ATT**) and combine it with 44 144 ¢, the
following ron-singular submst-ix

~
{o=21) : 0 T" }
QAIA& 7 }

"~
of (L-28) with order £ (A T¥*) , (G'-H))‘F(a(), which
contradicts ($-29). Suppose next that in {5=-30) o
<« sign applies. Then gclect from (S~28) a nonsingulsy
subnatrix of ordex P (&), which necessarily takes the
form

fo m")
\11' 0 j

with 17 of order at most G=H, and hen with the
nensingulsr T of order nt least (X) - G-H, which
contradicts the assumed inequalities negeting (S$-30).
Thls completes the proof of {53=30). Since the “old"
iﬁ&ntifiability criterion was

Mo
FA) =6 -4
the "new" ciiterion
PAT**) oy - 4

is through (4-30) equivalent o it,



Enonomics 3320, fovember 9, 1946

Lecturas 99=1%. Suponlemont

Semsrks on transformation ¢f zyivblec in a densily fenevion.
Hetes for Neonomics 3121,

kzferences: Arrow, leci: <
paic Pire n7_o
Wilker, Mathematical Statisties, pares 23-29,

1,

Suppose we rave a yandeon variable % with a probabiilty
density functien  {x} such +thet (up to first order terms

KR

Ha

LAsll) e é? (4)aX,

[m2) p(x 2 x
and a random variable y such. that
(6-33)  x = h(y),
xre X is a2 continuous. rmoenotonically incregsing funt:on
Y. We have similaxly
(g3 47 P(Y £y Svent) = w(Y)ay .
Then $(x) and %(y) can be relsted through

{s=75) PL S x & Xaax) = p{Y 2 Yiay).
y

i~

From (5«32), (S-34) and (5=%5}, we have

v

(436 §U0aX = WIY)av.

w2 observe Tthat in the limit uﬁ%ibecomes

returning to small lettsrs,
[ 7. 3 " - . q d){
{57 ) Wx?) ¢x£« ay

i is oa monotonically decrecsing function of ¥, we nend
enly osserve the precauticon of using the absolute velue of

oo . .
Jy *¢ preserve the equality in (u=37).

dx
Ci L)

and'thus,

ir & two dimensional spszce where we define

= h_Q{;jf-i syg‘)v

=
1

we have

k.""-\ N Q{" ¥ S N s Yy : . :
( .-9:; l -‘{1 ;—&2 = x"t ’1(2 = .LT+&XE,X2+AX;J:-: ¢(X-§ ,X?)dy.-id)ﬁg

where again to express Y in terms of ¢.we must ssy thet
for'the small area Ay by~ in the y-space there corresponds
an (in the smell) proporiticnsl tut not necesserily equal
ares in the x=space. ‘




: ey ol proacetd : Pimdr fow dnda
Saall aveas is given by ?
i.u::i ¥4 Xy
&Y &Y,
(Q fff_; 'J' £ det
& K, ax
i“' 1 2
z I —" .
E & 'y byg . o

.’11

j. 1’10(:'9

{ G415 ) Q((yT,yg) = €3(x@,x2)|J|
In the genersl cuase where

% o= hlyg, coo Ly

{ 54 2) S : y
Xy = Bplygs ooy

we have iP(y1, 0o o ,ym ¢(x1, see g xN)IJI9 whera
dX%y ... o
:r.")y‘gﬁ ' 33’1

(54%) lal = laet : : .
Iy ... dx
ayN &3’;3‘

and urov1u9d J does not vanish.
I1f h% aea hPJ ere linear funotionu

N-

Lo-44) xn:'z-_knm Ym
n=1

the Jacobian is simply

D
{5=-45) J = det § det./L
A“iN ANN’

dince we require J to be xon-vanishinp, the trans-
formation inverse to ($-42) exists. If we introduce the
notation

i

. a(x oo g X ) (}’ I v}
(5-46) IRaE NGO . = S Aoy
xy y a(}1’0'opx‘1)

nig dvcerminant is known zs the Jacobian, abbraviated by .
e




wi necassarily have Jy“ﬁ?v” iy &% 1s seen by successively
. (1 o A .
applying ($-42) and its inverse, The net effect is no

0ARryTe in ¢(x1, ooy Xa}c fenceo

( “-"”""4 ?) Jyx‘ J =
Xy

Lerivation of the dulti=variate lormal Distribution.

suppose that we have G independent variables Wy with
distribution N{O,41). Then

= 0 for 1£j

[5-48) Elwy)=0,  Blww) { =1 for i=j °

The joint probability density function of the G variables 4is

e G

_ G
_ : G 1 2
{v-48) Nlwgyonw,) = ( 1 o7 Z_; Y1
. ' o i=1
VoTr

N I S A
Yau -
\Nritinfr Wo= (w1 Yy 04 9\"](‘[ ) o

1f we define G vzriasbles uy by

G
(0“50) llg = Z A{"h“’h .51 or Simply uv" “"'-AV-’O
h=1

whereq/i is non-singular, we obtain the joint probebility
density of the u's from ‘that of the w's by the transform:ztion

vt E-A.—1 u’ ,
6 dafUoTAS.
{6=51) 4}(111,”9,11(}) :(.T—%:'ﬂ*\} e 20 -A. " :

det A1/,
Vu’ith
The lust factor is the right=hard member ofis the Jacobian
ol the transformation. ‘e shall show thet the co-efficient

matrix of the quadrstic form in the exponent of e and the

Jacobian are simple functions of the noment matrix of the
u's,



¥ wyuy = Blugu ) s .!.-:[( PRIERISIP W JJ |

= A ip ﬁfﬁh iwé ”h

Eyh
D .
po. 2%.} )\. l«:‘""" v0°°yG)
) j-f“ E(t‘. (j‘.: ,ooosG’) -

Let us write for the moment metrix of the u’s Z*((

44 J
Then we have found that

s-52) 2 W LA :

which is obviously symmetric (Z az') We then have

det 2 = detAdet A = qet? AL
dc«:'t:./\."“i det 1;/\. det” iz

and 2-1 -—-_/\_“1_/‘_"1

Thus we may rewrite (5=51) as

¥

- G - %u Z—-“u’ -— Jﬁ
(5530 $lugaeneiug) = (2m 2, o 7 caet P2

{There is no page 17. Proceed to page 18.)




-

¥or further discussion on the multi-variate normal
distribution, see:
arrow, Lecture [lotes for Zeonomics 312M, page 51-585

i
L
dilks, lathemetical Strtistics, pages 6369

verivation of the lLikelihoced Function of the Sam.la.

In the preceding supplement we defined the moment
netrix of the u's as

Z = G';iujf! = nlu'u)

snd found
- AN .

Zis the expectation of a matrix of rank 1, but if we
require that the u's are linearly independent functions
of the w’s, i.e, that./L is nonsingular, then the rank!
of £ is G, ’
Recalling that u(t) = {u1(t)go;qsuc(t)} has the joint

density function in ($=5%) and that ¢[ﬁ(t,)|‘t} = §lu),
we have for the joint density function nf
= fu{i)aoou(t}oomu(lr)}

m =
T 1 1 o
-] - -
{5=54) E(B) = ﬂ {2m) 2 "det QZ"exp{-%u(t)z u"(t)}
. t=1

1 T . T
~ler - -1
= {2T) 2 cdet 2 nea'xp‘t:-ézlu(t) Z u“(t)}
_ t=1

for whiech the corresponding volume element is
du = duy(1).c.dug(T),

Wwe shall use the transformations defined {(76) to
derive Fly|z,y,z) from & (u)

where y & {y(T)oooy(T)} = {y1(1)°°°yG(T)}
z = {2(1)00¢Z{T)} = {21(1)o;ozK(T)}
Y= y(1=-9...y(0) = ote.
2= z2(1-T%...2(0) = ato.

First we will indicate more explieitly the coefficients
of the variables Ya{t) in the system (76). These can
be arranged in the fol owing matrix put toFether from
the matricesﬁo,é /éfﬂnoted in {82): (see following
page ) '
7. Cramer: wathematical lethods of Stetisties Ro2.5
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U nore succlnetlys

y (1) 3(;13 Y

e ) . O ORERY
KA(K) gﬁa o ©
) O 1 t o
W {2) @i = o ,
w3 | & @, &, .. - 0
554) X N
, < o)
u_(fy'r‘f) &tﬁ o s .
N - N ~ \\ 4
¥ . ) '\\
, 6 o L Re - B,
O
ulT)
We do not need the coefficient matrices of the z{%),
which are all exogenous, nor for the yit=1T") {%=0,%,..., (%)

~in order to determine the Jacobian of the transformations

76). Our reasoning in regard to the y(t) for time painis
prior 1o t=1,...,T is similar %a that with regard t¢ the
z{t): Ve will only consider repeated samples arising from
other drawings uw(t) over the time-pcints tet, ..., T , &nd
thus the values c¢f the endegencus variables y{t) for %0
should be held constant wn these repeated samples. This
in no way alters or restriets the Joint distribution of
the disturbances u(t) t=1,...,7 ; for our assumption »f
independence between the ul(t) and u{t=14) and between
the u{t) and the =z(t) implies

$ujzo . 2) ~ T .

ihe Jacobian of the transformation from uw to Y is thus
the determinant of the matrix in ($=55), Wwhich we may
denote @ (T ). Using the Laplace expansion by blocks on
the first G rows {the first row of (S=554)), we obtain

det (1) = dot®odes @ (-1 ). Applying the same procedure
to @ {1-1), etec., ana writing @,= éas in {83), we have

J= aet@(T) = detT®,

and hence

1 .1 |
= (T o !
{5=56) F(xlg_, X 2) = f(2m 2 °,detT 3\" det 2 Z °

T -
o {-3 3 a0 T e 10}
T t=d




a

G

wheyre ey
!" ¥

X = (@@ @ Do Teny 2o

by (@ 4+ K){g®+ 1) metrix
and where ,
x{t) = y{t) yle=1) ..o {3=1%) 2{8) ..o 2(t-T)

L ]

a row vector with {G + X){t"+ 1) elements.
The volume element worresponding to F is
dy, (1) co0 Ay, (T) . -
Gbserve thyfthe exponent in F is the gquadratic form

TG ,
(5=57) =4 37 L x (8 8y 3, (8)
t=1 i=1
J=1

y o et
where @5 (eij) = O 2 D{

Writing %in(t}xj(t) = mgy and (mij) = My a symmetric
t
matrix of order G, (4=57) beconmes

! * L
i,] i i
where (9!!1,)11 is the 10 element of the main diaponal in

the matrix @M. The sum of %he diagonal elements of a
matrix is known as the trace {abbreviated tr), e may
rewrite (5=56) as

i m :
- =0T, -5
{5=59) F = (2T) 2 idatT@,det "Zexp —%tr( O\OZ"!O(M}
Teking the log of ¥ and muitiplying by %, we have

{5=60) %lag F=1L= M%G log 2T + log,det(3l-%iogdet2i
- e (' Zo(m)

which we shall call the logarithmic likelihoed function
cf the parameters gilven the sample. .
It is seen that the moments mj; are the only functions

of the obs_ervations that enter into L. Inserting these
sample moménts in ($-60), we may determine maximum like=
lihcod estimates of X and O{ as Tunctions of L by maximizing
L with respect to the former; such values. of tho parcasters if

true would maxinize tho probability of "Drawing'" our sample,

. . P
}’«i(t)n c‘.c:f(;{'w}n s f,\:""'aﬁ {t“’ﬂﬂ)n c‘cyG(t‘”fn) Z'l (t)n a0 e ?5,,€= T

3,

1
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%)

invariance of 1 for linear Transformations.

A8 an exercise we shall show explicitly that the
foru of the likelihood function is preserved by linear
transfornetion. For then wo have

| Q{*m, IO(\ ¢ in particular ‘:gb = I%»
and u_f* = I LrLi ;

{where L non-singular), That this should be so follows
fromftheorem {117§9 bui it 18 instructive to see a direct
RYoQr.

Recalling that for one $ime-point t, we have

2 = Huu,
and thus
Z‘V;E B * = dtncur) |
etuulr s XLY

: » . P
Inserting these expressisns 4in a function L formed
anglagously to {(5-60) we nzve

(5=61) L*a-,:’,f} log 2T -+ z.dgﬂdet(ﬁ*l %log det £X

a W ¥
- S & 27 o)
T + lop ldet Iﬁ' -~;_,10g' det{ I XY

- %tr%i" T(YLY ")_‘FIO(L-I}‘
_:--%G log 27 = 3.(3,a",d.etr\ + log\detﬁl‘

i

A

= -%G log

. ) - .
- %log{det JdetZ det X ) —?,_54;1'{ AT T i"i';’,‘“ T o M)
since -%Ng(detfdetz det ) = -%lég(detgl’f det F_ )

=*%(2 logldet 1’,’ +log det 2] )

= - logfdetfff - %Iog det 7 ,
we have

& 3 )
L% = = 3G log 2T + 1log !det(:bzm %10{’,‘ dctz--;tr{“’zﬂa‘m) = L

g.e.d.
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Economics %17, Novamber 13, 1948
Lectures 5715, Supplement

{iote: The Supplemencs %o Lectures 11=-15, of which this
is the second, reyplamce the material of pages 65=89 . )

Further Hemarks on Id:niification.

The function L of (4~60) is seen %o be a ?un‘tiun of
cbhservations, i.e. M, and perameters, i.e. & ={C

~hen we consider L as a likelihoed furction, L appesrs
with observed values of ¥ inseried; Lrus L becomes o
function of paramel2rs o¢nly, once the observations zre
given. 1f then the parameters of L are urntique, i.e,
there exists no O%={1p(, o\ Ysuch that

(5-62) e, u) = M e% W), for a1l I,

we shall say the perameters are identifisble.

On the other hend, what happens if we stiempt esti-
mation by maximum likelilosd of parameters . which are
actually not identifiable, i.o. are such that D 4 I
exists for which (5=62) is true? UYe need to distinguish
two cases. .

First assume that a D4 I making (5-62) true exisis
for any value of € satisfying the riven resirictions.

Then the attempt to waximize L{©, 1) with respect 0 &
cannof .lead to 2 unique "estimate" @(I), and 1lack of
identifiability of € 1s detected in this way if it was
net noticed earlier.

Jecondly, however, there is the possibility that
the restrictions on @ are szufficient in number and varisty
te preoduce identifiability for salmost all values of & ,
the exceptional values being those in which the appropriate
rank criteria of identification are not met. In that
case, 1f the true @ happens tc¢ be one of these exceptional
values, this need not show up in an L derived frcm a
finite sample, because cof sarmpling variation., This is
therefore a deceptive case, which will only reveal itself
through large estimated (as against infinitely larpe true)
sa?p%ing variances of the seemingly unique "estimates™

i

Computation of maxiuum Likelihood Istimstes.

Ubviously for a lerge system of equations the com=
putation of maximum likelihocd estimates will be long
and tedious. Ve may in some cases sacrifice socme of the
iesirable properties of such estimates in favoxr of estimates

wnose computation is lees invelved. '




Before purs sudng this fo
special agssumptions for a m

the computation necesssry wi

properties,

CAGE T: The equation

The model is in this coso
dist

riher, let us consider
Aal whlch reduce uuhstan=
tut sacrifice of desira

e

Ak

assumed to specify that
the

the Jeint distribution of turhznces ogeuring in
first subset is indepenient of thut of the disturbances

in the second subset, i.c¢

I

(-‘.}""63‘} (;_ = Q(h b ;‘ 0 Gr

\ 0

0\

i . r
Gy ""‘;@r’" ' 4-:3(?

o

(Tq :@1"'{ e G_C-'pé';

and that the second subset Fus as riany equations as

dependent varliables, i.e,

6:1 BREACH

T
6(”_,'3 s

bm64) =
wnerg G= G + Grq

O LI O (?J{%.If-‘”;‘aﬂf _' v 66;:*‘)9
] .

Bis
B6a6

]

O-“O@m%ﬁ'“gﬁ'

Our systert thus looks as follows:
st set: ﬁzry; +@Eyﬁ r ' = uld
2nd set: éirn"p jm Zg = Ug
where ui is independent of wg .

since the second set is

then in the first set gé

varia¥les "with respect to
sense, hOWPVPT)

sufficient to determine

tite first set"

[/ X3

Vg
may be regarded us "predatorminend”

sysltam ray b2 split inte twe subseis.

s

",
i

i

;
A,

(not in a temparal




From (5<63) we have

{5=68) log det 2. = Lop dne };_,m + log det }’mmn

Y
and ! o o
L Tt SR
{S=+60) ) = 0t I
e o, 3 e f
Writing

N
o =0, N
we have Z;I Q I\
(-67) QT = (C\/i o 1 We) 2 W0
= (:){;.z;«gd, ‘1‘0(;: Z‘izn Q(E

&

L e

|
|

I

From {5-~64) we have %

{s-68) log !detﬁ{ = log_! dezt@rg_}a- log 'det G.);“I ‘

Then using (5465)~(5—68), e obtain from ($-60)

(5-69} L =Ly + Ly |

where

Ly = constant + 1o !d.e‘t@);zgmgglog detzn %tr{O‘i—Zﬂ Ol i)
Lg = constant + log [det(3,, | ~31of de@i,zwétr(C{;";(XmM} :

It will be noticed thst the parameters occuring in I,
are different from those in Ly . Unless the two sets of
barameters are lirked by restrictions, therefore, we nay
daximize L by independently Daximizing Ly and Ly with
respect to the parameters sccuring in them, snd thus ctiain
maximum likelihood estinztes of those parameters,




Casli 11: The Recursive Yorm,

Qur assumptions zre now that the rmodel specifies

e’el LA L?:’ g
{5=70) Cs = . ? Cﬁ non=ningFulzr
O “ » } . b . ]
» Foe?
_ 56

It may be left as an exercise to prove that these
restrictions are.sufficient fory identification of =21l
equations. If no further restrictions connact para=
meters of different equations, our system may be split
in%to as many subsets as there ore equations. Applying:
repeaBedly the argunent of Cage I we find

(8“72) L = L1 + L2 + . s o 4 LG o

It follows that wsximum likelihood estimation is in this
case equivalent to the method of least sguares if we
choose a5 the dependent variable in each equation that
varjiable whose coefficient dppears on the main diagsonal
of @. The estimates obtained, being maximum likelihood
estimates, are consistent and asymptotically efficient,
but not necessarily unbissed in finite samples, For we
nay be violating the assumption thet (in least squares
" terminology) "independent" veriables can be held constens
in repeated ‘sarples. While the varisbles yguj,uoc,yg

liey be called predetermined witnh respect to the gth
equation, they may depend on earlier values of the y's
including yp, and thus zre nct truly independent as re-

quired by least Squares theory,
48 an example of the recursive form we shall select
a model that may have particuler relevance to zgricultursal
mzrkets where supply for a period may be dependent only
on prices of g preceding period. '




Pl

bemard: Ofp + q g wm o
Supplys @ + Vp., + R =v

where J. = o andi}y = o
"y 0 Myy 0 1 ;

We must chooge q &5 the "dependent™ variable in the
second equation and p in the first. Clesrly we ney not
assume constancy of P.; 1n repeated szmples "over the

beriod"”, and our least squrres estimate - will consequent-
iy bave a bias. This bias is of order #r» Which is not

an insignificant magnitude for finite sanples. Ses

Hurwicz: "Least Squercs Blas in Time Series® in Coviles

Cowission .lonogrsph 10, or the finite sample bizs of ;
certain consistent and asyrptotically efficient sstimates.

‘Lectura 12, Supplement

Properties of Haximum Likelihood Fstimuates with Respect
to Lfiiciency. (Fage 64)

Wald has now publisked (innals of Nathematical
stetisties, Liarch, 1948) a prooT of the asymptotic
efficienc{ of maximum likeli'ood estirmstes for the czse
of general stochastic processes depending on only one
parameter, I, hubin has given a proof for the cege of
stable linear stocheastic difference equation systems
with many parameters {Cow]eq Commission Discussion

Paper 301),




Egonomics 3%3, lovember 2%, 1948
Lectures 91=1%, Supplement

ERHATA to Supplemental Hotes:

page 11 2nd line of {524} change "g" to “g W
page i1 Equations {$-23) thru The minus signs between
{5-28) sub=-matrices in threse
‘ equations should be moved

%o the right so that they
will be read as referring %o
the second sub-matrix, nny
as instructions to form the
difference between two matrices

page 21 3rd line - Read "G by (G+K)(TP+i)"
bage 2% 6th line- "zk(t—TF)" should read
" zK ( t“='1n) "

a
page 2% Tth line “(t=+1)" should resd "/{";1)
page 21 Tth line from Before "sample" insert

botton "pasrameters given the"
page 2% 2nd line from Change "éstimates" to "vaiues
bettom of the psarameters if true
' would" '
page 22 3rd line Strike out the word "the"
page 22 13th line should read:

ZFe (¥¥) < pzaruT)

CAbE I1: The Recursive Form {(cont®d)

Ve will state without proof that any model by a suitable
transformation of variables ean be put into the Recursive
Ferm in as many ways as we can order equations and dependent
variables. This form, as we have observed, always has ident-
iflable parameters, Now if the parasmeters of eny equation
of the Recursive Form zre estimated by the method of maximum
iikelihood, the estimates obtained are at the sare time _
lezst squares estimates if we choose for the dependent variable
ir each equation that variable whose coefficient appecrs on
the main diagonal of{§ —— subject to the qualification theat
we either have no or use no rerstrictions by the model "in
excess” of those specified by the Recursive Form itself.




New the last equation of the Kecursive Form {i.e. that
squation having only one éependent varisble in it) is ident-
ical with the last equetion of the reduced form (that arranges
dependent varisbles in the ssme ordér). This follows frow
the fact that these equations exclude the same set of G=1
dependent variables (all but the last) and that such exclusion
is sufficient for its identification (check on the rank
condition!), Thus maxirum likelihood estimation of the
last equation of the reduced form is equivalent to least
squares estimation. Obvionsly, this conlecusion is not spege
ific to the luast equation, since the variasbles can be placed
in any desired order. '

vie thus have obtained the imporsant additional result
that least squares estimutes of the parameters of the reduced
form are consistent and asymptotically efficient even when
legired endogenous variables eppesar anong the predetermined
verlables in the reduced form (for we have mzde no restrictions
zgainst their appesrunce in the corres;onding Recursive Form).

CuoBE II1: QOne-Equation Systens

In such models we have

Z= (6.2),ﬁ== (-1)’ 'd'nd r1’= (n’--a’rk)r
Since tr(D(GZ"-IaM) = tr(z_wxm D(')

(cee (5=T76) below) we have

(b-73_) L.‘ = const »1036‘ - —2-&_-? tr(-'l,b'.l,.“,xK)M 31

4
= const -10{%6'- E—é-;g z 61{‘”}{1(1
k=0 '

: 1=0 -
where X;: -1.  Raising e to the power Ly, we have

(v~74)  f = const L

. 1 o
¢ Py ‘5@22‘3“‘1:131 ,

which is the likelihood function corresponding to the linear
normal regression model of one variable on a set of other
variables, '

llote how the expression {5-73) is generalized in {$-60).
The —ég becomes incorporated in the trace term as a factorZ"t
The -logl becomes_ -flog detz, Finally, an additional term
log 'detﬁl arises from the Jacobian of the trsnsforrmetion from
the disturbances to the dependent variables. |



mathematical Digression.
The trace is only defined for a square matrix. Three
obvious properties of the troce cre as follows:

{5=75) trX = trX’;
20X is a p by n matrix and ¥ an n by p matrix,

(=76}  frXY = trYX
Dk S f

since ) | diﬁxijyji = ;z: ARITLIPY
i 1 J=1 i=1

J”’.:.

from {»-=75) and ($-76), we hove

i
-t

=

(5=77) trXY = tr¥X = tr{Y¥)® = trXx'y" ,
Some less obvious pfopérties of the trace are:
(5-78)  trX = tr0X0° 4if O is orthogonal;

iT X is real and symretric then
(5=79)  trx =J 4.,

whare the ;\. are the "charscteristic roots" of X: since
i ¥

such matrices are alweys orthogonally similar to diagonal
metrices with characteristic roots as elements, (S=79)
follows as 2 corellary to {$-78). The latter property we
shall not prove.

Differentiation of 1%rxY' with respect to a parameter:

liecre we have X and Y two rectanfular matrices with
equzl number of coluuns znd equal nunber of rows. We shall
euiy 1oy various assuriptions about the elements of X and Y to
~deternine the derivstive of triY*® for such cases, .

Case 1. Assume all elements of X but none of Y are
functions of some iaraueter, say «  Then we hzve

_ Z : ax
Foo d d 2 i
i,:.)""l'DJ tri¥* = 3 X Ve = (-—TJ- ¥ .)
H? d? 13v1) ‘ d ij
' irj 1!3

tr(%% Y)

i

Qhere %? = (;%%l)a.




2o

PR

Case 2. Assune ? =Xpq and that the remnaining elements

¢f X and Y are independent of‘€
{a) (S-T9) becones

d ; : 4%y 5
(bMSO) HEE;- Tri¥® = ' (T_k} ¥ JJ-= ykl 3

. 0 for 1,30 £ ¢ %
since a”“J' { Ei il = kgl °

{b) how assume X = %°, This makes Xy ® Xppv but we

assume that all other elsments of X and all elements af v
are independent of Xy o Then we have

: Yy + ¥ if kg1
(5-81) 3%- trXY’ wq T 1k
kl ,jkk, if k=l
dx;4 : .
since dxkl = 0 except when {i,j) = (k,1) or (j,%t} = {k,1).

bifferentiation of log det X with respeet to a parameter:

ObVLously we have X & vjjare m?trix, and we shall suppose
deti>0. We shall employ the Same rssumptions «f the sbove
two cases, ignorlng herc the op901fications concerning Y.
Case 1., vie have

dx

a d 4. 573 lop det x 9%ij
{5--82) a;—]ug det X = / Ty, “ﬁ?f
| 0 D S A

) *jaqupt X dxy
3,“”"351?3(** ’
th

If we expand the i rew of | y the nmetkod of IaPlace and
write Xij a5 the cofactox oi h , we get

(5-83) dat X = 2 cFivdin

k

where all terms of the expansion except xi1X13 are independ-
ent of X5 1j° end, in the lstter tern, X, . lé independent of x

1j ane ) i3
Thus we have '

(t*’“84 {i v e
=84 ) ﬁ;;;deta = Zj3




substituting (5-84) in (5-82), we Tind
| X.. - dx ax, ..
| 4 . &Z ij 1 _Z g1 9% 5
(-85} aﬁi-log det X = EE%*Y ~aii = x “33&
i’j i j

-1 dx)
B
where x4 is the ith row, jth column element of 2_1 and where

). ii

i3
det ¥ = ¥ °
Case 2. (a) Since

55 _ {1 for (1,5) = (k,1)
dxy T 10 for (1,7) ¥ (x.1)

the sum in ($-85) reduces to

i

= tr{X

{5-86) H%;I log det X = xi¥ .

(b} Since | |
| g.ﬁ_.i .__.{1 Tor (1,3) = (k,1) or (j,i) = {x,1)
X

C otherwise
the sum in (5~85) bvecones
(5=-87) H%Aw log det X = x1F . ,k1 _ ?xkl, if k£
k1 ki if k=]

it
“

Computation of Maximwum Likelihood stimates.

ie have mentioned previously in this connection the
possibility of Sacrificing some of the desirable properiies
of these .estimates in favor of less invelved computation.

We might then choose between the following estimeztion "programs”

1) vacrifice nothing: estinate every equation of the
system by maxinizing the likelihood function with respect to
every pcrimeter,

Less inveolved conputation: estimste one equation at

4 time, ignoring each time the restrictions on all other
equations, sand pursue this procedure for as many equations
as we wish to "estimsten, :

{3) Compromise: estimate simultaneously a subset of
equations teking full acount of the restrictions on this
subset but ignoring 211 those in the remainder of the system.
1t desired, this can be done again successively for different
{non-overlapping) subsets, ' :




Esonomics 313, Xovember 30, 1948
Lectures 11-15, Supplement

A coroliary to theorems on pesiitive definite matrices

EPRIRAR

(See page 1057

A moment matrix £. of linearly independent randem
variables ug is positive definite.

If eur variables u; are lineerly independent; then
we have

15-88) if 'us" = %u“ = v, then E(vg) Y 0,

where'% is any vector but the zere~vector.
It fellows that, fcr any ?;é Q,

(589) 0 < E(v?) = E(?u"‘u AR ?E(u-"u)i* = iz ?
if
{5-90) 2 = B(utn) Q.E.D

Partiel Diagonalization of the moment matrix g_;

Consider the positive definite moment matrix $ {(neces-
sarily nen-singular). Now every sub-matrix of L is non-
singular, in particular (}GE consisting of the first 5 ~ 9 '

r;m:-". and columns of 2 . Then we may find unique ’\i such
that

G-1
{(5-9%1) Z )\i G.i;j = (‘3’1(} J=(1,.c0.,G) {by Therrem 66)
i=9 '

and,; because Zis symmatric,

G=1 |
(s,92) ) 7 3\ 030 = Gon  ia{1,e0es@)

3=

Now subtract {5-91) from the G'® celumn of 2 znd
(5=92) from the GU& row. Then divide both the G row and
the g*B coiumn of the resulting matrix by the square roeot
of the element appearing in the GJ':h row and Gth

that matrix.

column of




v btai ' :
@ abtain _ /tﬁl . GE@; o

{5=93) Z1 "*./\-1 ZA; = Gj '

Getyy 't Gz-u,s-l O
\ o ' (®] {

where pre- and post-multij;lication by the matrix_/L_s whigch
can easily be evaluated explicitly (make this an ex@rciseﬁ);
is equivalent ¢o the linear operations on rows and columns
described, '

By reiteration of this process on

:E: 6:1_ : ”":61,G-f

= .

GG = . .
GG"‘"& 5 'E e a o 6’6“1 ,G"1

we can find G matriqesdﬂ,i, 1=1;5...4,G, such that
oy Ay NTE L AATN

However, we shall be interested in transformations L that
reduce only a part of the rows and columns of ¥ to diagonal-
ity, as follows:

{5=95) Z*.:, 'I‘ZT” - (Z;;—Q:u

1 Iax
= :
where £.3z 18 a square submatrix of Zor order G, and I
is the identity matrix of order Gyg-= G = Gy ;, and where
every other element o»f 2¥is zero.

(5-94) will be recognized es a special case of the more
general theorem that any real symmetric matrix can, by real
nonsingular transformation of the type considered, be reduced
to diagonal form such that each diagonal element is either
¥y O or =1. Positive definiteness rules out the possibility
that the diagonal element is either 0 or =i.

We shall now derive maximum likelihood estimates of
the parameters of our likelihood function by the stepwise
maximization procedure discussed on page 65.




aoghall

Pirst congive. Lhe Toblowing subddvision o
pRITAMNRALAYS:

pge

parameters 1 %: g

e = (B M.

- e W '
By writing Y-V ¢V ama T EHMOl = U', we have from
(5=60} |
(8=96] 1. = const -+ log {d.e {}; + dlog det¥ - 3tr¥Wu

Differentiating with respset 4o ‘yij’ we obtain

yij _ .
L4 : ‘iij

iy~ 9y gor 34

U

gince U = U and g": :ivf'?ﬁ anc

£S5} ?ﬁ'j = ${ Gﬂii = uii} for i=].
4 i,

From 3“%13: O 1, = 15...,G, we obtain the "conditional”

Ly ~ :

maximu likelihood, estimate o = 2 () of & for given vaiues of(X:
{5-99) 4% = U 3 XN .

This can be given three interpretations:

‘a) If ™ is actually known, {5=99) gives the maximum
likelihogd estimate of g . .

{b) IfQ{is not known, (5-99) gives a conditional
maximan likelihood estimate for presumed values of Y .
Furthernore,

(e} 1if ™ is not known, insertion of (s=99) inte %he
likelihced function {s-60) gives a "reduced" likelihood
function in terms of O alon=, which can be used for further
maximization with respect 20 .

Writing out our resuits {5-99) more expliocitly we have

a-gh = § Otgkmklokhl
& Z[(Zromo)(Lotmno)]

R
t

it

{5900}




o 1 - . 3 s 4

T

¥
fom

g{gh At), ete.

Apparently {$=100) represents a simple generalization uf
“leagt "squares" resulis if we think of the
ug\tg ag the residuals obtsined by inserting the observed

variables x . (t) in the linear expression Ao X (1) witn
t o3

"presuned” co~effilcient valusos C*gk“ The generalization

applies to each of the three cases (a), (v}, (c) above,

which can also be distinguished in least squares theoxry.
When the values of ¢X's used are estimates of K& *s,

then the G ij will in finite samples have a negative bias

due to loss of degrees of freadom in the estimation of the
Cl's. In both cases (a) ana {c), however, the maximum
likeliheood estimates sre consistent and asymptctically
efficient.

Derivation of estimates under & “compromise” propram.

Having ebtained ($-99) (which has an interest in intself)
from the 1':‘%?'9 classification® of parameters indicated, we
shall not now pursue the insertion of (S~99) in the like..
lihood funtion. Instead, we shall introduce another -8
clagsification®, which is particularly economical for
certaln purposes. We shall further make use of the fact
that, in the termirology of page 65, in stepwise maximiz-
&%ion under program (3% ¢t {Supplement) page 32, it is
sufficient, if we wish to estimate VI by maximum likelihood,
to maximize *(QtAX}! where g#® is obtained from ™y, 8% x)
by inserting %"n &6*(n,x), and where e*may be such a trans-
form of @ ar to reduce the labor of mathematical derivation.
The "n.8 classification™ is chosen on the basis of
the following comsiderations. We shall retain all gpriori
restrictions on the subset of the first G, equations with

the coefficient matrix ™ in

of - (ny

Ax

Referring to the matrix Y of {5=95)}, we shall choose its
form to bve:

Irz Ozg

3: ) frﬂ!i j:wn




i i \

Wz thep have @i. mi," "“;g s T ‘
o= T520ly + 0°0% = Oy

Xg= Lyl + Lpo O

Noew the ma’tricesTrz s'rﬁffg: are Lo be, and according %o (5-93)
can be, chosen such the:

Z*“I‘ZT " Zxr 0

0 Inn
We thus choose:

- parameters "rg"= @; ) Z-'J::
8" Ofnr FypoZys  (Zpg=Zax)

transformed parameters "gr; oF
I

The choice of B°s is made because of ocur earlier
decision, in the interest of computational simplification,
bo%h to absain from estimating ovgand to disregerd any
restrictions on Oly that may te known. The choice of the
©*‘s 13 made for Simpie mathematical derivation. Tt does
not matter that there are fewer ©%'s than &'s, because our
disregard of restrictions on the &°s entails considersble

he gt S/.

lack of identifiambility. The essential point is that eszch
set of values @& is relresented by at least one set of 1,

vaiues 9"', as proved in (S5=95),

since vt

e
Z-—1 = zz O
0 lpaf

the logarithmic likelihood function corresponding to £%
above is '

‘ ! Gy z o
(5=10% ) ¥ = const + logldet|orll- dlog det * -
)
w | | ‘ log/ ,
4 4 x
T R (W VY
¢ Inn ff*
. QE

1. In fact, there is even no identifiability among 9*“.5,
because szn Iyqg Permits of further orthogonal trans-

formation. This does not bother us elther,; because the
©%*'s are going to be "maximized out" anyway .




e I
But since the trace of 2 mairix product IY' is the sum
et corresponding elements in each matrix X and Y, Ly
way be written (taking I for X, and M ' for ¥Y)

IER——
Tg=302 L7 = cons%t + logidotine
vl 4 | [ %‘g

- 1
$log det f,n

- #trl - (ceoly) = durolgu off

Suppose we differentiate the second term ir 1L* with

with respect to an element @{; x. Which appears in%x in
o0

f&i{f" ((‘3: rg'se The resulting partial will be 2/

- . d ' PS*, Lo
{5=10%) 1:(5;“? = (B¥ H)goko ~, (by 5-86)
Q0

(5% ',61' -
where denotes 61; o (Sm‘iO',’;X iz the element in the

th O i
k,”" row and goth columr;?'(f\’j”%ﬂ .- The matrix of all such

¥ P, o]
partials will be a submatrix in (ﬁﬁ 1, call it {3 * )ﬂ-_

On the other hand, differentiztion of the same term in
L¥ with respect to an element Olg x Which appears in r’fﬂ#
' o0

will give a value of gero. The matri¥ of all derivatives of
log ‘det@l with respect to the elements of o(;{is therefore

A ] G N ¥ #_1 I 0 )
cc:a.-saiz:ana.l[((=> )ﬂ ] {% )n- { ).

0 -
We shall/use subscripts ¥s 2 to indicate numbers of rows
and columns in matrices as follows:

Y indicates the presence of ¢ rows or columns (G =

: number of dependent variables).

z indicates the presence of K columns (¥ = number of
predetermined variasbles).,

Similsrly, we have already used the notations:

I indicates the presence of Gy rows or columns {Gy =
number of equations in set I )

I indicates the presence of Gy rows or colurns (Gg =
number of equations in set & ).

2. Exercise: prove that this is true also when det &
is negative. ' '
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: T S P W e By pa B e b3 Fad o
ionhis motation, 0wl metion o Leriveaiives of Lo st Q‘j%ia
i

e .
(B w Uy O

The partial'derivﬁtjve ¢ the second trace term

aopeariang in L¥ with regpect %o ;;gé"k is
o

I
* e ] Q}-{,‘
o Z Z U

v %’h
R = %(Zm o DA km"k)
T E k1%g 1 * B 55y,
CS @"g’} ¢ 1 °, ° k
)
m
= 'Edgok KK
X

These can be put togetheér in the matrix
%
(o) = ol
or, in morxe explicit notation, {){E‘mx,‘

" »*t
Since no other terms in LY dppend on o{n we have
symbolically

R # '
15=104) g&-‘; ( 6 )ﬁ}’

vy yz dﬂx XX 0.




Economics 313, Becember 2, 1948
Leetures 11=15, Supplement

ERHATA to Supplement:

Page 36 line 3 Delete "7-]'3’"
poge 36 line 5 belete "disturbences”
page 37 lines 2 and 3 Chanre "(Kzz" sppeering in both lines
to read "Qlg"
page 37 line § Change "F'o," to read “’Zzu"
page 37 line 18 After "identifiability" insert
: "arong the @'s
page 38 line 4 Change "I" to "L
_ = 0
vage 38 lipre 4 Chenge " 2z " to read "Zzg_"
0 gy
uesge 38 line 11 After "column" insert "of"
paze 38 line 15 After "derivstives" incert “of™
page 38 line 48 After "shall? irsert "ocenslionally®
page 38 feootnote AT ter Tdet" insert (5” "
T, ‘¥
pepe 3G line 2 Chaneeo "-((% *_-‘i)y,, to "( G; ?)’ﬂy“
page 39 line 12 To {L--904) add *=0"

setimates under a "eomproruise” grogram (Cont'd):

. _
{Continuing from page 39): as a necessayy conditior on Qﬂ;é‘g for a
marimum of L*¥with respect to variation of ol¥% .
Ope might think that the nnavt step would be to¢ sclve {5-104)
for &{% and substitute the Solution in {5-102). liowever, there
is no unigue solution cx";i of {5~104) beecauss, zs pointed cut
in footnoute 1 one page 37, ¢ is not even idertifiable. Howewvnr,
we can show, by elimineting cw¢d 7rom (S=102) and (5-104), that
in all points in the space of O which satisfy ($5~104) for riven
values of Oly, F oz, the likelilivod Tunction (5-102) at4iips fhe
Same maximum value., ‘The nexivun value of ecurse depends on %(.x .
Zoer @nd will be denoted by L o )e
" Ther by maxirizing the rasuliine fanction Mg g ) with
respect to the parameters Qg , £ .., of the first subset . we will
obtain the needed estimates of the first subset in a coniputation-
ally more "economical" methicd than would hmve heen reqguired for simtle
teneous estimation of all elements of Of .




. W % |
(A0 = (B T

we ¢bhiain _ « . (6* )rp

. 1y (1
(5=105) o M xx(c{*)? = (67 gy (yy 055) (\“3‘;)‘

z((.;?)‘ 1 6‘*‘ )0 11{,}19

i.e. thell-Hg ubnc‘tri}. of the mut matrix of ocrder G

9”“

From {5~30%) we then find

* 1% N .
(5106} =3trQlp i, My = ~#irl, g = constant.

L e ! ) . R ' - -
To aliminste an. ay Trom 11%11'1 {s-102), we will pesrtition 1"'?;}: gnd
0{251‘ as follows:

We ray then write

| { oo M
C Yy yz
{J“!’OT) ﬂX xx (6.1'1\’ IE"’ {rﬁzy Mzz)
* * o mw
= Buyllyy + m”zy Cuylys * Faehe, !
Using the substitution from (5-107) in (5=104) we have

o . ~ H_q . ¥ y ¥ }
(u""?oaa\! L‘:e ?ny“BIl'yL'yym ﬂ"zp“zy _GWNYZ ﬁz 33

= Opy  0y,)

which evidently requires
‘ ¥4 *
S -
(..) [OBAJ (6 )ny .H" yy E‘]'I" zy

(5-1085) = .'ﬂ'ymyz :IIZ ‘oz ® Oyz

Now 1if our variables z(t) are linearly independent then Iv};;
exists. 1ost-multipy1ng (5-107B) by M 1 we obtain

* -1
(5=-508C) l" nymyzmm i

Using the substitutlon from (8—1080) in (s-1784) we obtain

.Y ¥y

¥ ¥
(e’ ”ny" '.l:ty(myy yz zz zy) =0
or

(5=109) ::y Ty, = (O "‘)ny

¥
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where we define

- - ni ."“’1
W= wyy = (mw --myzmzzmzy)c’

Note that W is observable;, bLoing a function of observable
natrices. That W is a positive definite matrix we shall leave

for & later proof, v o, "
Postmuliiplying (s<109) by Y @ B [(. CYSN (Gjﬂ) 'J
we obtain .

(1100 QB < (@R {BT @ (™), &)
= (Ogr Lyg)s

another submatrix of (S~105A). Using this result in tre
following product matrix we obtein

‘ Gl (BF &':(&)" G w(kh
(E-111) 'G;W(b'* :(3111'7%'* 2{‘\ | Oza | Ing

arid therefore
* 1 K .

(5-112)  cetQuld "= 2etBw (G .

since we way write

; ot (Y Rk
105’5'681‘,6}?! = log k u\r/..::liwda'

we have finally
(5-113) logldet(’)"‘l = +loyg dm@z‘f‘i&f ~ #log detV.
Using the substitutions from (5-11%) and (S-106), we obtain
{L=114) L(C*r’zzrx) = const -+ Flop dgtﬁkw(3§ ~ 3log dety
’ - 1 % —
- -é--lf;ér (lfmt Z:z e ‘3_;’61‘ 2.";31 Of: & ()(:: o
From this expression zll paranieters of the second subset of
equstions have disapprared. LUBing tre same steps as we used
in deriving (5-99}), we find ZoariOl) = Ol o, as the con- |
ditional maximizing value of3 ,;and ingerting i;;‘x (el b g )
in L(QhyZ,,) of (5-114), our 78ault is
(2=115) L(thy) = const + +log detBw B = 4log det W
- e et T N S .
log detQihoA! - 3zr {(@,L%) ol O §

*

pob-s

= const + slog aethWC%; - ¥log dety
- % log detdf b 0{;

as the trace of the identity wmstrix is & constant,
We are now in a positinn to e prosch maximur liked doed
estination of the pewvivetrwor oo o dngepsated in, d.o. Sreooo

(EEEn

“derivation we pisos the twvemenositics G R AI SRR B

L
LooRda e
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of ting first subset, by lszsc luborious conmputstion. The
possivle loss of efficiency in the estinztes obtained undey
the present program will te discussed in a subsequent lecture.
We may clieck our results in (5-114) b - couprring the forr of
Ligs s Zxe) with that of L% in ($~$02) under the assumption
that the subset J is enpty, so that I coincides witr the
wihole set of structural egustions.

The xelation of U o the disturbances of tle reduced forn.

our tack here will be to show that the maxirwm 1likelilood
estimite of the roment nutrix of disturbences in tle reduced
furm is precisely WV as defined in {5-109(.

we uay obtain the litelilood funection of the reduced form
by the same steps used to rezeh L¥in (S-102) if we use

T G

Wa thern have ' .
=0Tl BB Mm-(1 -m

snd Z*: @'12(’5&—1: AtA R where-_ﬂ_ = E(v'v),

Jur likelihood function is

: I
(c~116) LOM,IL) = const ~#lop detdl —%tr{fL_1(I - )i TT'}”

In what follows we shall either anssume there &re no restrictions.
or N such as might result from a large nuwber of restrictions
oneX , or if there sre such resirictions on N, we shall dis-
regard them in maximizing ($-116). First taking W as riven

we conditionally estimete SLVY the ressoning underlying (5-69).
‘Jur result is

. -, ' 1
(5=117) L(TW) = (1 -ﬁ)n:.[ 0
) | V.Wn A
substituting ($~117) in (5~116) and maximizing L(TT,fléTT))
with resgect to M, we will obtain

Ti-

where P is the esti szte obtained Ly the method of lesst
squeres. This follows from our previous result regarding the
equaivalence of leuast squares estimates end mximum_likelihood
estimates in the general crse of the reduced form-{See Supule-
ment pzge 29). Ve shall now establish that % satisfies .

(5=118) _ﬁ_:ﬁ_(r) =W,

{Footnote cont'd) to I,J ete srecreds transposition, Ve

have not consistently followed thié'nOEitional precaution in previous
pages and will agein drop it liter on wher. misunderstanding

is unlikely. The general rule, consistently ap;lied, is thet s
pfriitioning preceeds transposition unless where trans-— |
»08ition is indicated inside parentheses, portitionins outside,

l. It can however also te proved directly from (S-117) without

great difficulty, '
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N ST the reduoned fovm,

. ot
& * 2
Il 1 . [ n’ v

m—%;iyﬂt)“%f%x%&?a

i

i.a,

we obtain the so=called nermal

‘ - v PR o & -
CRRNANS S0ra S LI S b of

minimizing the sum

b

»abA.

7

zquations {See equation {275%) on

page 77, where =
m m‘? m'__ ! P .
(5mt19) { 2454 G B S48k : %]
n mn oD m p N
gk KSE! PP BpPg iK
=y g =1 | 3

and Pix

Repesting this procednre for sll ¢
reduced form, we obtain

('*u,”.. k! j:n - o ag m Iﬂ? o & a0
(O 3‘20} aﬁ‘ Zij? Zin 3_1‘ ...!J};
e n m, L.
i SRS ¢ "%
Oor more succinctly
4 - P
(S5-1204) My = ¥,,P"

Premuitiplying (S€1204) ny M:i we have

. =%
{o—?QOB) Mzz M

zy = P

- _a -} . _‘_Jm‘}i
Since 58’y and (Mzz}'“ Mo
in {8-120B} to obtain

(5-120C) P = ”sz;;

New substituting

we take

i, are the maximizing values of iheTTiku

equations of the

n Pay ooc Dac)
Zq 2% { 11 G3

m P 2 C L p 7
Zy By \\QK GK/

the rwanspose of P

these estimates P, P for'ﬂ'and'“w

in {s-117}, we obtain
A 4 M ' I |
(5-123) fL=(®) w (1, -u_a)) vy Yy ]
. yy o . o Mm M "‘}li:m M_...
. .(..y Ez X 2% 2% p
Rl WS b RS IV N
“%y' Myz z? 2y “yzlzzy2 Myz'zz 2272z 5z
= Myy= Mo M oM, = W

the result required by (S-
result has been obtained
on T pessibly arising fro

¥88).. We migh

under the disregard of
m rastrictions on(y .

t re-emphasize that this
any restrictions
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Egononics 313, December 49 1948
Lectures 11=15, Supplements

ERRATA: page 11, Supplement line 26  Change "y'" to "y°©

To summarize-our derivation of L{(Ns) in {S=1i5; in
terms of the step-wise maximization process:
We have maximized out 8 = (o(n., ZrwrZygyg)s 8iven

M= {0z, Teg)- But first we have transformed & ‘e
e*= (o, Z&) to simplify our task. We then obtained =
fogarithmic likelihood depending @n}y on f] . Ve the?
maximized out Zyp, having ebtained Fpp(Og? = OlMO
flence our final result a logariihmic likelihoed funcsion
Gepending only on(X;. This result, i.e. formula {S-115)
for L{Ol,), was origimnaily derived by H. Rubin {See

C. C. Discussion Paper No. 308) by a derivaticn diffevent
from the one we have given. '

Estimation of a Single Egquation of the System.

{The reader should refer again to pages S54-60 and
a.s0 to the siatement of least squares formulae pages TH=81),

In this case the first subset of equations is a single
equation, and we wish to estimate the parameters of this
eguation taking full account of the restrictions on this
equation but ignoring any restriction we may know on any
others. Our Qdzthen becomes z row vector of {G+Lj} )
elcuments {if L is the number of predetermined varisbles)
which we write as follows: 1/ '

E

. N : e,
Qo= (3 &1 = (3° @s k%,
wiere the restrictions on the equaiion are
¥ VN
()

Since the determinant value of & one element matrix is
that element itself; our L{CVy) 3in this case becomes

k

I4

{5=124} L{Y) = constant + %logfbimyym Myz%”;Eszﬁﬁﬁ‘

M- M ‘ #: {3&' .
~ dlog H(® ¥H [ W vz ) !
M sy Mz"*z’%‘j X ¥/

1. Note that the ¥ now Jenoter partisioning., as an DEge s

[ =3

5460 , aund act traneforn:ticon, ws on Supplemen’ caves

43
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where in writing the expression within square brackets
we make explieit use of the fact that 7 = »* 0). Let
us call this expression within brackets V#{(4 , ¥%} which
when the indicated mstrix multiplication is carried out
becomes

(s-125) VX B,%H - @MWQ; - @Myz* ¥ gvmz*y@ +ﬁﬂ2*z*5?*
= @iy, @+ 2B 8% o o, L%

Wgcontinue mn the road toward the maximization ef
L) by first giving 3 certain arbitrarily.fixed values
and find the conditionalliy maximizing value ¥¥(3 ) of ¥¥.
Since ¥Y¥ eccurs only in the lzst termﬁp {s~124), instead
of maximizing I(&X )} we may minimize V (fégd ) with respect
te ¥¥ Before carrying out this plan, let us interpret
the meaning of V* For our ass.imed given values sf (3 write

(5-126) Gy () = 2B,y 0t) = ¥, (1),
g L )

a new dependent variable which is thus a given linrear
function of {he orginial dependent variables ¥y (£}, For
D~ ~ , We have & ‘

AR ,
. im o2 1 I
7" ms;1§1 ’%;‘{y1(""j Y ;(Q;y‘(t) yitive |

- (3[% Lytv) 50| @

{g=12

vy

and consequently |

(S"’"‘q}g ) * § . ¥ -
129) (‘m"f‘ﬁz‘i mﬁzg P e e n zé) QMVZ .
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¥

Now using (5-126) and (5~129) we may write V¥ 'in (5125}
410 as Ffollows: ‘

LG 30 **’ G b”f

)

2}

Zﬂ.::’ pﬁf Ql gmw ,”5 * R ‘yfmﬂ 9‘5‘;};_'. :#
CEE

i

Loy v .y ‘
SRR +xzrwt}]§ SRR R AL
T 4 A
qm-
4% .Z,_,[ {4} 4‘*37?*“7]

f\pparenésly V*is that sum of squares of residunls which

i3 minimiged if we determine a least squares regression of
t) as defined in (S=126} on the predstermined variables

oj:curing in the equaticr to b2 estimated {tlie sole equation

of subset L), Thus we soncliu de that least squares estimstes

minimizing)—

fd‘?from\*\f‘* in (S-130, are &% the same time sonditional
maximum likelihood estimates Jf ¥* for given values offf .
These estimates are therefore readily obtainable as
Tollows:

¥ T3
- ) V ¥ § o /~

Thus

AX ,
K Yo p L

nd lfil )2 ) a’ (*ﬁ ) = == ()J ?J'.},,Z‘@..Mz;:;nz M
Inserting ? {f4) in ‘9-125), we have
« 5y W

e Yol o= oyl all :
{5-133) V*{@, ¥¥(@ _3} 2 UG @Myye *ﬂm Mo *«’Mz‘f‘v@

+(5N%Z%A %Z‘;ﬂ "?‘szﬂm%“jﬂz?‘xaﬁ
. @(Eﬁw - ‘yz"mzﬂ*% ?%:,'7’(’

we define

¥
f’ - y ¥ = N -%
5=134) W Ma’a yﬁnz_ﬁ, %yz*y

inserti Lng V"“(@} of- Lwﬂfrjz in L(Q{), we obhain
{5=-135) L(@) = const = ,Lcusw;w% - +.Log'(’\“l"’§;i:;

Su*3
SV

S tap VB
- Loy v’(—gs-

ET _e;j{g
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Here the quantity V( (3) is formed analogously to VN Q3
from '

(s-136) V(B ¥) =3 T{F0) +§ar 0}

as follows: Let A‘((%) be that value of ¥ minimizing
(5=136) for given 4. Comparison of (5-136) with (S=130)
and (S=131) ;ives.

(5-137)  V(G) = W ,%((5 )} = Qe .

Thus V(3 ) is the residusl varisnce from a resression of
¥+ on all predetermined variables z, while V®( (3) is the
résidual variance from a regression of ¥, on those
predetermined variables z¥allowed to ocdéur in the
equation to be ectimited. The ratio of the lsztter to
the fTormer variance is to be minimized.

We call gw the variance ratlo, and obviously maximum

likelihood estimation of (3 is equivalent to minimizing
the variance ratio. This estimetion procedure can therefore
be called the least vasriance ratio principle. Reasons why
‘this . would appear to be a satisfactory principle of
estimation (even if it were not known to be a conssquence
of maximam likelihood estimztion) are stated on pages 83791¢
1t is important to remember that we esn use %ﬁx( 0.
The simplest way to put this into effect is to redefine the
meani of our symbols so that y stands for those dependent
variables ( previously denoted yA) ocecuring in the equation
of set I, and B(previocusiy(38) Tor its woefficient vector.
The same notation was used on psges 54-60.
We shall now show that the veriasnce ratio is always
f£reater than or equal %o one. Consider the inequality for alli ¥

(s=138) V((‘b.r ¥) 4 V’{@a% {3 )} by definition of% (3.
From (5-136) and (5-130), | .
{5=139) v¥(R ,55 = Vi@, (x¥ 0)}, ‘and hence
(s-140) V¥B) = v%{@,‘%*{@)} - v[@ ,{ﬁe)' s}12
A .
v{B. (B3} =v@R .

This resuly expresses the well Rnown fact that the
inclusion of additional varisbles in the set on which &
regression 18 forwed can never increase the minimum value
of the sum of sguares of residuals. Therefore from (S=130)
we obtain » ' :
[8=14%) v ((3) g Ty as desired.

e | 3
The remainirg problem is how to compute the value of of
(3 for which V¥H® ) /V((5) reactes j.}*és ninimam. For the
treatment of this problem we return to the middle of page
95 of lart yeurs notes.




Economics 313, December 7, 1948
Lecture 16, Supplement

ERRATA in original Notes:

page 3 2ndlline delete "form of the"
preceding (5) _
bage 19 equation (76) in the third subscripts
pae : to (B,% replace "%
with " 11]
page 26 4th line : replace "know heow"

from bottom with "have a methed:

ERRATA in Supplementary Notes:

‘ i ¥
page 41 equation {5-1C8) subscript toc><
should be " px=x"
age 42 equatien {5~1%0) a closing bracket should
pag 1 follow”{ Q%) "
page 42 line below should read "submatrix
" equation {5-110) of (5=1054)"
, »" "
page 42 equation {S=i12) delete "detGS:W(GSr}“ = ¥

page 42 2nd line preceding replace "& " with ey
equation (5-115) . ‘

page 43 2nd iine receding  should read " = E({v'v)"
equation (5-i16) _

page 43 equation (S~116) the .trace term should b
closed with a brackes
page 43 2nd line receding a footnote reference should
equation %SaTTB) follow “form"

page 43 2nd line of footnote replace "practice"” with
: : "notational precaution"”

page 43 4th line of foofnote insert "general" after "The"

rage 43 bottom of page insert footnote referred to
Z2nd line preceding equation
(8-118) "It can however also
be proved directly from
(5-117) without great difficulty"

page 44 line following {$-120C) delete "using"




Lenslia o pupplemsntary ool oontd):

vaps 46 4th line folliowing Change "occured" to
eguation {$-12%) "occurs"

page 47 equation (5-130) should reac}."myfs; +

' 191

page 45 6th line following insert "minimizing"
“equation {5~130) after "from"

paga 48 line 21 replace "have used"

with "can use"
page 48 line 25 insert "(3" after "and"
page 48 line 28 insert "for all ¥ *

after "inequality"

The Variance Ratio.

Our numerator in the variance ratig of (S-i41) is
the residual variance of regression of Y.=\3y"' on the
predetermined variables 2%  The denomin&t’or is the
residual variance of a2 repression of ¥4 on all predeter-
mined variables z = (g% 2¥*) . In n;inimizing this ratio
with respect to B, we are choosing @ in such a way that
the reduction of the residusl variance obtained by
including 2¥%in the estimated regression is as little
as possible (in a relative sonse). B, D

We may also note that our §*”'zb’ (3), veing
consistent estimates of X**- C, are such that as our
sample grows infinife we have

PR3 |
“%T%ETl =1

and for finite samples such that

8
v“ﬁ@ )

is as little above 1 as possible,
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Recalling that E{v'v)=JS\and derining.n- as the matrix of
covariances of deviations of Yqsooo¥ye respectively, from

their regressions on elements of z% in the populstion, we
may thus define Ai in the population to be the roots tc the
equation ‘ '

get (A <0

numbered in lncreaging order: )\ )\ T g0 gA,«.
Since we always have that ‘

(a) - Qliygew= 0 with (3;4 0,

we have
(B) -f(Tl'ysz =H-1 ,

It can al_so be shown to follow that

(c) Ny RS- =0

We shall classify all possible cases with respect to
the ldentification and estimaticon >f the equation to be
estimated. The first c¢riterion of classification is the
pumber K¥¥of predeternined variables z¥¥excluded from the

eguation.
CASE I: K*%eH - 15 ) a)\gm 1 (bvecause(® not identifiable).

In this case f(Py wx) S E¥TLHE - 1, and we will find
A? 7"2"‘ 1; and thus (5 is not uniquely defined by {(380).

CASE 1I: k**a - |
Here we must distinguish whether or not the eguation
is actually identifiadle. :
{a) -f('n'yz*g-)t(ﬂ - 13 )\1:: )2= 1 (1&5@ not identifiable‘

(a.1) But in this case we have with probability
one that P(P;yz**” = H = 9. Barring peculiar
samples, we have Ao > )\1-— 1, and (5 is
determinate but does not estimate anything
identifiable. The warnings we should watch for
are very large estimated 3-/ sampling varliances

i/ Ve cannot observe the infinite "true” sampling variances.




52-

A
. N
of the 61’ and the convergence of Az
to the value one ag our sample grews large.

{8.2)° We would find {2 indeterminate should

f (Pvzmt-)< H e~ 1, an event occuring with
a prEbability Zero.

() L Typw = H=1; A>A= 1 (1.e.( identifiabie)

CASE II1:

(b.1) Here we have with probability one that

- (P 2 #® = H - 1. Barring degererate
samples, we have ,\2> 4= 1, and (7) is
determil;tate., Alsc the sampling variances
of the (3, will be finite.

{b.2) f(Py,»x) <H - 1, an event occuring

with probability Z8Y0, We would then

have X'ﬂ”’ Ap= 1, a.nd(?: indeterminsate.
This case will be stralghtened out simpiy

if we take more observations.

(@) POTym0 ¢ = 15 M=A2= 1 (1.0 3 not
identifiable).

(a.1) f’(Pyzu*)z H- 1, an event cccuring

with probability one. We have, barring
peculiar samples, ).2:»,\1- i, and 6 is
determinate but does not estimate anything
identifiable. Again we must watch for A
large estimated sampling variances of the Bi

{a.2) Same as (a.?) under Case IT.

(0)  F(Ty 28 = H =15 \gd M= 1 (1.0. B identifiable).

(b.1) We have with probability ocne tha#%
f(Pyz’**) 2 H - 1, and barring pecullar samplies
”n

z 1. Thus G is determinsate.

)\2’1}

(b.2) same as {b.2) under Case II.
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Test on Totality of Restriciions.

When we have hypothezied only the number of restriciions
which just identify or fail 4o identify the equation being
investigated, we always have \.= 1, DBut suppose we assume
"overddentifying" restrictinns 'which actually are not
satisfied. Then we gre leaving ocut some of the z#¥ which
actually do occur as “"explanatory" variables in the true
regression of ¥, on the z°s, Even with an infinite sampis
it would be impdssible %o obtain a variance ratio, i.e. \
equal to one. Thus a very natural test as to whether or
not the totality of restrictions we have inmposed are correct
is 4 test of the hypothesis E& = 1 against the alternative

Aq? 1. Our criterion for the test is of course "\ ., whose
as}mptotic sampling distribution has been deter ineﬁ by
Anderson and Rubin, as being equivalent to a [< test.

(see "Estimation of a single equation from a com,lete
system of stochastic difference equations” to be published
in two installments in Annals of Methematical Statistics).
Note that it is only where we have impused mores %han the
minimum number of restrictions necessary for identification
of the equation that we imply anything about reality which
igs subject to statistical test. Hence it is only an
hypothesis embodying over-identifying restrictions which
is subject to test!?

Suppose that we reject cur hypothesis that we have
the proper restrictions as a result of the test. Then in
principle we should not use our data to test the validity
of a smaller number of over-identifying restrictions. For
the fact that our data have led %o a rejection of the
original (first) hypothesis {without that we would never
have tested the present (second) hypothesis!) disqualifies
the assumption that we have a random sample i.e., the
assumption used in evaluating the risks of error under the
second test., '

What 1is really needed is a procedure to choose,in one
act, one out of several alternative hypotheses, rather than
& sequence of cheice each between just twe alternatives,
and each of which prejudiced the use of the same data. as a
basis for the next choice. ‘

Test for Identifiability.

Suppose K*2 H - { bug f( T xx) 4 -1 (i.e, ® not
identifiable). We may, as result ° “of ocur data believe we
we have a determinate & (See Case III {a.1)). We might test
the hypothesis that Y is unidentifiasble by the test of the
hypothesis Ay= 1 (as against As> %) using }“2 as the

criterion of the test, The sampling distribution [even
.asymptotically) of the latter is still unknown.




