
INFORMATIONAL INTERMEDIATION, MARKET FEEDBACK, AND 
WELFARE LOSSES

By 

Wenji Xu & Kai Hao Yang

July 2022

COWLES FOUNDATION DISCUSSION PAPER NO. 2321

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 

YALE UNIVERSITY  

Box 208281  

New Haven, Connecticut 06520-8281  

http://cowles.yale.edu/ 

http://cowles.yale.edu/


Informational Intermediation, Market Feedback, and

Welfare Losses∗

Wenji Xu† Kai Hao Yang‡

July 28, 2022

Abstract

This paper examines the welfare implications of third-party informational interme-

diation. A seller sets the price of a product that is sold through an informational inter-

mediary. The intermediary can disclose information about the product to consumers

and earns a fixed percentage of sales revenue in each period. The intermediary’s market

base grows at a rate that increases with past consumer surplus. We characterize the

stationary equilibria and the set of subgame perfect equilibrium payoffs. When market

feedback (i.e., the extent to which past consumer surplus affects future market bases)

increases, welfare may decrease in the Pareto sense.

Keywords: Informational intermediary, market base, market feedback, consumer surplus,

Pareto-inferior outcomes, stationary-Markov equilibrium, subgame perfect equilibrium.

Jel classification: C73, D61, D82, D83, L15, M37

∗This paper was previously circulated under the titles, “Information Design in Bilateral Trade and Unin-

tended Welfare Loss” and “Market-Minded Informational Intermediary and Unintended Welfare Loss.” This

version supersedes the previous ones. We thank Pak Hung Au, James Bergin, Ben Brooks, Daniele Con-

dorelli, Hector Chade, Yeon-Koo Che, Yi-Chun Chen, Joyee Deb, Laura Doval, Jack Fanning, Mira Frick,

Nima Haghpanagh, Marina Halac, Wei He, Johannes Hörner, Yunzhi Hu, Ryota Iijima, Emir Kamenica,

Navin Kartik, Changhwa Lee, Fei Li, Yunan Li, Muxin Li, Elliot Lipnowski, Wooyoung Lim, Ting Liu,

Qingming Liu, Fei Long, Stephen Morris, Kota Murayama, Aniko Öry, Jacopo Perego, John Quah, Doron

Ravid, Phil Reny, Anne-Katrin Roesler, Hamid Sabourian, Evan Sadler, Tomasz Sadzik, Larry Samuelson,

Anna Sanktjohanser, Andy Skrzypacz, Philipp Strack, Roland Strausz, Tomasz Strzalecki, Nancy Stokey,

Rui Tang, Mark Whitmeyer, Yu Fu Wong, Qinggong Wu, Nathan Yoder, Andy Zapechelnyuk, Chen Zhao,

and Jidong Zhou for their valuable comments. We also thank the participants of the various seminars and

conferences at which this paper was presented. All errors are our own.
†College of Business, City University of Hong Kong, Email: wenjixu@cityu.edu.hk
‡School of Management, Yale University, Email: kaihao.yang@yale.edu

1



2

1 Introduction

In many markets, products are sold through an intermediary, who facilitates trade and pro-

vides product information to consumers before they make purchasing decisions. For example,

financial advisors serve as intermediaries through whom issuers sell financial products (e.g.,

securities) to investors. At the same time, these financial advisors provide information about

the financial products to investors. In insurance markets, insurance companies collaborate

with insurance brokers who provide information to their customers and persuade them to buy

the companies’ insurance plans. Similarly, in the emerging online market, intermediaries such

as influencers and key opinion leaders (KOL) provide product information to their followers,

who then use that information to make purchasing decisions. These informational intermedi-

aries often share two common features: (i) they operate independently of the product sellers

and collect a certain percentage of sales revenue as a commission through revenue-sharing

arrangements;1 and (ii) they have their own market bases that are affected by past consumer

satisfaction. When collaborating with product sellers, intermediaries provide accesses to their

market bases that would otherwise be difficult for product sellers to reach by themselves.

As intermediaries’ market bases depend on past consumer satisfaction, forward-looking

and revenue-maximizing intermediaries and sellers are “consumer-minded” and care about

consumer surplus, even if revenue is solely derived from sales, because, after all, a larger

market base leads to increased future revenue. Consequently, the level of market feedback—

the degree to which consumer satisfaction affects the intermediary’s future market base—is

crucial for understanding the incentives at play, as well as the welfare outcomes. The level

of market feedback can be affected by various factors. For example, market feedback may

be higher if a product is naturally more visible, leading to increased consumer engagement

in interpersonal, word-of-mouth communication after purchasing (see, e.g., Keller, Fay, and

Berry (2007)), if there are transparent channels for consumer reviews (e.g., rating systems

and recommendation algorithms), or if consumers have multiple alternative sources of infor-

mation (e.g., competition among intermediaries). Higher levels of market feedback mean that

consumer satisfaction is more consequential to the intermediary’s market base and therefore

intermediaries and sellers are more consumer-minded.

Nonetheless, due to the separation between product sellers and intermediaries, sellers and

1It is more common that traditional intermediaries like insurance brokers and financial brokers are paid

through commissions and such arrangements in the influencer market are less frequent. Nevertheless, one

of the major income sources for online influencers are affiliate links. That is, product sellers partner with

third party websites such as rStyle or ShopStyle and invite influencers to present their products to consumers

while sharing an affiliate link generated by the third party websites. These affiliate links keep track of which

influencer brought in the customer, and the influencers are then paid a fixed share of revenue per purchase.

For our purpose, this business model can also be thought of as a revenue-sharing arrangement between sellers

and influencers.
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intermediaries may be “consumer-minded” to different degrees. While both product sellers

and intermediaries may benefit from a larger future market base, a particular intermediary’s

market base is only relevant to a product seller when they collaborate. In contrast, interme-

diaries’ market bases matter to the intermediaries throughout their entire careers. In other

words, the nature of informational intermediation implicitly creates a gap in the degree of

consumer-mindedness between product sellers and informational intermediaries during col-

laborations. As intermediaries are always more motivated to manage their own market bases,

they are naturally more consumer-minded than product sellers.

In this paper, we study how market feedback affects welfare in the presence of third-

party informational intermediation. Our central question is: Does a higher level of market

feedback always benefit consumers? Or, more generally, how does market feedback affect

welfare outcomes? It may seem natural to conclude that higher market feedback always

benefits consumers because it strengthens intermediaries’ and sellers’ incentives to improve

consumer surplus. However, we show that higher market feedback does not always benefit

consumers and may in fact decrease welfare in the Pareto sense.

These welfare losses stem from the misalignment of incentives between product sellers

and informational intermediaries. As market feedback increases, intermediaries become more

consumer-minded relative to sellers. To realign incentives, sellers raise prices so that inter-

mediaries get higher commissions for each unit sold and become more willing to sacrifice

consumer surplus to generate sales. In equilibrium, consumers do not benefit from higher

market feedback as higher prices offset its effect. In the meantime, higher prices lead to fewer

sales and lower revenues, resulting in Pareto-inferior outcomes.

Specifically, we consider a dynamic game in discrete time with a seller (he) and an in-

termediary (she). To capture the aforementioned economic features, we assume that the

intermediary has a market base which grows at a rate that increases with past consumer

surplus. Coupled with an evolving market base, we model the separation between sellers and

intermediaries by assuming that the product seller’s discount factor is smaller than that of

the intermediary. In other words, the seller values the future market base less because the

intermediary’s market base is valuable for the seller only when the seller is actively collab-

orating with the intermediary. For ease of exposition, our baseline model assumes that the

seller’s discount factor is zero and that the market growth rate is affine in consumer surplus.2

In each period, a mass of short-lived consumers with unit demands arrive. These consumers

have heterogeneous tastes but do not know their values for the product upon arrival. The

seller first chooses a price for his product. After observing the price, the intermediary then

discloses information about the product to consumers so that they receive signals about their

values for the product. Each consumer then decides whether to buy the product based on

2Extensions that relax these assumptions can be found in Section 7.
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the information provided by the intermediary. The intermediary and the seller then divide

the total sales revenue according to a fixed percentage.

The welfare loss result is established by completely characterizing the equilibrium out-

comes in our model. We first restrict attention to stationary-Markov equilibrium outcomes

(Theorem 1). When the level of market feedback is low, there is a unique stationary-Markov

equilibrium outcome wherein consumer surplus is zero and the seller and the intermediary

extract all of the surplus. As the level of market feedback increases, the intermediary cares

more about consumer surplus. In response, the seller raises the price to suppress the inter-

mediary’s desire to improve consumer surplus. In equilibrium, the information provided is

such that consumers with values above a (nonzero) cutoff have the same posterior expected

value, which is equal to the price chosen by the seller. As a result, consumer surplus remains

zero and sales revenue decreases as the price increases, leading to Pareto inferior outcomes.

In addition to the stationary-Markov equilibrium outcomes, we characterize the set of

subgame perfect equilibrium payoffs for any fixed discount factor and market feedback level

(Theorem 2). A subgame perfect equilibrium outcome that is Pareto-dominated by all other

outcomes exists when the level of market feedback is below a certain threshold. Moreover,

like the stationary-Markov equilibrium outcomes, this least efficient outcome worsens (in the

Pareto sense) as market feedback increases.

Consequently, our results serve as a cautionary tale about improvements in market feed-

back in third-party-intermediated markets. Increases in the level of market feedback (e.g.,

due to changes in market structures or technologies) may be detrimental to the entire market,

even though these increases bolster the incentives to improve consumer surplus. Meanwhile,

policies that seek to improve market feedback (e.g., improving digital recommender systems

or encouraging word-of-mouth communication among consumers)—or, in the same regard,

policies that aim to incentivize intermediaries to enhance consumer surplus—should be eval-

uated and implemented carefully. After all, higher market feedback may be undesirable in

the presence of third-party informational intermediation.

The rest of this paper is organized as follows. Section 2 reviews the related literature.

Section 3 introduces the model. We then characterize the stationary-Markov equilibrium

outcomes in Section 4 and the subgame perfect equilibrium payoffs in Section 5. Section 6 and

Section 7 discuss the policy implications and extensions of the model, respectively. Section 8

then concludes.

2 Related Literature

This paper builds upon the growing literature on information design and pricing, which

considers the design of information under various market structures in which pricing decisions

are made, including monopoly (e.g., Bergemann, Brooks, and Morris (2015), Roesler and
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Szentes (2017), Ravid, Roesler, and Szentes (2022), and Libgober and Mu (2021));3 oligopoly

(e.g., Boleslavsky, Hwang, and Kim (2019), Armstrong and Zhou (2022); and Elliot, Galeotti,

Koh, and Li (2021)); auctions (e.g., Bergemann and Pesendorfer (2007), Shi (2012), Chen

and Yang (2022), Kim and Koh (2022), Brooks and Du (2021), and Terstiege and Wasser

(2022)); consumer search (e.g., Anderson and Renault (2006), Board and Lu (2018), Au

and Whitmeyer (forthcoming), and Bergemann, Brooks, and Morris (2021)); and third-party

intermediation (e.g., Yang (2022)).

Among the aforementioned articles, our model is the most related to those of Roesler and

Szentes (2017), Ravid, Roesler, and Szentes (2022), and Libgober and Mu (2021). Roesler

and Szentes (2017) examines the optimal information for consumers in a monopolistic setting

in which the monopolist always chooses a price optimally based on the information structure

available to consumers. Ravid, Roesler, and Szentes (2022) characterizes the equilibrium

outcomes when the monopolist chooses a price and consumers acquire information simulta-

neously. Libgober and Mu (2021) considers a dynamic pricing problem in which consumers

can delay purchases and the seller can commit to a price path, and nature chooses the worst-

case consumer information for each period after observing the realized price. In our paper,

we consider a dynamic game in which each stage game involves a monopolist choosing a price

and an intermediary choosing an information structure for consumers after seeing the price.

As such, pricing and information disclosure occur in every period in our model.4 Moreover,

as the informational intermediary in our paper is long-lived, future continuation plays may

affect what current information is disclosed by the intermediary, which in turn may affect

outcomes.

As the intermediary seeks to enhance and manage her market base, which in turn depends

on her past behavior, our paper is also related to the literature on reputation, including the

general theory of reputation (e.g., Fundenberg and Levine (1989) and Fundenberg and Levine

(1992)), the effect of reputation on firm competition and on inducing efficient levels of effort

(e.g., Mailath and Samuelson (2001) and Hörner (2002)), and its effect on expert credibility

3See also: Haghpanah and Siegel (forthcomingb), Haghpanah and Siegel (forthcominga), Deb and Roesler

(2021), Yang (2021), and Bergemann, Heumann, and Morris (2022) for examples of multi-product counter-

parts and Doval and Skreta (2022) for an example of a monopolist with limited commitment.
4Furthermore, even when focusing on stationary-Markov equilibria, the stage game in our model differs

from those in the aforementioned papers. The seller chooses a selling mechanism either after or while

the information structure is chosen in Roesler and Szentes (2017) and Ravid, Roesler, and Szentes (2022),

respectively, whereas in our paper, the seller chooses the price before the information structure is chosen. In

Libgober and Mu (2021), the seller can commit to any selling mechanism and nature always plays against the

seller, while in this paper, the seller is restricted to choosing a posted-price mechanism and the information

structure is chosen to maximize a linear combination of sales revenue and consumer surplus. In the meantime,

information structures are chosen in response to the posted prices both in our model and in that of Libgober

and Mu (2021).
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and their abilities to communicate information (e.g., Ely and Välimäki (2003), Ottaviani and

Sørensen (2006), and Vong (2022b)). A key distinction of our paper is that we abstract from

the endogenous formulation of reputation and model the intermediary’s market base via an

exogenous evolution process in which the growth rate in each period is a function of consumer

surplus during the same period.5 Our assumption that the market growth rate depends only

on consumer surplus in the previous period resembles models in which there is only limited

records (e.g., Liu (2011) and Liu and Skrzypacz (2014)).

Methodologically, the intermediary’s disclosure problem in our model can be regarded

as a Bayesian persuasion problem in which only the expected value of the state is payoff

relevant (see Gentzkow and Kamenica (2016), Dworczak and Martini (2019), and Kolotilin,

Mylovanov, and Zapechelnyuk (forthcoming)).6 In addition, our model can be regarded as

a dynamic game with a long-lived player and a short-lived player, as studied by Fundenberg

and Levine (1989) and Fudenberg, Kreps, and Maskin (1990), with the distinction that there

is a history-dependent state that scales the stage game payoffs in our model.

In terms of applications, this paper is also related to the literature on certification (e.g.,

Biglaiser (1993), Lizzeri (1999), Stahl and Strausz (2017), Harbaugh and Rasmusen (2018),

Vong (2022a), and Ali, Haghpanah, Lin, and Siegel (2022)) and the recent studies on online

influencers. In terms of the literature on certification, our model is closer to that of Lizzeri

(1999), who analyzes the optimal disclosure policy of a certifier who can charge the seller a

fee, in exchange for providing credible product information to buyers in a market featuring

adverse selection. In contrast, our informational intermediary discloses product information

to consumers after seeing the seller’s price. Moreover, there is no adverse selection problem

in our setting without the presence of the intermediary, as sellers do not possess any private

information.

In terms of the literature on online influencers. Fainmesser and Galeotti (2021) studies a

market in which influencers can be paid to endorse products as sponsored recommendations

with an opportunity cost of recommending fewer carefully selected, high-quality products to

consumers, which in turn affects their follower base. In our model, the intermediary shares a

similar trade-off between long-term market base and short-term revenue. Our model differs,

however, by focusing on the information provision services of an intermediary as opposed to

product recommendations and endorsements. Mitchell (2021) also examines the economic

implications of an influencer’s trade-off between advertisement content and good advice and

characterizes the optimal dynamic contract for followers. Our paper is complementary in

the sense that we abstract from consumers’ long-term relationships with the intermediary

and focus on pricing and information provision, while Mitchell (2021) abstracts from pric-

5Variations in the growth rate can arise from different consumer communication networks, different word-

of-mouth behaviors, different rating systems, or different degrees of competition.
6See Kamenica (2018) for a comprehensive review of the Bayesian Persuasion literature.
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ing and information provision and examines the relationship between the follower and the

influencer. Pei and Mayzlin (2022) studies influencers’ paid promotional content using a

Bayesian persuasion framework. In their model, a product seller can pay an influencer to in-

crease the likelihood of a positive signal in a two-state-two-signal Blackwell experiment. The

main difference between their model and ours is that our intermediary can use any Blackwell

experiment to inform consumers about their values, and the information cannot be altered

by the seller ex-post.

3 Model

3.1 Primitives

Time t ∈ N ∪ {0} is discrete. There is a long-lived informational intermediary with discount

δ ∈ (0, 1) and a sequence of short-lived sellers.7 In each period t, the intermediary’s market

base is denoted by mt ≥ 0, which is the mass of (short-lived) consumers arriving in period

t. Consumers have different values for the seller’s product. Across consumers, values are

distributed according to a (commonly known) demand function D : R+ → [0, 1], where D(p)

is the share of consumers with values above p. Assume that D is regular, in the sense that it

is continuously differentiable, has a non-zero derivative on an interval in R+, and induces a

decreasing marginal revenue function.8 Upon arrival, consumers do not know their values and

must learn about the product and determine their values through the information provided

by the intermediary.

3.2 Timing and Payoffs

In each period t ∈ N∪{0}, the timing of events is as follows: (i) a mass mt of consumers arrive,

(ii) the seller chooses a price pt, (iii) the intermediary observes the chosen price and then

provides information about v to consumers (see Section 3.3), (iv) consumers then decide

whether to buy the product after receiving information and observing the price, and (v)

payoffs are realized. A consumer has payoff v−pt if his value is v and he buys the product at

7As explained in Section 1, the assumption that sellers are short-lived aims to capture the idea that the

intermediary operates independently of the sellers and that sellers only have access to the intermediary’s

market base during the period of collaboration. A collaboration period is typically short term because sellers

may collaborate with different intermediaries during different product cycles. Consequently, sellers are less

concerned about the intermediary’s market base when selling through a particular intermediary. In essence,

the sellers being short-lived is only a simplifying assumption. In Section 7, we generalize the model and

consider long-lived sellers who discount the future faster than the intermediary. Our main result remains

qualitatively similar.
8That is, the function q 7→ qD

−1
(q) is concave. This is equivalent to assuming that 1 − D is regular in

the Myersonian sense.
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price pt; and has zero payoff if he does not buy the product. The seller and the intermediary

share the revenue according to a fixed proportion α ∈ (0, 1). The seller’s payoff in period t is

1 − α share of sales revenue in period t and the intermediary’s payoff in period t is α share

of sales revenue in period t.

The intermediary’s market base mt in period t depends on outcomes in previous periods.

m0 is normalized to 1. In each period t + 1 ∈ N, the growth rate of mt is an affine function

of the average consumer surplus in period t. That is, for all t ∈ N ∪ {0},

mt+1 = mt(γ + βσt), (1)

for some β ≥ 0 and γ ∈ [0, 1/δ), where σt denotes the average consumer surplus in period

t. Henceforth, β represents market feedback because it determines the extent to which past

consumer surplus affects future market bases.

3.3 Information

In each period, consumers receive information about v from the intermediary. As consumers

have quasi-linear payoffs, their purchasing decisions are solely based on their posterior ex-

pected values given the information. Thus, information can be represented as distributions

of posterior expected values, which are known to be mean-preserving contractions of D (see

Strassen, 1965). Specifically, let D be the collection of nonincreasing, upper-semicontinuous

functions D : R+ → [0, 1] such that D(0) = 1 and∫ ∞
p

D(v) dv ≤
∫ ∞
p

D(v) dv, (2)

for all p ≥ 0, with equality at p = 0. Note that D describes the collection of mean-preserving

contractions of D and is illustrated in Figure 1, where each D ∈ D corresponds to a decreasing

and convex function whose graph is located in the highlighted area. A disclosure policy is

defined as an element D of D.9

When information is represented in this way, consumer choices are entirely determined

by choices of price and disclosure policy (except for consumers who are indifferent). Indeed,

for any price p ≥ 0 and for any disclosure policy D ∈ D, since D(p) reflects the share

of consumers whose posterior expected values are at least p, the share of consumers who

purchase must be between D(p+) and D(p) (which in turn corresponds to a subgradient of

the convex function representing D in Figure 1).

9This model of information disclosure is similar to that in Lewis and Sappington (1991) and Johnson and

Myatt (2006) and aligns with the modeling approach of Anderson and Renault (2006), Roesler and Szentes

(2017), Libgober and Mu (2021), Armstrong and Zhou (2022), and Ravid, Roesler, and Szentes (2022). In

this approach, consumers have differentiated values for the same product. The information disclosed can be

viewed as information about the characteristics of the product and informs consumers about their true values

for the product.
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∫∞
x
D(v) dv

x
0 E[v]

∫∞
p
D(v) dv

p

Figure 1: Feasible Disclosure Policies D

3.4 Strategies and Solution Concepts

Based on how information is defined in Section 3.3, the model can be represented by a

perfect-information dynamic game with a state variable mt. There is a long-lived player

(the intermediary) with discount δ and a sequence of short-lived players (sellers and “tie-

breakers”). In each period t ∈ N ∪ {0}, a short-lived seller arrives and chooses a price pt.

The intermediary sees pt and chooses a disclosure policy Dt ∈ D. A short-lived tie-breaker

then sees pt and Dt and chooses qt ∈ [Dt(p
+
t ), Dt(pt)]. The intermediary and the seller get

α share and 1− α share of the sales revenue mt · pt · qt respectively. The tie-breaker always

gets a constant payoff. The state variable in the next period mt+1 is given by

mt+1 = mt

(
γ + β

∫ ∞
pt

Dt(v) dv

)
. (3)

In this game, histories consist of all past plays in previous periods.10 In every period

t ∈ N ∪ {0}, the seller’s strategy maps past histories up to period t − 1 to a price pt ≥ 0;

the intermediary’s strategy maps past histories up to period t− 1 and the seller’s price pt in

period t to a disclosure policy Dt ∈ D; and the tie-breaker’s strategy maps past histories up

to period t − 1, the seller’s price pt in period t, and the intermediary’s disclosure policy Dt

in period t, to some qt ∈ [Dt(p
+
t ), Dt(pt)].

In the spirit of Maskin and Tirole (2001), we say that a strategy profile is stationary-

Markov if the seller’s price does not depend on any past histories, the intermediary’s dis-

closure policy only depends on the seller’s price in the same period, and the tie-breaker’s

strategy only depends on the seller’s price and the intermediary’s disclosure policy in the

same period. A subgame perfect equilibrium is said to be stationary-Markov (or simply

stationary hereafter) if it is a stationary-Markov strategy profile.

10See the Online Appendix for a formal definition of histories.

https://kaihaoyang.com/wp-content/uploads/2022/01/Market-Minded-Intermediary-Online-Appendix.pdf
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From (3), there may exist equilibria in which the intermediary’s payoff is infinite, as

the market base is not bounded. In these equilibria, the intermediary is indifferent when

choosing among many strategies that lead to diverging continuation payoffs given the seller’s

strategy. Hence, the seller can be disciplined to charge many different prices, leading to

multiple equilibria. Discussions of these equilibria are relagated to the Online Appendix.

Henceforth, we slightly abuse the terminology and focus only on equilibria in which the

intermediary’s continuation payoffs are finite in every subgame. In Section 4, we characterize

the set of stationary equilibrium outcomes. Section 5 further characterizes the payoffs under

all subgame perfect equilibria.

We conclude this section by noting that an increase in β has three effects in our model:

Higher β leads to (i) a more consumer-minded intermediary; (ii) a higher market growth

rate; and (iii) possible changes to the equilibrium strategies. It is noteworthy that effect (i)

is always (weakly) beneficial for consumers, while effect (ii) is always (weakly) beneficial for

all players. Nonetheless, our main results suggest that a higher β may lead to Pareto worse

outcomes despite the positive effects of (i) and (ii). In other words, the main takeaway of

our results is that effect (iii) could possibly dominate effects (i) and (ii).

4 Inefficiency of Higher Market Feedback: Stationary

In this section, we characterize all stationary equilibrium outcomes and show that higher

market feedback may lead to Pareto-inferior outcomes. Given any strategy profile, we refer to

the sequence of normalized sales revenues (i.e., sales revenues per unit of market base), average

consumer surpluses, the intermediary’s normalized continuation payoffs (i.e., continuation

payoffs per unit of market base), prices, and market bases across different periods as an

outcome, which we denote by z := {rt, σt, ωt, pt,mt}.

Definition 1. For any two outcomes z = {rt, σt, ωt, pt,mt} and z′ = {r′t, σ′t, ω′t, p′t,m′t}, we

say that z dominates z′ if for all t, m′t ≤ mt, r
′
t ≤ rt, σ

′
t ≤ σt, and ω′t ≤ ωt, with at least one

inequality being strict.

Note that, if z = {rt, σt, ωt, pt,mt} dominates z′ = {r′t, σ′t, ω′t, p′t,m′t}, then for all t,

m′tr
′
t ≤ mtrt, m

′
tσ
′
t ≤ mtσt, and m′tω

′
t ≤ mtωt, with at least one inequality being strict. Thus,

z′ must be less efficient than z in the Pareto sense.

In stationary equilibria, players’ strategies do not depend on histories in previous periods,

and hence only the market bases can depend on t. As a result, we can write a stationary

equilibrium outcome as zs = (rs, σs, ωs, ps, {ms
t}).

In what follows, we characterize all stationary equilibrium outcomes and study how the

equilibrium outcomes vary when we adjust the value of market feedback β. Let p be the

https://kaihaoyang.com/wp-content/uploads/2022/01/Market-Minded-Intermediary-Online-Appendix.pdf
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unique solution to maxp pD(p), and let

β :=
1− γδ
δE[v]

and β :=
1− γδ

δ
∫∞
p
D(v) dv

.

Proposition 1 (Inefficiency of High Feedback—Stationary). For any β < β, there exists

a unique stationary equilibrium outcome zs(β). Furthermore, zs(β) dominates zs(β′) for all

β, β′ such that β < β < β′ < β.

According to Proposition 1, higher market feedback does not necessarily benefit con-

sumers, even though it makes the intermediary care more about consumer surplus. In fact,

higher market feedback may even lead to Pareto inferior outcomes. Whenever β ∈ (β, β), an

increase in market feedback always leads to a Pareto-worse outcome.

Proposition 1 is established by characterizing all of the stationary equilibrium outcomes.

We begin the analysis by noting that the one-shot deviation principle still holds when con-

sidering strategy profiles that yield a finite continuation payoff for the intermediary at every

history. The reason for this is that stage game payoffs are bounded from below and the

intermediary’s payoff is additively separable. Lemma 1 summarizes this observation.

Lemma 1 (One-Shot Deviation Principle). Given any strategies of the seller and the tie-

breaker. For any history ht in any period t, and for any strategy of the intermediary that yields

a finite continuation payoff, there is a profitable deviation from the continuation strategy at

ht if and only if there is a profitable one-shot deviation at some history after ht.

We now outline the characterization of the stationary equilibrium outcomes. Note that

with Lemma 1, stationary equilibria can be characterized by the best responses of both the

intermediary and the (short-lived) seller in each period while holding each other’s strategy

fixed. This leads to the following lemma.

Lemma 2. A stationary equilibrium is characterized by a tuple (ωs, ps,Ds) where ωs, ps ∈
[0,∞) and Ds : R+ → D satisfy the following conditions:

ωs = sup
D∈D

[
αpsD(ps) + δωs

(
γ + β

∫ ∞
ps

D(v) dv

)]
, (4)

psDs(ps|ps) ≥ pDs(p|p), (5)

for all p ≥ 0,

αpDs(p|p) + δωs

(
γ + β

∫ ∞
p

Ds(v|p) dv

)
≥ αpD(p) + δωs

(
γ + β

∫ ∞
p

D(v) dv

)
, (6)

for all p ≥ 0 and for all D ∈ D. Furthermore, the outcome of any stationary equilibrium

(ωs, ps,Ds) is given by (rs, ps, σs, ωs, {ms
t}), where rs = psDs(ps|ps), σs =

∫∞
ps

Ds(v|ps) dv, and

ms
t = (γ + βσs)t for all t ∈ N ∪ {0}.
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One of the implications of this characterization is that in each period, the tie-breaker

always breaks ties to maximize sales revenue. We therefore do not explicitly keep track of

the tie-breakers’ strategies in the analysis of stationary equilibria.

Using Lemma 2, the characterization of stationary equilibria becomes essentially a static

problem that consists of the following: (i) solving for the intermediary’s per-period best

response given a price p chosen by the seller during that period and given the intermediary’s

continuation value (solving (6) given p and ωs); (ii) solving for the seller’s best response given

the solution to (i) and given the intermediary’s continuation value (solving (5) given ωs and

the intermediary’s best response derived in (i)); and (iii) finding a consistent continuation

payoff (verifying (4) given the solutions to (i) and (ii)). We now introduce two lemmas that

characterize the solutions to (i) and (ii) for a fixed continuation value.

For any p ≥ 0, let v(p) := E[v|v ≥ p] and let v−1(p) := inf{x ≥ 0|v(x) ≥ p}.11 Notice

that both v and v−1 are nondecreasing and v−1(p) = 0 for all p ∈ [0,E[v]].

Lemma 3. For any p, ω ∈ [0,∞),

∆(p|ω) := argmax
D∈D

[
αpD(p) + δω

(
γ + β

∫ ∞
p

D(v) dv

)]
is nonempty. Moreover, for any D ∈ ∆(p|ω), D(v) = D(ξ(p|ω)), for all v ∈ [ξ(p|ω), p] and∫ ∞

ξ(p|ω)

D(v) dv =

∫ ∞
ξ(p|ω)

D(v) dv,

where

ξ(p|ω) := max

{(
1− α

δβω

)+

p, v−1(p)

}
.

Lemma 3 provides a characterization of the intermediary’s optimal disclosure policy given

a price p and a continuation value ω. For any p, ω ∈ [0,∞), the intermediary essentially faces

a static problem where she chooses a demand D ∈ D to maximize a linear combination of

sales revenue and consumer surplus.

To understand the intuition behind this result, consider first the case when β = 0. In

this case, the intermediary seeks to maximize sales revenue, which, from her perspective,

is equivalent to maximizing sales volume for each given price. For any price p ≥ 0, the

intermediary can achieve this goal by simply disclosing whether v is above a threshold v−1(p).

In doing so, consumers with values above v−1(p) would have a posterior expected value of

max{p,E[v]} and would buy the product (see Figure 2a), whereas consumers with values

below v−1(p) would not buy. Note that consumer surplus is zero for all price. Now suppose

11As a convention, if p is greater than the upper bound of the support of D, we define E[v|v ≥ p] as this

upper bound. If p is greater than maxx≥0 v(x), we define v−1(p) as maxx≥0 v(x).
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∫∞
x
D(v) dv

x
0 pv−1(p)

(a) Optimal cutoff = v−1(p)

∫∞
x
D(v) dv

x
0 pξ(p|ω)

(b) Optimal Cutoff = ξ(p|ω)

Figure 2: Optimal Cutoff

that β > 0 and is large enough. In this case, the intermediary will benefit from leaving

some surplus to consumers. This means that she may wish to prevent low-value consumers

from buying the product at a high price. As a result, the intermediary would increase the

threshold to ξ(p|ω) and encourage fewer consumers to buy (see Figure 2b). As β → ∞,

the cutoff ξ(p|ω) converges to the seller’s price p, ensuring that every purchasing consumer

retains a nonnegative surplus.

For any ω ∈ [0,∞), when anticipating the intermediary’s best response, the seller effec-

tively solves a revenue maximization problem in which the demand at price p is given by the

sales volume induced by the intermediary’s best response to price p. Lemma 4 characterizes

the solution to this problem.

Lemma 4. For any ω ∈ [0,∞) and for any selection D of ∆(·|ω), the maximization problem

max
p≥0

pD(p|p)

has a unique solution p̃. Furthermore,

v−1(p̃) ≤
(

1− α

δβω

)+

p̃ ≤ p, (7)

with at least one binding inequality. In particular,∫ ∞
p̃

D(v|p̃) dv = 0 ⇐⇒
(

1− α

δβω

)+

p̃ = v−1(p̃).

To better understand Lemma 4, notice that by Lemma 3, pD(p|p) = pD(ξ(p|ω)) for any

p, ω ∈ [0,∞) and for any selection D of ∆(·|ω). As a result, the seller’s revenue maximization

problem can be written as

max
p≥0

pD(ξ(p|ω)) = max
p≥0

[
min

{
pD

((
1− α

δβω

)+

p

)
, pD(v−1(p))

}]
.
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pD(ξ(p|ω))

p
0 p̃

p̃D(v−1(p̃))

(a) First Inequality of (7) Binds

pD(ξ(p|ω))

p
0 p̃

p̃D
((

1− α
δβω

)
p̃
)

(b) Second Inequality of (7) Binds

Figure 3: Optimal Price p̃

If δβω ≤ α, the function above coincides with pD(v−1(p)), the optimal price is E[v], the first

inequality of (7) binds, and consumer surplus is zero. Meanwhile, if δβω > α, there are two

possibilities, as depicted by Figure 3. The first possibility is illustrated by Figure 3a, where

the gray curve represents (a part of) the first function in the min operator, while the black

curve represents the second, and the optimal price is the price at which the graphs of the two

functions intersect. In this case, the first inequality of (7) binds and the consumer surplus

is zero. Another possibility is illustrated by Figure 3b, where the optimal price is the price

at which the first function is maximized. In this case, the second inequality of (7) binds and

the consumer surplus is positive.

Even with a fixed ω, Lemma 4 already highlights the main driving force behind Proposi-

tion 1. When β is close enough to zero (i.e., when δβω ≤ α), the induced sales revenue is E[v]

and the allocation is efficient. As β increases, at first, the optimal price increases, consumer

surplus remains zero, sales revenue decreases, and the size of the market base remains the

same as the case of a lower β, leading to a Pareto-inferior outcome. Only when β is large

enough will consumer surplus become positive and will the price begin to decrease.

The intuition behind this is reminiscent of the logic of the hold-up problem. As the

intermediary discloses information after observing the seller’s price and seeks to enhance

consumer surplus in addition to sales revenue, the seller—in anticipation of the intermediary’s

response—charges a higher price to suppress the intermediary’s desire to improve consumer

surplus, better aligning her interests with those of the seller. This is because when the price

is high, the marginal revenue of inducing more sales outweighs the marginal loss in consumer

surplus that results from more consumers buying at a price above their values. When prices

are higher, fewer consumers end up purchasing and therefore sales revenue decreases. In the

meantime, consumers do not benefit as the intermediary’s enhanced “consumer-mindedness”

is offset by the seller’s higher price. These together lead to a Pareto-worse outcome.

Remark 1. On a separate note, Lemma 3 and Lemma 4 describe the solution to a static prob-
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lem in which the seller chooses a price to maximize revenue and the intermediary chooses

a disclosure policy to maximize a weighed sum of the seller’s revenue and consumer surplus

after observing the seller’s price. In this regard, Proposition 1 can be interpreted as an

“unintended welfare loss” result—the outcome may become Pareto inferior when the inter-

mediary assigns more weight to consumer surplus. The dynamic model we consider here can

be viewed as a micro-foundation of the intermediary’s payoff. Other micro-foundations are

also possible, including competition among intermediaries to attract customers.

To complete the proof of Proposition 1, we characterize the stationary equilibrium out-

comes by finding the appropriate continuation value ωs and equilibrium price ps that satisfies

(4), (5) and (6). To describe stationary equilibrium outcomes, it is convenient to define

gβ(p) :=
α

δβ

(
1 +

pD(p)∫∞
p
D(v) dv

)
,

for all p ∈ [0, p]. Note that the function (β, p) 7→ gβ(p) is continuous, strictly decreasing in

β, and strictly increasing in p on [0, p]. Meanwhile, let

pβ := inf

{
p ≥ 0

∣∣∣∣δ(γ + β

∫ ∞
p

D(v) dv

)
≥ 1

}
.

By definition, pβ ∈ (0, p) whenever β ∈ (β, β). Moreover, pβ is strictly decreasing in β on

[β, β]. Stationary equilibrium outcomes can then be characterized by Theorem 1 below.12

Theorem 1 (Stationary Equilibrium Outcomes). For any β ∈ [0, β], the following are equiv-

alent:

1. zs = (rs, σs, ωs, ps, {ms
t}) is a stationary equilibrium outcome.

2. ωs ≥ gβ(p) if β = β, while

ωs =

{
αE[v]
1−γδ , if β ∈ [0, β]

gβ(pβ), if β ∈ (β, β)
.

Moreover,

ps =


E[v], if β ∈ [0, β]

v(pβ), if β ∈ (β, β)
δβωs

δβωs−αp, if β = β

; rs =


E[v], if β ∈ [0, β]

(1−γδ)
α

gβ(pβ), if β ∈ (β, β)
δβωs

δβωs−αpD(p), if β = β

;

σs =

{
0, if β ∈ [0, β)∫∞

p
D(v) dv − α

δβωs−αpD(p), if β = β
;

and ms
t = (γ + βσs)t, for all t ≥ 1.

12Recall that we focus on stationary equilibria in which the intermediary’s continuation value is finite.

When β > β, the intermediary’s continuation value diverges in any stationary equilibrium. See the Online

Appendix for more details.

https://kaihaoyang.com/wp-content/uploads/2022/01/Market-Minded-Intermediary-Online-Appendix.pdf
https://kaihaoyang.com/wp-content/uploads/2022/01/Market-Minded-Intermediary-Online-Appendix.pdf
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r

σ

E[v]

pD(p)

∫∞
p
D(v) dv

(1−γδ)gβ(p)
α

Figure 4: Surplus Divisions under Stationary Equilibria

Proposition 1 then immediately follows from Theorem 1. Figure 4 plots the set of normal-

ized surplus divisions induced by stationary equilibria across all β ∈ [0, β]. For any β ∈ [0, β],

sales revenue equals E[v] and consumer surplus is zero. For any β ∈ (β, β), sales revenue

equals (1 − γδ)gβ(pβ)/α and consumer surplus remains zero. In particular, sales revenue

decreases as β increases. Finally, when β = β, there are multiple stationary equilibrium

outcomes and every outcome induces a total surplus of (1 − γδ)gβ(p)/α. When β ∈ (β, β),

higher market feedback leads to Pareto inferior outcomes. As a benchmark, the dashed line

in Figure 4 indicates the efficient frontier where all gains from trade are realized.

5 Equilibrium Payoff Set and the Least Efficient Outcome

In this section, we move beyond stationary equilibria and characterize the payoffs that can

be supported by a subgame perfect equilibrium. As the game is infinitely repeated, there are

inevitably many subgame perfect equilibrium outcomes. The results in this section outline

these outcomes and demonstrate another version of welfare losses resulting from higher mar-

ket feedback β. We show that whenever β ≤ β, there exists a unique Pareto-worst subgame

perfect equilibrium outcome. Moreover, this least efficient outcome may worsen in the Pareto

sense as β increases.

To begin with, let

r∗ := sup
p≥0

inf
D∈D

inf
q∈[D(p+),D(p)]

p · q (8)

denote the revenue guarantee. That is, r∗ is the sales revenue that the seller can secure in each

period, regardless of the strategies of the intermediary and the tie-breaker. By definition, for

any r < r∗, there exists p ≥ 0 such that for any D ∈ D, pD(p+) > r.

Note that for any p ≥ E[v], infD∈D pD(p+) = 0 because the demand D ∈ D that has a
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∫∞
x
D(v) dv

x0

E[v]

p ζ(p)

Figure 5: Minimizing Revenue Given p

mass of 1 at E[v] gives pD(p+) = 0. For any p ∈ [0,E[v]), there exists a unique ζ(p) ≥ p

such that E[v|v ≤ ζ(p)] = p. It then follows that infD∈D pD(p+) = pD(ζ(p)) (see Figure 5).13

Therefore, we must have

r∗ = max
p∈[0,E[v]]

pD(ζ(p)).

Furthermore, as the function p 7→ pD(v−1(p)) is quasi-concave, there exists a unique

p∗ ≥ E[v] such that r∗ = p∗D(v−1(p∗)). In other words, when the seller charges a price

p∗, the highest possible sales revenue is exactly r∗. Consequently, in any subgame perfect

equilibrium, the seller does not charge any price p > p∗ because the best revenue given that

price is below the revenue guarantee r∗.14 With the definitions of r∗ and p∗, we define

ω∗ :=
αp∗D(v−1(p∗))

1− γδ
=

αr∗

1− γδ
,

and note that ω∗ is the present discounted profit of the intermediary if the market growth

rate is γ (i.e., consumer surplus is zero) and sales revenue equals the revenue guarantee in

every period. Meanwhile, let p̂ be the unique price p ≤ p such that pD(p) = r∗, and define

β̂ :=
1− γδ

δ
∫∞
p̂
D(v) dv

and β∗ :=
1− γδ

δ
∫∞
p∗
D(v) dv

.

Note that 0 < β < β̂ < β < β∗.

We now characterize the intermediary’s payoffs in all subgame perfect equilibria. We first

identify a useful lower bound for the intermediary’s equilibrium payoff. As sales revenue in

every period is at least r∗ and the market growth rate is at least γ, the intermediary’s payoff

must be at least ω∗. If the seller prices at p∗ in every period and the intermediary chooses the

myopic best response, then the intermediary’s payoff would be ω∗. However, it is not always

13The function p 7→ pD(ζ(p)) is equivalent to the “pressed” D introduced by Libgober and Mu (2021).
14p∗ plays the same role here as the min-max strategy does in canonical repeated games with perfect

monitoring, and p∗ coincides with the min-max strategy in Fudenberg, Kreps, and Maskin (1990).
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incentive compatible for the seller and the intermediary to adopt these strategies. Even when

the intermediary anticipates that the seller will always choose p∗ and that the normalized

continuation value will always be ω∗, it may not be optimal for the intermediary to choose

the myopic best response and maximize sales revenue when market feedback is high enough.

We therefore construct a tighter lower bound to account for this.

Let

hβ(ω) := δ

(
γ + β

∫ ∞
(1− α

δβω )
+
p∗
D(v) dv

)
ω,

for all ω ≥ 0, and let

ωβ := inf{ω ≥ ω∗|hβ(ω′) ≤ ω′, ∀ω′ ≥ ω}.

Note that ωβ = ω∗ whenever β ≤ β, and that ωβ →∞ as β ↑ β∗.

Lemma 5. In any subgame perfect equilibrium, the intermediary’s payoff is at least ωβ.

For any β ∈ [0, β∗), let Ω∗(β) denote the set of the intermediary’s payoffs in all subgame

perfect equilibrium outcomes.15

Theorem 2 (Subgame Perfect Equilibrium Payoffs). For any β ∈ [0, β∗),

Ω∗(β) = [ω∗(β),ω∗(β)]\{∞},

for some ωβ ≤ ω∗(β) ≤ ω∗(β) ≤ ∞. Moreover, ω∗ is nonincreasing on [0, β] and ω∗ is

nondecreasing on [0, β∗); while ω∗(β) = ωβ whenever β ∈ [β̂, β∗); and

ω∗(β) =

{
αE[v]
1−γδ , if β ∈ [0, β]

∞, if β ∈ [β̂, β∗)
.

Remark 2. Theorem 2 characterizes the long run player’s equilibrium payoff for every fixed

discount δ ∈ (0, 1) rather than only characterizing these payoffs when δ approaches 1 as in

Fudenberg, Kreps, and Maskin (1990). Furthermore, the characterization does not explicitly

rely on fixed-point arguments and the notion of self-generation as in Abreu, Pearce, and

Stacchetti (1986) and Abreu, Pearce, and Stacchetti (1990).16 Instead, the bounds ω∗(β)

and ω∗(β) are determined by the value of a constrained optimization problem (see Appendix

A.7 for exact definitions).

15Recall that we focus on subgame perfect equilibria in which the intermediary’s continuation payoff at

any history is finite. Such equilibria only exists when β < β∗. For characterizations of subgame perfect

equilibrium outcomes when β ≥ β∗, see the Online Appendix.
16The reason is that—in addition to perfect monitoring—the intermediary and the seller’s stage game

payoffs are linearly dependent, and the feasible payoffs in a stage game are represented as a line segment. As

a result, characterizing the intermediary’s equilibrium payoff is essentially equivalent to finding two endpoints.

https://kaihaoyang.com/wp-content/uploads/2022/01/Market-Minded-Intermediary-Online-Appendix.pdf
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In addition to characterizing the intermediary’s equilibrium payoff, it is useful to explore

the sales revenue, consumer surplus, and prices that may occur in any period under a subgame

perfect equilibrium. Knowing how consumer surplus and sales revenue are structured in a

subgame perfect equilibrium helps identify further welfare implications. To this end, for any

β ≥ 0, let

r(β) :=

{
(1−γδ)ω∗(β)

α
, if β ≤ β̂,

r∗, if β > β̂,

and define the set Z∗(β) as follows:

Z∗(β) :=

(r, σ, p) ∈ R3
+

∣∣∣∣∣∣∣∣
(E[v]− p)+ ≤ σ ≤ S

(
r
p

)
− r

r(β) ≤ r ≤ p

αr + δ(γ + βσ)ω∗(β) ≥ supD∈D

[
αpD(p) + δ

(
γ + β

∫∞
p
D(v) dv

)
ω∗(β)

]
 ,

where S(q) :=
∫ q

0
D
−1

(x) dx is the sum of normalized consumer surplus and normalized sales

revenue when the quantity sold is q and when the demand is D.

Using Theorem 2, subgame perfect equilibrium outcomes can be characterized and are

given by Corollary 1.

Corollary 1 (Subgame Perfect Equilibrium Outcomes).

1. For any β ∈ [0, β∗) and for any subgame perfect equilibrium outcome z = {rt, σt, ωt, pt,mt},
(rt, σt, pt) ∈ Z∗(β) for all t ∈ N ∪ {0}.

2. For any β ∈ [0, β∗), for any T ∈ N ∪ {0}, and for any (r, σ, p) ∈ Z∗(β), there exists a

subgame perfect equilibrium outcome z = {rt, σt, ωt, pt,mt} such that rT = r, σT = σ,

and pT = p.

An immediate consequence of Corollary 1 is that any outcome z = {rt, σt, ωt, pt,mt} in

which rt = r(β), σt = 0 and ωt = ω∗(β) for all t is dominated by all other equilibrium

outcomes. Such an equilibrium outcome always exists whenever β ≤ β. In this equilibrium,

the seller always charges a price p ∈ [E[v], p∗] so that pD
−1

(v−1(p)) = r(β), and the inter-

mediary always chooses her myopic best response, which leads to zero consumer surplus in

every period. If the seller deviates and charges any other price, the intermediary chooses a

disclosure policy to minimize revenue subject to a constraint that future continuation play

is enough to reward this punishment, and the tie-breaker breaks tie against the seller. If the

intermediary adopts this punishment strategy, the continuation play gives the intermediary

an equilibrium payoff of ω∗(β). If the intermediary does not, the continuation play gives her

a payoff of ω∗(β).17

17By the definitions of ω∗(β) and ω∗(β) (which can be found in Appendix A.7), this makes the interme-

diary’s punishment incentive compatible.
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As a result, whenever β ≤ β, there exists a subgame perfect equilibrium outcome that is

dominated by every other subgame perfect equilibrium outcome. As ω∗ is nonincreasing in

β, this dominated outcome becomes worse in the Pareto sense as β increases.

Proposition 2 (Inefficiency of High Feedback—Nonstationary). For any β ∈ [0, β], there

exists a subgame perfect equilibrium outcome z∗(β) that is dominated by all other subgame

perfect equilibrium outcomes. Furthermore, for any γ, δ such that γδ ≤ 1/2, there exists

β̂(γ, δ) ∈ (0, β̂) such that z∗(β) dominates z∗(β′) for any 0 < β < β′ < β̂(γ, δ).

Proposition 2 highlights another version of welfare loss that results from increased market

feedback. Unlike Proposition 1, Proposition 2 considers all subgame perfect equilibrium

outcomes. Despite the multiplicity of subgame perfect equilibrium outcomes, Proposition 2

shows that there is always a Pareto-worst outcome and that this least efficient outcome can

get worse as β increases.

It is noteworthy that the least efficient subgame perfect equilibrium outcome z∗(β) intro-

duced in Proposition 2 is not stationary. Moreover, z∗(β) is the outcome of an equilibrium in

which the sellers are incentivized to always choose a high price, and the intermediary’s best

response is to maximize the current sales revenue and leave zero surplus to consumers. To

incentivize the sellers to choose this high price, the intermediary punishes a seller’s deviation

by generating a low sales revenue. For this punishment to be incentive-compatible, the inter-

mediary must a sufficient reward for carrying out the punishment. Higher market feedback β

allows the market to grow faster and therefore allows for higher continuation payoff to reward

the intermediary. As a result, when β is higher, more severe punishments can be supported

and more extreme prices can be incentivized, which in turn leads to worse outcomes.

6 Subscription-Based Model

As demonstrated by Proposition 1 (and Proposition 2), a higher level of market feedback may

lead to Pareto inferior outcomes. Proposition 1 is driven by the fact that the intermediary

prefers both higher sales revenue and higher consumer surplus. Therefore, as the level of

market feedback increases, the sellers can raise prices to compel the intermediary to provide

information in a way that better aligns with the sellers’ interests. This suggests that the

welfare losses caused by higher market feedback may not be present if the sellers’ and the

intermediary’s incentives are decoupled. We now explore an alternative business model for

the intermediary, the subscription-based model, in which her revenue comes directly from

consumers.

In each period t ∈ N ∪ {0}, suppose the sequence of events remain the same: the seller

chooses a price pt, the intermediary sees pt and chooses a disclosure policy Dt ∈ D, and the

tie-breaker sees pt and Dt and chooses a tie-breaking rule qt ∈ [Dt(p
+
t ), Dt(pt)]. However,
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instead of sharing with the intermediary, the seller captures all sales revenue mt · pt · qt in

each period. The intermediary, on the other hand, receives α̃ ∈ (0, 1) share of consumer

surplus in each period: Upon entering the market, consumers pay a share α̃ of their ex-ante

surplus to the intermediary in exchange for the product information. The share of consumer

surplus captured by the intermediary can be interpreted as subscription fees or revenue from

monetizing the market base (e.g., advertising revenue).

The subscription-based model decouples the seller’s and the intermediary’s interests.

Rather than seeking to raise sales revenue while keeping consumers surplus high enough

to sustain future revenue, the intermediary’s only goal in the subscription-based model is to

maximize consumer surplus, as both her stage game payoff and the market base depend only

on consumer surplus. As a result, a higher market feedback always leads to more efficient

outcomes.

Proposition 3 (Subscription-Based Model). For any β < β, there exists a unique stationary

equilibrium outcome ys(β). Furthermore, for any 0 < β < β′ < β, ys(β′) dominates ys(β).

Although it is clear from Proposition 1 and Proposition 3 that compared with the revenue-

sharing model, the subscription-based model can better translate a higher level of market

feedback into more efficient outcomes, the intermediary may not always prefer the subscrip-

tion based model. While consumers enjoy higher surplus and market bases are larger under

the subscription-based model, more surplus is extracted from consumers under the revenue-

sharing model. As demonstrated by Proposition 4, it is possible that the intermediary may

prefer the revenue-sharing model, even if higher market feedback causes inefficiency.

For any β < β, let ωs(β) denote the intermediary’s payoff in the unique stationary equi-

librium under the revenue-sharing model, and let ρs(β) denote the intermediary’s payoff in

the unique stationary equilibrium under the subscription-based model.

Proposition 4. There exists β0 ≥ 0 such that ωs(β) > ρs(β) for all β ∈ [0, β0). Moreover,

β0 > 0 if and only if
α̃

α
<

E[v]∫∞
p
D(v) dv

;

and β0 > β if and only if
α̃

α
+ 1 <

E[v]∫∞
p
D(v) dv

.

Proposition 4 underlines the possibility that the intermediary may prefer the revenue-

sharing model to the subscription-based model, even if β falls in the range (β, β), in which a

higher level of market feedback leads to welfare losses under the revenue-sharing model. Con-

sequently, while the subscription-based model may better translate higher market feedback

into efficiency, the intermediary may not voluntarily adopt this model.
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7 Extensions

7.1 Long-Lived Seller

In this section, we relax the assumption that the seller is short-lived and consider a case in

which both the seller and the intermediary are long-lived, but the seller is less patient than

the intermediary.

The seller is long-lived and has discount ρ ∈ (0, δ). The sequence of events and strategies

of all players remain the same: In each period t, the seller observes all past histories and

then chooses a price pt; the intermediary then sees all past histories and pt before choosing a

disclosure policy Dt ∈ D; the tie-breaker then sees all past histories, pt and Dt and chooses

a tie breaking rule qt ∈ [Dt(p
+
t ), Dt(pt)]. Given any strategy profile, the seller’s payoff is

π = (1− α)p0q0 +
∞∑
t=1

ρt
t∏

s=0

(
γ + β

∫ ∞
ps

Ds(v) dv

)
(1− α)ptqt,

while the intermediary’s payoff is

ω = αp0q0 +
∞∑
t=1

δt
t∏

s=0

(
γ + β

∫ ∞
ps

Ds(v) dv

)
αptqt,

where {pt, Dt, qt} are the on-path actions chosen by the seller, the intermediary, and the

tie-breaker, respectively. As a result, the seller’s and the intermediary’s interests are better

aligned than in the baseline model but may still differ when ρ < δ. As demonstrated by

Proposition 5, our main result still holds qualitatively even if the seller is long-lived.

Proposition 5 (Long-Lived Seller). There exists a continuously decreasing function β with

β(0) = β and limρ↑δ β(ρ) = β such that for any ρ ∈ [0, δ) and for any β ∈ (β,β(ρ)),

there exists a unique stationary equilibrium outcome z̃s(β). z̃s(β) dominates z̃s(β′) for any

β, β′ ∈ (β,β(ρ)) such that β < β′.

7.2 Nonlinear Growth Rate

The baseline model assumes that the market growth rate is linear in consumer surplus. In

this section, we consider an extension of the model that captures a broad scope of non-linear

market growth. In each period t ≥ 1, the growth rate of the market base mt+1/mt is a

nonlinear function of consumer surplus in period t:

mt+1

mt

= f

(∫ ∞
pt

Dt(v) dv

)
.

for some function f , which we refer to as the growth function. In this section, we assume

that the function p 7→ pD(p) is strictly concave. We now characterize the set of stationary

equilibria in this alternative setting.
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Let F be the collection of twice-differentiable, increasing, and concave functions on R+

with f(0) = γ, and let

F1 := {f ∈ F|f ′(0) ∈ [0, β]}.

Furthermore, for any β ∈ (β, β) and for any η ≥ 0, let

F2(β, η) := {f ∈ F|f ′(0) = β, ‖f ′′‖ ≤ η}.

Note that for any β ∈ (β, β), F1 and F2(β, η) are disjoint sets. As shown in Proposition 6,

higher market feedback may still lead to welfare losses even with nonlinear market growth

rate.

Proposition 6 (Inefficiency of High Feedback—Nonlinear Growth). There exists a contin-

uously decreasing function h : (β, β) → R++ such that every f ∈ F1 ∪ [
⋃
β∈(β,β)F2(β, h(β))]

induces a unique stationary equilibrium outcome zs(f). Furthermore, for any β, β′ such that

β < β < β′ < β, zs(f1) dominates zs(f2) for all f1 ∈ F2(β, h(β)) and f2 ∈ F2(β′, h(β′)).

According to Proposition 6, for any growth function in the set
⋃
β∈(β,β)F2(β, h(β)), an

increase in the level of market feedback when consumer surplus is zero (i.e., f ′(0)) leads

to Pareto inferior outcomes. Hence, our main finding does not rely on the linearity of the

growth function. Rather, the linearity assumption in the baseline model is mainly imposed

to simplify the exposition.

7.3 Non-Stationary Revenue-Sharing Rule

Thus far, we have assumed that the seller and the intermediary share sales revenue in each

period according to a fixed α ∈ (0, 1). In reality, however, it is reasonable to expect non-

constant sharing rules to be present. After all, in a market with many intermediaries and

many sellers, intermediaries with different market bases may have different outside options.

In this section, we consider an extension of the model in which the revenue-sharing rule

depends on the current market base m, so that the intermediary can obtain α(m) share of

sales revenue when the market base is m. When the sharing rule depends on the market base,

the stage game is no longer stationary. As a result, Markov strategies may depend on market

bases and therefore the intermediary’s best response may not have a closed form solution in

general. Nonetheless, as shown below, under certain parametrization of the function α, our

previous analyses can be extended.

Assume that at any history in which the market base is m ≥ 1, the intermediary can

retain α(m) := m−α share of sales revenue, for some α ∈ (0, 1).18 With this assumption,

18Under this assumption, α is decreasing in m, which means that the intermediary’s per-consumer per-sale

commission decreases with her market base. The equilibrium prices for intermediaries’ services in Fainmesser

and Galeotti (2021) exhibit similar features, although under a different model.
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under any strategy profile, for any t ∈ N ∪ {0}, we note that

m̃t+1 := mt+1α(mt+1) = f(σt)mtα(mt) =: f(σt)m̃t,

where f(σ) := (γ + βσ)1−α for some γ ≥ 1 and σt denotes the consumer surplus induced by

this strategy profile in period t. Note that f is an increasing and concave function and so we

may simply replace {mt} with {m̃t} and apply the results in Section 7.2.

Thus, even if the revenue sharing rule between the seller and the intermediary is non-

stationary, higher market feedback may still lead to Pareto-worse outcomes.

8 Conclusions

In this paper, we show that higher market feedback may lead to Pareto inferior outcomes

in a setting featuring informational intermediation. The results are driven by the diverging

interests of the seller and the intermediary under a revenue-sharing business model: The

intermediary is more consumer-minded than the seller because of the intermediary’s concern

about her own future market base. We show that for a range of market feedback levels under

the unique stationary equilibrium outcome, higher market feedback leads to Pareto inferior

outcomes, even though higher market feedback means that the market grows faster and

that the intermediary has more incentive to enhance consumer surplus. Additionally, across

all subgame perfect equilibria, we show that the Pareto-worst subgame perfect equilibrium

outcome worsens as market feedback increases.

Our results serve as a cautionary tale for policy-making, as they highlight the possibility

that changes in the level of market feedback may have counter-intuitive policy implications.

As a comparison, we show that under an alternative subscription-based business model,

higher market feedback always leads to more efficient outcomes.

Several directions for future research emerge from our analyses. For example, while we

focus only on the revenue-sharing and information-provision business model, informational in-

termediaries may operate under other business models, including the pay-sponsorship model.

It would be valuable to understand how intermediaries and the market choose among these

models and the welfare implications of these choices. Additionally, from a policy point of

view, it would also be useful to better understand the broader impact of market feedback

under different market structures.
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Appendix

This appendix contains proofs of results in Section 4 and Section 5. Proofs for the extensions are relegated

to the Online Appendix.

A.1 Proof of Lemma 1

The “if” part immediately follows from the definition of strategies. For the “only if” part, it suffices to show

that there is a profitable deviation only if there is a finite-shot deviation. To this end, consider any period

t, any history ht, and any strategy profile that gives the intermediary a finite continuation payoff. Let σ|ht
denote the intermediary’s continuation strategy and let

ωt =

∞∑
s=t

δsmspsqs <∞

denote the intermediary’s continuation payoff, where ps ≥ 0, Ds ∈ D and qs ∈ [Ds(p
+
s ), Ds(ps)] are the price

charged by the seller, the disclosure policy adopted by the intermediary and the tie-breaking rule chosen by

the tie-breaker on path in each period s ≥ t, respectively, and {ms} are the induced market bases on path.

Suppose that, when holding the seller’s and the tie-breaker’s strategies fixed, there is another continuation

strategy σ̃|ht at ht that gives the intermediary a continuation payoff

ω̃t =
∞∑
s=t

δsm̃sp̃sq̃s > ωt,

where p̃s ≥ 0, D̃s ∈ D, and q̃s ∈ [D̃s(p̃
+
s ), D̃s(p̃s)] are the price charged by the seller, the disclosure policy

adopted by the intermediary, and the tie-breaking rule chosen by the tie-breaker in each period s ≥ t

on the path induced by σ̃|ht , the seller’s strategy and the tie-breaker’s strategy, respectively, and {m̃s}
are the associated market bases. Furthermore, for any T > t, let ω̃Tt be the intermediary’s continuation

payoff at history ht when following σ̃|ht until period T > t and then return to σ|ht from period T onward.

Clearly, since stage game payoffs are bounded from below, both ω̃t and ω̃Tt are well-defined. Moreover, for

x ∈ {ω̃t, ω̃Tt }, either x = ∞ or x < ∞. Clearly, if lim supT→∞ ω̃
T
t = ∞, then since ωt < ∞, there exists T̂

such that ω̃T̂t > ωt and hence deviating to σ̃|ht for T̂ periods then and return to σ|ht is profitable for the

intermediary. Thus, it is without loss to assume that lim supT→∞ ω̃
T
t < ∞. In the meantime, if ω̃t = ∞,

then there exists T̂ such that
T̂∑
s=t

δsm̃sp̃sq̃s > ωt,

which in turn implies that ω̃T̂t > ωt since stage game payoffs are nonnegative. Therefore, it is also without

loss to assume that ω̃t <∞. Furthermore, since lim supT→∞ ω̃
T
t <∞, {ω̃Tt } is bounded. Thus, there exists

a convergent subsequence {ω̃Tnt }. We claim that it must be

lim
n→∞

ω̃Tnt ≥ ω̃t.

Indeed, suppose the contrary, that limn→∞ ω̃
Tn
t < ω̃t. For any n ∈ N, since ω̃Tnt <∞, it can be written as

ω̃Tnt =

Tn∑
s=t

δsm̃sp̃sq̃s +
∞∑

s=Tn+1

δsm̃n
s p̃

n
s q̃
n
s ,

https://kaihaoyang.com/wp-content/uploads/2022/01/Market-Minded-Intermediary-Online-Appendix.pdf
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where for any n ∈ N, p̃ns ≥ 0, D̃n
s ∈ D and q̃ns ∈ [D̃n

s (p̃n+
s ), D̃n

s (p̃ns )] are the price charged by the seller, the

disclosure policies adopted by the intermediary, and the tie-breaking rule chosen by the tie-breaker in period

s ≥ Tn + 1 on path, respectively, and {m̃s}∞s=Tn+1 are the associated market bases. Hence, for any n ∈ N,

ω̃Tnt − ω̃t =

∞∑
s=Tn+1

δsm̃n
s p̃

n
s q̃
n
s −

∞∑
s=Tn+1

δsm̃sp̃sq̃s.

Therefore, since ω̃t <∞, and since
∑∞

s=Tn+1 δ
sm̃n

s p̃
n
s q̃
n
s ≤ ω̃

Tn
t for all n ∈ N,

0 > lim
n→∞

[ω̃Tnt − ω̃t]

= lim
n→∞

[ ∞∑
s=Tn+1

δsm̃n
s p̃

n
s q̃
n
s −

∞∑
s=Tn+1

δsm̃sp̃sq̃s

]

= lim
n→∞

∞∑
s=Tn+1

δsm̃n
s p̃

n
s q̃
n
s − lim

n→∞

∞∑
s=Tn+1

δsm̃sp̃sq̃s

= lim
n→∞

∞∑
s=Tn+1

δsm̃n
s p̃

n
s q̃
n
s .

However, since stage game payoffs are nonnegative, δsm̃n
s p̃

n
s q̃
n
s ≥ 0 for all n ∈ N and for all s ≥ Tn+1, which

implies that

lim
n→∞

∞∑
s=Tn+1

δsm̃n
s p̃

n
s q̃
n
s ≥ 0,

a contradiction. Thus, it must be that limn→∞ ω̃
Tn
t ≥ ω̃t.

As a result, since ω̃t > ωt, there exists n ∈ N such that ω̃Tnt > ωt, as desired. �

A.2 Proof of Lemma 2

Consider any stationary equilibrium. Since both the intermediary’s and the seller’s strategy do not depend

on past histories in any stationary equilibrium, the intermediary’s normalized equilibrium continuation value

in a given period must be a constant. Therefore, for any t, the intermediary’s normalized continuation payoff

at the beginning of period t can be written as ωs ∈ [0,∞). Meanwhile, since the seller’s strategy does not

depend on history either, the price charged by the seller in period t must be a constant ps ∈ [0,∞) as well.

Therefore, since both the intermediary and the seller are best responding in any stationary equilibrium at

any history, (4), (5), and (6) must hold.

Conversely, given any tuple (ωs, ps,Ds) that satisfies the conditions required by the lemma, the strategy

profile where the seller chooses ps and the intermediary chooses Ds(·|p) ∈ D whenever the seller chooses

posted price p ≥ 0 in the same period is immune to one-shot deviations. Moreover, since ωs <∞, Lemma 1

then implies that this strategy profile is indeed a subgame perfect equilibrium. This completes the proof. �

A.3 Proof of Lemma 3

First, notice that for any D ∈ D,

(E[v]− p)+ ≤
∫ ∞
p

D(v) dv ≤
∫ ∞
p

D(v) dv
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for all p ≥ 0. Moreover, notice that the function ξ 7→
∫∞
ξ D(v) dv − (p − ξ)D(ξ) is strictly decreasing on

[0, p], with a value of 0 at ξ = v−1(p) and a value of
∫∞
p D(v) dv at ξ = p, there must exist a unique

ξ(p) ∈ [v−1(p), p] such that
∫∞
ξ D(v) dv − (p− ξ)D(ξ) =

∫∞
p D(v) dv.

Now consider any D̂ ∈ D such that ∫ ∞
ξ(p)

D̂(v) dv =

∫ ∞
ξ(p)

D(v) dv (A.9)

and that

D̂(v) = D(ξ(p)), (A.10)

for all v ∈ (ξ(p), p]. Such D̂ exists since when D̂ is defined as

D̂(v) :=


1, if v ∈ [0,E[v|v ≤ ξ(p)]]

D(ξ(p)), if v ∈ (E[v|v ≤ ξ(p)],E[v|v ≥ ξ(p)]]
0, if v ∈ (E[v|v ≥ ξ(p)],∞)

,

we have
∫∞
ξ(p) D̂(v) dv =

∫∞
ξ(p)D(v) dv. As a result, for any D̂ satisfying (A.9) and (A.10), by definition of

ξ(p),
∫∞
p D̂(v) dv =

∫∞
p D(v) dv.

Moreover, for any D ∈ D, (A.9) implies that

0 ≤
∫ ∞
ξ(p)

(D(v)−D(v)) dv ≤
∫ p

ξ(p)
(D(ξ(p))−D(v)) dv ≤ (p− ξ(p))(D(ξ(p))−D(p)),

and hence D(p) ≤ D(ξ(p)). Together, we have

αpD(p) + δω

(
γ + β

∫ ∞
p

D(v) dv

)
≤ αpD(ξ(p)) + δω

(
γ + β

(∫ ∞
ξ(p)

D(v) dv − (p− ξ(p))D(ξ(p))

))
.

Lastly, notice that for any D̂ satisfying (A.9) and (A.10),

αpD(ξ(p)) + δω

(
γ + β

(∫ ∞
ξ(p)

D(v) dv − (p− ξ(p))D(ξ(p))

))
= αpD̂(p) + δω

(
γ + β

∫ ∞
p

D̂(v) dv

)
.

As a result, for any D, there exists another D̂ ∈ D satisfying (A.9) and (A.10) such that

αpD(p) + δω

(
γ + β

∫ ∞
p

D(v) dv

)
≤αpD̂(p) + δω

(
γ + β

∫ ∞
p

D̂(v) dv

)
=αpD(ξ(p)) + δω

(
γ + β

(∫ ∞
ξ(p)

D(v) dv − (p− ξ(p))D(ξ(p))

))
.

Therefore, the maximization problem

sup
D∈D

[
αpD(p) + δω

(
γ + β

∫ ∞
p

D(v) dv

)]
can be simplified to

max
ξ∈[v−1(p),p]

[
αpD(ξ) + δω

(
γ + β

(∫ ∞
ξ

D(v) dv − (p− ξ)D(ξ)

))]
, (A.11)
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which, by continuity of D, has a solution. This implies that ∆(p|ω) is nonempty. Moreover, the first-order

Kuhn-Tucker condition of (A.11) implies its solution ξ(p|ω) is given by

ξ(p|ω) = max

{(
1− α

δβω

)+

p, v−1(p)

}
.

This in turn implies that any D̂ ∈ D satisfying the condition given by the lemma must be in ∆(p|ω). This

completes the proof. �

A.4 Proof of Lemma 4

By Lemma 3, for any selection D of ∆(·|ω),

pD(p|p) = pD(ξ(p|ω)) = pD

(
max

{(
1− α

δβω

)+

p, v−1(p)

})

= min

{
pD

((
1− α

δβω

)+

p

)
, pD(v−1(p))

}
,

where the last equality follows from the fact that D is strictly decreasing. Furthermore, notice that for any

p, if 1 ≤ α/δβω, then

pD

((
1− α

δβω

)+

p

)
= p.

Meanwhile, if 1 > α/δβω, let p̃ := (1− α/δβω)p, then

pD

((
1− α

δβω

)+

p

)
=

δβω

δβω − α
p̃D(p̃).

Thus, since D is regular, p 7→ D((1−α/δβω)p) is quasi-concave as well. Lastly, by the definition of v−1 the

function p 7→ D(v−1(p)) is also quasi-concave. Together, the function p 7→ pD(p|p) is quasi-concave since it

is a minimum of two quasi-concave functions. Thus, maxp≥0 pD(p|p) has a unique solution.

Moreover, if 1 ≤ α/δβω, then pD(p|p) = pD(v−1(p)) and hence p̃ = E[v], which in turn implies that(
1− α

δβω

)+

p̃ = 0 = v−1(p̃) ≤ p.

Meanwhile, if 1 > α/δβω, notice that the function p 7→ D(v−1(p)) is maximized at p = E[v] and that

E[v]D(v−1(E[v])) = E[v] ≥ E[v]D((1 − α/δβω)E[v]). As a result, since p 7→ pD(p|p) is quasi-concave and

hence single-peaked, it must attain its maximum at either price p such that pD(v−1(p)) = pD((1−α/δβω)p)

or the maximizer of pD((1− α/δβω)p), whichever is smaller. Together with the fact that the maximizer of

pD((1− α/δβω)p) is given by δβωp/(δβω − α), it then follows that either(
1− α

δβω

)
p̃ = v−1(p̃) and p̃ ≤ δβω

δβω − α
p

or

p̃ =
δβω

δβω − α
p ≤ v(p).
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As a result, it must be that

v−1(p̃) ≤
(

1− α

δβω

)+

p̃ ≤ p,

with at least one inequality binding.

Lastly, suppose that ∫ ∞
p̃

D(v|p̃) dv = 0.

Then, by Lemma 3, ∫ ∞
ξ(p̃|ω)

D(v) dv − (p̃− ξ(p̃|ω))D(ξ(p̃|ω)) = 0,

which is equivalent to

E[v|v ≥ ξ(p̃|ω)] = p̃ ⇐⇒ ξ(p̃|ω) = v−1(p̃).

Moreover, notice that for any p ∈ [0,E[v]], pD(v−1(p)) = p ≥ pD((1− α/δβω)+p), and that p 7→ pD(v−1(p))

is uniquely maximized at p = E[v]. Single-peakness of p 7→ D(p|p) and ξ(p̃|ω) = v−1(p̃) then imply that(
1− α

δβω

)+

p̃ = v−1(p̃).

Conversely, suppose that (
1− α

δβω

)+

p̃ = v−1(p̃).

Then ξ(p̃|ω) = v−1(p̃) and hence, by Lemma 3,∫ ∞
p̃

D(v|p̃) dv =

∫ ∞
v−1(p̃)

D(v) dv − (p̃− v−1(p̃))D(v−1(p̃)) = D(v−1(p̃))(p̃− v(v−1(p̃))) = 0.

This completes the proof. �

A.5 Proof of Theorem 1

We first show that any (rs, ps, σs, ωs, {ms
t}) described in the statement of the theorem is indeed a stationary

equilibrium. To this end, we will show that for any such tuple, there exists Ds : R+ → D such that

(ωs, ps,Ds) satisfies the conditions of Lemma 2. Consider three cases separately.

Case 1: β ∈ [0, β].

In this case, notice that

δβωs = δβ
αE[v]

1− γδ
=
βα

β
≤ α,

and therefore ωs ≤ α/δβ. Consider any selection Ds of ∆(·|ωs). Since ps = E[v] and thus v−1(ps) = 0,

Lemma 4 implies that ps ∈ argmaxp pD
s(p|p), which establishes (5). Meanwhile, by Lemma 4, it must be

that ∫ ∞
ps

Ds(v|ps) dv = 0.
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Moreover, given ps = E[v], Lemma 3 implies that Ds(v|ps) = D(0) = 1. Together,

sup
D∈D

[
αpsD(ps) + δ

(
γ + β

∫ ∞
ps

D(v) dv

)
ωs

]
=αpsDs(ps|ps) + δ

(
γ + β

∫ ∞
ps

Ds(v|ps) dv

)
ωs

=αE[v] + γδωs

=ωs

=
αpsDs(ps|ps)

1− δ
(
γ + β

∫∞
ps Ds(v|p) dv

)
which establishes (4) and (6).

Case 2: β ∈ (β, β).

In this case, take any selection Ds of ∆(·|ωs). Notice that by definition, 1 > α/δβωs, and hence(
1− α

δβωs

)+

ps =

(
1− α

δβωs

)
ps = v−1(ps),

which in turn implies that, by Lemma 4, ∫ ∞
ps

Ds(v|ps) dv = 0

and therefore,

ωs = αpsD(ξ(ps|ωs)) + γδωs = αpsDs(ps|ps) + δ

(
γ + β

∫ ∞
ps

Ds(v|ps) dv

)
ωs,

which establishes (4). Furthermore, since pβ < p, ps < δβωsp/(δβωs − α) and hence ps is the unique

maximizer of pD(ξ(p|ωs)) according to Lemma 4. Thus, by Lemma 3, (ωs, ps,Ds) satisfies (5) and (6).

Case 3: β = β.

In this case, consider any selection Ds of ∆(·|ωs). By definition, 1 > α/δβωs and(
1− α

δβωs

)
ps > v−1(ps),

and thus, by Lemma 3 and Lemma 4,

psDs(ps|ps) = psD

((
1− α

δβωs

)
ps

)
≥ pD

(
max

{(
1− α

δβωs

)
p, v−1(p)

})
= pDs(p|p)

As a result, (ωs, ps,Ds) satisfies (4), (5), and (6) and therefore induces a stationary equilibrium, as desired.

We now show that for any stationary equilibrium, its outcome (rs, ps, σs, ωs, {ms
t}) must satisfy the

conditions given by Theorem 1. By Lemma 2, there exists (ωs, ps,Ds) satisfying (4), (5), and (6) such that

rs = psDs(ps|ps), σs =
∫∞
ps Ds(v|ps) dv and ms

t = (1 + βσs)t. It follows immediately that rs, σs, {ms
t} satisfy

the condition given by Theorem 1 if ωs and ps satisfy these conditions. Thus, it suffices to show that ωs, ps

satisfy these conditions. To this end, notice that By Lemma 4,

v−1(ps) ≤
(

1− α

δβωs

)+

ps ≤ p, (A.12)
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with at least one inequality binding. Now consider three cases separately.

Case 1: ωs ≤ α/δβ.

In this case, it immediately follows that(
1− α

δβωs

)+

ps = 0 = v−1(ps)

and hence ps = E[v], which in turn, by (4), implies that ωs = αE[v]/(1− γδ). For this to be consistent with

ωs ≤ α/δβ, it must be that β ≤ β.

Case 2: ωs > α/δβ and (
1− α

δβωs

)
ps = v−1(ps). (A.13)

In this case, Lemma 3 implies that

ωs = δ

(
γ + β

∫
(

1− α
δβωs

)
ps
D(v) dv

)
ωs,

and hence, together with (A.12), it must be that β ∈ [β, β] and(
1− α

δβωs

)
ps = pβ.

Meanwhile, since (A.13) is equivalent to

ωs = gβ
((

1− α

δβωs

)
ps

)
,

it must be that ωs = gβ(pβ) and hence ps = v(pβ).

Case 3: ωs > α/δβ and

ps =
δβωs

δβωs − α
p. (A.14)

In this case, Lemma 3 implies that

ωs = δ

(
γ + β

∫ ∞
p

D(v) dv

)
ωs,

which means this case can only occur when β = β.

Together with observations that pβ = 0 if and only if β ≤ β, that pβ = p if and only if β = β, and that

the second inequality of (A.12) is equivalent to ωs ≥ gβ(p), it then follows that ωs, ps must be the same as

described in Theorem 1 in all three cases. This completes the proof. �

A.6 Proof of Lemma 5

Consider any subgame perfect equilibrium. At any history ht, choosing a myopically optimal demand in

every future periods is always a feasible strategy. Suppose that the intermediary deviates to this strategy.
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Notice that although the seller’s prices may change after this deviation even if the seller’s strategy remains

unchanged (as the history of the play may be different), the seller must always be best responding in

each period as he is short-lived. Therefore, prices in each period must be within [r∗, p∗]. As a result, the

intermediary’s stage game payoff after this deviation must be at least

min
p∈[r∗,p∗]

αpD(v−1(p)) = αp∗D(v−1(p∗)) = r∗.

Hence, the intermediary’s continuation payoff at history ht in this equilibrium must be at least

αr∗

1− γδ
= ω∗.

If ωβ = ω∗, then the proof is complete. Thus, it is without loss to assume that ωβ > ω∗. Now consider

any subgame perfect equilibrium and history ht. Let ω0 := ω∗. For any n ∈ N, let

ωn := hβ(ωn−1) = δ

γ + β

∫ ∞(
1− α

δβωn−1

)
p∗
D(v) dv

ωn−1.

We now claim that the intermediary’s continuation payoff at any history in any subgame perfect equilibrium

must be at least ωn for all n ∈ N ∪ {0}, which will in turn imply that her equilibrium payoff is at least ωβ.

We prove this claim by induction. Consider any subgame perfect equilibrium, since ω0 = ω∗, the

intermediary’s continuation payoff at any history must be at least ω0. For any n ∈ N, suppose that the

intermediary’s continuation payoff at any history is at least ωn−1. It suffices to show that her continuation

payoff at any history is at least ωn as well. To this end, consider any history ht at any period t. Suppose

that the seller charges p. Then, since the intermediary’s continuation payoff starting from the next period

is at least ωn−1, regardless of the outcomes in this period, her continuation payoff at (ht, p) must be at least

W(p|ωn−1) = sup
D∈D

[
αpD(p) + δ

(
γ + β

∫ ∞
p

D(v) dv

)
ωn−1

]
.

Since price p must be the seller’s best response given the intermediary’s strategy, it must be that p ≤ p∗.

Moreover, since W(p|ω) = αpD(v−1(p)) + γδω whenever α ≥ δβω and W(p|ω) is decreasing on [0, p∗]

whenever α < δβω (see Lemma A.1 below), it must be that W(p|ωn−1) ≥ W(p∗|ωn−1) for all p ≤ p∗.

Therefore, at any history ht, the seller’s continuation payoff must be at least

W(p∗|ωn−1) = sup
D∈D

[
αp∗D(p∗) + δ

(
γ + β

∫ ∞
p∗

D(v) dv

)
ωn−1

]
.

Moreover, by Lemma 3,

W(p∗|ωn−1) =αp∗D(ξ(p∗|ωn−1))

+ δ

(
γ + β

(∫ ∞
ξ(p∗|ωn−1)

D(v) dv − (p− ξ(p∗|ωn−1))p∗D(ξ(p∗|ωn−1))

))
ωn−1

= max

αp∗D(v−1(p∗)) + γδωn−1, δ

γ + β

∫ ∞(
1− α

δβωn−1

)
p∗
D(v) dv

ωn−1


= max{αp∗D(v−1(p∗)) + γδωn−1, h

β(ωn−1)}

≥hβ(ωn−1)

=ωn.
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As a result, if {ωn} does not converge, then since ωβ is the unique solution to ω = hβ(ω), and since

hβ(ω) < ω for all ω > ωβ, it must be that lim supn→∞ ωn ≥ ωβ. Meanwhile, if {ωn} converges to some

ω̃ <∞, since h is continuous,

ω̃ = lim
n→∞

ωn = lim
n→∞

hβ(ωn−1) = hβ( lim
n→∞

ωn−1) = hβ(ω̃),

which in turn implies that ω̃ = ωβ. Together, the intermediary’s continuation payoff at any history in any

subgame perfect equilibrium must be at least ωβ, as desired. �

A.7 Proof of Theorem 2

The proof of Theorem 2 involves some additional definitions and lemmas.

Lemma A.1. Suppose that β < β∗. Then for any ω ≥ 0, W(p|ω) = αpD(v−1(p)) + γδω for all p ≥ 0

whenever α ≥ δβω. Meanwhile, if α < δβω, then W(·|ω) is differentiable except at countably many p ∈
[0, p∗], is decreasing on [0, p∗], and W(p∗|ωβ) = ωβ.

Proof. By Lemma 3, for any p ≥ 0

W(p|ω) = max
ξ∈[v−1(p),p]

[
αpD(ξ) + δ

(
γ + β

(∫ ∞
ξ

D(v) dv − (p− ξ)D(ξ)

)
ω

)]
=

[
αpD(ξ(p|ω)) + δ

(
γ + β

(∫ ∞
ξ(p|ω)

D(v) dv − (p− ξ(p|ω))D(ξ(p|ω))

))
ω

]
.

Therefore, W(p|ω) = αpD(v−1(p)) + γδω if α ≥ δβω.

In the meantime, if α < δβω, then W(·|ω) is continuous on [0, p∗], and is differentiable at all p ∈ [0, p∗]

except for those such that (1−α/δβω)+p = v−1(p), which is at most a countable subset of [0, p∗]. Therefore,

by lemma 1 of Milgrom and Segal (2002),

∂

∂p
W(p|ω) = (α− δβω)D(ξ(p|α, β, δ, ω)) ≤ 0,

for all p ∈ [0, p∗] at which (1 − α/δβω)p 6= v−1(p) and hence W(·|ω) is decreasing on [0, p∗]. Now notice

that if ωβ = ω∗, then

W(p∗|ωβ) = sup
D∈D

[
αp∗D(p∗) + δ

(
γ + β

∫ ∞
p∗

D(v) dv

)
ωβ
]
≥ αp∗D(v−1(p∗)) + γδωβ = ωβ

Meanwhile, if ωβ > ω∗, then since

αp∗D(v−1(p∗)) + γδωβ = (1− γδ)ω∗ + γδωβ < ωβ

and since hβ(ωβ) = ωβ, by Lemma 3, we must have

W(p∗|ωβ) = δ

γ + β

∫ ∞(
1− α

δβωβ

)
p∗
D(v) dv

ωβ = hβ(ωβ) = ωβ.

This completes the proof. �
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Lemma A.2. Suppose that β ≤ β. Then in any subgame perfect equilibrium, the intermediary’s equilibrium

payoff is at most αE[v]/(1− γδ).

Proof. Consider any subgame perfect equilibrium. Let ω denote the intermediary’s equilibrium payoff.

According to the structure of the game, ω can be written as

ω = αp0D0(p0) +

∞∑
t=1

δt
t−1∏
s=0

(
γ + β

∫ ∞
ps

Ds(v) dv

)
αptDt(pt),

for some sequence {pt, Dt} with pt ∈ N ∪ {0} and Dt ∈ D for all t. In the meantime, for any T ∈ N, let

ωT := sup
{D̃t,p̃t}Tt=0

[
αp̃0D̃0(p̃0) +

T∑
t=1

δt
t−1∏
s=0

(
γ + β

∫ ∞
p̃s

D̃s(v) dv

)
αp̃tD̃t(p̃t)

]

For any T ∈ N, note ωT can be recursively written as

ωT = sup
p̃≥0,D̃∈D

[
αp̃D̃(p̃) + δ

(
γ + β

∫ ∞
p̃

D̃(v) dv

)
ωT−1

]
where ω0 := αE[v].

As a result, since ω <∞, and since the seller’s payoff in each period must be at least r∗ in any subgame

perfect equilibrium , it must be that ω ≤ lim supT→∞ ωT .

Now fix any T ∈ N and suppose that ωT−τ = α
∑τ

s=0 δ
sE[v] for some τ < T . Then since β ≤ β,

δβωT−τ ≤ δβ
αE[v]

1− γδ
≤ α.

Therefore, for any p ≥ 0, ξ(p|ω∗T−τ ) = v−1(p). Hence, by Lemma 3,

ωT−τ−1 = sup
p∈[r∗,p∗]

[αpD(v−1(p)) + γδωT−τ ]

=

τ+1∑
s=0

γsδsαE[v].

Therefore, by induction, it must be that ωT−τ =
∑τ

s=0 γ
sδsαE[v], for all τ ∈ {0, . . . , T}. In particular,

ωT =
∑T

s=0 δ
sαE[v]. Therefore,

ω ≤ lim sup
T→∞

ωT =
αE[v]

1− γδ
,

as desired. �

Lemma A.3. Suppose that β ∈ (β, β̂), and that in any subgame perfect equilibrium , the total revenue in

each period is at least r ≤ E[v]. Then in any subgame perfect equilibrium , the intermediary’s normalized

continuation value at any history is at most

u(r) :=
α

δβ

r

r − pβD(pβ)
. (A.15)
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Proof. Consider any subgame perfect equilibrium and consider any history. Let ω < ∞ denote the inter-

mediary’s normalized continuation payoff at this history. According to the structure of the game, ω can be

written as

ω = αp0D0(p0)
∞∑
t=1

δt
t−1∏
s=0

(
γ + β

∫ ∞
ps

Ds(v) dv

)
αptDt(pt),

for some sequence {pt, Dt} with pt ∈ N ∪ {0} and Dt ∈ D for all t. In the meantime, for any T ∈ N, let

ωT := sup
{D̃t,p̃t}Tt=0

[
αp̃0D̃0(p̃0) +

T∑
t=1

δt
t−1∏
s=0

(
γ + β

∫ ∞
p̃s

D̃s(v) dv

)
αp̃tD̃t(pt)

]
s.t. p̃tD̃t(p̃t) ≥ r, for all t.

Moreover, notice that for any T ∈ N, ωT can be recursively written as

ωT = sup
p̃≥0,D̃∈D

[
αp̃D̃(p̃) + δ

(
γ + β

∫ ∞
p̃

D̃(v) dv

)
ωT−1

]
s.t. p̃D̃(p̃) ≥ r

where ω0 := αE[v].

Lastly, since ω < ∞, and since the total revenue in each period must be at least r in any subgame

perfect equilibrium , it must be that ω ≤ lim supT→∞ ωT .

Since β > β, αE[v]/(1− γδ) > α/δβ, and hence there exists τ̄ such that
∑τ

s=0 γ
sδsαE[v] > α/δβ for all

τ ≥ τ̄ . Now consider any T > τ̄ . For any τ ∈ {1, . . . , τ̄}, any p ≥ 0, and for any ωT−τ > α/δβ, by Lemma 3,

ωT−τ+1 = max
p≥0

[
αpD(ξ(p|ωT−τ ))

+ δ

(
γ + β

(∫ ∞
ξ(p|ωT−τ )

D(v) dv − (p− ξ(p|ωT−τ ))D(ξ(p|ωT−τ ))

))
ωT−τ

]
s.t. pD(ξ(p|ωT−τ )) ≥ r,

where

ξ(p|ωT−τ ) = max

{(
1− α

δβωT−τ

)
p, v−1(p)

}

=


(

1− α
δβωT−τ

)
p, if ωT−τ ≥ gβ

((
1− α

δβωT−τ

)
p
)

v−1(p), if ωT−τ ≤ gβ
((

1− α
δβωT−τ

)
p
) ,

for all p ≥ 0, which in turn can be written as

ωT−τ+1 = max
p∈[0,p]

ψ(p|ωT−τ ) s.t. pD(ξ(p|ωT−τ )) ≥ r.

where

ψ(p|ω̃) :=

 δ
(
γ + β

∫∞
p D(v) dv

)
ω̃, if gβ(p) ≥ ω̃

αδβω̃
δβω̃−αpD

(
v−1

(
δβω̃

δβω̃−αp
))

+ γδω̃, if gβ(p) < ω̃
,
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for all p ≥ 0 and for all ω̃ ≥ 0. Therefore, suppose that for some τ ∈ {1, . . . , τ̄}, ωT−τ > α/δβ. Then

ωT−τ+1 ≥ αE[v] + γδωT−τ >
α

δβ
.

By induction, it then follows that ωT−τ > α/δβ for all τ ∈ {1, . . . , τ̄}.
Furthermore, since gβ is increasing on [0, p], the functions p 7→ δ

(
γ + β

∫∞
p D(v) dv

)
ω̃ and p 7→

αδβω̃/(δβω̃−α)pD(v−1(δβω̃(δβω̃−α)p)) cross at most once on [0, p] for any ω̃ > α/δβ, and whenever they

cross, it must be that p 7→ δ
(
γ + β

∫∞
p D(v) dv

)
ω̃ is decreasing at the crossing point. Therefore, if these two

functions cross and the crossing point is below pβ, then it must be that ωT−τ+1 = αE[v] + γδωT−τ > ωT−τ .

Otherwise, it must be that

ωT−τ+1 = δ

(
γ + β

∫ ∞
pT−τ

D(v) dv

)
ωT−τ ,

where pT−τ ∈ [0, p] is the unique solution to

δβωT−τ
δβωT−τ − α

pD(p) = r.

Meanwhile, notice that since αE[v]/(1−γδ) > α/δβ, the crossing point must be above pβ for T large enough

and τ small enough.

Finally, for any ω̃ > α/δβ, let p(ω̃) be the unique solution to

δβω̃

δβω̃ − α
pD(p) = r.

and let

Π(ω̃) := δ

(
γ + β

∫ ∞
p(ω̃)

D(v) dv

)
ω̃.

Notice that by definition, Π(ω̃) > ω̃ if ω̃ < u(r); Π(ω̃) < ω̃ if ω̃ > u(r) and Π(u(r)) = u(r). Together, it

then follows that for any T large enough,

ωT = Π(ωT−1).

Therefore, {ωT } has a limit and limT→∞ ωT = u(r), and hence

ω ≤ lim
T→∞

ωT = u(r),

as desired. �

Proof of Theorem 2. We first introduce a family of regimes that describe the intermediary’s and the seller’s

strategies. Then we will use these regimes to construct subgame perfect equilibria to support the desired

payoffs,

Regime p-myopic: The seller plays p. The intermediary chooses any D ∈ ∆(p|0). The tie-

breaker then breaks ties in favor of the seller (i.e. the tie breaker chooses q = D(p)).

Regime (p, ω)-transition: The seller plays p, the intermediary chooses any D ∈ ∆(p|ω) and

the tie-breaker breaks ties in favor of the seller.

Regime D-punish: The intermediary chooses D after seeing the seller’s price, and the tie-

breaker breaks ties against the seller.
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We now characterize the set of equilibrium payoffs by four cases separately.

Case 1: β ≤ β.

In this case, since
1− γδ
δβ

≥ E[v] > p∗D(v−1(p∗)),

δβω∗ < α. Thus,

hβ(ω∗) = δ(γ + βE[v])ω∗ ≤ ω∗,

which in turn implies, by the definition of ωβ, ωβ = ω∗ < α/δβ.

Now let ω := αE[v]/(1 − γδ). For any p ≥ 0 and for any ω̃ ∈ [ωβ, ω], let Λβ(p, ω̃) be the value of the

following constrained maximization problem:

sup
D∈D

[
αpD(p) + δ

(
γ + β

∫ ∞
p

D(v) dv

)
ω

]
(A.16)

s.t.
αpD(p)

1− γδ
≤ ω̃. (A.17)

Note that if the constraint does not bind,

Λβ(p, ω̃) = αpD(v−1(p)) + γδω,

while if the constraint binds,

Λβ(p, ω̃) = (1− γδ)ω̃ + δ

(
γ + β

∫ ∞(
1− (1−λ)α

δβω

)
p
D(v) dv

)
ω,

and
∂

∂p
Λβ(p, ωβ) = ((1− λ)α− δβω)D

((
1− (1− λ)α

δβω

)
p

)
≤ 0,

by the envelope theorem, where λ solves

αpD
((

1− (1−λ)α
δβω

)
p
)

1− γδ
= ω̃.

Since ω̃ ∈ [ωβ, ω], there exists p̃ ∈ [E(v), p∗] such that

αpD(v−1(p̃))

1− γδ
= ω̃.

This implies that the constraint of (A.16) binds if and only if p ≤ p̃. Together, Λβ(·, ω̃) is a decreasing

function on [0, p∗].

In the meantime, for any ω̃ ∈ [ωβ, ω], notice that the function p 7→ αpD(v−1(p)) + γδω̃ is quasi-concave

and has a maximum at p = E[v]. Moreover, since for any λ ∈ [1− δβω/α, 1] and for any p ∈ [0, p∗],

δβω

∫ ∞(
1−α(1−λ)

δβω

)
p
D(v) dv ≥ (1− λ)αpD(v−1(p)) ⇐⇒ ω ≥ gβ

((
1− α(1− λ)

δβω

)
p

)
,
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the functions p 7→ δβω
∫∞

(1−α(1−λ)/δβω)pD(v) dv and p 7→ αpD(v−1(p)) + γδω̃ cross at most once.

Together, for any ω̃ ∈ [ωβ, ω],

Λβ(p, ω̃) ≥ αpD(v−1(p)) + γδω̃, ∀p ≥ 0

if and only if

Λβ(E[v], ω̃) ≥ αE[v] + γδω̃.

We now define ω∗(β) as

ω∗(β) := inf{ω̃ ∈ [ωβ, ω]|Λβ(E[v], ω̃) ≥ αE[v] + γδω̃}.

Notice that ω∗(β) is well-defined since Λβ(E[v], ω) ≥ αE[v] + γδω. Moreover, by definition, since Λβ is

increasing in β, ω∗ is nonincreasing in β on [0, β].

We now claim that in any subgame perfect equilibrium, the total revenue in each period must be at

least r := (1 − γδ)ω∗(β)/α. Indeed, suppose the contrary, that there exists a subgame perfect equilibrium

in which the lowest total revenue on the equilibrium path, say r̃, is strictly below r. Then, since the seller

must be best responding in the period where the total revenue is r̃, for any p ≥ 0, there must exist D ∈ D
such that pD(p) ≤ r̃, so that the intermediary would respond by choosing D ∈ D if the seller deviates to

any price p ≥ 0. Let ω(p,D) denote the continuation value at this history. In the meantime, at any such

history, since it is always feasible for the intermediary to choose the myopically optimal demand, and since

her continuation payoff must be at least α share of the present discounted value of the sum of total revenues

onward, which in turn, by hypothesis, is no less than r̃, it must be that

αpD(p)+ δ

(
γ + β

∫ ∞
p

D(v) dv

)
ω ≥ αpD(p)+ δ

(
γ + β

∫ ∞
p

D(v) dv

)
ω(p,D) ≥ αpD(v−1(p))+γδ

αr̃

1− γδ
,

where the first inequality follows from Lemma A.2. Therefore, let ω̃ := αr̃/(1− γδ), it follows that for any

p ≥ 0, there exists D such that

αpD(p) + δ

(
γ + β

∫ ∞
p

D(v) dv

)
ω ≥ αpD(v−1(p)) + γδω̃

and that
αpD(p)

1− γδ
≤ ω̃

and hence

Λβ(p, ω̃) ≥ αpD(v−1(p)) + γδω̃

for all p ≥ 0, but ω̃ < ω∗(β), which contradicts to the definition of ω∗(β). Thus, in any subgame perfect

equilibrium, the total revenue in each period must be at least r := (1 − γδ)ω∗(β)/α. This in turn implies

that the intermediary’s continuation payoff at any history must be at least

αr

1− γδ
= ω∗(β).

Together with Lemma A.2, by letting ω∗(β) := ω = αE[v]/(1− γδ), it then follows that the intermediary’s

equilibrium payoff must be at least ω∗(β) and at most ω∗(β).
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Now consider any ω̂ ∈ [ω∗(β),ω∗(β)]. By continuity of the function p 7→ pD(v−1(p)), there exists p̂, p

such that E[v] ≤ p̂ ≤ p ≤ p∗ and that αp̂D(v−1(p̂))/(1−γδ) = ω̂, αpD(v−1(p))/(1−γδ) = ω∗(β). Moreover,

for any p ≥ 0, fix any solution to (A.16) with ω̃ = ω∗(β) and denote it by Dp. We claim that the following

strategy profile constitutes a subgame perfect equilibrium in which the intermediary’s payoff is ω̂:

• Start by playing regime p̂-myopic. If the seller deviates to p′ 6= p̂, then enter regime Dp′-punish

immediately. If the intermediary deviates, then move to regime p-myopic. Otherwise, stay in the

same regime.

• For any p′ ≥ 0, under regime Dp′-punish, if the intermediary deviates, then move to regime p-myopic.

Otherwise, move to regime E[v]-myopic.

• Under regime p-myopic and regime E[v]-myopic, if the seller deviates to p′ 6= p, then enter regime

Dp′-punish immediately. Otherwise, stay in the same regime.

To see that this is a subgame perfect equilibrium, first notice that the intermediary’s continuation payoff

induced by the strategy profile is finite in every subgame. Therefore, Lemma 1 implies that it suffices to

show there are no incentives to deviate in each regime. Indeed, for any p ∈ [E[v], p], under regime p-myopic,

if all players follow their strategies, the seller’s revenue must be (1− α)pD(v−1(p)). Meanwhile, given that

the intermediary follows her strategy, if the seller deviates to p′ 6= p, his payoff would be (1 − α)p′Dp′(p
′).

Since Dp′ is a solution to (A.16) with ω̃ = ω∗(β), it must be that

(1− α)p′Dp′(p
′) ≤ (1− α)(1− γδ)

α
ω∗(β) = (1− α)pD(v−1(p)) ≤ (1− α)pD(v−1(p)).

Therefore, the seller does not have any incentive to deviate. As for the intermediary, in each period, the

present discounted value of playing according to regime p̂-myopic is ω̂ = αp̂D(v−1(p̂))/(1− γδ), while the

present discounted value of the best payoff she can obtain by deviating is

sup
D∈D

[
αp̂D(p̂) + δ

(
γ + β

∫ ∞
p̂

D(v) dv

)
ω∗(β)

]
,

which, by Lemma 3 and by the fact that ω∗(β) ≤ αE[v]/(1− γδ) < α/δβ, is given by

αp̂D(v−1(p̂)) + γδω∗(β) ≤ αp̂D(v−1(p̂)) +
γδαp̂D(v−1(p̂))

1− γδ
= ω̂,

where the last equality follows from ω∗(β) = αpD(v−1(p))/(1 − γδ) ≤ αp̂D(v−1(p̂))/(1 − γδ). Thus, the

intermediary does not have an incentive to deviate either.

In the meantime, for any p′ ≥ 0, under regime Dp′-punish, if the intermediary follows the strategy, her

continuation payoff would be ω, whereas if she deviates, her payoff would be at most αp′D(v−1(p′))+γδω∗(β).

Since Dp′ is a solution to (A.16) with ω̃ = ω∗(β), it must be that

αp′Dp′(p
′) + δ

(
γ + β

∫ ∞
p′

Dp′(v) dv

)
ω = Λβ(p′,ω∗(β)) ≥ αp′D(v−1(p′)) + γδω∗(β),

where the last inequality follows from the definition of ω∗(β). Thus, the intermediary does not have any

incentives to deviate under this regime.
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Together, the strategy profile described above is indeed a subgame perfect equilibrium. Moreover, the

intermediary’s payoff in this equilibrium is ω̂.

Case 2: δβ/(1− γδ) ∈ (β, β̂) .

We first claim that ωβ = ω∗ in this case as well. To see this, recall that since β ∈ (β, β], there exists

pβ ∈ (0, p] such that ∫ ∞
pβ

D(v) dv =
1− γδ
δβ

. (A.18)

Let ωβ := gβ(pβ). Lemma 4 then implies that

δβωβ

δβωβ − α
pβ ∈ argmax

p≥0
pD(p|p),

for any selection D of ∆(·|ωβ). In particular,

δβωβ

δβωβ − α
pβ ≤ p∗. (A.19)

Rearranging, we have

pβ +
1

D(pβ)

∫ ∞
pβ

D(v) dv ≤ p∗,

which in turn implies, by (A.18) and (A.19),

p∗ − pβ ≥ 1

D(pβ)

∫ ∞
pβ

D(v) dv

=
1

D(pβ)

1− γδ
δβ

≥1− γδ
δβ

D(v−1(p∗)).

Therefore,

p∗ − 1− γδ
δβ

D(v−1(p∗)) ≥ pβ.

Together with the definition of ω∗, we have∫ ∞(
1− α

δβω∗

)
p∗
D(v) dv =

∫ ∞
p∗− 1−γδ

δβ
D(v−1(p∗))

D(v) dv ≤
∫ ∞
pβ

D(v) dv =
1− γδ
δβ

and hence

δ

(
γ + β

∫ ∞(
1− α

δβω∗

)
p∗
D(v) dv

)
≤ 1.

Thus, hβ(ω∗) ≤ ω∗, which implies that ωβ = ω∗.

Next, for any ω ∈ [ωβ, ωβ] and for any p ≥ 0, let Λβ(p, ω) be the value of the constrained maximization

problem

sup
D∈D

[
αpD(p) + δ

(
γ + β

∫ ∞
p

D(v) dv

)
u

(
1− γδ
α

ω

)]
s.t.

αpD(p)

1− γδ
≤ ω, (A.20)
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where u is defined in (A.15). Let ω∗(β) be defined as

ω∗(β) := inf{ω ∈ [ωβ, ωβ]|Λβ(E[v], ω) ≥ αE[v] + γδω}.

By the same arguments as in Case 1, ω∗(β) ≥ ωβ is well-defined and Λβ(p, ω) ≥ αE[v] + γδω if and only if

ω ∈ [ω∗(β), ωβ].

Also, let

ω∗(β) := u

(
1− γδ
α

ω∗(β)

)
.

We now argue that in any subgame perfect equilibrium, the total revenue in each period must be at

least r := (1 − γδ)ω∗(β)/α. Indeed, suppose the contrary, that there exists a subgame perfect equilibrium

in which the lowest total revenue on the equilibrium path, say r̃, is strictly below r. Then, since the seller

must be best responding in the period where the total revenue is r̃, for any p ≥ 0, there must exists D ∈ D
such that pD(p) ≤ r̃, so that the intermediary would respond by choosing D ∈ D if the seller deviates to

any price p ≥ 0. Let ω(p,D) denote the continuation value at this history. In the meantime, at any such

history, since it is always feasible for the intermediary to choose the myopically optimal demand, and since

her continuation payoff must be at least α share of the present discounted value of the sum of total revenues

onward, which in turn, by hypothesis, is no less than r̃, it must be that

αpD(p)+δ

(
γ + β

∫ ∞
p

D(v) dv

)
u(r̃) ≥ αpD(p)+δ

(
γ + β

∫ ∞
p

D(v) dv

)
ω(p,D) ≥ αpD(v−1(p))+γδ

αr̃

1− γδ
,

where the first inequality follows from Lemma A.3 since the total revenue in any period is at least r̃.

Therefore, let ω̃ := αr̃/(1− γδ), it follows that for any p ≥ 0, there exists D such that

αpD(p) + δ

(
γ + β

∫ ∞
p

D(v) dv

)
u

(
1− γδ
α

ω̃

)
≥ αpD(v−1(p)) + γδω̃

and that
αpD(p)

1− γδ
≤ ω̃

and hence

Λβ(p, ω̃) ≥ αpD(v−1(p)) + γδω̃

for all p ≥ 0, but ω̃ < ω∗(β), which contradicts to the definition of ω∗(β). Thus, in any subgame perfect

equilibrium, the total revenue in each period must be at least r := (1 − γδ)ω∗(β)/α. This in turn implies

that the intermediary’s continuation payoff at any history must be at least

αr

1− γδ
= ω∗(β).

Furthermore, by Lemma A.3, the intermediary’s equilibrium payoff must be below ω∗(β). Together, the

intermediary’s equilibrium payoff must be at least ω∗(β) and at most ω∗(β).

Consider any ω̂ ∈ [ω∗(β), ωβ]. By continuity of the function p 7→ pD(v−1(p)), since αE[v]/(1−γδ) ≥ ωβ,

there exists p̂, p such that p̂ ≤ p ≤ p∗ and that αp̂D(v−1(p̂))/(1− γδ) = ω̂, αpD(v−1(p))/(1− γδ) = ω∗(β).
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Notice that since ω̂ ≤ ωβ ≤ αE[v]/(1−γδ),19 there exists p̃β ∈ [E[v], p̂] such that ωβ = αp̃βD(v−1(p̃β))/(1−
γδ). Moreover, since ωβ = gβ(pβ),

pβ = v−1

(
δβωβ

δβωβ − α
pβ
)
,

and hence

v(pβ) =
δβωβ

δβωδβ − α
pβ = p̃β ≤ p̂.

Rearranging, we have

p̂− pβ ≥ 1

D(pβ)

∫ ∞
pβ

D(v) dv =
1

D(pβ)

1− γδ
δβ

≥ 1− γδ
δβ

D(v−1(p̂)),

and hence (
1− α

δβω̂

)
p̂ ≥ pβ,

which in turn implies that

ξ(p̂|ω̂) = v−1(p̂) (A.21)

For any p ≥ 0, fix any solution to (A.20) with ω = ω∗(β) and denote it by Dp. We now construct a

subgame perfect equilibrium in which the intermediary’s payoff is ω̂.

• Start by playing regime p̂-myopic. If the seller deviates to p′ 6= p̂, then enter regime Dp′-punish

immediately. If the intermediary deviates, then move to regime p-myopic. Otherwise, stay in the

same regime.

• Under regime Dp′-punish, if the intermediary deviates, then move to regime p-myopic. Otherwise,

move to regime (δβω∗(β)pβ/(δβω∗(β)− α),ω∗(β))-transition.

• Under regime p-myopic, if the seller deviates to p′ 6= p, then enter regime Dp′-punish immediately.

Otherwise, stay in the same regime.

• Under regime (δβω∗(β)pβ/(δβω∗(β) − α),ω∗(β))-transition, if the seller deviates to any p′ ≥ 0,

move to Dp′-punish, otherwise, stay in the same regime.

To see that this is a subgame perfect equilibrium, first note that the intermediary’s continuation payoff

induced by this strategy profile is finite in every subgame. As a result, Lemma 1 implies that it suffices

to show there are no incentives to deviate in each regime. Indeed, under regime (δβω∗(β)pβ/(δβω∗(β) −
19The second inequality follows from the definition of pβ , which implies

ωβ = gβ(pβ) =
α

δβ

(
1 +

pβD(pβ)∫∞
pβ
D(v) dv

)

=
α

δβ

δβ

1− γδ

(
pβD(pβ) +

∫ ∞
pβ

D(v) dv

)
≤ αE[v]

1− γδ
.
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α),ω∗(β))-transition. First notice that if all players follow their strategies, by Lemma 3, since ω∗(β) ≥
ωβ = gβ(pβ),

pβ ≥ v−1

(
δβω∗(β)

δβω∗(β)− α

)
and hence the intermediary’s payoff would be

δ

(
γ + β

∫ ∞
pβ

D(v) dv

)
ω∗(β) = ω∗(β).

Moreover, since the intermediary chooses D ∈ ∆(δβω∗(β)pβ/(δβω∗(β)− α)|ω∗(β)), she does not have any

incentives to deviate. In the meantime, given the intermediary’s strategy, if the seller follows his strategy,

his payoff would be

(1− α)
δβω∗(β)

δβω∗(β)− α
pβD(pβ),

while if he deviates, his payoff would be (1− α)p′Dp′(p
′). Since Dp′ is a solution to (A.20) with ω = ω∗(β),

it must be that

p′Dp′(p
′) ≤ 1− γδ

α
ω∗(β) =

δβω∗(β)

δβω∗(β)− α
pβD(pβ),

where the equality follows from the definition of ω∗(β). Thus, the seller does not have any incentive to

deviate either.

In the meantime, for p ∈ {p̂, p}, under regime p-myopic, if all players follow their strategies, the seller’s

payoff would be (1−α)pD(v−1(p)) and the intermediary’s payoff would be αpD(v−1(p))/(1−γδ). Meanwhile,

if the seller deviates to any p′ ≥ 0, his payoff would be (1 − α)p′Dp′(p
′). Since Dp′ is a solution to (A.20)

with ω = ω∗(β), it must be that

p′Dp′(p
′) ≤ 1− γδ

α
ω∗(β) = pD(v−1(p)) ≤ pD(v−1(p)).

Thus, the seller does not have an incentive to deviate. As for the intermediary, if she deviates from this

strategy, her continuation value would be at most ω∗(β). Therefore, since

αp̂D(v−1(p̂))

1− γδ
= αp̂D(v−1(p)) + γδω̂ ≥ αp̂D(v−1(p̂)) + γδω∗(β)

and
αpD(v−1(p))

1− γδ
= αpD(v−1(p)) + γδω∗(β),

by (A.21), the intermediary’s payoff from deviation is at most

sup
D∈D

[
αpD(p) + δ

(
γ + β

∫ ∞
p

D(v) dv

)
ω∗(β)

]
= αpD(v−1(p)) + γδω∗(β)

and hence the intermediary does not have an incentive to deviate either.

Lastly, for any p′ ≥ 0, under regime Dp′-punish, if the intermediary follows the strategy, her continuation

payoff would be ω∗(β), whereas if he deviates, her payoff would be at most αp′D(v−1(p′)) + γδω∗(β). Since

Dp′ is a solution to (A.20) with ω = ω∗(β), it must be that

αp′Dp′(p
′) + δ

(
γ + β

∫ ∞
p′

Dp′(v) dv

)
ω∗(β) = Λβ(p′,ω∗(β)) ≥ αp′D(v−1(p′)) + γδω∗(β),
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where the last inequality follows from the definition of ω∗(β). Thus, the intermediary does not have any

incentives to deviate under this regime.

Therefore, the strategy profile above is indeed a subgame perfect equilibrium. Moreover, the intermedi-

ary’s payoff in this equilibrium is
αp̂D(v−1(p̂))

1− γδ
= ω̂.

Now consider any ω̂ ∈ [ωβ,ω∗(β)]. We claim that the following strategy profile consititutes a subgame

perfect equilibrium in which the intermediary’s payoff is ω̂.

• Start by playing regime (δβω̂pβ/(δβω̂−α), ω̂)-transition. If the seller deviates to any p′ ≥ 0, move

to regime p′-punish. Otherwise, stay in the same regime.

• Under regime Dp′-punish, if the intermediary deviates, then move to regime p-myopic. Otherwise,

move to regime (δβω∗(β)pβ/(δβω∗(β)− α),ω∗(β))-transition.

• Under regime p-myopic, if the seller deviates to p′ 6= p, then enter regime Dp′-punish immediately.

Otherwise, stay in the same regime.

• Under regime (δβω∗(β)pβ/(δβω∗(β) − α),ω∗(β))-transition, if the seller deviates to any p′ ≥ 0,

move to Dp′-punish, otherwise, stay in the same regime.

From the same arguments as above, it follows that both the intermediary and the seller do not have incen-

tives to deviate under regime p′-punish, regime p-myopic, and regime (δβω∗(β)pβ/(δβω∗(β)− α),ω∗(β))-

transition. Therefore, by Lemma 1, since the intermediary’s continuation payoff are finite in all subgames

under this strategy profile, it suffices to show that both the intermediary and the seller do not have incentives

to deviate under regime (δβω̂pβ/(δβω̂ − α), ω̂)-transition and that the intermediary’s equilibrium payoff

is ω̂. Indeed, since ω̂ ≥ ωβ = gβ(pβ),

pβ ≥ v−1

(
δβω̂

δβω̂ − α
pβ
)

and hence by Lemma 3, the intermediary’s payoff would be

δ

(
γ + β

∫ ∞
pβ

D(v) dv

)
ω̂ = ω̂.

Moreover, since the intermediary chooses D ∈ ∆(δβω̂pβ/(δβω̂ − α)|ω̂), she does not have any incentives

to deviate. In the meantime, given the intermediary’s strategy, if the seller follows his strategy, his payoff

would be

(1− α)
δβω̂

δβω̂ − α
pβD(pβ),

while if he deviates, his payoff would be (1− α)p′Dp′(p
′). Since Dp′ is a solution to (A.20) with ω = ω∗(β),

it must be that

p′Dp′(p
′) ≤ 1− γδ

α
ω∗(β) ≤ δβω̂

δβω̂ − α
pβD(pβ),

where the second inequality follows from ω̂ ≤ ω∗(β) and from the definition of ω∗(β). Thus, the seller does

not have any incentive to deviate either, as desired.
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Case 3: β ∈ [β̂, β].

In this case, using the same argument as in Case 2, it follows that ωβ = ω∗ as well. Let ω∗(β) := ωβ and let

ω∗(β) = ∞. For any ω̂ ≥ ωβ, we will construct a subgame perfect equilibrium in which the intermediary’s

payoff is ω̂. First, consider any ω̂ ∈ [ωβ, ωβ]. Since ωβ ≤ αE[v]/(1 − γδ),20 there exists p̂ ∈ [E[v], p∗] such

that p̂D(v−1(p̂)) = (1− γδ)ω̂/α. Moreover, as shown in Case 2, it must be that(
1− α

δβω̂

)
p̂ ≥ pβ

and therefore

ξ(p̂|ω̂) = v−1(p̂). (A.22)

We now construct a subgame perfect equilibrium in which the intermediary’s payoff is ω̂. To this end, notice

that by definition of p∗, for any p′, there exists Dp′ ∈ D such that p′Dp′(p
′+) ≤ p∗D(v−1(p∗)). For any

p′ ≥ 0, fix any such Dp′ ∈ D. In the meantime, take any ω̃ > max{αE[v]/γδ + ωβ, ωβ}. Now consider the

following strategy profile:

• Start by playing regime p̂-myopic. If the seller deviates to any p′ 6= p̂, move to Dp′-punish. If the

intermediary deviates, move to regime p∗-myopic. Otherwise, stay in the same regime.

• Under regime Dp′-punish, if the intermediary deviates, move to regime p∗-myopic. Otherwise, move

to regime (δβω̃pβ/(δβω̃ − α), ω̃)-transition.

• Under regime (δβω̃pβ/(δβω̃ − α), ω̃)-transition, if the seller deviates to p′ ≥ 0, move to regime

Dp′-punish. Otherwise, stay in the same regime.

• Under regime p∗-myopic, if the seller deviates to any p′ 6= p∗, move to Dp′-punish. Otherwise, stay

in the same regime.

We claim that the strategy profile above constitutes a subgame perfect equilibrium and that the inter-

mediary’s payoff is ω̂. To see this, first note since the intermediary’s continuation induced by this strategy

profile in every subgame is finite, by Lemma 1, it suffices to show that both the intermediary and the

seller do not have incentives to deviate under each of the regimes above, given that the other player plays

according to this strategy.

Under regime (δβω̃pβ/(δβω̃ − α), ω̃)-transition. First notice that if all players follow their strategies,

by Lemma 3, since ω̃ ≥ ωβ = gβ(pβ),

pβ ≥ v−1

(
δβωβ

δβωβ − α

)
and hence the intermediary’s payoff would be

δ

(
γ + β

∫ ∞
pβ

D(v) dv

)
ω̃ = ω̃.

Moreover, since the intermediary chooses D ∈ ∆(δβω̃pβ/(δβω̃ − α)|ω̃), she does not have any incentives

to deviate. In the meantime, given the intermediary’s strategy, if the seller follows his strategy, his payoff

would be

(1− α)
δβω̃

δβω̃ − α
pβD(pβ),

20See footnote 19.
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while if he deviates, his payoff would be (1−α)p′Dp′(p
′). SinceDp′ is chosen so that p′Dp′(p

′) ≤ p∗D(v−1(p∗)),

it must be that

p′Dp′(p
′) ≤ 1− γδ

α
ωβ ≤ pβD(pβ) ≤ δβω̃

δβω̃ − α
pβD(pβ),

where the first inequality follows from β ≥ β̂, which in turn implies that pβD(pβ) ≥ p∗D(v−1(p∗)). Thus,

the seller does not have any incentive to deviate either.

In the meantime, for p ∈ {p̂, p∗}, under regime p-myopic, if all players follow their strategies, the

seller’s payoff would be (1 − α)pD(v−1(p)) and the intermediary’s payoff would be αpD(v−1(p))/(1 − γδ).
Meanwhile, if the seller deviates to any p′ ≥ 0, his payoff would be (1− α)p′Dp′(p

′). Since Dp′ is chosen so

that p′Dp′(p
′) ≤ p∗D(v−1(p∗)), it must be that

p′Dp′(p
′) ≤ 1− γδ

α
ωβ = p∗D(v−1(p∗)) ≤ pD(v−1(p)).

Thus, the seller does not have an incentive to deviate. As for the intermediary, if she deviates from this

strategy, her continuation value would be at most ωβ. Therefore, since

αp̂D(v−1(p̂))

1− γδ
= αp̂D(v−1(p)) + γδω̂ ≥ αp̂D(v−1(p̂)) + γδωβ

and
αpD(v−1(p))

1− γδ
= αp∗D(v−1(p∗)) + γδωβ,

by (A.22), the intermediary’s payoff from deviation is at most

sup
D∈D

[
αpD(p) + δ

(
γ + β

∫ ∞
p

D(v) dv

)
ωβ
]

=αpD(v−1(p)) + γδω∗(β)

and hence the intermediary does not have an incentive to deviate either.

Lastly, for any p′ ≥ 0, under regime Dp′-punish, if the intermediary follows the strategy, her continuation

payoff would be ω̃, whereas if she deviates, her payoff would be at most αp′D(v−1(p′)) + γδωβ. Since

ω̃ > αE[v]/γδ + ωβ, it must be that

αp′Dp′(p
′) + δ

(
γ + β

∫ ∞
p′

Dp′(v) dv

)
ω̃ ≥ γδω̃ > αE[v] + γδωβ ≥ αp′D(v−1(p′)) + γδωβ.

Thus, the intermediary does not have any incentives to deviate under this regime.

Therefore, the strategy profile above is indeed a subgame perfect equilibrium. Moreover, the intermedi-

ary’s payoff in this equilibrium is
αp̂D(v−1(p̂))

1− γδ
= ω̂.

Next, consider any ω̂ > ωβ. Again, take any ω̃ > max{αE[v]/γδ, ωβ}, we claim that the following

strategy profile is a subgame perfect equilibrium and the intermediary’s payoff is ω̂.

• Start by playing regime (δβω̂pβ/(δβω̂−α), ω̂)-transition. If the seller deviates to any p′ ≥ 0, move

to regime p′-punish. Otherwise, stay in the same regime.
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• Under regime Dp′-punish, if the intermediary deviates, then move to regime p∗-myopic. Otherwise,

move to regime (δβω̃pβ/(δβω̃ − α), ω̃)-transition.

• Under regime p∗-myopic, if the seller deviates to p′ 6= p∗, then enter regime Dp′-punish immediately.

Otherwise, stay in the same regime.

• Under regime (δβω̃(α, β, δ)pβ/(δβω̃−α), ω̃)-transition, if the seller deviates to any p′ ≥ 0, move to

Dp′-punish, otherwise, stay in the same regime.

From the same arguments as above, it follows that both the intermediary and the seller do not have incen-

tives to deviate under regime p′-punish, regime p∗-myopic, and regime (δβω̃pβ/(δβω̃−α), ω̃)-transition.

Therefore, by Lemma 1, since the intermediary’s continuation payoff in any subgame is finite under this

strategy profile, it suffices to show that both the intermediary and the seller do not have incentives to

deviate under regime (δβω̂pβ/(δβω̂ − α), ω̂)-transition and that the intermediary’s equilibrium payoff is

ω̂. Indeed, since ω̂ ≥ ωβ = gβ(pβ),

pβ ≥ v−1

(
δβω̂

δβω̂ − α
pβ
)

and hence by Lemma 3, the intermediary’s payoff would be

δ

(
γ + β

∫ ∞
pβ

D(v) dv

)
ω̂ = ω̂.

Moreover, since the intermediary chooses D ∈ ∆(δβω̂pβ/(δβω̂ − α)|ω̂), she does not have any incentives

to deviate. In the meantime, given the intermediary’s strategy, if the seller follows his strategy, his payoff

would be

(1− α)
δβω̂

δβω̂ − α
pβD(pβ),

while if he deviates, his payoff would be (1−α)p′Dp′(p
′). Since Dp′ is chosen so that p′Dp′(p

′) ≤ ωβ, it must

be that

p′Dp′(p
′) ≤ 1− γδ

α
ωβ ≤ pβD(pβ)

δβω̂

δβω̂ − α
pβD(pβ),

where the second inequality follows from the fact that β ≥ β̂ and the definition of β̂. Thus, the seller does

not have any incentive to deviate either, as desired.

Case 4: β ∈ (β, β∗).

If ωβ = ω∗, then the argument of Case 3 applies. Therefore, it suffices to consider the case where ωβ > ω∗.

In this case, it must be that

δ

γ + β

∫ ∞(
1− α

βδωβ

)
p∗
D(v) dv

 = 1 ⇐⇒ hβ(ωβ) = ωβ,

which also implies that ωβ > α/δβ. Furthermore, by Lemma A.1, since W(p∗|ωβ) = ωβ and since

δ

γ + β

∫ ∞(
1− α

δβωβ

)
p∗
D(v) dv

 = 1,
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we have

ωβ = W(p∗|ωβ) ≥ αp∗D(v−1(p∗)) + γδωβ,

and hence

δβωβ
∫ ∞(

1− α

δβωβ

)
p∗
D(v) dv ≥ αp∗D(v−1(p∗)),

which in turn is equivalent to (
1− α

δβωβ

)
p∗ ≥ v−1(p∗). (A.23)

In the meantime, notice that for any ω ≥ ωβ, since p 7→ pD((1− α/δβω)p) is quasi-concave,

pD

((
1− α

δβωt+1
p

))
> pD(p) ≥ p∗D(v−1(p∗)),

where the last inequality follows from the definition of p∗. Moreover, for any ω ≥ ωβ, by (A.23),

p∗D

((
1− α

δβω

)
p∗
)
< p∗D(v−1(p∗)),

and hence there exists a unique p(ω) ∈ [p, p∗] such that

p(ω)D

((
1− α

δβω

)
p(ω)

)
= p∗D(v−1(p∗)). (A.24)

By definition, the function p is continuous, bounded by p and p∗, and such that ω 7→ (1 − α/βδω)p(ω) is

decreasing. Define

ω := δ

γ + β

∫ ∞(
1− α

δβωβ

)
p(ωβ)

D(v) dv

ωβ.

It then follows that ω > ωβ.

We now introduce a recursive formula.

Algorithm 1. For any t ∈ N ∪ {0}, given any ωt ≥ ω, take ωt+1 so that21

ωt =

γ + β

∫ ∞(
1− α

δβωt+1

)
p(ωt+1)

D(v) dv

ωt+1.

Then, let pt := p(ωt+1).

If ωt+1 ≥ ω, then repeat the procedure by letting ωt = ωt+1. Otherwise, stop. �

From Algorithm 1, for any initial value ω0 ≥ ω, we may obtain sequences {ωt}Tt=0 and {pt}T−1
t=0 such that

ωt =

γ + β

∫ ∞(
1− α

δβωt+1

)
pt

D(v) dv

ωt+1, (A.25)

21Such ωt+1 exists since ωt ≥ ω and

lim
ω→∞

δ

(
γ + β

∫ ∞
(1− α

δβω )p(ω)
D(v) dv

)
ω =∞.
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that

ptD

((
1− α

δβωt+1

)
pt

)
= p∗D(v−1(p∗)), (A.26)

and that (
1− α

δβωt+1

)
pt ≥ v−1(pt). (A.27)

Consider any ω̂ ≥ ωβ. We will now construct subgame perfect equilibria that give the intermediary equilib-

rium payoff ω̂. First, suppose that ω̂ ≤ ω. In this case, take any T ∈ N such that 22

1

δT

(
ωβ − 1− γT+1δT+1

1− γδ
αp∗D(v−1(p∗))

)
> max

{
ω,

1

δ
αE[v] + (γ + βE[v])ωβ

}
.

Meanwhile, for any ω ∈ [ωβ, ω], let

φ(ω) :=
1

δT

(
ω − 1− γT+1δT+1

1− γδ
αp∗D(v−1(p∗))

)
,

and let {ωt(ω)}Tωt=0 and {pt(ω)}Tω−1
t=0 denote the sequences obtain from Algorithm 1 with φ(ω) being the

initial value. Meanwhile, for any p′ ≥ 0, by the definition of p∗, there exists Dp′ ∈ D such that p′Dp′(p
′+) ≤

p∗D(v−1(p∗)). Fix any such Dp′ ∈ D for all p′. We now describe the desired subgame perfect equilibrium.

For expositional convenience, we index strategies by a state variable ω.

• Set the state as ω̂. Start by playing regime p∗-myopic with state ω̂.

• For any state ω ∈ [ωβ, ω], under regime p∗-myopic with state ω ∈ [ωβ, ω], if no one has deviated and

if this regime has been played for less than T periods, stay in the same regime and the same state;

if the seller deviates to any p′ 6= p∗, move to regime Dp′-punish immediately while keeping the state

unchanged; if the intermediary deviates, reset the count, set the state to ωβ, and stay under the same

regime. Otherwise, keep the state unchanged and move to regime (p0(ω),ω1(ω))-transition.

• For any state ω ∈ [ωβ, ω], under regime (pt−1(ω),ωt(ω))-transition, if the seller deviates to any

p′ 6= p∗, move to regime Dp′-punish immediately and set the state to ωβ. Otherwise, move to regime

(pt(ω),ωt+1(ω))-transition while keeping the state unchanged in the next period if t < Tω − 1, and

move to regime p∗-myopic while setting the state as ωT (ω) if t = Tω − 1.

• Under regime Dp′-punish with any state ω ∈ [ωβ, ω], if the intermediary deviates, then move to

regime p∗-myopic while setting the state as ωβ. Otherwise, set the state to ω and move to regime

(p0(ω),ω0(ω))-transition.

To see that this constitutes a subgame perfect equilibrium, first note that the intermediary’s continuation

payoff in every subgame is finite under this strategy profile. Thus, by Lemma 1, it suffices to show that

there are no incentives for one-shot deviations for each player.

22Such T exists because

ωβ > ω∗ =
αp∗D(v−1(p∗))

1− γδ
.
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To see this, under regime p∗-myopic with any state ω ∈ [ωβ, ω], given that the seller does not deviate,

if the intermediary follows the strategy, her present discounted payoff in each period would be at least ω̂.23

Alternatively, if the intermediary deviates in any period and maintain her continuation strategy, since the

continuation play will enter into regime p∗-myopic with state being ωβ, her continuation value would be

ωβ. Thus, the best present discounted value she can obtain would be

sup
D∈D

[
αp∗D(p∗) + δ

(
γ + β

∫ ∞
p∗

D(v) dv

)
ωβ
]

= ωβ,

where the equality follows from hβ(ωβ) = ωβ. Therefore, the intermediary does not have profitable one-

shot deviation under regime p∗-myopic with any state ω ∈ [ωβ, ω]. Meanwhile, if the seller follows his

strategy, his payoff would be (1 − α)p∗D(v−1(p∗)), while if he deviate to any p′ ≥ 0, his payoff would be

(1− α)p′Dp′(p
′) ≤ (1− α)p∗D(v−1(p∗)).

Moreover, for any state ω ∈ [ωβ, ω] and for any t ∈ {0, . . . , Tω − 1}, under regime-(pt(ω),ωt+1(ω))-

transition, by (A.25), (A.27), and Lemma 3,

ωt(ω) = sup
D∈D

[
αpt(ω)D(pt(ω)) + δ

(
γ + β

∫ ∞
pt(ω)

D(v) dv

)
ωt+1(ω)

]

and hence the intermediary would not have any incentive to deviate and her payoff in this subgame would

be ωt(ω). Meanwhile, if the seller deviates to any p′ 6= pt(ω), his payoff would be (1 − α)p′Dp′(p
′) ≤

(1−α)p∗D(v−1(p∗)) = pt(ω)D((1−α/δβω)pt(ω)), due to (A.26). Thus, the seller does not have incentives

to deviate either.

Lastly, under regime Dp′-punish with any state ω ∈ [ωβ, ω], if the intermediate deviates, her continuation

payoff would be ωβ and hence the best payoff from deviation is

αE[v] + δ (γ + βE[v])ωβ.

Meanwhile, if she follows the strategy, her continuation payoff would be φ(ω) and hence her payoff would

be at least δφ(ω). By the definition of T and φ,

δφ(ω) =
1

δT−1

[
ω − 1− γT+1δT+1

1− γδ
αp∗D(v−1(p∗))

]
> αE[v] + δ (γ + βE[v])ωβ.

Thus, the intermediary does not have one-shot deviation incentives.

As a result, neither players have profitable one-shot deviations. Moreover, as shown above, since the

intermediary’ continuation payoff after playing T rounds of p∗-myopic with state ω̂ is exactly ω0(ω̂), her

on-path payoff under this strategy profile is given by

T∑
t=0

γtδtαp∗D(v−1(p∗)) + δω0(ω̂) =
1− γT+1δT+1

1− γδ
αp∗D(v−1(p∗)) + δφ(ω̂) = ω̂ <∞.

23This is because the continuation value at the beginning of the (p0(ω̂),ω1(ω̂))-transition regime is φ(ω̂) and since

ω̂ =
1− γT+1δT+1

1− γδ
αp∗D(v−1(p∗)) + δTφ(ω̂) =

T−1∑
s=0

γsδsαp∗D(v−1(p∗)) + δTφ(ω̂).
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Alternatively, if ω̂ > ω, we may construct the same type of strategy as follows: Let ω0 := ω̂ and

let {ωt}T̄t=0 and {pt}T̄−1
t=0 denote the sequences obtained from Algorithm 1 with the initial value being ω0.

Consider the following strategy profile:

• Start by playing regime (p0, ω1)-transition with a null state ∅.

• For any t ∈ {1, . . . , T̄ − 1}, under regime (pt−1, ωt)-transition with any state, if the seller deviates

to any p′, move to regime Dp′-punish immediately while setting the state as ωβ. Otherwise, move

to regime (pt, ωt+1)-transition while keeping the state unchanged if t < T̄ − 1, and move to regime

p∗-myopic while setting the state to ωT̄ ∈ [ωβ, ω] if t = T̄ − 1.

• For any state ω, under regime p∗-myopic with state ω ∈ [ωβ, ω], if no one has deviated and if this

regime has been played for less than T periods, stay in the same regime and the same state; if the seller

deviates to any p′ 6= p∗, move to regime Dp′-punish immediately while keeping the state unchanged;

if the intermediary deviates, reset the count, set the state to ωβ, and stay under the same regime.

Otherwise, keep the state unchanged and move to regime (p0(ω),ω1(ω))-transition.

• For any state ω ∈ [ωβ, ω], under regime (pt−1(ω),ωt(ω))-transition, if the seller deviates to any

p′ 6= p∗, move to regime Dp′-punish immediately and set the state to ωβ. Otherwise, move to regime

(pt(ω),ωt+1(ω))-transition while keeping the state unchanged in the next period if t < Tω − 1, and

move to regime p∗-myopic while setting the state as ωT (ω) if t = Tω − 1.

• Under regime p′-punish with any state ω ∈ [ωβ, ω], if the intermediary deviates, then move to

regime p∗-myopic while setting the state as ωβ. Otherwise, set the state to ω and move to regime

(p0(ω),ω0(ω))-transition.

By the same arguments as those for the case ω̂ ∈ [ωβ, ω], there are no profitable one-shot deviations for

all players. Thus, by Lemma 1, since the intermediary’s payoff following this strategy profile is ω0 = ω̂, this

is also a subgame perfect equilibrium.

Together, it follows that whenever β < β∗, there exists ωβ ≤ ω∗(β) ≤ ω∗(β) ≤ ∞ such that Ω∗(β) =

[ω(β),ω(β)]\{∞}. This completes the proof. �

A.8 Proof of Corollary 1

Consider any β ≥ 0 and any subgame perfect equilibrium . Let z = {rt, σt, ωt, pt,mt} be its outcome. Since

r∗ is the revenue guarantee, rt ≥ r∗ for all t. Moreover, by the proof of Theorem 2, rt ≥ (1 − γδ)ω∗(β)/α

for all t whenever β ≤ β. Thus, rt ≥ r(β) for all t. Meanwhile, since D(0) = 1 for all D ∈ D, it must be

that rt ≤ pt for all t.

For any t ∈ N ∪ {0}, let Dt ∈ D be the disclosure policy chosen by the intermediary on the equilibrium

path in period t so that

σt =

∫ ∞
pt

Dt(v) dv.

Since Dt ∈ D, σt ≥ (E[v]− pt)+. Moreover, since Dt ∈ D is nonincreasing, it must be that∫ ∞
pt

D(v) dv ≥
∫ ∞
pt

Dt(v) dv ≥ σt − (p− pt)Dt(pt),
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for all p ≥ 0. As a result,

σt ≤ min
p≥0

[∫ ∞
p

D(v) + (p− pt)Dt(pt)

]
= S

(
rt
pr

)
− rt,

where the equality follows from the first order condition of the minimization problem, which implies that at

the solution p̂t, D(p̂t) = Dt(pt) = rt/pt. Together, we have

(E[v]− pt)+ ≤ σt ≤ S
(
rt
pr

)
− rt,

for all t ∈ N ∪ {0}.
Lastly, for any t ∈ N ∪ {0}, Theorem 2 implies that ωt ≤ ω∗(β). Moreover, subgame perfection implies

that

αrt + δ(γ + βσt)ωt ≥ sup
D∈D

[
αpt + δ

(
γ + β

∫ ∞
pt

D(v) dv

)
ω∗(β)

]
.

Together, it must be that

αrt + δ(γ + βσt)ω
∗(β) ≥ sup

D∈D

[
αpt + δ

(
γ + β

∫ ∞
pt

D(v) dv

)
ω∗(β)

]
,

as desired.

Conversely, given any (r, σ, p) ∈ Z∗(β) and any T ∈ N, it suffices to construct a subgame perfect

equilibrium with outcome z = {rt, σt, ωt, pt,mt} with r0 = r, σ0 = σ, and p0 = p, since we may fix this

equilibrium play and augment the strategy profile using backward induction for T periods. To this end,

we first claim that there exists D0 ∈ D such that pD0(p) = r and
∫∞
p D0(v) dv = σ. Indeed, define D0 as

follows:

D0(v) :=


1, if v ∈

[
0, p

p−r (E[v]− r − σ)
]

r
p , if v ∈

(
p
p−r (E[v]− r − σ), p+ p

rσ
]

0, if v > p+ p
rσ

.

Since σ ∈ [(E[v]− p)+, S(r/p)− r], it follows that D0 ∈ D. Moreover, by definition,

pD0(p) = p · r
p

= r,

and ∫ ∞
p

D0(v) dv = E[v]− p

p− r
(E[v]− r − σ)− r

p

(
p− p

p− r
(E[v]− r − σ)

)
= σ,

as desired. Meanwhile, for any p′ ≥ 0 and for any ω ≥ 0, consider the following maximization problem:

sup
D∈D,q∈[D(p′+),D(p′)]

[
p′q + δ

(
γ + β

∫ ∞
p′

D(v) dv

)
ω

]
s.t. p′q ≤ r(β)

and denote that solution by (Dp′ , qp′) and the value by Λ̃(p′, ω). Notice that whenever r(β) > r∗, qp′ =

Dp′(p
′), while qp′ = Dp′(p

′+) if r(β) = r∗. Moreover, by the definitions of ω∗(β) and ω∗(β) in the proof of

Theorem 2,

Λ̃(p′,ω∗(β)) ≥ sup
D∈D

[
αp′D(p′) + δ

(
γ +

∫ ∞
p′

D(v) dv

)
ω∗(β)

]
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Lastly, for any β ≥ 0, since

αr + δ(γ + βσ)ω∗(β) ≥ sup
D∈D

[
αpD(p) + δ

(
γ + β

∫
p
D(v) dv

)
ω∗(β)

]
,

there exists ω̃∗(β) ≤ ω∗(β) such that ω̃∗(β) <∞,

αr + δ(γ + βσ)ω̃∗(β) ≥ sup
D∈D

[
αpD(p) + δ

(
γ + β

∫
p
D(v) dv

)
ω∗(β)

]
, (A.28)

and

Λ̃(p′, ω̃∗(β)) ≥ sup
D∈D

[
αp′D(p′) + δ

(
γ +

∫ ∞
p′

D(v) dv

)
ω∗(β)

]
. (A.29)

Now consider the following strategy profile: In period 0, the seller charges price p; the intermediary

chooses D0 ∈ D if the seller charges price p, and chooses Dp′ if the seller charges any other price p′ 6= p;

the tie-breaker chooses q = D0(p) if the seller charges p and the intermediary chooses D0, and chooses qp′

if the seller charges p′ 6= p and the intermediary chooses Dp′ , and always breaks ties in favor of the seller

otherwise. Starting from period 1, if the seller charges price p and the intermediary chooses D0 in period 0,

or if the seller charges any p′ 6= p and the intermediary chooses Dp′ in period 0 then they play the subgame

perfect equilibrium that gives the intermediary payoff ω̃∗(β). Otherwise, they play the subgame perfect

equilibrium that gives the intermediary payoff ω∗(β).

We claim that this strategy profile is indeed a subgame perfect equilibrium . To see this, notice first that

since all players always play a subgame perfect equilibrium from period 1 onward, it suffices to verify that

there are no incentives for the seller and the intermediary to deviate from the aforementioned strategies.

For the seller, for any p′ ≥ 0,

p′qp′ ≤ r(β) ≤ r = pD0(p),

and hence the seller does not have an incentive to deviate. For the intermediary, given that the seller charges

p, and given the continuation play, choosing D0 gives

αr + δ(γ + βσ)ω̃∗(β),

whereas the highest payoff the intermediary can obtain from any deviation is

sup
D∈D

[
αpD(p) + δ

(
γ + β

∫
p
D(v) dv

)
ω∗(β)

]
.

By (A.28), the intermediary has no incentive to deviate when the seller charges p. Finally, if the seller

chargers any price p′ 6= p, following the aforementioned strategy and choosing Dp′ gives the intermediary

payoff

αp′qp′ + δ

(
γ + β

∫ ∞
p′

Dp′(v) dv

)
ω̃∗(β) = Λβ(p′, ω̃)∗(β),

whereas the highest payoff she can obtain from any deviation is

sup
D∈D

[
αpD(p) + δ

(
γ + β

∫
p
D(v) dv

)
ω∗(β)

]
.

By (A.29), the intermediary has no incentive to deviate when the seller charges any p′ 6= p either. Together,

this aforementioned strategy profile is indeed a subgame perfect equilibrium .

By construction, this subgame perfect equilibrium induces an outcome z = {rt, σt, ωt, pt,mt} with r0 = r,

σ0 = σ, and p0 = p, as desired. This completes the proof. �
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A.9 Proof of Proposition 2

Consider any β ∈ [0, β]. We first show that there exists a subgame perfect equilibrium that is dominated by

any other subgame perfect equilibrium . By Corollary 1, it suffices to find a subgame perfect equilibrium

where the intermediary’s normalized continuation payoff is ω∗(β) and the normalized sales revenue is r(β),

while the consumer surplus is zero in every period. On the equilibrium path of the subgame perfect equi-

librium that gives the intermediary payoff ω∗(β), which is constructed in the proof of Theorem 2, the seller

charges a price p such that pD(v−1(p)) = (1−γδ)ω∗(β)/α = r(β); the intermediary chooses the myopic best

response when the seller charges p, which in turn leaves consumers no surplus. As a result, this subgame

perfect equilibrium induces an outcome z∗(β) that is dominated by any other subgame perfect equilibrium

outcomes .

Moreover, notice that when γδ ≤ 1/2, by its definition, ω∗(β) > ωβ = ω∗ if β < β̂ is small enough.

Therefore, since ω∗ is noninreasing on [0, β], for any γ, δ such that γδ ≤ 1/2, there exists β̂(γ, δ) ∈ (0, β̂)

such that ω∗(β) > ω∗ for all β ∈ (0, β̂(γ, δ)). As a result, by its definition, ω∗ is strictly decreasing on

(0, β̂(γ, δ)) and hence for any β, β′ ∈ (0, β̂(γ, δ)) with β′ > β, z∗(β) dominates z∗(β′). This completes the

proof. �
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