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Abstract Attainment of rational expectations equilibria in asset markets calls for the
price system to disseminate agents’ private information to others. Markets populated by
human agents are known to be capable of converging to rational expectations equilibria.
This paper reports comparable market outcomes when human agents are replaced by
boundedly-rational algorithmic agents who use a simple means-end heuristic. These
algorithmic agents lack the capability to optimize; yet outcomes of markets populated
by them converge near the equilibrium derived from optimization assumptions. These
findings point to market structure (rather than cognition or optimization) being an
important determinant of efficient aggregate level outcomes.
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Our knowledge of the very narrow limits of human rationality must dispose us to doubt that business
firms, investors or consumers possess either the knowledge or computational ability that would be
required to carry out the rational expectations strategy.

Herbert Simon (1969)
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The claim that the market can be trusted to correct the effect of individual irrationalities cannot be made
without supporting evidence, and the burden of specifying a plausible corrective mechanism should rest
on those who make this claim.

Tversky and Kahneman (1986)

The principal findings of experimental economics are that impersonal exchange in markets converges in
repeated interaction to the equilibrium states implied by economic theory, under information conditions
far weaker than specified in the theory.

Vernon Smith (2008)

1 Introduction

A central feature of economic theory is derivation of equilibrium in economies pop-
ulated by agents who optimize some well-ordered function such as profit or utility.
Although it is recognized that actions of economic agents are subject to institutional
constraints and feedback (North 1990), exploration of the extent to which equilib-
rium arises from characteristics of the institutional environment, as opposed to the
behavior of individuals, has been limited; Becker’s (1962) derivation of downward
slope of demand functions is a notable exception. The normal modeling technique is
to ascribe sophisticated computational abilities to a representative agent to solve for
equilibrium (Muth 1961). Plott and Sunder (1982, henceforth PS) have shown that
markets with uncertainty and asymmetrically distributed information (with two or
three states of the world) disseminate information and converge near rational expec-
tations equilibria when populated with profit-motivated human traders. The present
paper asks if the PS results can also be achieved by minimally intelligent traders
(Gode and Sunder 1993) using the means-end heuristic and reports an affirmative
answer.

Simon (1969, Chapter 3) questioned the plausibility of human agents, with their
limited cognitive abilities, forming rational expectations by intuition. Accumulated
observational evidence on these cognitive limits of individuals shifted the burden
of proof and led to calls for evidence that markets can overcome such behavioral
limitations (Thaler 1986; Tversky and Kahneman 1986).

Laboratory studies of markets populated by asymmetrically-informed profit-
motivated human subjects reveal that their aggregate level outcomes tend to converge
near the predictions of rational expectations theory (Forsythe and Lundholm 1990;
Forsythe et al. 1982; Plott and Sunder 1988). However, since complex patterns of
human behavior can only be inferred, not observed directly, it is difficult to know from
human experiments which elements of trader behavior and faculties are necessary
or sufficient for various markets to attain their theoretical equilibria.' This difficulty
has led to claims that the inability of humans to optimize by intuition implies that
economic theories based on optimization assumptions are prima facie invalid [for
example, Tversky and Kahneman (1986)].

1 See for example Dickhaut et al. (2012) regarding conditions where markets with human traders are less
likely to conform to predicted equilibria.
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Such doubts about the achievability of mathematically derived equilibria, when
individual agents are not able to perform complex optimization calculations are under-
standable. From a constructivist point of view (Smith 2008), rational expectations
equilibria place heavy demands on individual cognition to learn others’ preferences
or strategies, and to arrive at unbiased estimates of underlying parameters of the econ-
omy by observing markets. In theory, disseminating and detecting information in
markets calls for bootstrapping—rational assessments are necessary to arrive in equi-
librium and such assessments require observation of equilibrium outcomes. Cognitive
and computational demands on individuals to arrive at economic equilibria, espe-
cially rational-expectations equilibria, are high, raising doubts about the plausibility
of equilibrium models (Simon 1969).

Replacing humans with algorithms allows us to examine whether the use of certain
simple heuristics by individual traders is sufficient for attaining rational expectations
equilibria (as a proof of concept). Without claiming that human traders actually use
such heuristics, it is possible and useful to determine if heuristics making low com-
putation demands on human reasoning might be sufficient for attaining equilibria in a
given market environment. Combining Newell and Simon’s (1972) means-end heuris-
tic with Gode and Sunder’s (1993, 1997) zero-intelligence (ZI) approach, we find
and report that markets with uncertainty and asymmetric information attain outcomes
approximating rational expectations equilibria, even when they are populated by sim-
ple minimally-intelligent adaptive algorithmic traders. Since the statistical distribution
of these outcomes is centered near the PS observations of markets with human traders,
the convergence of their outcomes to equilibrium can be attributed to the combination
of the market structure and the minimal levels of intelligence and adaptive ability built
into the trading algorithms. Since these trader faculties are far less demanding than
what is assumed in deriving the equilibria, and certainly within the known human
capabilities, we infer that the convergence of markets to rational expectations equilib-
ria emerge mainly from the properties of the market and simple and plausible decision
heuristics, rather than from complex and sophisticated optimization (Becker 1962;
Gode and Sunder 1993; Gigerenzer and Todd 1999; Smith 2008).

2 Background and Theory

Instead of assuming sophisticated information processing capabilities and maximiza-
tion objectives of agents, we can think of market structure constraining human behavior
to guide their aggregate level outcomes to the neighborhood of theoretical equilibria.
Becker (1962) showed that the downward slope of demand functions arises from indi-
viduals having to act within their budget constraints, even if they choose randomly
from their opportunity sets. Smith (1962) reported that classroom double auction mar-
kets populated by a mere handful of profit-motivated student traders with minimal
information arrive in close proximity of Walrasian equilibrium. Moreover, Smith’s
auction markets had little resemblance to the titonnement story often used to motivate
theoretical derivations of equilibria.

Gode and Sunder (1993) combined Becker’s constrained random choice with
Smith’s double auctions and reported the results of computer simulations of simple
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double auctions populated by “zero intelligence” (henceforth ZI) algorithmic traders
who bid or ask randomly within their budget constraints (i.e., buyers do not bid above
their private values and sellers do not ask below their private costs). Although these
traders do not remember, optimize, maximize profits, or learn, simulated markets pop-
ulated by such traders also reach the proximity of their theoretical equilibria, especially
in their allocative efficiency. In simple double auctions without uncertainty or infor-
mation asymmetry, theoretical equilibria are attainable with individuals endowed with
only minimal levels of intelligence (not trading at a loss). Jamal and Sunder (1996)
extended the results to markets with shared uncertainty with algorithmic agents using
means-end heuristic (henceforth M-E), developed by Newell and Simon (1972). In the
current paper, we examine whether the ZI results reported in the literature also hold in
more complex rational expectation markets where there is state uncertainty, variability
in the number of states, and differently informed traders. The empirical results from
PS experiments with human subjects form a benchmark for comparison with those of
our algorithmic traders.

Substitution of human subjects used in traditional laboratory markets by algorith-
mic agents using M-E heuristic has the advantage of helping us gain precise control
of traders’ information processing and decision making (i.e., “cognitive”) abilities.
Holding trader “cognition” constant at a specified level allows us to explore the prop-
erties of outcomes of market structures and environment (also, see Angerer et al. 2010;
Huber et al. 2010). In contrast, we can neither observe nor hold invariant the strategies
used by human traders. The use of algorithmic traders enables us to run longer compu-
tational experiments, randomize parameters in the experimental setting, and conduct
replications without significantly more time or money.

The paper is organized in five sections. The third section describes a simple M-E
heuristic used by minimally-intelligent algorithmic traders in a double auction market.
In the fourth section, we implement this heuristic in a market where some traders
have perfect insider information (while others have no information) and compare the
simulation results with the data from the profit-motivated human experiments reported
by PS. The fifth section presents implications of the findings and some concluding
remarks.

3 Simple Agents, Market Environment and Experimental Design

Simon (1955) proposed bounded rationality as a process model to understand and
explain how humans, with their limited knowledge and computational capacity, behave
in complex settings. He postulated that humans develop and use simple heuristics
to seek and attain merely satisfactory, not optimal, outcomes. To understand human
problem-solving Newell and Simon (1972) developed General Problem Solver (GPS).
They adduced a large body of data which show that GPS is a robust model of human
problem-solving in a wide variety of tasks and environments. The key heuristic used by
GPS is means-ends analysis (M-E or the heuristic of reducing differences). Gigeren-
zer and Todd (1999) have focused on the usefulness and effectiveness of fast and
frugal heuristics like M-E in human life, whereas Tversky and Kahneman (1974) have
documented a similar heuristic which they labeled anchor-and-adjust.
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GPS recognizes knowledge states, differences between knowledge states, operators,
goals, sub-goals and problem solving heuristics as entities. GPS starts with an initial
(or current) knowledge state and a goal or desired knowledge state. GPS then selects
and applies operators that reduce the difference between the current state and the
goal state. The M-E heuristic for carrying out this procedure can be summarized in
four steps: (i) compare the current knowledge state a with a goal state b to identify
difference d between them; (ii) find an operator o that will reduce the difference d in the
next step; (iii) apply the operator o to the current knowledge state a to produce a new
current knowledge state a’ that is closer to b than a; and (iv) repeat this process until
the current knowledge state a’ is acceptably close to the goal state b. Knowledge states
of traders can be represented as aspiration levels that adjust in response to experience
(Simon 1956). The M-E heuristic for a trader thus requires a mechanism for setting an
initial aspiration level, and a method for adjusting these levels in light of experience
(e.g., Jamal and Sunder 1996). In Appendix A we outline the algorithm used by our
program.

3.1 Market Environment

Markets examined here are defined by four elements: (i) uncertainty, (ii) distribution
of information, (iii) security payoffs, and (iv) rules of the market. Following PS, we
examine markets for securities with either two (X and Y) or three (X, Y, and Z) states
of the world, where each state S; occurs with a known probability ;. One half of the
traders in the markets (n = 6) are informed about the realized state before trading
starts each period, while the other half (n = 6) are uninformed. At the beginning
of each period, each trader of type j (j = 3 types in our experiment) is endowed with
two units of a security which pays a single state-contingent dividend Dy; at the end
of the trading period. There are no cash constraints. There are three types of traders
and each trader type gets a different dividend in a given state. The rules of the double
auction are as follows: after a bid or ask is generated (see Sect. 3.2 and Appendix A for
details on algorithm for generating bids and asks), the highest bid price is compared
to the lowest ask price. If the bid price is equal to or greater than the ask price, a trade
occurs. The recorded transaction price is set to be equal to the midpoint between the
bid and ask prices.

3.2 Implementing the M-E Heuristic

In the first of the two implementation steps, each agent’s initial knowledge state (aspi-
ration level) is set equal to the expected value of the payoff based on its private
information.? The second step implements the idea that subjects without perfect infor-
mation make gradual adjustments by applying weight (0 < y < 1) to the newest
observed price Py, and weight (1 — y) to their Current Aspiration Level (CAL;). This

2 See Appendix A for more details.
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process can be represented as a first-order adaptive process:
CAL; 11 =1 —y)CAL, + y P;. (1)
If CALy is the initial value of CAL;, by substitution,

CALi41 = (1—y) M CALy+y (1=y) P1+ (=) ' Py+.. .4+ (1 — y) P_ + P)).
@
In the context of markets organized as double auctions (where both buyers and
sellers can actively propose prices to transact at), these two elements of the M-
E heuristic—setting an initial aspiration level and gradually adapting it in light of
observed transaction prices—constitute the entire heuristic activity of the agent.

3.2.1 Minimally Intelligent Algorithmic Agents

Algorithmic agents use their “current aspiration level” (CAL) to implement a ZI strat-
egy after Gode and Sunder (1993); they bid randomly chosen prices below, and ask
randomly chosen prices above, their aspiration levels. Traders draw a uniformly dis-
tributed random number between O and an upper limit of 1. If the number drawn is
less than or equal to 0.5, the trader generates a bid; if the number drawn is greater than
0.5, the trader generates an ask. The bid amount is determined by drawing a second
random number between a lower bound of 0 and an upper bound of the individual
trader’s CAL. If this bid exceeds the current high bid, it becomes the new high bid.
Correspondingly, if the action is an ask, its amount is determined by generating a
second random number in the range between the lower bound of the trader’s CAL and
the upper bound of 1. This newly generated ask becomes the new current low ask if
it is less than the existing current low ask. These random draws from uniform distri-
butions are generated independently. The algorithmic agents are myopic, making no
attempt to anticipate, backward induct, or theorize about the behavior of other traders.
They simply use the knowledge of observable past market events (transaction prices)
to estimate their opportunity sets, and choose randomly from these sets.

These markets are populated in equal numbers by traders of each payoff type of
whom 50 % are (and 50 % are not) informed about the realized state of the world.
The informed algorithmic traders begin by setting their initial CAL using the perfect
signal they have about the realized state of the world for any given trader type j:*

If realized state = X, CALxy = Dy;
If realized state = Y, CALy = Dy; 3)

3 Previous attempts to model individual human behavior has used processes similar to equation 2 (Carlson
1967; Carlson and Okeefe 1969).

4 For 3-state markets, if realized state = Z, CALy = Dz -
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The uninformed traders of type j use their unconditional expected dividend value to
set their initial CAL using the prior state probabilities:’

CAL; = Pr (X)* (Dxj) + Pr (Y)* (Dy;) )

Since they know the state with certainty, informed traders do not update their CALs in
response to observed transactions; they learn nothing about the state of the world from
transaction prices.® Uninformed traders of every dividend type, however, update their
CALs after each transaction using the M-E heuristic (i.e., first-order adaptive process)
given in equation [1] above.

CAL updating is done with a randomly chosen value of the adaptive parameter
y for the simulation (see the Experimental Design below). Submission of bids and
asks continues with the updated CALs serving as constraints on the opportunity sets
of traders until the next transaction occurs, and this process is repeated for 5,000
cycles each period. At the end of each period the realized state is revealed to all
traders, dividends are paid to their accounts, and each trader’s security endowment is
refreshed for the following period. The uninformed algorithmic traders carry their end-
of-period CAL forward and use it as the starting point in the following period.” Since
our traders have minimal intelligence, they do not learn by observing other’s behavior
or make generalizations across markets. They act in a myopic way at all times to help
us examine the sufficiency of using such a strategy for attaining economic equilibria.

In the following period, informed traders again get a perfect signal about the state of
the world and set their CAL = Dy (or Dy;) depending on whether the signal received
is X or Y (or Z in 3-state markets). The uninformed traders use their end-of-period
CAL from the preceding period as CAL to trade and to generate CAL; after the first
transaction, and so on.

3.3 Experimental Design

We use the market design parameters from the PS (1982) human experiment for the
present simulations (see Table 1). We ran 50 replications of four markets numbered
2, 3,4 and 5 as reported by PS (1982) human experiment (three states in Market 5,
and two in the other three markets).® The participants were freshly endowed with two

5 For 3-state markets, CAL; = Pr (X)* (Dx;) + Pr (Y)* (Dy;) + Pr(X)*(Dz;).

6 The informed traders could, for example, learn that in some states market prices are higher than their own
dividend in that state, and thus raise their CAL to that higher level. Human traders, presumably, make this
adjustment but our algorithmic traders are not allowed to make such adjustments. We should not, therefore,
expect the markets with these minimally-intelligent agents to behave identically to the human markets.

7 1t would have been possible for the agents to keep track of the prices associated with each realized state
and use this information in subsequent periods. In the spirit of minimal intelligence, our agents do not do
so, and uninformed agents simply carry forward their CAL from the end of one period to the beginning of
the next period. The CAL of informed agents responds to a perfect signal about the state realized in each
period and is not dependent on experience in previous periods.

8 Plott and Sunder (1982) found that the information structure of their Market 1 was too complex for it
to reach rational expectations equilibrium in less than a dozen periods. Accordingly, we have not tried to
replicate that information structure and market in the present simulations.
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Fig. 1 The price paths in Market 2 of Plott and Sunder (1982) for periods where participants have asym-
metric information (heavy blue line for mean price in markets with human traders; medium red line for
median of 50 replications of simulated markets with algorithmic traders). Each black dot in the “cloud” is
an observed transaction price in the simulated markets plotted by transaction sequence number. The green
straight line and the brown broken line depict the rational expectation (RE) and prior information (PI)
predicted equilibrium prices for the respective periods (the two prices are identical under State Y). Source:
Time Chart of Prices in a 2 State Market Versus Human Trader Data from Market 2 of Plott and Sunder
(1982)

securities every period and have no cash constraint. For each of the 50 replications,
the adjustment parameter y was randomly and independently drawn from a uniform
distribution U (0.05, 0.15).9 In each market, there are 12 traders who traded single-
period securities. A random state of nature—X, Y, (or Z in case of 3-states)—was
drawn at the start of each period to match the actual realizations observed in the PS’s
markets. Except for a few initial periods (when no trader was informed), and in some
final periods (when all traders were informed), six of these 12 traders had perfect
insider information and the other six were uninformed. For consistency and ease of
reference, we identify these markets using the same numbers as used by PS.!°

9 These ranges have been used in previous market simulation studies (Gode and Sunder 1993, 1997; Jamal
and Sunder 1996) and have no normative content per se.

10 1n this paper we only report periods where six traders in the market are informed and the other six
are uninformed. We have also simulated periods where all traders were informed, or all were uninformed.
The results are not qualitatively different from human participants reported in PS. Full simulation results,
including all periods with informed/uninformed traders are available as supplementary material at http://
dx.doi.org/10.1007/510614-016-9582-3. This website also gives an outline of the code, and allows visitors
to see the charts of market outcomes.
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4 Experimental Results
4.1 Price, Volume and Efficiency

Figure 1 shows the time chart of prices observed in five asymmetric information periods
of Market 2 populated with profit-motivated human traders (heavy blue curve) reported
in PS against the background of two theoretical (RE—solid green horizontal line)
and Walrasian (PI—dashed brown horizontal line) predictions for respective periods.
The red curve of medium thickness plots the median of prices from 50 replications
(shown as a cloud) of the same market with M-E heuristic algorithmic traders. The
adaptive parameter y is randomly and independently drawn each period from a uniform
distribution U(0.05, 0.15) and is identical across all traders. Six of the 12 traders have
perfect insider information and the other six are uninformed. Allocative efficiency and
trading volume are shown numerically for each period in Table 2.

Figure 1 indicates: (i) In State X (with low RE price of 0.24 in periods 7 and 9),
transaction prices of both human traders (blue curve) and algorithmic traders (red
curve) approach the RE equilibrium level from above. (ii) In State Y (with higher RE
price of 0.35 in periods 8, 10 and 11), transaction prices of both human traders and
algorithmic traders generally approach and get close to the equilibrium level from
below. (iii) As shown in Table 2 for Market 2, in State X (low RE price) periods,
average trading volume for human traders across the two periods is 19.5 while the
average volume for algorithmic traders is 17.5. The allocative efficiency of human
trader markets across the two X periods is 63.5 %, while efficiency of the simulated
markets is 80.3 %. Note that allocative efficiency arises from having the appropriate
number of securities acquired by the appropriate type of traders as specified by rational
expectations equilibrium. Efficiency levels (below 100 %) arise when the wrong type
of traders hold some of the securities. In State Y (high RE price) periods, human
traders’ average volume is 19.3 (vs. 23.7 for algorithmic traders) and human trader
efficiency is 100 %, while algorithmic traders achieve efficiency levels of 98.7 %. The
direction and volume of trading is close to the predictions of RE equilibrium.

There are also important differences between the convergence paths for human and
simulated markets: the convergence of prices to RE predictions with human traders is
tighter and progressively faster in later periods; algorithmic simulations exhibit little
change from early to later realizations of the same State (X or Y). Efficiency results
also show human subjects improving over time (when State is X), whereas markets
populated with algorithmic traders show less improvement over time.

Replication of the additional 2-state markets (Markets 3 and 4) with different para-
meters (see Figs. 2, 3 and the two middle sections of Table 2) show essentially the
same pattern of convergence except that in State Y (with low RE price) human traders
have a tendency to converge quickly to the RE price, especially in later periods (not
coming from above or below) whereas the paths with algorithmic traders depend
on history in the previous period (because the CAL of the uninformed traders is
carried forward from previous periods). If the previous period is State X (high RE
price) the simulation converges from above; if the previous period is State Y (low RE
price), the simulation converges from below the RE price. As expected, algorithmic
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Fig. 2 The price paths in Market 3 of Plott and Sunder (1982) for periods where participants have asym-
metric information (heavy blue line for mean price in markets with human traders; medium red line for
median of 50 replications of simulated markets with algorithmic traders). Each black dot in the “cloud” is
an observed transaction price in the simulated markets plotted by transaction sequence number. The green
straight line and the brown broken line depict the rational expectation (RE) and prior information (PI)
predicted equilibrium prices for the respective periods (the two prices are identical under State Y). Source:
Time Chart of Prices in a 2 State Market Versus Human Trader Data from Market 3 of Plott and Sunder
(1982)

traders adjust slowly and learn myopically without any global awareness of equilibrium
prices.

Figure 4 displays data for a three-state market reported by PS with human traders,
and an identical market replicated for this paper with algorithmic traders. The solid
green horizontal line indicates the rational expectations (dashed brown line for PI)
equilibrium price for the respective periods. Allocative efficiency and trading volume
for Market 5 are shown numerically for each period in the bottom section of Table 2.

Figure 4 indicates: (i) In State Z (with high RE price of 0.32), for both human (blue
line) and algorithmic traders (red line) transaction prices approach and get close to the
RE equilibrium level from below. (ii) In State Y (with RE price of 0.245 in the middle
of the other two states), transaction prices also generally approach and get close to the
equilibrium level from below in both human and simulated markets. (iii) In State X
transaction prices generally approach from below, the only exception occurs in Period
11 when the market converges from above in both human and simulated markets. It
appears that moving from a high equilibrium price state to a lower price state may
cause convergences from above. Otherwise, both humans and our simulated traders
tend to approach the equilibrium price from below. (iv) Trading volume in all three
states is generally greater than the predicted volume of 16 trades. For human traders
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Fig. 3 The price paths in Market 4 of Plott and Sunder (1982) for periods where participants have asym-
metric information (heavy blue line for mean price in markets with human traders; medium red line for
median of 50 replications of simulated markets with algorithmic traders). Each black dot in the “cloud” is
an observed transaction price in the simulated markets plotted by transaction sequence number. The green
straight line and the brown broken line depict the rational expectation (RE) and prior information (PI)
predicted equilibrium prices for the respective periods (the two prices are identical under State Y). Source:
Time Chart of Prices in a 2 State Market Versus Human Trader Data from Market 4 of Plott and Sunder
(1982)

volume tends to range from 15-23 trades, whereas algorithmic traders, volume ranges
from 14-24 trades. (v) In all periods of State Z (high RE price), allocative efficiency
for human traders is 100 % whereas algorithmic traders achieve 98.8 % efficiency.
In State Y (middle RE price) periods, allocative efficiency of human traders averages
96.8 % (100 % efficiency in all periods except the first realization of State Y') whereas
algorithmic traders achieve 95.4 % efficiency and do not achieve 100 % efficiency
in any individual period. In State X (low RE price) periods, allocative efficiency of
human traders averages 87.7 % whereas algorithmic traders achieve 91.5 % efficiency.
Table 2 shows volume and efficiency numerically. Again, it is clear that outcomes of
markets with profit-motivated human and minimally intelligent algorithmic traders
exhibit the same central tendencies of convergence towards the predictions of rational
expectations models. Apparently, the structural constraints of the market rules and
Newell and Simon’s (1972) simple means-end heuristics are sufficient to yield this
result even as the number of states in the market increases from two states to three.

4.2 Convergence and Statistical Comparisons

To assess price convergence to the rational expectations equilibrium, we report results
of a procedure used by Gode and Sunder (1993) who regressed the root mean squared
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Fig. 4 The price paths in Market 5 of Plott and Sunder (1982) for periods where participants have asym-
metric information (heavy blue line for mean price in markets with human traders; medium red line for
median of 50 replications of simulated markets with algorithmic traders). Each black dot in the “cloud” is
an observed transaction price in the simulated markets plotted by transaction sequence number. The green
straight line and the brown broken line depict the rational expectation (RE) and prior information (PI)
predicted equilibrium prices for the respective periods (the two prices are identical under States Y and Z).
Source: Time Chart of Prices in a 3 State Market Versus Human Trader Data from Market 5 of Plott and
Sunder (1982)

deviation between transaction and RE equilibrium prices on the natural logarithm of
the transaction sequence number within a period. If prices move towards RE levels
over time, the slope coefficient of this regression should be less than zero. Four panels
of Fig. 5 show the behavior of this root mean square deviation over time for the four
human and simulated market pairs. Results of ordinary least squares regressions of
MSD on log of transaction sequence number in human and simulated markets are
shown in two triplets in each panel (slope, p-value, and R?)!! respectively. Three of
the four human (with the exception of Market 2), as well as all four simulated markets
exhibit significant convergence to RE equilibrium, and the zero-slope hypothesis is
rejected in favor of negative slope alternative at p < 0.000 for the seven of the eight
(human and simulated) markets. About 80 % of the reduction in the deviation from
RE equilibria is explained by the log of transaction sequence number. Figure 5 shows
that root mean squared deviation of transaction from RE equilibrium prices tends
towards zero.

Across all 32 periods of the four markets, the difference between the trading volume
and efficiency (Table 2; charted in Figs. 6, 7) of human and simulated markets is not

T we report results using the same format as Plott and Sunder (1982) so our simulation results can be
compared with the human experiment results.

@ Springer



Simple Agents, Intelligent Markets

Market 2 Market 3
N
S
[Te]
8 Humsn (-0.00003, 0.926, 0.00) Humsn (-0.00187, 0.000, 0.87)
- (-0.00181, 0.000, 0.92), ! (-0.00433, 0.000, 0.94)
-
S -
c
L v
a
g S \ J/
=
> S—
o © 4
(0]
= Market 4 Market 5
J o
T © -
N
wn
[ =
[+ 8 7 Humsn (-0.00752, 0.000, 0.69) Human (-0.00082, 0.000, 0.20)
() N (-0.004286, 0.000, 0.91), (-0.00216, 0.000, 0.87)
= -
5 -
wn
£ o
=] %
o A

0 10 20 30 40 0 10 20 30 40
Transaction Number

Simulation Human |

Fig. 5 The progression of mean squared deviation of observed prices from RE equilibrium prices with
respect to transaction sequence numbers (heavy blue line for price in markets with human traders; medium
red line for algorithmic traders). In human Market 4, the first five root mean squared deviations exceed
0.02 (for a maximum of 0.145 for transaction 3), and are out-of-scale chosen for the y-axis. Ordinary Least
Squares regression (M SD = « + B log Transaction No.) estimates of B, p-value and R? for human and
algorithmic markets are shown numerically in boxes inside each chart (e.g., in market 5: 8 = —0.00082,
p-value = 0.001 and R? = 0.90 for human markets). Source: Mean Squared Deviation of Observed Prices
from RE Equilibrium Prices

statistically different [average volume of simulated market is about one trade greater
than for human markets with t-statistic of 1.35 and the average efficiency of simulated
markets is 1.6 % lower than that of markets with human traders (t-statistic of —1.08)].
There is no significant difference between the volume and efficiency of markets with
human traders as opposed to the median of algorithmic traders. The inference is not that
these simple algorithms capture all or even most of the behavior of the humans; that is
not true. However, when seen through the perspective of aggregate market outcomes—
prices, allocations, trading volume, and efficiency—in their central tendency, these
simple heuristics noisily mimic the human subject convergence to RE equilibria in
these markets.

4.3 Sensitivity Analysis

We conduct sensitivity analysis to examine outcomes with a varied number of informed
traders for markets 2, 3 and 4.!2 In each market, we provided information to one, two,

12 Due to the structure of Market 5 we are not able to decrease the number of informed traders.
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or three traders of each type. Since there are three types of traders in each market, the
minimum number of informed traders is three. All of the remaining parameters were
remained unchanged. We ran these simulations twice, once with 5000 iterations and
again with 10,000 iterations. This was done to see if the number of iterations was a
limiting factor. Table 3 provides the results of the sensitivity analysis.

For the 5000 iteration simulation runs, efficiency levels reported in Table 3 range
from 80 to 88 % whereas the comparable efficiency levels with 6 informed traders in
Table 2 range from 89.5 to 95 %. The average efficiency levels drop by about 7 % when
the number of informed traders of each type is reduced from two to one. Increasing
the number of iterations to 10,000 as reported in Table 3 yields an efficiency range
of 82 to 89 %; there is not much improvement obtained by increasing the number of
iterations available to trade.

We also conducted a simulation in which we increased the number of each type
of informed trader to three (for a total of nine informed traders out of a total of 12
traders). Efficiency levels with nine informed traders range from 89.5 to 94 % which
is essentially the same as the range obtained with six informed traders (89.5-95 %
in Table 2).13 These results suggest that the presence of even very few informed
traders (one of each type in our case) may be sufficient for this market to approach
rational expectations equilibria. Additional increases in the number of informed traders
(from one informed trader of each type to two) improves market performance a little;
however, gains from increasing the number of informed traders flatten out quickly and
there is little further improvement from increasing the number of informed traders of
each type from two or three.

We note that in the high equilibrium price state (¥ in Market 2 and X in Markets 3
and 4; see Table 1), each market achieves close to 100 % efficiency with both human
and algorithmic traders (with 3, 6 or 9 insiders—see Fig. 8). We conjecture that in the
high price state, informed traders are buyers who have no budget constraint so they can
keep bidding up the price until all feasible trades have occurred. In the low equilibrium
price state, both human and algorithmic traders have lower efficiency levels, generally
close to 80 % on average; see Fig. 8). We conjecture that these lower efficiency levels
occur due to the restriction on short-selling in our simulations, particularly in the low-
priced state when the informed traders are sellers rather than buyers. Since there are
only three informed traders in each market, this means that there are a total of six
tokens held by informed traders. Once the informed traders have sold all their tokens,
there are generally no further trades available since the CALs of the uninformed traders
are usually higher than the prior transaction price. As a result, the informed traders
cannot take advantage of this price discrepancy and drive the market price towards the
RE equilibrium.

5 Discussion and Concluding Remarks

We have presented evidence that individual behavior, modeled by simple means-
end heuristics and minimal-intelligence, is sufficient to yield market-level outcomes

13 Table 4 for the results with nine out of 12 informed traders is available as supplementary material at
(http://dx.doi.org/10.1007/s10614-016-9582-3).
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Fig.8 Average allocative efficiency of markets with algorithmic traders by the number of informed traders
in each market for high and low equilibrium price states

centered around the equilibrium levels derived from strong assumptions about opti-
mization by individual agents. This occurs even though our algorithmic traders are
unable to make even simple inferences and learn from experience to improve their
current and future performance. This lack of learning preserves the spirit of Zero
Intelligence (ZI) models of behavior (Gode and Sunder 1993) and makes it more diffi-
cult for our algorithmic traders to achieve the high levels of economic efficiency (and
learning across periods) exhibited by human subjects in experiments.

Even if this key optimization assumption of theory were descriptively invalid, it
does not necessarily undermine the validity and predictive value of the theory at the
aggregate level. Our findings are consistent with Gigerenzer and Todd (1999) who
built on Simon’s bounded rationality paradigm by proposing that individuals use “fast
and frugal” heuristics to successfully accomplish complex tasks.

The computational or other “cognitive” abilities of our algorithmic traders do not
exceed, indeed are far weaker than, the documented faculties of human cognition. Yet,
these simulated markets with insider trading based on asymmetric access to infor-
mation converge to the close proximity of rational expectations equilibria and attain
high allocative efficiency. Contrary to claims made in behavioral economics litera-
ture (Thaler 1986; Tversky and Kahneman 1974), we find that individuals using a
simple means-end heuristic [analogous to Tversky and Kahneman’s (1974) anchor—
and—adjust heuristic] in a market setting generate outcomes close to the rational
expectations equilibrium. We interpret the results to suggest that, even in these rela-
tively more complex market environments [as compared to Gode and Sunder (1993,
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1997) and Jamal and Sunder (1996)], allocative efficiency of markets remains largely a
function of their structure, not intelligence, learning or optimizing behavior of agents.
Attention to understanding the role of market structure, not just human cognition,
may help advance our understanding of links between economic theory and market
outcomes.

Acknowledgments Jamal and Maier thank the Social Sciences and Humanities Research Council of
Canada (SSHRC) for their financial support. Sunder thanks Yale University for financial support.

Appendix A
Outline of the Trading Algorithm

Variable Descriptions

BIDPRICE as a real number; stores the highest market bid price
ASKPRICE as a real number; stores the lowest market ask price
CURRENTBIDDERID as an integer; stores the index number of the highest bidder
CURRENTSELLERID as an integer; stores the index number of the lowest seller
STATE as an integer; stores the current state of the economy
GAMMA as a real number; stores the CAL adjustment parameter for the
current replication
TRADER(n) as array of TRADER type
STATEPROB(s) as array of real numbers; an array containing the objective
probabilities of each state

Type TRADER has the following properties:

CAL as real number; holds the Current Aspiration Level of the trader

INFORMED as a Boolean; determines whether the trader is informed or
uninformed

TOKENS as an integer; records the number of tokens a trader has

CASH as a real number; records the amount of cash a trader has

DIV(s) as an array of real numbers; the dividend payable for STATE s

Step 1. Repeat Steps 2 to 12 50 times (number of replications)
Step 2. Generate a random number (R) between 0 and 100 to select a state
IF in 2 state version of program go to Step 2a
IF in 3 state version of program go to Step 2b
Step 2a. If R < STATEPROB(1) then STATE = 1 ELSE STATE =2 and go to Step 3
Step 2b. IF R < STATEPROB(1) then STATE = 1
IF R > STATEPROB(1) and R < STATEPROB(2) then STATE = 2
IF R > STATEPROB(2) then STATE =3
Go to Step 3
Step 3. For each TRADER(n)
Set TOKENS =2
If INFORMED = TRUE then go to Step 3a
If INFORMED = FALSE then go to Step 3b
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Comment: Each trader is endowed with 2 new tokens to trade at the beginning
of each period.

Step 3a. Set CAL = DIV(s) and go to Step 4
Comment: If the trader is informed then they know the true state of the world.
Step 3b. Set CAL = X (STATEPROB(s)*DIV(s)) if this is the first period and go to
Step 4
Comment: If the trader is uninformed the starting point at the beginning of the
first period is set to the expected value of the dividends. In subsequent periods
the CAL carries over from period to period.
Step 4. Generate a random value GAMMA from uniform distribution (0.05,0.15)
and Repeat Step 5—12 5000 times
Step 5. Select a trader at random from numbers 1 to 12 and go to Step 6
Step 6. Generate a random number (U) between 1 and 100
If the random number U is 50 or less then go to Step 7a
If the random number U is 51 or higher then go to Step 7b

Comment: This step generates whether a bid or ask is generated.

Step 7a. Generate a new random real number (T) between 0 and CAL of TRADER
If the new random number T is greater than BIDPRICE then
Set BIDPRICE =T
Set CURRENTBIDDERID = TRADERID
Go to Step 8

Comment: This step generates a random bid price for the selected trader
between the lower bound of 0 and that traders CAL

If the new bid price is higher than the existing bid price in the market then the
new bid price becomes the bid price in the market. The ID of the new high
bidder is updated.

Step 7b. Generate a new random real number (U) between CAL of TRADER and 1
If the new random number U is less than ASKPRICE then
Set ASKPRICE = U
Set CURRENTSELLERID = TRADERID
Go to Step 8

Comment: This step generates a random ask price for the selected trader
between the trader’s CAL and the upper bound of 1. If the new ask price is
lower than the existing ask price in the market then the new ask price becomes
the ask price in the market. The ID of the new low asker is updated.

Step 8. If BIDPRICE > ASKPRICE then go to Step 9. Else return to Step 5
Comment: If the bid exceeds the ask, then a trade can occur.

Step 9. Set TRADEPRICE = (BIDPRICE — ASKPRICE) / 2 and go to Step 10
Comment: The trade price is determined as the halfway point between the bid
and ask price.

Step 10. For TRADER(CURRENTBIDDERID)
Set TOKENS = TOKENS + 1
Set CASH = CASH - TRADEPRICE
Go to Step 11
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Comment: The bidder has bought and this step records the purchase of the
token

Step 11. For TRADER(CURRENTSELLERID)
Set TOKENS = TOKENS —1
Set CASH = CASH + TRADEPRICE
Go to Step 12

Comment: This step records the sale of the token

Step 12. For each trader with INFORMED = False
CAL = (1 — GAMMA) * CAL + GAMMA * TRADEPRICE

Comment: Carries out the step to update the players CAL in response to
observed trade. Only uninformed traders update their CAL.
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