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Abstract

We study statistics: mappings from distributions to real numbers. We characterize
all statistics that are monotone with respect to first-order stochastic dominance,
and additive for sums of independent random variables. We explore a number of
applications, including a representation of stationary, monotone time preferences,
generalizing Fishburn and Rubinstein (1982) to time lotteries.

1 Introduction

How should a random quantity be summarized by a single number? In Bayesian statistics,
point estimators capture an entire posterior distribution. In finance, risk measures quantify
the risk in a distribution of returns. And in economics, certainty equivalents characterize
an expected utility agent’s preference for uncertain outcomes.

We use the term statistic to describe a map that assigns a number to each real-
valued random variable, with the basic requirement that this number depends only on the
distribution of the random variable.1 We study statistics that are monotone with respect
to first-order stochastic dominance, and additive for sums of independent random variables.
An example of a monotone additive statistic is the expectation. The median is monotone
but not additive, while the variance is additive but not monotone.

Monotonicity is a well studied property of statistics (see, e.g., Bickel and Lehmann,
1975a,b), and holds, for example, for certainty equivalents of monotone preferences. Ad-
ditivity is a stronger assumption. We focus on this property because of its conceptual
simplicity and because it serves as a baseline assumption in many settings. In particular,
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1The term “descriptive statistic” usually refers to maps associating a number to observations or to

empirical distributions. Because of its simplicity, we apply it here to general distributions. See e.g. Bickel
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we show below that additivity corresponds to a form of stationarity in the context of
preferences over time lotteries.

Beyond the expectation, an additional example of a monotone additive statistic is the
map Ka that, given a ∈ R, assigns to each random variable X the value

Ka(X) = 1
a

logE
[
eaX

]
. (1)

In the language of statistics, the map is the (normalized) cumulant generating function
evaluated at a. In economics, it corresponds to the certainty equcivalent defined by a
CARA preference over gambles. For bounded random variables, the essential minimum
and maximum provide further examples of such statistics; as we explain later, they are the
limit of Ka(X) as a approaches ±∞.

Our main result is that these examples, and their weighted averages, are the only
monotone additive statistics. That is, we show that every monotone additive statistic Φ is
of the form

Φ(X) =
∫
Ka(X) dµ(a)

for some probability measure µ. This result provides a simple representation of a natural
family of statistics, which one may a priori have expected to be much richer.

Our first application is to time lotteries. The starting point for our analysis is the work
by Fishburn and Rubinstein (1982), who study preferences over dated rewards: a monetary
amount, together with the time at which it will be received. They show that exponential
discounting of time arises from a set of axioms, of which the most substantial axiom is
stationarity: preferences remain invariant when the dated rewards under consideration are
shifted by the same amount of time.

We extend the setting of Fishburn and Rubinstein (1982) to that of time lotteries:
a monetary amount, together with a random time at which it will be received. In this
setting, we also introduce a stationarity axiom that requires preferences to be invariant
with respect to random shifts in time. As we argue in the main text, this stationarity
axiom captures a basic requirement of dynamic consistency.

We show that stationarity, together with a monotonicity and a continuity axiom, imply
that the preference admits the representation

u(x) · e−r
∫
Ka(T ) dµ(a),

for each time lottery that delivers a monetary reward x at a random time T . Over
deterministic dated rewards, the representation coincides with the one of Fishburn and
Rubinstein (1982). General time lotteries are reduced to deterministic ones by a monotone
additive statistic that maps the random time T to the value

∫
Ka(T ) dµ(a). For each

parameter a, the term Ka(T ) is the certainty equivalent of T under an expected discounted
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preference with discount factor a. The different certainty equivalents are thus averaged
according to the measure µ.

Our representation of these monotone and stationary time preferences has implications
for the understanding of risk attitudes toward time. Risk preferences over time lotteries
have been studied both theoretically and experimentally (Chesson and Viscusi, 2003; Onay
and Öncüler, 2007; Ebert, 2020; DeJarnette et al., 2020). A basic paradox these papers
highlight is that most subjects display risk aversion over the time dimension, even though
the standard theory of expected utility with exponential discounting predicts that people are
risk-seeking with respect to time lotteries. Our analysis shows that expected exponentially
discounted utility is only one of many ways to extend exponential discounting (from dated
rewards to time lotteries) while maintaining stationarity. In fact, we characterize a class of
stationary preferences over time lotteries that exhibit risk aversion over time.

Our second application is to the domain of monetary gambles. In this domain, it is
well known that expected utility agents whose preferences are invariant to background risk
must have CARA preferences. Our main characterization theorem implies that beyond
expected utility, such agents have certainty equivalents that are weighted averages of CARA
certainty equivalents. We similarly extend a result of Rabin and Weizsäcker (2009) from the
expected utility domain to general monotone preferences. They show that among expected
utility maximizers, only CARA agents do not violate stochastic dominance for combined
risks. We show that a monotone preference has this property only if it is represented
by a monotone additive statistic, i.e., it is represented by an average of CARA certainty
equivalents.

1.1 Related literature

Bickel and Lehmann (1975a,b) study location statistics using a similar axiomatic, non-
parametric approach, and also consider the monotonicity property that we impose, but
not additivity. In contrast, the mathematics literature has studied additive statistics, as
homomorphisms from the convolution semigroup to the reals (see Ruzsa and Székely, 1988;
Mattner, 1999, 2004), without imposing monotonicity.

In the finance and actuarial sciences literature, the CARA certainty equivalent−K−a(X)
shows up and is often called the entropic risk measure of X with parameter a (see Föllmer
and Schied, 2011). Goovaerts, Kaas, Laeven, and Tang (2004) prove a result that is
similar to our Theorem 1, under the stronger assumption that Ka(X) ≥ Ka(Y ) for all
a ∈ R̄ implies Φ(X) ≥ Φ(Y ). Our monotonicity property only demands this to hold when
X ≥1 Y .2

In an earlier paper, Pomatto, Strack, and Tamuz (2020) show that on the larger domain
of random variables that have all moments, the only monotone additive statistic is the

2Note that X ≥1 Y implies but is not implied by Ka(X) ≥ Ka(Y ) for all a.
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expectation. This result can be reconciled with Theorem 1 by noting that for any a 6= 0, the
monotone additive statistic Ka(X) that we identify takes infinite value for some unbounded
random variables that have all moments. Fritz, Mu, and Tamuz (2020) show that the
expectation remains the unique monotone additive statistic on the even larger domain of
Lp random variables, for any p ≥ 1. They additionally show that there are no monotone
additive statistics on Lp with p < 1, or on the domain of all random variables, where the
expectation may not exist.

A strengthening of our additivity condition is the requirement of additivity for all pairs
of random variables, rather than just the independent ones. This stronger assumption turns
out to be restrictive: The only statistic that satisfies additivity for all random variables is
the expectation (see de Finetti, 1970).

As is well known, directly averaging exponential discounting utilities leads to present bias
(see Jackson and Yariv, 2020). This phenomenon gives rise to impossibility results regarding
the aggregation of stationary individual preferences into a stationary social preference. Our
contribution to this literature is to observe that beyond the expected utility framework,
aggregating the certainty equivalents of exponentially discounted preferences can maintain
stationarity.

Monotone additive statistics also relate to what we called additive divergences in a
previous paper (Mu, Pomatto, Strack, and Tamuz, 2021). The domain of an additive
divergence consists of Blackwell experiments. It satisfies monotonicity with respect to the
Blackwell order and additivity for product experiments. Our characterization of additive
divergences in that paper is reminiscent of the one we provide here for monotone additive
statistics, with Rényi divergences playing the role of the certainty equivalents Ka in the
current work.

The remainder of the paper is organized as follows. In §2 we introduce monotone
additive statistics, state our main result and provide an outline of its proof. In §3 we
apply this result to time lotteries, and in §4 we apply it to monetary gambles. The
appendix contains omitted proofs, as well as a study of monotone sub-additive statistics,
i.e., statistics which satisfy Φ(X + Y ) ≤ Φ(X) + Φ(Y ) for independent X and Y .

2 Monotone Additive Statistics

2.1 Definition and characterization

Let (Ω,F ,P) be a nonatomic probability space. We denote by L∞ the collection of bounded
real random variables on this space. By a standard abuse of notation we will identify the
constant c ∈ R with the constant random variable X(ω) = c. Given X ∈ L∞, max[X] and
min[X] denote its the essential maximum and minimum.

We say that a map Φ: L∞ → R is a statistic if (i) whenever X,Y ∈ L∞ have the same
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distribution, Φ(X) = Φ(Y ), and (ii) Φ(c) = c for every c ∈ R; that is, Φ assigns c to the
constant random variable c. Condition (ii) may appear restrictive, but it amounts to a
simple normalization when combined with the monotonicity and additivity assumptions we
make below.3 We are interested in statistics that satisfy two properties: monotonicity with
respect to first-order stochastic dominance, and additivity for sums of independent random
variables.4 A statistic Φ: L∞ → R is additive if Φ(X + Y ) = Φ(X) + Φ(Y ) whenever X
and Y are independent random variables. It is monotone if X ≥ Y almost surely implies
Φ(X) ≥ Φ(Y ). It is monotone with respect to first-order stochastic dominance if X ≥1 Y

implies Φ(X) ≥ Φ(Y ), where X ≥1 Y denotes first-order stochastic dominance.
Since we assume the statistic depends only on the distribution, monotonicity with

respect to first-order stochastic dominance is equivalent to monotonicity. This equivalence
is based on the well-known characterization that X ≥1 Y if and only if there are random
variables X̃, Ỹ such that X and X̃ are identically distributed, Y and Ỹ are identically
distributed, and X̃ ≥ Ỹ almost surely. Henceforth when we say Φ is monotone, we mean
that it is monotone with respect to first-order stochastic dominance.

Let R̄ = R∪{−∞,∞} denote the two point compactification of R. Given X ∈ L∞ and
a ∈ R̄ \ {0,±∞}, let

Ka(X) = 1
a

logE
[
eaX

]
. (2)

This is the (normalized) cumulant generating function of X, evaluated at a. We additionally
define K0(X),K∞(X),K−∞(X) to be the expectation, essential maximum and essential
minimum of X, respectively; this makes a 7→ Ka(X) a continuous function from R̄ to R.

It is easy to check that each Ka is a monotone additive statistic. Our main result is that
these statistics—together with their weighted averages—constitute all of the monotone
additive statistics.

Theorem 1. Φ: L∞ → R is a monotone additive statistic if and only if there exists a
Borel probability measure µ on R̄, such that for every X ∈ L∞

Φ(X) =
∫
R̄
Ka(X) dµ(a). (3)

Moreover, the measure µ is unique.

Theorem 1 holds for other domains of random variables. Denote by L∞+ the bounded
non-negative random variables, by L∞N the bounded non-negative integer-valued random

3Under monotonicity and additivity, any Φ that satisfies (i) and is not identically zero must have
Φ(1) 6= 0, and furthermore Φ(X)/Φ(1) is a monotone additive statistic that satisfies (ii).

4An alternative, equivalent definition is to let the domain of Φ be the set of distributions of the random
variables in L∞. In this domain, additivity would be defined with respect to convolution. We choose to
have the domain consist of random variables, as this approach offers some notational advantages.
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variables, and by LM the random variables X for which Ka(X) is finite for all a ∈ R. The
collection LM contains, in addition to all the bounded random variables, those unbounded
ones whose distribution has “sub-exponential” tails, such as the normal distribution.

Theorem 2. Let L be either L∞+ , L∞N or LM . Then Φ: L → R is a monotone additive
statistic if and only if it admits a (unique) representation of the form (3). In the case of
LM , the measure µ has to be compactly supported on R.

To prove Theorem 2 for the cases of L = L∞+ and L = L∞N , we show that any monotone
additive statistic defined on these smaller domains can be extended to one on L∞, and
then invoke Theorem 1. The case of the larger domain LM turns out to be more difficult,
and the proof requires some additional ideas that are explained in the appendix.

2.2 Proof sketch of Theorem 1

Our approach to the proof of Theorem 1 is via the catalytic stochastic order. Given
X,Y ∈ L∞, we say that X dominates Y in the catalytic stochastic order on L∞ if there
exists a Z ∈ L∞, independent of X and Y , such that X + Z ≥1 Y + Z (i.e., X + Z

stochastically dominates Y + Z).
The applicability of this order to our problem is immediate: if Φ is monotone and

additive, then whenever X dominates Y in the catalytic stochastic order it holds that
Φ(X) ≥ Φ(Y ). To see this, note that domination in the catalytic order implies that

Φ(X + Z) ≥ Φ(Y + Z)

for some Z ∈ L∞, since Φ is monotone. Additivity of Φ implies that Φ(X + Z) =
Φ(X) + Φ(Z) and Φ(Y + Z) = Φ(Y ) + Φ(Z), and so we have that Φ(X) ≥ Φ(Y ).

Clearly, if X ≥1 Y then X also dominates Y in the catalytic order, as one can take
Z = 0 (or in fact any Z). A priori, one may conjecture that this is also a necessary
condition. As we show, this is far from true.

Figure 1 gives a simple example of X,Y ∈ L∞ that are not ranked with respect to
first-order stochastic dominance, but are ranked with respect to the catalytic order.5 X is
Bernoulli, and equals 1 with probability 1/3. Y has the uniform distribution on [−3

5 ,
2
5 ].

As the figure shows, their c.d.f.s are not ranked, and hence they are not ranked in terms of
first-order stochastic dominance.6

However, if we let Z assign probability half to ±1
5 , then X + Z >1 Y + Z. Intuitively,

since the c.d.f. of X + Z is the average of the two translations (by ±1
5) of the c.d.f. of X,

5We are indebted to the late Kim Border for helping us construct this example.
6Pomatto et al. (2020) give examples of random variables X and Y that are not ranked in stochastic

dominance, but are ranked after adding an unbounded independent Z. In fact, they show that this is
possible whenever E [X] > E [Y ]. As we explain below, this result no longer holds when Z is required to be
bounded.
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Figure 1: The c.d.f.s of X (blue) and Y (orange).
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Figure 2: The c.d.f.s of X + Z (blue) and Y + Z (orange).

and since the same holds for the c.d.f. of Y , the result of adding Z is the disappearance of
the small “kink” in which the ranking of the c.d.f.s is reversed. This is depicted in Figure 2.

Every monotone additive statistic provides an obstruction to dominance in the catalytic
order. That is, if Φ(X) < Φ(Y ) for some monotone additive statistic Φ, then it is
impossible that X + Z ≥1 Y + Z for some independent Z, since monotonicity would
imply that Φ(X + Z) ≥ Φ(Y + Z), and additivity would then imply that Φ(X) ≥ Φ(Y ).
This observation applies in particular to the monotone additive statistics Ka, so that
Ka(X) ≥ Ka(Y ) for all a ∈ R̄ is necessary for there to exist some Z that makes X
stochastically dominate Y .7

7In fact, except for the trivial case where X and Y have the same distribution, it is necessary to have
the strict inequality Ka(X) > Ka(Y ) for all a ∈ R̄\{±∞}. This is because X + Z ≥1 Y + Z implies the
strict inequality Ka(X + Z) > Ka(Y + Z) whenever X + Z and Y + Z have different distributions. Thus,
a corollary of Theorem 3 below is that for distributions with different minima and maxima, the condition
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The following result shows that the statistics Ka are, in a sense, the only obstructions.8

This constitutes the most important component of the proof of Theorem 1.

Theorem 3. Let X,Y ∈ L∞ satisfy Ka(X) > Ka(Y ) for all a ∈ R̄. Then there exists an
independent Z ∈ L∞ such that X + Z ≥1 Y + Z.

To prove Theorem 3 we explicitly construct Z as a truncated Gaussian with appropri-
ately chosen parameters. The idea behind the proof is the following. Denote by F and G
the c.d.f.s of X and Y , respectively, and suppose that they are supported on [−N,N ]. Let
h(x) = 1√

2πV e−
x2
2V be the density of a Gaussian Z. Then the c.d.f.s of X + Z and Y + Z

are given by the convolutions F ∗ h and G ∗ h, and their difference is equal to

[G ∗ h− F ∗ h](y) =
∫ N

−N
[G(x)− F (x)] · h(y − x) dx

= 1√
2πV

e−
y2
2V ·

∫ N

−N
[G(x)− F (x)] · e

y
V
·x︸ ︷︷ ︸

(∗)

· e−
x2
2V︸ ︷︷ ︸

(∗∗)

dx

If we denote a = y
V , then by integration by parts, the integral of just (∗) is equal to

1
a

(
E
[
eaX

]
− E

[
eaY

])
, which is positive by the assumption that Ka(X) > Ka(Y ) and

is in fact bounded away from zero. The term (∗∗) can be made arbitrarily close to
1—uniformly on the intergral domain [−N,N ]—by making V large. This implies that
[G ∗ h− F ∗ h](y) ≥ 0 for all y, and we further show that the inequality still holds if we
modify Z by truncating its tails, ensuring that it is in L∞.

Theorem 3 allows us to prove the following key lemma:

Lemma 1. Let Φ: L∞ → R be a monotone additive statistic. If Ka(X) ≥ Ka(Y ) for all
a ∈ R̄ then Φ(X) ≥ Φ(Y ).

Proof. Suppose Ka(X) ≥ Ka(Y ) for all a ∈ R̄. For any ε > 0, consider X̂ = X + ε. Then
Ka(X̂) = Ka(X)+ε > Ka(Y ) for all a, and by Theorem 3 there is an independent Z ∈ L∞

such that X̂ + Z ≥1 Y + Z. Hence, by monotonicity of Φ, Φ(X̂ + Z) ≥ Φ(Y + Z), and
by additivity Φ(X̂) ≥ Φ(Y ). This means that Φ(X) + ε ≥ Φ(Y ) for all ε > 0, and hence
Φ(X) ≥ Φ(Y ).

Once we have established Lemma 1, the remainder of the proof of Theorem 1 uses
functional analysis techniques (in particular the Riesz Representation Theorem) to deduce
the integral representation for monotone additive statistics.

Ka(X) > Ka(Y ) for all a ∈ R̄ is necessary and sufficient for dominance in the catalytic order on L∞.
8A similar result to Theorem 3 holds if we demand a weaker conclusion that X + Z second-order

stochastically dominates Y + Z. See Proposition 5 in the appendix.
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3 Monotone Stationary Time Preferences

3.1 Domain and axioms

We model a time lottery by a pair (x, T ), which consists of a non-negative payoff x ∈ R+

and a bounded non-negative random time T ∈ L∞+ at which this payoff realizes. Thus
time is non-negative and continuous in this section. Our primitive is a weak order � on
the domain R+ × L∞+ . We denote by ∼ the indifference relation induced by �. To avoid
notational confusion, in the rest of this section x and y always denote monetary payoffs, t,
s and d always denote deterministic times, and capitalized letters T, S,D,R ∈ L∞+ always
denote random times.

We impose the following four axioms on �:

Axiom 3.1 (More is Better). If x > y ≥ 0 then (x, T ) � (y, T ) for all T ∈ L∞+ .

Axiom 3.2 (Earlier is Better). If S ≥1 T in first-order stochastic dominance, then
(x, T ) � (x, S) for all x ≥ 0. Indifference obtains if x = 0, and strict preference obtains if
x > 0 and S > T are deterministic times.

Axiom 3.3 (Stationarity). If (x, T ) � (y, S) then (x, T +D) � (y, S+D) for any D ∈ L∞+
that is independent from T and S.

Axiom 3.4 (Continuity). For any (y, S), the sets {(x, t) : (x, t) � (y, S)} and {(x, t) :
(x, t) � (y, S)} are closed in the product topology on R+ × R+.

3.2 Discussion of the axioms

The first two axioms and the continuity axiom are standard conditions that directly
generalize the axioms in Fishburn and Rubinstein (1982). Axioms 3.1 and 3.2 require
the decision maker to prefer higher payoffs, and to prefer (stochastically) earlier times.
The continuity assumption is similarly standard. Note that it does not require a choice of
topology for L∞+ , the set of random times.

The most substantive condition is stationarity. In the absence of risk, it was shown by
Halevy (2015) that stationarity can be understood as the implication of two more basic
principles: that preferences are not affected by calendar time, and that the decision maker
is dynamically consistent. We now argue that Axiom 3.3 extends the same logic to time
lotteries.

First, suppose that the time D, which is a delay added to both S and T , is deterministic.
Reasoning as in Halevy (2015), we can consider an enlarged framework where the decision
maker is endowed with a profile (�t) of preferences over time lotteries, with �t representing
the preference the decision maker expresses at time t.

If preferences are not affected by calendar time, then the ranking (x, T ) �0 (y, S) at
time zero must imply the same ranking (x, T + d) �d (y, S + d) at time d. Moreover,
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dynamic consistency requires that a choice between (x, T+d) and (x, T+d), when evaluated
at time zero, must be the same choice the decision maker would in fact make at time d.
Hence, (x, T ) �0 (y, S) implies (x, T + d) �0 (y, S + d), as required by Axiom 3.3.

Suppose now that the delay D is random and independent of S and T . By the above
reasoning, dynamic consistency and time invariance imply the ranking (x, T+d) �0 (y, S+d)
for each deterministic time d. We can then imagine that prior to making a choice between
(x, T +D) and (y, S +D), the decision maker is informed of the actual realization d of D.
Regardless of what the value d is, this information should not change the decision maker’s
preference of (x, T + d) over (y, S + d), since D is independent of T and S. So, dynamic
consistency with respect to this piece of information requires the decision maker to prefer
(x, T +D) to (y, S +D). While this latter form of dynamic consistency is suggestive of
expected utility, we will in fact derive non-expected utility representations that also satisfy
this consistency condition.

3.3 Representation

We say that a preferences � on R+ × L∞+ is a monotone stationary preference if it satisfies
Axioms 3.1, 3.2, 3.3 and 3.4. We say that � is represented by f : R+ × L∞+ → R if

(x, T ) � (y, S) if and only if f(x, T ) ≥ f(y, S).

Our main result in this section is stated as follows:

Theorem 4. A preference � on R+×L∞+ is a monotone stationary preference if and only
if there exists a monotone additive statistic Φ, an r > 0, and a continuous and strictly
increasing utility function u : R+ → R+ with u(0) = 0, such that � is represented by

f(x, T ) = u(x) · e−rΦ(T ). (4)

The coefficient r represents the discount factor the decision maker applies when
evaluating riskless date rewards. As in Fishburn and Rubinstein (1982), it can be chosen
arbitrarily by a suitable normalization of u.

By Theorem 2, we can conclude that every monotone stationary preference has a
representation of the form

f(x, T ) = u(x) · e−r
∫
Ka(T ) dµ(a). (5)

The result can be interpreted as saying that the decision maker evaluates the pair (x, T ) in
a multiplicatively separable way, by discounting the utility from x by an appropriate factor
that depends only on T . The discount factor can be expressed in terms of the certainty
equivalent of T , which we denote by Φ(T ). Furthermore, Φ is a monotone additive statistic,
and so its form is pinned down by Theorem 2. This form (5) implies that the random time
T is evaluated as the average of certainty equivalents of different exponential discounters.
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Regardless of the particular statistic Φ that enters the representation, the preference �
when restricted to deterministic dated rewards is represented by exponentially discounted
utility. However, Theorem 4 demonstrates there are many ways to extend exponentially
discounted utility to the larger domain of time lotteries, while maintaining stationarity.
We recover expected exponentially discounted utility if Φ(T ) = 1

−r logE
[
e−rT

]
, since in

that case
f(x, T ) = u(x) · E

[
e−rT

]
.

As is well known, such preferences are risk-seeking over time.
But any monotone additive statistic Φ gives rise to a stationary time preference via

the utility representation in Theorem 4, and such a preference need not be either EU
or risk-seeking. As an example, if Φ(T ) = Kr(T ) = 1

r logE
[
erT
]
then we get a new

representation
f(x, T ) = u(x)

E [erT ] ,

which is in fact risk-averse over time. In a later subsection we characterize the precise
conditions on the measure µ such that the resulting time preference is risk-seeking, or
risk-averse.

The idea behind the proof of Theorem 4 is as follows. For fixed x, the continuity axiom
ensures that there is a certainty equivalent function Φx such that (x, T ) ∼ (x,Φx(T ))
for all T ∈ L∞+ . The monotonicity of Φx is a simple consequence of the first axiom.
To see that Φx is additive, we apply stationarity twice. First, stationarity implies that
(x,Φx(T ) + Φx(S)) ∼ (x, T + Φx(S)), with the constant Φx(S) playing the role of D.
Likewise, stationarity also implies that (x,Φx(S) + T ) ∼ (x, S + T ), where now T plays
the role of D. Put together, these imply that (x,Φx(T ) + Φx(S)) ∼ (x,Φx(T + S)), and
so Φx(T + S) = Φx(T ) + Φx(S). A third application of the stationarity axiom yields
that Φx = Φy for every x, y > 0, which allows us to write Φ instead of Φx. Finally,
the representation u(x)e−rΦ(T ) follows by applying the original result of Fishburn and
Rubinstein (1982).

This proof, and the representation in Theorem 4, can be extended to a discrete-time
setting. However, one difficulty that arises is that a discrete time lottery need not have a
certainty equivalent that is an integer time. Because of this, we need additional work to
reduce each time lottery to a deterministic dated reward in order to apply the result of
Fishburn and Rubinstein (1982). See Appendix D.2 for details.

3.4 Further axioms

As we mentioned in previous discussion, our representation f(x, T ) = u(x) · e−rΦ(T ) is
in general non-expected utility. In this subsection we study the extent to which this
representation violates the behavioral assumptions of EU. We begin by investigating the
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betweenness axiom of Dekel (1986), which relaxes expected utility theory by requiring that
indifference curves are straight lines (but need not be parallel).

We use the notationXλY to denote a random variable that is equal toX with probability
λ ∈ [0, 1] and equal to Y with probability 1− λ. Equivalently, if the distribution of X is µ
and the distribution of Y is ν, then the distribution of XλY is λµ+ (1− λ)ν.9

Axiom 3.5 (Betweenness). (x, T ) ∼ (x, S) implies (x, TλS) ∼ (x, S) for all λ ∈ (0, 1).

The next result characterizes monotone stationary preferences that have this property.

Proposition 1. A monotone stationary preference with representation f(x, T ) = u(x)e−rΦ(T )

satisfies Axiom 3.5 if and only if

1. Φ(T ) = Ka(T ) for some a ∈ R̄, or

2. Φ(T ) = βmin[T ] + (1− β) max[T ] for some β ∈ (0, 1), or

3. Φ(T ) = −a1
a2−a1

Ka1(T ) + a2
a2−a1

Ka2(T ) for some a1 ∈ (−∞, 0) and a2 ∈ (0,∞).

In fact, our proof shows that Proposition 1 holds under a weaker form of betweenness:
(x, T ) ∼ (x, t) implies (x, Tλt) ∼ (x, t). That is, it suffices to require betweenness when
mixing with constants.

Next, we study the classic independence axiom underlying expected utility theory.

Axiom 3.6 (Independence). (x, T ) ∼ (x, S) implies (x, TλR) ∼ (x, SλR).

The space of time lotteries is not a mixture space, so we only impose independence for
random times associated with the same monetary reward. We do not impose continuity
beyond Axiom 3.4.

The following result characterizes monotone stationary preferences that additionally
satisfy independence:

Proposition 2. A monotone stationary preference with representation f(x, T ) = u(x)e−rΦ(T )

satisfies Axiom 3.6 if and only if Φ(T ) = Ka(T ) for some a ∈ R̄.

This proposition implies that such a preference has one of the following representations:

u(x) · e−rmin[T ], u(x) · E
[
e−rT

]
, u(x) · e−rE[T ],

u(x)
E [erT ] , u(x) · e−rmax[T ]

The first and last representations correspond to the most extreme forms of risk-seeking
and risk-averse time preferences, respectively. Because these extreme preferences do not
satisfy “mixture continuity”, it is not possible to deduce Proposition 2 directly from the
von Neumann Morgenstern theorem. Our proof instead invokes Proposition 1, and uses
the independence axiom to further pin down the form of Φ.

9Of course, there are many such random variables, but for our purposes this will not be important.
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3.5 Risk attitudes toward time

We have shown that monotone stationary preferences over time lotteries admit a represen-
tation of the form

u(x) · e−r
∫
Ka(T ) dµ(a)

for some probability measure µ on R̄. In this section we study which measures µ give rise
to risk-averse or risk-seeking behavior toward time. For example, we have seen that when
µ is a point mass on a, the preference will be risk-averse or risk-seeking depending on
whether a is positive or negative.

Formally, we say that a preference � over time lotteries exhibits risk aversion if
(x,E [T ]) � (x, T ) for every x ∈ R+ and T ∈ L∞+ . If the reverse preference always holds,
then � is risk-seeking. The following result generalizes our previous observations regarding
point mass measures µ:10

Proposition 3. A monotone stationary preference with representation f(x, T ) = u(x)e−rΦ(T )

is risk-averse (respectively risk-loving) over time if and only if

Φ(T ) =
∫
R̄
Ka(T ) dµ(a)

for a Borel probability measure µ supported on [0,∞] (respectively [−∞, 0]).

Thus, risk aversion over time occurs if and only if the decision maker aggregates the
certainty equivalents of exponentially discounting EU agents with discount factors greater
than or equal to 1. Likewise, risk seeking occurs if and only if the relevant discount factors
in the aggregation are all less than or equal to 1.

More generally, we can compare the risk attitudes of two different monotone stationary
preferences. Consider two preferences represented by u(x)e−rΦµ(T ) and u(x)e−rΦν(T ), where
Φµ and Φν are two different monotone additive statistics with corresponding measures
µ and ν. We say that the preference represented by Φµ is more risk-averse than the
preference represented by Φν if Φµ(T ) ≥ Φν(T ) for every T ∈ L∞+ . In words, we require the
former preference to assign a worse certainty equivalent (i.e., later time) to every random
time T .

10As a corollary of the analysis in Proposition 3, we know that a statistic Φ is additive and monotone with
respect to second-order (or any higher-order) stochastic dominance if and only if Φ(X) =

∫
R̄Ka(X) dµ(a) for

a probability measure µ supported on [−∞, 0]. To see why, note that Proposition 3 shows that Φ(X) ≤ E [X]
for all X (which is risk-seeking in time) only if the measure µ associated with Φ is supported on [−∞, 0].
Since Φ(X) ≤ Φ(E [X]) = E [X] is a necessary condition for monotonicity with respect to second-order
stochastic dominance, µ being supported on [−∞, 0] is also necessary. Conversely, note that for any a ≤ 0,
the function −eaX is increasing and has alternating derivatives of all orders. So whenever X dominates
Y in second-order (or any higher-order) stochastic dominance, it holds that E

[
−eaX

]
≥ E

[
−eaY

]
. From

this we obtain Ka(X) = 1
a
E
[
eaX
]
≥ Ka(Y ) for any a ≤ 0, and thus Φ(X) =

∫
Ka(X) dµ(a) is larger than

Φ(Y ) whenever µ is supported on [−∞, 0].

13



Under what conditions on µ and ν is the first preference more risk-averse than the
second? That is, when is it the case that Φµ(T ) ≥ Φν(T ) for all T? Since Ka(T ) increases
in a, first-order stochastic dominance µ ≥1 ν is clearly sufficient, but—as we show—it is
not necessary.11 We provide an exact characterization in the following result.

Proposition 4. For any two probability measures µ and ν on R̄, the inequality∫
R̄
Ka(T ) dµ(a) ≥

∫
R̄
Ka(T ) dν(a)

holds for every T ∈ L∞+ if and only if the following two conditions hold:

(i) For every b > 0,
∫

[b,∞]
a−b
a dµ(a) ≥

∫
[b,∞]

a−b
a dν(a).

(ii) For every b < 0,
∫

[−∞,b]
a−b
a dµ(a) ≤

∫
[−∞,b]

a−b
a dν(a).

This result can be seen as a generalization of the previous Proposition 3, since a
preference exhibits risk aversion (respectively risk seeking) if and only if it is more (respec-
tively less) risk-averse than the risk neutral preference represented by u(x)e−rE[T ]. In the
appendix, we explain how to deduce Proposition 3 from Proposition 4.

4 Preferences over Gambles

In this section we consider bounded monetary gambles, and study preferences over these
gambles, which we denote by L∞. As above, we assume that agents’ preferences for gambles
depend only on their distribution.

4.1 CARA beyond expected utility

Consider an expected utility agent who evaluates a gamble X according to a certainty
equivalent Ψ(X) = u−1E [u(X)] for some increasing utility function u. As is well known,
the assumption that the agent’s preferences are not affected by independent background
risk implies that the agent has CARA preferences. Formally, if

Ψ(X) ≤ Ψ(Y ) implies Ψ(X + Z) ≤ Ψ(Y + Z) for all independent Z (6)

then Ψ(X) = Ka(X) for some a ∈ R.
A natural question is: how does this result extend beyond expected utility theory?

That is, which preferences on L∞ are monotone with respect to first-order stochastic
dominance, and have a certainty equivalent Φ that satisfies (6)? The answer is that such
a certainty equivalent Φ must be a monotone additive statistic. To see this, note that

11An example is µ = 1
4δ1 + 3

4δ3, whereas ν = δ2. Condition (ii) in Proposition 4 is trivially satisfied,
whereas condition (i) reduces to 1

4 (1 − b)+ + 1
4 (3 − b)+ ≥ 1

2 (2 − b)+, which holds because the function
(a− b)+ = max{a− b, 0} is convex in a.
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Φ(X) = Φ(Φ(X)) since the certainty equivalent to the constant Φ(X) is itself. Thus by
(6), we have

Φ(X + Y ) = Φ(Φ(X) + Y ),

with Y playing the role of Z there. Likewise, since Φ(Y ) = Φ(Φ(Y )), (6) gives

Φ(Y + Φ(X)) = Φ(Φ(Y ) + Φ(X))

where now the constant Φ(X) takes the role of Z. Combining the above two equalities
yields

Φ(X + Y ) = Φ(Φ(Y ) + Φ(X)) = Φ(X) + Φ(Y ),

so Φ is additive.
Given this, Theorem 1 implies that any monotone preference that is represented by a

certainty equivalent and is invariant to background risk must have a representation of the
form

Φ(X) =
∫
R̄
Ka(X) dµ(a)

for some measure µ on R̄. That is, the certainty equivalent Φ is a weighted average of the
certainty equivalents of CARA agents.

4.2 Narrow framing and stochastically dominated choices

Rabin and Weizsäcker (2009) show that for any non-CARA expected utility decision maker,
one can construct two pairs of bounded gambles X1, Y1 and X2, Y2, such that X1 is chosen
over Y1, X2 is chosen over Y2, but the independent sum X1 +X2 is first-order stochastically
dominated by Y1 + Y2.12 This result suggests that for “most” EU agents, choosing between
risky aspects in isolation can lead to stochastically dominated combined choices. In this
section we study the extent to which their insight generalizes to non-EU preferences.

Accordingly, our primitive here is a weak order � on L∞, the space of bounded gambles.
As is standard, we write � for the strict part of �, and ∼ for the induced indifference
relation. We consider the following axioms on �:

Axiom 4.1 (Rabin and Weizsäcker). Suppose X1, X2 are independent and Y1, Y2 are
independent. If X1 � Y1 and X2 � Y2, then X1 +X2 6<1 Y1 + Y2.

Axiom 4.2 (Responsiveness). X + ε � X for any X and any ε > 0.
12In Rabin and Weizsäcker (2009) the constructed gambles have binary support. Since we seek to analyze

all non-EU preferences, we will allow for bounded gambles.
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Axiom 4.3 (Archimedeanity). If c + ε � X � c − ε for some constant c and all ε > 0,
then X ∼ c.

Theorem 5. A preference � on L∞ satisfies Axioms 4.1, 4.2 and 4.3 if and only if it can
be represented by a monotone additive statistic Φ (i.e., X � Y if and only if Φ(X) ≥ Φ(Y )).

We make a technical remark that for this result to hold, the responsiveness axiom
cannot be dropped in general. An example is where X � Y if and only if max{E [X], 0} ≥
max{E [Y ], 0}. This preference satisfies the Rabin and Weizsäcker axiom because X1 � Y1

and X2 � Y2 imply E [X1] > E [Y1] and E [X2] > E [Y2]. So E [X1 +X2] > E [Y1 + Y2] and
X1 +X2 cannot be stochastically dominated by Y1 + Y2. Archimedeanity is also satisfied,
but responsiveness fails.

Archimedeanity (which plays the role of continuity) cannot be dropped either, since
it helps ruling out lexicographic preferences. An example is where X � Y if and only if
max[X] > max[Y ], or max[X] = max[Y ] and min[X] ≥ min[Y ]. This preference satisfies
the Rabin and Weizsäcker axiom as well as responsiveness, but archimedeanity fails.
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Appendix
In the proofs we often use the notation

KX(a) = Ka(X),

so that KX is a map R̄→ R. The following lemma is standard.

Lemma 2. Let X,Y ∈ L∞.

1. KX : R̄→ R is well defined, non-decreasing and continuous.

2. If KX = KY then X and Y have the same distribution.

Proof. See Curtiss (1942).

A Proof of Theorem 3

First, we can add the same constant b to both X and Y so that min[Y + b] = −N and
max[X + b] = N for some N > 0. Since translating both X and Y leaves the existence of
an appropriate Z unchanged (and also does not affect KX > KY ), we henceforth assume
without loss of generality that min[Y ] = −N , and max[X] = N . Since KX > KY , we
know that min[X] > −N and max[Y ] < N .

Denote the c.d.f.s of X and Y by F and G, respectively. Let σ(x) = G(x) − F (x).
Note that σ is supported on [−N,N ] and bounded in absolute value by 1. Moreover, by
choosing ε > 0 sufficiently small, we have that min[X] > −N + ε and max[Y ] < N − ε. So
σ(x) is positive on [−N,−N + ε] and on [N − ε,N ]. In fact, there exists δ > 0 such that
σ(x) ≥ δ whenever x ∈ [−N + ε

4 ,−N + ε
2 ] and x ∈ [N − ε

2 , N −
ε
4 ]. We also fix a large

constant A such that

e
εA
4 ≥ 8N

εδ
.

Define
Mσ(a) =

∫ N

−N
σ(x)eax dx.

Note that for a 6= 0,

Mσ(a) = 1
a

(
E
[
eaX

]
− E

[
eaY

])
,

which follows from integration by parts, and that

Mσ(0) = E [X]− E [Y ].

Therefore, since KX > KY , we have that Mσ is strictly positive everywhere. Since Mσ(a)
is clearly continuous in a, it is in fact bounded away from zero on any compact interval.
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We will use these properties of σ to construct a truncated Gaussian density h such that

[σ ∗ h](y) =
∫ N

−N
σ(x)h(y − x) dx ≥ 0

for each y ∈ R. If we let Z be a random variable independent from X and Y , whose
distribution has density function h, then σ ∗ h = (G− F ) ∗ h is the difference between the
c.d.f.s of Y + Z and X + Z. Thus [σ ∗ h](y) ≥ 0 for all y would imply X + Z ≥1 Y + Z.

To do this, we write h(x) = e−
x2
2V for all |x| ≤ T , where V is the variance and T is the

truncation point to be chosen.13 We will show that [σ ∗h](y) ≥ 0 holds for each y whenever
V is sufficiently large and T ≥ AV +N for the constants N and A defined above.

First consider the case where y ∈ [−AV,AV ]. In this region, |y−x| ≤ T is automatically
satisfied when x ∈ [−N,N ]. So we can compute the convolution σ ∗ h as follows:∫

σ(x)h(y − x) dx = e−
y2
2V ·

∫ N

−N
σ(x) · e

y
V
·x · e−

x2
2V dx. (7)

Note that y
V in the exponent belongs to the compact interval [−A,A]. So for our fixed

choice of A, the integral Mσ( yV ) =
∫N
−N σ(x) · e

y
V
·x dx is uniformly bounded away from zero

when y varies in the current region. Thus,∫ N

−N
σ(x) · e

y
V
·x · e−

x2
2V dx = Mσ( y

V
)−

∫ N

−N
σ(x) · e

y
V
·x · (1− e−

x2
2V ) dx

≥Mσ( y
V

)− 2N · eAN · (1− e
−N2
2V ),

(8)

which is positive when V is sufficiently large. So the right-hand side of (7) is positive.
Next consider the case where y ∈ (AV, T +N − ε]; the case where −y is in this range

can be treated symmetrically. Here the convolution can be written as

[σ ∗ h](y) =
∫ N

max{−N,y−T}
σ(x) · e

−(y−x)2
2V dx.

We break the range of integration into two sub-intervals: I1 = [max{−N, y − T}, N − ε]
and I2 = [N − ε,N ]. On I1 we have σ(x) = G(x)− F (x) ≥ −1, so∫

x∈I1
σ(x) · e

−(y−x)2
2V dx ≥ −2N · e

−(y−N+ε)2
2V .

On I2 we have σ(x) ≥ 0 by our choice of ε, and furthermore σ(x) ≥ δ when x ∈ [N− ε
2 , N−

ε
4 ].

Thus ∫
x∈I2

σ(x) · e
−(y−x)2

2V dx ≥ ε

4 · δ · e
−(y−N+ ε

2 )2

2V ≥ 2N · e
−(y−N+ ε

2 )2

2V − εA4 ,

13In general we need a normalizing factor to ensure h integrates to one, but this multiplicative constant
does not affect the argument.
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where the second inequality holds by the choice of A. Observe that when y > AV and V
is large, the exponent −(y−N+ ε

2 )2

2V − εA
4 is larger than −(y−N+ε)2

2V . Summing the above two
inequalities then yields the desired result that [σ ∗ h](y) ≥ 0.

Finally, if y ∈ (T +N−ε, T +N ], then the range of integration in computing [σ∗h](y) is
from x = y−T to x = N , where σ(x) is always positive. So the convolution is positive. And
if y > T +N , then clearly the convolution is zero. These arguments symmetrically apply
to −y ∈ (T +N − ε, T +N ] and −y > T +N . We therefore conclude that [σ ∗ h](y) ≥ 0
for all y, completing the proof.

A.1 The catalytic order for second-order stochastic dominance

In this section we point out that the above proof of Theorem 3 also yields an analogous
characterization of the catalytic stochastic order for second-order stochastic dominance.
Formally, we have

Proposition 5. Let X,Y ∈ L∞ satisfy Ka(X) > Ka(Y ) for all a ∈ [−∞, 0]. Then there
exists an independent Z ∈ L∞ such that X + Z ≥2 Y + Z.

Proof. As is well known, X dominates Y in second-order stochastic dominance if and only
if their c.d.f.s satisfy ∫ z

−∞
(G(y)− F (y)) dy ≥ 0

for every z ∈ R. Thus, if we let Z be an independent random variable with density h, then
X + Z ≥2 Y + Z if and only if∫ z

−∞
[σ ∗ h](y) dy ≥ 0 ∀z ∈ R.

Here, as in the proof of Theorem 3, σ denotes the difference G− F and is supported
on [−N,N ]. Since K−∞(X) > K−∞(Y ), we have min[X] > min[Y ]. So we can choose
ε, δ > 0 such that σ(x) ≥ 0 for x ∈ [−N,−N + ε] and σ(x) ≥ δ for x ∈ [−N + ε

4 ,−N + ε
2 ].

We again fix constant A such that e
εA
4 ≥ 8N

εδ .

Now let h(x) = e
−x2
2V for |x| ≤ T , where V is a large variance and T = AV +N . Then,

as in the proof of Theorem 3, we have

[σ ∗ h](y) ≥ 0 ∀y ≤ −AV.

This simply uses the fact that σ is positive near the minimum of its support.
Moreover, by assumption Ka(X) > Ka(Y ) for a ≤ 0. So by continuity there exists

small γ > 0 such that Ka(X) > Ka(Y ) for a ≤ γ. It follows that

Mσ(a) =
∫ N

−N
σ(x)eax dx = 1

a

(
E
[
eaX

]
− E

[
eaY

])
> 0 ∀a ≤ γ.
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By continuity, we can find η > 0 such that

Mσ(a) ≥ η ∀a ∈ [−A, γ].

Thus, when y ∈ [−AV, γV ], we can follow the calculation in (7) and (8) to obtain

[σ ∗ h](y) = e−
y2
2V ·

∫ N

−N
σ(x) · e

y
V
·x · e−

x2
2V dx

≥ e−
y2
2V ·

(
η − 2N · eAN · (1− e

−N2
2V )

)
≥ e−

y2
2V · η2 ,

where the last step holds when V is sufficiently large.
Therefore, [σ∗h](y) ≥ 0 for all y ≤ γV , and clearly

∫ z
−∞[σ∗h](y) dy ≥ 0 also holds for z ≤

γV . Below we consider z > γV . The idea here is that
∫ γV
−∞[σ∗h](y) dy is sufficiently positive

to compensate for the possible negative contribution from
∫ z
γV [σ ∗ h](y) dy. Specifically,

using the above lower bound for [σ ∗ h](y), we have

∫ γV

−∞
[σ ∗ h](y) dy ≥

∫ γV
2

− γV2
[σ ∗ h](y) dy ≥ ηγV

2 · e−
γ2V

8 .

On the other hand, when y > γV we can bound the magnitude of [σ ∗ h](y) as follows:

|[σ ∗ h](y)| ≤
∫ N

−N
|σ(x)h(y − x)|dx ≤

∫ N

−N
e−

(y−x)2
2V dx ≤ 2N · e−

(γV−N)2
2V

Since σ is supported on [−N,N ] and h is supported on [−AV − N,AV + N ], we know
that σ ∗ h is supported on [−AV − 2N,AV + 2N ]. Thus for z > γV ,∫ z

γV
[σ ∗ h](y) dy ≥ −

∫ AV+2N

γV
|[σ ∗ h](y)| dy ≥ −(AV + 2N − γV ) · e−

(γV−N)2
2V .

It is easy to see that for sufficiently large V ,

ηγV

2 · e−
γ2V

8 > (AV + 2N − γV ) · e−
(γV−N)2

2V .

Hence the above estimates imply that
∫ z
−∞[σ ∗ h](y) dy ≥ 0 also holds for z > γV . So

X + Z ≥2 Y + Z as we desire to show.

B Proof of Theorem 1

B.1 Integral representation

Recall that for fixed X, KX(a) = Ka(X) can be seen as a function of a. Let L denote the
set of functions {KX : X ∈ L∞}. If Φ is a monotone additive statistic and KX = KY ,
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then X and Y have the same distribution and Φ(X) = Φ(Y ). Thus there exists some
functional F : L → R such that Φ(X) = F (KX). It follows from the additivity of Φ and
the additivity of Ka that F is additive: F (KX +KY ) = F (KX) + F (KY ). Moreover, F is
monotone in the sense that F (KX) ≥ F (KY ) whenever KX ≥ KY (i.e., KX(a) ≥ KY (a)
for all a ∈ R̄); this follows from Lemma 1 which in turn is proved by Theorem 3 (see the
main text).

Next we show that the monotone additive functional F on L can be extended to a
positive linear functional on the entire space of continuous functions C(R̄). We first equip
L with the sup-norm of C(R̄) and establish a technical claim.

Lemma 3. F : L → R is 1-Lipschitz:

|F (KX)− F (KY )| ≤ ‖KX −KY ‖.

Proof. Let ‖KX −KY ‖ = ε. Then

KX+ε = KX + ε ≥ KY .

Hence, by Lemma 1, F (KY ) ≤ F (KX+ε), and so

F (KY )− F (KX) ≤ F (KX+ε)− F (KX) = F (Kε) = Φ(ε) = ε.

Symmetrically we have F (KX)− F (KY ) ≤ ε, as desired.

Lemma 4. Any monotone additive functional F on L can be extended to a positive linear
functional on C(R̄).

Proof. First consider the rational cone spanned by L:

ConeQ(L) = {qL : q ∈ Q+, L ∈ L}.

Define G : ConeQ(L)→ R as G(qL) = qF (L), which is an extension of F . The functional
G is well defined: If mnK1 = r

nK2 for K1,K2 ∈ L and n,m, r ∈ N, then, using the fact that
L is closed under addition, we obtain mF (K1) = F (mK1) = F (rK2) = rF (K2), hence
m
n F (K1) = r

nF (K2). G is also additive, because

G

(
m

n
K1

)
+G

(
r

n
K2

)
= m

n
F (K1) + r

n
F (K2) = 1

n
F (mK1 + rK2) = G

(
m

n
K1 + r

n
K2

)
.

In the same way we can show G is positively homogeneous over Q+ and monotone.
Moreover, G is Lipschitz: Lemma 3 implies∣∣∣∣G(mn K1

)
−G

(
r

n
K2

)∣∣∣∣ = 1
n
|F (mK1)− F (rK2)| ≤ 1

n
‖mK1 − rK2‖ =

∥∥∥∥mn K1 −
r

n
K2

∥∥∥∥ .
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Thus G can be extended to a Lipschitz functional H defined on the closure of ConeQ(L)
with respect to the sup norm. In particular, H is defined on the convex cone spanned by L:

Cone(L) = {λ1K1 + · · ·+ λkKk : k ∈ N and for each 1 ≤ i ≤ k, λi ∈ R+,Ki ∈ L}.

It is immediate to verify that the properties of additivity, positive homogeneneity (now
over R+), and monotonicity extend, by continuity, from G to H.

Consider the vector subspace V = Cone(L)−Cone(L) ⊂ C(R̄) and define I : V → R as

I(g1 − g2) = H(g1)−H(g2)

for all g1, g2 ∈ Cone(L). The functional I is well defined and linear (because H is additive
and positively homogeneous). Moreover, by monotonicity of H, I(f) ≥ 0 for any non-
negative function f ∈ V.

The result then follows from the next theorem of Kantorovich (1937), a generalization
of the Hahn-Banach Theorem. It applies not only to C(R̄) but to any Riesz space (see
Theorem 8.32 in Aliprantis and Border, 2006).

Theorem. If V is a vector subspace of C(R̄) with the property that for every f ∈ C(R̄)
there exists a function g ∈ V such that g ≥ f . Then every positive linear functional on V
extends to a positive linear functional on C(R̄).

The “majorization” condition g ≥ f is satisfied because every function in C(R̄) is
bounded and V contains all of the constant functions.

The integral representation in Theorem 1 now follows from Lemma 4 by the Riesz-
Markov-Kakutani Representation Theorem.

B.2 Uniqueness of measure

We complete the proof of Theorem 1 by showing that the measure µ in the representation
is unique. The following result shows that uniqueness holds even on the smaller domain
L∞N of non-negative integer-valued random variables.

Lemma 5. Suppose µ and ν are two Borel probability measures on R̄ such that∫
R̄
Ka(X) dµ(a) =

∫
R̄
Ka(X) dν(a).

for all X ∈ L∞N . Then µ = ν.

Proof. We first show µ({∞}) = ν({∞}). For any ε > 0, consider the Bernoulli random
variable Xε that takes value 1 with probability ε. It is easy to see that as ε decreases
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to zero, Ka(Xε) also decreases to zero for each a <∞ whereas K∞(Xε) = max[Xε] = 1.
Since Ka(Xε) is uniformly bounded in [0, 1], the Dominated Convergence Theorem implies

lim
ε→0

∫
R̄
Ka(Xε) dµ(a) = µ({∞}).

A similar identity holds for the measure ν, and µ({∞}) = ν({∞}) follows from the
assumption that

∫
R̄Ka(Xε) dµ(a) =

∫
R̄Ka(Xε) dν(a).

We can symmetrically apply the above argument to the Bernoulli random variable that
takes value 1 with probability 1− ε. Thus µ({−∞}) = ν({−∞}) holds as well.

Next, for each n ∈ N+ and real number b > 0, let Xn,b ∈ L∞N satisfy

P [Xn,b = n] = e−bn

P [Xn,b = 0] = 1− e−bn.

Then

Ka(Xn,b) = 1
a

log
[
(1− e−bn) + e(a−b)n

]
,

and so

lim
n→∞

1
n
Ka(Xn,b) = lim

n→∞
1
n

1
a

log
[
1− e−bn + e(a−b)n

]
=

0 if a < b

a−b
a if a ≥ b.

This result holds also for a = 0,±∞.
Note that 1

nKa(Xn,b) is uniformly bounded in [0, 1] for all values of n, b, a, since
Ka(Xn,b) is bounded between min[Xn,b] = 0 and max[Xn,b] = n. Thus, by the Dominated
Convergence Theorem,

lim
n→∞

∫
R̄

1
n
Ka(Xn,b) dµ(a) =

∫
[b,∞]

a− b
a

dµ(a), (9)

and similarly for ν. It follows that for all b > 0,∫
[b,∞]

a− b
a

dµ(a) =
∫

[b,∞]

a− b
a

dν(a).

As µ({∞}) = ν({∞}), we in fact have∫
[b,∞)

a− b
a

dµ(a) =
∫

[b,∞)

a− b
a

dν(a).

This common integral is denoted by f(b).
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We now define a measure µ̂ on (0,∞) by the condition dµ̂(a)
dµ(a) = 1

a ; note that µ̂ is a
positive measure, but need not be a probability measure. Then

f(b) =
∫

[b,∞)

a− b
a

dµ(a) =
∫

[b,∞)
(a− b) dµ̂(a) =

∫ ∞
b

µ̂([x,∞)) dx,

where the last step uses Tonelli’s Theorem. Hence µ̂([b,∞]) is the negative of the left
derivative of f(b) (this uses the fact that µ̂([b,∞]) is left continuous in b). In the same
way, if we define ν̂ by dν̂(a)

dν(a) = 1
a , then ν̂([b,∞]) is also the negative of the left derivative

of f(b). Therefore µ̂ and ν̂ are the same measure on (0,∞), which implies that µ and ν
coincide on (0,∞).

By a symmetric argument (with n−Xn,b in place of Xn,b), we deduce that µ and ν
also coincide on (−∞, 0). Finally, since they are both probability measures, µ and ν must
have the same mass at 0, if any. So µ = ν.

C Proof of Theorem 2

C.1 Proof for L∞+ and L∞N

It suffices to show that a monotone additive statistic defined on L∞+ or L∞N can be extended
to a monotone additive statistic defined on L∞. First suppose Φ is defined on L∞+ , the
collection of non-negative random variables. Then for any bounded random variable X,
we can define

Ψ(X) = min[X] + Φ(X −min[X]),

where we note that X −min[X] is a non-negative random variable.
Clearly Ψ is a statistic that depends only on the distribution of X (as Φ does), and

Ψ(c) = c + Φ(0) = c for constants c. When X is non-negative, the additivity of Φ
gives Φ(X) = Φ(min[X]) + Φ(X − min[X]) = min[X] + Φ(X − min[X]), so Ψ is an
extension of Φ. Moreover, Ψ is additive because min[X + Y ] = min[X] + min[Y ], and
Φ(X + Y − min[X + Y ]) = Φ(X − min[X]) + Φ(Y − min[Y ]) by the additivity of Φ.
Finally, to show Ψ is monotone, suppose X and Y are bounded random variables satisfying
X ≥1 Y . Then we can choose a sufficiently large n such that X + n and Y + n are both
non-negative, and X+n ≥1 Y +n. Since Φ is monotone for non-negative random variables,
Φ(X + n) ≥ Φ(Y + n). Thus Ψ(X + n) ≥ Ψ(Y + n) by the fact that Ψ extends Φ, and
Ψ(X) ≥ Ψ(Y ) by the additivity of Ψ. This proves that Ψ is a monotone additive statistic
on L∞ that extends Φ.

In what follows, we consider the other case where Φ is initially defined on L∞N , the
collection of non-negative integer-valued random variables. Given what has been shown
above, we just need to extend Φ to a monotone additive statistic on L∞+ . In this proof
and later, we denote by X∗n the random variable that is the sum of n i.i.d. copies of X.
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We also denote by bXc the random variables that equals X rounded down to the nearest
(non-negative) integer. Note that

bX + 1c ≥1 X ≥1 bXc.

We thus also have

bX + Y c ≥1 bXc+ bY c, (10)

bX + 1c+ bY + 1c ≥1 bX + Y + 1c. (11)

Given a monotone additive statistic Φ: L∞N → R, define Ψ: L∞+ → R by

Ψ(X) = lim
n→∞

1
n

Φ(bX∗n + 1c) = lim
n→∞

1
n

Φ(bX∗nc).

The first limit exists because bn = Φ(bX∗n + 1c) is a non-negative sequence which is
sub-additive by (11) and by monotonicity and additivity of Φ, and thus limn→∞ bn/n =
infn bn/n is well-known to exist. That the two limits above coincide follows from the
additivity of Φ.

Ψ is a statistic because Ψ(c) = limn→∞
1
nΦ(bncc) = limn→∞

1
nbncc = c for every

constant c ≥ 0. It is also immediate to see that for integer-valued random variables X,

Ψ(X) = lim
n→∞

1
n

Φ(bX∗nc) = lim
n→∞

1
n

Φ(X∗n) = lim
n→∞

1
n
nΦ(X) = Φ(X).

So Ψ extends Φ.
Moreover, if X ≥1 Y , then bX∗nc ≥1 bY ∗nc for each n. This implies Ψ(X) ≥ Ψ(Y ) by

the above definition, so Ψ is monotone. Finally, to check Ψ is additive, we suppose X and
Y be independent random variables. Then using (11), we have that for each n,

b(X + Y )∗n + 1c ≤1 bX∗n + 1c+ bY ∗n + 1c.

Together with the monotonicity and additivity of Φ, this implies

Ψ(X + Y ) = lim
n→∞

1
n

Φ(b(X + Y )∗n + 1c)

≤ lim
n→∞

1
n

Φ(bX∗n + 1c) + lim
n→∞

1
n

Φ(bY ∗n + 1c)

= Ψ(X) + Ψ(Y ).

Symmetrically, we can use the other definition of Ψ(X + Y ) and (10) to show that
Ψ(X + Y ) ≥ Ψ(X) + Ψ(Y ). Hence equality holds, and Ψ is a monotone additive statistic
that extends Φ. This completes the proof.
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C.2 Proof for LM

We break the proof into several steps below:

C.2.1 Step 1: The catalytic order on LM

We first establish a generalization of Theorem 3 to unbounded random variables. For two
random variables X and Y with c.d.f. F and G respectively, we say that X dominates Y
in both tails if there exists a positive number N with the property that

G(x) > F (x) for all |x| ≥ N.

That is, we require the stochastic dominance condition between X and Y to hold in the
tails. In particular, X needs to be unbounded from above, and Y unbounded from below.

Lemma 6. Suppose X,Y ∈ LM satisfy Ka(X) > Ka(Y ) for every a ∈ R. Suppose further
that X dominates Y in both tails. Then there exists an independent random variable
Z ∈ LM such that X + Z ≥1 Y + Z.

Proof. We will show that Z can be taken to have a normal distribution, which does belong
to LM . Following the proof of Theorem 3, we let σ(x) = G(x)− F (x), and seek to show
that [σ ∗ h](y) ≥ 0 for every y when h is a Gaussian density with sufficiently large variance.
By assumption, σ(x) is strictly positive for |x| ≥ N . Thus there exists δ > 0 such that∫N+2
N+1 σ(x) dx > δ, as well as

∫−N−1
−N−2 σ(x) dx > δ. We fix A > 0 that satisfies eA ≥ 4N

δ .

Similar to (7), we have for h(x) = e−
x2
2V that

e
y2
2V

∫
σ(x)h(y − x) dx =

∫ ∞
−∞

σ(x) · e
y
V
·x · e−

x2
2V dx. (12)

The variance V is to be determined below.
We first show that the right-hand side is positive if V ≥ (N + 2)2 and y

V ≥ A. Indeed,
since σ(x) > 0 for |x| ≥ N , this integral is bounded from below by∫ N

−N
σ(x) · e

y
V
·x · e−

x2
2V dx+

∫ N+2

N+1
σ(x) · e

y
V
·x · e−

x2
2V dx

≥ − 2N · e
y
V
·N + δ · e

y
V
·(N+1) · e−

(N+2)2
2V

= e
y
V
·N · (−2N + δ · e

y
V · e−

(N+2)2
2V )

> 0,

where the last inequality uses e
y
V ≥ eA ≥ 4N

δ and e−
(N+2)2

2V ≥ e−
1
2 > 1

2 . By a symmetric
argument, we can show that the right-hand side of (12) is also positive when y

V ≤ −A.
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It remains to consider the case where y
V ∈ [−A,A]. Here we rewrite the integral on the

right-hand side of (12) as∫ ∞
−∞

σ(x) · e
y
V
·x · e−

x2
2V dx = Mσ( y

V
)−

∫ ∞
−∞

σ(x) · e
y
V
·x · (1− e−

x2
2V ) dx,

where Mσ(a) =
∫∞
−∞ σ(x) · eax dx = 1

aE
[
eaX

]
− 1

aE
[
eaY

]
is by assumption strictly positive

for all a. By continuity, there exists some ε > 0 such that Mσ(a) > ε for all |a| ≤ A. So it
only remains to show that when V is sufficiently large,∫ ∞

−∞
σ(x) · eax · (1− e−

x2
2V ) dx < ε for all |a| ≤ A. (13)

To estimate this integral, note that Mσ(A) =
∫∞
−∞ σ(x) · eAx dx is finite. Since σ(x) >

0 for |x| sufficiently large, we deduce from the Monotone Convergence Theorem that∫ T
−∞ σ(x) · eAx dx converges to Mσ(A) as T →∞. In other words,

∫∞
T σ(x) · eAx dx→ 0.

We can thus find a sufficiently large T > N such that∫ ∞
T

σ(x) · eAx dx < ε

4

and likewise ∫ −T
−∞

σ(x) · e−Ax dx < ε

4

As 1− e−
x2
2V ≥ 0 and eax ≤ eA|x| when |a| ≤ A, we deduce that∫

|x|≥T
σ(x) · eax · (1− e−

x2
2V ) dx < ε

2 for all |a| ≤ A.

Moreover, for this fixed T , we have e−
T2
2V → 1 when V is large, and thus∫

|x|≤T
σ(x) · eax · (1− e−

x2
2V ) dx < 2T eAT (1− e−

T2
2V ) < ε

2 for all |a| ≤ A.

These estimates together imply that (13) holds for sufficiently large V . This completes the
proof.

C.2.2 Step 2: A perturbation argument

With Lemma 6, we know that if Φ is a monotone additive statistic defined on LM , then
Ka(X) ≥ Ka(Y ) for all a ∈ R implies Φ(X) ≥ Φ(Y ) under the additional assumption
that X dominates Y in both tails (same proof as for Lemma 1). Below we deduce the
same result without this extra assumption. To make the argument simpler, assume X
and Y are unbounded both from above and from below; otherwise, we can add to them
an independent Gaussian random variable without changing either the assumption or
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the conclusion. In doing so, we can further assume X and Y admit probability density
functions.

The idea is that even if the right tail of X is not uniformly heavier than that of Y ,
we can add to X a positive random variable with sufficiently heavy tail, such that the
resulting sum has heavier tail than Y . We first construct a heavy right-tailed random
variable as follows:

Lemma 7. For any Y ∈ LM that is unbounded from above and admits densities, there
exists Z ∈ LM such that Z ≥ 0 and

P[Z > x]
P[Y > x] →∞ as x→∞.

Proof. For this result, it is without loss assume Y ≥ 0 because we can replace Y by |Y |
and only strengthen the conclusion. Let g(x) be the probability density function of Y . We
consider a random variable Z whose p.d.f. is given by cxg(x) for all x ≥ 0, where c > 0 is
a normalizing constant to ensure

∫
x≥0 cxg(x) dx = 1. Since the likelihood ratio between

Z = x and Y = x is cx, it is easy to see that the ratio of tail probabilities also diverges.
Thus it only remains to check Z ∈ LM . This is because

E
[
eaZ

]
= c

∫
x≥0

xg(x)eax dx,

which is simply c times the derivative of E
[
eaY

]
with respect to a. It is well-known that

the moment generating function is smooth whenever it is finite. So this derivative is finite,
and Z ∈ LM .

In the same way, we can construct heavy left-tailed distributions:

Lemma 8. For any X ∈ LM that is unbounded from below and admits densities, there
exists W ∈ LM , such that W ≤ 0 and

P[W ≤ x]
P[X ≤ x] →∞ as x→ −∞.

The following result constructs perturbed versions of any two random variables X and
Y that satisfy “dominance in both tails.” For any random variable Z ∈ LM and every
ε > 0, let Zε be the random variable that equals Z with probability ε, and equals zero
with probability 1− ε. Note that Zε also belongs to LM .

Lemma 9. Given any two random variables X,Y ∈ LM that are unbounded on both sides
and admit densities. Let Z ≥ 0 and W ≤ 0 be constructed from the above two lemmata.
Then for every ε > 0, X + Zε dominates Y +Wε in both tails.
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Proof. For the right tail, we need P[X + Zε > x] > P[Y + Wε > x] for all x ≥ N . Note
that Wε ≤ 0, so P[Y +Wε > x] ≤ P[Y > x]. On other hand,

P[X + Zε > x] ≥ P[X ≥ 0] · P[Zε > x] = P[X ≥ 0] · ε · P[Z > x].

Since by assumption X is unbounded from above, the term P[X ≥ 0] ·ε is a strictly positive
constant that does not depend on x. Thus for sufficiently large x, we indeed have

P[X ≥ 0] · ε · P[Z > x] > P[Y > x]

by the construction of Z. Thus we do have dominance in the right tail. The left tail works
similarly.

C.2.3 Step 3: Monotonicity with respect to Ka

The next result generalizes the key Lemma 1 to our current setting:

Lemma 10. Let Φ: LM → R be a monotone additive statistic. If Ka(X) ≥ Ka(Y ) for all
a ∈ R then Φ(X) ≥ Φ(Y ).

Proof. As discussed, we can without loss assume X,Y are unbounded on both sides, and
admit densities. Let Z and W be constructed as above, then for each ε > 0, X + Zε

dominates Y +Wε in both tails, and Ka(X + Zε) > Ka(X) ≥ Ka(Y ) > Ka(Y +Wε) for
every a ∈ R, where the strict inequalities use Z ≥ 0, W ≤ 0 and neither is identically zero.

Thus the pair X + Zε and Y +Wε satisfy the assumptions in Lemma 6, so we can find
an independent random variable V ∈ LM (depending on ε), such that

X + Zε + V ≥1 Y +Wε + V.

Monotonocity and additivity of Φ then imply Φ(X) + Φ(Zε) ≥ Φ(Y ) + Φ(Wε), after
cancelling out Φ(V ). The desired result follows from the lemma below, which shows that
our perturbations only slightly affect the statistic value.

Lemma 11. For any Z ∈ LM with Z ≥ 0, it holds that Φ(Zε) → 0 as ε → 0. Similarly
Φ(Wε)→ 0 for any W ∈ LM with W ≤ 0.

Proof. We focus on the case for Zε. Suppose for contradiction that Φ(Zε) does not converge
to zero. Note that as ε decreases, Zε decreases in first-order stochastic dominance. So
Φ(Zε) ≥ 0 also decreases, and non-convergence must imply there exists some δ > 0 such
that Φ(Zε) > δ for every ε > 0.

Let µε be image measure of Zε. We now choose a sequence εn that decreases to zero
very fast, and consider the measures

νn = µ∗nεn ,
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which is the n-th convolution power of µεn . Thus the sum of n i.i.d. copies of Zεn is a
random variable whose image measure is νn. We denote this sum by Un.

For each n we choose εn sufficiently small to satisfy two properties: (i) εn ≤ 1
n2 , and

(ii) it holds that
E
[
enUn − 1

]
≤ 2−n.

This latter inequality can be achieved because E
[
enUn

]
=
(
E
[
enZεn

])n
, and as εn → 0 we

also have E
[
enZεn

]
= 1− εn + εnE

[
enZ

]
→ 1 since Z ∈ LM .

For these choices of εn and corresponding Un, let Hn(x) denote the c.d.f. of Un, and
define H(x) = infnHn(x) for each x ∈ R. Since Hn(x) = 0 for x < 0, the same is true for
H(x). Also note that each Hn(x) is a non-decreasing and right-continuous function in x,
and so is H(x).

We claim that limx→∞H(x) = 1. Indeed, recall that Un is the n-fold sum of Zεn , which
has mass 1−εn at zero. So Un has mass at least (1−εn)n ≥ (1− 1

n2 )n ≥ 1− 1
n at zero. In other

words, Hn(0) ≥ 1− 1
n . By considering the finitely many c.d.f.s H1(x), H2(x), . . . ,Hn−1(x),

we can find N such that Hi(x) ≥ 1 − 1
n for every i < n and x ≥ N . Together with

Hi(x) ≥ Hi(0) ≥ 1− 1
i ≥ 1− 1

n for i ≥ n, we conclude that Hi(x) ≥ 1− 1
n whenever x ≥ N ,

and so H(x) ≥ 1− 1
n . Since n is arbitrary, the claim follows. The fact that Hn(x) ≥ 1− 1

n

also shows that in the definition H(x) = infnHn(x), the “inf” is actually achieved as the
minimum (since whenever the inf is less than 1, only finitely many Hn(x) matters).

These properties of H(x) imply that it is the c.d.f. of some non-negative random
variable U . We next show U ∈ LM , i.e., E

[
eaU

]
< ∞ for every a ∈ R. Since U ≥ 0, we

only need to consider a ≥ 0. To do this, we take advantage of the following identity based
on integration by parts:

E
[
eaUn − 1

]
= −

∫
x≥0

(eax − 1) d(1−Hn(x)) = a

∫
x≥0

eax(1−Hn(x)) dx.

Now recall that we chose Un so that E
[
enUn − 1

]
≤ 2−n. So E

[
eaUn − 1

]
≤ 2−n for every

positve integer n ≥ a. It follows that the sum
∑∞
n=1 E

[
eaUn − 1

]
is finite for every a ≥ 0.

Using the above identity, we deduce that

a

∫
x≥0

eax
∞∑
n=1

(1−Hn(x)) dx <∞,

where we have switched the order of summation and integration by the Monotone Conver-
gence Theorem. Since H(x) = minnHn(x), it holds that 1−H(x) ≤

∑∞
n=1(1−Hn(x)) for

every x. And thus
E
[
eaU − 1

]
= a

∫
x≥0

eax(1−H(x)) dx <∞

also holds. This proves U ∈ LM .
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We are finally in a position to deduce a contradiction. Since by construction the c.d.f.
of U is no larger than the c.d.f. of each Un, we have U ≥1 Un and Φ(U) ≥ Φ(Un) by
monotonicity of Φ. But Φ(Un) = nΦ(Zεn) > nδ by additivity, so this leads to Φ(U) being
infinite. This contradiction proves the desired result.

C.2.4 Step 4: Functional analysis

To complete the proof of the case of LM in Theorem 2, we also need to modify the functional
analysis step in our earlier proof of Theorem 1. One difficulty is that for an unbounded
random variable X, Ka(X) takes the value ∞ as a→∞. Thus we can no longer think of
KX(a) = Ka(X) as a real-valued continuous function on R̄.

We remedy this as follows. Note first that if Φ is a monotone additive statistic defined
on LM , then it is also monotone and additive when restricted to the smaller domain of
bounded random variables. Thus Theorem 1 gives a probability measure µ on R ∪ {±∞}
such that

Φ(X) =
∫
R̄
Ka(X) dµ(a)

for all X ∈ L∞. In what follows, µ is fixed. We just need to show that this representation
also holds for X ∈ LM .

As a first step, we show µ does not put any mass on ±∞. Indeed, if µ({∞}) = ε > 0,
then for any bounded random variable X ≥ 0, the above integral gives Φ(X) ≥ ε ·max[X].
Take any Y ∈ LM such that Y ≥ 0 and Y is unbounded from above. Then monotonicity
of Φ gives Φ(Y ) ≥ Φ(min{Y, n}) ≥ ε · n for each n. This contradicts Φ(Y ) being finite.
Similarly we can rule out any mass at −∞.

The next lemma gives a way to extend the representation to certain unbounded random
variables.

Lemma 12. Suppose Z ∈ LM is bounded from below by 1 and unbounded from above,
while Y ∈ LM is bounded from below and satisfies lima→∞

Ka(Y )
Ka(Z) = 0, then

Φ(Y ) =
∫

(−∞,∞)
Ka(Y ) dµ(a).

Proof. Given the assumptions, Ka(Z) ≥ 1 for all a ∈ R, with lima→∞Ka(Z) = ∞.
Let LZM be the collection of random variables X ∈ LM such that X is bounded from
below, and lima→∞

Ka(X)
Ka(Z) exists and is finite. LZM includes all bounded X (in which case

lima→∞
Ka(X)
Ka(Z) = 0), as well as Y and Z itself. LZM is also closed under adding independent

random variables.
Now, for each X ∈ LZM , we can define

KX|Z(a) = Ka(X)
Ka(Z) ,
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which reduces to our previous definition of KX(a) when Z is the constant 1 (in that case
LZM is precisely L∞). This function KX|Z(a) extends by continuity to a = −∞, where its
value is min[X]

min[Z] , as well as to a =∞ by construction. Thus KX|Z(·) is a continuous function
on R.

Since Φ induces an additive statistic when restricted to LZM , and KX|Z + KY |Z =
KX+Y |Z , we have an additive functional F defined on L = {KX|Z : X ∈ LZM}, given by

F (KX|Z) = Φ(X)
Φ(Z) .

F is well-defined because Z ≥ 1 implies Φ(Z) ≥ 1, and F (1) = 1. By Lemma 10, F is
also monotone in the sense that KX|Z(a) ≥ KY |Z(a) for each a ∈ R implies F (KX|Z) ≥
F (KY |Z).

Likewise we can show F is 1-Lipschitz. Note that KX|Z(a) ≤ KY |Z(a) + m
n is equivalent

to Ka(X) ≤ Ka(Y ) + m
nKa(Z) and equivalent to Ka(X∗n) ≤ Ka(Y ∗n + Z∗m), where we

write X∗n for the sum of n i.i.d. copies of X. If this holds for all a, then by Lemma 10 we
also have Φ(X∗n) ≤ Φ(Y ∗n + Z∗m), and thus Φ(X) ≤ Φ(Y ) + m

n Φ(Z) by additivity. Since
m
n is an arbitrary positive rational number, we conclude that for any real number ε > 0,
KX|Z(a) ≤ KY |Z(a) + ε for all a implies Φ(X) ≤ Φ(Y ) + εΦ(Z). Thus the functional F is
1-Lipschitz.

Given these properties, we can exactly follow the proof of Theorem 1 to extend the
functional F to be a positive linear functional on the space of all continuous functions over
R̄ (the majorization condition is again satisfied because the constant function n belongs to
L for every positive integer n, since KZ|Z = 1). Therefore, by the Riesz-Markov-Kakutani
Representation Theorem, we obtain a probability measure µZ on R̄ such that

Φ(X)
Φ(Z) =

∫
R̄

Ka(X)
Ka(Z) dµZ(a)

holds for all X ∈ LZM .
In particular, for any X bounded from below such that lima→∞

Ka(X)
Ka(Z) = 0, it holds

that
Φ(X) =

∫
[−∞,∞)

Ka(X) · Φ(Z)
Ka(Z) dµZ(a),

where we are able to exclude ∞ from the range of integration (this is important for the
change of measure argument below).

If we define the measure µ̂Z by dµ̂Z
dµZ (a) = Φ(Z)

Ka(Z) ≤ Φ(Z), then since Ka(X) is finite for
a <∞, we have

Φ(X) =
∫

[−∞,∞)
Ka(X) · dµ̂Z(a).

This in particular holds for all bounded X, so plugging in X = 1 gives that µ̂Z is a
probability measure. But now we have two probability measures µ and µ̂Z on R̄ that lead
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to the same integral representation for bounded random variables, so Lemma 5 implies
that µ̂Z coincides with µ and is supported on the standard real line. Plugging in X = Y

in the above display then yields the desired result.

The preceding lemma is useful because, as it turns out, for any X ∈ LM bounded from
below and unbounded from above, there exists Z ∈ LM bounded from below by 1 such
that lima→∞

Ka(X)
Ka(Z) = 0 (which automatically implies Z is unbounded from above). This is

the idea behind the following result:

Lemma 13. For every X ∈ LM that is bounded from below,

Φ(X) =
∫

(−∞,∞)
Ka(X) dµ(a).

Proof. It suffices to consider X that is unbounded from above. Moreover, without loss we
can assume X ≥ 0 without changing the conclusion, since we can add any constant to X.
Given the previous lemma, we just need to construct Z ≥ 1 such that lima→∞

Ka(X)
Ka(Z) = 0.

Note that E
[
eaX

]
strictly increases in a for a ≥ 0. This means we can uniquely define a

sequence a1 < a2 < · · · by the equation E
[
eanX

]
= en. This sequence diverges as n→∞.

We then choose any increasing sequence bn such that bn > n and anbn > 2n2.
Consider the random variable Z that is equal to bn with probability e−

anbn
2 for each n,

and equal to 1 with remaining probability. To see that Z ∈ LM , we have

E
[
eaZ

]
≤ ea +

∞∑
n=1

e−
anbn

2 · eabn = ea +
∞∑
n=1

e(a−an2 )·bn .

For any fixed a, an
2 is eventually greater than a + 1. This, together with the fact that

bn > n, implies the above sum converges.
Moreover, for any a ∈ [an, an+1), we have

E
[
eaZ

]
≥ E

[
eanZ

]
≥ P[Z = bn] · eanbn ≥ e

anbn
2 > en2

,

whereas E
[
eaX

]
≤ E

[
ean+1X

]
≤ en+1. Thus

Ka(X)
Ka(Z) =

logE
[
eaX

]
logE [eaZ ] ≤

n+ 1
n2 ,

which converges to zero as a (and thus n) approaches infinity.

C.2.5 Step 5: Completing the proof

By a symmetric argument, the representation Φ(X) =
∫

(−∞,∞)Ka(X) dµ(a) also holds for
all X bounded from above. In the remainder of the proof, we will use an approximation
argument to generalize this to all X ∈ LM . We show a technical lemma that facilitates the
argument:
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Lemma 14. The measure µ is supported on a compact interval of the standard real line.

Proof. Suppose not, and without loss assume the support of µ is unbounded from above.
We will construct a non-negative Y ∈ LM such that Φ(Y ) =∞ according to the integral
representation. Indeed, by assumption we can find a sequence 2 < a1 < a2 < · · · such
that an → ∞ and µ([an,∞)) ≥ 1

n for all large n. Let Y be the random variable that
equals n with probability e−

an·n
2 for each n, and equals 0 with remaining probability. Then

similar to the above, we can show Y ∈ LM . Moreover, E
[
eanY

]
≥ e

an·n
2 , implying that

Kan(Y ) ≥ n
2 . Since Ka(Y ) is increasing in a, we deduce that for each n,∫

[an,∞)
Ka(Y ) dµ(a) ≥ Kan(Y ) · µ([an,∞)) ≥ n

2 ·
1
n

= 1
2 .

The fact that this holds for an →∞ contradicts the result that Φ(Y ) =
∫

(−∞,∞)Ka(Y ) dµ(a)
is finite.

Thus we can take N sufficiently large so that µ is supported on [−N,N ]. To finish
the proof, consider any X ∈ LM that may be unbounded on both sides. For each positive
integer n, let Xn = min{X,n} denote the truncation of X at n. Since X ≥1 Xn, we have

Φ(X) ≥ Φ(Xn) =
∫

[−N,N ]
Ka(Xn) dµ(a)

Observe that for each a ∈ [−N,N ], Ka(Xn) converges to Ka(X) as n→∞. Moreover, the
fact that Ka(Xn) increases both in n and in a implies that for all a and all n,

|Ka(Xn)| ≤ max{|Ka(X1)|, |Ka(X)|} ≤ max{|K−N (X1)|, |KN (X1)|, |K−N (X)|, |KN (X)|}.

As Ka(Xn) is uniformly bounded, we can apply the Dominated Convergence Theorem to
deduce

Φ(X) ≥ lim
n→∞

∫
[−N,N ]

Ka(Xn) dµ(a) =
∫

[−N,N ]
Ka(X) dµ(a).

On the other hand, if we truncate the left tail and consider X−n = max{X,−n}, then a
symmetric argument shows

Φ(X) ≤ lim
n→∞

∫
[−N,N ]

Ka(X−n) dµ(a) =
∫

[−N,N ]
Ka(X) dµ(a).

Therefore for all X ∈ LM it holds that

Φ(X) =
∫

[−N,N ]
Ka(X) dµ(a).

This completes the entire proof of the case of LM in Theorem 2.
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D Additional Proofs

D.1 Proof of Theorem 4

In the first step, we fix any reward x > 0. Then by monotonicity in time and continuity,
for each (x, T ) there exists a (unique) deterministic time Φx(T ) such that

(x,Φx(T )) ∼ (x, T ).

Clearly, when T is a deterministic time, Φx(T ) is simply T itself. Note also that if S
first-order stochastically dominates T , then

(x,Φx(T )) ∼ (x, T ) � (x, S) ∼ (x,Φx(S)),

so that Φx(S) ≥ Φx(T ). We next show that for any T and S that are independent,
Φx(T+S) = Φx(T )+Φx(S). Indeed, by stationarity, (x,Φx(T )) ∼ (x, T ) implies (x,Φx(T )+
S) ∼ (x, T + S) and (x,Φx(S)) ∼ (x, S) implies (x,Φx(T ) + Φx(S)) ∼ (x,Φx(T ) + S).
Taken together, we have

(x,Φx(T ) + Φx(S)) ∼ (x, T + S).

Since Φx(T ) + Φx(S) is a deterministic time, the definition of Φx gives Φx(T ) + Φx(S) =
Φx(T + S) as desired.

In the second step, note that our preference preference � induces a preference on
R+ × R+ consisting of deterministic dated rewards. By Theorem 2 in Fishburn and
Rubinstein (1982), for any given r > 0 we can find a continuous and strictly increasing
utility function u with u(0) = 0 such that for deterministic times t, s ≥ 0

(x, t) � (y, s) if and only if u(x) · e−rt ≥ u(y) · e−rs.

By definition, (x, T ) ∼ (x,Φx(T )) for any random time T . Thus we obtain that the decision
maker’s preference is represented by

(x, T ) � (y, S) if and only if u(x) · e−rΦx(T ) ≥ u(y) · e−rΦy(S).

While Φ0(T ) was not defined before, it will not matter because u(0) = 0.
It remains to show that for all x, y > 0, Φx and Φy are the same statistic. For this we

choose deterministic times t and s such that (x, t) ∼ (y, s), i.e.,

u(x) · e−rt = u(y) · e−rs.

For any random time T , stationarity implies (x, t+ T ) ∼ (y, s+ T ), so that

u(x) · e−rΦx(t+T ) = u(y) · e−rΦy(s+T ).

Using the additivity of Φx and Φy, we can divide the above two equalities and obtain
Φx(T ) = Φy(T ) as desired. Since this holds for all T and all x, y > 0, we can write

Φx(T ) = Φ(T )

for a single monotone additive statistic Φ. This completes the proof.
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D.2 Time lotteries in discrete time

In this section we consider the domain R+ × L∞N of discrete time lotteries. The original
axioms 3.1, 3.2 and 3.3 for continuous time directly carry over to discrete time, except that
in some of their statements we now restrict to integer-valued random times. However, it
turns out that we need a strengthening of the continuity axiom 3.4:

Axiom D.1 (Strong Continuity). Consider any sequence of discrete time lotteries {(xn, Tn)}
such that xn → x, the distributions of Tn weakly converge to that of T , and {max[Tn]} is
uniformly bounded. Then for any discrete time lottery (y, S), (xn, Tn) � (y, S) for every n
implies (x, T ) � (y, S), and (xn, Tn) � (y, S) for every n implies (x, T ) � (y, S).

A feature of the above continuity axiom is that it rules out extreme risk aversion (or
risk-seeking) over time. Thus, in the following analogue of Theorem 4, the monotone
additive statistic Φ is generated by a measure µ supported on R rather than the extended
real line R̄. We call such Φ strongly monotone.14

Proposition 6. A preference � on R+×L∞N satisfies Axioms 3.1, 3.2, 3.3 and D.1 if and
only if there exists a strongly monotone additive statistic Φ, an r > 0, and a continuous and
strictly increasing utility function u : R+ → R+ with u(0) = 0, such that � is represented
by

f(x, T ) = u(x) · e−rΦ(T ).

Proof. We first check that the representation satisfies the strong continuity Axiom D.1
(the other axioms are straightforward to check). Indeed, suppose

Φ(T ) =
∫
R
Ka(T ) dµ(a)

for some probability measure µ supported on R. Then whenever Tn → T (in terms of
their distributions) and max[Tn] is uniformly bounded, we can deduce from the Dominated
Convergence Theorem that Φ(Tn)→ Φ(T ). This implies u(xn) · e−rΦ(Tn) → u(x) · e−rΦ(T ),
and thus strong continuity holds.

Turning to the opposite direction, we assume the preference � satisfies the axioms. We
first prove the following stronger version of stationarity:

(x, T ) � (y, S) if and only if (x, T +D) � (y, S +D)

whenever D is independent from T and S. The “only if” direction is assumed, so we focus
on the “if”. It suffices to show that the strict preference (x, T ) � (y, S) also implies the
strict preference (x, T +D) � (y, S +D). Since (0, T ) � (y, S), by strong continuity there

14We do not use the terminology “strictly monotone” because it suggests a weaker requirement that
Φ(X) > Φ(Y ) whenever X is strictly larger than Y in first-order stochastic dominance. That would
correspond to µ being not entirely supported on {±∞}, whereas here we require µ to have no mass at ±∞.
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exists x̃ ∈ [0, x) such that (x̃, T ) ∼ (y, S). Thus by the assumed version of stationarity,
(x̃, T +D) ∼ (y, S +D). Monotonicity in money then yields (x, T +D) � (x̃, T +D) ∼
(y, S +D). This gives the desired result.

Next, as in the proof of Theorem 4, we fix x > 0 and define a “certainty equivalent”
Φx(T ) for every T . However, since Φx(T ) will not be an integer in general, we cannot
define it using the indifference relation induced by �. We instead proceed as follows. For
each T ∈ L∞N , define

Bx(n, T ) = max{m ∈ N : (x,m) � (x, T ∗n)}

Note that for fixed T , Bx(n, T ) is a non-negative super-additive sequence in n. This is
because if (x,m1) � (x, T ∗n1) and (x,m2) � (x, T ∗n2), then applying stationarity twice
yields

(x,m1 +m2) � (x, T ∗n1 +m2) � (x, T ∗n1 + T ∗n2) = (x, T ∗n1+n2).

Note also that by monotonicity in time, Bx(n, T ) ≤ max[T ∗n] = nmax[T ]. So we have a
well-defined finite limit

Φx(T ) = lim
n→∞

1
n
Bx(n, T ).

It is easy to see that Φx is a monotone statistic. It is also super-additive because for
each n, (x,m) � (x, T ∗n) and (x,m′) � (x, S∗n) imply (x,m+m′) � (x, (T +S)∗n) by two
applications of stationarity. Moreover, using

Bx(n, T ) = min{m ∈ N : (x,m) ≺ (x, T ∗n)} − 1,

we can also show Φx is sub-additive. Thus Φx is a monotone additive statistic.
We next show that (x, T ) � (x, S) if and only if Φx(S) ≥ Φx(T ). Suppose Φx(S) >

Φx(T ) holds strictly, then by definition we have Bx(n, S) > Bx(n, T ) for sufficiently large
n. Thus, for this n, the integer m = Bx(n, S) satisfies

(x, T ∗n) � (x,m) � (x, S∗n).

This implies (x, T ) � (x, S), because by repeated application of stationarity (x, S) � (x, T )
would imply (x, S∗n) � (x, T ∗n).

It remains to show that Φx(S) = Φx(T ) implies (x, T ) ∼ (x, S). By symmetry it
suffices to show (x, T ) � (x, S). Let Sε be equal to S with probability 1− ε, and equal to
max[S] + 1 with probability ε. Then Φx(Sε) > Φx(S) = Φx(T ), so that (x, T ) � (x, Sε) for
every ε > 0. By strong continuity, we thus obtain (x, T ) � (x, S) as desired.

We now further show Φx is strongly monotone. Suppose for contradiction that the
measure µ associated with Φx puts mass at least 1

N on a = ∞, for some large positive
integer N . Consider the random variable Tε which equals N with probability ε and equals
0 otherwise. Note that Φx(Tε) ≥ 1

N max[Tε] = 1. Thus for any ε > 0, (x, Tε) � (x, 1) by
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what we showed above. But since Tε → 0 and are uniformly bounded, strong continuity
implies (x, 0) � (x, 1), contradicting monotonicity in time. A similar contradiction obtains
if µ puts mass at least 1

N on a = −∞, by considering the time lotteries N − Tε versus the
deterministic time N − 1.

Hence, for every x > 0 we have constructed a strongly monotone additive statistic
Φx, such that (x, T ) � (x, S) if and only if Φx(T ) ≤ Φx(S). What remains to be done is
to relate the preferences for different rewards x. This is however another new difficulty
relative to the proof of Theorem 4. The issue is that we cannot directly reduce the time
lottery (x, T ) to the deterministic reward (x,Φx(T )) by indifference, since the latter need
not be in discrete time.

To address this problem, we introduce an auxiliary preference �∗ defined on the set
of deterministic dates rewards R+ × R+ in continuous time. Specifically, consider any
(x, t) and (y, s), where x, y > 0 and t and s need not be integers. By the fact that Φx,Φy

satisfy strong continuity, we can find integer-valued bounded random times T, S such that
Φx(T ) = t and Φy(S) = s. We then define (x, t) �∗ (y, s) if and only if (x, T ) � (y, S).
Since we have shown that (x, T ) ∼ (x, T ′) whenever Φx(T ) = Φx(T ′), this definition of �∗

does not depend on the specific choice of T and S. In addition, it is easy to see that �∗ is
complete and transitive. We can further include the zero reward by defining (x, t) � (0, s)
for any x > 0 and (0, t) ∼ (0, s).

Below we show that the preference �∗ satisfies the axioms in Fishburn and Rubinstein
(1982). We introduce a key technical lemma that we prove at the end of this section:

Lemma 15. Let Φ and Ψ be two strongly monotone additive statistics defined on L∞N .
Then for any real number d > 0, there exist two random variables D,D′ ∈ L∞N such that

Φ(D)− Φ(D′) = d = Ψ(D)−Ψ(D′).

We use this lemma to prove the stationarity property of �∗, namely (x, t) �∗ (y, s) if
and only if (x, t+ d) �∗ (y, s+ d). Let T, T ′, S, S′ ∈ L∞N satisfy Φx(T ) = t, Φx(T ′) = t+ d,
Φy(S) = s, Φy(S′) = s+ d. Also let D,D′ ∈ L∞N be given by Lemma 15, such that

Φx(D)− Φx(D′) = d = Φy(D)− Φy(D′).

Suppose (x, t) �∗ (y, s), then by definition (x, T ) � (y, S). This implies, by stationarity of
�, that

(x, T +D) � (y, S +D).

Now observe that

Φx(T +D) = Φx(T ) + Φx(D) = t+ d+ Φx(D′) = Φx(T ′ +D′).

Thus (x, T +D) ∼ (x, T ′ +D′) and likewise (y, S +D) ∼ (y, S′ +D′). It follows that

(x, T ′ +D′) � (y, S′ +D′).
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By stationarity of � again, we conclude that (x, T ′) � (y, S′) and thus (x, t+d) �∗ (y, s+d).
Moreover, if we have the strict preference (x, t) �∗ (y, s) to begin with, then the above
steps and the conclusion (x, t+ d) �∗ (y, s+ d) are also strict. This proves the stationarity
of �∗.15

We now use stationarity to show �∗ is monotone in money. Suppose x > y > 0, then
(x, 0) � (y, 0) when viewed as discrete time lotteries, and by definition (x, 0) �∗ (y, 0)
when viewed as dated rewards. Thus stationarity implies (x, t) �∗ (y, t) for every t ≥ 0.
As for monotonicity in time, suppose Φx(S) = s > t = Φx(T ). Then (x, T ) � (x, S) by
the fact that Φx represents the preference � restricted to the reward x. So by definition
(x, t) �∗ (x, s) also holds.

It remains to check �∗ is continuous in the sense that if (xn, tn)→ (x, t) and (xn, tn) �∗

(y, s) for every n, then (x, t) �∗ (y, s) (and that the same holds for the preferences reversed).
To show this, note that tn < btc + 1 for every large n. By strong monotonicity (thus
continuity) of Φx, we can find a binary integer random variable Tn supported on 0 and
btc+ 1 such that Φx(Tn) = tn. Passing to a sub-sequence if necessary, we can assume Tn
has a limit T . Since (xn, tn) �∗ (y, s), we know by definition that (xn, Tn) � (y, S) for
any S with Φy(S) = s. Thus by strong continuity of �, we deduce (x, T ) � (y, S). Since
Φx(T ) = lim Φx(Tn) = lim tn = t, we have (x, t) �∗ (y, s) as desired.

Hence we can apply Theorem 2 in Fishburn and Rubinstein (1982) to deduce that

(x, t) �∗ (y, s) if and only if u(x) · e−rt ≥ u(y) · e−rs,

for some continuous and strictly increasing function u : R+ → R+ with u(0) = 0. Since by
definition (x, T ) � (y, S) if and only if (x,Φx(T )) �∗ (y,Φy(S)), we obtain

(x, T ) � (y, S) if and only if u(x) · e−rΦx(T ) ≥ u(y) · e−rΦy(S).

Once we have this representation, for any x, y > 0 we can find T, S ∈ L∞N such that
u(x) · e−rΦx(T ) = u(y) · e−rΦy(S), so (x, T ) ∼ (y, S). Then for any independent D, we also
have (x, T+D) ∼ (y, S+D) so that u(x) ·e−rΦx(T+D) = u(y) ·e−rΦy(S+D). Dividing the two
equalities thus yields Φx(D) = Φy(D) for every D. We can therefore write Φx(T ) = Φ(T )
for a single strongly monotone additive statistic Φ, which completes the proof.

Proof of Lemma 15. Suppose for the sake of contradiction that the result is not true. We
claim there cannot exist X,Y,X ′, Y ′ ∈ L∞N such that Φ(Y )− Φ(X) = d < Ψ(Y )−Ψ(X)
and Φ(Y ′) − Φ(X ′) = d > Ψ(Y ′) − Ψ(X ′). Indeed, given such random variables, we
may add a large constant to X ′, Y ′ so that X ′ >1 X and Y ′ >1 Y , without affecting the
assumption. Then as λ varies in [0, 1], the statistic value Φ(X ′λX) increases continuously

15This proof would be a little simpler if there exists D such that Φx(D) = Φy(D) = d, which would be a
stronger statement than Lemma 15. But such integer-valued D might not exist when d is not an integer,
and Φx is larger than Φy in the sense of Proposition 4.
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in λ (where X ′λX ∈ L∞N is the (λ, 1− λ)-mixture between X ′ and X). Likewise Φ(X ′λX)
increases continuously in λ. So for any λ ∈ [0, 1], there exists a unique h(λ) ∈ [0, 1] such
that Φ(Y ′h(λ)Y )− Φ(X ′λX) = d. This function h(λ) is strictly increasing and continuous,
and satisfies h(0) = 0, h(1) = 1. Note that Ψ(Y ′h(λ)Y ) − Ψ(X ′λX) is larger than d when
λ = 0, but smaller than d when λ = 1. Thus by continuity, there exists λ such that
Ψ(Y ′h(λ)Y )−Ψ(X ′λX) = d = Φ(Y ′h(λ)Y )− Φ(X ′λX).

Hence, for the lemma to fail, the only possibility is that Ψ(Y )−Ψ(X) is always larger
(or always smaller) than d whenever Φ(Y )−Φ(X) = d. Below we assume Ψ(Y )−Ψ(X) > d,
but the opposite case can be symmetrically handled. Choose any positive integer k > d,
and let Y ∗ = kλ0 be the unique binary random variable supported on {0, k} such that
Φ(Y ∗) = d. Then Ψ(Y ∗) > d by assumption, and we can assume Ψ(Y ∗) = d+ η for some
η > 0. This Y ∗ and η will be fixed in the subsequent analysis.

Now take any positive integer m > k. We can define a continuum of random variables
Xε ∈ L∞N for ε ∈ [0, 1]. Specifically, for ε ∈ [0, λ] we define Xε to be equal to k with
probability ε and equal to 0 with probability 1 − ε. And for ε ∈ [λ, 1], we define Xε to
be equal to m with probability ε−λ

1−λ , equal to k with probability λ(1−ε)
1−λ and equal to 0

with probability 1− ε. The important thing here is that as ε increases, Xε increases in
first-order stochastic dominance in a continuous way. Thus Φ(Xε) and Ψ(Xε) increase
continuously with ε. In addition, note that X0 = 0, Xλ = Y ∗ and X1 = m.

Let n ≤ m
d be any positive integer. Then we can define ε0, ε1, · · · , εn by the equations

Φ(Xεj ) = j · d for every 0 ≤ j ≤ n. It is easy to see

0 = ε0 < λ = ε1 < · · · < εn ≤ 1.

For 1 ≤ j ≤ n, we have Φ(Xεj )−Φ(Xεj−1) = d. So by assumption Ψ(Xεj )−Ψ(Xεj−1) > d.
Moreover when j = 1 we in fact have Ψ(Xεj )−Ψ(Xεj−1) = Ψ(Y ∗)−Ψ(0) = d+η. Summing
across j, we thus obtain

m = Ψ(X1)−Ψ(X0) ≥ Ψ(Xεn)−Ψ(Xε0) =
n∑
j=1

(
Ψ(Xεj )−Ψ(Xεj−1)

)
≥ nd+ η.

But we now have a contradiction because the inequality m ≥ nd+ η cannot hold for all
sufficiently large integers m and n that satisfy m ≥ nd. To see this, observe that when
d is a rational number, we can choose m,n so that m = nd. In that case the inequality
m ≥ nd+ η clearly fails. If instead d is an irrational number, then it is well known that the
fractional part of nd can be arbitrarily close to one (as implied by the “equidistribution”
property). Again we can find large integers m and n such that nd+ η > m ≥ nd. Thus a
contradiction obtains either way, completing the proof.
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D.3 Proof of Proposition 1

Clearly, a preference with the representation f(x, T ) = u(x) · e−rΦ(T ) of Theorem 4 satisfies
betweenness if and only if

Φ(T ) = Φ(S) implies Φ(TλS) = Φ(S) for all λ ∈ (0, 1).

In this case, we say that Φ satisfies betweenness. Thus, to prove the current proposition it
suffices to show that any Φ satisfying betweenness has one of the following forms:

1. Φ(T ) = Ka(T ) for a ∈ R̄.

2. Φ(T ) = βmin[T ] + (1− β) max[T ] for some β ∈ (0, 1)

3. Φ(T ) = −a1
a2−a1

Ka1(T ) + a2
a2−a1

Ka2(T ) = logE[ea2T ]−logE[ea1T ]
a2−a1

for some a1 < 0 < a2.

We first show the “if” direction. Specifically, when Φ(T ) = Ka(T ) for some fixed
a ∈ R 6=0, then Φ(T ) = Φ(S) implies E

[
eaT

]
= E

[
eaS
]
. It follows that E

[
eaTλS

]
=

λE
[
eaT

]
+ (1− λ)E

[
eaS
]

= E
[
eaS
]
, and so Φ(TλS) = Φ(S). It is straightforward to check

that the same is true when a = 0 or ±∞. So every Ka(T ) satisfies betweenness.
We next show Φ(T ) = βmin[T ] + (1 − β) max[T ] also satisfies betweenness for any

β ∈ (0, 1). Indeed, suppose

βmin[T ] + (1− β) max[T ] = βmin[S] + (1− β) max[S].

Then either min[T ] ≤ min[S],max[T ] ≥ max[S] or the other way around. In the former
case TλS has the same minimum and maximum as T , whereas in the latter case it has the
same minimum and maximum as S. Either way, Φ(TλS) = Φ(T ) = Φ(S) holds.

We then consider Φ(T ) =
(
logE

[
ea2T

]
− logE

[
ea1T

])
/(a2− a1) for some a1 < 0 < a2.

If Φ(T ) = Φ(S), then logE
[
ea2T

]
− logE

[
ea1T

]
= logE

[
ea2S

]
− logE

[
ea1S

]
, which is

equivalent to
E
[
ea2T

]
E [ea2S ] =

E
[
ea1T

]
E [ea1S ] .

Since E
[
eaTλS

]
= λE

[
eaT

]
+ (1− λ)E

[
eaS
]
for every a, it is not difficult to see that the

above ratio equality continues to hold with T replaced by TλS. Hence Φ(TλS) = Φ(S),
and betweenness is satisfied.

Turning to the “only if” direction. We will characterize any monotone additive statistic
Φ that satisfies the weak form of betweenness, i.e., Φ(T ) = c implies Φ(Tλc) = c when c is
a constant. The following lemma is key to the argument:

Lemma 16. Suppose Φ(T ) =
∫
RKa(T ) dµ(a) has the property that Φ(T ) = c implies the

inequality Φ(Tλc) ≤ c. Then the measure µ restricted to [0,∞] is either the zero measure,
or it is supported on a single point.
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Proof. It suffices to show that if µ puts any mass on (0,∞], then that mass is supported
on a single point and µ({0}) = 0. For this let N > 0 denote the essential maximum of the
support of µ; that is, N = min{x : µ((x,∞]) = 0}. We allow N =∞ when the support of
µ is unbounded from above, or when µ has a non-zero mass at ∞. For any positive real
number b < N , consider the same random variable Xn,b as in the proof of Lemma 5, given
by

P [Xn,b = n] = e−bn

P [Xn,b = 0] = 1− e−bn.

As shown in the proof of Lemma 5, 1
nKa(Xn,b) is uniformly bounded in [0, 1], and

lim
n→∞

1
n
Ka(Xn,b) = (a− b)+

a
.

Thus if we let cn = Φ(Xn,b), then by the Dominated Convergence Theorem,

lim
n→∞

cn
n

= lim
n→∞

1
n

Φ(Xn,b) = lim
n→∞

∫
R̄

1
n
Ka(Xn,b) dµ(a) =

∫
(b,∞]

a− b
a

dµ(a).

Denote γ =
∫

(b,∞]
a−b
a dµ(a). This number γ is strictly positive because b < N implies

µ((b,∞]) > 0. We can also assume γ < 1, since otherwise µ must be the point mass at ∞.
Now, as Φ(Xn,b) = cn we know by assumption that Φ(Yn,b) ≤ cn for each n, where Yn,b

is the mixture between Xn,b and the constant cn (in what follows λ is fixed as n varies):

P [Yn,b = n] = λe−bn

P [Yn,b = 0] = λ(1− e−bn)
P [Yn,b = cn] = 1− λ.

Using limn→∞ cn/n = γ, we have

lim
n→∞

1
n
Ka(Yn,b) = lim

n→∞
1
n

1
a

log
[
λ
(
1− e−bn + e(a−b)n

)
+ (1− λ)ea·cn

]

=



0 if a < 0
(1− λ)γ if a = 0
γ if 0 < a < b

1−γ
a−b
a if a ≥ b

1−γ .

Note that the cutoff point a = b
1−γ is where a − b = aγ. When a is smaller than this,

the dominant term in the bracketed sum above is (1− λ)ea·cn . Whereas for larger a, the
dominant term becomes λe(a−b)·n.
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Crucially, limn→∞
1
nKa(Yn,b) ≥ (a−b)+

a holds for every a, with strict inequality for
a ∈ [0, b

1−γ ). Thus again by the Dominated Convergence Theorem,

lim
n→∞

cn
n
≥ lim

n→∞
1
n

Φ(Yn,b) = lim
n→∞

∫
R̄

1
n
Ka(Yn,b) dµ(a) ≥

∫
(b,∞]

a− b
a

dµ(a).

But we know that the far left is equal to the far right. So both inequalities hold equal, and
in particular limn→∞

1
nKa(Yn,b) = (a−b)+

a holds µ-almost surely.
As discussed, limn→∞

1
nKa(Yn,b) > (a−b)+

a for any a ∈ [0, b
1−γ ). So we can conclude

that µ([0, b
1−γ )) = 0. This must hold for any b ∈ (0, N) and corresponding γ. Letting

b arbitrarily close to N thus yields µ([0, N)) = 0 (since b
1−γ > b). It follows that when

restricted to [0,∞] the measure µ is concentrated at the single point N , as we desire to
show.

From this lemma, we know that if Φ satisfies the weak form of betweenness, then its
associated measure µ can only be supported on one point in all of [0,∞]. By a symmetric
argument, µ also has at most one point support in all of [−∞, 0]. Thus either µ = δa for
some a ∈ R̄, or µ is supported on two points {a1, a2} with a1 < 0 < a2. We study the
latter case below.

So suppose Φ(T ) = βKa1(T ) + (1− β)Ka2(T ) for some β ∈ (0, 1). If a1 = −∞ while
a2 < ∞, then Φ(T ) = βmin[T ] + (1 − β)Ka2(T ). Take any non-constant T and let c
denote Φ(T ). Note that since Ka2(T ) > min[T ], c = βmin[T ] + (1− β)Ka2(T ) lies strictly
between min[T ] and Ka2(T ). Consider the mixture Tλc, then min[Tλc] = min[T ], whereas

Ka2(Tλc) = 1
a2

log
(
λE
[
ea2T

]
+ (1− λ)ea2c

)
<

1
a2

logE
[
ea2T

]
= Ka2(T ),

where the inequality uses c < Ka2(T ) = 1
a2

logE
[
ea2T

]
and a2 > 0. We thus deduce that

Φ(Tλc) = βmin[Tλc] + (1− β)Ka2(Tλc) < βmin[T ] + (1− β)Ka2(T ) = c,

contradicting the betweenness assumption. A symmetric argument rules out the possibility
that a1 > −∞ while a2 =∞.

It remains to consider a1 ∈ (−∞, 0) and a2 ∈ (0,∞). Here we just need to show that
β = −a1

a2−a1
. Let us again take an arbitrary non-constant T , and let

c = Φ(T ) = β

a1
logE

[
ea1T

]
+ 1− β

a2
logE

[
ea2T

]
.

For an arbitrary λ ∈ [0, 1], we must also have

c = Φ(Tλc) = β

a1
logE

[
λea1T + (1− λ)ea1c

]
+ 1− β

a2
logE

[
λea2T + (1− λ)ea2c

]
. (14)
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Since (14) holds for every λ, we can differentiate it with respect to λ to obtain

0 =
β(E

[
ea1T

]
− ea1c)

a1E [λea1T + (1− λ)ea1c] +
(1− β)(E

[
ea2T

]
− ea2c)

a2E [λea2T + (1− λ)ea2c] .

Plugging in λ = 0 and λ = 1 gives, respectively,

β(E
[
ea1T

]
− ea1c)

a1ea1c
= −

(1− β)(E
[
ea2T

]
− ea2c)

a2ea2c
. (15)

β(E
[
ea1T

]
− ea1c)

a1E [ea1T ] = −
(1− β)(E

[
ea2T

]
− ea2c)

a2E [ea2T ] . (16)

Since c = βKa1(T ) + (1− β)Ka2(T ), the fact that Ka2(T ) > Ka1(T ) implies c is strictly
between Ka1(T ) and Ka2(T ). Thus, using a1 < 0 < a2 we deduce ea1c < E

[
ea1T

]
and

ea2c < E
[
ea2T

]
.

We can therefore divide (15) by (16) to obtain

E
[
ea1T

]
ea1c

=
E
[
ea2T

]
ea2c

.

Plugging this back to (15), we conclude β
a1

= −1−β
a2

, so β = −a1
a2−a1

as we desire to show.

D.4 Proof of Proposition 2

The “if” direction is straightforward, so we focus on the “only if.” Note that for the
representation given by Theorem 4, the independence axiom requires Φ(TλR) = Φ(SλR)
whenever Φ(T ) = Φ(S). This is stronger than the betweenness axiom, so we know from
Proposition 1 that � must be represented by f(x, T ) = u(x) · e−rΦ(T ) where Φ takes one of
the following three forms:

(i) Φ(T ) = Ka(T ) for some a ∈ R̄, or

(ii) Φ(T ) = βmin[T ] + (1− β) max[T ] for some β ∈ (0, 1), or

(iii) Φ(T ) = −a1
a2−a1

Ka1(T ) + a2
a2−a1

Ka2(T ) = logE[ea2T ]−logE[ea1T ]
a2−a1

for some a1 < 0 < a2.

We just need to show that form (ii) and (iii) violate the independence axiom. Suppose Φ
takes form (ii). Let S = 1− β be a constant, and let T be distributed uniformly on {0, 1}.
Then Φ(T ) = Φ(S) = 1− β, but for any λ ∈ (0, 1)

Φ(Tλ1) = 1− β < β(1− β) + 1− β = Φ(Sλ1).

This contradicts the independence axiom.
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Next suppose Φ takes form (iii). Denote β = −a1
a2−a1

∈ (0, 1), so that

Φ(T ) = βKa1(T ) + (1− β)Ka2(T ).

We choose S and T such that Φ(T ) > Φ(S) but Ka1(T ) < Ka1(S). For example, let S = 1,
and let T be supported on {0, k}, with P [T = n] = 1/k. Then

Ka(T ) = 1
a

logE
[
1− 1/k + eak/k

]
.

For k tending to infinity, Ka(T ) tends to zero if a < 0, and to infinity if a > 0. Hence, for
k large enough, S and T will have the desired property.

Now, let R = n. Then

Ka(Sλn) = 1
a

logE
[
λE
[
eaS
]

+ (1− λ)ean
]

Ka(Tλn) = 1
a

logE
[
λE
[
eaT

]
+ (1− λ)ean

]
and so

Ka(Sλn)−Ka(Tλn) = 1
a

log

λE
[
eaS
]

+ (1− λ)ean

λE [eaT ] + (1− λ)ean

 .
It easily follows that for a > 0,

lim
n→∞

Ka(Sλn)−Ka(Tλn) = 0,

whereas for a < 0,

lim
n→∞

Ka(Sλn)−Ka(Tλn) = Ka(S)−Ka(T ).

Thus, as n tends to infinity,

lim
n

Φ(Sλn)− Φ(Tλn) = lim
n
β [Ka1(Sλn)−Ka1(Tλn)] + (1− β) [Ka2(Sλn)−Ka2(Tλn)]

= β [Ka1(S)−Ka1(T )] > 0.

Therefore, for n large enough, we have found S and T such that Φ(T ) > Φ(S) but
Φ(Tλn) < Φ(Sλn).

If we let c = Φ(T ) − Φ(S) > 0 and define S′ = S + c, then Φ(T ) = Φ(S′) and
Φ(Tλn) < Φ(S′λn), where the latter follows from monotonicity of Φ. This contradicts the
independence axiom and completes the proof of Proposition 2.
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D.5 Proof of Proposition 3

We show that the result follows from Proposition 4, which we prove in the next section.
Indeed, to characterize risk-averse preferences, it is equivalent to characterize those measures
µ that are “more risk-averse than” the measure ν that is a point mass at zero (since this ν
corresponds to Φν(T ) ≡ T ). When ν = δ0, the condition (i) in Proposition 4 is trivially
satisfied because

∫
[b,∞]

a−b
a dν(a) = 0 whereas

∫
[b,∞]

a−b
a dµ(a) ≥ 0. On the other hand,

condition (ii) requires
∫

[−∞,b]
a−b
a dµ(a) ≤ 0 for every b < 0. Since the integrand a−b

a

is strictly positive for a ∈ [−∞, b), this implies µ([−∞, b)) = 0, which further implies
µ([−∞, 0)) = 0 since b < 0 is arbitrary. Hence µ is supported on [0,∞] as we desire to
show.

Symmetrically, a measure ν is risk-seeking if and only if the measure µ = δ0 is more
risk-averse than ν. In this case condition (ii) in Proposition 4 is trivial whereas condition
(i) reduces to ν being supported on [−∞, 0]. This completes the proof.

D.6 Proof of Proposition 4

We first show that conditions (i) and (ii) are necessary for
∫
R̄Ka(T ) dµ(a) ≥

∫
R̄Ka(T ) dν(a)

to hold for every T . This part of the argument closely follows the proof of Lemma 5 above.
Specifically, by considering the same random variables Xn,b as defined there, we have
the key equation (9). Since the limit on the left-hand side is larger for µ than for ν, we
conclude that for every b > 0,

∫
[b,∞]

a−b
a dµ(a) on the right-hand side must be larger than

the corresponding integral for ν. Thus condition (i) holds, and an analogous argument
shows condition (ii) also holds.

To complete the proof, it remains to show that when conditions (i) and (ii) are satisfied,∫
R̄
Ka(T ) dµ(a) ≥

∫
R̄
Ka(T ) dν(a)

holds for every T . Since µ and ν are both probability measures, we can subtract E [T ]
from both sides and arrive at the equivalent inequality∫

R̄6=0
(Ka(T )− E [T ]) dµ(a) ≥

∫
R̄ 6=0

(Ka(T )− E [T ]) dν(a). (17)

Note that we can exclude a = 0 from the range of integration because Ka(T ) = E [T ] there.
Below we show that condition (i) implies∫

(0,∞]
(Ka(T )− E [T ]) dµ(a) ≥

∫
(0,∞]

(Ka(T )− E [T ]) dν(a). (18)

Similarly, condition (ii) gives the same inequality when the range of integration is instead
[−∞, 0). Adding these two inequalities would yield the desired comparison in (17).

To prove (18), we let KT (a) = a · Ka(T ) = logE
[
eaT

]
be the cumulant generating

function of T . It is well known that KT (a) is convex in a, with K ′T (0) = E [T ] and
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lima→∞K
′
T (a) = max[T ]. Then the integral on the left-hand side of (18) can be calculated

as follows:∫
(0,∞]

(Ka(T )− E [T ]) dµ(a) =
∫

(0,∞)
(Ka(T )− E [T ]) dµ(a) + (max[T ]− E [T ]) · µ({∞})

=
∫

(0,∞)
(KT (a)− aE [T ]) dµ(a)

a
+ (max[T ]− E [T ]) · µ({∞})

Note that since the function g(a) = KT (a) − aE [T ] satisfies g(0) = g′(0) = 0, it can be
written as

g(a) =
∫ a

0
g′(t) dt =

∫ a

0

∫ t

0
g′′(b) dbdt =

∫ a

0
g′′(b) · (a− b) db.

Plugging back to the previous identity, we obtain∫
(0,∞]

(Ka(T )− E [T ]) dµ(a) =
∫

(0,∞)

∫ a

0
K ′′T (b) · (a− b) dbdµ(a)

a
+ (max[T ]− E [T ]) · µ({∞})

=
∫ ∞

0
K ′′T (b)

∫
[b,∞)

(a− b) dµ(a)
a

db+ (K ′T (∞)−K ′T (0)) · µ({∞})

=
∫ ∞

0
K ′′T (b)

∫
[b,∞)

a− b
a

dµ(a) db+
∫ ∞

0
K ′′T (b) · µ({∞}) db

=
∫ ∞

0
K ′′T (b)

∫
[b,∞]

a− b
a

dµ(a) db,

where the last step uses a−b
a = 1 when a =∞ > b.

The above identity also holds when µ is replaced by ν. It is then immediate to see that
(18) follows from condition (i) and the fact that K ′′T (b) ≥ 0 for all b. This completes the
proof.

D.7 Proof of Theorem 5

When � is represented by a monotone additive statistic Φ, we can easily check that
the axioms are satisfied. For the Rabin and Weizsäcker axiom, note that X1 � Y1 and
X2 � Y2 imply Φ(X1) > Φ(Y1) and Φ(X2) > Φ(Y2). By additivity of Φ, we thus have
Φ(X1 + X2) > Φ(Y1 + Y2). It follows from monotonicity of Φ that X1 + X2 cannot be
first-order stochastically dominated by Y1 + Y2. The archimedeanity and responsiveness
axioms are straightforward.

Turning to the “only if” direction, we suppose � satisfies the axioms. We first show
that for any gamble X and any ε > 0,

max[X] + ε � X � min[X]− ε.

To see why, suppose for contradiction that X is weakly preferred to max[X] + ε (the
other case can be handled similarly). Then we obtain a contradiction to the Rabin and
Weizsäcker axiom by observing that X � max[X] + ε

2 ,
ε
4 � 0 but X + ε

4 <1 max[X] + ε
2 + 0.
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Given these upper and lower bounds for X, we can define Φ(X) = sup{c ∈ R : c � X},
which is well-defined and finite. By definition of the supremum and responsiveness, for any
ε > 0 it holds that Φ(X)− ε ≺ X ≺ Φ(X) + ε. Thus by archimideanity, Φ(X) ∼ X is the
(unique) certainty equivalent of X. Clearly, Φ is a statistic.

It remains to show that Φ(X) is monotone and additive. For this we first show
Φ(X + c) = Φ(X) + c for any constant c. Suppose not, and Φ(X + c) = Φ(X) + c′ for
some c′ > c (the case of c′ < c is similar). Let ε ∈ (0, c′−c2 ) be a small positive number.
Then by responsiveness, X1 = X + c+ ε is strictly preferred to X + c and thus preferred
to the constant Y1 = Φ(X) + c′. On the other hand, X2 = Φ(X) + ε is strictly preferred to
Φ(X) and thus preferred to Y2 = X. But X1 +X2 = X + Φ(X) + c+ 2ε is stochastically
dominated by Y1 + Y2 = X + Φ(X) + c′, contradicting the Rabin and Weizsäcker axiom.

Using this result, and the archimedeanity axiom, we next show the following continuity
property: whenever X � Y , there exists ε > 0 such that X � Y + ε also holds. Indeed,
suppose for contradiction that Y + ε � X for every ε > 0. Then by responsiveness, we
in fact have the strict preference Y + ε � X. Thus Y + ε � X � Y � Y − ε. Since
Y ± ε ∼ Φ(Y ) ± ε, we deduce Φ(Y ) + ε � X � Φ(Y ) − ε for every ε > 0. This implies
X ∼ Φ(Y ) ∼ Y by archimedeanity, which is a contradiction.

We now show X ∼ Y implies X + Z ∼ Y + Z for any independent Z. Suppose for
contradiction that X +Z � Y +Z. Then we can find ε > 0 such that X +Z � Y +Z + 2ε.
By responsiveness, it also holds that Y + ε � Y ∼ X. But the sum X + Z + Y + ε is
stochastically dominated by Y + Z + 2ε + X, contradicting the Rabin and Weizsäcker
axiom.

Therefore, from X ∼ Φ(X) and Y ∼ Φ(Y ) we can apply the preceding result twice to
obtain X + Y ∼ Φ(X) + Y ∼ Φ(X) + Φ(Y ), so that Φ(X + Y ) = Φ(X) + Φ(Y ). Finally,
we show Φ(·) is monotone with respect to first-order stochastic dominance. Consider
any Y ≥1 X, and suppose for contradiction that X � Y . Then there exists ε > 0 such
that X � Y + 2ε. This leads to a contradiction since X � Y + 2ε, ε � 0, but X + ε is
stochastically dominated by Y + 2ε+ 0.

This completes the proof that the certainty equivalent Φ(X) is a monotone additive
statistic. Hence the theorem.

E Sub- and Super-additive Statistics

In cases where the additivity assumption may seem too strong, we can weaken it to sub-
or super-additivity as we describe in this section. Say a statistic Φ is sub-additive if
Φ(X + Y ) ≤ Φ(X) + Φ(Y ) whenever X,Y are independent bounded random variables,
and super-additive if the reverse inequality holds. Say Φ is homogeneous if the equality
Φ(X1 +X2) = Φ(X1) + Φ(X2) holds when X1 and X2 are independent and furthermore
identically distributed. These properties are all implied by additivity.
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The following result characterizes homogeneous and sub-additive (or super-additive)
statistics on L∞:16

Theorem 6. Φ: L∞ → R is monotone, homogeneous and sub-additive if and only if there
exists a nonempty closed convex set C of Borel probability measures on R̄, such that for
every X ∈ L∞ it holds that

Φ(X) = max
µ∈C

∫
R̄
Ka(X) dµ(a).

Likewise, Φ is monotone, homogeneous and super-additive if and only if

Φ(X) = min
µ∈C

∫
R̄
Ka(X) dµ(a).

We use a few examples to illustrate that homogeneity and sub-additivity (or super-
additivity) are both important for such representations. An example of a monotone statistic
that is super-additive but not homogeneous is

Φ(X) = log
(1

2
[
emin[X] + emax[X]

])
.

The super-additivity condition Φ(X + Y ) ≥ Φ(X) + Φ(Y ) is equivalent to

2
[
emin[X]+min[Y ] + emax[X]+max[Y ]

]
≥
[
emin[X] + emax[X]

]
·
[
emin[Y ] + emax[Y ]

]
,

which reduces to (emax[X] − emin[X]) · (emax[Y ] − emin[Y ]) ≥ 0. The same argument shows
that min[X] and max[X] can be substituted with any pair of monotone additive statistics
Ψ(X) and Ψ′(X) satisfying Ψ ≤ Ψ′ (see Proposition 4). The resulting Φ would also be
monotone, super-additive but not homogeneous.

Note that if Φ(X) is monotone and super-additive, then −Φ(−X) is monotone and sub-
additive. In this way we also have an example of a monotone statistic that is sub-additive
but not homogeneous.

As for an example of a monotone statistic that is homogeneous but not sub-additive or
super-additive, we consider

Φ(X) =

min[X] if min[X] + max[X] ≤ 0
max[X] otherwise.

16The representation in the super-additive case is reminiscent of the “cautious expected utility” represen-
tation of Cerreia-Vioglio et al. (2015), which evaluates a gamble X according to its minimum certainty
equivalent across a family of utility functions. The difference is that our agent potentially takes the
minimum across averages of certainty equivalents. In fact, since CARA certainty equivalents are increasing
in the level of risk seeking, taking the minimum across these certainty equivalents (and not their averages)
in our setting would reduce to a single CARA certainty equivalent.
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This statistic is homogeneous because min[X] and max[X] are homogeneous. To see it
is monotone, we will show Φ(Y ) ≥ Φ(X) whenever Y ≥1 X. If Φ(X) = min[X] then
Φ(Y ) ≥ min[Y ] ≥ min[X] holds. Otherwise Φ(X) = max[X] and min[X] + max[X] > 0.
Since max[Y ] ≥ max[X] and min[Y ] ≥ min[X], we also have min[Y ] + max[Y ] > 0. Hence
Φ(Y ) = max[Y ] ≥ Φ(X) also holds.

In addition, this statistic Φ is neither sub-additive nor super-additive. To see this,
note that if X,Y are non-constant random variables, and if min[X] + max[X] ≤ 0 <

min[Y ] + max[Y ], then whether Φ(X + Y ) = min[X + Y ] or max[X + Y ] depends on the
sign of min[X]+max[X]+min[Y ]+max[Y ]. In the former case Φ(X+Y ) = min[X+Y ] ≤
min[X] + max[Y ] = Φ(X) + Φ(Y ), whereas in the latter case Φ(X + Y ) ≥ Φ(X) + Φ(Y ).
Both situations can occur.

Interestingly, the results in Theorem 6 need to be modified when we consider the smaller
domain L∞+ of non-negative bounded random variables. This is elaborated below:

Proposition 7. Φ: L∞+ → R is monotone, homogeneous and sub-additive if and only
if there exists a nonempty closed convex set C of Borel sub-probability measures on R̄
satisfying maxµ∈C |µ| = 1, such that for every X ∈ L∞+ it holds that

Φ(X) = max
µ∈C

∫
R̄
Ka(X) dµ(a).

The key distinction from Theorem 6 is that the maximum here can now be taken over
a set of sub-probability measures. This possibility is ruled out in the case of all bounded
random variables, since in that case we require Φ(c) = c also for negative constants c.

One might suspect that the analogue of Proposition 7 holds for monotone, homogeneous
and super-additive statistics on L∞+ , with minimization over super-probability measures.
This is not quite true, as the following example suggests: for every X ∈ L∞+ , Φ(X) = 0
if min[X] = 0 and Φ(X) = max[X] if min[X] > 0. This statistic is readily checked to be
monotone, homogeneous and super-additive.

However, it cannot be written as the form infµ∈C
∫
R̄Ka(X) dµ(a), and the key issue is

a failure of upper-semicontinuity (henceforce usc). Specifically, for any finite measure µ,
the integral

∫
R̄Ka(X) dµ(a) is usc with respect to X in the sense that∫

R̄
Ka(X) dµ(a) ≥ lim

ε→0+

∫
R̄
Ka(X + ε) dµ(a).

In fact we have equality since the reverse inequality always holds. It is well known that
the infimum of a family of usc functions is also usc. But for the statistic Φ defined above,
if X is the Bernoulli random variable that equals 0 and 1 with equal probabilities. Then
Φ(X) = 0 whereas Φ(X + ε) = 1 + ε. So Φ(X) < limε→0+ Φ(X + ε) and this Φ is not usc.

In what follows, we define a statistic Φ to be usc if for every X in the domain,

Φ(X) = lim
ε→0+

Φ(X + ε).
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Note that given monotonicity, it would be equivalent to write Φ(X) ≥ limε→0+ Φ(X + ε).
Note also that usc was automatically satisfied when the domain was L∞, in which case
super-additivity gives

Φ(X) ≥ Φ(X + ε) + Φ(−ε) = Φ(X + ε)− ε.

It was also satisfied under sub-additivity, since in that case

Φ(X) ≥ Φ(X + ε)− Φ(ε) = Φ(X + ε)− ε.

So the combination of super-additivity and the smaller domain L∞+ is where we need to
additionally assume usc.

The next result shows usc is exactly what we need to restore the representation:

Proposition 8. Φ: L∞+ → R is monotone, homogeneous, super-additive and upper-
semicontinuous if and only if there exists a nonempty closed convex set C of finite Borel
super-probability measures on R̄ satisfying minµ∈C |µ| = 1, such that for every X ∈ L∞+ it
holds that

Φ(X) = inf
µ∈C

∫
R̄
Ka(X) dµ(a).

We point out that usc is not sufficient to ensure the inf above is achieved as min. The
reason is that the set of super-probability measures may contain measures with arbitrarily
large total mass, so (sequential) compactness can be lost. To get a sharper result we need
a stronger continuity notion, which we discuss in §E.4.

In the following sections we present the proofs for the above results.

E.1 Proof of Theorem 6

When the domain is all bounded random variables, it is sufficient to focus on the case
of sub-additivity. This is because if Φ is monotone, homogeneous and super-additive,
then Ψ(X) = −Φ(−X) is monotone, homogeneous and sub-additive. So the result for
super-additivity can be immediately deduced from the result for sub-additivity. We will
also omit the proof for the “if” direction of the theorem, which is straightforward.

Below we suppose Φ is sub-additive. For each random variable X and positive integer
n, denote by X∗n the random variable that is the sum of n i.i.d. copies of X. Repeatedly
applying sub-additivity, we have Φ(X∗n) ≤ nΦ(X) for each n, and equality holds when n
is a power of two by homogeneity. Thus, for each n, if we choose any m with 2m > n, then
by sub-additivity again

2mΦ(X) = Φ(X∗2m) ≤ Φ(X∗n) + Φ(X∗(2m−n)) ≤ nΦ(X) + (2m − n)Φ(X).
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Thus the above inequalities hold equal, and we conclude that

Φ(X∗n) = nΦ(X), ∀n ∈ N+.

This stronger property explains why we call Φ(X∗2) = 2Φ(X) homogeneity.
The following lemma generalizes the key Lemma 1:

Lemma 17. Let Φ be a monotone, homogeneous and sub-additive statistic defined on L∞

or L∞+ . If Ka(X) ≥ Ka(Y ) for all a ∈ R̄ then Φ(X) ≥ Φ(Y ).

Proof. It suffices to show Φ(X+2ε) ≥ Φ(Y ) for any ε > 0, which would imply Φ(X)+2ε ≥
Φ(Y ) by sub-additivity. Denoting X̃ = X + ε, then Ka(X̃) = Ka(X) + ε > Ka(Y ) for
every a ∈ R̄. Thus by Theorem 3, there exists a bounded random variable Z such that

X̃ + Z ≥1 Y + Z.

Since first-order stochastic dominance is preserved under adding an independent random
variable, we have

X̃1 + X̃2 + Z ≥1 X̃1 + Y2 + Z ≥1 Y1 + Y2 + Z,

where X̃1, X̃2 are i.i.d. copies of X̃ and similarly for Y1, Y2.
Iterating this procedure, we obtain that for each positive integer n,

X̃∗n + Z ≥1 Y
∗n + Z.

Since N ≥1 Z ≥1 −N , we further have

X̃∗n +N ≥1 Y
∗n + (−N),

or equivalently
(X + ε)∗n + 2N ≥1 Y

∗n.

Now, if we choose n so large that εn ≥ 2N , then the above implies

(X + 2ε)∗n ≥1 (X + ε)∗n + 2N ≥1 Y
∗n.

Thus Φ(X + 2ε) ≥ Φ(Y ) follows from the monotonicity and homogeneity of Φ.

Given Lemma 17, we can follow the proof of Theorem 1 and view Φ(X) as a functional
F (KX), which has the following five properties:

1. constants: F (c) = c for every constant function c;

2. monotonicity: KX ≥ KY implies F (KX) ≥ F (KY );

3. homogeneity: F (nKX) = nF (KX), ∀n ∈ N+;
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4. sub-additivity: F (KX +KY ) ≤ F (KX) + F (KY );

5. Lipschitz: |F (KX)− F (KY )| ≤ ‖KX −KY ‖.

The proof of Lipschitz continuity is essentially the same as Lemma 3, except that we
instead have

F (KY )− F (KX) ≤ F (KX+ε)− F (KX) ≤ F (Kε) = Φ(ε) = ε.

The second inequality here uses sub-additivity.
This functional F is initially defined on L = {KX : X ∈ L∞}. We now extend it to all

of C(R̄):

Lemma 18. Any functional F on L satisfying the above five properties can be extended to
a functional on C(R̄) maintaining these properties, with homogeneity strengthened to allow
for scalar multiplication with any positive real number (instead of n).

Proof. As in the proof of Lemma 4, we can extend F by homogeneity to the rational cone
spanned by L, and then extend by continuity to the entire cone. We thus have a functional
H defined on Cone(L) that satisfies monotonicity, homogeneity (over R+), sub-additivity
and Lipschitz continuity.

To further extend H to all continuous functions, we define for each g ∈ C(R̄)

I(g) = inf
f≥g, f∈Cone(L)

H(f). (19)

Note first that I(g) is well-defined and finite. This is because each ∈ C(R̄) is bounded, so
the constant function f = max[g] ∈ Cone(L) is point-wise greater than g. Moreover, any
function f ∈ Cone(L) that is point-wise greater than g must be point-wise greater than
the constant function min[g]. So by monotonicity, H(f) ≥ min[g] for any such f .

Secondly, when g ∈ Cone(L) we have I(g) = H(g) by monotonicity of H. So I extends
H. It is also easy to see I(g) maintains monotonicity and homogeneity.

Thirdly, we check I is sub-additive. Fix any g1, g2 and choose any ε > 0. Then by
definition of the infimum, there exists f1, f2 ∈ Cone(L) such that fi ≥ gi and H(fi) <
I(gi) + ε for i = 1, 2. Thus the function f1 + f2 ∈ Cone(L) and is bigger than g1 + g2. This
implies

I(g1 + g2) ≤ H(f1 + f2) ≤ H(f1) +H(f2) < I(g1) + I(g2) + 2ε,

where the second inequality uses the sub-additivity of H. Since ε is arbitrary, I is indeed
sub-additive.

Finally, we check I is Lipschitz. Suppose g1 ≤ g2 + ε for some ε > 0, then for any
f2 ∈ Cone(L) that is greater than g2, we have f2 + ε ∈ Cone(L) being greater than g1. So
by sub-additivity of H and H(ε) = ε,

I(g1) ≤ H(f2 + ε) ≤ H(f2) + ε.
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Letting H(f2) approach I(g2) thus yields the desired result I(g1) ≤ I(g2) + ε.
Hence this functional I is the desired extension of F to all of C(R̄).

Given this extension I satisfying I(KX) = Φ(X), the “only if” direction of Theorem 6
will follow from the next result characterizing such functionals I:

Lemma 19. Let I : C(R̄) → R be a functional that is monotone, homogeneous, sub-
additive and Lipschitz, and maps any constant function to this constant. Then there exists
a non-empty closed convex set C of Borel probability measures on R̄, such that for every
g ∈ C(R̄)

I(g) = max
µ∈C

∫
R̄
g(a) dµ(a).

Proof. Homogeneity and sub-additivity implies I is convex, in the sense that I(λg1 + (1−
λ)g2) ≤ λI(g1) + (1− λ)I(g2) for all g1, g2 ∈ C(R̄) and λ ∈ (0, 1). Thus I is a convex and
continuous functional on the normed function space C(R̄). By Theorem 7.6 in Aliprantis
and Border (2006), the functional I coincides with its convex envelope, meaning that

I(g) = sup{J(g) : J ≤ I and J is an affine and continuous functional}. (20)

Using the Riesz-Markov-Kakutani Representation Theorem, any such functional J can be
written as

J(g) = b+
∫
R̄
g(a) dµ(a)

for some b ∈ R and some possibly signed finite measure µ.
Now observe from (20) that J(0) ≤ I(0) = 0, so b ≤ 0. Moreover, since I is homogeneous,

we deduce from J(ng) ≤ I(ng) = nI(g) that b
n +

∫
R̄ g(a) dµ(a) ≤ I(g) for every positive

integer n, and thus Ĵ(g) =
∫
R̄ g(a) dµ(a) lies between J(g) and I(g). It follows that we can

replace each affine J by the linear functional Ĵ without affecting (20). So we can rewrite

I(g) = sup
µ∈C

∫
R̄
g(a) dµ(a) (21)

for some set C of possibly signed measures µ.
Choose g ≤ 0. Then by monotonicity of I we have I(g) ≤ 0. Thus (21) implies that∫

R̄ g(a) dµ(a) ≤ I(g) ≤ 0. Since this holds for any continuous function g ≤ 0, we conclude
that each µ ∈ C is a non-negative measure. Moreover, plugging g = 1 into (21) yields
|µ| ≤ 1, whereas plugging g = −1 implies |µ| ≥ 1. Thus C is a nonempty set of probability
measures.

Finally, note that taking the closed convex hull of C does not affect the equality in
(21). So we can assume C is closed and convex. In this case the supremum is achieved as
maximum, because any sequence of probability measures on the compact metric space R̄
has a weakly convergent sub-sequence, by Prokhorov’s Theorem. This proves Lemma 19
and thus Theorem 6.
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E.2 Proof of Proposition 7

The proof is essentially the same as Theorem 6, so we only point out the differences.
Lemma 17 holds without change, and we can still view Φ(X) as a functional F (KX).
However, in the current setting F is only defined on L+ = {KX : X ∈ L∞+ }, which only
contains non-negative functions.

Using the same construction as in Lemma 18, we can extend F to a functional I on
C(R̄). But note that in applying Lemma 19, we need to weaken the assumption that I
maps any constant function to this constant. In the current setting, this only holds for
non-negative constants. Therefore, when following the proof of Lemma 19, we can no
longer deduce |µ| ≥ 1 from (21) by plugging in g = −1. The consequence is that the
conclusion of Lemma 19 is correspondingly weakened to

I(g) = max
µ∈C

∫
R̄
g(a) dµ(a)

for a non-empty closed convex set C of sub-probability measures satisfying maxµ∈C |µ| = 1.
Note that supremum is still achieved, since Prokhorov’s Theorem also applies to sub-
probability measures. This gives the result in Proposition 7.

E.3 Proof of Proposition 8

The necessity of upper-semicontinuity (usc) for the “inf-integral” representation has been
discussed, so we again focus on the “only if” direction. We first derive the following
analogue of Lemma 17:

Lemma 20. Let Φ be an monotone, homogeneous and usc statistic defined on L∞+ . If
Ka(X) ≥ Ka(Y ) for all a ∈ R̄ then Φ(X) ≥ Φ(Y ).

Proof. Recall that we showed before Lemma 17 that a homogeneous and sub-additive
statistic satisfies the stronger form of homogeneity: Φ(X∗n) = nΦ(X). An analogous
argument applies to a homogeneous and super-additive statistic. Thus, following the proof
of Lemma 17, we have

(X + 2ε)∗n ≥ Y ∗n

for every ε > 0 and n sufficiently large. Thus Φ((X + 2ε)∗n) ≥ Φ(Y ∗n) by monotonicity
and Φ(X + 2ε) ≥ Φ(Y ) by homogeneity.

Now since Φ is usc, limε→0+ Φ(X + 2ε) = Φ(X). Hence Φ(X) ≥ Φ(Y ) as desired.

Given this lemma, we can now view Φ(X) as a functional F (KX) that has the following
five properties (slightly different from the sub-additive case studied before):

1. constants: F (c) = c for every non-negative constant function c ≥ 0;

2. monotonicity: KX ≥ KY implies F (KX) ≥ F (KY );
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3. homogeneity: F (nKX) = nF (KX), ∀n ∈ N+;

4. super-additivity: F (KX +KY ) ≥ F (KX) + F (KY );

5. upper-semicontinuity: limε→0+ F (KX + ε) = F (KX).

This functional F is defined on L+ = {KX : X ∈ L∞+ }, but we will extend it to C+(R̄),
the space of all non-negative continuous functions on R̄.

Lemma 21. Any functional F on L+ satisfying the above five properties can be extended
to a functional on C+(R̄) maintaining these properties, with homogeneity strengthened to
be over R+.

Proof. The proof of this lemma is somewhat different from the proof of Lemma 18 before,
due to the fact that we have now have usc instead of Lipschitz continuity. Thus, in the
current setting we first extend F to a functional G defined on the rational cone ConeQ(L+)
that maintains the five properties and satisfies homogeneity over Q+ (usc of G follows
from that of F and the definition G(mnKX) = m

n F (KX)). But in the next step, instead of
extending to the whole cone by Lipschitz continuity, we directly extend G to all of C+(R̄)
by the following construction:

I(g) = inf
ε>0

(
sup

f≤g+ε, f∈ConeQ(L+)
G(f)

)
. (22)

For any g ≥ 0 and ε > 0, the constant function f = 0 is in the rational cone and
satisfies f ≤ g+ε. So the inner supremum in (22) is non-negative. Moreover, any f ≤ g+ε

is smaller than the constant function max[g] + ε, so by monotonicity of G we know that
the inner supremum is at most max[g] + ε. This implies I(g) ∈ [0,max[g]] is well-defined.

We also note that if g is in the rational cone, then the inner supremum is achieved by the
function f = g + ε by monotonicity of G. Thus in this case I(g) = infε>0G(g + ε) = G(g),
where the latter equality holds by usc of G. Thus the functional I extends G, and in
particular I satisfies the first property above that I(c) = c for every c ≥ 0.

Secondly, we check I is monotone. This is clear because if g1 ≥ g2, then for any ε > 0,
the inner supremum in (22) is larger for g1 than for g2. So I(g1) ≥ I(g2).

The third property to check is homogeneity. We first show I is homogeneous over Q+,
i.e., I(mn g) = m

n I(g) whenever m,n are positive integers. Indeed, by writing ε = m
n ε̂ and
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f̂ = m
n f we have

I(m
n
g) = inf

ε>0
sup

f≤m
n
g+ε, f∈ConeQ(L+)

G(f)

= inf
ε̂>0

sup
f≤m

n
(g+ε̂), f∈ConeQ(L+)

G(f)

= inf
ε̂>0

sup
f̂≤g+ε̂, f̂∈ConeQ(L+)

G(m
n
f̂)

= m

n
inf
ε̂>0

sup
f̂≤g+ε̂, f̂∈ConeQ(L+)

G(f̂)

= m

n
I(g).

From the second line to the third line above, we used the observation that f is in the
rational cone if and only if f̂ = m

n f is in the rational cone. Now since I is homogeneous over
Q+ and also monotone, an approximation argument shows that I is in fact homogeneous
over R+ (note that we are dealing with non-negative functions here).

Next, we check I is super-additive. This follows from the observation that for each
ε > 0,

sup
f1≤g1+ε, f1∈ConeQ(L+)

G(f1) + sup
f2≤g2+ε, f2∈ConeQ(L+)

G(f2) ≤ sup
f≤g1+g2+2ε, f∈ConeQ(L+)

G(f).

The above inequality holds because for any f1, f2 showing up on the left-hand side, the
function f = f1 + f2 is in the rational cone and satisfies f ≤ g1 + g2 + 2ε. So the right-hand
side is at least G(f1 + f2) ≥ G(f1) +G(f2).

Finally, we check I is also usc. Choose any g ≥ 0 and denote b = I(g). Then we need
to show that for any γ > 0, there exists δ > 0 such that I(g + δ) ≤ b+ γ. To see this, note
from the definition (22) that there exists some ε̄ > 0 such that

sup
f≤g+ε̄, f∈ConeQ(L+)

G(f) ≤ b+ γ.

Thus, for any δ < ε̄, we have

I(g + δ) = inf
ε>0

(
sup

f≤g+δ+ε, f∈ConeQ(L+)
G(f)

)

≤
(

sup
f≤g+δ+ε, f∈ConeQ(L+)

G(f)
) ∣∣∣∣

ε=ε̄−δ

= sup
f≤g+ε̄, f∈ConeQ(L+)

G(f)

≤ b+ γ.

This completes the proof.
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Proposition 8 now follows from the following analogue of Lemma 19:

Lemma 22. Let I : C+(R̄) → R be a functional that is monotone, homogeneous, super-
additive and upper-semicontinuous, and maps any non-negative constant function to this
constant. Then there exists a non-empty closed convex set C of finite Borel super-probability
measures on R̄, such that for every g ∈ C+(R̄)

I(g) = inf
µ∈C

∫
R̄
g(a) dµ(a).

Proof. Note first that homogeneity and super-additivity imply I is a concave functional on
non-negative continuous functions. Next, we extend I to all continuous functions by letting
I(g) = −∞ whenever g(a) < 0 at some a ∈ R̄. This is in fact consistent with (22), since
for sufficiently small ε there exists no functions f ∈ ConeQ(L+) that satisfies f ≥ g + ε.

Although the resulting functional (let us still call it I) sometimes take the value −∞, it
is a proper extended concave function according to Definition 7.1 in Aliprantis and Border
(2006). Specifically, I is “proper” because it never assumes the value ∞ and does not
always equal −∞. It is “concave” because its hypograph

hypo I = {(g, α) ∈ C(R̄)× R : α ≤ I(g)}

is a convex set. This is because the requirement α ≤ I(g) forces g ≥ 0, so I(g1) ≥ α1

and I(g2) ≥ α2 imply I(λg1 + (1 − λ)g2) ≥ λα1 + (1 − λ)α2 by the concavity of I for
non-negative functions.

We next show this hypograph is a closed set, so that I is an upper-semicontinuous
proper concave functional according to Section 7.2 in Aliprantis and Border (2006). Indeed,
choose any sequence {gn} ⊂ C(R̄) and {αn} ⊂ R satisfying I(gn) ≥ αn for each n, and
suppose gn → g in the sup norm and αn → α. Then we first have gn ≥ 0 and thus
g ≥ 0. Moreover, for each ε > 0 it holds that gn ≤ g + ε for sufficiently large n. Thus by
monotonicity of I,

I(g + ε) ≥ I(gn) ≥ αn

for every large n. Taking n to infinity yields I(g + ε) ≥ α. But since ε is arbitrary, we
have I(g) = limε→0+ I(g + ε) ≥ α as well. So (g, α) also belongs to the hypograph, which
is thus closed.

Now that we know I is an usc proper concave functional, we can apply the direct
analogue of Theorem 7.6 in Aliprantis and Border (2006) to deduce that I coincides with
its concave envelope:

I(g) = inf{J(g) : J ≥ I and J is an affine and continuous functional}.

As in the proof of Lemma 19, any such functional J can be written as

J(g) = b+
∫
R̄
g(a) dµ(a)
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for some b ∈ R and some possibly signed finite measure µ. In fact, b ≥ 0 by I(0) ≤ J(0).
And since I is homogeneous, we can replace b by b

n . So in the end we can without loss
assume b = 0.

Since for any continuous g ≥ 0 it holds that J(g) =
∫
R̄ g(a) dµ(a) ≥ I(g) ≥ 0, any such

µ is a non-negative measure. We also know from J(1) ≥ I(1) = 1 that |µ| ≥ 1. This leads
to the desired representation

I(g) = inf
µ∈C

∫
R̄
g(a) dµ(a)

for a set C of finite super-probability measures µ. As before, assuming C to be closed and
convex is without loss, although in this case the infimum need not be achieved.

E.4 Strengthening Proposition 8

A feature in Proposition 8 is that the infimum is not necessarily achieved. To get a sharper
result, we define Φ to be Lipschitz usc if there exists a constant ` > 0 such that

Φ(X + 1)− Φ(X) ≤ `

holds for every X in the domain. Note that when Φ is homogeneous, this condition is
equivalent to the stronger condition that

Φ(X + ε)− Φ(X) ≤ `ε

for every X and very ε > 0.17 We will use these conditions interchangeably.

Proposition 9. Φ: L∞+ → R is monotone, homogeneous, super-additive and Lipschitz
upper-semicontinuous if and only if there exists a nonempty closed convex set C of uniformly
bounded Borel super-probability measures on R̄ satisfying minµ∈C |µ| = 1, such that for
every X ∈ L∞+ it holds that

Φ(X) = min
µ∈C

∫
R̄
Ka(X) dµ(a).

Proof. For the “if” direction, we simply note that if all measures µ ∈ C have total mass no
greater than `, then ∫

R̄
Ka(X + ε) dµ(a) ≤ `ε+

∫
R̄
Ka(X) dµ(a)

for any µ ∈ C and any ε > 0. From this it follows that Φ(X + ε)− Φ(X) ≤ `ε, and so the
statistic Φ must be Lipschitz usc.

17To see this, note that Φ(X∗n + 1)−Φ(X∗n) ≤ ` implies Φ(X + 1
n

)−Φ(X) ≤ `
n
by homogeneity. Thus

Φ(X + ε)− Φ(X) ≤ `ε holds when ε is a positive rational number. By monotonicity of Φ, it also holds for
any positive real number ε.
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Turning to the “only if” direction, suppose Φ is Lipschitz usc. Then it is in particular
usc, and we obtain from Proposition 8 that

Φ(X) = inf
µ∈C

∫
R̄
Ka(X) dµ(a).

We now show that the Lipschitz property of Φ further implies it is without loss to assume
the measures in C are uniformly bounded. To do this, let n be any positive integer and
consider the following subset of C:

Cn = {µ ∈ C : |µ| ≤ n}.

Define an alternative statistic

Ŝ(X) = inf
µ∈Cn

∫
R̄
Ka(X) dµ(a) ≥ Φ(X).

If Φ(X) = Ŝ(X) for every X then we are done. Otherwise there exists X ∈ L∞+ and δ > 0
such that Ŝ(X) > Φ(X) + δ.

Now take any positive ε < δ
n , we will show that Φ(X + ε) ≥ Φ(X) + nε. Indeed, for

any measure µ ∈ Cn, we have∫
R̄
Ka(X + ε) dµ(a) ≥

∫
R̄
Ka(X) dµ(a) ≥ Ŝ(X) > Φ(X) + δ > Φ(X) + nε.

On the other hand, if µ ∈ C\Cn, then it also holds that∫
R̄
Ka(X + ε) dµ(a) =

∫
R̄

(Ka(X) + ε) dµ(a) = ε|µ|+
∫
R̄
Ka(X) dµ(a) > Φ(X) + nε.

Hence we do have Φ(X + ε) ≥ Φ(X) + nε for ε sufficiently small.
But Φ is assumed to be Lipschitz usc, so the previous conclusion cannot hold for every

n (and some X). It follows that for some n, we must have Φ(X) = Ŝ(X). Therefore

Φ(X) = inf
µ∈C

∫
R̄
Ka(X) dµ(a)

for a set C of super-probability measures that are uniformly bounded. Finally, we can take
C to be closed and convex, and then the infimum is achieved by Prokhorov’s Theorem.

The following is an example of a super-additive statistic that is usc but not Lipschitz
usc. For each s ≥ 1, let µs = s ·δ−s2 be the measure that puts mass s on a = −s2. Consider

Φ(X) = inf
s≥1

∫
R̄
Ka(X) dµs(a) = inf

s≥1
−1
s

logE
[
e−s2X

]
.

If X equals 0 or 1 with equal probabilities, then E
[
e−s2X

]
= 1

2 + 1
2e−s2 ∈ (1

2 ,
3
4). The

above infimum thus evaluates to 0, which is the limit as s→∞ (not achieved at any finite
s). But for any ε > 0, we have

Φ(X + ε) = inf
s≥1

∫
R̄
Ka(X + ε) dµs(a) = inf

s≥1
−1
s

logE
[
e−s2X

]
+ εs.
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Since E
[
e−s2X

]
< 3

4 , it holds that for every s ≥ 1,

−1
s

logE
[
e−s2X

]
+ εs >

log 4
3

s
+ εs ≥ 2

√
log 4

3 · ε.

Thus Φ(X) = 0 while Φ(X + ε) is at least on the order of
√
ε, which violates Lipschitz

upper-semicontinuity.
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