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Abstract

Rumors of a shortage may create higher-order uncertainty and cause panic
buying even when there is no real shortage and most consumers are aware of this
fact. We study the role of prices in alleviating, or even preventing, panic buying
caused by such rumors. Under some circumstances, flexible prices fail to do so
and panic buying is the unique equilibrium outcome. In these circumstances,
fixed prices prevent panic buying and lead to higher consumer surplus despite
the possibility of rationing. Producer surplus may be higher as well.

1 Introduction

As news of the Covid-19 pandemic hit Japan in February 2020, rumors arose on
social media– later proved to be unfounded– of disruptions in the supply of various
household products. Sales of certain items jumped ten-fold even though most people
received information that there was no real shortage (Iizuka et al., 2021). Similar
occurrences were widespread all over the world.
What causes such "panic buying"? A conventional explanation goes as follows.

Some people naively believe rumors that there is a shortage and try to stock up on
the good by rushing to buy immediately. Sophisticated people themselves do not
believe the rumors (or are persuaded by counter-rumors) but know that there are
naive people who do and will buy in a panic. Because they know that this itself
will cause a shortage, sophisticated people buy immediately as well. People who are
even more sophisticated understand the behavior of naive people as well as that of
other less sophisticated people and so they too buy immediately, etc. Panic becomes
widespread. This "infection" argument is, of course, familiar from other settings (for
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example, Rubinstein 1989). It rests, however, on the assumption that consumers’
decisions of when to buy are strategic complements– if more people buy in a panic,
then it is more advantageous for me to do so as well.
But what about prices? If a lot of people rush to buy today, then this should

cause today’s price to rise, thereby discouraging consumers from doing so. A sharp
rise in today’s price may make it more advantageous to postpone buying. As a result,
when prices respond to increased demand, consumers’choices of when to buy may
not be complementary.
In this paper we study whether the price mechanism can alleviate, or even prevent,

panic buying caused by rumors. We do this via a simple two-period model in which
the total supply of a storable good is fixed. While the good will be consumed only
tomorrow, consumers can either buy it today and store it until then or wait and
buy the good tomorrow itself. Since the total supply is fixed, the amount available
tomorrow is just what is left unsold today. Consumers are heterogeneous in the
utility they derive from consumption tomorrow. Moreover, today consumers only
have private, partial information about this utility. This means that there is an
option value of waiting to see what the realized utility is. Because of this, panic
buying results in a misallocation– those buying early may regret doing so.
To study panic buying, we study a situation in which consumers are unsure about

the total supply of the good. Specifically, there are two states of nature. In one,
the normal or "high" state, the supply is ample enough so that if there were no
uncertainty, it is an equilibrium for all consumers to wait. In the other, perhaps rare,
"low" state, there is a supply shortage. Rumors of a shortage are generated regardless
of the state. But if the state is normal, then with some probability, a fraction, perhaps
large, of the consumers hear counter-rumors– corrective messages saying that in fact
there is no shortage. These messages can then be forwarded– retweeted– again and
again via a process that mimics social media platforms like Twitter.1

We compare the case when prices are flexible, and so endogenously determined by
market conditions, to one where prices are controlled and fixed at a "normal" level,
that is, the price that would clear the market if there were no shortage. When prices
are fixed, a shortage in supply will result in excess demand and so it will be necessary
to ration what is available.
We find first, that flexible prices are unable to prevent panic buying caused by

rumors. Second, in many circumstances in which flexible prices are unable to do so,
fixed prices can prevent panic buying. Third, consumers are better off with fixed
prices even though they lead to rationing. More precisely,

1. With flexible prices, there is always an equilibrium with panic buying. If the
normal supply is not too large, then regardless of the shortage, the equilibrium
is unique (Theorem 1).

1The spread of information in this manner is similar to Morris’(2001) multi-player extension of
the Rubinstein (1989) E-Mail game.
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2. With fixed prices, there is an equilibrium without panic if either (i) the normal
supply is not too large; or (ii) the shortage is small. In case (i), the equilibrium
is unique. (Theorem 2).

3. When the shortage is rare, consumer surplus in the waiting equilibrium under
fixed prices is higher than that in the panic equilibrium under flexible prices.2

Producer surplus may be higher as well. (Section 4.3).

The first result points to a market failure. In this environment it occurs because
consumers are unable to insure against preference shocks– their consumption values
tomorrow may be different from those today. Thus we are in a second-best situation
and as the third result points out, fixed prices may increase both consumer and
producer surplus. Fixed prices do not always prevent panic, however. We show
below, by means of an example, that if the conditions for results 1. and 2. are not
met, it is possible that the unique equilibrium with fixed prices involves panic whereas
there is an equilibrium with flexible prices without panic.
To gain some intuition for the first result, note that there is always a positive

fraction of the people who do not receive any corrective information and so believe
that the shortage is very likely. Of these "naive" people, a substantial fraction–
those who expect to have high values tomorrow– panic and rush to buy today. Their
panic buying then "infects" other consumers– even those who are sure there is no
shortage– in a way similar to that in Rubinstein’s E-Mail game. Precisely, even
consumers who know that there is no shortage suffer from higher-order uncertainty
about other consumers and so panic as well. This "infection" argument leads to the
conclusion that panic buying is the unique equilibrium outcome. Note that here panic
buying emerges even in the normal state when there is no real shortage. This occurs
even if the potential shortage is small and rare– a 1% chance of a 1% shortage may
trigger panic buying!
Intuition suggests, however, that flexible prices should mitigate, or even prevent,

the infection. When a lot of consumers rush to stock up today, this causes today’s
price to rise, thereby raising the cost of panicking. While this is true, panic buying also
affects the price tomorrow. An increase in the number of consumers buying today, of
course decreases demand for the good tomorrow. But since the total stock of the good
is fixed, it also decreases the supply of the good tomorrow. A simple "price theory"
argument shows that the effect on supply is stronger and so in fact, tomorrow’s price
rises as well. Thus panic buying not only raises the cost of buying today but also the
cost of buying tomorrow. Although this leads to a lack of complementarity, when the
total supply in the normal state is not too large, the latter effect dominates and so
flexible prices are unable to stop panic buying.
The second result is simpler. Consider a situation in which prices are fixed at

their "normal" level. Unlike in the case of flexible prices, now the price today is the
2Under weak conditions on demand function, this ranking holds no matter what the probability

of the shortage. (Proposition 3).
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same as it will be tomorrow. If the normal supply is not too large, then the fixed
price– which is set at the normal level– is relatively high. But at this relatively high
price, consumers are better-off waiting to see if their final values are high enough to
justify the expense. Thus it is an equilibrium for everyone to wait.
The third result is rather straightforward. As a first step let us compare what

happens in the normal state. In the fixed price regime, everyone waits and the price
is set at a level that clears the market in the second period. In the flexible price
regime, everyone buys today and from the price theory argument outlined above
both the price today and the price tomorrow is higher than the normal level. Thus
in the normal state, consumers are strictly better-off in the fixed price regime. In the
shortage state, the fixed price is too low to clear the market and there is rationing.
But if the shortage is rare, consumers still prefer the fixed price regime.
A word of caution is necessary here. The reader may wonder if consumers can learn

from prices as in the rational expectations models of Radner (1979) and Grossman
and Stiglitz (1980). In such models, it is never clear whether price formation precedes
consumer behavior or vice versa. As detailed below, we use a specific price formation
process– a uniform-price auction in each period– in which consumer choices precede,
and determine, prices so that prices cannot convey decision-relevant information.

Rumors and Counter-Rumors With flexible prices, Theorem 1 shows that panic
buying can emerge as the unique equilibrium outcome. This relies on the fact that
even consumers who are sure that there is plentiful supply are unsure whether others
are aware of this fact. In other words, consumers suffer from higher-order uncertainty.
An interesting feature of our model is that the higher-order uncertainty is caused not
by rumors of a shortage but rather by the counter-rumors that, in fact, there is no
shortage. In other words, in our model it is "good news" that triggers panic buying,
not "bad news."
The work of Iizuka et al. (2021) finds some support for this hypothesis. These

authors studied how activity on Twitter affected daily sales of toilet paper in Japan in
February 2020.3 They report that starting on February 21, there were approximately
700 influential tweets and retweets about a shortage of toilet paper. By February
26, there was an attempt to counter this misinformation. Indeed, by March 10 there
were over 300,000 "corrective" tweets and retweets and it is estimated that these
were viewed over 100 million times! While there was no great jump in sales in
response to the initial rumors (between February 21 and 26), sales increased ten-fold
after the corrective tweets (between February 26 and 28). Interestingly, Iizuka et al.
(2021) find that in total, corrective tweets increased sales by three times as much as
misinformation tweets (see their Table 8).

3Out of population of 125 million, there are over 50 million Twitter accounts in Japan.
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Related Literature In this paper we study how rumors can lead consumers to
rush to buy in a panic when waiting is welfare superior. There are many other
settings in which panic results in suboptimal outcomes. An important example is
that of a bank run in which depositors rush to withdraw money from their accounts
because they fear that if others withdraw, the bank will become illiquid and fail. In
Diamond and Dybvig’s (1983) model of bank runs there are multiple equilibria– in
one, depositors panic, causing a bank run and in the other, they don’t. Goldstein
and Pauzner (2005) use a global game approach to isolate a single equilibrium in the
Diamond and Dybvig (1983) setting with private signals. A key difference between
a bank run and our model of consumer panic is that there is no analog of market
clearing via prices in the former.
In our model, higher-order uncertainty leads to a unique equilibrium. This idea

originates in the E-Mail game of Rubinstein (1989) and then has been studied at
length in the related setting of global games due to Carlsson and van Damme (1993).
In both settings, the arguments for uniqueness mostly rely on the assumption that
players’actions are strategic complements (Frankel, Morris and Pauzner, 2003). Re-
cently, Harrison and Jara-Moroni (2021) have established that the global game analy-
sis goes through even in binary choice games with strategic substitutes. Hoffman and
Sabarwal (2019) extend this to include games in which each player’s marginal benefit
is monotone in the actions of others; however, it may be increasing for some players
and decreasing for others. In our model, the actions are neither complements nor
substitutes. Indeed, because of the effect of flexible prices, the marginal benefits of
buying today versus tomorrow are non-monotonic.
Shadmehr (2019) studies a model of regime change in the global games framework.

Workers decide whether or not to revolt and the costs of revolting are forgone wages
that are endogenously determined. As in our model, because of the endogenous
adjustment of wages players’actions are neither complements nor substitutes.
While there is a vast literature applying the theory of global games to various

economic settings (see the surveys by Morris and Shin, 2003 and Angeletos and
Lian, 2016), the informational structure of the E-Mail game has rarely been used in
economic contexts. The E-Mail game information structure is particularly well-suited
to the modelling of the spread of information via rumors and social media. Awaya,
Iwasaki and Watanabe (2021) use this kind of structure to model how rumors can
result in a price bubble in markets for assets that can be sold and resold.
An altogether different mechanism that leads to panic buying has been explored

by Noda and Teramoto (2020). Here it is not higher-order uncertainty that causes
panic buying but rather an anticipated increase in search costs. Consumers then
rush to buy today and because of complementarity, others follow. While the model
displays a rich set of dynamics, prices are assumed to be fixed. Our main concern is
with comparing fixed and flexible prices in the face of supply shocks.
Price and wage flexibility is, of course, a major concern in the macro literature

in the so-called New Keynesian framework. In many environments an increase in
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price/wage flexibility may reduce welfare (for example, see Galí and Monacelli, 2016
or Bhattarai, Eggertsson and Schonle, 2018). The mechanisms by which this happens
are quite different from that in our paper. For instance, in Bhattarai, Eggertsson and
Schonle (2018), increased price flexibility reduces welfare because it leads to increased
output volatility– a channel that is absent in our model.
In this paper, panic buying refers to a situation in which consumers purchase early

with only partial information about the value of the good. The work on "unraveling"
in matching markets studies similar phenomena in labor markets (see Roth and Xing,
1994 and Li and Rosen, 1998). The important difference from our model is that in this
literature workers have differing qualities and prices, or rather wages, are assumed to
be fixed.

The remainder of the paper is organized as follow. The basic model is introduced
in the next section. As a first step, in Section 3 we study a situation when there is
no uncertainty about the total supply and derive equilibria under both flexible and
fixed prices. Section 4 then considers the full model with supply uncertainty and the
spread of rumors. Again we compare equilibria under both price regimes. We identify
circumstances in which equilibrium outcomes are unique– flexible prices lead to panic
buying whereas fixed prices do not. In Section 5, we exhibit an example in which
there is a no-panic equilibrium with flexible prices whereas the unique equilibrium
with fixed prices involves panic.

2 Preliminaries

Demand There is a continuum of consumers in I = [0, 1] each of whom wishes
to consume a single unit of a storable good. There are two periods, 1 ("today") and
2 ("tomorrow"), and the good will be consumed only in period 2. The utility or value
derived from consuming the good in period 2 varies across consumers and is deter-
mined as follows. Prior to period 1, each consumer i ∈ I draws an estimated value vi
from a continuous distribution F on [0, 1] with a positive density f on (0, 1) .4 Prior to
period 2, the consumer learns the final value wi, which is determined as follows. With
probability λ ∈ (0, 1) , the final value wi = vi, the estimate. With probability 1− λ,
the final value wi is the result of a new draw from F that is independent of the initial
draw.5 The initial and final values are drawn independently across consumers.6 This
means that in the first period, the expected final value conditional on the estimate
E [W | V = vi] = λvi + (1− λ)E [W ], where E [W ] denotes the expectation of the
values according to F.

4We will denote by µ the corresponding measure.
5This formulation has been used by Krasikov and Lamba (2020) in their work on dynamic pricing.
6We are glossing over the conceptual diffi culties associated with postulating a continuum of

independent random variables.
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While all consumption takes place in period 2, each consumer decides whether
or not to purchase the good in period 1 or, if available, in period 2. If a consumer
purchases the good in period 1, he or she can store it at no cost. The fact that
the final value could be different from the estimated value means that a consumer
may wish to postpone purchasing until tomorrow. For instance, if price tomorrow is
expected to be the same as that today, then a consumer will be better off postponing
his or her purchase.

Supply The good is produced using raw material at a constant cost of c per
unit. One unit of raw material produces one unit of the good and all production is
to order. The total amount of raw material available is θ. In the first period up to θ
units of the good can be produced and sold. If d1 ≤ θ units of the good are sold in
the first period, then θ − d1 units can be produced and sold in the second period.
The total supply of the raw material is assumed to be fixed and insensitive to

prices– consumer decisions are day-to-day and suppliers are unable to obtain more
raw material that quickly. It is also assumed that in each period, suppliers are
passive– they just try to sell all that they have on the market. In particular, they do
not hold back some of what they have in the first period for strategic reasons.
Throughout, we will assume that the costs are such that for all consumers, there

are gains from trade in the first period, that is,

Condition 1 (Gains from Trade)

(1− λ)E [W ] > c

Prices We will compare two regimes. In one, prices are flexible and adjust to
equate supply and demand in each period. Of course, if there is excess supply even
when the price equals the cost c, then the market price is c. Depending on consumers’
behavior, the market-clearing price p1 today may be higher or lower than the market-
clearing price p2 tomorrow. Because there is a continuum of consumers, prices will be
competitive. As a micro-foundation, we suppose that in each period market-clearing
prices are determined via a uniform-price auction with a reserve price of c.7

In the other regime, prices in both periods are fixed at the market-clearing level

vθ ≡ F−1 (1− θ)

In other words, they are fixed at a price which would clear the market if there were
no panic buying. To see this, note that the mass of consumers with final values above

7Specifically, participating consumers submits bids which are ranked in descending order. If there
is a market-clearing price p > c such that the mass of bidders willing to pay p equals the supply,
then all such bidders pay p for the good. If the mass of bidders willing to pay c is smaller than the
supply, then all pay c. Each consumer who decides to buy today has a dominant strategy to bid
his or her estimated value λvi + (1− λ)E [W ]. Each consumer who decides to wait has a dominant
strategy to bid his or her final value wi.
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vθ is 1 − F (vθ) = θ, the available supply.8 Of course, fixed prices may not clear the
market if some consumers buy today. In that case, rationing may be needed and if
so, we suppose that the good is uniformly rationed via a lottery.

2.1 Market-Clearing Prices

We begin the analysis by studying the prices that clear the market today and tomor-
row. To do this, we first take consumers’decisions regarding whether they wish to
purchase today or tomorrow as being exogenously specified. In this section, we derive
three important properties of market-clearing prices. Later sections will endogenize
these decisions as the result of consumers’optimal choices of when to buy.
Our first result is that if more people choose to buy today rather than to wait until

tomorrow, then this (weakly) raises the price in both periods. Clearly today’s price
p1 rises since today’s demand has gone up while the supply is unchanged. The effect
on tomorrow’s price p2 is more subtle since both tomorrow’s demand and tomorrow’s
supply are affected. If more people buy today, then this decreases the amount avail-
able in period 2 one for one– tomorrow’s supply curve is vertical and shifts to the left
by an amount equal to the mass of additional customers today. Tomorrow’s demand
curve also shifts to the left, but by less than this amount because among those who
buy today are some whose values tomorrow are so low that their absence does not
decrease tomorrow’s effective demand. As a result tomorrow’s supply falls by more
than tomorrow’s demand and so the price tomorrow rises. This simple "price theory"
result plays a key role in our analysis.

Lemma 1 (Price Theory) Suppose that consumers in C ⊂ [0, 1] buy today and the
resulting prices are (p1, p2). If consumers in C ⊃ C buy today, then the resulting
prices (p1, p2) ≥ (p1, p2) . If µ

(
C \ C

)
> 0 and c < p2 < 1, then p2 > p2.

The formal proof of the lemma is in the Appendix but the basic idea is rather
simple and can be seen in Figure 1. In the figure, the set C consists of all consumers
with estimates above z while the set C ⊃ C consists all those with estimates above
z < z. If all those in C buy today, then the residual supply in period 2 is s2 and the
residual demand is d2 and so the price tomorrow is p2. If all those in C buy today,
then tomorrow’s price rises to p2. The reason is as follows. The residual supply
tomorrow decreases by the amount s2− s2 = z− z. Note also that although all those
with estimates above z buy today, some customers with low estimates can have high
values tomorrow and so the demand curve d2 starts at p2 = 1. The same is true for
d2. Thus, d2 (1)− d2 (1) = 0. Also, d2 (0)− d2 (0) = z− z because if tomorrow’s price
is 0, then in both cases those who did not buy today are willing to buy tomorrow.
Moreover, for any p, d2 (p) − d2 (p) < z − z. Thus the demand curve d2 shift to the
left but by less than z − z.

8Note that vθ is just the demand price at quantity θ in a static setting where the demand function
is 1− F (p) .
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Figure 1: Price Theory Lemma

An immediate consequence of Lemma 1 is

Corollary 1 All consumers are (weakly) better-off when those in C rush as opposed
to when those in C ⊃ C rush. If µ

(
C \ C

)
> 0 and p2 < 1, then consumer surplus

is strictly greater when those in C buy today.9

The next result uses Lemma 1 to put tight bounds on market-clearing prices. If
the mass of consumers who buy today is less than θ, then there is excess supply
today and so p1 = c. On the other hand, if the mass of consumers who buy today is
greater than or equal to θ, then the total supply of the good is exhausted today and
so tomorrow’s residual supply is zero. Thus, p2 = 1. So we have that either p1 = c
or p2 = 1. In other words, either the price today is very low or the price tomorrow is
very high. More precisely,

Lemma 2 (Price See-Saw) Suppose (p1, p2) are market-clearing prices when the
set of consumers who buy today is C. (i) If µ (C) < θ, then p1 = c and p2 ≥
max (vθ, c) . (ii) If µ (C) ≥ θ, then c ≤ p1 ≤ λvθ + (1− λ)E [W ] and p2 = 1.

Proof. Let C be the set of consumers who buy today. If µ (C) < θ, that is, there
is excess supply in period 1, then the first-period price is p1 = c. From Lemma 1
the price in the second period is at least as high as the price that results if everyone
waits. But if everyone waits, the price in the second period is max (vθ, c) .

9In the present context, consumer surplus is the same as the expected payoff of a consumer.
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If µ (C) ≥ θ, then the available supply is exhausted in period 1 and so p2 = 1.
Again, from Lemma 1, p1 takes on its highest value when everyone buys today. But
if everyone buys today, the supply is exhausted and so the marginal buyer today has
value vθ = F−1 (1− θ) . Thus,

p1 ≤ λvθ + (1− λ)E [W ]

the market-clearing price if everyone tried to buy today.

Lemmas 1 and 2 hint at why the price mechanism may fail to alleviate panic
buying. If a lot of people panic and buy today, then this naturally raises today’s
price thereby raising the cost of panicking. But as Lemma 1 shows, this also raises
tomorrow’s price, thereby raising the cost of not panicking as well. Lemma 2 shows
that if few people buy today, then today’s price is c and thus lower than tomorrow’s
price. This gives more people the incentive to buy today. This effect is particularly
strong when θ is small. On the other hand, if a lot of people buy today, then today’s
price cannot be higher than the market-clearing price and all those who are willing
to pay this price have the incentive to buy today.
To study how the flexible prices affect the incentives to buy today versus tomorrow,

suppose that the set of consumers who rush to buy today is C and let (p1, p2) be the
resulting market-clearing prices. Given θ, define

∆θ (v, C) = max (λv + (1− λ)E [W ]− p1, 0)︸ ︷︷ ︸
Payoff from buying today

−(λmax (v − p2, 0) + (1− λ)E [max (W − p2, 0)])︸ ︷︷ ︸
Payoff from buying tomorrow

(1)

to be the gain from buying today versus tomorrow for a consumer with estimate v.
The gain from buying today ∆θ (v, C) is non-decreasing in v. To see this, note

that from Lemma 2, we know that either p1 = c or p2 = 1. If p1 = c, then Condition
1 implies that

∆θ (v, C) = λv + (1− λ)E [W ]− c
−λmax (v − p2, 0)− E [max (W − p2, 0)]

On the other hand, if p2 = 1, then

∆θ (v, C) = max (λv + (1− λ)E [W ]− p1, 0)

and in both cases, ∆, the gain from buying today versus tomorrow, is non-decreasing
in v and may in fact be flat over certain regions.
On the other hand, because of Lemma 1 consumers’ actions are not strategic

complements– that is, ∆θ (v, C) is not monotonic in C. This is depicted in Figure 2
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Figure 2: Lack of Complementarity

for an example in which consumers in C (z) = {i | vi > z} rush to buy today.10 When
z < vθ, the market-clearing price today p1 = λvθ + (1− λ)E [W ] and since the good
is exhausted the payoff from waiting is zero. When z > vθ, the price today p1 = c
since there is excess supply. But if z = vθ, then p1 is indeterminate (see Lemma 2)
and so ∆θ (v, C (vθ)) is an interval.
The next result shows that ∆θ (v, ·) satisfies a limited version of quasi-concavity.11

Lemma 3 For any C ⊂ C ⊂ I,

∆θ

(
v, C

)
≥ min (∆θ (v, C) ,∆θ (v, I))

Proof. If the mass of consumers buying today µ
(
C
)
< θ, then Lemma 2 implies

that p1 = p1 = c and Lemma 1 implies that p2 ≥ p2. Since ∆ is non-decreasing in
tomorrow’s price, we have ∆θ

(
v, C

)
≥ ∆θ (v, C) .

If µ
(
C
)
≥ θ, Lemma 2 implies that p1 ≤ λvθ + (1− λ)E [W ] and p2 = 1. But

if everyone in I buys today, then the prices are p1 (I) = λvθ + (1− λ)E [W ] and
p2 (I) = 1. Thus, ∆θ

(
v, C

)
≥ ∆θ (v, I) .

Observe that if C = ∅, then for any C,

∆θ

(
v, C

)
≥ min (∆θ (v,∅) ,∆θ (v, I))

and so the incentive to buy today is minimized either when no one buys today or
when everyone buys today.

10In the example of Figure 2, F is uniform, θ = 0.7, c = 0.3, λ = 0.1 and v = 0.9.
11Recall that a function g is quasi-concave if g (βx+ (1− β) y) ≥ min (g (x) , g (y)) .
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3 Certain Supply

While our primary interest is in studying panic buying under supply uncertainty, as
a first step, it is useful to see what happens when the total supply of the good, θ, is
commonly known and so there is no role for rumors or corrective messages. All other
elements of the model remain unchanged.
We will study equilibria under two regimes: (i) prices are fully flexible so that the

market clears in both periods; and (ii) prices are fixed.

3.1 Flexible Prices

First, observe that if prices are flexible, then for all θ < 1, there is an equilibrium
in which all sales occur today. This is because if all consumers rush to buy today,
by definition, the market-clearing price today p1 equates supply and demand. Thus,
the total supply is exhausted today and there is nothing left for tomorrow. All those
willing to pay p1 today are strictly better-off buying today and those who are not
willing to pay p1 today will not be able to buy the good tomorrow either.
When θ is relatively high, there is also an equilibrium in which all sales occur

tomorrow. To see this, note that if everyone waits, then the market-clearing price
today p1 = c, since there are no customers today. The market-clearing price tomorrow
p2 = max (vθ, c). Using (1), the difference in payoffs from buying today versus waiting
is

∆θ (v,∅) = λv + (1− λ)E [W ]− c
−λmax (v − p2, 0)− (1− λ)E [max (W − p2, 0)]

If θ is so high that p2 = c, then ∆θ (1,∅) < 0. This follows from the fact
E [W ] − c < E [max (W − c, 0)], that is, there is an option value to waiting. If θ is
close to zero, then p2 is close to 1 and so ∆θ (1,∅) > 0. Moreover, ∆θ (v,∅) is strictly
decreasing in θ unless p2 = c. Thus, there exists a unique θ∗ such that

∆θ∗ (1,∅) = 0 (2)

Now if θ ≥ θ∗, ∆θ (1,∅) ≤ 0 and because ∆θ (·,∅) is non-decreasing, for all v,
∆θ (v,∅) < 0 as well. This implies that when θ ≥ θ∗ it is an equilibrium for all
consumers to wait. Thus, if θ ≥ θ∗, there are multiple equilibria.
If θ < θ∗, then the equilibrium outcome is unique– everyone tries to buy today

rather than wait. We will first argue that for all v > vθ and for all C ⊂ I, ∆θ (v, C) >
0. Lemma 3 implies that ∆θ (v, C) ≥ min (∆θ (v,∅) ,∆θ (v, I)) and we will argue that
the right-hand side is positive.
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First, if C = ∅ so that everyone waits, then p1 = c and p2 = vθ > c.12 Now

∆θ (vθ,∅) = λvθ + (1− λ)E [W ]− c− (1− λ)E [max (W − vθ, 0)]

= ∆θ (1,∅)

> 0

since θ < θ∗. Since ∆θ (·,∅) is non-decreasing, ∆θ (v,∅) > 0 for all v > vθ.
Second, if C = I so that everyone buys today, then market-clearing price today

p1 = λvθ + (1− λ)E [W ] and p2 = 1. Now

∆θ (v, I) = λ (v − vθ) > 0

as well.
We have argued that it is dominant for all v > vθ to buy today. But this means

that the supply will be exhausted today and so there is no point in waiting. We thus
obtain

Proposition 1 Suppose the supply θ is known and prices are flexible. For all θ,
there is an equilibrium in which all sales occur today. If θ < θ∗, then the equilibrium
outcome is unique. If θ ≥ θ∗, there is also an equilibrium is which all sales occur
tomorrow.

The proposition already points to a drawback of flexible prices– they clear mar-
kets! This means that they can never be high enough to choke-off demand in the first
period and so there is always an equilibrium in which everyone rushes to buy today.
Moreover, if everyone waits, there is excess supply today and so p1 = c while p2 = vθ.
If the total supply θ is small, then vθ is high and so it is better to buy at a low price
today than a high price tomorrow. In these circumstances, rushing to buy today is
the unique equilibrium.

3.2 Fixed Prices

We now turn to consider a situation in which prices are fixed at a level that would
clear the market if everyone waited– that is, p1 = p2 = max (vθ, c) .
First, observe that with fixed prices, for all θ < 1, there is an equilibrium in

which all sales occur tomorrow. This follows from the fact that prices are fixed at
a level that if everyone waits, then any consumer willing to pay max (vθ, c) for the
good tomorrow can buy it for sure– there is no need for rationing. Since the price
tomorrow will be the same as the price today, and there is an option value to waiting,
it is optimal to wait.
Second, define

θ = 1− F (λ+ (1− λ)E [W ])

12This follows from the fact, proved in Appendix A.2 that v∗ ≡ F−1 (1− θ∗) > c.
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If θ < θ, or equivalently, if λ + (1− λ)E [W ] < vθ, then the unique equilibrium
outcome is one in which all sales occur tomorrow. To see this, note that since
(1− λ)E [W ] > c the fixed pricemax (vθ, c) = vθ.Now the fact that λ+(1− λ)E [W ] <
vθ implies that even a consumer with estimate v = 1 does not wish to purchase the
good today. The same then holds for all consumers. The simple reason for the unique-
ness result is that when the supply is small, the fixed price is high. In particular,
today’s price is high.
Finally, define

θ = 1− F ((1− λ)E [W ])

If θ > θ, or equivalently, (1− λ)E [W ] > vθ, then there is an equilibrium in which all
sales occur today. Again, since (1− λ)E [W ] > c, (1− λ)E [W ] > max (vθ, c) , the
fixed price. Now the payoff from buying the good today is positive for all consumers
whether or not there is rationing. Thus, if all consumers buy today, the supply will
be exhausted and there is no gain to waiting.
The arguments above lead us to conclude that in sharp contrast to Proposition 1,

with fixed prices we have

Proposition 2 Suppose the supply θ is known and prices are fixed. For all θ, there
is an equilibrium in which all sales occur tomorrow. If θ < θ, then the equilibrium
outcome is unique. If θ ≥ θ, there is also an equilibrium in which all sales occur
today.

Note that Propositions 1 and 2 imply that for any θ, with flexible prices, there
is an equilibrium in which all consumers rush to buy today while with fixed prices,
there is an equilibrium in which all consumers wait. If θ < min (θ∗, θ), there is a
unique equilibrium under both regimes.13

3.3 Fixed versus Flexible Prices

Comparing flexible versus fixed prices, the latter are superior from the perspective of
consumers in following sense. For any θ, consumer surplus in the waiting equilibrium
under fixed prices is (strictly) higher than in the rush-to-buy-today equilibrium under
flexible prices. This is because under fixed prices, all sales take place tomorrow at the
price max (vθ, c) and all those with final value w > max (vθ, c) actually buy. But this
is the same as the price and allocation under flexible prices if everyone waited. Now
Corollary 1 implies that consumer surplus is strictly higher in the waiting equilibrium.
What about producer surplus? In general, producer surplus could be higher or

lower with fixed prices. But if θ < θ, which is equivalent to vθ > λ + (1− λ)E [W ] ,
then producer surplus is higher in the waiting equilibrium as well. This is because the
fixed price is now vθ and so is greater than λvθ + (1− λ)E [W ] , the market-clearing
price in the first-period. So we have that good is sold at a higher price under the

13Depending on the parameters, θ∗ may be higher or lower than θ.
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fixed price regime than under the flexible price regime. Since the sales under the
two regimes are the same– all those with values above vθ get the good– the producer
surplus under the fixed-price regime is now also higher than under the flexible-price
regime. When θ < θ, both consumer and producer surpluses are greater with fixed
prices than with flexible prices.

Market Failure Why does the price mechanism fail? The reason, as usual, is
missing Arrow-Debreu state-contingent markets. In the current context, a "state" is
realization of estimated and final values for each consumer and so each contract would
be commitment to deliver a unit of the good in period 2 depending on the complete
profile of estimated and final values. Not only are such contracts too numerous but
they are unrealistic as well– consumers’values are private information that cannot
be verified by a contract enforcer such as a court.
The arguments above also show that the price mechanism is not constrained op-

timal either. Without creating any additional contingent markets, fixed prices result
in a superior allocation.

Resale What if consumers could purchase in the first period and resell in the
second? This, of course, opens the door to the possibility that someone could buy
large quantities today for pure speculative purposes, gain substantial market power
and sell at a high price tomorrow. Many countries have laws in place that forbid such
"price gouging" in times of crisis.
One remedy is to impose quantity controls– a limit of "one per customer." Now

with the possibility of resale, the equilibrium outcome is always first-best. This is
easily seen in the case when vθ > c. Now regardless of what happens in the first
period, the price in the second period p2 = vθ. All those with final values less than
vθ who purchased a good in the first period (re-) sell it and all those with final values
greater than vθ who did not buy in the first period buy in the second. The payoff of
a consumer with estimate v from buying today at price p1 is

λmax (v, p2) + (1− λ)E [max (W, p2)]− p1

With resale the effective value of the good is the maximum of the consumption value
and the resale price. The first term is the value of today’s purchase if the final value
is the same as today’s estimate. The second term is the payoff if the final value comes
from a second draw from F. Similarly, the payoff from waiting is

λmax (v − p2, 0) + (1− λ)E [max (W − p2, 0)]

It may be verified that if p1 = p2, then a consumer is indifferent between (i) buying
today and possibly reselling tomorrow and (ii) waiting. Since, as argued above,
p2 = vθ this implies that p1 = vθ. If each consumer buys today with probability θ and
waits with probability 1 − θ, then this constitutes an equilibrium with resale. The
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resulting outcome is first-best and so the possibility of resale, together with quantity
controls, resurrects the first welfare theorem.

4 Uncertain Supply and Rumors

With the analysis of the complete information case in hand, we turn to a situation
in which the supply is uncertain. There are two states of nature, H and L, with
prior probabilities 1− π and π, respectively. In state H, the amount of raw material
available is θH < 1 while in state L, only θL < θH is available. Although the analysis
below does not require this, it will be useful to think of H as the normal, likely state
and L as the unusual, rare state in which there is a raw material shortage of θH − θL.

Information Consumers receive two sorts of information– "rumors" of a short-
age and "corrective messages" that try to dispel the rumors. We will suppose that
rumors arise regardless of the state and are completely uninformative. Thus, they
carry no information. In what follows, we will concentrate on the effects of "corrective
messages"– saying that there is no shortage– spread via social media. These mes-
sages are sent only in state H– that is, when there is no real shortage. The message
process, similar to that in Morris (2001), is as follows.
In the shortage state L, no corrective messages are sent.
In the normal state H, with probability 1− ε, a corrective message m1 ("tweet"),

indicating that there is no shortage, is sent via social media to a randomly chosen set
of consumers of mass α ∈ (0, 1). Since the message is sent only in state H, it assures
all who receive it that there is no shortage. With probability 1 − ε, the message is
forwarded ("retweeted") to a new randomly chosen set of consumers, again of mass
α. The set of consumers observing the second message (the "retweet") is independent
of the set receiving the original message. But since the second message is just the
first message that has been forwarded, any consumer who reads the second message
also reads the first. Again, with probability 1 − ε, a third message (a "re-retweet")
is sent to a new, randomly chosen, set of consumers, again of mass α. This process
continues indefinitely and is non-strategic.
As a result, the length of the message sequence is a random variable N distributed

according to a geometric distribution. The total number of messages read by a
consumer is also a random variable and call this the type ti consumer i. So if consumer
i never received any messages, then ti = 0. If i received the initial "tweet" and nothing
after that, then ti = 1. If i received the initial tweet and a retweet and no further
messages, then ti = 2. If i did not receive the original tweet but only the retweet,
then again ti = 2 because the second message includes the first. Thus ti = k means
that consumer i received the first k retweets. Of course, ti ≤ n, the realized number
of messages, since if i read the first ti messages then at least ti messages must have
circulated.
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Thus, if ti > 0, the consumer knows that the state is H. But the consumer does
not know the realized value of N and so is uncertain about how many other consumers
have read at least one message. This creates higher-order uncertainty about the state,
a feature that is central to the problem.
The message process is intended to capture the basic intuition about panic buying.

Even those who believe that there is no shortage, buy in a panic because they think
that others will panic.
As in the previous section, we will compare a flexible price regime with one with

fixed prices.

4.1 Flexible Prices

In what follows, we will assume that

Condition 2
θL < θ∗ < θH

Recall that, as defined in (2), θ∗ is the threshold supply so that if θ < θ∗ and θ
were common knowledge, then with flexible prices, there would be unique equilibrium
in which everyone buys today. Moreover, if it were commonly known that the state
is θ ≥ θ∗, then there are at least two equilibria, one in which rushes to buy today and
another in which everyone waits (Proposition 1).
If corrective messages are spread in the manner outlined above, then panic buying

can emerge as the unique equilibrium outcome.

Theorem 1 (Panic) Suppose supply is uncertain and prices are flexible. There ex-
ists a δ > 0 such that for all θH ∈ (θ∗, θ∗ + δ) , panic buying is the unique equilibrium
outcome.

Note that the result places no restrictions on any of the other parameters of the
model. Of course, the value of δ depends on these parameters. Also, if θH ≤ θ∗ then
the uniqueness is trivial.
A consequence of the theorem is that panic buying can emerge as the unique

equilibrium outcome even when θH − θL is small, that is, the amount of the shortage
is seemingly inconsequential. Similarly, panic buying can occur even when the prior
probability π of the shortage is small. It can occur even when both the amount and
the probability of the shortage are small.
Also, panic buying can emerge as the unique equilibrium outcome even when al-

most everyone knows that the state isH, almost everyone knows that almost everyone
knows that the state is H and so on.
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Sketch of proof of Theorem 1 The proof of the theorem is somewhat involved
and uses the iterated elimination of dominated strategies. Most of the complications
arise from the fact that prices are endogenously determined. This in turn means that
arguments relying on the complementarity among consumers’choices cannot be used.
A detailed proof is in the Appendix and here we confine ourselves to a sketch of the
essential arguments.
In what follows, it is convenient to define

vH = F−1 (1− θH)

and similarly, vL = F−1 (1− θL) and v∗ = F−1 (1− θ∗) . These are the demand prices
at the respective quantities. Note that since θL < θ∗ < θH , it is the case that
vH < v∗ < vL.

Step 1 For any η > 0, when θH is close to θ
∗, it is iteratively dominant for all consumers

with estimates v > vL + η to buy today (Proposition 5 in the Appendix). This
step itself has a few sub-steps:

Step 1.0 It is dominant for all consumers who do not receive any corrective messages–
that is, those with ti = 0– and with estimates v > vL + η to buy today
(Lemma 4). In the ex post event that the state is L, it is strictly dominant
for these consumers to buy today for the same reason that it is so when L
is commonly known (Proposition 1). In the ex post event that the state is
H, the supply θH is close to θ

∗ and it can be shown that these consumers
lose very little by buying today.

Step 1.1 Given Step 1.0, it is now iteratively dominant for all those with ti = 1 and
estimates v > vL + η to buy today (Lemma 5). All those with ti = 1 know
that the state is H. But since they did not receive anything other than
the initial tweet, they assign a significant probability that the message
sequence ended after a small number of retweets, that is, they believe that
n is small. But if n is small then the message sequence ended early and
so there is a significant fraction of consumers who did not get a corrective
message. Of these, we know from Step 0 that those with estimates above
vL + η buy today. Lemma 3 guarantees that the gain from buying today
is at least as large as that when either only those in Step 1.0 buy today or
everyone buys today. First, suppose that the consumers identified in Step
0 are the only ones who buy today. This means that there will be excess
supply in the first period and so the price p1 = c. Lemma 1 guarantees
that the price in the second period p2 will be higher than vH– the market-
clearing price if everyone waits– and we will argue that it is so high that
it is better for consumers with ti = 1 to buy today. On the other hand,
if everyone buys today then from Proposition 1 it follows that it is again
better for consumer with ti = 1 and estimates v > vL + η to buy today.
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Note that despite a lack of complementarity, panic spreads from those
with ti = 0 and high values to those with ti = 1. This is because if some
people panic, then this increases not only the cost of panicking, but that of
waiting as well (Lemma 1). Thus, prices are unable to prevent the spread
of panic.

Step 1.k Now an induction argument can be applied. As above, while all those with
ti = k > 1 know that the state is H, they also believe that for a significant
fraction of the consumers tj < k and from earlier steps these people buy
today. But now the same logic as in Step 1.1 ensures that all those with
ti = k and vi > vL + η also buy today (Lemma 6).

Step 2 Now given Step 1, it is iteratively dominant for all consumers with estimates
vi > vH to buy today (Proposition 6 in the Appendix). Again Lemma 3 is
key– the gain to a consumer from buying today is at least as large as when
either only those in Step 1 buys today or when everyone buys today. If only
those in Step 1– those with estimates above vL + η– buy today then as argued
in Step 1.1 above, it is better to buy today. On the other hand, if everyone
buys today then the first period price will be p1H = λvH + (1− λ)E [W ] and
the supply will be exhausted and so again it is better to buy today.

While the steps outlined above resemble existing arguments in Rubinstein (1989)
and Morris (2001), they are carried out in an environment in players’ actions are
not strategic complements. Moreover, unlike those arguments, Step 0 above cannot
be immediately strengthened to say that all consumers with ti = 0– who assign
high probability to θL– have a dominant strategy to buy today regardless of their
estimates. This is because if all those with estimates vi > vL buy today, then in state
L, those with low estimates vi ≤ vL will not be able to buy in either period and so
are indifferent as to when they buy. This means their decision of when to buy hinges
solely on what happens in state H, a state those with ti = 0 deem unlikely. Thus, we
need to make the argument in a series of steps as outlined above.

Some Remarks on Theorem 1 Theorem 1 is deliberately stated so that the
conclusion obtains regardless of the other parameters of the model. These include
the distribution of values F, the cost of production c, the persistence of values λ, the
proportion of consumers who receive messages α, the probability that the message
process will terminate ε, the prior probability π and finally, the supply θL when there
is a shortage. The result shows that once θH is close enough to θ∗, panic buying
results no matter what these other parameters are. The workings of Theorem 1 can
be seen in the following example.

Example 1 Suppose F is uniform on [0, 1] , c = 0.24, λ = 0.5, α = 0.5, ε = 0.001
and π = 0.1. In this case, θ∗ ' 0.7436. For panic buying to be the unique equilibrium,
it is suffi cient that (θL, θH) be in the set S depicted in Figure 3.
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Figure 3: Unique Equilibrium in Example 1

The set S, partly depicted in Figure 3, is such that all the steps in the iterated
argument in the proof of Theorem 1 go through (see Appendix A.2). The set is
suffi cient for uniqueness but it is not necessary– there may be configurations outside
S for which uniqueness also obtains. The curves depicted guarantee that if consumers
in the set C0 = {(vi, ti) | vi > vL and ti = 0} buy today, then it is iteratively dominant
for consumers in the set C1 = {(vi, ti) | vi > vL and ti ≤ 1} to buy today as well.
This is Lemma 5 in Appendix A.2. For this example, this is suffi cient to guarantee
uniqueness.
Notice that when θL ' 0.7, panic buying may occur even when θH > 1− c. Such

a θH is so large that even if everyone waited and bought tomorrow, there would be
excess supply even at p2 = c.
To get some sense of the magnitudes, consider for example, θH = 0.75. Now

with corrective messages, even a 10% chance (π = 0.1) of a 2% shortage (so that
θL = 0.735 ) will lead to panic buying.
Finally, notice that if, as above, θH = 0.75 and θL = 0.735 then in the absence of

any corrective messages, it is an equilibrium for everyone to wait because for any v,

(1− π) ∆H (v,∅) + π∆L (v,∅) < 0

Thus, while there is a no-panic equilibrium when there are no corrective messages,
such messages result in panic buying being the unique equilibrium outcome. This
last feature echoes the findings in Iizuka et al. (2021) that corrective messages caused
panic buying.
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Learning from prices Recall that we have specified that market prices are deter-
mined via a uniform-price auction. This means that consumers cannot learn from
each other via the prices as in the rational expectations models of Radner (1979)
or Grossman and Stiglitz (1980). To us it is unclear how consumers can learn from
prices and adjust their behavior, which in turn determines the prices. Rational ex-
pectations models are typically silent on the price formation process. In any case,
the equilibrium with panic buying is immune to such learning. In the equilibrium,
first-period price is different in the two states– in state L, p1 = λvL + (1− λ)E [W ]
while in state H, p1 = λvH + (1− λ)E [W ]– and so consumers can infer the state
from the first-period prices. But in either state, the supply is exhausted in the first
period and so there is no gain to waiting.

4.2 Fixed Prices

In the previous subsection we saw that with flexible prices corrective message can
cause panic buying to emerge as the unique equilibrium outcome. As in the case
without supply uncertainty, we now ask what happens if prices are fixed and do not
adjust to changes in supply and demand. The process by which corrective messages
spread remains unchanged.
In what follows, we suppose that prices are fixed in both periods at a level that

would clear the market if supply were "normal" and all consumers waited, that is,
p1 = p2 = max (vH , c) where as defined above vH = F−1 (1− θH) . Note that the fixed
price is the same in both states.
Proposition 2 implies that if there were no supply uncertainty and the state H

were commonly known, then with fixed prices at level max (vH , c) , there would be
an equilibrium in which everyone waits. A simple continuity argument now implies
that even with supply uncertainty, if the shortage θH − θL is small enough, then
with fixed prices at level max (vH , c) , again there is an equilibrium in which everyone
waits. Now in state L, there will be some rationing since the fixed price is too low to
clear the market, but if θL is close to θH , the probability that a consumer with value
w > vH is rationed in state L will be very small.
The condition that the shortage is small enough is not necessary for there to

be a waiting equilibrium. If θH < θ or equivalently, λ + (1− λ)E [W ] < vH , then
buying today is dominated no matter what the shortage is. Thus, not only is there
an equilibrium with fixed prices in which everyone waits but it is unique.
Summarizing the findings above, we have

Theorem 2 (No panic) Suppose supply is uncertain and prices are fixed. There
exists an equilibrium in which everyone waits if either (i) θH < θ; or (ii) θH − θL is
small enough. In case (i), the equilibrium is unique.
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4.3 Fixed versus Flexible Prices

What can we say about welfare under the two price regimes? We saw that without
any supply uncertainty, there was an equilibrium with fixed prices that was (weakly)
better for consumers than any equilibrium with flexible prices. From the perspective
of consumers, fixed prices were superior to flexible prices. What can be said once
there is supply uncertainty and corrective messages?

Consumer Surplus Without supply uncertainty, prices were fixed at a level
such that when everyone waited, there was no rationing. This is no longer true once
there is uncertainty. In state L, at the fixed price vH the demand is θH while the
supply is only θL and so rationing is necessary.
Suppose that there is an equilibrium with fixed prices in which everyone waits.

Let us compare the waiting equilibrium under fixed prices to the panic equilibrium
under flexible prices. First, if the probability of a shortage, π, is small, then consumer
surplus under fixed prices is strictly higher than under flexible prices. This is because
it is strictly higher when the state is H (Corollary 1) and since L is very unlikely, the
same is true when there is supply uncertainty. Second, and perhaps more interesting,
is the fact that under weak conditions on the distribution F, expected consumer
surplus is strictly higher no matter what π is. Precisely,

Proposition 3 Suppose F has an increasing hazard rate.14 The expected consumer
surplus in the waiting equilibrium under fixed prices is higher than in the panic equi-
librium under flexible prices.

Note that the proposition does not require that the shortages be rare– it holds
even if shortages occur with high probability. It relies on the fact (proved in Ap-
pendix A.3) that when F has an increasing hazard rate, if everyone waits in state
L, consumers prefer (ex ante) to be rationed at the fixed price vH < vL than to
be served for sure at the market-clearing price vL. Since consumer surplus is higher
when everyone waits as opposed to when everyone rushes to buy today, fixed prices
are better in state L. Together with the fact that consumer surplus in state H is also
higher under fixed prices then completes the proof.
From the perspective of consumers, the waiting equilibrium with fixed prices is

better than the rushing equilibrium with flexible prices if (i) π is small enough; or
(ii) F has an increasing hazard rate.

Producer Surplus Suppose that vH > λ + (1− λ)E [W ] . Then since vH >
(1− λ)E [W ] which is assumed to be greater than c, we have that the fixed price

14This is equivalent to the condition that the semi-elasticity of the demand function D (p) =
1− F (p) is non-decreasing.
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max (vH , c) = vH . In the waiting equilibrium under fixed prices, the expected producer
surplus is

ΠFix = (vH − c)× ((1− π) θH + πθL)

On the other hand, in the rushing equilibrium under flexible prices, the expected
producer surplus is

ΠFlex = (1− π) (λvH + (1− λ)E [W ]− c)× θH + π (λvL + (1− λ)E [W ]− c)× θL

and now producer surplus is also higher in the waiting equilibrium with fixed prices.

An example illustrates that the surplus ranking derived above can occur even
when there is a unique equilibrium under either price regime.

Example 2 Suppose F is uniform, c = 0.42, λ = 0.1, α = 0.5, ε = 0.001 and
π = 0.1. Here θ∗ ' 0.438 and θ = 0.55. Suppose θH = 0.44 and θL = 0.25. With fixed
prices, everyone waiting is the unique equilibrium outcome, while with flexible prices,
panic buying is the unique equilibrium outcome.

With fixed prices (at p = vH = 0.56), the condition that θH < θ is satisfied so
that λ + (1− λ)E [W ] < vH . Thus, the fixed price p = vH is so high that buying
today is dominated for all. The fact that with flexible prices, panic buying is the
unique equilibrium outcome can be verified by following the proof of Theorem 1. In
this example, θH is close enough to θ

∗ so that the arguments underlying Theorem 1
go through.
In this example, the contrast between the flexible and fixed price regimes is stark.

Both yield unique equilibrium outcomes. In one, panic ensues; in the other, there is
no panic. The distribution F satisfies the conditions of Proposition 3 and so consumer
surplus under fixed prices is greater than under flexible prices. The same is true for
producer surplus.

5 Are Fixed Prices Always Better?

Fixed prices are not a panacea, however. There are circumstances in which panic
buying is an equilibrium outcome even with fixed prices. To see this, suppose θH
is large enough so that (1− λ)E [W ] > vH , the fixed price. If everyone rushes to
buy today, then the payoff from waiting is zero since the supply will be exhausted in
either state. The condition above guarantees that for all consumers the payoff from
buying today at a price p1 = vH is positive. Of course, since the demand in period 1
will exceed the supply in either state, there will be rationing but the expected payoff
from buying today will still be positive.
On the other hand, there are circumstances in which (almost everyone) waiting

is be an equilibrium outcome with flexible prices. Recall that Theorem 1 states that,
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once all other parameters have been fixed, for any fixed θL panic buying is the unique
equilibrium outcome if θH is close enough to θ

∗. If we reverse the order of limits– that
is, for any fixed θH , if we take θL to zero– then there are other equilibria. Precisely,

Proposition 4 For any θH > θ∗, if θL is small enough, with flexible prices there is
an equilibrium such that in state H all consumers who receive corrective messages
wait.

The proof of the result is in Appendix A.4 and shows that there is an equilibrium
with the property that all consumers who receive at least one message (ti > 0)
wait. Those consumers who do not receive any messages (ti = 0) and have estimates
vi < vL = F−1 (1− θL) wait as well. The behavior of the remaining consumers
depends on the parameters. Note that as θL goes to zero, the set of consumers who
wait contains almost all consumers.
Some idea of why there is such an equilibrium may be gleaned by considering the

case when ε is small. Now any consumer who does not receive any messages (ti = 0)
believes with very high probability that the state is L and so also believes with high
probability that no one received any messages, that is, tj = 0 for other consumers j.
From the perspective, of a consumer with ti = 0, the situation is very nearly the same
as if θL were commonly known. Thus, their behavior is also very nearly the same as
if θL were commonly known. Recall that if θL < θ∗ is commonly known, those with
estimates vi > vL have a strict incentive to buy today and so today’s market-clearly
price p1 = λvL + (1− λ)E [W ]. But at this high price, consumers with vi ≤ vL do
not want to buy today– flexible prices discourage those consumers from "panicking"
(see Proposition 1). Finally, note that if θL is small, then vL = F−1 (1− θL) is large
and so the fraction of consumers with ti = 0 who actually buy today is small.
What happens in state H? Any consumer with tj > 0 knows that the state is H

and expects that only a small set of consumers, close to that identified above, will buy
today. Thus, any consumer with tj > 0 expects today’s price to be c and tomorrow’s
price to be close to vH .With these prices, these consumers prefer to wait, as specified
by the purported equilibrium.
An implication of the result is there are circumstances in which flexible prices

are unable to prevent panic buying for some θL but are able to do so for smaller θL.
In other words, the market mechanism fails for small shortages but may work for
large shortages! Why is it that panic is infectious when θL is large but not when
it is small? Again this is because of a lack of complementarity– this time between
consumers’choices of when to buy and the state.15 Just because a consumer is better-
off buying today when θL is large does not mean she is better-off buying today when
θL is small. As before, this lack of complementarity is a consequence of flexible prices

15Suppose all consumers buy today. Then in state θ the prices are p1 = λvθ + (1− λ)E [V ] and
p2 = 1. In state θ′ > θ, the prices are p′1 = λvθ′ + (1− λ)E [V ] and p′2 = 1. For any v such that
vθ′ < v < vθ, ∆θ (v, I) = 0 whereas ∆θ′ (v, I) = λ (v − vθ′) > 0.
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Moreover, it may be that panic buying is the unique equilibrium with fixed prices
while (almost everyone) waiting is an equilibrium with flexible prices. An example
illustrates this possibility.

Example 3 Suppose F is uniform, c = 0.1, λ = 0.1, α = 0.05, ε = 0.001 and
π = 0.1. Suppose θH = 0.9 and θL = 0.05. With fixed prices, panic buying is
the unique equilibrium outcome, while with flexible prices, there is an equilibrium in
which in state H, only a small fraction of consumers panic.

In the example, (1− λ)E [W ] > vH so that the arguments above guarantee that
with fixed prices, panic buying is the unique equilibrium. It is the only equilibrium
because those consumers who do not receive any corrective messages (with ti = 0)
ascribe a high probability that the state is L. In this state, the supply θL is very small
while the price vH is low and since the supply will be exhausted, for all those with
ti = 0, it is best to buy today. With the specified parameter values, this is enough to
guarantee that panic buying then infects even those who receive corrective messages
(ti > 0). With flexible prices, there are multiple equilibria and the construction of
the equilibrium in which almost everyone waits mimics the arguments underlying
Proposition 4.

A Appendix

A.1 Proof of Lemma 1

Proof. The claim that the price in the first period increases follows trivially from
the fact that first-period demand does not decrease while the first-period supply is
fixed. Thus, p1 ≥ p1.
To see that the second period price also increases, there are two cases to consider.
Case i. µ

(
C
)
≥ θ.

In this case, the total supply is exhausted in the first period, so p2 = 1 and so the
result is obvious.
Case ii. µ (C) ≤ µ

(
C
)
< θ.

If p2 = c, then certainly p2 ≥ p2 and again the result is obvious.
If p2 > c, then it must be that in the second period demand equals supply. Let

B = I \C denote the set of consumers who wait and similarly, let B = I \C. Finally,
let Zp be the set of all consumers who are willing to pay p in the second period. With
this notation, the demand in the second period at any price p > c is just

D2 (p) = µ (B ∩ Zp)

and D2 (p) is similarly defined. In the initial situation, the amount of the good
remaining in the second period is θ−µ (C) and so the market-clearing price p2 is the
solution to

µ (B ∩ Zp) = θ − µ (C)
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Such a price exists since the left-hand side is continuous and decreasing in p.
Now observe that at any price p,

D2 (p) = µ (B ∩ Zp)
= µ

(
B ∩ Zp

)
+ µ

((
B \B

)
∩ Zp

)
≤ D2 (p) + µ

(
B \B

)
Note that if p < 1, then there is a subset of B \B = C \C consisting of consumers

whose willingness to pay is less than p. If µ
(
B \B

)
> 0, then µ

((
B \B

)
∩ Zp

)
<

µ
(
B \B

)
because there will always be consumers whose willingness to pay in the

second period comes from a redraw from the distribution F.
Thus we have that if p2 is the second-period price, then

D2 (p2) ≥ D2 (p2)− µ
(
B \B

)
= θ − µ (C)− µ

(
B \B

)
= θ − µ (C)− µ

(
C \ C

)
= θ − µ

(
C
)

that is, the demand at p2 exceeds the supply. Thus, p2 ≥ p2. Moreover, by the
argument above, if µ

(
C \ C

)
> 0 and p2 < 1, then the inequality is strict and so

p2 > p2.

A.2 Proof of Theorem 1

In what follows, it will be convenient to write the expected payoff from buying to-
morrow at price p when the final value w is redrawn from F

ψ (p) = E [max (W − p, 0)]

=

∫ 1

p

(v − p) f (v) dv

and note that ψ′ < 0. Note that since we can think of 1−F (p) as a demand function,
ψ (p) is also the corresponding consumer surplus at price p.
It will also be useful to define

Φ (p) = λp+ (1− λ)E [W ]− c− (1− λ)ψ (p)

and note that Φ′ > 0. It is easy to verify that

Φ (vθ) = ∆θ (1,∅)

and so using (2) we have that
Φ (v∗) = 0
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since v∗ is defined as vθ∗ . Finally, since Φ (c) < 0,

v∗ > c

To prove Theorem 1 involves, we will first show

Proposition 5 For any η ∈ (0, 1− vL) , there exists a δ > 0 such that for all θH ∈
(θ∗, θ∗ + δ) , it is iteratively dominant for all consumers with estimate v > vL + η to
rush.

It is convenient to use the following definition.

Definition 1 For k ≥ 0, let Ck = {(vi, ti) : vi > vL + η and ti ≤ k} denote the set of
consumers i with ti ≤ k and estimate vi > vL + η.

The proposition will be established in steps. First, the conclusion will be shown
to hold for C0, then C1 and then finally for all Ck (k > 1).

Step 0: All consumers in C0 rush.

Lemma 4 For any η ∈ (0, 1− vL) , there exists a δ > 0 such that for all θH ∈
(θ∗, θ∗ + δ) , it is strictly dominant for all consumers in the set

C0 = {(vi, ti) : vi > vL + η and ti = 0}

to rush.

Proof. Lemma 3 implies that for any set of consumers C who rush to buy today

∆H (v, C) ≥ min (∆H (v,∅) ,∆H (v, I))

and similarly for state L.
First, notice that in state H, ∆H (v,∅) ≤ 0 because in this state it is an equilib-

rium for everyone to wait (Proposition 1). At the same time, ∆H (v, I) ≥ 0 because it
is also an equilibrium for everyone to rush to buy today (Proposition 1 again). Thus,
min (∆H (v,∅) ,∆H (v, I)) = ∆H (v,∅) .
Thus, the expected gain from buying today when those in C are rushing

Eθ [∆θ (v, C) | t = 0]

≥ Pr [H | t = 0]×∆H (v,∅) + Pr [L | t = 0]×min (∆L (v,∅) ,∆L (v, I)) (3)

We now compute the three ∆’s in the expression above.
(i) If everyone waits in state H, the market-clearing prices are p1 = c and p2 = vH .

Thus, the gain from buying today for a consumer with estimate v > vL > vH is

∆H (v,∅) = λv + (1− λ)E [W ]− c− λ (v − vH)− (1− λ)ψ (vH)

= Φ (vH)
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which is negative since vH < v∗.
(ii) Similarly, if everyone waits in state L, the market-clearing prices are p1 = c

and p2 = vL. The gain from buying today for any v > vL is

∆L (v,∅) = λv + (1− λ)E [W ]− c− λ (v − vL)− (1− λ)ψ (vL)

= Φ (vL)

which is positive since vL > v∗.
(iii) If everyone buys today in state L, the market-clearing prices are p1 = λvL +

(1− λ)E [W ] and p2 = 1. Thus, the gain from buying today is

∆L (v, I) = λ (v − vL)

Using these facts we can rewrite (3) for v = vL + η as

Eθ [∆θ (vL + η, C) | t = 0]

≥ Pr [H | t = 0]× Φ (vH) + Pr [L | t = 0]×min (Φ (vL) , λη)

and as θH ↓ θ∗, Φ (vH) ↑ Φ (v∗) = 0 while min (Φ (vL) , λη) remains bounded away
from zero.
Finally note that min (Φ (vL) , λ (v − vL)) is non-decreasing as a function of v.

Thus if Eθ [∆θ (v, C) | t = 0] is positive when v = vL + η it is also positive for larger
v (recall that ∆ is non-decreasing in v). This completes the proof.

Step 1: All consumers in C1 rush.

Lemma 5 For any η ∈ (0, 1− vL) , there exists a δ > 0 such that for all θH ∈
(θ∗, θ∗ + δ) , it is iteratively dominant for all consumers in

C1 = {(vi, ti) : vi > vL + η and ti ≤ 1}

to buy today.

Proof. Lemma 4 already argued that when θH is close to θ∗, it is dominant for all
those in C0 to buy today. It remains to argue that when θH is close to θ

∗, it is then
iteratively dominant for those with ti = 1 and vi > vL + η to buy today as well.
Since all those in C0 buy today, consider any set C ⊇ C0. A consumer with t = 1,

knows that the state is H but does not know the length of the message sequence, n.
The exact value of n determines the mass of consumers in C and so the prices that
would result. Thus, for a consumer with t = 1, the expected gain from buying today
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is

En [∆H (v, C) | t = 1]

= Pr [n = 1 | t = 1]×∆n=1
H (v, C) +

∞∑
t=2

Pr [n = t | t = 1]×∆n=t
H (v, C)

≥ Pr [n = 1 | t = 1]×min
(
∆H (v, I) ,∆n=1

H (v, C0)
)

+
∞∑
t=2

Pr [n = t | t = 1]×min (∆H (v, I) ,∆H (v,∅))

= Pr [n = 1 | t = 1]×min
(
∆H (v, I) ,∆n=1

H (v, C0)
)

+ Pr [n > 1 | t = 1]×min (∆H (v, I) ,∆H (v,∅))

using Lemma 3. Here we are using the notation ∆n
H to make the dependence of ∆ on

n explicit but note that ∆H (v, I) and ∆H (v,∅) are not affected by n.
We will argue that as θH ↓ θ∗, the right-hand side is positive.
(i) limθH↓θ∗ ∆H (v, I) > 0 for v ≥ vL + η.

∆H (vL + η, I) = max (λ (vL + η) + (1− λ)E [W ]− p1, 0)

−λmax (vL + η − p2, 0)− (1− λ)ψ (p2)

and since everyone rushes to buys today, the price today is p1 = λvH +(1− λ)E [W ] .
This is because the mass of consumers willing to pay this amount is exactly θH . This
means that the supply will be exhausted today and so the price tomorrow p2 = 1.
Thus,

∆H (vL + η, I) = λ (vL + η − vH) > 0

since vL > vH and so

lim
θH↓θ∗

∆H (vL + η, I) = λ (vL + η − v∗) > 0

(ii) limθH↓θ∗ ∆n=1
H (v, C0) > 0 for v ≥ vL + η.

In state H,

∆n=1
H (vL + η, C0) = max (λ (vL + η) + (1− λ)E [W ]− p1, 0)

−λmax (vL + η − p2, 0)− (1− λ)ψ (p2)

The state H is, of course, the total amount available and n determines the fraction
of consumers in C0. This fraction is at most (1− α) θL and so µ (C0 | n = 1) < θ∗.
Lemma 2 implies that p∗1 (C0) = c and from Lemma 1 p∗2 (C0) > v∗. This is because
p∗2 (∅) = v∗ ∈ (c, 1) and since µ (C0�∅ | n = 1) = µ (C0 | n = 1) > 0, Lemma 1
implies that p∗2 (C0) > v∗. Thus, as θH ↓ θ∗, lim p1H (C0) = c and lim p2H (C0) > v∗.
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Thus,

lim
θH↓θ∗

∆n=1
H (vL + η, C0)

= λ (vL + η) + (1− λ)E [W ]− c
−λmax (vL + η − lim p2H (C0) , 0)− (1− λ)ψ (lim p2H (C0))

> λ (vL + η) + (1− λ)E [W ]− c− λ (vL + η − v∗)− (1− λ)ψ (v∗)

= λv∗ + (1− λ)E [W ]− c− (1− λ)ψ (v∗)

= Φ (v∗)

= 0

Since the incentive to buy today is non-decreasing in v, we have established that
for all v > vL + η,

lim
θH↓θ∗

min
(
∆H (v, I) ,∆n=1

H (v, C0)
)
> 0

(iii) limθH↓θ∗ min (∆H (v, I) ,∆H (v,∅)) = 0 for v ≥ vL + η.
Using the same argument as in Lemma 4, we have that the minimum is ∆H (v,∅)

and this equals Φ (vH) < 0. Thus,

lim
θH↓θ∗

∆H (v,∅) = lim
θH↓θ∗

Φ (vH)

= 0

This completes the proof.

Step k. All consumers in Ck rush. We now show that once δ has been chosen
small enough so that for all θH ∈ (θ∗, θ∗ + δ) all consumers in C0 rush to buy today
(Lemma 4) and all those in C1 also rush to buy today (Lemma 5), it is the case that
without changing δ, all those in Ck (k > 1) will also rush to buy today. Clearly, a
consumer who reads k messages is sure that the total number of messages n ≥ k.We
then have

Lemma 6

Pr [n = k | t = k]×min
(
∆H (v, I) ,∆n=k

H (v, Ck−1)
)

+ Pr [n > k | t = k]×∆H (v,∅)

is independent of k.

Proof. First, note that for any k,

Pr [n = k | t = k] = α (1− ε) + ε

which is independent of k.
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Second, note that for any k > 0,

µ (Ck−1 | n = k) = µ (C0 | n = 1)

To see this note that for all k, the probability that a consumer last got a message at
time k given that a message was generated at time k

Pr [t = k | n = k] = α

and so the mass of consumers with t < k

Pr [t < k | n = k] = 1− α

And now since Ck−1 consists of all consumers with estimates above vL + η and t < k,
µ (Ck−1 | n = k) = (1− α) (1− F (vL + η)) which is independent of k.

Lemma 7 If

Pr [n = 1 | t = 1]×min
(
∆H (v, I) ,∆n=1

H (v, C0)
)

+ Pr [n > 1 | t = 1]×∆H (v,∅)

is positive, then for all k ≥ 1, it is iteratively dominant for all consumers in Ck to
buy today.

Proof. The proof is by induction. The statement is true for k = 1 (Lemma 5).
Suppose that it holds for all t < k. Then by the induction hypothesis, all those in
Ck−1 buy today and so

E [∆ (v) | t = k]

≥ Pr [n = k | t = k]×min
(
∆H (v, I) ,∆n=k

H (v, Ck−1)
)

+ Pr [n > k | t = k]×min (∆H (v, I) ,∆H (v,∅))

= Pr [n = k | t = k]×min
(
∆H (v, I) ,∆n=k

H (v, Ck−1)
)

+ Pr [n > k | t = k] ∆H (v,∅)

= Pr [n = 1 | t = 1]×min
(
∆H (v, I) ,∆n=1

H (v, C0)
)

+ Pr [n > 1 | t = 1] ∆H (v,∅)

where the first equality is a consequence of the fact that ∆H (v,∅) < ∆H (v, I)
and the second follows from the previous lemma. The last expression is positive by
assumption. This implies that all those in Ck buy today.

We have shown that for all k = 0, 1, ... any consumer with t = k and v > vL + η,
buys today. Thus all consumers with v > vL+η buy today. This completes the proof
of Proposition 5.

31



Final step We now show that given that all those with estimates v > vL + η rush
to buy today (Proposition 5), it is iteratively dominant for all those with v > vH to
buy today as well. Recall that vL > vH .

Proposition 6 There exists a δ > 0 such that for all θH ∈ (θ∗, θ∗ + δ) , it is itera-
tively dominant for all consumers with v > vH to buy today.

The proof of the proposition is in two steps. First, we show that the conclusion
holds for all those with t > 0 and second, that it also holds for those with t = 0.

Lemma 8 There exists a δ > 0 such that for all θH ∈ (θ∗, θ∗ + δ) , it is iteratively
dominant for all consumers with t > 0 and v > vH to buy today.

Proof. First, choose any η ∈ (0, 1− vL) . Proposition 5 implies that there is δ such
that for all θH ∈ (θ∗, θ∗ + δ) , it is iteratively dominant for all consumers with estimate
v > vL + η to buy today. Suppose that θH ∈ (θ∗, θ∗ + δ) and so all consumers in
the set C∞ = {i | vi > vL + η} buy today and so C∞ is contained in the set of all
consumers who rush to buy today. Then Lemma 3 implies that the gain from buying
today is at least min (∆H (v, I) ,∆H (v, C∞)).
(i) ∆H (v, I) > 0 for v > vH
If everyone buys today, then the price today is p1 = λvH + (1− λ)E [W ] because

the mass of consumers willing to pay this amount is exactly θH . Since the supply is
exhausted in period 1, p2 = 1. Thus, for v > vH

∆H (v, I) = max (λv + (1− λ)E [W ]− p1, 0)

= λ (v − vH)

> 0

(ii) limθH↓θ∗ ∆H (v, C∞) > 0 for v > vH
Now the mass of consumers in C∞ is at most θL and so µ (C∞ | n ≥ 1) < θL < θ∗.

Lemma 2 implies that in state θ∗, the prices are p∗1 (C∞) = c and p∗2 (∅) = v∗ ∈ (c, 1) .
Since µ (C∞�∅ | n ≥ 1) = µ (C∞ | n ≥ 1) > 0, Lemma 1 implies that p∗2 (C∞) > v∗.
Thus, as θH ↓ θ∗, the prices in stateH satisfy lim p1H (C∞) = c and lim p2H (C∞) > v∗.
Thus,

lim
θH↓θ∗

∆H (vH , C∞)

= λ lim vH + (1− λ)E [W ]− c− λmax (lim vH − lim p2, 0)

− (1− λ)ψ (lim p2)

> λv∗ + (1− λ)E [W ]− c− (1− λ)ψ (v∗)

= Φ (v∗)

= 0
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where the inequality in the second line stems from the fact that ∆H (vH , C∞) is
increasing in p2 and the last line is just a consequence of the definition of θ

∗. Now
recall that if the gain from waiting is positive for a consumer with estimate vH , it is
also positive for all consumers with estimates v > vH .
Thus, we have argued that if θH > θ∗ is small enough, for all v > vH ,

min (∆H (v, I) ,∆H (v, C∞)) > 0

Finally, we have

Lemma 9 There exists a δ > 0 such that for all θH ∈ (θ∗, θ∗ + δ) , it is iteratively
dominant for all consumers with t = 0 and v > vH to rush to buy today.

Proof. Choose θH ∈ (θ∗, θ∗ + δ) from Lemma 8 which then implies that all consumers
with t > 0 and v > vH buy today.
If t = 0, the gain from buying today for v > vH is at most

Pr [L | t = 0]×min (∆L (v, I) ,∆L (v, C0))+Pr [H | t = 0]×min (∆H (v, I) ,∆H (v, C∞))

This is because if the state is L, then no consumer gets a message and Lemma
4 implies that the set of consumers rush contains C0. Lemma 3 then implies the
gain from rushing is at least min (∆L (v, I) ,∆L (v, C0)) . If the state is H, then from
Proposition 5, the set of consumers who rush contains C∞. Lemma 3 now implies the
gain from buying today is at least min (∆L (v, I) ,∆L (v, C∞)) .
First, suppose that the state is L. Then, if everyone buys today, p1 = λvL +

(1− λ)E [W ] and p2 = 1. Thus,

∆L (vH , I) = λmax (vH − vL, 0)

= 0

since vH < vL. On the other hand, suppose consumers in the set C0 buy today.
The mass of consumers in C0 when the state is L is just 1 − F (vL + η). Since
1 − F (vL + η) < θL, we have that p1 = c and Lemma 1 implies that p2 (C0) >
p2 (∅) = vL and since vL > vH , we have

∆L (vH , C0) = λvH + (1− λ)E [W ]− c− λmax (vH − p2 (C0) , 0)− (1− λ)ψ (p2 (C0))

> λvH + (1− λ)E [W ]− c− (1− λ)ψ (vH)

= Φ (vH)

and so we have
lim
θH↓θ∗

∆L (vH , C0) > lim
θH↓θ∗

Φ (vH) = 0
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This implies that for v > vH ,

lim
θH↓θ∗

min (∆L (v, I) ,∆L (v, C0)) ≥ 0

Second, suppose that the state is H. Then repeating the argument from Lemma
8, we have that for all v > vH

lim
θH↓θ∗

min (∆H (v, I) ,∆H (v, C)) > 0

Thus, we have shown that for all v > vH , the gain from buying today is strictly
positive.

This completes the proof of Proposition 6.

A.3 Proof of Proposition 3

To prove the proposition, we will argue that consumer surplus is higher with fixed
prices in both state H and state L. The fact that this is true in state H is obvious
since in that state, the equilibrium outcome with fixed prices is the same as the
outcome when everyone waits and prices are flexible.
So it remains to consider state L.We will argue that if everyone waits under either

price regime, then consumer surplus under fixed prices is higher. This is enough to
prove the result since in the flexible price regime, consumer surplus if everyone waits
is higher than if everyone rushes to buy today. So suppose that under either regime
everyone waits.
If everyone waits, then the distribution of final values in the second period is just

F and the resulting demand function is 1 − F (p) . Thus, the consumer surplus at
price p is

ψ (p) =

∫ 1

p

(v − p) f (v) dv

When prices are fixed at vH , the area under the demand curve is ψ (vH) but since
there is rationing in state L not every consumer willing to pay vH is served. Thus,
under fixed prices the consumer surplus

CSFix =

(
θL
θH

)
ψ (vH)

because the amount demanded at price vH is θH while the supply is only θL. When
prices are flexible,

CSFlex = ψ (vL)

and so
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CSFix − CSFlex =

(
θL
θH

)
ψ (vH)− ψ (vL)

= θL

[
ψ (vH)

1− F (vH)
− ψ (vL)

1− F (vL)

]
Lemma 10 Suppose F has an increasing hazard rate. Then ψ (p) / (1− F (p)) is
decreasing over [0, 1] .

Proof. Write

G (p) =
ψ (p)

1− F (p)

= E [W | W > p]− p

and note that G (0) = E [W ], G (1) = 0 and for all p < 1, G (p) > 0.
We want to show that G is a decreasing function. Differentiating G with respect

to p and noting that ψ′ (p) = − (1− F (p))

G′ (p) =
(1− F (p))ψ′ (p) + ψ (p) f (p)

(1− F (p))2

=
ψ (p)

1− F (p)
× f (p)

1− F (p)
− 1

= G (p)× h (p)− 1

where h (p) = f (p) / (1− F (p)) is the hazard rate function of F.
Differentiating again, we obtain

G′′ (p) = G′ (p)h (p) +G (p)h′ (p)

Now at any p ∈ (0, 1) such that G′ (p) ≥ 0, we have G′′ (p) > 0. This means that if
for some p0 ∈ (0, 1) , G′ (p0) > 0, then for all p ∈ (p0, 1) , it is positive as well. But
this means that G (1) = 0 is impossible and this is a contradiction.
Thus, for all p, G′ (p) < 0.

To complete the proof of Proposition 3, note that vH < vL and so

CSFix > CSFlex

A.4 Proof of Proposition 4

Proof. We will show that when θL is small enough, there is an equilibrium with
the following strategies: For some z0 ∈ [vL, 1], (i) all consumers with t = 0 and
v ≥ z0 ≥ vL buy today; (ii) everyone else waits.
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For an arbitrary z ≥ vL define

C0 (z) = {i ∈ I | vi ≥ z and ti = 0}

Suppose that all consumers in C0 (z) buy today and everyone else waits.
The expected gain from buying today for a consumer with estimate v and ti = 0

is

Eθ [∆ (v, C0 (z)) | ti = 0] = Pr [H | ti = 0]En [∆n
H (v, C0 (z)) | ti = 0]

+ Pr [L | ti = 0] ∆L (v, C0 (z))

where n is the number of messages transmitted and ∆n
H is the gain from buying today

in state H when n messages are transmitted. The gain depends on n via the price in
the second period p2H , which depends on z as well as n. This is because the fraction
of consumers who do not get a message when n messages are transmitted is exactly
(1− α)n .
The expected gain from buying today for a consumer with estimate v and ti > 0

is
En [∆n

H (v, C0 (z)) | ti]
since everyone that gets a message knows that the state is H.

Claim: When θL is small enough, ∆n
H (v, C0 (z)) is negative for all n and v.

The gain is monotonic in v, and so it is enough to show that ∆n
H (1, C0 (z)) is

negative for all n.
Now, since z ≥ vL the fraction of consumers in C0 (z) is less than θL < θH . Thus,

the first-period price in state H, p1H = c. Denote by pn2H the second-period price
when n is the number of messages transmitted. For all n,

∆n
H (1, C0 (z)) = λpn2H + (1− λ)E [W ]− c− (1− λ)ψ (pn2H)

= Φ (pn2H)

Note that since µ (C0 (z) | n) is a decreasing function of n, from Lemma 1, we have
that pn2H is a decreasing function of n as well. Thus, for all n, Φ (pn2H) ≤ Φ (p02H) .
Moreover, as θL ↓ 0, vL ↑ 1 and so µ (C0 (z) | n = 0) ↓ 0. Thus, as θL ↓ 0,

p02H ↓ vH . This implies that when θL is small enough, p02H < v∗ and so∆n
H (1, C0 (z)) =

Φ (pn2H) < Φ (v∗) = 0. This establishes the claim.

We now choose z0 and then show that for this choice of z0, the strategies prescribed
above constitute an equilibrium. To do this, consider the mapping Γ : [vL, 1] → R
defined by

Γ (z) = Eθ [∆ (z, C0 (z)) | ti = 0]

Notice that for any z > vL, Γ (z) is single-valued since at any such z, the prices
p1L (z) and p2L (z) are uniquely determined. But Γ (vL) is an interval since when
z = vL the market-clearing price is not unique and we only know that p1L (vL) ∈
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[c, λvL + (1− λ)E [W ]] . The smallest element of the set Γ (vL) , denoted by Γ− (vL) ,
results when the first-period price is as high as possible, that is, when p1L (vL) =
λvL + (1− λ)E [W ] . In this case, since p2L (vL) = 1, ∆L (vL, C0 (vL)) = 0 and so
using the claim above, Γ− (vL) = Eθ [∆ (vL, C0 (vL)) | ti = 0] < 0. The largest element
of Γ (vL) , denoted by Γ+ (vL) results when the first-period price is as low as possible,
that is, when p1L (vL) = c.
Note that Γ is an upper-hemicontinuous correspondence and limz↓vL Γ (z) = Γ+ (vL)

since p1L (z) = c for all z > vL.
We now choose z0 ∈ [vL, 1] .
(a) If Γ+ (vL) < 0 and for all z > vL, Γ (z) < 0 as well, then choose z0 = 1.
(b) If Γ+ (vL) < 0 and for some z > vL, Γ (z) ≥ 0, then choose z0 > vL so that

Γ (z0) = 0.
(c) If Γ+ (vL) ≥ 0, then choose z0 = vL and p1L (vL) ∈ [c, λvL + (1− λ)E [W ]] so

that Eθ [∆ (z, C0 (z)) | ti = 0] = 0.
It is now easy to see that the following strategies constitute an equilibrium: (i)

all consumers with ti = 0 and vi ≥ z0 ≥ vL buy today; (ii) everyone else waits.
To see this note, first that every consumer with ti = 0 is acting optimally. In

case (a), since z0 = 1, if no one buys today, then it is optimal for all consumers with
ti = 0 to buy tomorrow as well. In case (b), all consumers with t = 0 and v = z0 are
indifferent between buying today or buying tomorrow. Since Eθ [∆ (v, C0 (z)) | ti = 0]
in non-decreasing in v, all consumers with ti = 0, and vi > z0 should buy today and
all with vi < z0 should wait. This is what the equilibrium strategy prescribes. In
case (c), z0 = vL and all consumers with vi > vL should buy today while those with
vi < vL should wait.
Finally, note that it is optimal for any consumer with ti > 0 to wait. Any consumer

with ti > 0 knows that the state isH but is uncertain about n, the number of messages
sent. We have already argued that when θL is small enough given any n > 0, for all
v,

∆n
H (v, C0 (z0)) < 0

and so certainly it is optimal to wait.
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