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1 Introduction

There are several open questions that are central in the literature on ambiguity aversion.

First, it is well known that updating ambiguous beliefs generally leads to violations of ei-

ther dynamic consistency or consequentialism, which has raised the concern by some that

ambiguity aversion may be a “mistake.” And if it is not, then which of these two intuitively

appealing properties should be violated? The tension between consequentialism and dy-

namic consistency in models of ambiguity aversion, which also arises in non-expected-utility

models of choice under objective risk, and the subsequent disagreement over which prop-

erty to give priority are impediments to applying these models in dynamic contexts such as

macroeconomics and finance where information plays a central role. Second, a plethora of

models of ambiguity aversion and non-expected-utility for risk have been proposed that differ

in subtle ways in the behavior they predict. What criteria should be used to select among

them? Third, is there a connection between ambiguity aversion (Ellsberg-type behavior)

and violations of expected utility in the context of risk (Allais-type behavior)? Fourth, when

should individuals randomize over available actions in order to hedge against ambiguity?

This paper provides an evolutionary perspective on these issues, based on the notion that

natural selection not only can influence physical traits, but can also shape choice behavior.

Using this approach, we develop a foundation for a non-expected-utility and ambiguity-averse

model of choice and study updating of this model in response to information. A key finding

is that evolutionarily optimal choice must be dynamically consistent, even at the expense of

consequentialism, answering the first question posed above.1 Importantly, the evolutionary

approach will provide a novel rationale for violations of consequentialism, showing that such

violations should be neither surprising nor concerning.

Systematic violations of expected utility are common, but at least when risk is objective,

they appear to be at odds with evolutionary optimality. A central contribution of this paper

is to expand the scope of the evolutionary approach by allowing individuals to simultaneously

make multiple decisions, some of which are observable and others which are hidden from the

modeler. When chosen optimally, as evolution will require, the presence of such hidden

actions will generate preferences that appear to violate expected utility from the perspective

of the analyst. We show that the resulting class of evolutionarily optimal preferences, which

we call adaptive preferences, includes rank-dependent expected utility in the context of risk,

and variants of the smooth model, variational preferences, and multiple prior preferences

in the contexts of both risk and ambiguity. Our result on dynamically consistent updating

applies to this rich class of preferences. Importantly, while ambiguity-averse preferences

are typically assumed to reduce to expected utility when facing objective risk, our model

excludes this benchmark version of many of the ambiguity models it nests and instead closely

links different uncertainty attitudes to violations of expected utility. Thus, our evolutionary

1As we discuss in detail later, consequentialism refers to the requirement that ex post choice not be
influenced by outcomes that could have been obtained on some unrealized event.
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approach can help to address both the question of model selection and the potential link

between Allais and Ellsberg behavior.

Finally, turning to the question of randomization in the face of ambiguity, it is well

known that randomization between available options, either in the form of exogenous ran-

domizations offered to individuals or random choice by the individuals themselves, can serve

to hedge against ambiguity. Indeed, ambiguity aversion is often defined as a preference for

(probabilistic) mixtures of acts. Taking this insight a step further, adaptive preferences

generate the novel prediction that individuals may strictly prefer self-randomization over

observable actions (i.e., random choice) to exogenous randomization (e.g., mixtures of acts).

The starting point of our analysis is an observation which dates back to a seminal paper by

Robson (1996): Evolutionary optimality generates a preference for idiosyncratic uncertainty

over common uncertainty, and ambiguity is closely associated with common uncertainty in

many instances. Hence, natural selection favors ambiguity aversion. The intuition for why

evolution can generate aversion to common uncertainty is actually quite simple. To illustrate,

suppose there are two actions between which all individuals must choose in every period. For

both actions, individual growth (meaning net expected number of offspring) will be either 2 or

4, each with probability 1
2
. The only difference is that one action bears common uncertainty,

where realized per-period growth is perfectly correlated across individuals, while the other

bears idiosyncratic uncertainty, where realized growth is independent across individuals. By

the law of large numbers, the per-period growth of a (large subpopulation with a common)

genotype who consistently chooses the idiosyncratic uncertainty will be approximately 1
2
(2+

4) = 3. In contrast, a genotype who chooses the common uncertainty will grow by either

2 or 4, each in approximately half of the periods. Heuristically, this leads to a long-run

average growth over two periods of 2 × 4 = 8, which is less than 3 × 3 = 9. This example

illustrates the detrimental effect of correlation on growth: The genotype who chooses the

idiosyncratic uncertainty will have a higher long-run growth rate, which implies it will almost

surely dominate in the long run (Lemma 1).2 We discuss and justify the close connection

between ambiguity and correlated uncertainty in detail in Section 1.1.

The main innovations of our paper are the incorporation of adaptation via hidden ac-

tions, random choice, and updating following the arrival of information. Importantly, these

innovations are not independent of each other: The introduction of adaptation greatly in-

creases the scope of the evolutionary model and allows it to nest versions of a number of

prominent models of ambiguity aversion and non-expected utility for risk, which in turn

allows our observation concerning dynamic consistency to be applied to a much wider class

of models. The presence of hidden actions also generates new predictions about the role of

random choice in hedging against ambiguity. We briefly highlight the intuition behind each

of these contributions and model predictions below.

2The existence and exact form of this aversion to common uncertainty depend on both the frequency
of reproduction (Robatto and Szentes (2017)) and timing of reproduction within the life cycle of organisms
(Robson and Samuelson (2019)). We discuss these considerations further in Section 7.1.
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The incorporation of hidden actions is motivated not only by economic settings—where

data sets often capture only a subset of the many decision being make by individuals—

but also by biological settings—where hidden actions might take the form of unobservable

aspects of physical adaptation of organisms. In an economic context, data sets could contain

information such as occupation choice, investments, or even vaccination decisions, while

omitting information about other complementary decisions such as housing choice, other

investments or insurance, or social distancing measures, respectively. In a biological context,

hidden actions could take the form of rapid and reversible physical adaptation, known as

phenotypic flexibility, which has recently gained increased attention in evolutionary biology.3

It is well known that hidden actions can lead to revealed preferences over observed choices

that violated expected utility, even if the individual’s actual joint preferences over all choices

satisfy expected utility.4 In particular, since different hidden actions may be optimal for dif-

ferent observable actions, individuals may be averse to probabilistic mixtures over observable

outcomes (see Sarver (2018)). However, they are not averse to self-randomization since it

still enables coordination between observed and unobserved actions. In the context of our

model, this implies that self-randomization is a better hedge against ambiguity or common

uncertainty than exogenous randomization.

Turning to the updating of ambiguity-averse preferences and non-expected-utility prefer-

ences for risk, it is well known that there is a tension between consequentialism and dynamic

consistency: Except in very special circumstances, models of ambiguity aversion must vio-

late at least one of these properties (Ghirardato (2002), Hanany and Klibanoff (2007)). As

such, there is disagreement in the literature as to how ambiguity-averse preferences should

respond to new information: Hanany and Klibanoff (2007, 2009) and Hansen and Sargent

(2008) proposed maintaining dynamic consistency but dropping consequentialism; Siniscalchi

(2009, 2011) instead suggested keeping consequentialism while abandoning dynamic consis-

tency; Epstein and Schneider (2003) showed that both properties can be maintained for

the multiple priors model if one imposes a strong joint restriction (“rectangularity”) on the

class of information structures and beliefs; Al-Najjar and Weinstein (2009) took the more

extreme position that the conflict between consequentialism and dynamic consistency is so

problematic that Ellsberg-type behavior should be recognized as irrational. In an earlier

literature on non-expected-utility models of choice under risk, the incompatibility of these

two properties was discussed by Hammond (1988, 1989) and Machina (1989). As noted, the

lack of consensus in the literature hinders the application of these preferences in dynamic

contexts where information plays a central role, such as in macroeconomics and finance.

We leverage the evolutionary perspective that we develop to provide clear guidance on

this issue. Since evolutionary optimality of both ex ante and ex post preferences requires

3We discuss the potential relevance of our results for evolutionary biology in more detail in Section 7.2.
4Prior studies of the impact of physical commitments on risk preferences include Grossman and Laroque

(1990), Gabaix and Laibson (2001), and Chetty and Szeidl (2007, 2016). Unobservable commitments in
particular are explored in Kreps and Porteus (1979), Machina (1984), and Ergin and Sarver (2015).
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maximization of the long-run growth rate of the genotype, it follows directly that preferences

must be dynamically consistent. Of course, maintaining dynamic consistency necessitates

that consequentialism may be violated. Understanding why evolution may dictate these

violations is more subtle.

In the context of information and updating, consequentialism means that individuals

only consider the outcomes that acts can generate following the actual signal realization,

and not what their outcomes would have been following other possible signal realizations.

For a single individual acting in isolation, consequentialism seems like a normatively appeal-

ing property. However, when a genotype consists of many individuals acting simultaneously,

different individuals within this subpopulation may be receiving different signals at the same

time. Since correlation in growth rates between members of the genotype plays an important

role in its evolutionary success, as already highlighted above, it is in fact quite natural that

consequentialism could be violated: For one individual with a given signal realization, con-

sidering the outcomes that would be obtained following other signal realizations is not paying

undue attention to “what could have been,” but rather giving appropriate consideration to

“what others in the population are currently experiencing.”

1.1 Ambiguity as Common Uncertainty

In many examples and applications of ambiguity, the unknown probabilities concern com-

mon factors that affect all individuals in the population. For example, in one of the earliest

applications of ambiguity to economics, Dow and Werlang (1992) and Epstein and Wang

(1994) examined the implications of ambiguity about asset returns. Returns to financial

assets are obviously common to all individuals who invest in them. Similarly, in applications

to macroeconomics, ambiguity typically concerns aggregate variables, such as factor produc-

tivity (Ilut and Schneider (2014), Bianchi, Ilut, and Schneider (2018)). Other examples of

uncertainty about aggregate variables that can affect individual outcomes and where proba-

bilities are poorly understood could include the timing of new technological breakthroughs,

natural disasters such as earthquakes or tsunamis, or climate change and its implications.

One reason common uncertainty in the examples mentioned so far may be subject to

greater ambiguity than idiosyncratic uncertainty is that idiosyncratic random variables can

be studied using cross-sectional data, whereas aggregate variables by definition cannot.

Greater abundance of data may lead to a better understanding. Nonetheless, there could be

common uncertainty for which the probabilities are well understood by individuals, and our

results would be equally relevant in those settings.

In addition to ambiguity taking the form of common uncertainty about aggregate vari-

ables, there is also a fundamental and systematic link between common uncertainty and any

instance of ambiguity involving model uncertainty—ambiguity about the true data generat-

ing process. Even if the risks faced by each individual are well understood and idiosyncratic
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conditional on some common underlying model parameter, if that parameter is unknown

and ambiguous then all individuals share in the resulting common uncertainty.5 For a sim-

ple illustration, consider a medical treatment. If the efficacy (success rate) of the treatment

for a population with a given set of characteristics is known, then whether it is successful for

one individual is independent of whether it succeeds for another. However, if the treatment

has undergone limited testing, then its success rate may be unknown and would itself be a

source of common uncertainty for all individuals. In fact, most instances of ambiguity can

be cast as common uncertainty about idiosyncratic probabilities.

Of course, we should be careful to point out that the correlation mechanism at play in

this paper may not be the only driver of ambiguity aversion. We would not go so far as to

claim that every instance of ambiguity corresponds to common uncertainty; nor would we

suggest that every instance of common uncertainty involves ambiguous beliefs. Nonetheless,

the main thrust of the preceding discussion is that there are indeed many situations in

which ambiguity is tightly linked to common uncertainty, and our results speak specifically

to these instances of ambiguity. In other cases where ambiguity is not connected to common

uncertainty, we remain agnostic about whether ambiguity aversion is driven by heuristics

developed by genotypes from the case of common uncertainty or whether some other source

of ambiguity aversion is at play.

1.2 Outline

The remainder of the paper is structured as follows. Section 2 formally sets up our model.

Section 3 establishes that adaptive preferences are evolutionarily optimal ex ante and then

analyzes evolutionarily optimal ex post preferences following the arrival of a signal. We find

that preferences will be dynamically consistent, yet may violate consequentialism. We also

show that adaptive preferences many induce random choice.

While the treatment in Section 3 deals with the general case of random choice, the special

cases we consider in Sections 4 and 5 allow us to restrict attention to deterministic action

plans without loss of generality. These sections explore several applications of our evolu-

tionary model and demonstrate its connection with other established models of ambiguity

and risk preferences. In Section 4, we apply our evolutionarily optimal updating rule to

the smooth model of ambiguity aversion, which overlaps with the special case of our model

with no hidden actions. This special case was previously studied by Robson (1996) for pref-

erences without signals. We discuss how our model predictions align with several recent

experimental studies of ambiguity and updating, and we demonstrate how our theoretical

results might help to guide experimental design for testing properties of preferences such as

dynamic consistency and consequentialism.

5This interpretation is closely connected to the macroeconomic literature on robustness to model uncer-
tainty (Hansen and Sargent (2001, 2008)), and is discussed in the evolutionary context in Robson (1996).
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In Section 5, we explore an alternative special case involving hidden actions but with no

common uncertainty, and we show that the evolutionarily optimal preferences in this case

correspond to the optimal risk attitude preferences studied by Sarver (2018). In particular,

we show that our model nests rank-dependent expected utility (RDU) as one special case,

and we describe the evolutionarily optimal updating of RDU preferences. We find that

evolution can generate a version of RDU preferences that is both dynamically consistent and

consequentialist, which is perhaps surprising given the tension highlighted above. We discuss

how the timing of the selection of the hidden action is critical for determining whether or

not RDU preferences will be consequentialist.

Section 6 analyzes other special cases of our model when hidden actions and common un-

certainty are simultaneously at play. The main result of that section is a dual formulation of

our representation that greatly simplifies the analysis of random choice and the comparison

to existing models. We use this result to show that versions of several prominent representa-

tions, including variational preferences, multiple priors expected utility, and rank-dependent

utility, can be embedded in our general model. Importantly, these special cases provide a

link between Ellsberg- and Allais-type behaviors.

In Section 7, we discuss some of the simplifying assumptions that are commonly made

in economic applications of the evolutionary approach and the robustness of our results

to relaxing them. We also describe the biological evidence of phenotypic flexibility, which

provides an alternative interpretation and motivation for the hidden actions in our model.

This connection suggests that our model may have relevance not just in economic contexts,

but also in the framework of evolutionary biology. Finally, in the Online Appendix, we

explore some extensions and variations of our main modeling assumptions, and we provide

any proofs omitted from the main paper.

2 Evolutionary Setting

The basic idea behind the evolutionary approach is that a large population of individuals

is initially made up of subpopulations with different genotypes, where a genotype specifies

the physical traits as well as the programmed behavior (choices) of an organism. These

choices lead to a possibly uncertain outcome, and this outcome together with the physical

traits of the organism determine its evolutionary fitness, that is, its number of offspring. The

offspring inherit the parent’s genotype and will face a choice of their own, and so on. In this

way, the number of individuals who share a particular genotype may shrink or grow over

time, relative to the whole population. A genotype is evolutionarily optimal among those

initially present if the relative size of its subpopulation does not vanish over time.
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2.1 Uncertainty and Information

Common components of uncertainty are modeled via a state space Ω. The realization of

ω ∈ Ω is common to all individuals in the population. In addition, given ω, idiosyncratic

uncertainty is captured via a state space S, where each individual in the population receives

an independent draw of the state s ∈ S. The entire payoff-relevant state space is then Ω×S.

We model information by allowing each individual to receive a private signal σ from a space

of signals Σ that is informative about (ω, s).6 The combined space of signals and states is

thus Ω×S×Σ. We assume that Ω and S are Polish spaces, that is, complete and separable

metrizable spaces. We assume that Σ is finite and endowed with the discrete topology. We

endow the spaces Ω, S, and Σ with their Borel σ-algebras BΩ, BS, and BΣ, respectively, and

we endow the product of these spaces with the product σ-algebra BΩ ⊗ BS ⊗ BΣ.

Given any measurable space (Y,Y), let 4(Y ) denote the set of countably additive prob-

ability measures on Y , and let 4s(Y ) denote the set of all simple probability measures on Y

(i.e., measures with finite support). The state is drawn each period according to a measure

µ ∈ 4(Ω × S × Σ). The marginal distribution of µ on Ω assigns probability µ(E) to any

measurable event E ∈ BΩ. As noted, there is a common draw of the ω dimension of the

state for all individuals in the population according to this marginal distribution. However,

conditional on ω, both the s dimension of the state and the signal σ are drawn independently

for each individual according to the conditional probability distribution µ(s, σ|ω) on S×Σ.7

Finally, the informational content of a signal σ ∈ Σ is described by conditioning the distri-

bution µ on σ. This information structure is quite general and includes, among other things,

the partitional structures that are often used in the literature on ambiguity and updating.

2.2 Consumption and Fitness

Let Z denote a nonempty set of outcomes. Both the ω and s dimensions of the state space

are potentially relevant for the outcome of an action, but the role of the signal σ is purely

informational. Formally, let F denote the set of simple acts, that is, the set of all measurable

and finite-valued functions f : Ω × S → Z. An evolutionary fitness function ψ : Z → R
specifies the (net expected) individual reproductive growth associated with each outcome.8

Given an act f ∈ F , the individual growth in state (ω, s) is then ψ(f(ω, s)). For example,

6Since S describes idiosyncratic risk, it is natural to consider private signals. In Section S3 of the
Online Appendix, we briefly discuss how behavior differs between common and private signals when both
are informative only about the common component Ω.

7More precisely, since S may be an infinite set, the conditional probability distribution given ω assigns
probability µ(E|ω) to an event E ∈ BS ⊗ BΣ. Note that since S × Σ is a Polish space, the existence of a
regular conditional probability distribution is ensured by Proposition 10.2.8 in Dudley (2002).

8Realized net individual growth, which includes both survival and offspring, must be an integer, but since
reproduction may be uncertain given the outcome z ∈ Z, expected individual growth may take non-integer
values. As the main results of Section 3 show, evolutionary fitness of a genotype with a large population
depends only on the expected reproductive growth ψ(z) its individuals attain from each outcome z.
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choose ψ and f

signal σ (ω, s) observed

fitness ψ(f(ω, s))

Figure 1: Within-period timeline: after-signal adaptation

for a population of individuals, aggregate fitness of zero indicates extinction, fitness of one

indicates that the birth rate is equal to the death rate and hence there is no change in the size

of the population, and fitness of 1.5 indicates a 50% growth in the population. Aggregate

fitness can obviously never be negative. Whether or not individual fitness functions take

negative values is not important for our results on the evolutionary optimality of adaptive

preferences and on the dynamic consistency of optimal updating. However, in order to derive

exact dual characterizations of some special cases of our model, it will be technically useful

to allow some outcomes to generate negative individual fitness, which could be interpreted

as an externality that eliminates other individuals.

Individuals face the task of choosing acts in each period contingent on the observed signal

σ ∈ Σ, but before learning the realization of the state (ω, s). Each genotype determines

preferences that are used for this choice, contingent on σ. In addition to the observable

choice of act f , we assume that individuals might also take hidden actions, that is, actions

that are unobservable to the modeler. Incomplete data of this sort is pervasive in economic

analysis, as data sets often contain only a snapshot of one dimension of the full spectrum

of decisions being made by individuals. We model hidden actions in a simple and tractable

reduced form by allowing individuals to select a fitness function ψ from some feasible set Ψ

in each period.9 As we discuss in Section 7.2, our use of multiple fitness functions can also

be interpreted in terms of phenotypic flexibility in the context of evolutionary biology.

Throughout the main text, we assume that the selection of the fitness function ψ ∈
Ψ takes place after (and in response to) the signal σ, but before the realization of the

state. The timing of information and the choice of fitness function and act within each

period are illustrated in Figure 1. Implicitly, we are assuming either that adaptation in the

form of adjustments to the hidden action can be undertaken rapidly or, equivalently, that

signals arrive sufficiently far in advance of the realization of the state to allow time for such

adjustments. We briefly discuss the impact of changing the timing of our model so that

adaptation must occur before the realization of signals in Section 5.2, and we provide a more

in depth analysis in Section S1 of the Online Appendix.

9This reduced form derives immediately from a more explicit model of hidden actions, where individuals
take a hidden action y ∈ Y and have a single fixed fitness function ψ̂(z, y) for outcome/action pairs. The

resulting set of fitness functions in our model would then be Ψ = {ψ̂(·, y) : y ∈ Y }.
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We aim to uncover various preferences that can be nested within our evolutionary model,

thereby illustrating both the structure imposed by our model on static uncertainty prefer-

ences and the scope of our updating results. We therefore impose only minimal technical

restrictions on the set of fitness functions: We assume Ψ is nonempty and that supψ∈Ψ ψ(z)

is finite for every z ∈ Z. Of course, additional structure and restrictions on the set Ψ may be

appropriate depending on the application, as the availability of various hidden actions and

their impact on fitness will naturally depend on the choice context, and such restrictions will

serve to refine the exact preferences under uncertainty generated by our model. However,

we leave exploring such refinements as a topic for future research.

2.3 Growth Rates

In a given time period, the aggregate growth rate of a genotype will be determined by the

common preferences each individual in its subpopulation is programmed to use when choosing

(deterministically or possibly randomly) an act f and a fitness function ψ. We assume each

decision problem is faced repeatedly, leading to a stochastic sequence of aggregate growth

rates for each genotype. Our analysis of natural selection and evolutionary optimality will

center around the comparison of long-run growth rates of different genotypes (with different

programmed preferences).

Definition 1. Suppose the aggregate growth rate of a genotype is given by (λt)t∈N, where

λt is the random variable that describes the aggregate growth rate in period t of the entire

subpopulation of individuals with that genotype. We say that α is the long-run growth rate

of the genotype if 1
T

∑T
t=1 ln(λt)→ α almost surely as T →∞.

For an arbitrary sequence (λt)t∈N of random variables, the long-run growth rate may not

exist, since the series above may not converge. However, we will see in the next section that

in our model, the long-run growth rate exists for any act f and fitness function ψ.

To establish that the long-run growth rate is the appropriate statistic for comparison in

our evolutionary model, the next lemma demonstrates how it relates to long-run dominance

of a particular genotype over others. First, note that throughout the paper, we follow the

standard convention of assuming that the number of agents of each genotype is (infinitely)

large, which we formally model by treating the set of individuals of each genotype i as a

continuum with measure N i(t) at time period t.10 Thus, if the sequence of aggregate growth

rates of genotype i is (λit)t∈N and the initial measure of this genotype is N i(0), then the

measure of its subpopulation at time T ∈ N is

N i(T ) = N i(0)
T∏
t=1

λit.

10Using results from the theory of branching processes, it can be shown that our results involving continuum
populations are the correct limiting approximations for large but finite populations.
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Lemma 1. Consider two genotypes i = A,B, where each genotype i has a sequence of

stochastic aggregate growth rates (λit)t∈N that converges to a long-run growth rate αi. If

αA > αB, then regardless of the initial measures NA(0) > 0 and NB(0) > 0 of their respective

subpopulations at time t = 0, we have NA(t)/NB(t)→∞ almost surely as t→∞.

Note that Lemma 1 does not imply that a higher long-run growth rate yields higher

expected population size as t grows large, as indeed it is possible to have the expected value

of NB(t) exceed that of NA(t) for all t. Nonetheless, the lemma implies that the event where

NB(t) exceeds NA(t) vanishes (has probability zero) in the limit as t→∞.

Evolutionary theory aims to explain which genotypes can be observed in the long run.

Lemma 1 clarifies why maximizing long-run growth, rather than the expected population size,

is evolutionarily optimal. If in the present moment organisms have already been evolving for

t periods, then the relative population sizes of different genotypes that we observe today is a

snapshot of the evolutionary process in period t. Assuming this process has been underway

for some time (t is large), the probability is very high that the dominant genotype observed

today is precisely the one with the highest long-run growth rate.

3 Evolutionarily Optimal Choice

Since the signal arrives prior to the choice of act and fitness function (see Figure 1), the

individual can take it into account when selecting both. To analyze dynamic choice in

general—and dynamic consistency in particular—it is necessary to compare ex post behavior

after the arrival of information with the ex ante plan that would be formed if the individual

committed to signal-contingent choices prior to the realization of the signal. We therefore

begin our analysis by deriving the long-run growth rates associated with (possibly random)

ex ante plans of action and fitness function selection. Since evolutionary optimality requires

maximizing long-run growth, the optimal value function over random action plans follows

immediately. In Section 3.1, we discuss the role that self-randomization plays in these

formulas. In Section 3.2, we consider evolutionarily optimal ex post behavior and establish

that choice is dynamically consistent.

Definition 2. A random plan is a function π ∈ R(F ,Ψ) ≡ (4s(F ×Ψ))Σ from the space of

signals to the set of simple probability measures over the space of acts and feasible fitness

functions. The probability π assigns to (f, ψ) following signal σ is denoted by πσ(f, ψ).

A random plan π specifies a path through a decision tree, where the randomization πσ is

selected following the signal σ ∈ Σ. We denote the special case of a deterministic plan that

selects the pair (fσ, ψσ) with certainty following σ by (fσ, ψσ)σ∈Σ. For a given signal and

state realization (ω, s, σ), such a deterministic plan achieves a fitness of ψσ(fσ(ω, s)) and,
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more generally, a random plan π achieves an expected fitness of

Eπσ
[
ψ(f(ω, s))

]
=

∫
F×Ψ

ψ(f(ω, s)) dπσ(f, ψ).

We adopt the convention that the domain of the natural logarithm includes nonpositive

numbers and its range is the extended reals by setting ln(x) = −∞ for all x ≤ 0.

Theorem 1 (Ex Ante Long-Run Growth). Suppose Ψ and µ are fixed, and consider a

genotype with an (infinitely) large subpopulation of individuals. The long-run growth rate of

the genotype from choosing the random plan π ∈ R(F ,Ψ) in every period is

Λ(π) =

∫
Ω

ln

(∫
S×Σ

Eπσ
[
ψ(f(ω, s))

]
dµ(s, σ|ω)

)
dµ(ω). (1)

The concavity of the logarithm implies that Λ is more adversely affected by common

uncertainty about ω than by idiosyncratic uncertainty about s. Also, since Λ expresses

the long-run average growth rate in log terms, Λ(π) = −∞ corresponds to extinction and

Λ(π) = 0 corresponds to constant population size. At the heart of the proof of Theorem 1

is the same logic that is behind the seminal result of Robson (1996), who considered the

special case of no signals (Σ = {σ}), no adaptation (Ψ = {ψ}), and no self-randomization.

Proof. Recall that, conditional on ω, both the s dimension of the state and the signal σ

are independently distributed for each individual in the population. Self-randomization is

also idiosyncratic. Therefore, by the law of large numbers, conditional on the realized ωt at

time t, the aggregate growth rate of a large population of individuals choosing a particular

random plan π is approximately

λt(ωt) =

∫
S×Σ

Eπσ
[
ψ(f(ωt, s))

]
dµ(s, σ|ωt).

Since we consider infinite subpopulations in our model, we can treat this approximation as

exact.11 Taking the product over a sequence of realized common components ω1, . . . , ωT and

raising to the power 1/T gives the realized annualized growth rate over this sequence of

periods:
T∏
t=1

(∫
S×Σ

Eπσ
[
ψ(f(ωt, s))

]
dµ(s, σ|ωt)

)1/T

.

11Note that an approximate (limiting) version of Theorem 1 also holds for finite populations, provided
the initial population size is sufficiently large. Using the theory of branching processes (Athreya and Ney
(1972, Chapter 5)), it can be shown that the average growth rate of a finite population converges to Λ(π)
conditional on non-extinction. Moreover, it can be shown that when Λ(π) > 0, the probability of extinction
converges to zero as the initial population becomes large.
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Taking the logarithm of this expression and then the limit as T →∞, we have

1

T

T∑
t=1

ln

(∫
S×Σ

Eπσ
[
ψ(f(ωt, s))

]
dµ(s, σ|ωt)

)
→
∫

Ω

ln

(∫
S×Σ

Eπσ
[
ψ(f(ω, s))

]
dµ(s, σ|ω)

)
dµ(ω) a.s.,

by the law of large numbers. �

The long-run growth rate of the population is optimized if individuals choose π to maxi-

mize Equation (1). However, since only the random choice of act is observed while the choice

of fitness function corresponds to some unobservable action, it will be useful to decompose

πσ into its (observable) marginal distribution over acts and (unobservable) conditional dis-

tribution over fitness functions given the act.

Definition 3. An action plan is a function ρ ∈ R(F) ≡ (4s(F))Σ from the space of signals

to the set of simple probability measures over acts, where ρσ(f) is the probability assigned to

f following signal σ. An adaptation plan is a function τ ∈ R(Ψ|F) ≡ (4s(Ψ))Σ×F from the

space of signals and acts to the set of simple probability measures over the feasible fitness

functions, where τσ(ψ|f) is the probability assigned to fitness function ψ following signal σ

and the observable choice of act f .

The choice of random plan π can equivalently be expressed as the choice of ρ and τ .

Formally, let τσ⊗ρσ denote the measure with marginal distribution ρσ on F and conditional

distribution τσ(·|f) on Ψ. Then, the expectation of ψ(f(ω, s)) with respect to this measure

is

Eτσ⊗ρσ
[
ψ(f(ω, s))

]
=

∫
F

∫
Ψ

ψ(f(ω, s)) dτσ(ψ|f) dρσ(f).

Given an action plan ρ and adaptation plan τ , the corresponding joint plan over both actions

and adaptation is π = τ ⊗ ρ ≡ (τσ⊗ ρσ)σ∈Σ. Therefore, the highest possible long-run growth

rate associated with an action plan ρ (and subsequent optimal choice of adaptation plan) is

V (ρ) = sup
τ∈R(Ψ|F)

Λ(τ ⊗ ρ)

= sup
τ∈R(Ψ|F)

∫
Ω

ln

(∫
S×Σ

Eτσ⊗ρσ
[
ψ(f(ω, s))

]
dµ(s, σ|ω)

)
dµ(ω).

(2)

Robson (1996) considered the special case with a single fitness function ψ, and without signals

or random choice, in which case the long-run growth rate associated with the deterministic

choice of act f reduces to

V (f) =

∫
Ω

ln

(∫
S

ψ(f(ω, s)) dµ(s|ω)

)
dµ(ω). (3)
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In an application to status and relative consumption effects, Nöldeke and Samuelson (2005)

considered a formula similar to Equation (3) that also incorporates signals, but without

adaptation (Ψ = {ψ}) and without random choice.12 The survey by Robson and Samuelson

(2011) summarizes these and other recent developments in the literature on evolution of

preferences.

By Lemma 1, the evolutionarily optimal genotype is the one that maximizes the long-run

growth rate; that is, it selects among ex ante action plans to maximize Equation (2). We refer

to the preferences over action plans represented by this function V as adaptive preferences.

As is usual in random choice contexts, we do not directly observe these preferences, only the

implied random choice rule. Formally, a decision problem A = (Aσ)σ∈Σ specifies a nonempty

and finite set of available acts Aσ following each signal σ. The resulting set of feasible action

plans is

R(A) ≡ {ρ ∈ R(F) : supp(ρσ) ⊂ Aσ, ∀σ ∈ Σ}.

Corollary 1 (Ex Ante Choice). Suppose Ψ and µ are fixed. Then, for every infinitely

repeated decision problem A, the genotype that chooses an action plan in argmaxρ∈R(A) V (ρ)

achieves a weakly higher long-run growth rate than all others.

The adaptive preferences represented by Equation (2) specify the optimal response to

correlated and uncorrelated uncertainty, but do not concern ambiguity per se. However,

as laid out in Section 1.1, in many examples and applications of ambiguity, the unknown

probability concerns a common factor that affects all individuals in the population. Thus,

the evolutionary mechanism described in Theorem 1 may capture one important source of

ambiguity aversion. In particular, the Robson (1996) representation in Equation (3), which

applies to the case without information, is a special case of the issue-preference model studied

by Nau (2006) and Ergin and Gul (2009), and it is a special case of the smooth model of

Klibanoff, Marinacci, and Mukerji (2005) when restricted to acts f that depend only on s.

We discuss this special case and its extension to signals and updating in detail in Section 4.

3.1 The Role of Random Choice

In the literature on evolutionary biology, several studies have highlighted the potential bene-

fits of randomization in behavior or in the assignment of physical characteristics to organisms

(e.g., Cooper and Kaplan (1982), Bergstrom (2014)). In the context of ambiguity, the discus-

sion of random choice and its role as a hedging device dates back to Raiffa (1961), and it has

been explored axiomatically more recently by Saito (2015) and Ke and Zhang (2020).13 One

12Given the specific assumptions of their model, self-randomization is not necessary for evolutionary opti-
mality. We discuss other specific instances where deterministic plans are optimal in Sections 4 and 5. See also
Section S2 of the Online Appendix for a related discussion of signal response in lieu of self-randomization.

13For a related discussion of random choice induced by quasiconcave non-expected-utility preferences for
risk, see Machina (1985) and Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella (2018).
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significant prediction of our model that has not received attention in this prior literature is

the possibility of strict preferences to self-randomize rather than use some exogenous source

of randomization such as mixtures of acts.14

The following example illustrates the role of random choice in our model and how the

presence of hidden actions causes self-randomization to become a better hedge against am-

biguity than exogenous sources of randomization. The key conceptual point in this example

is that self-randomization over actions by individuals allows them to coordinate between ob-

served actions (choice of act) and unobserved actions (adaptation). In contrast, exogenous

randomization that takes place after the choice of hidden action hinders such coordination.

Moreover, in this case, whether the exogenous randomization over acts takes place before

or after the realization of the state is not important for payoffs, so we can conveniently

model exogenous sources of randomization using probabilistic mixtures of acts (in the sense

of Anscombe–Aumann).

Example 1. The farmers in a community have to choose between planting one of two crops,

f and g. There are two common states of the world, a rainy state and a dry state, Ω = {r, d},
and µ(r) = µ(d) = 0.5. Crop f produces high yield f̄ in state r and low yield f in d.

Crop g instead produces high yield ḡ in d and low yield g in r. Suppose that there are

two harvesting technologies, and each farmer makes an unobserved (hidden) investment in

harvesting equipment at the time of choosing a crop and before the state resolves. Denote

the two resulting fitness functions by ψ1 and ψ2. The first technology is suited to crop f :

ψ1(f̄) = 2 and ψ1(z) = 1 for z 6= f̄ . The second technology is suited to crop g: ψ2(ḡ) = 2

and ψ2(z) = 1 for z 6= ḡ. The individual reproductive fitness associated with each crop and

technology combination in the two states ω = r, d is summarized in Table 1.

ψ1 ψ2

f 2, 1 1, 1
g 1, 1 1, 2

Table 1: Individual growth in states (r, d)

The signal space Σ and the idiosyncratic state space S play no role in this example and can

be dropped from the long-run growth formula in Equation (2). We now consider deterministic

action plans, action plans involving self-randomization, and exogenous randomization over

acts, and we compare the long-run growth rates associated with each.

14Indeed, the aforementioned axiomatic models invoke the opposite preference. Empirically, the question
of whether self-randomization or mixtures serve as a better hedge against ambiguity has received little
attention in the experimental literature, but there is some evidence that subjects have limited or even
negative willingness to pay for mixtures of acts (see Dominiak and Schnedler (2011) and Agranov and
Ortoleva (2017)), indicating a potential preference for self-randomization.
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• Deterministic choice: All farmers planting the same crop f or g exposes the pop-

ulation to common uncertainty and leads to the following long-run growth rates:

V (f) = Λ(f, ψ1) =

∫
Ω

ln
(
ψ1(f(ω))

)
dµ(ω) =

1

2
ln(2) +

1

2
ln(1) ≈ 0.3466

V (g) = Λ(g, ψ2) =

∫
Ω

ln
(
ψ2(g(ω))

)
dµ(ω) =

1

2
ln(1) +

1

2
ln(2) ≈ 0.3466.

• Self-randomization: To analyze random choice, we first determine the optimal joint

plan π over crops and technology, and then deduce from it the optimal (observable) ac-

tion plan ρ over crops. Let π = 1
2
δ(f,ψ1) + 1

2
δ(g,ψ2) be the plan that randomizes uniformly

over (f, ψ1) and (g, ψ2), pairing each crop with the appropriate harvest technology.15

From a quick examination of Table 1, we see that this equal weight randomization elim-

inates common uncertainty and gives an average individual fitness of 1.5 in each state.

The resulting action plan ρ = 1
2
δf + 1

2
δg is the marginal distribution of π, and

V

(
1

2
δf +

1

2
δg

)
= Λ

(
1

2
δ(f,ψ1) +

1

2
δ(g,ψ2)

)
= ln(1.5) ≈ 0.4055.

• Exogenous randomization (mixtures): As noted above, we can represent any

exogenous randomization between the two crops that is not carried out well in advance

as the probabilistic mixture (in the sense of Anscombe-Aumann) of the two acts, h =
1
2
f + 1

2
g. In this case, the farmer must choose (perhaps randomly) which harvesting

equipment to acquire prior to learning the realized crop. This choice of adaptation plan

τ can be represented as choosing the probability α ∈ [0, 1] of selecting ψ1. Averaging

the individual fitness from f and g in Table 1, we see that the state-contingent average

fitness is (1.5, 1) and (1, 1.5) for the fitness functions ψ1 and ψ2, respectively. Therefore,

Λ
(
αδ(h,ψ1) + (1− α)δ(h,ψ2)

)
=

1

2
ln
(
1 + 0.5α

)
+

1

2
ln
(
1.5− 0.5α

)
.

This long-run growth rate is maximized by taking α = 0.5, and hence

V

(
1

2
f +

1

2
g

)
= Λ

(
1

2
δ(h,ψ1) +

1

2
δ(h,ψ2)

)
= ln(1.25) ≈ 0.2231.

This example shows that when there are hidden actions, self-randomization serves as

a better hedge against common uncertainty or ambiguity (we will explore the ambiguity

interpretation of the representation in more detail in Section 4) than mixtures of acts. Indeed,

in this example, mixtures of acts perform even worse than the original acts since the hedging

benefit of the mixture is outweighed by the loss of fitness associated with sometimes mis-

coordinating the hidden action (harvesting equipment) with the realized act (crop).

15As is standard, we use δx to denote the Dirac probability measure that assigns probability one to x.
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3.2 Updating and Dynamic Consistency

We begin this section with definitions of consequentialism and dynamic consistency. Since

it is impossible to directly observe preferences over random action plans,16 we focus on the

choice of action plan given a decision problem A = (Aσ)σ∈Σ. As a natural extension of

the standard choice correspondence used for deterministic choice, let C(A) denote the set

of all random action plans ρ that the individual is willing to choose ex ante. Similarly, let

C(Aσ|σ, ρ) denote the set of all random actions ρ̂σ ∈ 4s(Aσ) that the individual is willing to

choose after observing the signal σ and given the ex ante plan ρ.

Definition 4. Random choices satisfy consequentialism if ex post choices do not depend on

ex ante plans: C(Aσ|σ, ρ) = C(Aσ|σ, ρ̂) for all A and all ρ, ρ̂ ∈ R(A) and σ ∈ S.

Definition 5. Random choices satisfy dynamic consistency if ex ante plans are carried out

ex post: For any A and ρ, ρ̂ ∈ R(A) such that ρσ′ = ρ̂σ′ for all σ′ 6= σ,

1. ρ ∈ C(A) and ρ̂ /∈ C(A) together imply ρσ ∈ C(Aσ|σ, ρ) and ρ̂σ /∈ C(Aσ|σ, ρ).

2. ρ ∈ C(A) implies ρσ ∈ C(Aσ|σ, ρ) whenever µ(σ) > 0.

These conditions extend the standard definitions used in the special case of partitional

information structures and deterministic choice (e.g., Machina and Schmeidler (1992), Ep-

stein and Le Breton (1993), or Hanany and Klibanoff (2007)) to our more general framework.

Specifically, in the case of deterministic choice, the random action plan ρ reduces to a de-

terministic plan (fσ)σ∈Σ. Partitional learning corresponds to the special case where Σ is a

partition of S, so each signal σ is a subset of S and, conditional on the signal σ, the measure

µ assigns probability zero to states outside of the event σ. In this case, a deterministic action

plan can be reduced to an act by defining f(s) = fσ(s) for s ∈ σ ∈ Σ. Finally, when f, g ∈ A,

f ∈ C(A) and g /∈ C(A) means that f % g, and similarly for ex post preferences %σ,f . Our

version of dynamic consistency then implies the standard definition: If f(s) = g(s) for all

s /∈ σ,

f � g =⇒ f �σ,f g and f % g =⇒ f %σ,f g whenever µ(σ) > 0.

As noted above, ambiguity-aversion and violations of expected-utility in general imply

that consequentialism and dynamic consistency cannot be simultaneously satisfied, as we will

16There are several reasons for this: First, we already observed in the last section that exogenous random-
izations offered to an individual are not treated the same as self-randomization, so the individual’s ranking
of a pair of exogenous randomizations over acts may not reflect her ranking of self-randomizations with the
same distributions. Second, whatever options are made available to an individual, be they acts or lotteries
(mixtures) over acts, the individual is always able to randomize between them, making it impossible to
directly infer the ranking of the options provided. That is, given the option set {ρ, ρ̂}, the individual may
instead prefer to self-randomize to obtain another distribution over acts αρ+(1−α)ρ̂. With the exception of
Saito (2015), the decision theory literature on randomization and ambiguity largely ignores this fundamental
issue with the observability of preferences over random choices.
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illustrate in Section 4. Fortunately, the evolutionary approach gives clear guidance about

which property to favor: The evolutionarily optimal ex ante plans are precisely those that

maximize the long-run growth rate of the genotype. The evolutionarily optimal ex post

plans are those that achieve the same objective. Thus, dynamic consistency is necessarily

satisfied, as the following results demonstrate.

Theorem 2 (Ex Post Long-Run Growth). Suppose Ψ and µ are fixed, and suppose the

genotype forms an action plan ρ ∈ R(F) ex ante, which it follows after every signal σ′ 6= σ,

but it deviates from this plan after signal σ by instead implementing the ex post random

action ρ̂σ ∈ 4s(F). Then, its long-run growth rate is

V (ρ̂σ|σ, ρ) = sup
τ∈R(Ψ|F)

∫
Ω

ln

(
µ(σ|ω)

∫
S

Eτσ⊗ρ̂σ
[
ψ(f(ω, s))

]
dµ(s|σ, ω)

+

∫
S×Σ\{σ}

Eτσ′⊗ρσ′
[
ψ(f(ω, s))

]
dµ(s, σ′|ω)

)
dµ(ω).

(4)

Theorem 2 follows directly from Theorem 1. The growth rate formula in Equation (4)

simply evaluates ρ̂σ (following σ) in conjunction with the ex ante plan ρ (following other

signals) according to Equation (2). It follows that choices are dynamically consistent.

Corollary 2 (Dynamic Consistency). Given a decision problem A = (Aσ)σ∈Σ, the long-

run growth rate is optimized if individuals maximize Equation (2) ex ante and Equation (4)

ex post, so C(A) = argmaxρ∈R(A) V (ρ) and C(Aσ|σ, ρ) = argmaxρ̂σ∈4s(Aσ) V (ρ̂σ|σ, ρ). Thus,

evolutionarily optimal random choice is dynamically consistent.

Given the tension between dynamic consistency and consequentialism, one implication

of Corollary 2 is that choice may violate consequentialism. In Section 4, we discuss such

a violation in the context of the Ellsberg example. The evolutionary approach provides a

natural interpretation for why consequentialism may be violated. For expositional clarity,

consider deterministic plans. Consequentialism states that preferences between acts f and

g following a signal σ do not depend on what act would have been obtained following other

signals σ′. This property could therefore be interpreted as preferences not depending on

“what might have been.” In our model, the genotype consists of a large subpopulation of

individuals. Even if one individual receives the signal σ, other members of this subpopulation

are simultaneously receiving different signals. From the individual perspective, choice after

updating can be thought of as the best response to other individuals who are all playing

the Pareto optimal equilibrium of the game that has long-run population growth as the

payoff. In other words, individuals may violate consequentialism because they care about

the outcomes others of their genotype are experiencing; in particular, they care about the

correlation between their own fitness and the fitness of others with the same genotype.

Hanany and Klibanoff (2007, 2009) similarly studied dynamically consistent (and hence

non-consequentialist) conditional preferences. In particular, they showed that for a variety
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of models of ambiguity aversion, such conditional preferences between acts f and g can be

represented using updated beliefs within an otherwise unchanged value function. Crucially,

since conditional preferences may violate consequentialism, their updating rule for beliefs is

typically not Bayesian and depends nontrivially on the original choice set and the ex ante

plan. Therefore, their approach necessarily conflates beliefs and tastes, since the updated

beliefs depend not just on the information structure, but on the decision problem itself. In

contrast, updated beliefs in Equation (4) are derived using standard Bayesian updating and

hence are independent of the decision problem. The violation of consequentialism in this ex-

pression comes instead from an externality—in the sense that each individual is programmed

to care about correlation with other individuals—which requires the ex ante plan to be a

part of the ex post value function. In the context of our evolutionary model, this strikes us as

the most natural formulation of the conditional growth rate, as it emphasizes the underlying

reason for the dependence of the optimal ex post choices on the ex ante plan.

4 Applications: Ambiguity Aversion

In this section, we focus on the special case of a single fitness function (Ψ = {ψ}), which

allows the supremum over Ψ to be dropped from the representation in Equation (2). For

expositional ease, we also focus on deterministic choice. While in general self-randomization

over available acts may serve as a hedging device even absent hidden actions, it will be easy

to see that in the examples of this section deterministic choice is optimal. We begin with a

simple example without signals and then incorporate signals in Section 4.1.

Example 2 (Ellsberg—no signals). Consider an Ellsberg urn with one black ball and two

balls that could each be either red or yellow. Each individual independently draws one ball

from the urn, which we model using the state space S = {b, r, y} for independent risk. The

individual may be offered the following bets on colors of the ball drawn:

b r y

B 1 0 0

R 0 1 0

BY 1 0 1

RY 0 1 1

In this table, B denotes the act that pays $1 if the ball drawn is black and $0 otherwise, BY

indicates the act that pays $1 if the ball is either black or yellow, and so on. The typical

preference pattern documented by Ellsberg (1961) is B � R and BY ≺ RY , in violation of

Savage’s sure-thing principle.

To understand such preferences within the evolutionary model described above, note that

although the draw of the ball is independent across individuals, the composition of the urn
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itself may be common for all individuals. In this case, we can model the possible urn compo-

sitions using the set Ω = {ω1, ω2, ω3}, where ω1 = (b, r, r), ω2 = (b, r, y), and ω3 = (b, y, y).

Even if individuals form subjective probability assessments on the possible urn compositions,

this correlated uncertainty is treated differently than uncorrelated uncertainty. For ease of

illustration, suppose that µ assigns equal weight to each urn composition and that there is a

single fitness function ψ that takes values ψ(0) = 0 and ψ(1) = 1. Since when acts only de-

pend on s the long run growth rate for deterministic choice in Equation (3) is a special case of

the smooth model (Klibanoff, Marinacci, and Mukerji (2005)) with a concave transformation

function, these evolutionarily optimal preferences exhibit Ellsberg behavior:

V (B) = ln

[
1

3

]
>

1

3
ln

[
2

3

]
+

1

3
ln

[
1

3

]
+

1

3
ln[0] = V (R),

and

V (BY ) =
1

3
ln

[
1

3

]
+

1

3
ln

[
2

3

]
+

1

3
ln[1] < ln

[
2

3

]
= V (RY ).

Simple calculations show that randomizations αδB + (1 − α)δR for 0 < α < 1 yield long-

run growth rates strictly between those of B and R, and likewise for the second choice sce-

nario. Thus, deterministic choice is indeed optimal and we have C({B,R}) = {B} and

C({BY,RY }) = {RY }.17

In Example 2, the crucial assumption for generating ambiguity aversion is that the com-

position of the urn is common across all individuals. In contrast, if a different urn is composed

for each individual and if there is no correlation in how these urns are constructed, then cor-

relation aversion alone would not produce ambiguity aversion—a different mechanism would

be required to generate Ellsberg behavior. This example is therefore useful for illustrating

both the scope and the limitations of the evolutionary model: Adaptive preferences generate

ambiguity aversion anytime there is uncertainty about the model itself or some other factor

that is common to all individuals in the population, which we contend is the case in the vast

majority of examples and applications of ambiguity.18 As noted earlier, in cases involving

idiosyncratic ambiguity, we do not take a stand on whether ambiguity aversion is driven by

heuristics developed by the genotypes from the case of common uncertainty or if it arises

from some other source.19

17It is important to keep in mind that for other decision problems random choice may be optimal. For
instance, suppose instead that individuals are able to bet on any single color of their choosing: black, red, or
yellow. An independent 50–50 randomization between betting on red or yellow will yield a 1/3 probability of
winning for each of the three possible urn compositions; more importantly, the outcomes for each individual
taking this randomization will be independently distributed. Thus, evolutionarily optimal preferences will
be indifferent between betting on black and making this randomized bet on red and yellow.

18Halevy and Feltkamp (2005) suggested another mechanism by which correlation can generate ambiguity
aversion: Risk aversion alone implies that an individual who makes repeated bets on an urn would rather
draw from a risky than an ambiguous urn. In our evolutionary context, instead, the maximization of long-run
growth generates an aversion to correlation in the contemporaneous draws of different individuals.

19If one is not convinced that the Ellsberg urn is a perfect fit for our model, the objects in the example
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In line with the interpretation of ambiguity as model uncertainty, we favor a statistical

interpretation of the smooth model used in this section, where each ω ∈ Ω is a candidate

for the true model (the law of nature governing the distribution of s ∈ S) and the marginal

distribution of µ on Ω is a prior over the candidate models.20 For simplicity, we treat µ

as constant over time. In that case, evolutionary optimality requires that individuals’ pref-

erences (eventually) assign the correct weights, so that µ becomes objective—it accurately

reflects the data generating process.21 However, our evolutionary approach can easily be

extended to allow µt to change with time t. For a simple example, suppose there is an

index set K and a set of possible distributions µk ∈ 4(Ω × S), where k ∈ K is redrawn

periodically after finitely many periods. Then, in each period t, it is again evolutionarily

optimal for individuals to maximize the growth rate in Equation (2), this time using their

“best guess” of the distribution µt given all information available at time t. This information

evolves as follows: One ω ∈ Ω is commonly drawn each period, so that in between draws of

k the marginal of µk on Ω is gradually revealed. At the same time, with a large number of

individuals who each independently draw a state s ∈ S each period, the conditional µk(·|ω)

on S can be fully revealed in one period. In other words, in this situation ambiguity will

only linger in the case of common uncertainty, in line with the discussion in Section 1.1.

4.1 Understanding Violations of Consequentialism

We now consider signals and updating in the special case of a single fitness function, Ψ = {ψ}.
As above, we will focus on an example where deterministic choice is optimal, and we therefore

restrict attention to deterministic action plans (fσ)σ∈Σ. In this case, the long-run growth

rate in Equation (2) becomes

V
(
(fσ)σ∈Σ

)
=

∫
Ω

ln

(∫
S×Σ

ψ(fσ(ω, s)) dµ(s, σ|ω)

)
dµ(ω).

can be recast in terms of other examples discussed in the introduction. For instance, the acts B,R, Y could
represent different medical treatments for a condition and the idiosyncratic states b, r, y could represent the
events in which each treatment is successful for an individual, with B being a better understood treatment
than R and with the efficacy of the combined treatment RY being better understood than that of BY .

20See Klibanoff, Marinacci, and Mukerji (2005) or Marinacci (2015) for a discussion of this interpretation.
An alternative interpretation is that the marginal of µ on Ω is a preference parameter that captures subjective
plausibility of different first-order probabilistic beliefs µ(·|ω) on S.

21Halevy (2007) found that individuals who are ambiguity averse when betting on Ellsberg acts often also
fail to reduce compound lotteries, in the sense that their preferences satisfy the pattern in the example even
when the distribution over possible urns is objective. This seminal and often replicated finding has been hard
to reconcile with the notion of ambiguity aversion. Our evolutionary approach can explain the equivalence
between compound risk and ambiguity when the urn is common. In the original experiment a different urn
was randomly chosen for each individual, and we remain agnostic about whether subjects rely on a heuristic
from the case with common uncertainty, or whether a different mechanism is responsible for the failure to
reduce purely idiosyncratic compound lotteries.
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The long-run growth rate in Equation (4) from deviating from the plan (fσ)σ∈Σ by instead

selecting g following the signal σ̄ becomes

V
(
g|σ̄, (fσ)σ∈Σ

)
=

∫
Ω

ln

(
µ(σ̄|ω)

∫
S

ψ(g(ω, s)) dµ(s|ω, σ̄)

+

∫
S×Σ\{σ̄}

ψ(fσ(ω, s)) dµ(s, σ|ω)

)
dµ(ω).

In particular, choice is dynamically consistent (this is a special case of Corollary 2).

We now revisit the special case of the smooth model from Example 2 (where acts f depend

only on s) to illustrate the tension between consequentialism and dynamic consistency.

Example 3 (Ellsberg—with signals). In the context of the urn in Example 2, suppose that

individuals each receive a private signal that tells them whether the ball drawn for them is

yellow (y) or not yellow (¬y).22 As is standard in models of partitional learning, preferences

over signal-contingent action plans for this information structure are entirely pinned down

by preferences over acts. For example, since B and R both pay zero in state s = y, the

action plan R¬yB that selects act R following the signal ¬y and selects B following the

signal y gives the same outcome in every state/signal combination (that occurs with positive

probability) as the act R. Similarly, the action plan R¬yY gives the same outcome in every

non-null state/signal combination as the act RY , and so on. Thus, the Ellsberg preferences

over acts described above imply the following preferences over action plans:23

B¬yB � R¬yB and B¬yY ≺ R¬yY.

Therefore, dynamic consistency requires that

B �¬y,B¬yB R and B ≺¬y,R¬yY R.

However, this pattern is incompatible with consequentialism, which would require that pref-

erences between B and R following the signal ¬y be independent of the ex ante action plan.

Note that the tension illustrated in this example depends neither on a particular choice

of updating rule nor on the specific model of ambiguity aversion: Ellsberg behavior of the

form B¬yB � R¬yB and B¬yY ≺ R¬yY together with this specific information structure

cannot satisfy both dynamic consistency and consequentialism.24 Our model and results

22Formally, for each ω ∈ Ω, we have µ(y|s, ω) = 1 if s = y and µ(¬y|s, ω) = 1 if s = b, r.
23We are making two implicit assumptions in this argument (both of which are implied by our model).

The first is that individuals are indifferent between action plans that differ only on µ-measure zero events,
such as R¬yB and R. The second is that preferences between any two acts (trivial action plans) f and g
does not change after the introduction of signals.

24Note, in particular, that Ellsberg preferences with this information structure are therefore incompatible
with the Epstein and Schneider (2003) model of multiple priors expected utility with rectangular priors. A
similar example can be found in Hanany and Klibanoff (2007).
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imply that individuals with these ex ante preferences will exhibit the conditional ex post

preferences listed above. Thus, individuals will be dynamically consistent but will violate

consequentialism.

As noted previously, consequentialism is violated because evolutionarily optimal prefer-

ences include an “externality” that incorporates the growth rate of other individuals in the

population who are simultaneously receiving different signals. For example, the conditional

preference between B and R following signal ¬y given the ex ante action plan R¬yY is based

on the following comparison:

V (R|¬y,R¬yY ) =
∑
ω∈Ω

µ(ω) ln
(
µ(¬y|ω)︸ ︷︷ ︸

fraction
getting

signal ¬y

µ(r|ω,¬y)︸ ︷︷ ︸
average fitness
from R after

signal ¬y

+ µ(y|ω)︸ ︷︷ ︸
fraction
getting
signal y

1︸︷︷︸
fitness
from Y
after y

)

>
∑
ω∈Ω

µ(ω) ln
(
µ(¬y|ω) µ(b|ω,¬y) + µ(y|ω) 1

)
= V (B|¬y,R¬yY ).

Notice the complementarity between r and y: The probability of seeing signal ¬y and then

state r is higher for urn compositions ω where the probability of signal y (and hence state

y) is lower, as the first two columns of Table 2 illustrate.

µ(¬y|ω)µ(r|ω,¬y) µ(y|ω) µ(¬y|ω)µ(b|ω,¬y)

ω1 = (b, r, r) 1 · 2
3

= 2
3

0 1 · 1
3

= 1
3

ω2 = (b, r, y) 2
3
· 1

2
= 1

3
1
3

2
3
· 1

2
= 1

3

ω3 = (b, y, y) 1
3
· 0 = 0 2

3
1
3
· 1 = 1

3

Table 2: Calculating the fitness from choosing R or B following signal ¬y

Choosing R following signal ¬y thus achieves higher expected individual growth in pre-

cisely those instances when there are fewer individuals who contribute to aggregate growth

by receiving signal y and then choosing Y . In contrast, choosing B does not hedge against

this aggregate growth-rate risk, because the probability of state b is independent of the urn

composition, as shown in the last column of the table. When the ex ante plan is instead

B¬yB, the hedging motive for the choice of R following ¬y disappears, as now the growth

rate following signal y is zero. In this case, we have the opposite conditional preference:

V (B|¬y,B¬yB) =
∑
ω∈Ω

µ(ω) ln
(
µ(¬y|ω)µ(b|ω,¬y)

)
>
∑
ω∈Ω

µ(ω) ln
(
µ(¬y|ω)µ(r|ω,¬y)

)
= V (R|¬y,B¬yB).
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4.2 Lessons from and for the Lab

Our evolutionary approach to ambiguity aversion applies directly to situations where am-

biguity can be identified with common uncertainty, that is, where the same uncertainty is

faced by a large subpopulation. In contrast, the number of subjects in lab experiments is

small. It may be that ambiguity aversion in the lab is due to common uncertainty about the

motives of experimenters or is a heuristic based on the adaptive model, in which cases our

insights would apply. Alternatively, other sources of ambiguity aversion might be at play, in

which case our insights may not apply. Therefore, the validity of our model’s prediction of

dynamic consistency in the laboratory strikes us as an empirical question. We now compare

the predictions of our model to existing evidence, and in the process explain how the model

can provide guidance on how to successfully test for dynamic consistency.

4.2.1 Testing Dynamic Consistency

When investigating dynamic consistency between ex ante signal-contingent plans and ex post

choice after a particular signal realization, it is often implicitly assumed that the informa-

tion structure that gives rise to that signal realization is irrelevant for ex post choice. For

instance, Dominiak, Duersch, and Lefort (2012) considered a decision situation similar to

Example 3. To efficiently collect ex post preferences contingent on the signal ¬y, their ex-

perimental design redraws the ball from the urn until the ball comes up black or red, so that

no individual ever learns y.25 While this protocol may be adequate in the context of some

theoretical models, our model of adaptive preferences predicts that dynamic consistency and

consequentialism are at odds with each other only when there are complementaries in payoffs

between individuals who receive different signals. If no individuals receive the counterfactual

signal (in this case y), then our model will not predict any violations of consequentialism.

To illustrate, recall from Table 2 that it is optimal to follow the plan R¬yY after learning

¬y only because this choice hedges against fluctuations in population growth from individuals

who learn y. However, if subjects never learn y, then this hedging motive disappears and

adaptive preferences will instead favor B over R following ¬y, in line with the experimental

findings in Dominiak, Duersch, and Lefort (2012):

V
(
B|draw until ¬y, (fσ)σ∈Σ

)
=
∑
ω∈Ω

µ(ω) ln
(
µ(b|ω,¬y)

)
>
∑
ω∈Ω

µ(ω) ln
(
µ(r|ω,¬y)

)
= V

(
R|draw until ¬y, (fσ)σ∈Σ

)
,

for any ex ante action plan (fσ)σ∈Σ. Note that our model predicts this ranking both ex ante

and ex post, so preferences are both dynamically consistent and consequentialist given this

25Dominiak, Duersch, and Lefort (2012) used different colors for the balls in their experiment. We have
translated to the colors used in our Example 3 for ease of exposition.
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decision setting. This demonstrates that in order to test our model’s prediction of dynamic

consistency, the entire event tree must be implemented.

A recent experiment by Bleichrodt et al. (2020) that did implement the entire game

tree found that consequentialism was satisfied slightly more often than dynamic consistency

(73.2% versus 66.2% of subjects). Interestingly, although not the focus of their experiment,

some of their experimental evidence seems to suggest that violations of dynamic consistency

may be connected with cognitive constraints and narrow bracketing. In particular, the

primary violation of dynamic consistency observed in their experiment also constitutes a

violation of monotonicity (stochastic dominance), and in many cases of consequentialism, if

subjects properly integrate payoffs across the different questions in the experiment.26

Red Blue Yellow

Odd 33 M 67−M
Even 33 M 67−M

Table 3: Composition of Ambiguous Bag (Table 1 from Bleichrodt et al. (2020))

Specifically, Bleichrodt et al. (2020) offered subjects bets on cards drawn from an am-

biguous bag, where half of the 200 cards carried an even number and the other half an odd

number. For each parity, 33 cards were red, and 67 cards were either blue or yellow (see

Table 3). For each subject, a card was drawn from this ambiguous bag at random. Subjects

were asked two consecutive questions that were equally likely to be the one to determine

their final reward. The first question asked subjects to bet on the color of a card drawn

for them, contingent on its parity. Note that betting on yellow for odd parity and blue for

even parity (or vice versa) is a dominant choice for a weakly ambiguity averse subject: it

hedges perfectly against ambiguity and achieves a higher expected payoff than betting on

red, since 67/2 > 33. After answering the first question, subjects were told the parity of their

card and asked again to bet on its color. Roughly half (49%) of the violations of dynamic

consistency observed in this experiment involved switching from the unconditionally optimal

bets to betting on red after learning the parity of the card. However, this choice pattern also

constitutes a violation of monotonicity and potentially consequentialism. When considering

the combination of the two questions, subjects should realize that if, for instance, the re-

vealed parity is odd and they previously bet on yellow for that case in the first question, then

betting on blue (rather than red) in the second question hedges perfectly against ambiguity

and yields the highest possible expected payoff given the randomized payment scheme.

These experimental findings draw to light an interesting parallel and potential future

research question: Narrow bracketing constitutes a failure to integrate payoffs from differ-

26In a similar vein, Kuzmics (2017) showed that if subjects integrate payoffs across questions in an experi-
ment and can self-randomize, then any behavior that respects monotonicity can be rationalized by expected
utility for some subjective prior on the state space. Hence, any behavior inconsistent with expected utility
when considering the experiment as a whole suggests possible narrow bracketing of questions.
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ent aspects of one’s overall choice situation when making decisions. Consequentialism by

definition involves not integrating other unrealized branches of the decision tree when mak-

ing choices. In the experiment by Bleichrodt et al. (2020), there seems to be a connection

between the two, since making the purportedly consequentialist choice of red after learn-

ing the parity of the card could only be viewed as optimal if subjects narrowly bracket the

payments from different questions in the experiment. This begs the empirical question of

whether these two behavioral patters—narrow bracketing and consequentialism (at the ex-

pense of dynamic consistency)—correlate across individuals, and if so, whether both should

be considered mistakes as our model would suggest.

4.2.2 Ambiguous Signals

While many models of updating with ambiguity consider an ambiguous prior with unam-

biguous signals, it is also possible that the information content of the signals themselves is

ambiguous. For instance, there may be no prior ambiguity at all until the result of a poorly

understood test becomes available. In a recent laboratory experiment, Epstein and Halevy

(2020) examined the response of subjects to signals that have ambiguous precision, and they

documented violations of the martingale property of beliefs.

Shishkin and Ortoleva (2020) subsequently tested one striking implication of all common

consequentialist approaches to updating models of ambiguity aversion, namely that am-

biguous information can have negative value. This implication seems counterintuitive, and

indeed their evidence casts doubt on it: Ambiguity-averse subjects appear to ignore infor-

mation unless it is valuable. Reacting to information only when this adds value is precisely

what maximizes ex ante expected utility, and is hence the dynamically consistent course of

action. In other words, their experimental findings are in line with our model of adaptive

preferences, and its evolutionary foundation provides a rationale for them.

5 Applications: Non-Expected Utility

The tension between dynamic consistency and consequentialism is not exclusive to environ-

ments with ambiguity, but can also arise when updating models of non-expected utility for

risk. Machina (1989) prominently argued that those models should be updated in a way

that is dynamically consistent, even at the cost of consequentialism. The adaptive model

accommodates violations of expected utility, and since updating in the adaptive model is dy-

namically consistent, our results support this general position for the models that it nests as

special cases. To illustrate, in this section we consider another canonical special case of our

model: rank-dependent utility. Perhaps surprisingly, we show in Section 5.1 that evolution

can generate a version of dynamic RDU that is both dynamically consistent and consequen-

tialist. This result depends crucially on the timing in the model, and in Section 5.2 we
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discuss how the non-consequentialist version of dynamic RDU suggested by Machina (1989)

is obtained when adaptation (the hidden action) instead takes place before the signal arrives.

5.1 DC and Consequentialist Updating of RDU

To focus on risk preferences, in this section we restrict attention to the special case of our

model without common uncertainty (Ω = {ω}), but we now permit non-degenerate after-

signal adaptation. In this case, there is no strict benefit to self-randomization, so it is without

loss of generality to restrict attention to deterministic action plans (fσ)σ∈Σ and adaptation

plans (ψσ)σ∈Σ.27 Therefore, Equation (2) becomes

V
(
(fσ)σ∈Σ

)
= sup

(ψσ)σ∈Σ∈ΨΣ

ln

(∫
S×Σ

ψσ(fσ(s)) dµ(s, σ)

)
= ln

(∫
Σ

sup
ψ∈Ψ

[ ∫
S

ψ(fσ(s)) dµ(s|σ)

]
dµ(σ)

)
.

(5)

Note that in this case the logarithm can also be dropped by taking a monotone transforma-

tion, but we will retain it for consistency in expressing growth rates in log terms and for ease

of comparing the formulas in this section to later results. Although the connection is non-

trivial, the following result shows that rank-dependent utility with a pessimistic probability

distortion function can be expressed as a special case of our model.

Proposition 1 (Updating Rank-Dependent Utility). Suppose Ω = {ω} and Z ⊂ R. Fix µ,

and fix any bounded nondecreasing function u : Z → R and any function ϕ : [0, 1] → [0, 1]

that is nondecreasing, concave, and onto. Then, there exists a set Ψ of functions ψ : Z → R
such that the ex ante value function V defined by Equation (5) can be equivalently expressed

as

V
(
(fσ)σ∈Σ

)
= ln

(∫
Σ

∫
Z

u(z) d(ϕ ◦ Ffσ ,µ(·|σ))(z) dµ(σ)

)
and ex post adaptive preferences following a signal σ̄ are represented by

V̂
(
g|σ̄, (fσ)σ∈Σ

)
=

∫
Z

u(z) d(ϕ ◦ Fg,µ(·|σ̄))(z),

where

Fg,µ(·|σ̄)(z) =

∫
S

1[g(s) ≤ z] dµ(s|σ̄)

27Formally, after dropping the expectation over Ω from Equation (2), we have

V (ρ) = sup
τ∈R(Ψ|F)

ln

(∫
S×Σ

Eτσ⊗ρσ
[
ψ(f(s))

]
dµ(s, σ)

)
.

Since the expression inside the logarithm is linear in both τ and ρ, it is maximized by a deterministic action
plan and adaptation plan.
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denotes the cumulative distribution function of g given µ and σ̄.

For the intuition behind this result, consider first the case of no signals. A key step in

the logic of Proposition 1 is a duality result that shows that for any probability distortion

function ϕ as in the proposition, there exists a set of fitness functions Ψ such that, for any

act f ,28

sup
ψ∈Ψ

∫
S

ψ(f(s)) dµ(s) =

∫
Z

u(z) d(ϕ ◦ Ff,µ)(z). (6)

In the case with signals, we have an expression similar to the left side of this equation inside

an expectation over signals, and hence the same duality applies. Specifically, applying the

dual formula in Equation (6) to the acts fσ and measures µ(·|σ) in Equation (5) immediately

yields the ex ante value function in Proposition 1. The formula for the ex post value function

follows similarly from Theorem 2. However, we denote this value function by V̂ (g|σ̄, (fσ))

rather than V (g|σ̄, (fσ)) to emphasize that it differs from Equation (4) not only because it

is expressed as a rank-dependent utility, but also because we drop the logarithm and the

conditional fitness associated with other signals. This is possible because ex post preferences

do not depend on what happens after signals σ 6= σ̄ in the case without common uncertainty.

Since µ only captures idiosyncratic uncertainty in this section and since we identify id-

iosyncratic uncertainty with pure risk, the distribution of outcomes Ffσ ,µ(·|σ) following each

signal σ amounts to an unambiguous risky prospect. The rank-dependent utility representa-

tion with concave ϕ in Proposition 1 suggests that individuals violate expected utility when

choosing over risk by overweighting the probability assigned to worse outcomes. In other

words, given the appropriate set of fitness functions Ψ, adaptive preferences are equivalent

to maximizing expected utility with distorted probability weights.29

5.2 Importance of the Timing of Adaptation and Information

In contrast to the examples considered in Machina (1989), ex post preferences in Proposi-

tion 1 are actually independent of the plan (fσ)σ∈Σ. That is, consequentialism is not violated

by this dynamically consistent version of the rank-dependent utility model with information.

The evolutionary intuition behind this result is that σ realizes prior to adaptation, and in our

model, idiosyncratic risk that resolves before the selection of the hidden action is evaluated

28The dual formula in Equation (6) is similar to several existing results in the literature. See, for example,
Wakker (1994), Chatterjee and Krishna (2011), or the Supplementary Material of Sarver (2018).

29In this paper, we focus on exploring the scope of adaptive preferences, and hence of our insights on
dynamically consistent updating, by identifying special cases that can be nested. Sarver (2018) considers a
similar representation to Equation (5) (but without signals), which also nests RDU. He further shows that
his model does not overlap with other prominent non-expected-utility models (disappointment aversion,
betweenness preferences, cautious expected utility) except in the case of expected utility. These insights are
easily extended to our model and help delineate the boundary of the set of preferences that it nests. As we
briefly touch on in Section 6.3, a natural next step is to characterize further restrictions on preferences in
terms of properties of the set Ψ.
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in accordance with expected utility. This is reflected by the ex ante value function, where

only the cdf Ffσ ,µ(·|σ) over outcomes given σ is distorted by ϕ, rather than the unconditional

distribution that also incorporates uncertainty about the realization of σ itself.

In Section S1 of the Online Appendix, we show that if adaptation instead takes place

before information, so that the hidden action ψ has to be chosen before the realization of

σ, then the RDU distortion function will be applied to all uncertainty, including the signal

realization. That is, for any concave distortion function ϕ, we show there exists a set Ψ such

that the value function for before-signal adaptation is

V
(
(fσ)σ∈Σ

)
= ln

(∫
Z

u(z) d(ϕ ◦ F(fσ),µ)(z)

)
where

F(fσ),µ(z) =

∫
S×Σ

1[fσ(s) ≤ z] dµ(s, σ).

In this case, the rank of an outcome depends on the entire plan (fσ)σ∈Σ, and by dynamic

consistency the ex post value of an act g must also depend on this ex ante action plan,

violating consequentialism. This is exactly the approach to modeling rank-dependent utility

with information suggested by Machina (1989). Thus, the evolutionary perspective serves not

only to support Machina’s well-established approach in the case of before-signal adaptation,

but also generates a novel and perhaps unexpected version of dynamic RDU preferences in

the case of after-signal adaptation (Proposition 1).30

6 Ambiguity Aversion and Non-Expected Utility

Many models of choice under uncertainty are founded on behavioral axioms rather than

evolution. We already observed in Sections 4 and 5 that our model of adaptive preferences

nests as special cases rank-dependent utility in the context of risk and a version of the smooth

model in the context of ambiguity. Indirectly, our approach thus provides evolutionary

foundations for the behavior those models represent and determines how they should take

into account information. In this section, we expand our analysis to special cases of our

representation that simultaneously incorporate both ambiguity aversion and non-expected

30Existing evidence on the updating of non-expected-utility preferences and dynamic consistency is some-
what inconclusive. Cubitt, Starmer, and Sugden (1998) used a between-subject experimental design and
found violations of our notion of dynamic consistency, but some more recent studies offer more favorable
evidence: Hey and Paradiso (2006) examined subjects’ valuations for different decision problems and found
that a slight majority of subjects (56%) behaved in accordance with dynamic consistency (their data could
not distinguish whether these subjects had expected-utility or non-expected-utility preferences). Hey and
Panaccione (2011) conducted a study that distinguished between expected-utility and non-expected-utility
subjects and found that among the latter, between 64% and 91% were best classified as “resolute”: They
followed through on their ex ante plans, in accordance with our definition of dynamic consistency.
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utility for risk.31

One impediment to the analysis of special cases of our general representation is that it

has a logarithm between the two layers of integration. For example, our results for rank-

dependent utility in the previous section assumed that there was no common uncertainty,

and it is not immediately obvious how those results might be extended to the general case of

both common and idiosyncratic uncertainty. Therefore, we begin our analysis in this section

with a duality result to recast our representation in a form that facilitates the analysis of

this and other special cases. We then proceed to study several special cases in detail in

Sections 6.1 and 6.2. In order to streamline the exposition, we focus in this section on the

simplified setting with a trivial signal structure Σ = {σ}, which allows signals to be dropped

from the model. Therefore, the set of action plans becomes R(F) = 4s(F) instead of

(4s(F))Σ, the set of adaptation plans becomes R(Ψ|F) = (4s(Ψ))F instead of (4s(Ψ))Σ×F ,

and Equation (2) reduces to

V (ρ) = sup
τ∈R(Ψ|F)

∫
Ω

ln

(∫
S

Eτ⊗ρ
[
ψ(f(ω, s))

]
dµ(s|ω)

)
dµ(ω). (7)

Appendix A contains the corresponding representations and theorems for the general case

with signals.

Our results will involve the relative entropy (or Kullback–Leibler divergence) of one

probability measure with respect to another, defined as follows:

R(p ‖ q) =


∫

ln

(
dp

dq

)
dp if p� q,

∞ otherwise.

The notation p � q indicates that p is absolutely continuous with respect to q, that is,

for any measurable set A, q(A) = 0 implies p(A) = 0. The term dp
dq

denotes the Radon–

Nikodym derivative (density) of p with respect to q, which exists if and only if p is absolutely

continuous with respect to q.32 It is a standard result that R(p ‖ q) ≥ 0, with equality if and

only if p = q.

In what follows, for any probability measure p ∈ 4(Ω), let

M(p) = {q ∈ 4(Ω) : q � p and R(p ‖ q) <∞}.

In particular, since R(p ‖ q) < ∞ requires that p � q, if q ∈ M(p) then the measures

p and q are mutually absolutely continuous, that is, both p � q and q � p.33 When

31There are relatively few models in the axiomatic decision theory literature that combine ambiguity
aversion and non-expected utility for risk; see, for example, Dean and Ortoleva (2017) and Izhakian (2017).

32Formally, dp
dq is the integrable function that satisfies p(A) =

∫
A
dp
dq dq for any measurable set A.

33Note that it is possible to have R(p ‖ q) =∞ even if p� q, so M(p) may be a strict subset of the set of
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necessary to avoid confusion, we will denote the marginal distribution of µ on Ω by µΩ.

Also, recall that we take ln(x) = −∞ for all x ≤ 0. Finally, in order to accommodate certain

special cases, it will be technically convenient to permit the fitness functions ψ to take the

value −∞, so throughout this section we assume that Ψ is a nonempty set of functions

ψ : Z → [−∞,∞). We maintain our previous assumption that Ψ is pointwise bounded

above, that is, supψ∈Ψ ψ(z) < ∞ for every z ∈ Z. The only assumption we add in the next

theorem is that Ψ is closed in the topology of pointwise convergence on the extended reals.

Theorem 3. Suppose Σ = {σ}, suppose Ψ is a nonempty set of functions ψ : Z → [−∞,∞)

that is pointwise bounded above and closed in the topology of pointwise convergence (on the

extended reals), and fix µ ∈ 4(Ω× S). For any random action plan ρ ∈ R(F), the function

V defined by Equation (7) can be equivalently expressed as

V (ρ) = inf
q∈M(µΩ)

[
ln

(
Eρ
[

sup
ψ∈Ψ

∫
Ω

∫
S

ψ(f(ω, s)) dµ(s|ω) dq(ω)

])
+R(µΩ ‖ q)

]
. (8)

See Appendix A for a more general version of this result for the case with signals. For

intuition, we highlight the key steps in the proof: First, using duality techniques related to

those employed in the literature on large deviations in statistics (cf. Dupuis and Ellis (1997)),

we show that Equation (7) can be equivalently expressed as

V (ρ) = sup
τ∈R(Ψ|F)

inf
q∈M(µΩ)

[
ln

(∫
Ω

∫
S

Eτ⊗ρ
[
ψ(f(ω, s))

]
dµ(s|ω) dq(ω)

)
+R(µΩ ‖ q)

]
.

This expression is not yet amenable to analysis, as we would like to reverse the order of the

supremum and infimum in order to further simplify it and connect with existing functional

forms. The next step in the proof is to do just that by leveraging a particular version of the

von Neumann–Sion minimax theorem (von Neumann (1928), Sion (1958)) that is due to Tuy

(2004). Then, after we switch the order of the supremum and infimum, the supremum over τ

applies to the expression inside the logarithm, which is linear in τ . Therefore, optimization

over adaptation plans τ can be reduced to the deterministic selection of a fitness function ψ

following every act f that realizes under ρ, giving Equation (8). This final observation will

greatly simplify the analysis of the model since it eliminates randomization over ψ from the

formula for long-run growth rates.

Despite the resemblance, the functional in Equation (8) with a single fitness function Ψ =

{ψ} is not a variational representation (Maccheroni, Marinacci, and Rustichini (2006)). The

distinction is the logarithm around the integral in the first term. In fact, in the case of a single

fitness function, taking the exponential transformation of the representation in Equation (8)

establishes it as a special case of the confidence preferences studied by Chateauneuf and

Faro (2009), where confidence in a prior q is measured by exp(R(µΩ ‖ q)). More generally,

all measures that are mutually absolutely continuous with respect to p.
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this no-adaptation case is also nested by the general representation for uncertainty-averse

preferences proposed by Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2011).

Turning to the specifics of our functional form, relative entropy has appeared in a number

of representations for ambiguity-averse preferences, perhaps most notably in the multiplier

preferences introduced by Hansen and Sargent (2001) and studied axiomatically by Strzalecki

(2011),34 and also within a version of confidence preferences in Chateauneuf and Faro (2012).

However, in these models, the entropy term used is R(q ‖µΩ) rather than R(µΩ ‖ q). While

relative entropy is often interpreted as a “distance” between the two distributions involved,

it is not a distance function in the metric sense, because it is not symmetric. To interpret the

subtle difference in the context of the representation in Equation (8), suppose the decision-

maker takes as the reference measure µΩ the empirical frequencies in a large sample of

independently realized states ω ∈ Ω, but worries that the data is actually generated by

the measure q on Ω. Of course, the larger the sample, the closer to zero the probability

that it would be generated by q 6= µΩ. The theory of large deviations establishes that the

rate at which this probability vanishes increases in R(µΩ ‖ q) (see, e.g., Cover and Thomas

(2006, Section 11.4)). The representation suggests, therefore, that the decision-maker is less

confident in a measure q the faster it becomes implausible with growing sample size.

In order to describe the special cases of the next two subsections, it will be convenient to

define a measure µ ⊗ q on Ω × S with marginal q on Ω and conditional distribution µ(·|ω)

on S. That is, for any event E in the product σ-algebra BΩ ⊗ BS, let

µ⊗ q(E) =

∫
Ω

∫
S

1[(ω, s) ∈ E] dµ(s|ω) dq(ω).

With this definition in hand, Equation (8) can be written as

V (ρ) = inf
q∈M(µΩ)

[
ln

(
Eρ
[

sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) d(µ⊗ q)(ω, s)
])

+R(µΩ ‖ q)
]
. (9)

6.1 Nesting Rank-Dependent Utility

Proposition 1 linked our adaptive model to RDU preferences in the special case of Ω = {ω},
in which case the state space was effectively S. The next corollary follows from the same

duality arguments (see Equation (6)) after replacing S with Ω×S and replacing the measure

µ ∈ 4(S) with µ ⊗ q ∈ 4(Ω × S). Note that this application is only possible because we

first apply Theorem 3 to remove the logarithm from between the two layers of integration.

Corollary 3. Suppose Z ⊂ R. Fix µ, and fix any bounded nondecreasing function u : Z → R
and any function ϕ : [0, 1] → [0, 1] that is nondecreasing, concave, and onto. Then, there

34Hansen and Sargent (2001) interpret their representation in terms of a concern about robustness to
model misspecification. Our approach provides a related perspective on concern for robustness in contexts
where uncertainty about ω can be interpreted as model uncertainty.
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exists a set Ψ of functions ψ : Z → R satisfying the assumptions of Theorem 3 such that,

for any act f ∈ F and any q ∈ 4(Ω),

sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) d(µ⊗ q)(ω, s) =

∫
Z

u(z) d(ϕ ◦ Ff,µ⊗q)(z),

where

Ff,µ⊗q(z) =

∫
Ω×S

1[f(ω, s) ≤ z] d(µ⊗ q)(ω, s)

is the cumulative distribution function of f given µ⊗q. Therefore, for that set Ψ, the function

V defined by Equation (7) can be equivalently expressed as

V (ρ) = inf
q∈M(µΩ)

[
ln

(
Eρ
[ ∫

Z

u(z) d(ϕ ◦ Ff,µ⊗q)(z)

])
+R(µΩ ‖ q)

]

This representation illustrates the simplicity of analyzing the combination of ambiguity

aversion, non-expected-utility risk preferences, and random choice when working with the

dual formula in Equation (9) and its special cases. In this application, the RDU represen-

tation inside the logarithm generates aversion to any kind of uncertainty, while ambiguity

aversion (roughly speaking, the additional aversion to uncertainty from Ω) is captured by

the outer part of the representation—the confidence preferences within which the RDU rep-

resentation is embedded. The outer part is fixed across genotypes, even if those differ in

terms of Ψ and hence in terms of their attitudes towards risk.35 Random choice of acts is

also easy to analyze in this representation, since the expectation with respect to ρ appears

inside the confidence preferences (reflecting the hedging benefits of self-randomization) but

outside of the RDU formula. In contrast, as observed in Section 3.1, exogenous sources of

randomization (mixtures) would be treated differently: Exogenous randomization would be

subject to the RDU probability distortion function, thereby lessening its hedging benefit.

6.2 Nesting Divergence Preferences

Definition 6. Fix a continuous convex function φ : R+ → R+ such that φ(1) = 0. The

φ–divergence of p with respect to q is given by

Dφ(p ‖ q) =


∫
φ

(
dp

dq

)
dq if p� q,

∞ otherwise.

Kullback–Leibler relative entropy is a special case of φ–divergence where φ(t) = t ln(t)−
t + 1. Maccheroni, Marinacci, and Rustichini (2006) observed that variational preferences

35There is some empirical evidence that risk aversion and additional aversion to ambiguity indeed have
little correlation in the population (Chapman et al. (2019)).
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with a divergence cost function are probabilistically sophisticated. Ben-Tal and Teboulle

(1987, 2007) provided an explicit dual characterization of these variational divergence pref-

erences as the supremum of a set of expected utilities under the reference measure, where the

supremum is taken over a set of possible Bernoulli utility indices. The following proposition

extends their result to permit a nondecreasing transformation k of the divergence term.

Proposition 2 (Divergence Duality). Fix any φ–divergence Dφ(· ‖ ·) and any function u :

Z → R. Also, fix any nondecreasing, convex, and lower semicontinuous function k : R →
(−∞,∞] such that k(0) = 0 and k is finite on some interval (−ε, ε). Then, there exists a set

Ψ satisfying the assumptions of Theorem 3 such that, for any f ∈ F and any p ∈ 4(Ω×S),36

sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) dp(ω, s) = inf
r∈4(Ω×S)

[ ∫
Ω×S

u(f(ω, s)) dr(ω, s) + k(Dφ(r ‖ p))
]
.

The following corollaries apply Proposition 2 to our representation for adaptive prefer-

ences from Theorem 3 by taking p = µ⊗ q. The first corollary considers the special case of

k(x) = θx for some scalar θ > 0.

Corollary 4. Fix any φ–divergence Dφ(· ‖ ·), any scalar θ > 0, and any function u : Z → R.

Then, there exists a set Ψ of functions ψ : Z → [−∞,∞) such that the function V defined

by Equation (7) can be equivalently expressed as

V (ρ) = inf
q∈M(µΩ)

[
ln

(
Eρ
[

inf
r∈4(Ω×S)

∫
Ω×S

u(f(ω, s)) dr(ω, s) + θDφ(r ‖µ⊗ q)
])

+R(µΩ ‖ q)
]
.

This value function embeds a general divergence representation inside confidence prefer-

ences. To see how it captures ambiguity aversion, note that the measure r ultimately used

to evaluate an act may be more pessimistic than µ⊗ q on Ω×S, which in turn may be more

pessimistic than µ only on Ω. Hence, compared to µ, there is more “opportunity” for r to

be pessimistic about Ω than about S.

The next corollary considers the special case of Proposition 2 where we fix a scalar κ > 0

and take k(x) = 0 if x ≤ κ, and k(x) = +∞ if x > κ.

Corollary 5. Fix any φ–divergence Dφ(· ‖ ·) and any function u : Z → R. Fix a scalar

κ > 0, and for any p ∈ 4(Ω× S) define

D(p, κ) = {r ∈ 4(Ω× S) : Dφ(r ‖ p) ≤ κ}.

Then, there exists a set Ψ of functions ψ : Z → [−∞,∞) such that the function V defined

36We adopt the convention that k(∞) =∞. Thus, for any function k as in the statement of the proposition,
if Dφ(r ‖ p) =∞ then k(Dφ(r ‖ p)) =∞.
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by Equation (7) can be equivalently expressed as

V (ρ) = inf
q∈M(µΩ)

[
ln

(
Eρ
[

inf
r∈D(µ⊗q,κ)

∫
Ω×S

u(f(ω, s)) dr(ω, s)

])
+R(µΩ ‖ q)

]
.

In this value function, the multiple prior representation (Gilboa and Schmeidler (1989))

inside the logarithm generates aversion to any kind of uncertainty, while ambiguity aversion

is again captured by the confidence preferences that this representation is embedded within.

6.3 Characterizing the Set of Fitness Functions

In this paper, we focused on exploring the scope of our model (and hence of our insights on

dynamically consistent updating) by identifying a range of special cases that can be nested

by adaptive preferences. A natural next step in this line of research is to examine how

properties of preferences connect to restrictions on the set Ψ. We conclude this section by

mentioning examples of the types of results one might obtain.

On the one hand, one could try to characterize particular special cases of our model in

terms of Ψ, as in the previous subsections. In the context of pure risk, the Supplementary

Material of Sarver (2018) provides another example that easily lends itself to economic

interpretation, where each ψ is piecewise linear around a different target consumption level

and the resulting preferences are RDU with a piecewise linear distortion function.

On the other hand, one could compare adaptive preferences for different Ψ.37 Suppose,

for instance, that all conceivable genotypes perform equally well when facing deterministic

outcomes (no uncertainty). In terms of the model of adaptive preferences, this means that

the upper envelope of Ψ is the same for all those genotypes. In this case, one can show that

individual A with adaptive preferences for ΨA is more risk averse than an individual B with

ΨB if and only if individual A is also more uncertainty averse than B. For example, in the

representations of Corollaries 3, 4 and 5 the upper envelope of Ψ is u, and hence holding

fixed u, individuals with any of these three types of preferences who can be ranked in terms

of risk aversion will be ranked the same way in terms of overall uncertainty aversion.

7 Realism of the Evolutionary Model

Section 7.1 discusses two assumptions that are implicit in our formulation of the evolution-

ary model and that are commonly made in economic contexts. Section 7.2 concludes by

discussing the interpretation of adaptive preferences in the context of phenotypic flexibility.

37We have taken the set Ψ as given throughout. To compare individuals with different Ψ, it is important
to understand how Ψ is determined. One possibility is that different choice situations involve different sets
of hidden actions. Another possibility is that Ψ itself is subject to constrained evolutionary optimization.
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7.1 Simplifying Assumptions

Corollary 1 shows that the long-run growth rate is optimized by choosing the action plan

ρ ∈ R(A) that maximizes V , assuming the decision problem A is faced by the genotype

repeatedly in every period. In fact, this assumption is unnecessarily strong and is made solely

for ease of exposition. As can be seen in the proof of Theorem 1, aggregate fitness in each

period affects the population size multiplicatively, which provides a degree of separability for

choice problems that appear at different times. For example, if the genotype faces an infinite

sequence of decision problems (At)t∈N, then attaining the highest possible long-run growth

rate requires that individuals maximize adaptive preferences from any decision problem A

that repeats with fixed frequency within this sequence.38

The second assumption in our model is that time is divided into discrete time periods.

Robatto and Szentes (2017) made the surprising observation that correlation aversion dis-

appears in the continuous-time limit of this basic model. Further extending this line of

research, Robson and Samuelson (2019) allowed fertility and mortality rates to vary with

age in order to separate the assumption of continuous time from the assumption that new

organisms can reproduce immediately after birth, and they found that correlation aversion

can be recovered even in continuous time. Investigating the implications of different timing

and age structures in our context of hidden actions and updating could be an interesting

avenue for future research. In this paper, we stick to discrete time with age-independent

fertility and mortality rates as is common in evolutionary models in economics.

7.2 Phenotypic Flexibility in Evolutionary Biology

While our approach is inspired by evolutionary biology, we hope that our insights might in

turn also be useful in biological contexts where phenotypic flexibility plays a role, as we now

explain in more detail. Evolutionary success appears to be greatly enhanced by the ability of

organisms of a particular genotype to adapt their phenotype to the environment. Adopting

the terminology proposed by Piersma and Drent (2003), we use phenotypic flexibility to

refer to the rapid and apparently purposeful variation in phenotype expressed by individual

reproductively mature organisms throughout their life. This is in contrast to developmental

plasticity, environmentally induced variations that occur only during development.39

While developmental plasticity has long been a focus of evolutionary biologists, the role

of phenotypic flexibility in the evolutionary process has only recently attracted significant

attention. According to Piersma and Drent (2003):

38The assumption that all individuals of the genotype face the same decision problem at the same time is
also implicit in our model, and this assumption can be relaxed as well. If, instead, there is a distribution of
decision problems within the population, then this uncertainty can be encoded into the state spaces in our
model (similar to the way we incorporate signals and contingent plans).

39Piersma and Drent (2003) use phenotypic plasticity as an umbrella term that includes both phenotypic
flexibility and developmental plasticity.
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When environmental conditions change rapidly [...] individuals that can show contin-

uous but reversible transformations in behaviour, physiology and morphology might

incur a selective advantage. There are now several studies documenting substantial

but reversible phenotypic changes within adult organisms.

Striking examples among vertebrates include various species of amphibious fish that adjust

to life on land with reversible and rapid (sometimes within minutes) changes to their muscle

tissue, breathing organs, and skin properties (Wright and Turko (2016) provide a survey),

or marine iguanas on the Galapagos islands that can shrink their overall body length by up

to 20% (6.8 cm) in what appears to be a reversible, rapid, and strategic response to food

scarcity during an El Niño weather pattern (Wikelski and Thom (2000)). A familiar example

that can be viewed as phenotypic flexibility in humans and other mammals is the adjustment

of the makeup of muscle tissue in response to changes in functional demands (Flück (2006)),

for instance, from a more or less active lifestyle.

Of course, the evolutionary benefit of phenotypic flexibility is that different phenotypes

may perform better in different situations, and hence have different fitness functions ψ. For

instance, each possible phenotype might be tailored to a specific range of outcomes, such as

the amount of available food for the iguanas in the example above. Or one phenotype might

be a specialist with high fitness for a small range of outcomes, while the other is a generalist,

with lower peak fitness that is more robust to the outcome.

Biologists in the studies above directly observe variations in individual phenotypes over

time. In economic applications, in contrast, phenotypes, such as the determinants of risk

and ambiguity preferences in our model, are notoriously hard to observe. Economists instead

rely on preferences that are revealed from observable choice data. Respecting this limitation,

our model predictions concern only observable choices between outcome-relevant actions (f),

treating the phenotype and resulting fitness function (ψ) as unobservable. As a consequence,

our model does not distinguish between the case where adaptation is due to a biological

change (phenotypic flexibility) or a strategic but hidden choice of action, and it is equally

relevant and applicable under either interpretation of the set of fitness functions Ψ.
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A Duality: General Treatment

In this section, we generalize Theorem 3 from Section 6 to allow for a nondegenerate signal structure.

For any q ∈ 4(Ω), define the measure µ⊗ q on Ω×S×Σ to have marginal q on Ω and conditional

distribution µ(·|ω) on S ×Σ. That is, for any event E in the product σ-algebra BΩ ⊗BS ⊗BΣ, let

µ⊗ q(E) =

∫
Ω

∫
S×Σ

1[(ω, s, σ) ∈ E] dµ(s, σ|ω) dq(ω).

Theorem 4. Suppose Ψ is a nonempty set of functions ψ : Z → [−∞,∞) that is pointwise

bounded above and closed in the topology of pointwise convergence (on the extended reals), and fix

µ ∈ 4(Ω×S×Σ). For any random action plan ρ ∈ R(F), the function V defined by Equation (2)

can be equivalently expressed as

V (ρ) = inf
q∈M(µΩ)

[
ln

(∫
Σ
Eρσ
[

sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) d(µ⊗ q)(ω, s|σ)

]
d(µ⊗ q)(σ)

)
+R(µΩ ‖ q)

]
. (10)

Special cases such as rank-dependent utility or divergence preferences can be embedded in this

general representation with signals analogously to our analysis of special cases in Section 6.

B Proofs

B.1 Proof of Lemma 1

Note that

ln(N i(T )) = ln(N i(0)) +
T∑
t=1

ln(λit),

and therefore

ln

(
NA(T )

NB(T )

)
= ln

(
NA(0)

NB(0)

)
+

T∑
t=1

ln(λAt )−
T∑
t=1

ln(λBt ).

Since αA and αB are the long-run growth rates of these two genotypes, we have

1

T

[ T∑
t=1

ln(λAt )−
T∑
t=1

ln(λBt )
]
→ αA − αB a.s.

Since αA − αB > 0, this implies

ln

(
NA(T )

NB(T )

)
→∞ a.s.

Therefore, NA(T )/NB(T )→∞ almost surely as T →∞. This completes the proof.
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B.2 Proof of Theorem 4

The following two propositions will be central in our proof of Theorem 4.

Proposition 3. Suppose Ψ is a nonempty set of functions ψ : Z → [−∞,∞) that is pointwise

bounded above, and fix µ ∈ 4(Ω×S×Σ). For any random action plan ρ ∈ (4s(F))Σ, the function

V defined by Equation (2) can be equivalently expressed as

V (ρ) = sup
τ∈R(Ψ|F)

inf
q∈M(µΩ)

[
ln

(∫
Ω

∫
S×Σ

Eτσ⊗ρσ
[
ψ(f(ω, s))

]
dµ(s, σ|ω) dq(ω)

)
+R(µΩ ‖ q)

]
.

Proposition 4. Fix a measure µ ∈ 4(Ω× S × Σ), and suppose Ξ is a nonempty set of functions

ξ : Ω× S × Σ→ [−∞,∞) with the following properties:

1. Closedness: When the set of extend reals [−∞,∞] is endowed with its usual topology and

[−∞,∞]Ω×S×Σ is endowed with the product topology (i.e., the topology of pointwise conver-

gence), Ξ is a closed subset of this space.

2. Finite measurability: There exists a finite partition E ⊂ BΩ ⊗ BS ⊗ BΣ of Ω × S × Σ such

that every ξ ∈ Ξ is measurable with respect to E.

3. Pointwise boundedness: supξ∈Ξ ξ(ω, s, σ) <∞ for every (ω, s, σ) ∈ Ω× S × Σ.

Then,

sup
ξ∈co(Ξ)

inf
q∈M(µΩ)

[
ln

(∫
Ω

∫
S×Σ

ξ(ω, s, σ) dµ(s, σ|ω) dq(ω)

)
+R(µΩ ‖ q)

]
= inf

q∈M(µΩ)

[
ln

(
sup
ξ∈Ξ

∫
Ω

∫
S×Σ

ξ(ω, s, σ) dµ(s, σ|ω) dq(ω)

)
+R(µΩ ‖ q)

]
.

Proposition 3 is based on dual formulas for relative entropy that are related to those commonly

invoked in the theory of large deviations (e.g., Dupuis and Ellis (1997)). Proposition 4 is based on an

application of an extension of the von Neumann–Sion Minimax Theorem due to Tuy (2004). Despite

the reliance on these established tools and techniques, the complete proofs of these propositions

are quite involved and are therefore relegated to Section S5 of the Online Appendix.

Proceeding with the proof of Theorem 4, fix any ρ ∈ (4s(F))Σ. For each σ ∈ Σ, let Bσ =

supp(ρσ). Since ρσ is a simple lottery, Bσ is finite. Let B =
⋃
σ∈ΣBσ. Since Σ is finite, B is a

finite set of acts. We will define Ξ to be the set of individual expected fitness functions that are

attainable given the fixed random choice of act under the action plan ρ and together with some

deterministic adaptation plan. That is, we are focusing for now on adaptations plans τ that place

probability one on some fitness function ψσ,f ∈ Ψ following each σ ∈ Σ and f ∈ B.

Formally, deterministic adaptation plans are denoted by (ψσ,f )σ∈Σ,f∈B ∈ ΨΣ×B, or (ψσ,f ) for
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short.40 Define a mapping J : ΨΣ×B → [−∞,∞]Ω×S×Σ by

J
[
(ψσ̂,f̂ )σ̂∈Σ,f̂∈B

]
(ω, s, σ) =

∫
B
ψσ,f (f(ω, s)) dρσ(f) (11)

for (ω, s, σ) ∈ Ω× S × Σ. Define Ξ to be the range of J , that is,

Ξ =
{
J [(ψσ,f )] ∈ [−∞,∞]Ω×S×Σ : (ψσ,f ) ∈ ΨΣ×B

}
. (12)

In other words, Ξ is the set of all functions ξ that take the form

ξ(ω, s, σ) =

∫
B
ψσ,f (f(ω, s)) dρσ(f)

for some deterministic adaptation plan (ψσ,f )σ∈Σ,f∈B. The next two lemmas show that taking

the convex hull of Ξ generates precisely the set of individual expected fitness functions that can

be attained through random adaptation plans and that the set Ξ is closed. Indeed, the use of

deterministic action plans above was precisely in order to ensure that Ξ is closed. The proofs of

these two lemmas are based on standard arguments and are relegated to Section S5 of the Online

Appendix.

Lemma 2. Define Ξ as in Equation (12). For any random adaptation plan τ ∈ R(Ψ|F), define

ξτ : Ω× S × Σ→ [−∞,∞) by

ξτ (ω, s, σ) = Eτσ⊗ρσ
[
ψ(f(ω, s))

]
=

∫
F

∫
Ψ
ψ(f(ω, s)) dτσ(ψ|f) dρσ(f).

Then,

co(Ξ) =
{
ξτ : τ ∈ R(Ψ|F)

}
.

Lemma 3. The set Ξ defined in Equation (12) is a closed subset of [−∞,∞]Ω×S×Σ.

We now verify that the set Ξ defined in Equation (12) satisfies the three conditions from

Proposition 4. Lemma 3 already showed that this set is closed, which establishes first condition.

We now show that Ξ satisfies the second condition (finite measurability) from Proposition 4. Since

each f ∈ F is a simple act, and since the set of acts B in the support of ρ is finite, there exists a

finite partition Ê ⊂ BΩ ⊗ BS of Ω× S such that every act f ∈ B is measurable with respect to Ê .

Let

E =
{
Ê × {σ} : Ê ∈ Ê and σ ∈ Σ

}
.

Since Ê and Σ are finite, E is a finite partition of Ω× S × Σ. We claim that every function in Ξ is

measurable with respect to E . To see this, fix any ξ ∈ Ξ. Then, there exists (ψσ,f ) ∈ ΨΣ×B such

that

ξ(ω, s, σ) =

∫
B
ψσ,f (f(ω, s)) dρσ(f).

40Note that since (ψσ,f ) is an element of ΨΣ×B rather than ΨΣ×F , the value of ψσ,f is unspecified for
f ∈ F \ B. However, since acts f /∈ B are chosen with probability zero, expected individual fitness is fully
determined by the values of ψσ,f for f ∈ B.
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Fix any E ∈ E and (ω, s, σ), (ω′, s′, σ′) ∈ E. By construction of the partition E , we must have

σ′ = σ and f(ω, s) = f(ω′, s′) for any f ∈ supp(ρσ). Therefore,

ξ(ω, s, σ) =

∫
B
ψσ,f (f(ω, s)) dρσ(f) =

∫
B
ψσ,f (f(ω′, s′)) dρσ(f) = ξ(ω′, s′, σ′),

as claimed. Thus, the second condition of Proposition 4 is satisfied.

To verify the third condition (pointwise boundedness) in Proposition 4, note that since B is

a finite set of simple acts, there is a finite set Ẑ ⊂ Z such that f(ω, s) ⊂ Ẑ for all f ∈ B and

(ω, s) ∈ Ω × S. Recall that the set Ψ is pointwise bounded above, so supψ∈Ψ ψ(z) < ∞ for all

z ∈ Z. Therefore, and any (ω, s, σ) ∈ Ω× S × Σ,

sup
ξ∈Ξ

ξ(ω, s, σ) = sup
(ψσ,f )∈ΨΣ×B

∫
B
ψσ,f (f(ω, s)) dρσ(f)

≤
∫
B

sup
ψ∈Ψ

ψ(f(ω, s)) dρσ(f) ≤ max
z∈Ẑ

sup
ψ∈Ψ

ψ(z) <∞,

where the last inequality follows from the finiteness of Ẑ. Thus, Ξ satisfies condition 3.

We are now ready to apply Propositions 3 and 4. Define V as in Equation (2). Then, we have

V (ρ) = sup
τ∈R(Ψ|F)

inf
q∈M(µΩ)

[
ln

(∫
Ω

∫
S×Σ

Eτσ⊗ρσ
[
ψ(f(ω, s))

]
dµ(s, σ|ω) dq(ω)

)
+R(µΩ ‖ q)

]
= sup

ξ∈co(Ξ)
inf

q∈M(µΩ)

[
ln

(∫
Ω

∫
S×Σ

ξ(ω, s, σ) dµ(s, σ|ω) dq(ω)

)
+R(µΩ ‖ q)

]
= inf

q∈M(µΩ)

[
ln

(
sup
ξ∈Ξ

∫
Ω

∫
S×Σ

ξ(ω, s, σ) dµ(s, σ|ω) dq(ω)

)
+R(µΩ ‖ q)

]
= inf

q∈M(µΩ)

[
ln

(
sup
ξ∈Ξ

∫
Ω×S×Σ

ξ(ω, s, σ) d(µ⊗ q)(ω, s, σ)

)
+R(µΩ ‖ q)

]
,

where the first equality follows from Proposition 3, the second from Lemma 2, the third from

Proposition 4, and the fourth from the definition of the measure µ ⊗ q. Simple manipulations of

the term inside the logarithm yield

sup
ξ∈Ξ

∫
Ω×S×Σ

ξ(ω, s, σ) d(µ⊗ q)(ω, s, σ)

= sup
(ψσ,f )∈ΨΣ×B

∫
Σ

∫
Ω×S

∫
B
ψσ,f (f(ω, s)) dρσ(f) d(µ⊗ q)(ω, s|σ) d(µ⊗ q)(σ)

= sup
(ψσ,f )∈ΨΣ×B

∫
Σ

∫
B

∫
Ω×S

ψσ,f (f(ω, s)) d(µ⊗ q)(ω, s|σ) dρσ(f) d(µ⊗ q)(σ)

=

∫
Σ

∫
B

sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) d(µ⊗ q)(ω, s|σ) dρσ(f) d(µ⊗ q)(σ)

=

∫
Σ
Eρσ
[

sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) d(µ⊗ q)(ω, s|σ)

]
d(µ⊗ q)(σ),
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and hence

V (ρ) = inf
q∈M(µΩ)

[
ln

(∫
Σ
Eρσ
[

sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) d(µ⊗ q)(ω, s|σ)

]
d(µ⊗ q)(σ)

)
+R(µΩ ‖ q)

]
.

Since this is true for any ρ ∈ (4s(F))Σ, the proof is complete.

B.3 Proof of Proposition 1 and Corollary 3

Proposition 1 and Corollary 3 follow immediately from the next general duality result.

Proposition 5 (Rank-Dependent Utility Duality). Suppose Z ⊂ R. Fix any bounded nondecreasing

function u : Z → R and any function ϕ : [0, 1] → [0, 1] that is nondecreasing, concave, and onto.

Then, there exists a set Ψ of bounded, nondecreasing functions ψ : Z → R that is pointwise bounded

above and closed in the topology of pointwise convergence such that, for any f ∈ F and µ ∈ 4(Ω×S),

sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) dµ(ω, s) =

∫
Z
u(z) d(ϕ ◦ Ff,µ)(z).

Since u is bounded, there exists a, b ∈ R such that u(Z) ⊂ [a, b]. The following two lemmas

provide key steps in our construction.

Lemma 4. Suppose ϕ : [0, 1] → [0, 1] is nondecreasing, concave, and onto. Define a function

W : 4([a, b])→ R by

W (η) =

∫ b

a
x d(ϕ ◦ Fη)(x),

where Fη(x) = η([a, x]) is the cumulative distribution function for the measure η. Then, there exists

a set Φ of nondecreasing and concave continuous functions φ : [a, b]→ R such that

W (η) = sup
φ∈Φ

∫
Z
φ(z) dη(z).

Proof. It can be shown that W is convex using similar arguments to those in Section S.2.1 of

the Supplementary Material of Sarver (2018) (alternatively, see Wakker (1994) or Chatterjee and

Krishna (2011)). It is also not difficult to show that W is continuous in the topology of weak

convergence. Finally, since ϕ is concave, the function W respects second-order stochastic dominance

by Theorem 2 in Yaari (1987).41 In light of these conditions, we can apply Proposition 1 from Sarver

(2018) to obtain a set Φ with the claimed properties. �

Lemma 5. Fix a set Ψ of functions ψ : Z → [−∞,∞) that is pointwise bounded above. Then, for

any f ∈ F and µ ∈ 4(Ω× S),

sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) dµ(ω, s) = sup
ψ∈cl(Ψ)

∫
Ω×S

ψ(f(ω, s)) dµ(ω, s),

41This was also proved by Chew, Karni, and Safra (1987) in the special case where ϕ is Lipschitz continuous.
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where the closure is taken with respect to the product topology (i.e., the topology of pointwise con-

vergence) on [−∞,∞]Z .

Proof. Fix any f ∈ F and µ ∈ 4(Ω × S). Since f is a simple act, there exists a finite partition

E ⊂ BΩ ⊗ BS such that f is measurable with respect to E . For each E ∈ E , let zE = f(ω, s) for

some (ω, s) ∈ E. Since f is E-measurable, the value zE does not depend on the exact choice of

(ω, s) ∈ E. Define a function G : [−∞,∞)Z → R by

G(ψ) =

∫
Ω×S

ψ(f(ω, s)) dµ(ω, s) =
∑
E∈E

ψ(zE)µ(E),

and let γ = supψ∈ΨG(ψ). Note that γ is finite since the functions in Ψ are pointwise bounded

above. Now, fix any ψ ∈ cl(Ψ). By the definition of the closure, there exists a net (ψα)α∈D in Ψ that

converges to ψ.42 Note that since ψα ∈ Ψ for each α, we must have G(ψα) ≤ γ. Since convergence

is preserved under scalar multiples and finite sums, ψα → ψ implies that G(ψα)→ G(ψ) and hence

G(ψ) ≤ γ. Since this is true for all ψ ∈ cl(Ψ), we have

sup
ψ∈cl(Ψ)

∫
Ω×S

ψ(f(ω, s)) dµ(ω, s) = sup
ψ∈cl(Ψ)

G(ψ) = γ,

as desired. �

Proof of Proposition 5. Take Φ as in Lemma 4 for the function ϕ, and let Ψ = {φ ◦u : φ ∈ Φ}. Fix

any f ∈ F and µ ∈ 4(Ω× S), and let η be the distribution of utility values induced by µ, f , and

u. Formally,

η = µ ◦ f−1 ◦ u−1 ∈ 4([a, b]).

Then, we have

sup
ψ∈Ψ

∫
Ω×S

ψ(f(ω, s)) dµ(ω, s) = sup
φ∈Φ

∫
Ω×S

φ(u(f(ω, s))) dµ(ω, s)

= sup
φ∈Φ

∫ b

a
φ(x) dη(x) (change of variables)

=

∫ b

a
x d(ϕ ◦ Fη)(x) (Lemma 4)

=

∫
Z
u(z) d(ϕ ◦ Ff,µ)(z).

The last equality is essentially another application of the change of variables formula, but there are

a few subtleties. One needs to show that if νu is the probability measure over utility values with

cumulative distribution function ϕ ◦ Fη and if νz is the probability measure over outcomes in Z

with cumulative distribution function ϕ ◦ Ff,µ, then νu = νz ◦ u−1. This is not true for arbitrary

u, but it can be shown to hold whenever u is nondecreasing.

42It is well known that the product topology on an uncountable product space cannot be completely
described by sequential convergence, as such spaces are not metrizable. Hence, we must use nets.
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Note that since W (η) = x when η({x}) = 1, we must have φ(x) ≤ x for all x ∈ [a, b] and φ ∈ Φ.

Now, for any ψ ∈ Ψ there exists φ ∈ Φ such that ψ = φ◦u. Thus, ψ(z) = φ(u(z)) ≤ b for all z ∈ Z,

so the set Ψ is bounded above. Moreover, taking the closure of Ψ does not alter the values in the

equality above by Lemma 5, so we can assume that Ψ is closed without loss of generality. �

B.4 Proof of Proposition 2

Some basic definitions and results from functional analysis will be used frequently in this proof. If

X is a Banach space, we use X∗ to denote the space of all continuous linear functionals on X (the

norm dual of X). For x ∈ X and x∗ ∈ X∗, we use 〈x∗, x〉 to denote the duality pairing x∗(x).

Given a function F : X → (−∞,∞], the effective domain of F is the set

dom(F ) = {x ∈ X : F (x) <∞}.

The function F is proper if dom(F ) 6= ∅, that is, if it is not identically equal to ∞. The (Fenchel)

conjugate of F is the function F ∗ : X∗ → [−∞,∞] defined by

F ∗(x∗) = sup
x∈X

[
〈x∗, x〉 − F (x)

]
.

Note that if F is proper, then F ∗(x∗) > −∞ for all x∗ ∈ X∗. Finally, given a set C ⊂ X, we define

δC by δC(x) = 0 if x ∈ C and δC(x) = ∞ if x /∈ C. This is the indicator function commonly used

in functional analysis. Note that

(δC)∗(x∗) = sup
x∈C
〈x∗, x〉.

In this proof, we will work with the L1 and L∞ spaces of functions. That is, given a probability

space (Ω,BΩ, p), the space L1(Ω,BΩ, p) is the set of all (equivalence classes of) integrable functions,

and the space L∞(Ω,BΩ, p) is the set of all (equivalence classes of) essentially bounded functions.

When the reference probability space is understood, we will sometimes denote these spaces simply

as L1 and L∞, respectively. It is a standard result that these are Banach spaces (when endowed

with the L1 and L∞ norms, respectively) and that (L1)∗ = L∞, with the duality pairing

〈X,Y 〉 =

∫
Ω
X(ω)Y (ω) dp(ω)

for Y ∈ L1, X ∈ L∞.

Proposition 6. Fix any probability space (Ω,BΩ, p). Let Dφ(· ‖ ·) be a φ–divergence, and fix any

nondecreasing, convex, and lower semicontinuous function k : R → (−∞,∞] such that k(0) = 0

and k is finite on some interval (−ε, ε). Then, for any random variable X ∈ L∞(Ω,BΩ, p),

inf
q∈4(Ω)

[ ∫
Ω
X(ω) dq(ω) + k(Dφ(q ‖ p))

]
= max

γ∈R
max
α≥0

∫
Ω
ψγ,α(X(ω)) dp(ω),
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where

ψγ,α(x) =

{
γ − αφ∗

(γ−x
α

)
− k∗(α) if α > 0

γ − δR−(γ − x)− k∗(0) if α = 0.

Recall that δR− denotes the indicator function for R−, so δR−(t) = 0 if t ≤ 0 and δR−(t) =∞ if

t > 0. Also, note that our definition of a divergence requires φ to be a continuous convex function

mapping from R+ to R+. However, we can treat φ as lower semicontinuous convex function defined

on all of R by taking φ(y) =∞ for y < 0, and hence

φ∗(x) = sup
y∈R+

[
xy − φ(y)

]
.

Proposition 2 follows as a special case of this result where the state space is Ω̂ = Ω × S, the

probability measure is p ∈ 4(Ω× S), and X : Ω× S → R is defined by

X(ω, s) = u(f(ω, s)).

Note that since f is a simple act and u is real-valued, X is bounded. Thus, by Proposition 6,

inf
r∈4(Ω×S)

[ ∫
Ω×S

u(f(ω, s)) dr(ω, s) + k(Dφ(r ‖ p))
]

= max
γ∈R

max
α≥0

∫
Ω×S

ψγ,α(u(f(ω, s))) dp(ω, s).

Take Ψ to be the closure of the set

{ψγ,α ◦ u : γ ∈ R, α ≥ 0},

where the closure is taken with respect to the topology of pointwise convergence on the extended

reals. Then, Ψ satisfies all of the properties asserted in the statement of Proposition 2, and the

arguments above together with Lemma 5 (which allows us to take the closure) establish that the

equality in the statement of the proposition holds.

Therefore, all that remains is to prove Proposition 6. Our proof will be based on the following

three lemmas. The first two lemmas closely parallel the proof strategy used by Ben-Tal and Teboulle

(1987, Theorem 4.2) who provide a similar result for the case when k(x) = x, that is, when there

is no transformation of the divergence term.

Lemma 6. Fix any probability space (Ω,BΩ, p). Let H : L1 → (−∞,∞] be a convex and lower

semicontinuous function, and suppose there exist α < 1 < β such that Y ∈ L1 and α ≤ Y (ω) ≤ β

for all ω ∈ Ω implies H(Y ) <∞. Then, for any X ∈ L∞,

inf
Y ∈L1:∫

Y (ω) dp(ω)=1

[ ∫
Ω
X(ω)Y (ω) dp(ω) +H(Y )

]
= max

γ∈R

[
γ −H∗(γ −X)

]

Proof. The proof of this result replicates the first steps in the proof of Theorem 4.2 in Ben-Tal and

Teboulle (2007), but we include it for completeness. Denote by v the value of the left side of the
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equation in the statement of the lemma:

v ≡ inf
Y ∈L1:∫

Y (ω) dp(ω)=1

[ ∫
Ω
X(ω)Y (ω) dp(ω) +H(Y )

]
.

The Lagrangian dual of this convex minimization problem is given by

w ≡ sup
γ∈R

inf
Y ∈L1

[ ∫
Ω
X(ω)Y (ω) dp(ω) +H(Y ) + γ

(
1−

∫
Ω
Y (ω) dp(ω)

)]
= sup

γ∈R

[
γ + inf

Y ∈L1

(
H(Y ) +

∫
Ω

(X(ω)− γ)Y (ω) dp(ω)

)]
= sup

γ∈R

[
γ − sup

Y ∈L1

(∫
Ω

(γ −X(ω))Y (ω) dp(ω)−H(Y )

)]
= sup

γ∈R

[
γ −H∗(γ −X)

]
.

It remains only to show that v = w, that is, there is no duality gap. The convex duality result

in Corollary 4.8 of Borwein and Lewis (1992) shows that there is no duality gap and there is

attainment of a solution in the dual problem if the following constraint qualification condition is

satisfied:43

(CQ) There exist α < β such that α ≤ Y (ω) ≤ β implies H(Y ) < ∞, and there exists some

Y ∈ L1 with α < Y (ω) < β that satisfies the constraint
∫

Ω Y (ω) dp(ω) = 1.

Given the assumptions in the statement of the lemma, this condition is satisfied by taking Y

identically equal to 1. This completes the proof. �

Lemma 7. Fix any probability space (Ω,BΩ, p), and fix any proper convex and lower semicontinuous

function φ : R→ (−∞,∞]. Define a functional J : L1 → (−∞,∞] by

J(Y ) =

∫
Ω
φ(Y (ω)) dp(ω).

Then, J is a proper convex and lower semicontinuous functional, and the Fenchel conjugate J∗ :

L∞ → (−∞,∞] of J is given by

J∗(X) =

∫
Ω
φ∗(X(ω)) dp(ω).

Proof. See the corollary to Theorem 2 in Rockafellar (1968). �

43Borwein and Lewis (1992) define the quasi relative interior of a set C to be the set of all points x ∈ C
such that the closure of the cone generated by C − x is a subspace. In the context of our minimization
problem, their constraint qualification condition requires that there is a function Y in the quasi relative
interior of the set dom(H) ≡ {Y ∈ L1 : H(Y ) < ∞} that satisfies the constraint

∫
Ω
Y (ω) dp(ω) = 1. It can

be shown that if {Y ∈ L1 : α ≤ Y ≤ β} ⊂ dom(H) then any Y ∈ L1 with α < Y (ω) < β is in the quasi
relative interior of dom(H) (see Example 3.11(i) in Borwein and Lewis (1992)).
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Fix any proper convex and lower semicontinuous function φ : R→ (−∞,∞] that is finite on an

open interval containing 1. Then, defining J as in Lemma 7 and setting H = J in Lemma 6, we

obtain the following dual formula:

inf
Y ∈L1:∫

Y (ω) dp(ω)=1

[ ∫
Ω
X(ω)Y (ω) dp(ω) + J(Y )

]
= max

γ∈R

∫
Ω

[
γ − φ∗(γ −X(ω))

]
dp(ω).

This is precisely Theorem 4.2 in Ben-Tal and Teboulle (2007). To extend their result to H = k ◦J ,

we need the following lemma.

Lemma 8. Fix any probability space (Ω,BΩ, p), and fix any continuous convex function φ : R+ →
R+ that satisfies φ(1) = 0. Also, fix any nondecreasing, convex, and lower semicontinuous function

k : R→ (−∞,∞] such that k is finite on some interval (−ε, ε). Define J : L1 → (−∞,∞] by

J(Y ) =

∫
Ω
φ(Y (ω)) dp(ω),

and define H : L1 → (∞,∞] by H = k ◦ J . Then, for any X ∈ L∞,

H∗(X) = min
α≥0

[
(αJ)∗(X) + k∗(α)

]
, (13)

where

(αJ)∗(X) =


∫

Ω αφ
∗
(
X(ω)
α

)
dp(ω) if α > 0∫

Ω δR−(X(ω)) dp(ω) if α = 0.

Proof. To obtain the formula for the conjugate of the composition of two functions, we appeal to

Theorem 2 of Hiriart-Urruty (2006):44 Since k and J are both lower semicontinuous and convex,

k is nondecreasing, and there exists a function Y ∈ L1 such that J(Y ) ∈ int(dom(k)) (namely,

Y identically equal to 1), his theorem implies that the Fenchel conjugate of k ◦ J is given by

Equation (13), when one sets (0J) = δdom(J). For α > 0, we therefore have

(αJ)∗(X) =

∫
Ω

(αφ)∗(X(ω)) dp(ω) =

∫
Ω
αφ∗

(
X(ω)

α

)
dp(ω),

where the first equality follows from Lemma 7 and the second equality follows directly from the

definition of the conjugate.

It remains only to establish the formula for (0J)∗. By the definition of the conjugate,

(0J)∗(X) = sup
Y ∈L1

[
〈X,Y 〉 − δdom(J)(Y )

]
= sup

Y ∈dom(J)

∫
Ω
X(ω)Y (ω) dp(ω).

Now, fix any X ∈ L∞ and let E = {ω ∈ Ω : X(ω) > 0}. We will show that if p(E) = 0 then

(0J)∗(X) = 0, and if p(E) > 0 then (0J)∗(X) = ∞. Consider first the case of p(E) = 0. Recall

44Hiriart-Urruty (2006) provides a concise treatment of this problem, but earlier, more general results
about conjugates of compositions of convex functions exist, e.g., Kutateladze (1979, Theorem 3.7.1) or
Combari, Laghdir, and Thibault (1996, Theorem 3.4(ii)).
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that since φ is defined on R+, we can treat it as a lower semicontinuous function on all of R such

that φ(y) =∞ for y < 0. Therefore, if the set of all ω such that Y (ω) < 0 has positive probability

under p, then J(Y ) = ∞. Thus, dom(J) includes only functions Y that are nonnegative almost

surely, so for any Y ∈ dom(J) and X ≤ 0, 〈X,Y 〉 ≤ 0. Therefore, when p(E) = 0, the supremum

of 〈X,Y 〉 over Y ∈ dom(J) is attained by Y = 0, and (0J)∗(X) = 0. Next, consider the case of

p(E) > 0. Define Yn by Yn(ω) = n for ω ∈ E and Yn(ω) = 0 for ω /∈ E. Since φ is finite and

continuous on R+, we have Yn ∈ dom(J) for all n. Note that∫
E
X(ω) dp(ω) > 0,

and therefore

〈X,Yn〉 = n

∫
E
X(ω) dp(ω)→∞

as n→∞. Thus, (OJ)∗(X) =∞.

We have shown that (0J)∗(X) = 0 if X ≤ 0 a.s., and (0J)∗(X) =∞ otherwise. Recall that the

indicator function δR− satisfies δR−(x) = 0 if x ≤ 0 and δR−(x) =∞ if x > 0. Therefore, we have

(0J)∗(X) =

∫
Ω
δR−(X(ω)) dp(ω).

This completes the proof. �

Proof of Proposition 6. Note that Dφ(q ‖ p) = ∞ whenever q is not absolutely continuous with

respect to p. Thus, we can restrict attention to q � p, and we can therefore express the divergence

using Radon–Nikodym derivatives Y = dq
dp ∈ L

1(Ω,BΩ, p):

inf
q∈4(Ω)

[ ∫
Ω
X(ω) dq(ω) + k(Dφ(q ‖ p))

]
= inf

q�p

[ ∫
Ω
X(ω)

dq

dp
(ω) dp(ω) + k

(∫
Ω
φ

(
dq

dp
(ω)

)
dp(ω)

)]
= inf

Y ∈L1:∫
Y (ω) dp(ω)=1

[ ∫
Ω
X(ω)Y (ω) dp(ω) + k

(∫
Ω
φ(Y (ω)) dp(ω)

)]
.

Note that for Y ∈ L1 to be a Radon-Nikodym derivative, we must have
∫

Ω Y (ω) dp(ω) = 1 and

Y ≥ 0 a.s. The first constraint is stated explicitly in the equation above, and since φ(y) = ∞ for

y < 0, the second constraint becomes superfluous.

As before, define J : L1 → (−∞,∞] by

J(Y ) =

∫
Ω
φ(Y (ω)) dp(ω),

and define H : L1 → (∞,∞] by H = k ◦ J . Note that J is convex and lower semicontinuous by

Lemma 7, and therefore H is convex and lower semicontinuous given our assumptions on k. We

also assumed that there is an interval (−ε, ε) on which k is finite. Since φ : R+ → R+ is continuous
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and satisfies φ(1) = 0, there exists α < 1 < β such that α ≤ y ≤ β implies 0 ≤ φ(y) < ε. Thus,

α ≤ Y (ω) ≤ β for all ω ∈ Ω implies 0 ≤ J(Y ) < ε and hence H(Y ) <∞. Therefore,

inf
Y ∈L1:∫

Y (ω) dp(ω)=1

[ ∫
Ω
X(ω)Y (ω) dp(ω) + k

(∫
Ω
φ(Y (ω)) dp(ω)

)]
= max

γ∈R

[
γ −H∗(γ −X)

]
= max

γ∈R
max
α≥0

[
γ − (αJ)∗(γ −X)− k∗(α)

]
,

where the first equality follows from Lemma 6 and the second equality follows from Lemma 8.

Then, using the formula for (αJ)∗ from Lemma 8, we have that for any X ∈ L∞, γ ∈ R, and α ≥ 0,

γ − (αJ)∗(γ −X)− k∗(α) =

γ −
∫

Ω αφ
∗
(
γ−X(ω)

α

)
dp(ω)− k∗(α) if α > 0

γ −
∫

Ω δR−(γ −X(ω)) dp(ω)− k∗(0) if α = 0

=

∫
Ω
ψγ,α(X(ω)) dp(ω),

where ψγ,α(x) is defined as in the statement of the proposition. This completes the proof. �
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Supplementary Appendix

Abstract

In this supplementary appendix, we explore several alternative assumptions and

extensions of the analysis in the main text. Section S1 shows that the specifics of

our representation change when adaptation is slower and must be undertaken before

the realization of the signal, yet evolutionarily optimal preferences remain dynamically

consistent. Section S2 shows that responding to private signals results in idiosyncratic

randomization in choice that can lessen, or in some cases even eliminate, the need for

self-randomization by members of the population of a genotype. Section S3 examines

how the optimal responses of a genotype to public and private signals differ. Proofs of

results in this online appendix are contained in Section S4, and the proofs of Proposi-

tions 3 and 4 and Lemmas 2 and 3 from Appendix B.2 of the main paper are contained

in Section S5.

S1 Adaptation Before Information

We assume throughout that signals resolve prior to the choice of act. So far, we further

assumed after-signal adaptation, where the choice of fitness function also happens after the

realization of a signal, reflecting the implicit assumption either that adaptation via selection

of the hidden action can be undertaken rapidly or that signals arrive sufficiently early to

allow time for such adaptation. We now consider the alternative of before-signal adaptation,

where adaptation of the fitness function through the choice of hidden action is still fast

enough to take into account the action plan, but too slow to react to the realization of a

signal and the subsequent final choice of act. This alternative timing was discussed briefly in

Section 5.2 in the context of rank-dependent utility. In this section, we provide the formal

results behind that discussion.

For ease of illustration, we will focus on the long-run growth rates from determinis-

tic action and adaptation plans. In the case of no common uncertainty (as in Section 5),

deterministic plans will be optimal and our analysis is therefore sufficient for determining

optimal choice. However, the reader should keep in mind in the case of common uncer-

tainty, self-randomization may be optimal; extending our analysis accordingly is relatively

straightforward and not central to the intuitions of this section.

Formally, the signal σ arrives after the choice of fitness function ψ, as illustrated in Fig-

ure S1. From the ex ante perspective, the individual thus selects an action plan (fσ)σ∈Σ

S1



choose ψ choose f

signal σ (ω, s) observed

fitness ψ(f(ω, s))

Figure S1: Within-period timeline: before-signal adaptation

together with a fixed fitness function ψ, which achieves a fitness of ψ(fσ(ω, s)) after the real-

ization of (ω, s, σ). Clearly, the growth rate will be lower than under after-signal adaptation,

since fitness functions can no longer be optimized based on the signal realization. This will

also generate subtle but important differences in the representation of evolutionarily optimal

preferences over action plans. The following characterization follows from identical logic to

Theorem 1. We therefore omit the proof.

Theorem S1. Suppose Ψ and µ are fixed, and individuals can engage in slow (before-signal)

adaptation. If the fitness function ψ ∈ Ψ is chosen optimally, then the long-run growth rate

of a genotype from choosing the deterministic action plan (fσ)σ∈Σ ∈ FΣ in every period is

V
(
(fσ)σ∈Σ

)
= sup

ψ∈Ψ

∫
Ω

ln

(∫
S×Σ

ψ(fσ(ω, s)) dµ(s, σ|ω)

)
dµ(ω). (S1)

The optimal fitness function ψ∗ for plan (fσ)σ∈Σ satisfies45

ψ∗ ∈ arg max
ψ∈Ψ

∫
Ω

ln

(∫
S×Σ

ψ(fσ(ω, s)) dµ(s, σ|ω)

)
dµ(ω), (S2)

and if plan (fσ)σ∈Σ is followed for all signals σ 6= σ̄ and the ex ante choice of fitness function

is ψ∗, then the long-run growth from choosing g following σ̄ is

V
(
g|σ̄, (fσ)σ∈Σ, ψ

∗) =

∫
Ω

ln

(
µ(σ̄|ω)

∫
S

ψ∗(g(ω, s)) dµ(s|ω, σ̄)

+

∫
S×Σ\{σ̄}

ψ∗(fσ(ω, s)) dµ(s, σ|ω)

)
dµ(ω).

The preferences that maximize these ex ante and ex post long-run growth rates are dynami-

cally consistent.

Ex post adaptive preferences after learning signal σ̄ now have to take into account not

45We directly assume for this result that the optimal fitness function ψ∗ exists for each plan (fσ)σ∈Σ.
Alternatively, one could impose additional assumptions directly on the set Ψ to ensure that this is the case;
for example, requiring that Ψ be compact in the topology of pointwise convergence would guarantee the
existence of an optimal fitness function.
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only the plan (fσ)σ∈Σ, but also the fitness function ψ∗, which is given at the time of choosing

an act, as it was chosen optimally in conjunction with (fσ)σ∈Σ prior to the realization of σ̄.

When Equation (S2) uniquely pins down ψ∗, ex post preferences are fully determined by σ̄

and (fσ)σ∈Σ alone, and so can be derived from ex ante preferences.

Consider three plans (fσ)σ∈Σ, (gσ)σ∈Σ, and (hσ)σ∈Σ such that fσ = gσ = hσ for all σ 6= σ̄.

Suppose (fσ)σ∈Σ is strictly optimal ex ante, and suppose ψ∗ is the corresponding uniquely

optimal fitness function. Since ex ante adaptive preferences incorporate the optimal choice of

ψ while ex post preferences take ψ∗ as given, it is possible to have (gσ)σ∈Σ � (hσ)σ∈Σ ex ante

and gσ̄ ≺σ̄,(fσ) hσ̄ ex post. In other words, the ranking of two suboptimal plans can change

ex post. This is not a violation of our notion of dynamic consistency, which only requires

no deviations from the optimal plan, and hence only applies when comparing (fσ)σ∈Σ to the

other plans. However, it does violate stronger notions commonly found in the literature, for

instance, the definitions found in Machina and Schmeidler (1992) and Epstein and Le Breton

(1993).46 The following example illustrates that those violations do not depend on the arrival

of actual information, but only on the fact that ex ante preferences are elicited before the

commitment to a particular ψ, while ex post preferences apply after ψ is chosen.

Example S1. Let S = {s, s′}, Ω = {ω}, Σ = {σ}, µ(s) = µ(s′) = 1/2, and Ψ = {ψ1, ψ2}
where ψ1(x) = x and ψ2(x) = x1/2. That is, there is no common uncertainty and only one

uninformative signal. Consider the acts f = (4, 4), g = (1/25, 1/25), and h = (0, 1/9). The

following table lists these acts and displays their values under ψ1 and ψ2, respectively:

s s′ V (·|ψ1) V (·|ψ2)

f 4 4 4 2

g 1
25

1
25

1
25

1
5

h 0 1
9

1
18

1
6

Ex ante, each act is evaluated under the optimal ψ, so that V (f) = 4 > V (g) = 1/5 >

V (h) = 1/6, or f � g � h. However, V (h|ψ1) = 1/18 > 1/25 = V (g|ψ1). For the optimal

plan f with optimal fitness function ψ∗ = ψ1, this means h �σ,f g.

The special case of rank-dependent expected utility serves well to demonstrate the im-

portance of the timing of adaptation.

Corollary S1 (RDU with Before-Signal Adaptation). Suppose Ω = {ω} and Z ⊂ R. Fix µ,

and fix any bounded nondecreasing function u : Z → R and any function ϕ : [0, 1] → [0, 1]

46Preferences in the case of after-signal adaptation that we considered in the main text will satisfy this
stronger notion of dynamic consistency: For plans (fσ)σ∈Σ, (gσ)σ∈Σ, and (hσ)σ∈Σ such that fσ = gσ = hσ
for all σ 6= σ̄, we have (gσ)σ∈Σ � (hσ)σ∈Σ =⇒ gσ̄ �σ̄,(fσ) hσ̄ (and (gσ)σ∈Σ % (hσ)σ∈Σ =⇒ gσ̄ %σ̄,(fσ) hσ̄
whenever µ(σ̄) > 0). This is because for after-signal adaptation, the conditional preference %σ̄,(fσ) does not
depend on fσ̄, only on fσ for σ 6= σ̄. Note that in terms of observable behavior, the two notions are typically
equivalent, as choice can only reveal whether or not an individual prefers deviating from the ex ante optimal
plan.
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that is continuous, nondecreasing, concave, and onto. Then, there exists a set Ψ of functions

ψ : Z → R such that the ex ante value function V defined by Equation (S1) can be equivalently

expressed as

V
(
(fσ)σ∈Σ

)
= ln

(∫
Z

u(z) d(ϕ ◦ F(fσ),µ)(z)

)
where

F(fσ),µ(z) =

∫
S×Σ

1[fσ(s) ≤ z] dµ(s, σ)

is the cumulative distribution function of (fσ)σ∈Σ given µ.

According to the corollary, for before-signal adaptation, the transformation function ϕ

affects all uncertainty, including the realization of σ. This is the model considered in the

literature following Machina (1989) and is in contrast to the case of after-signal adaptation.

Of course, ex post preferences will still satisfy our notion of dynamic consistency, but will

now in general violate consequentialism.47

S2 Signal Response in lieu of Self-Randomization

Recall that the motive for self-randomization in our model is to reduce the correlation of

outcomes across individuals, thereby reducing the aggregate risk faced by the population.

Notice that if a completely uninformative idiosyncratic signal existed, then responding to

that signal would simply amount to self-randomization. In other words, an uninformative

private signal is nothing more than a private randomization device. An informative signal can

play a similar role in alleviating—although not perfectly—the need for self-randomization,

as we illustrate in this section.

Consider a simple discrete choice setting where Ω is finite, S = {s}, and Ψ = {ψ}.
Suppose that individuals have to bet on any one state ω ∈ Ω and can randomize over the

possible bets. When there is no information (Σ = {σ}), then for any prior with support Ω,

optimal choice involves randomization that places positive probability on all available bets.

However, as soon as there are even minimally informative signals, there is at least one signal

for which this is no longer the case.

With slight abuse of notation, let ρσ(ω) denote the probability that an individual bets

on state ω after observing σ.48 If the state on which the individual bet realizes then their

47As noted above, ex post preferences may also violate the slightly stronger notion of dynamic consistency
considered by Machina and Schmeidler (1992), Epstein and Le Breton (1993), and much of the subsequent
literature. Hanany and Klibanoff (2007) proposed a weaker definition that is similar to ours in the context
of partitional learning.

48If ψ is strictly concave, then the genotype would clearly benefit if individuals could diversify by averaging
these bets to obtain an act that pays a smaller but strictly positive amount in every state. Such diversification
is prohibited here, as individuals must ultimately place a bet on a single state, but individuals may nonetheless
prefer to randomize over bets on different states in order to replace aggregate uncertainty with idiosyncratic.
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payoff is 1; otherwise, their payoff is 0. Assume that ψ(1) > ψ(0) ≥ 0. The long-run growth

rate is now given by

V (ρ) =

∫
Ω

ln

(∫
Σ

(
ρσ(ω)ψ(1) + (1− ρσ(ω))ψ(0)

)
dµ(σ|ω)

)
dµ(ω). (S3)

The following proposition shows that if the likelihood ratio between states ω and ω′ is

higher after signal σ than σ′, then individuals will either not bet with positive probability on

state ω′ following signal σ, or they will not bet with positive probability on state ω following

signal σ′. Note that this result includes the possibility that the conditional probability of

one of these states is much higher than that of the other following both of these signals, in

which case individuals might never bet on the other state with positive probability.

Proposition S1. Fix two states ω, ω′ ∈ Ω and two signals σ, σ′ ∈ Σ. If

µ(ω, σ)µ(ω′, σ′) > µ(ω, σ′)µ(ω′, σ),

then ρσ(ω′) = 0 or ρσ′(ω) = 0, or both.

The proof of Proposition S1 is in Section S4.1. In the case where the probabilities in the

proposition are strictly positive, the inequality in the proposition can be written as

µ(ω|σ)

µ(ω′|σ)
>
µ(ω|σ′)
µ(ω′|σ′)

.

This extreme individual reaction to information reflects not only “updating”, but also

the need to reduce the correlation between individual outcomes. The following example

illustrates.

Example S2. There is an ambiguous urn in which all balls are either red or yellow, which

we model by taking the common component of the state space to be Ω = {r, y}. Suppose

µ(r) = µ(y) = 1/2 and ψ(1) = 1 > ψ(0) = 0. As in Example 2, R and Y are the bets

on a ball drawn from the urn being red or yellow, respectively, so that choice between R

and Y amounts to betting on ω ∈ Ω. Signals in Σ = {σ, σ′} are informative, as µ(y, σ) =

5/10, µ(r, σ) = 4/10, µ(y, σ′) = 0, and hence µ(r, σ′) = 1/10, which yields the conditional

probabilities

µ(σ|r) =
4

5
and µ(σ|y) = 1.

Let ρσ(R) denote the probability of choosing R following signal σ, and define ρσ(Y ), ρσ′(R),

and ρσ′(Y ) similarly. Then,

V (ρ) =
1

2
ln

(
4

5
ρσ(R) +

1

5
ρσ′(R)

)
+

1

2
ln(ρσ(Y )),
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which is maximized by taking

ρσ(R) =
3

8
ρσ′(R) = 1

ρσ(Y ) =
5

8
ρσ′(Y ) = 0.

Thus, there is no randomization contingent on signal σ′. There is, however, randomization

contingent on σ. Intuitively, since σ′ is much less likely, exclusively conditioning on the two

informative signals by taking ρσ(Y ) = 1 would lead to excess correlation in outcomes across

individuals.49

S3 Public versus Private Signals

When signals are informative only about the common component, Ω, then they can either be

public (so that all individuals receive the same signal) or private as in the analysis thus far (so

signals are independent across individuals contingent on ω). This distinction does not arise

when updating beliefs in most preference-based models of individual decision-making, but it

may matter for behavior in our evolutionary model. To streamline exposition, consider acts

that depend only on Ω and suppress S for the remainder of this section, and let Ψ = {ψ}.

Not surprisingly, private signals are preferred over public signals because public signals

introduce correlation which is harmful to long-run growth. Formally, given a signal space Σ

and a measure µ on Ω× Σ, let V Pr(ρ) denote the now familiar long-run growth rate for the

action plan ρ under private signals:

V Pr(ρ) =

∫
Ω

ln

(∫
Σ

Eρσ
[
ψ(f(ω))

]
dµ(σ|ω)

)
dµ(ω).

Let V Pu(ρ) denote the growth rate for ρ under public signals:

V Pu(ρ) =

∫
Ω×Σ

ln
(
Eρσ
[
ψ(f(ω))

])
dµ(ω, σ).

Fix a decision problem A = (Aσ)σ∈Σ, and let

ρPr ∈ argmax
ρ̂∈R(A)

V Pr(ρ̂) and ρPu ∈ argmax
ρ̂∈R(A)

V Pu(ρ)

49In some cases, conditioning on informative signals may completely eliminate self-randomization. In the
example, if instead µ(y, σ) = 5/10, µ(r, σ) = 2/10, µ(y, σ′) = 0, and µ(r, σ′) = 3/10, then ρσ(R) = 0 and
ρσ′(Y ) = 0, so there is no randomization following either signal. In this case, removing residual correlation
through randomization is not worth the cost of worsening the expected individual outcomes.
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be optimal plans under private and public signals, respectively. Then,

V Pr(ρPr) ≥ V Pr(ρPu) ≥ V Pu(ρPu),

where the second inequality is strict whenever EρPu
σ

[ψ(f(ω))] is not constant in σ for some

ω ∈ Ω.

A more subtle question is how ρPu and ρPr differ. We already saw in Section S2 that

the reaction to private signals may be extreme, because they may serve as a randomization

device. To gain some intuition, note that when ω ∈ Ω becomes more likely upon learning a

signal σ ∈ Σ, then there must also be some signal σ′ where it becomes less likely. Intuitively,

when signals are private it may be possible to bet on ω under σ and against ω under σ′

without creating much correlation, because both signals will be present in the population at

the same time. In contrast, if the same signals are public, then the entire population receives

σ or σ′ at the same time, and reacting to information will lead to additional correlation in

outcomes across individuals. Based on this rough intuition, we would expect there to be

a stronger reaction to private information than to public information, which may provide

a different perspective on the often-discussed overconfidence that agents appear to have in

their private information, for instance when investing in financial markets, as in Daniel,

Hirshleifer, and Subrahmanyam (1998). We now briefly discuss an illustrative example.

Application: Portfolio Choice

Let µ be a positive prior on a finite space of states and signals Ω×Σ. We continue to suppress

S, and we assume there is a single fitness function ψ that is increasing, strictly concave, and

differentiable. Consider a simple portfolio-choice problem consisting of a risk-free asset with

deterministic return c and a single risky asset with return f(ω) in state ω, where f is

nonconstant and
∑

ω∈Ω µ(ω)f(ω) > c. In this domain, there will be a deterministic solution

since averaging the state-dependent monetary outcomes of two acts via their portfolio weights

provides a superior hedging benefit to self-randomizing over the acts whenever ψ is concave.

We will therefore focus on deterministic portfolio decisions in what follows.

Suppose that each individual has unit wealth, and let the plan (ασ)σ∈Σ specify for each

signal σ ∈ Σ the proportion ασ ∈ [0, 1] of wealth invested in the risky asset, so that an

individual holds act fσ = ασf + (1−ασ)c upon learning σ. Holding fixed µ ∈ 4(Ω×Σ), let

(αPu
σ )σ∈Σ and (αPr

σ )σ∈Σ denote the optimal portfolio plans for the case where the signals in

Σ are public and private, respectively.

Proposition S2. Let σ∗ and σ∗ be the signals that induce the lowest and highest investment

in the risky asset under private signals, respectively, that is, αPr
σ∗ ≤ αPr

σ ≤ αPr
σ∗ for all σ ∈ Σ.

If αPr
σ∗ 6= αPr

σ∗, then the following must be true:

1. αPr
σ∗ < αPu

σ∗ or αPr
σ∗ = αPu

σ∗ = 0.

S7



2. αPu
σ∗ < αPr

σ∗ or αPu
σ∗ = αPr

σ∗ = 1.

In particular, when there are only two signals, reaction to private signals is unambiguously

stronger than to public signals in the sense that asset holdings react more to the signal

realization. The proof of Proposition S2 is contained in Section S4.2.

S4 Proofs of Results in the Online Appendix

S4.1 Proof of Proposition S1

As in Section S2, with slight abuse of notation let ρσ(ω) denote the probability that an individual

bets on state ω following signal σ. Let ρ(ω) denote the probability of betting on state ω when the

actual state is ω, given ρσ(ω) and µ(σ|ω). That is,

ρ(ω) =
∑
σ∈Σ

ρσ(ω)µ(σ|ω).

Simple direct computation yields the partial derivative of V with respect to ρσ(ω):50

∂V (ρ)

∂ρσ(ω)
=

(ψ(1)− ψ(0))µ(ω, σ)

ρ(ω)ψ(1) + (1− ρ(ω))ψ(0)
.

The proof proceeds by contrapositive. We will show that if ρσ(ω′) > 0 and ρσ′(ω) > 0, then the

inequality in the statement of the proposition cannot be satisfied. First, note that if ρσ(ω′) > 0,

then it must be the case that
∂V (ρ)

∂ρσ(ω′)
≥ ∂V (ρ)

∂ρσ(ω)
,

for otherwise it would be a strict improvement to reduce ρσ(ω′) by some ε > 0 and increase ρσ(ω)

by ε. Similarly, ρσ′(ω) > 0 implies that

∂V (ρ)

∂ρσ′(ω)
≥ ∂V (ρ)

∂ρσ′(ω′)
.

Multiplying these two expressions, we obtain

∂V (ρ)

∂ρσ′(ω)

∂V (ρ)

∂ρσ(ω′)
≥ ∂V (ρ)

∂ρσ(ω)

∂V (ρ)

∂ρσ′(ω′)
.

Using the formula for the partial derivative and rearranging terms, this implies that

µ(ω, σ′)µ(ω′, σ) ≥ µ(ω, σ)µ(ω′, σ′).

50The choice of ρ by individuals is clearly subject to the constraint that
∑
ω∈Ω ρσ(ω) = 1 for all σ ∈ Σ. This

partial derivative treats ρσ(ω) as any real number to consider marginal utility independently of feasibility.
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Thus, the inequality in the statement of the proposition can only be satisfied if either ρσ(ω′) = 0

or ρσ′(ω) = 0, or both. This completes the proof.

S4.2 Proof of Proposition S2

Since f and c are fixed and deterministic portfolio plans are optimal, we will slightly abuse notation

and denote V Pu(ρ) simply by V Pu((ασ)σ∈Σ), and similarly denote V Pr(ρ) by V Pr((ασ)σ∈Σ). Observe

first that for any (ασ)σ∈Σ and any σ ∈ Σ,

∂V Pu((ασ)σ∈Σ)

∂ασ
=
∑
ω∈Ω

µ(ω, σ)
ψ′(ασf(ω)− (1− ασ)c)

ψ(ασf(ω)− (1− ασ)c)
(f(ω)− c)

and
∂V Pr((ασ)σ∈Σ)

∂ασ
=
∑
ω∈Ω

µ(ω, σ)
ψ′(ασf(ω)− (1− ασ)c)∑

σ′∈Σ µ(σ′|ω)ψ(ασ′f(ω)− (1− ασ′)c)
(f(ω)− c).

Since ψ is positive, increasing, and strictly concave, we can make two straightforward observations

that will be useful in the remainder of the proof:

1. The term
ψ′(αf(ω)− (1− α)c)

ψ(αf(ω)− (1− α)c)
(f(ω)− c)

is nonincreasing in α ∈ [0, 1].

2. If f(ω) 6= c and α ≤ ασ for all σ ∈ Σ, with strict inequality for at least one σ, then

ψ′(αf(ω)− (1− α)c)

ψ(αf(ω)− (1− α)c)
(f(ω)− c) > ψ′(αf(ω)− (1− α)c)∑

σ∈Σ µ(σ|ω)ψ(ασf(ω)− (1− ασ)c)
(f(ω)− c).

The opposite inequality holds if ασ ≤ α for all σ ∈ Σ, with strict inequality for at least one

σ.

Now suppose, contrary to the first part of the proposition, that αPr
σ∗ ≥ α

Pu
σ∗ and αPr

σ∗ > 0. Then,

we have
∂V Pu((αPu

σ )σ∈Σ)

∂ασ∗
≥ ∂V Pu((αPr

σ )σ∈Σ)

∂ασ∗
>
∂V Pr((αPr

σ )σ∈Σ)

∂ασ∗
,

where the first inequality follows from observation 1 since αPr
σ∗ ≥ αPu

σ∗ , and the second inequality

follows from observation 2 with α = αPr
σ∗ since αPr

σ∗ ≤ α
Pr
σ for all σ ∈ Σ (with strict inequality for at

least one σ). Since, by assumption, αPu
σ∗ ≤ α

Pr
σ∗ < αPr

σ∗ ≤ 1, the optimality of αPu requires that

∂V Pu((αPu
σ )σ∈Σ)

∂ασ∗
≤ 0,

and hence
∂V Pr((αPr

σ )σ∈Σ)

∂ασ∗
< 0.
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Since (αPr
σ )σ∈Σ is optimal, this requires that αPr

σ∗ = 0, a contradiction. This establishes the first

claim in the proposition.

Finally suppose, contrary to the second part of the proposition, that αPr
σ∗ ≤ αPu

σ∗ and αPr
σ∗ < 1.

Then, we have
∂V Pu((αPu

σ )σ∈Σ)

∂ασ∗
≤ ∂V Pu((αPr

σ )σ∈Σ)

∂ασ∗
<
∂V Pr((αPr

σ )σ∈Σ)

∂ασ∗
,

where the first inequality follows from observation 1 since αPr
σ∗ ≤ αPu

σ∗ , and the second inequality

follows from observation 2 with α = αPr
σ∗ since αPr

σ ≤ αPr
σ∗ for all σ ∈ Σ (with strict inequality for at

least one σ). Since, by assumption, 0 ≤ αPr
σ∗ < αPr

σ∗ ≤ αPu
σ∗ , the optimality of (αPu

σ )σ∈Σ requires that

∂V Pu((αPu
σ )σ∈Σ)

∂ασ∗
≥ 0,

and hence
∂V Pr((αPr

σ )σ∈Σ)

∂ασ∗
> 0.

Since (αPr
σ )σ∈Σ is optimal, this requires that αPr

σ∗ = 1, a contradiction. This establishes the second

claim in the proposition.

S5 Omitted Proofs from the Main Paper

In this section, we provide proofs of Propositions 3 and 4 and Lemmas 2 and 3 from Appendix B.2

of the main paper. We restate the results here for ease of reference.

Proposition 3. Suppose Ψ is a nonempty set of functions ψ : Z → [−∞,∞) that is pointwise

bounded above, and fix µ ∈ 4(Ω×S×Σ). For any random action plan ρ ∈ (4s(F))Σ, the function

V defined by Equation (2) can be equivalently expressed as

V (ρ) = sup
τ∈R(Ψ|F)

inf
q∈M(µΩ)

[
ln

(∫
Ω

∫
S×Σ

Eτσ⊗ρσ
[
ψ(f(ω, s))

]
dµ(s, σ|ω) dq(ω)

)
+R(µΩ ‖ q)

]
.

Proposition 4. Fix a measure µ ∈ 4(Ω× S × Σ), and suppose Ξ is a nonempty set of functions

ξ : Ω× S × Σ→ [−∞,∞) with the following properties:

1. Closedness: When the set of extend reals [−∞,∞] is endowed with its usual topology and

[−∞,∞]Ω×S×Σ is endowed with the product topology (i.e., the topology of pointwise conver-

gence), Ξ is a closed subset of this space.

2. Finite measurability: There exists a finite partition E ⊂ BΩ ⊗ BS ⊗ BΣ of Ω × S × Σ such

that every ξ ∈ Ξ is measurable with respect to E.

3. Pointwise boundedness: supξ∈Ξ ξ(ω, s, σ) <∞ for every (ω, s, σ) ∈ Ω× S × Σ.
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Then,

sup
ξ∈co(Ξ)

inf
q∈M(µΩ)

[
ln

(∫
Ω

∫
S×Σ

ξ(ω, s, σ) dµ(s, σ|ω) dq(ω)

)
+R(µΩ ‖ q)

]
= inf

q∈M(µΩ)

[
ln

(
sup
ξ∈Ξ

∫
Ω

∫
S×Σ

ξ(ω, s, σ) dµ(s, σ|ω) dq(ω)

)
+R(µΩ ‖ q)

]
.

(S4)

Lemma 2. Define Ξ as in Equation (12). For any random adaptation plan τ ∈ R(Ψ|F), define

ξτ : Ω× S × Σ→ [−∞,∞) by

ξτ (ω, s, σ) = Eτσ⊗ρσ
[
ψ(f(ω, s))

]
=

∫
F

∫
Ψ
ψ(f(ω, s)) dτσ(ψ|f) dρσ(f).

Then,

co(Ξ) =
{
ξτ : τ ∈ R(Ψ|F)

}
.

Lemma 3. The set Ξ defined in Equation (12) is a closed subset of [−∞,∞]Ω×S×Σ.

S5.1 Proof of Proposition 3

We begin with a useful proposition. As in the main text, let (Ω,BΩ) be any measurable space,

and let 4(Ω) be the set of all countably additive probability measures on this space. Recall that

M(p) = {q ∈ 4(Ω) : q � p and R(p ‖ q) < ∞}. In particular, since R(p ‖ q) < ∞ requires that

p� q, the measures q and p are mutually absolutely continuous whenever q ∈M(p).

Proposition S3. Suppose X : Ω→ [−∞,∞) is measurable and bounded above, and let p ∈ 4(Ω).

Then, ∫
Ω

ln(X(ω)) dp(ω) = inf
q∈M(p)

[
ln

(∫
Ω
X(ω) dq(ω)

)
+R(p ‖ q)

]
. (S5)

In addition, if X is bounded away from zero, that is, if X(ω) ≥ ε > 0 for all ω ∈ Ω, then the

infimum in Equation (S5) is uniquely attained by the measure q0 with Radon–Nikodym derivative

dq0

dp
(ω) =

1

X(ω)

∫
Ω

1

X(ω̂)
dp(ω̂)

. (S6)

Proposition S3 restricts to q ∈ M(p), thereby ensuring that we do not encounter terms of the

form −∞ +∞. That is, while the first term inside the infimum in Equation (S5) could take the

value −∞, the second term R(p ‖ q) will necessarily be finite.

Proof. The proof proceeds in three steps. We first prove Equation (S5) for random variables X

that are bounded above and satisfy X(ω) ≥ ε > 0 for all ω ∈ Ω. We then extend the result to all

bounded X ≥ 0. Finally, we extend to any X that is bounded above.51

51The first two steps in our proof employ similar techniques to the proofs of Propositions 1.4.2 and 4.5.1
in Dupuis and Ellis (1997), although the details are quite different.
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Step 1: Suppose that X that is bounded above and satisfies X(ω) ≥ ε > 0 for all ω ∈ Ω.

Then, ln(X) is a bounded function, and it is therefore integrable. Fix any measures p, q ∈ 4(Ω)

with p� q and define a measure p0 by its Radon–Nikodym derivative

dp0

dq
(ω) =

X(ω)∫
Ω
X(ω̂) dq(ω̂)

. (S7)

Since X is strictly positive, p0 and q are mutually absolutely continuous. In particular, since p� q,

this implies p� p0. Thus, dp
dp0

exists and dp
dq = dp

dp0
· dp0

dq . Note that∫
Ω

ln(X) dp−R(p ‖ q)

=

∫
Ω

ln(X) dp−
∫

Ω
ln

(
dp

dq

)
dp

=

∫
Ω

ln(X) dp−
∫

Ω
ln

(
dp

dp0

)
dp−

∫
Ω

ln

(
dp0

dq

)
dp

=

∫
Ω

ln(X) dp−
∫

Ω
ln

(
dp

dp0

)
dp−

∫
Ω

ln(X) dp+ ln

(∫
Ω
X dq

)
= −R(p ‖ p0) + ln

(∫
Ω
X dq

)
.

By Lemma 1.4.1 in Dupuis and Ellis (1997), R(p ‖ p0) ≥ 0, with equality if and only if p = p0.

Therefore, ∫
Ω

ln(X) dp ≤ ln

(∫
Ω
X dq

)
+R(p ‖ q),

with equality if and only if p = p0. It is not difficult to show that Equations (S6) and (S7) are dual

in the sense that p = p0 if and only if q = q0. Therefore, given p, if we set q = q0 then the above

holds with equality. Moreover, since X is bounded and 1/X ≤ 1/ε,

R(p ‖ q0) =

∫
Ω

ln

(
dp

dq0

)
dp =

∫
Ω

ln(X) dp+ ln

(∫
Ω

1

X
dp

)
<∞,

which implies q0 ∈M(p). Hence the infimum in Equation (S5) is attained at q0.

Step 2: Consider now any bounded X ≥ 0. Define a sequence of random variables (Xn)n∈N
by Xn(ω) = max{X(ω), 1/n}. By step 1, we know that Equation (S5) holds for each Xn and for

any p. Using this, together with the fact that Xn ≥ X for all n, we have∫
Ω

ln(Xn) dp = inf
q∈M(p)

[
ln

(∫
Ω
Xn dq

)
+R(p ‖ q)

]
≥ inf

q∈M(p)

[
ln

(∫
Ω
X dq

)
+R(p ‖ q)

]
.

Since
∫

ln(X1)dp < ∞ and ln(Xn) ↓ ln(X), the monotone convergence theorem for extended real-
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valued functions (e.g., Theorem 4.3.2 of Dudley (2002)) implies∫
Ω

ln(X) dp = lim
n→∞

∫
Ω

ln(Xn) dp

≥ inf
q∈M(p)

[
ln

(∫
Ω
X dq

)
+R(p ‖ q)

]
.

Note that these terms could take the value −∞.

To prove the opposite inequality, note that for any n and any q ∈M(p), Equation (S5) applied

to the function Xn implies ∫
Ω

ln(Xn) dp ≤ ln

(∫
Ω
Xn dq

)
+R(p ‖ q).

Since both sides of this inequality are finite for all n, we can again take the limit as n → ∞ and

apply the monotone convergence theorem to obtain∫
Ω

ln(X) dp ≤ ln

(∫
Ω
X dq

)
+R(p ‖ q).

Since this is true for all q ∈M(p), we have∫
Ω

ln(X) dp ≤ inf
q∈M(p)

[
ln

(∫
Ω
X dq

)
+R(p ‖ q)

]
.

Thus, Equation (S5) holds for any bounded X ≥ 0.

Step 3: Finally, consider any X that is bounded above. Let X+(ω) = max{X(ω), 0}. Since

we have adopted the standard convention that ln(x) = −∞ for any x ≤ 0, we have ln(X+(ω)) =

ln(X(ω)) for all ω. Therefore, since Equation (S5) holds for X+ by step 2,∫
Ω

ln(X) dp =

∫
Ω

ln(X+) dp

= inf
q∈M(p)

[
ln

(∫
Ω
X+ dq

)
+R(p ‖ q)

]
≥ inf

q∈M(p)

[
ln

(∫
Ω
X dq

)
+R(p ‖ q)

]
.

To establish the opposite inequality, we consider two cases. Let A = {ω ∈ Ω : X(ω) ≤ 0}. The first

case is when p(A) > 0. Then,
∫

Ω ln(X)dp = −∞, so the above must hold with equality. The second

case is when p(A) = 0. Then, q(A) = 0 for all q ∈ M(p), since any q ∈ M(p) must be absolutely

continuous with respect to p. Therefore,
∫

ΩX dq =
∫

ΩX
+dq for all q ∈M(p) and hence

inf
q∈M(p)

[
ln

(∫
Ω
X dq

)
+R(p ‖ q)

]
= inf

q∈M(p)

[
ln

(∫
Ω
X+ dq

)
+R(p ‖ q)

]
.

Thus, the equality is established for both cases, which completes the proof. �
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We now proceed with the proof of Proposition 3. For a given ρ ∈ (4s(F))Σ and τ ∈ R(Ψ|F),

define X : Ω→ [−∞,∞) by

X(ω) =

∫
S×Σ

Eτσ⊗ρσ
[
ψ(f(ω, s))

]
dµ(s, σ|ω).

To verify that X is bounded above, recall that for each σ, ρσ ∈ 4s(F) has finite support and

each f ∈ supp(ρσ) is a simple act. Moreover, since Σ is finite, this implies that only finitely many

realizations of z occur with positive probability. Since the set Ψ is pointwise bounded above, this

implies that there exists κ ∈ R such that ψ(f(ω, s)) ≤ κ for all ω, s, σ, and f ∈ supp(ρσ). Therefore,

X(ω) ≤ κ for all ω. Applying Proposition S3 to this function, we obtain∫
Ω

ln

(∫
S×Σ

Eτσ⊗ρσ
[
ψ(f(ω, s))

]
dµ(s, σ|ω)

)
dµ(ω)

=

∫
Ω

ln(X(ω)) dµΩ(ω)

= inf
q∈M(µΩ)

[
ln

(∫
Ω
X(ω) dq(ω)

)
+R(µΩ ‖ q)

]
= inf

q∈M(µΩ)

[
ln

(∫
Ω

∫
S×Σ

Eτσ⊗ρσ
[
ψ(f(ω, s))

]
dµ(s, σ|ω) dq(ω)

)
+R(µΩ ‖ q)

]
.

Thus, when V is defined by Equation (2), we have

V (ρ) = sup
τ∈R(Ψ|F)

∫
Ω

ln

(∫
S×Σ

Eτσ⊗ρσ
[
ψ(f(ω, s))

]
dµ(s, σ|ω)

)
dµ(ω)

= sup
τ∈R(Ψ|F)

inf
q∈M(µΩ)

[
ln

(∫
Ω

∫
S×Σ

Eτσ⊗ρσ
[
ψ(f(ω, s))

]
dµ(s, σ|ω) dq(ω)

)
+R(µΩ ‖ q)

]
.

This completes the proof.

S5.2 Proof of Proposition 4

Our proof will rely on a version of the von Neumann–Sion Minimax Theorem. von Neumann

(1928) proved that when F : C ×D → R is a bilinear function and C and D are finite-dimensional

simplexes,

sup
x∈C

inf
y∈D

F (x, y) = inf
y∈D

sup
x∈C

F (x, y).

Perhaps the most important and well-known extension of von Neumann’s result is due to Sion

(1958), who showed that the same conclusion can be derived under the weaker assumptions that C

andD are convex subsets of topological vector spaces, one of these sets is compact, F is quasiconcave

and upper semicontinuous in x, and F is quasiconvex and lower semicontinuous in y. Sion’s result

is not quite strong enough for our purposes, since in our application it may be that neither C nor

D is compact and since F may not be lower semicontinuous in y. We will therefore rely on the

following generalization of the von Neumann–Sion Theorem, which is due to Tuy (2004).
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Theorem S2 (von Neumann–Sion–Tuy Minimax Theorem). Let C be a closed and convex subset

of a topological vector space, and let D be a convex subset of a topological vector space. Suppose

F : C ×D → R satisfies the following conditions:

1. For every y ∈ D, the function x 7→ F (x, y) is quasiconcave and upper semicontinuous on C.

2. For every x ∈ C and y, y′ ∈ D, the function λ 7→ F (x, λy + (1 − λ)y′) is quasiconvex and

lower semicontinuous on [0, 1].

3. There exists some η < infy∈D supx∈C F (x, y) and a nonempty finite set L ⊂ D such that the

set CLη = {x ∈ C : miny∈L F (x, y) ≥ η} is compact.

Then,

sup
x∈C

inf
y∈D

F (x, y) = inf
y∈D

sup
x∈C

F (x, y).

Proof. This result is a special case of Theorem 2 in Tuy (2004). His result requires that F be what

he calls α-connected. This condition is implied by our assumptions that C is closed and convex,

D is convex, F is quasiconcave and upper semicontinuous in x, and λ 7→ F (x, λy + (1 − λ)y′) is

quasiconvex in λ for all x, y, y′. His result also requires the lower semicontinuity property that we

assumed in condition 2.52 The final assumption needed for his result is condition 3.53 �

Note that the theorem of Sion (1958) follows as a corollary to this result: If F is quasiconvex

and lower semicontinuous in y then condition 2 is implied, and if D is compact then condition 3 is

implied (given that F is upper semicontinuous in x).

We now proceed with the proof of Proposition 4. Fix any measure µ ∈ 4(Ω × S × Σ), and

fix any convex set Ξ satisfying the properties described in the statement of the proposition. We

proceed in several steps. Using the second property of Ξ from the statement of the proposition, we

know that there exists a finite partition E of Ω× S × Σ such that every ξ ∈ Ξ is measurable with

respect to E . We can enumerate the elements of this partition as

E = {Ei : i ∈ N},

where N is a finite index set. For each i ∈ N , fix an arbitrary element (ωi, si, σi) ∈ Ei. Since

each ξ ∈ Ξ is measurable with respect E , we know that ξ(ω, s, σ) = ξ(ωi, si, σi) for all i ∈ N and

(ω, s, σ) ∈ Ei. Consider the mapping

ξ 7→ θξ = (ξ(ωi, si, σi))i∈N

52Note that the assumption of lower semicontinuity in y in every line segment (that is, lower semicontinuity
of the mapping λ 7→ F (x, λy + (1 − λ)y′) for all x, y, y′) in condition 2 is in general weaker than assuming
lower semicontinuity in y. However, the assumption of quasiconvexity in y in every line segment (that
is, quasiconvexity of the mapping λ 7→ F (x, λy + (1 − λ)y′) for all x, y, y′) in condition 2 is equivalent to
quasiconvexity in y. Also, note that we have switched the roles of C and D compared to Tuy (2004).

53Strictly speaking, Theorem 2 in Tuy (2004) assumes that CLη is compact for η = supx∈C infy∈D F (x, y)
and shows that η < infy∈D supx∈C F (x, y) leads to a contradiction. As is evident from his proof, our
condition 4 is sufficient to obtain the same result.
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from Ξ into [−∞,∞]N . It is easy to see that this mapping is a homeomorphism from Ξ to the set

Θ = {θξ : ξ ∈ Ξ} ⊂ [−∞,∞]N .

In other words, the set of functions Ξ is topologically equivalent to the set of vectors Θ.

As in the main paper, for any q ∈ M(µΩ), define the measure µ ⊗ q on Ω × S × Σ to have

marginal q on Ω and conditional distribution µ(·|ω) on S × Σ. That is, for any event E in the

product σ-algebra BΩ ⊗ BS ⊗ BΣ, let

µ⊗ q(E) =

∫
Ω

∫
S×Σ

1[(ω, s, σ) ∈ E] dµ(s, σ|ω) dq(ω).

Define a function H : [−∞,∞)N ×M(µΩ)→ R+ by

H(θ, q) = max

{
0,
∑
i∈N

θi · µ⊗ q(Ei)
}

exp(R(µΩ ‖ q)).

Lemma S1. The set Θ and function H satisfy the following conditions:

1. When [−∞,∞]N is endowed with the product topology (i.e., the topology of pointwise conver-

gence), Θ is compact.

2. There exists κ ∈ R such that θi ≤ κ for all θ ∈ Θ and i ∈ N .

3. Equation (S4) from the statement of the proposition is equivalent to the following:

sup
θ∈co(Θ)

inf
q∈M(µΩ)

H(θ, q) = inf
q∈M(µΩ)

sup
θ∈Θ

H(θ, q). (S8)

Proof. Since Ξ is a closed subset of [−∞,∞]Ω×S×Σ by the first property in the statement of the

proposition and since Ξ and Θ are homeomorphic, Θ is closed. In addition, since [−∞,∞]N is a

compact space when endowed with the product topology,54 this implies that Θ is compact. Since

Ξ is pointwise bounded above by the third property in the statement of the proposition, we have

sup
θ∈Θ

θi = sup
ξ∈Ξ

ξ(ωi, si, σi) <∞

for all i ∈ N . In particular, since N is finite, there exists κ ∈ R such that θi ≤ κ for all θ ∈ Θ and

54It is easy to see that the set of extended reals [−∞,∞] is compact in its usual topology (see Example 2.75
in Aliprantis and Border (2006)), and hence [−∞,∞]N endowed with the product topology is compact by
the Tychonoff Product Theorem (Theorem 2.61 in Aliprantis and Border (2006)).
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i ∈ N . To establish the third condition, note that55

ln

[
sup

θ∈co(Θ)
inf

q∈M(µΩ)
H(θ, q)

]
= sup

θ∈co(Θ)
inf

q∈M(µΩ)

[
ln

(∑
i∈N

θi · µ⊗ q(Ei)
)

+R(µΩ ‖ q)
]

= sup
ξ∈co(Ξ)

inf
q∈M(µΩ)

[
ln

(∑
i∈N

ξ(ωi, si, σi) · µ⊗ q(Ei)
)

+R(µΩ ‖ q)
]

= sup
ξ∈co(Ξ)

inf
q∈M(µΩ)

[
ln

(∫
Ω×S×Σ

ξ(ω, s, σ) d(µ⊗ q)(ω, s, σ)

)
+R(µΩ ‖ q)

]
.

Similarly,

ln

[
inf

q∈M(µΩ)
sup
θ∈Θ

H(θ, q)

]
= inf

q∈M(µΩ)

[
ln

(
sup
θ∈Θ

∑
i∈N

θi · µ⊗ q(Ei)
)

+R(µΩ ‖ q)
]

= inf
q∈M(µΩ)

[
ln

(
sup
ξ∈Ξ

∫
Ω×S×Σ

ξ(ω, s, σ) d(µ⊗ q)(ω, s, σ)

)
+R(µΩ ‖ q)

]
.

Thus, Equation (S4) is equivalent to Equation (S8). �

Next, we show that we can remove any indices i ∈ N that correspond to probability zero events.

By definition, q and µΩ must be mutually absolutely continuous for any q ∈ M(µΩ), and hence

µ⊗ q and µ are also mutually absolutely continuous. Thus, for any i ∈ N and q ∈M(µΩ),

µ⊗ q(Ei) = 0 ⇐⇒ µ(Ei) = 0.

We can therefore remove any events Ei ∈ E that occur with zero probability under µ, since such

events must also occur with zero probability under µ⊗ q for any q ∈M(µΩ). That is, consider the

index set M ⊂ N given by

M = {i ∈ N : µ(Ei) > 0}.

Define the projection function PM : [−∞,∞]N → [∞,∞]M by PM (θ) = (θi)i∈M , and set

Θ′ = PM (Θ) = {θ′ = PM (θ) : θ ∈ Θ}.

Define a function F : [−∞,∞)M ×M(µΩ)→ R+ by

F (θ, q) = max

{
0,
∑
i∈M

θi · µ⊗ q(Ei)
}

exp(R(µΩ ‖ q)).

Lemma S2. The set Θ′ and function F satisfy the following conditions:

55To deal with vectors θ and functions ξ that can take the value −∞, we adopt the notational convention
throughout that ln(x) = −∞ for any x ∈ [−∞, 0]. Hence ln(max{0, x}) = ln(x) for all x ∈ [−∞,∞).
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1. When [−∞,∞]M is endowed with the product topology, Θ′ is compact (hence closed).

2. There exists κ ∈ R such that θi ≤ κ for all θ ∈ Θ′ and i ∈M .

3. Equation (S8) is equivalent to the following:

sup
θ∈co(Θ′)

inf
q∈M(µΩ)

F (θ, q) = inf
q∈M(µΩ)

sup
θ∈Θ′

F (θ, q). (S9)

Proof. The projection function PM is continuous when [−∞,∞]N and [−∞,∞]M are endowed with

their product topologies. Therefore, the set Θ′ is compact, as it is the image of the compact set Θ

under the continuous function PM . Since [−∞,∞]N is a Hausdorff space, compact subsets of of this

space are closed (Lemma 2.32 in Aliprantis and Border (2006)). Hence, Θ′ is closed. The second

condition follows directly from the second condition in Lemma S1. To establish the third condition,

recall from above that µ and µ ⊗ q are mutually absolutely continuous for any q ∈ M(µΩ). This

implies that for any θ ∈ [−∞,∞)N , if we take θ′ = PM (θ) ∈ [−∞,∞)M , then H(θ, q) = F (θ′, q)

for all q ∈M(µΩ). Therefore, Equations (S8) and (S9) are equivalent. �

We now show that we can remove any θ ∈ Θ′ such that θi = −∞ for some i ∈ M , thereby

reducing this set to a subset of the Euclidean space RM . Formally, let

Θ′′ = {θ ∈ Θ′ : θi > −∞, ∀i ∈M}.

Note that it is possible to have Θ′′ = ∅.

Lemma S3. The set Θ′′ and function F satisfy the following conditions:

1. When RM is endowed with the Euclidean topology, Θ′′ is closed.

2. There exists κ ∈ R such that θi ≤ κ for all θ ∈ Θ′′ and i ∈M .

3. Equation (S9) holds either if Θ′′ = ∅, or if Θ′′ 6= ∅ and

sup
θ∈co(Θ′′)

inf
q∈M(µΩ)

F (θ, q) = inf
q∈M(µΩ)

sup
θ∈Θ′′

F (θ, q). (S10)

4. Fix any q ∈ M(µΩ). When restricted to RM (endowed with the Euclidean topology), the

mapping θ 7→ F (θ, q) is continuous, nondecreasing, quasiconcave, and quasiconvex.

Proof. Since Θ′ is a closed subset of [−∞,∞]M (endowed with the product topology of the extended

reals), it is easy to verify that Θ′′ is a closed subset of RM (endowed with the Euclidean topology).

Note, however, that Θ′′ need not be compact. Next, the second condition follows directly from

the second condition in Lemma S2. To establish the third condition, note that if θ ∈ co(Θ′) has

θi = −∞ for some i ∈M , then for any q ∈M(µΩ),∑
i∈M

θi · µ⊗ q(Ei) = −∞,
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and hence F (θ, q) = 0. Thus, if Θ′′ = ∅, then F (θ, q) = 0 for all θ ∈ co(Θ′) and q ∈ M(µΩ), so

Equation (S9) holds trivially. In the alternative case of Θ′′ 6= ∅, it is immediate that Equations (S9)

and (S10) are equivalent.

To verify the fourth condition, fix any q ∈M(µΩ). Note that the mapping

θ 7→
∑
i∈M

θi · µ⊗ q(Ei)

is continuous, nondecreasing, and linear. Therefore, the mapping θ 7→ F (θ, q) is continuous, non-

decreasing, quasiconcave, and quasiconvex (though it is obviously no longer linear). �

To apply the minimax theorem, we need the set over which the supremum is being taking to

be closed an convex. That is, we will want to show that we can replace co(Θ′′) with cl(co(Θ′′)) on

the left side of Equation (S10) and replace Θ′′ with cl(co(Θ′′)) on the right side without affecting

either of these values. The next two lemmas show that this is possible for the set Θ′′ and function

F in question.

Lemma S4. Suppose Y ⊂ RM is closed, and suppose there exists κ ∈ R such that yi ≤ κ for all

y ∈ Y and i ∈ M . Then, for any y ∈ cl(co(Y )) there exists y′ ∈ co(Y ) such that y′ ≥ y (that is,

y′i ≥ yi for all i ∈M).

Proof. Suppose y ∈ cl(co(Y )). There there exists a sequence (yn) in co(Y ) such that yn → y.

Let m be the cardinality of the set M . By Caratheodory’s Convexity Theorem (Theorem 5.32 in

Aliprantis and Border (2006)), every element of co(Y ) can be written as a convex combination of

at most m+ 1 vectors from Y . Therefore, each yn can be written as

yn =
m+1∑
j=1

αjny
j
n,

where yjn ∈ Y for all n ∈ N and j ∈ {1, . . . ,m + 1}, and αn = (α1
n, . . . , α

m+1
n ) ∈ [0, 1]m+1 satisfies

α1
n + · · ·+ αm+1

n = 1 for all n ∈ N. Since [0, 1]m+1 is compact, (αn) has a convergent subsequence.

With slight abuse of notation, denote this subsequence again by (αn). That is, we can assume

without loss of generality that αn → α for some α = (α1, . . . , αm+1) ∈ [0, 1]m+1.

We claim that the sequence (yjn) in Y is bounded for all j such that αj > 0. For suppose to

the contrary that (yjn) is unbounded. Then, since Y is bounded above by κ, this would imply there

there exists some subsequence (yjnk) and some dimension i ∈ M such that yji,nk → −∞. However,

since αj > 0 and yj
′

i,nk
≤ κ for all j′, this implies yi,nk → −∞, contradicting the fact that this

subsequence converges to yi ∈ R. Thus, (yjn) must be bounded.

Therefore, by passing to subsequences if necessary, it is without loss of generality to assume that

(yjn) converges for all j for which αj > 0. Denote the limits of these sequences by yj , respectively,

and let

y′ =
∑

j∈{1,...,m+1}:
αj>0

αjyj .
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Since Y is closed, each of these yj is in Y , and hence y′ ∈ co(Y ). Now, for every n ∈ N and i ∈M ,

yi,n =
∑

j∈{1,...,m+1}:
αj>0

αjny
j
i,n +

∑
j∈{1,...,m+1}:

αj=0

αjny
j
i,n ≤

∑
j∈{1,...,m+1}:

αj>0

αjny
j
i,n +

∑
j∈{1,...,m+1}:

αj=0

αjnκ,

since yji,n ≤ κ. Taking limits, the left side of this inequality converges to yi and the right side

converges to y′i. Thus, y ≤ y′, as claimed. �

Lemma S5. If Θ′′ 6= ∅, Equation (S10) is equivalent to the following:

sup
θ∈cl(co(Θ′′))

inf
q∈M(µΩ)

F (θ, q) = inf
q∈M(µΩ)

sup
θ∈cl(co(Θ′′))

F (θ, q). (S11)

Proof. The function F in nondecreasing in θ by Lemma S3. Therefore, for any θ, θ′ ∈ RM and

q ∈M(µΩ), θ′ ≥ θ implies F (θ′, q) ≥ F (θ, q). Therefore,

θ′ ≥ θ =⇒ inf
q∈M(µΩ)

F (θ′, q) ≥ inf
q∈M(µΩ)

F (θ, q).

Also, since Θ′′ is closed and bounded above by Lemma S3, Lemma S4 implies for any θ ∈ cl(co(Θ′′))

there exists θ′ ∈ co(Θ′′) such that θ′ ≥ θ. Therefore,

sup
θ∈co(Θ′′)

inf
q∈M(µΩ)

F (θ, q) = sup
θ∈cl(co(Θ′′))

inf
q∈M(µΩ)

F (θ, q).

This establishes that the left sides of Equations (S10) and (S11) are the same.

To see that the right sides of these equations are also the same, first fix any θ ∈ co(Θ′′). Thus,

θ =
∑m

j=1 α
jθj for some m ∈ N and θj ∈ Θ′′, j ∈ {1, . . . ,m}. Since for any q ∈ M(µΩ), the

mapping θ 7→ F (θ, q) is quasiconvex by Lemma S3, this implies that F (θ) ≤ F (θj) for some j.

Therefore,

sup
θ∈Θ′′

F (θ, q) = sup
θ∈co(Θ′′)

F (θ, q)

for every q ∈M(µΩ). By the same arguments used above, it is also true that

sup
θ∈co(Θ′′)

F (θ, q) = sup
θ∈cl(co(Θ′′))

F (θ, q).

Combining these observations, we see that the right sides of Equations (S10) and (S11) are the

same. �

We are almost ready to apply the minimax theorem to prove that Equation (S11) holds whenever

Θ′′ 6= ∅. First, the following lemma will be used to establish some of the necessary properties of

the mapping q 7→ F (θ, q).

Lemma S6. Suppose X : Ω → R is measurable and bounded, and fix any p ∈ 4(Ω). Then, for

any q, q′ ∈M(p), the mapping

λ 7→ max

{
0,

∫
Ω
X d(λq + (1− λ)q′)

}
exp(R

(
p
∥∥λq + (1− λ)q′

)
)
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is quasiconvex and lower semicontinuous on the interval [0, 1].

Proof. Our proof will make use of the Donsker–Varadhan variational formula (see, for example,

Lemma 1.4.3 in Dupuis and Ellis (1997)), which states that for any p, r ∈ 4(Ω),

R(p ‖ r) = sup
Y ∈Bb(Ω)

[∫
Ω
Y dp− ln

(∫
Ω

exp(Y ) dr

)]
,

where Bb(Ω) denotes the space of all bounded Borel measurable real functions on Ω. Therefore,

exp(R(p ‖ r)) = sup
Y ∈Bb(Ω)

exp
(∫

Ω Y dp
)∫

Ω exp(Y ) dr
,

and hence

max

{
0,

∫
Ω
X dr

}
exp(R(p ‖ r)) = max

{
0, sup

Y ∈Bb(Ω)

exp
(∫

Ω Y dp
) ∫

ΩX dr∫
Ω exp(Y ) dr

}
.

We will show for any X,Y ∈ Bb(Ω), p ∈ 4(Ω), and q, q′ ∈M(p), the function h : [0, 1]→ R defined

by

h(λ) =

exp

(∫
Ω
Y dp

)∫
Ω
X d(λq + (1− λ)q′)∫

Ω
exp(Y ) d(λq + (1− λ)q′)

is quasiconvex and lower semicontinuous. This will establish the claim in the statement of the

lemma, since the supremum of a set of quasiconvex and lower semicontinuous functions retains

these properties.

Continuity of the function h in λ is immediate. To see that h is quasiconvex, fix any γ ∈ R and

fix any λ1, λ2 ∈ [0, 1] such that h(λ1) ≤ γ and h(λ2) ≤ γ. Suppose without loss of generality that

λ1 ≤ λ2. We need to show that h(λ) ≤ γ for any λ ∈ (λ1, λ2). Note that h(λi) ≤ γ is equivalent to

exp

(∫
Ω
Y dp

)∫
Ω
X d(λiq + (1− λi)q′) ≤ γ

∫
Ω

exp(Y ) d(λiq + (1− λi)q′).

Any λ ∈ (λ1, λ2) can be written as αλ1 + (1−α)λ2 for α = (λ2− λ)/(λ2− λ1). Therefore, we have

exp

(∫
Ω
Y dp

)∫
Ω
X d(λq + (1− λ)q′)

= α exp

(∫
Ω
Y dp

)∫
Ω
X d(λ1q + (1− λ1)q′) + (1− α) exp

(∫
Ω
Y dp

)∫
Ω
X d(λ2q + (1− λ2)q′)

≤ αγ
∫

Ω
exp(Y ) d(λ1q + (1− λ1)q′) + (1− α)γ

∫
Ω

exp(Y ) d(λ2q + (1− λ2)q′)

= γ

∫
Ω

exp(Y ) d(λq + (1− λ)q′),

which implies h(λ) ≤ γ. This establishes that h is quasiconvex, which completes the proof. �
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The following lemma applies Theorem S2 to prove that Equation (S11) holds whenever Θ′′ 6= ∅.
In light of Lemmas S1, S2, S3, and S5, this will establish Equation (S4) and complete the proof of

Proposition 4.

Lemma S7. If Θ′′ 6= ∅, then Equation (S11) is satisfied.

Proof. We only need to establish that the assumptions of Theorem S2 are satisfied for the sets

C = cl(co(Θ′′)), D = M(µΩ), and for the function F defined above.

Note that C is a closed and convex subset of RM by definition. It is also straightforward to

show that the set D is convex. To see that condition 1 is satisfied, recall that for any q ∈ D, the

mapping θ 7→ F (θ, q) is continuous and quasiconcave on C by Lemma S3.

Next, fix any θ ∈ C and define X : Ω→ R by56

X(ω) =

∫
S×Σ

∑
i∈M

θi · 1[(ω, s, σ) ∈ Ei] dµ(s, σ|ω).

Then, for any q ∈M(µΩ),

max

{
0,

∫
Ω
X dq

}
exp(R(µΩ ‖ q))

= max

{
0,

∫
Ω×S×Σ

∑
i∈M

θi · 1[(ω, s, σ) ∈ Ei] dµ⊗ q(ω, s, σ)

}
exp(R(µΩ ‖ q))

= max

{
0,
∑
i∈M

θi · µ⊗ q(Ei)

}
exp(R(µΩ ‖ q))

= F (θ, q).

Therefore, Lemma S6 applied to this random variable X and to p = µΩ implies that for any

q, q′ ∈ D, the mapping λ 7→ F (θ, λq + (1− λ)q′) is quasiconvex and lower semicontinuous on [0, 1].

Thus, condition 2 in Theorem S2 are satisfied.

Finally, we show that either condition 3 holds for L = {µΩ} and some η > 0, or Equation (S11)

holds trivially with both sides of the equality equal to zero. Thus, there are two cases to consider.

The first case is when

inf
q∈D

sup
θ∈C

F (θ, q) > 0.

In this case, fix any η > 0 that is strictly less than this value and take L = {µΩ}. The set

CµΩ
η ≡ {θ ∈ C : F (θ, µΩ) ≥ η}

is closed since C is closed and F is continuous in θ. Given this, and since C is a subset of the

finite-dimensional Euclidean space RM , the set CµΩ
η is compact if and only if it is bounded. By

56Note that the sets {(s, σ) : (ω, s, σ) ∈ Ei} are measurable for each ω ∈ Ω and i ∈ M by Lemma 4.46 in
Aliprantis and Border (2006), and hence the function being integrated is indeed measurable.
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Lemma S3, there exists κ ∈ R such that θi ≤ κ for all θ ∈ C and i ∈M . Let

β ≡ min
i∈M

µ(Ei) > 0.

Then, for any θ ∈ C and i ∈M ,∑
i′∈M

µ(Ei′)θi′ ≤ µ(Ei)θi + (1− µ(Ei))κ ≤ βθi + (1− β)κ.

Thus, since R(µΩ ‖µΩ) = 0 and since η > 0, for any θ ∈ CµΩ
η and i ∈M , we have

0 < η ≤ F (θ, µΩ) =
∑
i′∈M

µ(Ei′)θi′ ≤ βθi + (1− β)κ

=⇒ θi > −
(1− β)κ

β
.

Therefore, the set CµΩ
η is bounded above by κ and bounded below by −(1 − β)κ/β. This implies

that CµΩ
η is bounded, hence compact. Thus, all of the assumptions of Theorem S2 are satisfied, so

we can conclude that Equation (S11) holds.

The second case is when

inf
q∈D

sup
θ∈C

F (θ, q) = 0.

In this case, since F ≥ 0 and since

sup
θ∈C

inf
q∈D

F (θ, q) ≤ inf
q∈D

sup
θ∈C

F (θ, q),

Equation (S11) must hold with both sides equal to zero. Thus, in either case, the equation is

satisfied. This completes the proof. �

S5.3 Proof of Lemma 2

Fix any ξ ∈ co(Ξ). By the definition of Ξ and the definition of the convex hull, there exists n ∈ N
and (ψ1

σ,f ), . . . , (ψnσ,f ) ∈ ΨΣ×B and α1, . . . , αn ≥ 0 with α1 + · · ·+ αn = 1 such that

ξ(ω, s, σ) =
n∑
i=1

αi

∫
B
ψiσ,f (f(ω, s)) dρσ(f)

=

∫
B

n∑
i=1

αiψ
i
σ,f (f(ω, s)) dρσ(f)

=

∫
F

∫
Ψ
ψ(f(ω, s)) dτσ(ψ|f) dρσ(f),
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where we define τ ∈ R(Ψ|F) for each σ ∈ Σ and f ∈ B by57

τσ(ψ|f) =
n∑
i=1

αi1[ψ = ψiσ,f ].

Thus, ξ = ξτ .

Conversely, suppose ξ = ξτ for some τ ∈ R(Ψ|F). Since τσ(·|f) has finite support for all σ and

f , and since Σ and B are finite, the product measure on ΨΣ×B generated by these measures also

has finite support. That is, there exists a product measure ν on ΨΣ×B with finite support, defined

by

ν
(

(ψσ,f )σ∈Σ,f∈B

)
=
∏
f∈B
σ∈Σ

τσ(ψσ,f |f).

We can enumerate the elements of the support of this measure as

supp(ν) =
{

(ψ1
σ,f ), . . . , (ψnσ,f )

}
.

Thus,

ξτ (ω, s, σ) =

∫
F

∫
Ψ
ψ(f(ω, s)) dτσ(ψ|f) dρσ(f)

=

∫
B

∫
ΨΣ×B

ψσ,f (f(ω, s)) dν
(

(ψσ̂,f̂ )σ̂∈Σ,f̂∈B

)
dρσ(f)

=
n∑
i=1

ν
(

(ψi
σ̂,f̂

)σ̂∈Σ,f̂∈B

)∫
B
ψiσ,f (f(ω, s)) dρσ(f),

and hence ξτ ∈ co(Ξ).

S5.4 Proof of Lemma 3

The set [−∞,∞] is a compact Hausdorff space when endowed with its usual topology.58 By the

Tychonoff Product Theorem (Theorem 2.61 in Aliprantis and Border (2006)), the set [−∞,∞]Z

endowed with the product topology (also know as the topology of pointwise convergence) is compact.

Since Ψ ⊂ [−∞,∞]Z is closed, it is also compact. Applying the Tychonoff Product Theorem again,

the set ΨΣ×B is compact in the product topology.

We next show that the mapping J : ΨΣ×B → [−∞,∞]Ω×S×Σ defined in Equation (11) is

continuous when [−∞,∞]Ω×S×Σ is endowed with the product topology. To see this, fix any net

(ψασ,f )α∈D in ΨΣ×B that converges to some (ψσ,f ) ∈ ΨΣ×B. We will show that J [(ψασ,f )] converges

57We can define τσ(·|f) arbitrarily for f ∈ F \B.
58The topology on [−∞,∞] is generated by sets of the form (a, b), [−∞, c) and (c,∞] for a, b, c ∈ R. It

is easy to see that under this topology, [−∞,∞] is Hausdorff (meaning that for any two distinct points x, y
there exist neighborhoods U of x and V of y such that U ∩ V = ∅) and compact. Indeed, [−∞,∞] is often
referred to as the two-point compactification of R (see Example 2.75 in Aliprantis and Border (2006)).
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to J [(ψσ,f )].59 First, by the definition of the product topology, convergence of the net (ψασ,f ) implies

that ψασ,f (z)→ ψσ,f (z) for all σ, f , and z. In particular, ψασ,f (f(ω, s))→ ψσ,f (f(ω, s)) for all σ, f ,

ω, and s. Therefore, since convergence is preserved under scalar multiples and finite sums,∑
f∈B

ψασ,f (f(ω, s))ρσ(f)→
∑
f∈B

ψσ,f (f(ω, s))ρσ(f)

for all ω, s, and σ. Thus, J [(ψασ,f )] → J [(ψσ,f )] in the topology of pointwise convergence on

[−∞,∞]Ω×S×Σ.

Therefore, the set Ξ = J [ΨΣ×B] is compact, since it is the image of the compact set ΨΣ×B

under the continuous function J . Moreover, since [−∞,∞]Ω×S×Σ is a Hausdorff space, compact

subsets of this space are closed (Lemma 2.32 in Aliprantis and Border (2006)). Thus, Ξ is closed.
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